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Abstract 

Coupled electro-elastic SH waves propagating in a periodic piezoelectric finite-width waveguide 

are considered in the framework of the full system of Maxwell’s electrodynamic equations. We 

investigate Bloch-Floquet waves under homogeneous or alternating boundary conditions for the 

elastic and electromagnetic fields along the guide walls. Zero frequency stop bands, trapped 

modes as well as some anomalous features due to piezoelectricity are identified. For mixed 

boundary conditions, by modulating the ratio of the length of the unit cell to the width of the 

waveguide, the minimum widths of the stop bands can be moved to the middle of the Brillouin 

zone. The dispersion equation has been investigated also for phonon-polariton band gaps. It is 

shown that for waveguides at acoustic frequencies, acousto-optic coupling gives rise to polariton 

behaviour at wavelengths much larger than the length of the unit cell but at optical frequencies 

polariton resonance occurs at wavelengths comparable with the period of the waveguide. 
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1. Introduction 

The interaction of waves with periodic structures, especially artificial superlattices, has 

recently attracted much attention. A periodic modulation of the dielectric or elastic material 

properties leads to absolute stop bands and ultimate control of the propagation of waves in the 

structure. The interaction of light with periodic dielectric materials results in a photonic crystal 

which exhibits a frequency range for which the structure forbids the propagation of 

electromagnetic waves [Yablonovitch, 1987]. Photonic crystals have opened new features for 

controlling light, leading to the potential applications in many novel devices [Fan et al., 1998].   
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In the phononic crystal counterpart a periodic modulation of elastic coefficients can create a 

phononic band gap for which the propagation of elastic waves is forbidden [Sigalas and 

Economou, 1992]. These materials have found several applications including in the field of wave 

guiding and filtering [Achaoui et al, 2010] and sound isolation [Liu et al, 2000].  

The existence of architectures simultaneously exhibiting both complete photonic and 

phononic band gaps has also been discussed [Maldovan and Thomas, 2006] opening the 

possibility of dual acousto-optic devices. 

 Coupling of acousto-optic interaction can be expected also in piezoelectric superlattices 

where piezoelectric or piezomagnetic composites are periodically made up of two or more 

different constituents. Compared with purely elastic crystals they exhibit electric or magnetic 

effects with novel acoustic properties. Currently thin film piezoelectric layered structures are 

widely used to satisfy the increasing demand for higher frequency, higher performance, smaller 

size, lower cost and lower energy consumption technologies.  The investigation of acoustic waves 

in piezoelectric phononic crystals has recently attracted much attention and problems concerning 

the propagation of acoustic waves both in two and three dimensional piezoelectric periodic 

structures are considered in Vashishth and Gupta (2009), Wang et al. (2009), Wilm et al. (2002).  

The purpose of this paper is to investigate the propagation of SH Bloch waves in a 

piezoelectric periodic waveguide. Unlike many previous studies we will solve the problem in a 

dynamic setting for Maxwell’s equation where both the optical effect and the effect from the 

rotational part of the electric field are taken into account. This setting will provide more insight 

into wave propagation properties both at acoustic and optical frequencies [Piliposian et al., 2012; 

Belubekyan, 2008]. The dispersion equation will also describe the coupling of elastic and 

electromagnetic properties called a phonon polariton, which is the counterpart of the coupling of 

phonons and photons in ionic crystals originating from a coupling between lattice vibrations 

(transverse optical phonons) and electromagnetic waves (photons) in the infrared region. Due to 

piezoelectricity the same phenomenon takes place in a piezoelectric superlattice where the 

periodicity of the lattice is expanded from atomic scale to microns and the phonon polariton gap 

expanded from the infrared to microwave region [Zhang et al., 2004, Zhao et al, 2008, Senesi and  

Ruzzene, 2011, Xu et al, 2013]. This problem, which has not been considered for waveguides, 

can find new applications in acousto-optic devices.  

  To tackle the problem of elasto-electromagnetic wave propagation in periodic waveguides a 

modal decomposition approach is used based on eigenfunction expansion of the electromagnetic 

field vectors, elastic displacements and stresses, where the eigenfunctions are orthogonal 
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wavefield modes of an infinite homogeneous waveguide [Pagneux and Maurel, 2006]. By using a 

modified expression of the orthogonality relation between normal modes of the piezoelectric 

waveguide, the fields are represented as the sum of the normal-mode waves propagating along 

both directions of the waveguide. This gives a method for determining all possible boundary 

conditions on the guide walls when the orthogonality property holds and also helps to construct 

transfer matrices across the internal material interfaces. The problem can also be solved for the 

case where the waveguide has periodically alternating boundary conditions along the guide walls. 

