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Abstract

In this paper we study how to play (stochastic) games optimally using little space. We focus
on repeated games with absorbing states, a type of two-player, zero-sum concurrent mean-payoff
games. The prototypical example of these games is the well known Big Match of Gillete (1957).
These games may not allow optimal strategies but they always have ε-optimal strategies. In
this paper we design ε-optimal strategies for Player 1 in these games that use only O(log log T )
space. Furthermore, we construct strategies for Player 1 that use space s(T ), for an arbitrary
small unbounded non-decreasing function s, and which guarantee an ε-optimal value for Player
1 in the limit superior sense. The previously known strategies use space Ω(log T ) and it was
known that no strategy can use constant space if it is ε-optimal even in the limit superior sense.
We also give a complementary lower bound.

Furthermore, we also show that no Markov strategy, even extended with finite memory, can
ensure value greater than 0 in the Big Match, answering a question posed by Abraham Neyman.
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1 Introduction

In game theory there has been considerable interest in studying the complexity of strategies in
infinitely repeated games. A natural way how to measure the complexity of a strategy is by the
number of states of a finite automaton implementing the strategy. A common theme is to consider
what happens when some or all players are restricted to play using a strategy given by an automaton
of a certain bounded complexity.

Asymptotic view. Previous works have mostly been limited to dichotomy results: either there
is a good strategy implementable by finite automaton or there is no such strategy. Our goal here
is to refine this picture. We do this by taking the asymptotic view: measuring the complexity as a
function of the number of rounds played in the game. Now when the strategy no longer depends just
on a finite amount of information about the history of the game it could even be a computationally
difficult problem to decide the next move of the strategy. But we focus on investigating how much
information a good strategy must store about the play so far to decide on the next move; in other
words, we study how much space the strategy needs.

Game classes. The class of games we study is that of repeated zero-sum games with absorbing
states. These form a special case of undiscounted stochastic games. Stochastic games were intro-
duced by Shapley [14], and they constitute a very general model of games proceeding in rounds.
We consider the basic version of two-player zero-sum stochastic games with a constant number of
states and a constant number of actions. In a given round t the two players simultaneously choose
among a number of different actions depending on the current state. Based on the choice of the
pair (i, j) of actions as well as the current state k, Player 1 receives a reward rt = akij from Player 2,

and the game proceeds to the next state ` according to probabilities pk`ij .

Limit-average rewards. In Shapley’s model, in every round the game stops with non-zero prob-
ability, and the payoff assigned to Player 1 by a play is simply the sum of rewards ri. The stopping
might be viewed as discounting later rewards by a discounting factor 0 < β < 1. Gillette [5]
considered the more general model of undiscounted stochastic games where all plays are infinite.
He is interested in the average reward 1

T

∑T
t=1 rt to Player 1 as T tends to infinity. As the limit

may not exist one needs to consider lim inf, lim sup, or some Banach limit [15] of the sums. In
many cases the particular choice of the limit does not matter much, but it turns out that for our
results it has interesting consequences. For this reason we consider both lim infT→∞

1
T

∑T
t=1 rt and

lim supT→∞
1
T

∑T
t=1 rt.

Note that both these notions have natural interpretations. For instance, the lim inf notion
suits the setup where the infinite repeated game actually models a game played repeatedly for an
unspecified (but large) number of rounds, where one thus desires a guarantee on the average reward
after a certain number of rounds. The lim sup notion on the other hand models the ability to always
recover from arbitrary losing streaks in the repeated game.

The Big Match. A prototypical example of an undiscounted stochastic game is the well-known
Big Match of Gillette [5] (see Figure 1 for an illustration of the Big Match). This game fits also into
an important special subclass of undiscounted stochastic games: the repeated games with absorbing
states, defined by Kohlberg [11]. In a repeated game with absorbing states there is only one state
that can be left; all the other states are absorbing, i.e., the probability of leaving them is zero
regardless of the actions of the players. Even in these games, as for general undiscounted stochastic
games, there might not be an optimal strategy for the players [5]. On the other hand there always
exist ε-optimal strategies [11], which are strategies guaranteeing the value of the game up to an
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additive term ε. The Big Match provides such an example: the value of the game is 1/2, but
Player 1 does not have an optimal strategy, and must settle for an ε-optimal strategy [2]. On the
other hand, it is known that such ε-optimal strategies in the Big Match must have a certain level
of complexity. More precisely, for any ε < 1

2 , an ε-optimal strategy can neither be implemented by
a finite automaton nor take the form of a Markov strategy (a strategy whose only dependence on
the history is the number of rounds played) [16].

In this paper we consider the Big Match in particular and then generalize our results to general
repeated games with absorbing states.

The model under consideration. We are interested in the space complexity of ε-optimal strate-
gies in repeated games with absorbing states. A general strategy of a player in a game might depend
on the whole history of the play up to the current time step. Moreover the decision about the next
move might depend arbitrarily on the history. This provides the strategies with lots of power.
There are two natural ways how to restrict the strategies: one can put computational restrictions
on how the next move is decided based on the history of the play, or one can put a limit on how
much information can the strategy remember about the history. One can also combine both types
of restrictions, which leads to an interactive Turing machine based model, modelling a dynamic
algorithm.

In this paper we mainly focus on restricting the amount of information the strategy can remem-
ber. This restriction is usually studied in the form of how large size a finite automaton (transducer)
for the strategy has to be, and we follow this convention. By the size of a finite automaton we
mean the number of states. The automatons we consider can make use of probabilistic transitions,
and we will not consider the describtion of these probabilities as part of the size of the automaton.
We do address these separately, however.

History of the model. The idea of measuring complexity of strategies in repeated games in
terms of automata was proposed by Aumann [1]. The survey by Kalai [10] further discuss the
idea in several settings of repeated games. However in this line of research the finite automata is
assumed to be fixed for the duration of the game. This represents a considerable restriction as for
many games there is no good strategy that could be described in this setting. Hence we consider
strategies in which the automata can grow with time. To be more precise we consider infinite
automata and measure how many different states we could have visited during the first T steps
of the play. The logarithm of this number corresponds to the amount of space one would need to
keep track of the current state of the automaton. We are interested in how this space grows with
the number of rounds of the play.

Comparison of our model with a Turing machine based model. To impose also computa-
tional restrictions on the model, one can consider the usual Turing machine with one-way input and
output tapes that work in lock-step and that record the play: whenever the machine writes its next
action on the output tape it advances the input head to see the corresponding move of the other
player. The space usage of the model is then the work space used by the machine, growing with
the number of actions processed. The Turing machine can be randomized to allow for randomized
strategies. The main differences between this model and the automaton based model we focus on
in this paper is that in the case of infinite automata the strategy can be non-uniform and use
arbitrary probabilities on its transitions whereas the Turing machine is uniform in the sense that it
has a finite program that is fixed for the duration play and in particular, all transition probabilities
are explicitly generated by the machine.

Bounds for strategies with deterministic update. Trivially, any strategy needs space at most
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O(T ), since such memory would suffice to remember the whole history of the play. It is not hard
to see (cf. [9, Chap. 3.2.1]) that if a strategy is not restricted to a finite number of states, then the
number of reachable states by round T must be at least T . This means that the space needed by
any such strategy is Ω(log T ). However this provides only worst-case answer to our question, since
for randomized strategies it might happen that only negligible fraction of the states can be reached
with reasonable probability. Indeed, it might be that with probability close to 1 the strategy reaches
only a very limited number of states. This is the setup we are interested in. As we will see in a
moment the strategies we consider use substantially less space than O(log T ) with high probability
(and O(log T ) space in the worst case).

Relationship to data streaming We find that our question is naturally related to algorithmic
questions in data streaming. In data streaming one tries to estimate on-line various properties
of a data stream while minimizing the amount of information stored about the stream. As we
will see our solutions borrow ideas from data streaming in particular, we use sampling to estimate
properties of the play so far. It is rather interesting that this is sufficient for a large class of games.

1.1 Our results

We provide two types of results. We show that there are ε-optimal strategies for repeated games
with absorbing states, and we also show that there are limits on how small space such strate-
gies could possibly use. Our strategies are first constructed for the Big Match. Then, following
Kohlberg [11] these strategies are extended to general repeated games with absorbing states.

Upper bounds on space usage. Our first results concern the Big Match. We show that for all
ε > 0, there exists an ε-optimal strategy that uses O(log log T ) space with probability 1 − δ for
any δ > 0. We note that the previous constructed strategies of Blackwell and Ferguson [2] and
Kohlberg [11] uses space Θ(log T ).

Theorem 1. For all ε > 0, there is an ε-optimal strategy σ1 for Player 1 in the Big Match such
that for any δ > 0 with probability at least 1 − δ, the strategy σ1 uses O(log log T ) space in round
T .

Remark. We would like to stress the order of quantification above and their impact on the big-O
notation used above for conciseness. The strategy we build depends on the choice of ε, but only
for the actions made – the memory updates are independent thereof, and thus likewise is the space
usage. The dependence of δ is also very benign. More precisely, there exists a constant C > 0
independent of ε and δ, and an integer T0 depending on δ, but independent of ε, in such a way that
with probability at least 1− δ, the strategy σ1 uses at most space C log log T , for all T ≥ T0. The
same remark holds elsewhere in our statements.

Our results translated to the Turing based model. After a slight modification our ε-optimal
strategy can be implemented by a Turing machine so that (1) it processes T actions in time O(T );
and (2) each time it processes an action, all randomness used comes from at most 1 unbiased coin
flip; and (3) it, for all δ > 0, uses O(log log T + log log ε−1) space with probability 1 − δ, before
round T . See Corollary 19.

Arbitrary small, but growing space for lim sup. For the case of lim sup evaluation of the
average rewards we can design strategies that uses even less space, in fact arbitrarily small, but
growing, space.
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Theorem 2. For any non-decreasing unbounded function s, there exists an ε-supremum-optimal
strategy σ1 for Player 1 in the Big Match such that for each δ > 0, with probability at least 1− δ,
strategy σ1 uses O(s(T )) space in round T .

We may for instance think of s as the inverse of the Ackermann function. Although the strat-
egy from this theorem has very uniform description it might not always be implementable by a
Turing machine running in the same space since the machine needs to sample probabilistic events
comparable to 1/T or smaller. That might not be achievable in small space using just a fair coin.

Our strategy that is ε-optimal is actually an instantiation of the ε-supremum-optimal strategy
to the setting of O(log log T ) space. We are unable to achieve ε-optimality in less space, and this
seems to be inherent to our techniques.

Generalization to repeated games with absorbing states. We can generalize the above
statements to the case of general repeated games with absorbing states.

Theorem 3. For all ε > 0 and any repeated game with absorbing states G, there is an ε-optimal
strategy σk for Player k in G such that, for each δ > 0, with probability at least 1− δ, the strategy
σk uses O(log log T + log 1/ε · poly(|G|)) space in round T .

Theorem 4. For all ε > 0, any repeated game with absorbing states G, and any non-decreasing
unbounded function s, there exists an ε-supremum optimal strategy σk for Player k in G such that
for each δ > 0, with probability at least 1−δ, the strategy σ1 uses O(s(T )+log 1/ε ·poly(|G|)) space
in round T .

These strategies are obtained by reducing to a special simple case of repeated games with ab-
sorbing states, generalized Big Match games, to which our Big Match strategies can be generalized.
This reduction can furthermore be done effectively by a polynomial time algorithm.

Lower bound on space usage. We provide two lower bounds on space addressing different
aspects of our strategies. One property of our strategies is that the smaller the space used is,
the smaller the probabilities of actions employed are. The reciprocal of the smallest non-zero
probability is the patience of a strategy. This is a parameter of interest for strategies. We show
that the patience of our strategies is close to optimal. In particular, we show that the first f(T )
memory states must use probabilities close to 1/T f(T ), where s(T ) = log f(T ) is the space usage.
We can almost match this bound by our strategies.