 

2. Solutions in a homogeneous waveguide 

 First we consider the propagation of elasto-electromagnetic coupled SH waves in a one 

dimensional infinite piezoelectric waveguide of hexagonal symmetry class. The problem will be 

considered in the framework of the full dynamic system of Maxwell’s equations which will give 

an opportunity to study the wave dispersion equation both at acoustic and optical wave frequency 

regions. For an anti-plane problem the interconnected elastic and electro-magnetic excitations in 

a transversely isotropic piezoelectric crystal with crystallographic axes directed along the Oz 

direction are with respect to ,
z

u
x

E , y
E , z

H  [Ghazaryan and Piliposyan, 2012] 
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where 
z

u is the displacement, ik  the stress tensor, kD  and 
k

E the electric displacement and 

electric field intensity, 
zH  the magnetic field intensity, and , 44 ,c

15
,e

11
 , 

33
  the mass density,  

elastic, piezoelectric, dielectric and magnetic constants respectively. Harmonic time dependence 

in the form exp(i )t  for the all time-dependent variables (with   as wave angular frequency) is 

assumed henceforth. Writing 
15 ,e e 44 ,c G 11ε ε, ,zH i H zu u , eliminating Dx and Dy, 

equations (1)-(3) can be rewritten in terms of the variables ( , ),yE x y ( , )u x y , ( , )H x y , ( , )
xz

x y all 

of which will be continuous across material interfaces when considering a periodic waveguide:  
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Following the formalism adopted in Pagneux and Maurel (2006) for the inplane problem, here we 

introduce the vectors  

    ( , ), ( , ) ,
T

yE x y u x yz   ( , ), (x, y)r xz

T
H x y      (5) 

 

and write the system of equations (4) in the matrix operator form  
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Boundary conditions on the waveguide walls will be imposed on the variables ,u H ,
yzσ  and 

 xE x, y .  The latter two can be expressed in terms of the variables ( , ), ( , )yE x y u x y , ( , )H x y  and 

(x, y)xz  as follows:
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This implies that any boundary conditions on the waveguide walls also can be expressed in terms 

of  unknown vectors z and r .  

The solution to (6) can be found by separating the variables in the form 

i
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which leads to an eigenvalue problem with discrete eigenvalues 
n

k  and corresponding mode 

solutions , )(z r
T

n n
, where 
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each satisfying the eigenvalue problem 
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  We can use the properties of the operators F̂  and Q̂  to derive the bi-orthogonality 

relation between different modes zm
 and rn

.  From (10) it follows that the vectors zm
 and 



 5 

rn
 associated with different modes corresponding to eigenvalues mk  and nk  satisfy the 

following equations:  
     

    
2ˆˆ ,z z

m m m
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Using   (11) and (14) we get the following orthogonality relation between modes for coupled 
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where 
mn  is the Kronecker delta operator and the form of nJ  depends on the boundary conditions 

on the waveguide walls and is given below for different cases.  

 Equations (13) give possible boundary conditions ensuring the orthogonality of the 
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0c  is the velocity of a transverse wave in the medium, c is speed of the electromagnetic wave, 

1,2i   correspond to the upper and lower terms in (16) and (17), and where following notations 

are introduced within a homogeneous material for right and left travelling waves [Adams et al., 

2009]: 
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where ,n nA B , ,n nC D are constants. The parameters 
nq  and 

ns  stand for the eigenvalues 
nk   

determined from the characteristic equation of (10), and the dimensionless parameters 
np   

determined from boundary conditions on the waveguide walls.  The term e  in the expression for 

( , )nH x y  in (16) is included to harmonise the dimensions of all the wave-field functions.  

 The upper terms in (16) and (17) and case 1i   in (18) correspond to displacement-clamped 

and electrically-shorted boundary conditions on the waveguide walls: 

        ,0 0, ,0 0, ,1 0, ,1 0, .n xn n xn nu x E x u x E x p n          (21) 

The lower terms and case 2i   correspond to traction free and magnetically-closed boundaries:  
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  Note that the electrically-shorted condition can for example be obtained by coating the wall 

with a thin metallic layer, and the magnetically-closed condition obtained by coating the 

corresponding layer with a superconducting thin layer.    

 For all the above cases the orthogonality condition (15) holds, moreover this condition is 

decoupled into two separate conditions: 
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For a piezoelectric waveguide there also exists boundary conditions for which the orthogonality 

condition (15) is satisfied but the elastic and electromagnetic functions are coupled on the 

waveguide walls, for example when the walls are electrically-shorted and mechanically traction 

free [Yang, 2004]. As another example of such a waveguide consider the following conditions on 

the waveguide walls: 
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In this case the mode solutions of equations (6) can be derived as  
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Positive and negative eigenvalues 
np for this problem are determined from the following 

dispersion equation:  
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In this case in the orthogonality relationship (15) 
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Note that without the piezoelectric effect the dispersion equation (30) decouples into solutions 