Finite-memory deterministic-update Markov strategies are no good. Beside the lower
bound on patience we investigate the possibility of using a good strategy for Player 1 which would
use only a constant number of states but where the actions could also depend on the round number.
This is what we call a finite-memory Markov strategy. We show that such a strategy which also
updates its memory state deterministically cannot exist. This answers a question posed by Abraham
Neyman.

Theorem 5. For all ε < 1
2 , there exists no finite-memory deterministic-update ε-optimal Markov

strategy for Player 1 in the Big Match.

1.2 Our techniques

The previously given strategies for Player 1 in the Big Match [2, 11] use space Θ(log T ) as they
maintain the count of the number of different actions taken by the other player. There are two
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principal ways how one could try to decrease the number of states for such randomized strategies:
either to use approximate counters [13, 4], or to sub-sample the stream of actions of the other player
and use a good strategy on the sparse sample. In this paper we use the latter approach.

Overview over our strategy for the Big Match. Our strategies for Player 1 proceed by
observing the actions of Player 2 and collecting statistics on the payoff. Based on these statistics
Player 1 adjusts his actions. The statistics is collected at random sample points and Player 1
plays according to a “safe” strategy on the points not sampled and plays according to a good (but
space-inefficient) strategy on the sample points. If the space of Player 1 is at least log log T then
Player 1 is able to collect sufficient statistics to accurately estimate properties of the actions of
Player 2. Namely, substantial dips in the average reward given to Player 1 can be detected with
high probability and Player 1 can react accordingly. Thus that during infinite play, the average
reward will not be able drop for extended periods of time, and this will guarantee that lim inf
evaluation of the average rewards is close to the value of the game.

The bottle-neck in the lim inf case. However, if our space is considerably less than log log T
we do not know how to accurately estimate these properties of the actions of Player 2. Thus, long
stretches of actions of Player 2 giving low average rewards might go undetected as long as they are
accompanied by stretches of high average rewards. Thus one could design a strategy for Player 2
that has low lim inf value of the average rewards, but has large lim sup value. Against such a
strategy, our space-efficient strategy for Player 1 is unlikely to stop. So during infinite play, while
our strategy guarantees that the lim sup evaluation of the average rewards is close to the value of
the game, it performs poorly under lim inf evaluation. It is not clear whether this is an intrinsic
property of all very small space strategies for Player 1 or whether one could design a very small
space strategy achieving that the lim inf evaluation of the average rewards is close to the value of
the game. We leave this as an interesting open question.

Generalizing to repeated games with absorbing states. Our extension to general repeated
games with absorbing states follow closely the work of Kohlberg [11]. He showed that all such games
have a value and constructed ε-optimal strategies for them, building on the work of Blackwell and
Ferguson [2]. His construction is in two steps: The question of value and of ε-optimal strategies are
solved for a special case of repeated games with absorbing states, generalized Big Match games,
that are sufficiently similar to the Big Match game that one of the strategies given by Blackwell
and Ferguson [2] can be extended to this more general class of games. Having done this, Kohlberg
shows how to reduce general repeated games with absorbing states to generalized Big Match games.

In a similar way we can extend our small-space strategies for the Big Match to the larger class
of generalized Big Match games. These can then directly be used for Kohlberg’s reduction. This
reduction is however only given as an existence statement. We show how the reduction can be made
explicit and computed by a polynomial time algorithm. This is done using linear programming
formulations and fundamental root bounds of univariate polynomials. This also provides explicit
bounds on the bitsize of the reduced generalized Big Match games. We also give a simple polynomial
time algorithm for approximating the value of any repeated game with absorbing states based on
bisection and linear programming.

2 Definitions

Probability distributions. A probability distribution over a finite set S, is a map d : S → [0, 1],
such that

∑
s∈S d(s) = 1. Let ∆(S) denote the set of all probability distributions over S.
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Repeated games with absorbing states. The games we consider are special cases of two
player, zero-sum concurrent mean-payoff games in which all states except at most one are absorbing,
i.e. never left if entered (note also that an absorbing state can be assumed to have just a single
action for each player). We restrict our definitions to this special case, introduced by Kohlberg [11]
as repeated games with absorbing states. Such a game G is given by sets of actions A1 and A2 for
each player together with maps π : A1 ×A2 → R (the stage payoffs) and ω : A1 ×A2 → [0, 1] (the
absorption probabilities).

The game G is played in rounds. In every round T = 1, 2, 3, . . . , each player k ∈ {1, 2}
independently picks an action aTk ∈ Ak. Player 1 then receives the stage payoff π(aT1 , a

T
2 ) from

Player 2. Then, with probability ω(aT1 , a
T
2 ) the game stops and all payoffs of future rounds are

fixed to be ω(aT1 , a
T
2 ) (we may think of this as the game proceeding to an absorbing state where

the (unique) stage payoff for future rounds is π(aT1 , a
T
2 )). Otherwise, the game just proceeds to the

next round.
The sequence (a1

1, a
1
2), (a2

1, a
2
2), (a3

1, a
3
2), . . . of actions taken by the two players is called a play. A

finite play occurs when the game stops after the last pair of actions. Otherwise the play is infinite.
To a given play P we associate an infinite sequence of rewards (rT )T≥1 received by Player 1. If
P = (a1

1, a
1
2), (a2

1, a
2
2), . . . , (a`1, a

`
2) is a finite play of length ` we let rT = π(aT1 , a

T
2 ) for 1 ≤ T ≤ `,

and rT = π(a`1, a
`
2) for T > `. In this case we say that the game stops with outcome r`.

Otherwise, if P = (a1
1, a

1
2), (a2

1, a
2
2), . . . is infinite we simply let rT = π(aT1 , a

T
2 ) for all T ≥ 1.