defining the eigenvalues 
np  at acoustic frequencies 

2 2 2 2 2

0
,

n n
p h c q  (2 1) / 2nq n  and optical 

frequencies 
2 2 2 2 2

n np h c s  , .ns n
 Equation (30) has also interesting solutions in the short 

wave ( h ) and long wave ( 0h ) approximations. If for dimensional eigenvalues n nk p h  

we write the dispersion equation (30) as 

      
2

0 0
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tanh tanhn

n n

n n

k
q h s h

q s


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with 2 2 2

0 0 ,n nq k c   2 2 2

0 ,n ns k c  then at frequencies 
0

kc  , when h the dispersion 

relation (32) can be approximated by 2

0
1

n
k c   . This equation defines the phase velocity 

n
k of an acoustic Bleustein–Gulyaev surface wave for a traction-free and electrically-shorted 

elastic half-space.  For the long wave approximation the dispersion equation (32) gives

1nk c   . This relation characterizes high frequency electromagnetic waves in a very thin 

layer. Note that in this case there is a strong dependence of phase velocity on the electromagnetic 

coupling coefficient  .  

  Our next step is to solve the problem characterized by solutions (16)-(20) in each 

homogeneous segment and boundary conditions (21)-(23) for an infinite one-dimensional 

periodically composed piezoelectric waveguide.  Wave propagation in a periodic waveguide with 

boundary conditions (26) when the elastic and electromagnetic functions are coupled on the 

waveguide walls is an equally important task and is in preparation. 
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3. Modal Solutions  

We consider an infinite one-dimensional periodic piezoelectric structure with unit cells of length 

  consisting of piezoelectric segments of length 
1a  attached and perfectly bonded to elastic 

segments made of another piezoelectric material of length 
2a  (= a1 + a2)  as shown in Figure 1.  

 

 

Fig.1.  Periodic waveguide made from two piezoelectric media. 

The solution of (16)-(17) within each material of the guide can be written in the form  

 

(33)     
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     (1) (1) (1) (1) (2) (2) (2) (2)
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T T

R x x x x R x x x x . (35) 

In (35) 
1

R̂  and 
2

R̂   are the following block matrices:  

 

(1) (1) (2) (2)

1 2

1 2

(1) (1) (2) (2)

ˆ ˆ0 0 0 0 0 0

ˆ ˆ ˆ ˆ ˆ ˆ0 0 0 0
ˆ ˆ,

ˆ ˆ0 0 0 0 0 0

ˆ ˆˆ ˆ ˆ ˆ0 0 0 0

L I

LK LP K P
R R

M I

MP MQ P Q

  



 

   
   
   

    
   
   
   

, (36) 

L̂ , M̂  and the diagonal matrices ( )ˆ jK  and ( )ˆ jQ have elements  
1

(1) (2)

0

( ) ( ) ,
mn n xzm

L u y y dy   
1

(1) (2)

0

( ) ( ) ,
mn n ym

M H y E y dy 
( ) ( ) ,j j

mn n nmK q 
( ) ( )j j

mn n nm
Q s  , ( ) (j)( 1)j j

mn n nmP p   , 

),2,1,( Nnm  , )2,1( j .  The matrix ( )jP depends on the boundary conditions on the waveguide 

walls. We also need the transfer matrix within a homogeneous material [Pagneux and Maurel, 

2002] which for the piezoelectric material is 

  

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

0 0

0 0
( ')

0 0

0 0

n n

n n

n n

n n

j j

q q

j j

q qj

j j

s s

j j

s s

C S

S C
x

C S

S C

 
 
  
 
 
  

, (37) 

where 
( ) ,
n

j

q
C ( ) ,

n

j

q
S

( ) ,
n

j

s
C ( )

n

j

s
S are matrices with entries 

( )cos( ( ' )),j

nq x x
( )sin( ( ' )),j

n
q x x

( )cos( ( ' ))j

n
s x x and 

( )sin( ( ' )).j

n
s x x  Writing the Bloch-Floquet conditions as 

                         2 2 2 2 2 2 2 2

0 1 1 1 1 2 2 2 2
exp( ) , , , , , , ,a b c d a b c d

T T

ιk -a -a -a -a a a a a   

where 
0

k  is the Bloch wave number, and using the transfer matrices (36) across the interfaces and 

(37) within a homogeneous material we arrive at the following eigenvalue problem  

   

  
  
  
  

     

  
  
  
  

2 2

1 1

2 2

1 1
(2) 1 (1) 1

0 2 2 1 1 1 2
2 2

1 1

2 2

1 1

exp( )

a a

b b

c c

d d

a a

a a
ιk T a R R T a R R

a a

a a

  

    
   
    
   

    
    

   
    
   

.  (38) 