To evaluate the sequence of the rewards we consider both the lim inf and lim sup value of the
average reward 1

T

∑T
t=1 rt. We thus define the limit-infimum payoff to Player 1 of the play as

uinf(P ) = lim inf
n→∞

1

n

n∑
T=1

rT ,

and similarly the limit-supremum payoff to Player 1 of the play as

usup(P ) = lim sup
n→∞

1

n

n∑
T=1

rT .

Strategies. A strategy for Player k is a function σk : (A1 × A2)∗ → ∆(Ak) describing the prob-
ability distribution of the next chosen action after each finite play. We say that Player k follows
a strategy σk if for every finite play P of length T − 1, at round T Player k picks the next action
according to σk(P ). We say that a strategy σk is pure if for every finite play P the distribution
σk(P ) assigns probability 1 to one of the actions of Ak (i.e. the next action is uniquely determined).
Also, we say that a strategy σk is a Markov strategy if for every T and every play P of length T −1,
the distribution σk(P ) does not depend on the particular actions during the first T − 1 rounds but
is just a function of T . Thus Markov strategy σk can be viewed as a map Z+ → ∆(Ak) or simply
a sequence of distributions over Ak.

A strategy profile σ is a pair of strategies (σ1, σ2), one for each player. A strategy profile σ
defines a probability measure on plays in the natural way. We define the expected limit-infimum
payoff to Player 1 of the strategy profile σ = (σ1, σ2) as uinf(σ) = uinf(σ1, σ2) = EP∼(σ1,σ2)[uinf(P )]
and similarly the expected limit-supremum payoff to Player 1 of the strategy profile σ as usup(σ) =
usup(σ1, σ2) = EP∼(σ1,σ2)[usup(P )].
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Values and near-optimal strategies. We define the lower values ofG by vinf = supσ1 infσ2 uinf(σ1, σ2)
and vsup = supσ1 infσ2 usup(σ1, σ2), and we define the upper values ofG by vinf = infσ2 supσ1 uinf(σ1, σ2)
and vsup = infσ2 supσ1 usup(σ1, σ2). Clearly vinf ≤ vsup ≤ vsup and vinf ≤ vinf ≤ vsup. Kohlberg
showed that all these values coincide and we call this common number v(G) the value v of G.

Theorem 6 (Kohlberg, Theorem 2.1). vinf = vsup.

Note that this also shows that for the purpose of defining the value of G the choice of the limit
of the average rewards does not matter. But a given strategy σ1 for Player 1 could be close to
guaranteeing the value with respect to lim sup evaluation of the average rewards, while being far
from doing so with respect to the more restrictive lim inf evaluation. We shall hence distinguish
between these different guarantees.

Let ε > 0 and let σ1 be a strategy for Player 1. We say that σ1 is ε-supremum-optimal, if

v(G)− ε ≤ inf
σ2
usup(σ1, σ2)

and that σ1 is ε-optimal, if
v(G)− ε ≤ inf

σ2
uinf(σ1, σ2) .

Observation 1. Clearly it is sufficient to take the infimum over just pure strategies σ2 for Player 2,
and hence when showing that a particular strategy σ1 is ε-supremum-optimal or ε-optimal we may
restrict our attention to pure strategies σ2 for Player 2.

One can naturally make similar definitions for Player 2, where the roles of lim inf and lim sup
would then be interchanged, but we shall restrict ourselves here to the perspective of Player 1.

If the strategy σ1 is 0-supremum-optimal (0-optimal) we simply say that σ1 is supremum-optimal
(optimal). The Big Match gives an example where Player 1 does not have a supremum-optimal
strategy [2].

Memory and memory-based strategies. A memory configuration or state is simply a natural
number. We will often think of memory configurations as representing discrete objects such as
tuples of integers. In such a case we will always have a specific encoding of these objects in mind.

Let M ⊆ N be a set of memory states. A memory-based strategy σ1 for Player 1 consists of
a starting state ms ∈ M and two maps, the action map σa1 : M → ∆(A1) and the update map
σu1 : A1 × A2 ×M → ∆(M). We say that Player 1 follows the memory-based strategy σ1 if in
every round T when the game did not stop yet, he picks his next move aT1 at random according
to σa1(mT ), where the sequence m1,m2, . . . is given by letting m1 = ms and for T = 1, 2, 3, . . .
choosing mT+1 at random according to σuk (aT1 , a

T
2 ,mT ), where aT2 is the action chosen by Player 2

at round T .
The strategies we construct in this paper have the property that their action maps do not

depend on the action aT1 of Player 1. In these cases we simplify notation and write just σu1 (aT2 ,m
T ).

Since each finite play can be encoded by a binary string, and thus a natural number, we can
view any strategy σk for Player k as a memory-based strategy. One can find similarly defined types
of strategies in the literature, but typically, the function corresponding to the update function is
deterministic.
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L R

L 1 0

R 0* 1*

Figure 1: The Big Match in a matrix form.

Memory sequences and space usage of memory-based strategies. Let σ1 be a memory-
based strategy for Player 1 on memory states M and σ2 be a strategy for Player 2. Assume that
Player 1 follows σ1 and Player 2 follows σ2. The strategy profile (σ1, σ2) defines a probability
measure on (finite and infinite) sequences over M in the natural way. For a (finite) sequence
M ∈ M∗, let ω1(M) denote the probability that Player 1 follows this sequence of memory states
during the first |M | rounds of the game, while the game does not stop before round |M |.

Fix a non-decreasing function f : N→ N and a probability p. The strategy σ1 uses log f(T ) space
with probability at least p against σ2, if for all T , the probability Pr(σ1,σ2)[∀i ≤ T : Mi ≤ f(T )] ≥ p
(i.e., with probability at least p, the current memory has stayed below that of f(T ) before round
T , for all T ). If σ1 uses log f(T ) space with probability at least p against every strategy σ′2, then
we say that σ1 uses log f(T ) space with probability at least p.

The Big Match. The Big Match, introduced by Gillette [5] is a simply defined repeated game
with absorbing states, where each player has only two actions. In each round Player 1 has the
choice to stop the game (action R), or continue with the next round (action L). Player 2 has
the choice to declare the round safe (action L) or unsafe (action R). If play continues in a round
declared safe, or if play stops in a round declared unsafe, Player 2 must give Player 1 a reward 1.
In the other two cases no reward is given.

More formally, let the action sets be A1 = A2 = {L,R}. The rewards are given by π(a1, a2) = 1
if a1 = a2 and π(a1, a2) = 0 if a1 6= a2. The stopping probabilities are given by ω(R, a2) = 1 and
ω(L, a2) = 0.

We can illustrate this game succinctly in a matrix form as shown in Figure 1, where rows are
indexed by the actions of Player 1, columns are indexed by the actions of Player 2, entries give the
rewards, and a star on the reward means that the game stops with probability 1 (See Section 8.1
for a general definition of the matrix form of a repeated game with absorbing states).

Density of pure Markov Strategies in the Big Match. When constructing strategies for
Player 1 in the Big Match, not only is it sufficient to consider only pure strategies for Player 2
as noted in Observation 1, but we may restrict our consideration to pure Markov strategies, since
Player 2 only ever observes the action L of Player 1. An important property of a pure Markov
strategy σ for Player 2 in the Big Match is the density of L actions of a prefix of σ.

Denote by σT ∈ {L,R}T , the length T prefix of σ. The density of L in σT , denoted dens(σT ),
is defined by

dens(σT ) =
|{i | (σT )i = L}|

T
.

Further, for T ′ < T we define

dens(σ, T ′, T ) =
|{i ≥ T ′ | (σT )i = L}|

T − T ′ + 1
.

10



Observation 2. Suppose Player 2 follows a pure Markov strategy σ. Then for any play P and
T < |P | we have

dens(σT ) =
1

T

T∑
T ′=1

rT ,

where rT is the reward given to Player 1 in round T . In particular, when P is infinite, we have

uinf(P ) = lim inf
T→∞

dens(σT ) ,

and
usup(P ) = lim sup

T→∞
dens(σT ) .

3 Small space ε-supremum-optimal strategies in the Big Match

For given ε > 0, let ξ = ε2. For any non-decreasing and unbounded function f : Z+ → Z+, we will
now give an ε-supremum optimal strategy σ∗1 for Player 1 in the Big Match that for all δ > 0 with
probability 1 − δ uses O(log f(T )) space. Let f be a strictly increasing unbounded function from
Z+ to R+, such that f(x) ≤ f(x) for all x ∈ Z+, and let F be the inverse of f . For simplicity,
and without loss of generality, we assume that F (1) = 1 and F (T + 1) ≥ 2 · F (T ). Note that in
particular f(2 · T ) ≤ 2 · f(T ).

Intuitive description of the strategy and proof. The main idea for building the strategy
is to partition the rounds of the game into epochs, such that epoch i has expected length F (i).
The i’th epoch is further split into i sub-epochs. In each sub-epoch j of the i-th epoch we sample
i2 rounds uniformly at random. In every round not sampled we simply stay in the same memory
state and play L with probability 1. We view the i2 samples as a stream of actions chosen by
Player 2. We then follow a particular ξ-optimal base strategy σi,ξ1 for the Big Match on the samples

of sub-epoch j. This strategy σi,ξ1 is a suitably modified version of a strategy by Blackwell and
Ferguson [2] and Kohlberg [11].

More precisely, if σi,ξ1 stops in its k-th round when run on the samples of sub-epoch j, the strategy
σ∗1 stops on the k-th sample in sub-epoch j. This will ensure that if σ∗1 stops with probability at
least

√
ξ, the outcome is at least 1

2 − ξ.
Also, for any 0 < δ < 1

2 and for sufficiently large i, depending on δ, if the samples have density

of L at most 1
2 − δ then σi,ξ1 stops on the samples with a positive probability depending only on ξ,

namely ξ4. For f(T ) = Θ(log T ), the division into sub-epochs ensures that if lim infT→∞ dens(σT ) <
1
2 then infinitely many sub-epochs have density of L smaller than 1/2, and thus the play stops with
probability 1 in one of such epochs. This is not necessarily true for f(T ) smaller than log T .

The base strategy. The important inner part of our strategy is a ξ-optimal strategy σi,ξ1

parametrized by a non-negative integer i. These strategies are similar to ξ-optimal strategies
given by Blackwell and Ferguson [2] and Kohlberg [11] (in fact, setting i = 0 and replacing ξ4 by
ξ2 below one obtains the strategy used by Kohlberg).

11



The strategy σi,ξ1 uses deterministic updates of memory, and uses integers as memory states (we
think of the memory as an integer counter). The memory update function is given by

σi,u1 (a, j) =

{
j + 1 if a = L

j − 1 if a = R

and the action function is given by

σi,a1 (j)(R) =

{
ξ4(1− ξ)i+j if i+ j > 0

ξ4 if i+ j ≤ 0

The complete strategy We are now ready to define σ∗1. The memory states of this strategy are
5-tuples (i, j, k, `, b) ∈ Z+ × Z+ × Z × N × {0, 1}. Here i denotes the current epoch and j denotes
the current sub-epoch of epoch i. The number of samples already made in the current sub-epoch
is k. The memory state of the inner strategy is stored as `. Finally b is 1 if and only if the strategy
will sample to the inner strategy in the next step.

The memory update function σ∗,u1 is as follows. Let (i, j, k, `, b) be the current memory state
and let a be the action of Player 2 in the current step. We then describe the distribution of the
next memory state (i′, j′, k′, `′, b′).

• The current step is not sampled if b = 0. In that case we keep i′ = i, j′ = j, k′ = k, and
`′ = `.