For homogeneous boundary conditions on the guide walls, L̂  and M̂  in (36) become identity 

matrices, the propagating modes separate from each other, and, writing 0exp( )ιk  , each gives 

rise to the following dispersion equation [Piliposian et al., 2012]:  

  
4 3 2( , , ) ( , ) ( , ) ( , ) 1 0,F p f p g p f p               (39) 

where 
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             1 2 1 2 1 1 2 2, ,2 ,   2 2 1 2 ,f A P Q Q g Ap P QQ Qp R Q R           (40) 

         
2 2 2 2(1) (2) (2) (1)

(1) (2) (1) (2)

1 2 1 2(1) (2) (1) (2)
cos cos sin sin

2

q q
P a q a q a q a q

q q

 

 


  ,  (41)        

       
2 2 2 2(1) (1) (2) (2)

(1) (2) (1) (2)

1 2 1 2(1) (2) (1) (2)

( )
cos cos sin sin

2

G s G s
A a s a s a s a s

q q G G


  ,    (42)  

   
 
 

    
(2,1)(1,2) (1,2)

2,1(1,2) (2,1) (1,2) (1,2)

1,2 2,1 1,2 1,2(2,1) (2,1) (1,2)

1,

,2

2

1

sin
cos cos cos cos ,

sin
1

a sG r
a q a s a q a s

G a s
R

r
     (43) 

  
     

2

2 (1,2)
2

(1) (2) (2) (1)

1,2 (1,2) (2,1)

(2,1)

1,2 2,1

(1,2) (1,2 (2) ,1)

sin s
 

in
,  

p a s ae
Q

q

G s

e

q

 

 


   (44) 

and in (43) and (44) the first values in subscripts and superscripts correspond to 
1R  and 

1Q  and 

the second values to 
2R  and 

2Q . The index n  is omitted in parameters ( ) ( ),j j

n n
q s . 

Taking into account that 
1 2cos k     the solutions of the dispersion equation (39) are 

   2

0

1
cos( ) ( 4 8) 0,

4
k f f g         (45)   

and  2

0

1
cos( ) ( 4 8) 0

4
k f f g       .  (46) 

  

 Dispersion equations (45) and (46) are the same both for displacement-clamped and 

electrically-shorted (21), and traction free and magnetically-closed (22) boundary conditions on 

the waveguide walls. In the case of boundary condition (21) mode 0n   leads to a solution for 

the electromagnetic field independent of ,y ( , ) ( ),H x y H x and a trivial solution for the 

displacement, giving the propagation of a pure electromagnetic wave described by the dispersion 

equation 
0

cos( )k P  . In the case of boundary condition (22) mode 0n   leads to a solution for 

the displacement that is independent of y, ( , ) ( ),u x y u x  and a trivial solution for the 

electromagnetic field function, giving the propagation only of an acoustic wave described by the 

dispersion equation 
0

cos( )k A   with the piezoelectric effect present only in the 

piezoelectrically stiffened elastic modulus 
0

G  . 

 Equations (45) and (46) give the complete dispersion relation for the periodic piezoelectric 

waveguide and include information about a coupled elasto-electromagnetic SH wave and 

phonon-polariton. 

 Without the piezoelectric effect the dispersion equations (45) and (46) give two solutions, 

one describing the propagation of an electromagnetic wave 
0

cos( )k P  and the other an 

acoustic wave 
0

cos( )k A   [Adams et al.,2008].  

http://rspa.royalsocietypublishing.org/search?author1=Samuel+D.M+Adams&sortspec=date&submit=Submit
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 For a superlattice with cells composed of two identical but oppositely polarized 
piezoelectric materials ( 1 ,e e 2e e  )

 
of equal widths 

2 1a a a  , equations (45) and (46) take 

the following simple form:  

 

        

             

2

0

22 22 2

1
cos( ) cos 2 cos 2 2 sin sin

2

            cos cos 4 cos cos sin sin

p
ak aq as aq as

qr

p
aq as aq as aq as

qr





  

   

. (47) 

It is clear from (47) that band gaps are possible in this case. 

 For homogeneous boundary conditions (21), (22), (23), mode separation physically means 

no-mode conversion at the interface. This is due to the fact that the modes with respect to y  are 

independent of material parameters, making separation of variables and consideration of the 

problem mode by mode possible. In the case of boundary conditions (26) the elastic and magnetic 

variables are coupled on the waveguide walls, further, the modes with respect to y are dependent 

on the material parameters. In this case although the orthogonality relationship within each 

constituent material is preserved, no-mode conversion property at the interface no longer holds. 