• The current epoch is ending if j = i, k = i2 − 1, and b = 1. In that case i′ = i + 1, j′ = 1,
k′ = 0, and `′ = 0.

• A sub-epoch is ending within the current epoch if j < i, k = i2 − 1, and b = 1. In that case
i′ = i, j′ = j + 1, k′ = 0, and `′ = 0.

• We sample within a sub-epoch if k < i2 − 1 and b = 1. In that case i′ = i, j′ = j, k′ = k + 1,
and `′ = σi,u1 (a, `).

Finally, in every case, we make a probabilistic choice whether to sample in the next step by letting

b′ = 1 with probability (i′)3

F (i′) .

The action function σ∗,a1 is given by

σ∗,a1 ((i, j, k, `, b))(a) =


σi,ξ1 (j)(a) if b = 1

1 if b = 0 and a = L

0 otherwise

.

In other words, if the current step is sampled, Player 1 follows the current base strategy, and
otherwise always plays L.

The starting memory state is ms = (1, 1, 1, 0, 0). The states that can be reached in sub-epoch
j of epoch i are of the form (i, j, k, `, b) where 0 ≤ k < i2 and −i2 < ` < i2. Thus at most 4i4

states can be reached. The states are mapped to the natural numbers as follows: The memory
(1, 1, 1, 0, 0) is mapped to 0 and for each epoch i, all states in epoch i are mapped to the numbers
(in an arbitrary order) following the numbers mapped to by epoch i− 1.

12



Proof preliminaries It will be useful to consider the strategy modified to never stop. Thus
denote by σ̃1 the strategy for Player 1, where σ̃u = σ∗,u1 and σ̃a1(m)(L) = 1 for all memory states
m.

We next define random variables indicating the locations of the sample steps. Fix some strategy
σ2 for Player 2. LetMσ̃1,σ2

ms be the memory sequence assigned to Player 1 when Player 1 follows σ̃1

and Player 2 follows σ2. For positive integers i, j, k let t(i, j, k) be the random variable indicating
the round in which we sample the k’th time in sub-epoch j of epoch i. For simplicity of notation
we let t(i, 0, i2) denote t(i− 1, i− 1, (i− 1)2), and we let t(i, j) = t(i, j, 0) denote t(i, j − 1, i2).

3.1 Space usage of the strategy

We will here consider the space usage of σ∗1. First we will argue that with high probability, for all
large enough i and any j, the length of sub-epoch j of epoch i, t(i, j, i2)− t(i, j − 1, i2), is close to
F (i).

Lemma 7. For any γ, δ ∈ (0, 1/4), there is a constant M such that with probability at least 1− γ,
for all i ≥M and all j ∈ {1, . . . , i}, we have that

t(i, j, i2)− t(i, j − 1, i2) ∈ [(1− δ)F (i)/i, (1 + δ)F (i)/i] .

Proof. The expected number of times we sample during (1 − δ)F (i)/i steps of the i’th epoch is
(1− δ)i2. If t(i, j, i2)− t(i, j − 1, i2) < (1− δ)F (i)/i then we sampled at least i2 times during these
(1 − δ)F (i)/i steps of epoch i. This means that the actual number of samples is larger than its
expectation by a factor δ/(1− δ). Thus by the multiplicative Chernoff bound, Theorem 45, we see
that,

Pr[t(i, j, i2)− t(i, j − 1, i2) < (1− δ)F (i)/i] < exp
(
−c(1− δ)i2

)
,

where c = ( δ
1−δ )2/(2 + δ

1−δ ). Similarly, if t(i, j, i2)− t(i, j − 1, i2) > (1 + δ)F (i)/i then we sampled

less than i2 times during (1 + δ)F (i)/i steps which is less than the expected by a factor δ/(1 + δ)
of its expectation. Again, by the multiplicative Chernoff bound,

Pr[t(i, j, i2)− t(i, j − 1, i2) > (1 + δ)F (i)/i] < exp

(
−δ

2

2
(1 + δ)i2

)
.

Thus for any M , we can bound from above the probability of any of the differences for i ≥M being
outside of the required range by:

∞∑
i=M

i ·
(

exp
(
−c(1− δ)i2

)
+ exp

(
−δ

2

2
(1 + δ)i2

))
.

This sum is convergent so for sufficiently large M it can be bounded by γ. The lemma follows.

Now we bound the space usage of the strategy σ∗1.

Lemma 8. For all constants γ > 0, with probability at least 1 − γ, the space usage of σ∗1 is
O(log f(T )).
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Proof. Recall that there are at most 4 · i4 distinct possible memory states reachable during the j’th
sub-epoch of epoch i, for all i, j. Thus, since there are i sub-epochs in epoch i there are at most
4 · i5 distinct possible memory states reachable during the i’th epoch. It is then clear that there are
at most

∑i
r=0 4 · r5 ≤ 4 · i6 distinct possible memory states that can have been reached before the

end of epoch i, for all i. Because memory states in earlier epochs are mapped to smaller numbers
than latter epochs, we have that the strategy has not been in any state above that of 4 · i6 before
the end of epoch i.

Fix some γ > 0. By Lemma 7, with probability at least 1 − γ, there is a M such that for all
i ≥ M , the number t(i, i, i2) − t(i, 1, i2) is greater than F (i)

2 . Thus also t(i, i, i2) ≥ F (i)
2 . Consider

any round T , for T ≥ t(M,M,M2). Let i be the epoch containing round T . By the preceding we
know that, before time step t(i + 1, i + 1, (i + 1)2) (which is greater than T ), the strategy have

only been in memory states below 4 · (i + 1)6. We also have that T ≥ t(i, i, i2) ≥ F (i)
2 and hence

2f(T ) ≥ f(2T ) ≥ i, where the first inequality is by our assumption on F . Thus the strategy can
only have been in states below that of 4 · (2 · f(T ) + 1)6 before time step T . This is true for all
sufficiently large T and thus the strategy uses at most O(log f(T )) space with probability 1−γ.

3.2 Play stopping implies good outcome

We first establish some properties of the base strategy σi,ξ1 . The proof of these uses ideas similar to
proofs by Blackwell and Ferguson [2] and Kohlberg [11], where they showed ε-optimality of their
strategies.

Lemma 9. Let T, i ≥ 1 be integers and 0 < ξ < 1 be a real number. Let σ ∈ {L,R}T be a arbitrary
prefix of a pure Markov strategy for Player 2. Consider the first T rounds where the players play
the Big Match following σi,ξ1 and σ respectively. Let pwin be the probability that Player 1 stops the
game (i.e. plays R) and wins. Let ploss be the probability that Player 1 stops the game and loses.
Then we have:

1.
ploss ≤ (1− ξ)iξ3 + (1− ξ)−1pwin .

2. For any 0 < δ ≤ 1
2 and any T > i/(2δ), if dens(σ) ≤ 1

2 − δ then

pwin + ploss ≥ ξ4 .

Proof. Define d` = |{`′ < ` | σ`′ = L}| − |{`′ < ` | σ`′ = R}|. Note that d` is precisely the value of

the counter used by σi,ξ1 as memory in step `. For integer d, define

Kd = {` ∈ {1, . . . , T} | (d` = d & σ` = L) or (d` = d+ 1 & σ` = R)} .

There is an illustration of how d` could evolve through the steps in Figure 2. The set Kd is then
the times the counter moves between the pair of rows d and d + 1. Observe that the counter is
alternately moving up and down in each Kd (for instance, in the gray row, the arrows are wider
and first moves up, then down and then up again).

Notice that Kd partitions {1, . . . , T}. Let ploss,d be the probability that the game stops at some
step ` ∈ Kd where σ` = L, and let pwin,d be the probability that the game stops at some step
` ∈ Kd where σ` = R. We see that ploss is the sum of ploss,d, and that pwin is the sum of pwin,d. Let
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Figure 2: Possible movement of the counter σi,ξ1 uses as memory through the steps.

Kd = {k1 < k2 < · · · < km}, for some m. Observe that for any j, σkj = L if and only if σkj+1
= R,

so σk1 , σk2 , . . . , σkm is an alternating sequence (as mentioned in relation to the illustration) starting
with L when d ≥ 0 and starting with R otherwise. For any d ≥ −i, the probability that the
game stops in round kj ∈ Kd, conditioned on the event that it did not stop before round kj , is

ξ4(1− ξ)i+dkj so, it is ξ4(1− ξ)i+d when σkj = L, and it is ξ4(1− ξ)i+d+1 when σkj = R.

Hence, for d ≥ 0, ploss,d ≤ ξ4(1 − ξ)i+d + (1 − ξ)−1pwin,d. This is because we stop at k1

with probability at most ξ4(1 − ξ)i+d (in which case Player 1 loses) and then for each even j,
the probability of stopping at step kj (and winning) is at least (1 − ξ)-times the probability of
stopping at step kj+1 (and losing). (Indeed, the probability of stopping at step kj+1 might be even
substantially smaller as the probability of stopping between kj and kj+1 might be non-zero.)

For d ∈ {−i,−i + 1, . . . ,−1}, ploss,d ≤ (1 − ξ)−1pwin,d as for each odd j, the probability of
stopping at step kj (and winning) is at least (1− ξ)-times the probability of stopping at step kj+1

(and losing).
Finally, for d < −i, ploss,d ≤ pwin,d, as for each odd j, the probability of stopping at step kj

(and winning) is at least the probability of stopping at step kj+1 (and losing). (The probability of
stopping at any such kj conditioned on not stopping sooner is ξ4 in this case.)

Hence,

ploss =
∑
d

ploss,d ≤
∑
d≥0

ξ4(1− ξ)i+d + (1− ξ)−1
∑
d

pwin,d

≤ ξ3(1− ξ)i + (1− ξ)−1pwin.

For the second part, if the density of σ1, . . . , σT is at most 1
2 − δ then it must contain at most

T/2−δT < T/2−i/2 occurrences of the letter L. Hence, it contains more than t/2+i/2 occurrences
of the letter R. This implies that when the game reaches round T , we have that the memory state
j (recalling that the memory states are integers and in any round corresponds to the difference
between the number of times Player 2 has played R minus the time he played L up till now) is
such that j ≤ −i and hence Player 1 plays R at step t with probability ξ4 if the play did not stop,
yet.
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We can now prove the main statement of this subsection, that if the probability of stopping is
not too small, Player 1 wins with probability close to 1/2 if play the stops.

Lemma 10. Let ξ ∈ (0, 1). Let σ be an pure Markov strategy for Player 2. If the probability that
play stops is at least

√
ξ, then we have that

Prσ
∗
1 ,σ[ Player 1 wins | play stops ] ≥ 1

2
−
√
ξ .

Proof. We will in this proof continue playing in a state v, even if Player 1 plays R. Note that σ∗1
can still generate a choice in this case. Let Ai,j be set of plays in which, between round 1 and
round t(i, j, 1)− 1, Player 1 does not play R. Let Wi,j be the set of plays, in which, between round
t(i, j, 1) and round t(i, j, i2), Player 1 plays R and when he plays R for the first time between these
rounds, Player 2 plays R as well. Similarly, let Li,j be the set of plays, in which, between round
t(i, j, 1) and round t(i, j, i2), Player 1 plays R and when he does so for the first time Player 2 plays
L. Let S be the set of plays, in which Player 1 plays R in some round. Let W be the set of
plays, in which Player 1 plays R in some round and the first time he does so Player 2 also plays
R. Let L be the set of plays, in which Player 1 plays R in some round and the first time he does
so Player 2 plays L. We see that S = W ∪ L. Clearly, Prσ

∗
1 ,σ[W ] =

∑
i,j Prσ

∗
1 ,σ[Wi,j & Ai,j ] and

Prσ
∗
1 ,σ[L] =

∑
i,j Prσ

∗
1 ,σ[Li,j & Ai,j ].