In this case one can expect similar effects to the elastic in-plane problem [Adams et al, 2009], 

where the equations of elasticity can be decomposed into two uncoupled scalar Helmholtz 

equations in two potentials coupled via the boundary conditions.  Here, for the anti-plane 

piezoelectric problem equations (1)-(3) are written via two uncoupled Helmholtz equations with 

respect to both the magnetic field and the anti-plane displacement, which are coupled on the 

boundaries. Mode mixing across the interface also occurs when the boundary conditions on the 

waveguide walls are independent of the material parameters but the waveguide has periodically 

alternating boundaries. 

 

4. Numerical Results   

 The structure of wave propagation depends on the ratio of the length of the unit cell to the 

height of the waveguide h , the reduced wave number 
0

k  , the filling fraction, and differences 

between the elastic and electromagnetic properties of two piezoelectric materials (Table 1) . 

  Table 1. Material constants of PZT-4 , 3LiIO
 
and 3BaTiO  

Material 
Elastic constant 

1010 N/
2m  

Piezoelectric 

constant  C/
2m  

Permittivity 

11 1110
F/m 

Density 

 310 kg/
3m  

PZT-4
 

2.56 12.7 646 7.6 

3LiIO  1.78 0.89 6.434 3.402 

3BaTiO  5.43 11.6 1.744 6.02 

44c

15e
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 For the displacement-clamped and electrically-shorted case (21) there exist cut off 

frequencies in the acoustic region for each material below which waves do not propagate.  Below 

the lowest of these two frequencies no propagation will be possible creating a stop band. In the 

traction free and magnetically-closed case (22) propagating solutions exist around 0 . In this 

case the lowest mode gives solutions only at acoustic frequencies where the piezoelectricity has a 

strong effect on the band structure (Figure 2a).  Here for the normalized frequency 01c , 01c  is 

the velocity of a transverse wave in material 1. For boundary conditions (21) the lowest mode 

gives solutions only at optical frequencies where the dispersion curves are not affected by the 

piezoelectric effect [Piliposian et al., 2012) (Figure 2b).  Here, for the normalized frequency 

1c , 1c  is the speed of light in material 1.  

(a)  (b)  
Fig.2. Band structure for a PZT-4 and LiIO3 piezoelectric phononic crystal for 0n   a) acoustic frequencies for traction-

free and magnetically-closed boundaries, b) optical frequencies for displacement-clamped and electrically-shorted 

boundaries.  Solid and dashed lines correspond to band structure with and without the piezoelectric effect. 

 The lowest mode for boundary conditions (21), which is the same as the first mode for 

boundary conditions (22), when the two materials in the waveguide have different cut-off 

frequencies, wave trapping occurs when the waves exponentially decay in one material. Figure 3 

shows wave trapping for the lowest mode for a PZT-4 and LiIO3 waveguide, where the horizontal 

lines show the cut-off frequencies in the two materials. The nature of the trapping is not different 

from a non-piezoelectric waveguide described in detail in Adams et al. (2008) and is affected by 

both the difference in acoustic impedances and the wavelength in the sense of  Postnova and 

Craster (2007). For a waveguide with long thin cells ( h  ) the mode is localized near the 

interfaces between the two materials for all values of reduced wave number in both piezoelectric 

and non-piezoelectric cases (Fig.3a), although it is nearly completely flat without the 

piezoelectric effect, and has a negative group velocity 
0

k   with the piezoelectric effect. As the 

length of the unit cell reduces compared to the waveguide height (Fig.3b) the dispersion curves 
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for the piezoelectric waveguide vary more rapidly, with virtually no wave trapping region, only a 

zero cut-off at much lower frequency. 

 
(a) 

 
(b) 

 

Fig.3. Band structure for a PZT-4 and 
3LilO  piezoelectric phononic crystal for displacement-clamped 

electrically-shorted boundaries for 1n , (a) / 2h  , (b) / 0.2.h  Solid lines and dashed lines show the 

band structure with and without piezoelectric effect.  Horizontal lines show the cut-off frequencies in the two 

materials. 
 

 For a BaTiO3 and PZT-4 piezoelectric waveguide where there is a larger difference between 

the acoustic impedances, the frequency region with trapped waves is much larger and for shorter 

cells includes several modes (Fig. 4a). Although at acoustic frequencies the propagating modes 

are mainly determined by equation (46) and at optical frequencies by equation (45), for 

piezoelectric constituents with strong piezoelectric coupling, equation (45) contributes to the 

dispersion curves at relatively high acoustic frequencies (thick solid lines in Figure 4b).  The 

band structure here does show an anomalous feature for very small values of the wave number 

0
k   that might suggest a resonance effect. The detailed analysis however shows that this feature 

also occurs in the quasi-static approximation of the Maxwell equations, suggesting that it cannot 

be attributed to the acousto-optic coupling effect but is due only to a strong piezoelectric coupling. 

The contribution of equation (45) remains for longer cell lengths though the anomalous feature 

disappears (Fig. 4c).  Instead the two curves from equations (45) and (46) join in the middle of 

the Brillouin zone making a flat dispersion curve with zero group velocity corresponding to 

standing waves that do not transmit energy through the guide.  
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(a) 

 
(b) 

 
(c) 

Fig.4. Band structure for a PZT-4 and BaTiO3 piezoelectric phononic crystal with displacement-clamped and electrically-shorted 

boundaries for 1n , (a) 2,h  (b) / 0.2,h  (c) / 0.5.h   Solid lines and dashed lines show the band structure with and 

without the piezoelectric effect, horizontal lines show the cut-off frequencies in the two materials. The thick bold lines show the 

contribution of equation (45). 

 A superlattice made up of oppositely polarized PZT-4 materials demonstrates interesting 

features. Figure 5a shows that for thinner cells the first band gap always occurs around the 

0
0k    axis and the lower dispersion curve has two parts, the first part (thick line) described by 

equation (45) and the second by (46), the two meeting at a common maximum point when the 

group velocity is zero. The anomalous feature represented by (45) reduces as the unit cell 

lengthens (Fig. 5b), and disappears altogether for even larger values of h (Fig. 5c). The band 

gap however always occurs around the same resonance frequency and is not affected by this ratio. 

 
(a) 

 
(b) 

 
(c) 

Fig.5.a) Oppositely polarized PZT-4 crystals, a)  0.1,h  b) 0.3,h  c) / 1.h   Dashed lines show the band structure 

without piezoelectric effect, horizontal lines show the cut-off frequencies. The thick bold lines show the contribution of equation 

(45). 

 

 Another interesting feature here is that waves propagate below the cut off frequency (Fig.5b, 

5c), which does not happen when the piezoelectric effect is neglected.  This can also be shown 

analytically from the dispersion equation (47) where below cut off acoustic frequencies

2 2 2

0 0c p   and 2 2 2 0c p   . The dispersion relation (47) remains the same but with 

hyperbolic sinh and cosh functions. We expand the right hand side of (47) for that case into a 

series with respect to  . The first term of series is  
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     
   
   

2
0 0

0

0 0 0 0

sinh sinh 2
cosh 2 2

cosh cosh

aq asp
F as

q s aq as


  


,   (48) 

where 
0,s is 0q iq and

0 0,s  0 0q  . It follows that       0 cosh / cosh / 1 1F h h       

that means there is not a propagating mode. At the cut off frequency 
0 0c p h  , taking into 

account that  
2

0 / 1c c ,  0F   can be approximated as  1 2 tanh / 4 1h   , which means 

that there exists a region below the cut off  frequency in which the wave propagation is possible. 

 

4.1 Periodic mixed boundary conditions 

 The transfer matrix (38) can also be used to solve the problem for piezoelectric waveguides 

with straight parallel boundaries with mixed boundary conditions. If the lower wall is 

displacement-clamped and electrically-shorted and the upper wall traction-free and magnetically- 

closed (23) the modes again separate and the problem is described by the dispersion equations 

(45) and (46) for all modes including mode 0.n   The band structure for the lowest mode in this 

case is similar to the band structure of the solutions for mode 1n   with boundary conditions 

(21) and (22) (Fig.4).  For a non-piezoelectric waveguide it shows a zero frequency stop band but 

no other gaps at higher frequencies.  For piezoelectric waveguides there are significant band gaps 

and wave trapping, and similar anomalous features at higher acoustic frequencies (Fig. 4b).  

 Calculations have been made for a PZT-4 and BaTiO3 phononic crystal which is displacement-

clamped and electrically-shorted on the lower wall ( 0,u  0
x

E  ) and traction-free and 

magnetically-closed on the upper wall ( 0
yz

  , 0H  ) in the first material, and vice versa in the 

second material.  Figure 6 shows the dispersion diagrams without the piezoelectric effect for 

different values of the cell length to height ratio.  Figure 7 shows the same diagrams with the 

piezoelectric effect taken into account. For short cell lengths ( 0.1),h   without the 

piezoelectric effect there is only a zero frequency cut off and no other band gaps since here the 

ratio of acoustic impedances is close to unity and the effect of mixed boundary conditions is not 

strong. As the cell length increases ( 0.4,h   1)h  the modes start mixing (Fig.6b, 7b), the 

zero frequency cut offs become larger and stop band gaps appear with a clear minima within the 

Brillouin zone, an unusual feature for one-dimensional periodic structures. This feature is more 

prominent here compared to homogeneous waveguides with the same mixed boundary conditions 

[Adams et.al., 2008]. For the piezoelectric waveguide, even for short cell lengths there is a very 

wide band gap.  As the ratio h  increases the lower mode bounding the band gap becomes 

http://rspa.royalsocietypublishing.org/search?author1=Samuel+D.M+Adams&sortspec=date&submit=Submit
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nearly flat with no propagating energy (Fig.7c) and this is associated with mode trapping. Note 

that, as shown in Figure 6c, for a non-piezoelectric waveguide the same mixed boundary 

conditions are less conducive for trapping.  

 

 
(a) 

 
(b) 

 
(c) 

Fig.6. Band structure for a PZT-4 and BaTiO3 phononic crystal without piezoelectric effect in the case 0u  , 0
x

E   on the lower 

wall and 0
yz

  , 0H   on the upper wall in the first material, and vice versa in the second material,  a) 0.1,h   (b) 

0.5h  , (c) 1.h   

 

 
(a)  

(b) 
 

(c) 

Fig.7. Band structure for a PZT-4 and BaTiO3 piezoelectric phononic crystal with piezoelectric effect in the case 0u  , 0
x

E   on 

the lower wall and 0
yz

  , 0H   on the upper wall, and vice versa in the second material,  a) / 0.1,h   (b) / 0.5,h   (c) 

/ 1.h   

 Figure 8a shows that for an oppositely polarized piezoelectric superlattice with the same 

boundary conditions, at small values of h , although the effect of the equation (45) is present at 

around 
01

5c   it does not bound the first band gap as in Figure 5a. As /h increases the 

modes start mixing and zero frequency cut offs develope (Fig. 8b).  There are also a very clearly 

defined band gap minima within the Brillouin zone. Even without the piezoelectric effect very 

large minima are observed in the middle of the Brillouin zone (Fig.8c). In this case the waveguide 

is homogenous and the band gaps are only due to the effect of alternating boundary conditions 

[Adams et.al., 2008].    

http://rspa.royalsocietypublishing.org/search?author1=Samuel+D.M+Adams&sortspec=date&submit=Submit
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(a) 

 
(b)  

(c) 

Fig.8. Band structure for oppositely polarized PZT-4 phononic crystals with 0u  , 0
x

E   on the lower wall and 0
yz

  , 0H   

on the upper wall of the first material and vice versa in the second material,  a) / 0.1h   (b) / 1.3,h  (c) without 

piezoelectric effect / 1.3.h   

 

 For an oppositely polarized piezoelectric waveguide with boundary conditions 0u  , 0
x

E   

on the lower and upper walls in the first material and  0
yz

  , 0H   on the lower and upper 

walls in the second material, here again the ratio h  can be modulated to get a very well defined 

minimum width for the band gap within the Brillouin zone (Fig.9b), which is clearly wider than 

the same feature for the homogeneous piezoelectric waveguide (Fig. 9a). For longer cell lengths 

the lowest dispersion curve becomes flat and is associated with trapped modes in the layer with 

displacement-clamped and electrically-shorted upper and lower boundaries (Fig 9c). 

 

 
(a) 

 
(b) 

 
(c) 

 

Fig.9. 0u  , 0
x

E   on the lower and upper walls in the first material, 0
yz

  , 0H   on the lower and upper walls in the 

second material a) 0.4,h   homogeneous piezoelectric waveguide PZT-4 b) 0.4,h  oppositely polarized PZT-4, c) 1h    

oppositely polarized PZT-4. 
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5. Phonon-polariton modes 

 The analysis of equations (45) and (46) shows that at acoustic frequencies ( 1

0
c   ) and 

as 
0

0k    there is an interaction between the quasi-electromagnetic wave described by equation 

(45) and the quasi-acoustic wave described by equation (46). When the frequencies of these 

waves and wave numbers nearly coincide this interaction results in coupling and creation of two 

dispersion curves, low and high polaritons, separated by polariton band gaps [Maugin,1988]. 

Here again the size of the band gaps depend on material constants and the configuration of the 

piezoelectric superlattice. For example the band gaps are wider for larger values of the 

piezoelectric coefficients [Zhu et al, 2003, Zhang et al., 2004]. In the piezoelectric periodic 

waveguide the widths of polariton gaps depend also on the ratio h .  Since the dispersion curve 

of photons at acoustic frequencies is too close to the vertical axis (Fig. 10a, 10b) the coupling 

between the EM wave and superlattice vibration takes place in the long wavelength region (Fig. 

10c). Figures 10c and 11a show the dispersion curves for a PZT-4 superlattice for 
410h  and 

310h  .  The oblique dotted line is the graph of 
0

cos( )k P   and represents the phase velocity 

of the pure electromagnetic wave.  It is clear that for longer cell lengths the lowest order polariton 

band gaps appear at higher resonance frequencies and have narrower gaps (3.6% and 1.6% 

respectively). For a piezoelectric waveguide with constituents PZT-4 and BaTiO3 the lowest band 

gap for 
310h  (Fig. 11b) appears at a much lower resonance frequency than for a PZT-4 

superlattice.  For 
410h   (Fig. 10c) it is at nearly the same frequency as for the PZT-4 

superlattice but with a significantly narrower polariton gap of only 0.2%. Higher-order polaritons 

occur at higher frequencies but they have much narrower gaps (0.15%, 0.1%, Fig. 11b). 

 
(a) 

 
(b) 

 
(c) 

Fig.10. Band structure for oppositely polarized superlattice PZT-4 at acoustic frequencies for 
4/ 10h   (a), the zoomed 

profiles in the range 0-0.1 (b), in the range 0-0.003 (c). Dotted vertical and oblique lines are the plots of equation 
0

cos( )k P  .   
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(a) 

 
(b) 

Fig.11 Polariton dispersion at acoustic frequencies for  310 ,h   a) oppositely polarized superlattice PZT-4, 

b) PZT-4 and BaTiO3. Dotted oblique lines are the plots of equation 
0

cos( ) .k P   

 

Dispersion equations contain information on phonon-polaritons at optical frequencies as well, as 

shown in Figure 12 where for the normalized frequency 1/ ,c  
1

c  is the speed of the 

electromagnetic wave. Drawn at optical frequencies, equations (45) and (46) fill the whole space 

with the interface line described by the equation 
0

cos( )k P  . The enlarged Figure 12b around 

one particular point on the interface line for a superlattice PZT-4 clearly shows the polariton gaps 

at optical frequencies. In this region the period of the lattice is comparable with the height of the 

waveguide ( 0.4)h  . The resonance occurs for short waves, unlike phonon polaritons at 

acoustic frequencies. For a piezoelectric waveguide with constituents PZT-4 and BaTiO3 the 

dispersion curves again show clear polariton gaps (Fig. 12c). 

 

 
(a) 

 
(b)  

(c) 
Fig.12.  Band structure for oppositely polarized superlattice PZT-4 at optic frequencies for / 0.4h   (a),  zoomed profiles (b),   

Zoomed polariton dispersion for PZT-4 and BaTiO3. Dotted oblique lines are the plots of equation 
0

cos( )k P  .   
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6. Conclusion  

 The propagation of elasto-electromagnetic coupled SH waves in a quasi one dimensional 

periodic piezoelectric waveguide is considered within the full system of the Maxwell’s equations. 

Such setting of the problem allows the investigation of Block-Floquet waves in a wide range of 

frequencies from low frequency acoustic waves to high frequency electromagnetic waves. The 

dispersion equation also describes the band structure due to internal resonances occurring from 

interactions between electromagnetic and acoustic waves.  

 In order to use a modal decomposition approach the system of equations for the anti-plane 

problem for piezoelectric media is written in terms of physical variables imposed to be 

continuous across the material interfaces. This is then used to show that the problem displays an 

orthogonality relationship with respect to the given inner product whenever certain boundary 

conditions are satisfied on the upper and lower walls of the waveguide. Using the orthogonality 

relationship the transfer matrix method is applied to solve the problem for homogeneous and 

mixed boundary conditions on the waveguide walls.  

  For mixed boundary conditions the spectrum depends very much on the conditions on the 

waveguide walls and the parameter characterizing the ratio of the unit cell length to the 

waveguide height. By modulating this parameter it is possible to move the extrema of the band 

gaps well within the Brillouin zone. This is an unusual feature for one dimensional periodic 

structures and is related to the phenomena of slow light/sound and can find applications in optical 

and elastic delay lines.  These gaps are considerably larger than in the case of non piezoelectric 

homogeneous waveguide with mixed boundary conditions.  Trapped modes and zero frequency 

band gaps also have been obtained and discussed. 

 Detailed analysis showed the existence of anomalous features of the band structure at 

certain wavelengths (Fig. 4b, 5a) (similar to resonance gaps in metamaterials) due to strong 

piezoeffects rather than resonances.  

 For a piezoelectric periodic waveguide with homogeneous boundary conditions on the 

waveguide walls and with the elastic and magnetic field variables decoupled in the waveguide 

transverse direction, the modal solutions decouple and the analytical expression for the dispersion 

equation is obtained.  Interestingly the dispersion equations (45) and (46) describe the band 

structure due not only to Bragg scattering but also internal resonances occurring from interactions 

between electromagnetic and acoustic waves. These interactions in piezoelectric periodic crystals 

at acoustic frequencies give rise to polariton behaviour at wavelengths much larger than the cell 
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length that is not associated with Bragg scattering but rather the acousto-optical coupling near 

resonance frequencies. The resonance frequencies at which phonon-polariton gaps occur is very 

sensitive to the parameter h . To observe these gaps at acoustic frequencies this parameter has 

to be of order 410 . As h  increases the phonon-polariton gaps occur at higher frequencies. The 

dispersion equations (45) and (46) show this phenomenon occurs at optical frequencies for values 

of h  in the order 110  which means that the resonance occurs for short waves. 
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