Fix a possible value of all t(i, j, k)’s and denote by Y the event that these particular values
actually occurs. Fix i and j. Conditioned on Y and Ai,j , between time t(i, j, 1) and t(i, j, i2)

Player 1 plays σi,ξ1 against a fixed strategy σt(i,j,1), σt(i,j,2), . . . , σt(i,j,i2) for Player 2. By Lemma 9,

the probability of losing such a game for Player 1 is at most ξ3(1 − ξ)i plus the probability of
winning in this game divided by (1− ξ). Hence,

Pr[Li,j | Y,Ai,j ] ≤ ξ3(1− ξ)i + (1− ξ)−1 Pr[Wi,j | Y,Ai,j ].

Since the above inequality is true conditioned on arbitrary values of t(i, j1, j2)’s, it is true also
without the conditioning:

Pr[Li,j | Ai,j ] ≤ ξ3(1− ξ)i + (1− ξ)−1 Pr[Wi,j | Ai,j ].

Thus,

Prσ
∗
1 ,σ[L] =

∞∑
i=1

i∑
j=1

Pr[Li,j & Ai,j ]

=
∞∑
i=1

i∑
j=1

Pr[Li,j | Ai,j ] · Pr[Ai,j ]

≤
∞∑
i=1

i∑
j=1

(
ξ3(1− ξ)i + (1− ξ)−1 Prσ

∗
1 ,σ[Wi,j | Ai,j ]

)
· Pr[Ai,j ]

≤
∞∑
i=1

i∑
j=1

ξ3(1− ξ)i + (1− ξ)−1
∞∑
i=1

i∑
j=1

Prσ
∗
1 ,σ[Wi,j & Ai,j ]

=

∞∑
i=1

i · ξ3(1− ξ)i + (1− ξ)−1
∞∑
i=1

i∑
j=1

Prσ
∗
1 ,σ[Wi,j & Ai,j ]

≤ ξ + (1− ξ)−1 Prσ
∗
1 ,σ[W ] .
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Hence, (1−ξ) Prσ
∗
1 ,σ[L] ≤ ξ−ξ2 +Prσ

∗
1 ,σ[W ], and so Prσ

∗
1 ,σ[L]−Prσ

∗
1 ,σ[W ] ≤ 2ξ. By our assumption

we also have that Prσ
∗
1 ,σ[L] + Prσ

∗
1 ,σ[W ] = Prσ

∗
1 ,σ[S] ≥

√
ξ.

We want to find the minimum probability that we might win, conditioned on us stopping

Prσ
∗
1 ,σ[W | S] =

Prσ
∗
1 ,σ[W ]

Prσ
∗
1 ,σ[S]

=
Prσ

∗
1 ,σ[W ]

Prσ
∗
1 ,σ[W ] + Prσ

∗
1 ,σ[L]

We see that it is greater than the solution of:

min x
x+y

s.t. x+ y ≥
√
ξ

y − x ≤ 2ξ

Solving the above, we see that Prσ
∗
1 ,σ[W | S] ≥ 1

2 −
√
ξ and the lemma follows.

3.3 Low density means play stops

In this subsection we will prove that play will stop with probability 1 if the density of prefixes of
the pure Markov strategy used by Player 2 is not infinitely often at least 1/2. First, we will show
that low density implies that some sequence of sub-epochs also have low density.

Lemma 11. Let δ ∈ (0, 1). Let σ be an arbitrary pure Markov strategy for Player 2. Let ai,j be some
numbers. Consider the event Y where t(i, j) = ai,j for all i, j. If lim supT→∞ dens(σT ) ≤ 1/2− δ,
then conditioned on Y , there is an infinite sequence of sub-epochs and epochs (in, jn)n such that
dens(σ, ain,jn + 1, ain,(jn+1)) ≤ 1/2− δ/4.

Proof. Let M be such that for every T ′ ≥M we have that dens(σT
′
) ≤ 1/2− δ/2. Let (Tn)n be a

sequence such that T1 ≥M and for all n ≥ 1 we have that Tn+1 · δ/4 ≥ Tn and Tn = ai,j for some
i, j. Let (i′n, j

′
n)n be the sequence such that Tn = ai′n,j′n . This means that even if dens(σTn) = 0,

the density dens(σ, Tn + 1, Tn+1) is at most 1/2 − δ/4, because dens(σTn+1) ≤ 1/2 − δ/2. But,
we then get that there exists some sub-epoch jn in epoch in, such that j′n ≤ jn ≤ j′n+1 and such
that i′n ≤ in ≤ i′n+1 for which the density of that sub-epoch dens(σ, ain,jn + 1, ain,(jn+1)) is at most
1/2 − δ/4, because not all sub-epochs can have density below that of the average sub-epoch. But
then (in, jn)n satisfies the lemma statement.

We are now ready to prove the main statement of this subsection.

Lemma 12. Let σ be an arbitrary pure Markov strategy for Player 2. If

lim sup
T→∞

dens(σT ) < 1/2 ,

then when played against σ∗1 the play stops with probability 1.

Proof. Let δ > 0 be such that lim supT→∞ dens(σT ) ≤ 1/2 − δ. Consider arbitrary numbers ai,j
and the event Y stating that t(i, j) = ai,j for all i, j. Let (in, jn)n be the sequence of sub-epochs
and epochs shown to exists by Lemma 11 with probability 1. That is, for each (in, jn) we have that
sub-epoch jn of epoch in has density at most 1/2− δ/4. We see that, conditioned on Y that each
sample are sampled uniformly at random in each sub-epoch j of each epoch i, except for the last
sample. Now consider some fixed n. By Hoeffding’s inequality, Theorem 46 (setting ai = 0 and
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bi = 1, and letting ci be i’th payoff for Player 1), the probability that in sub-epoch jn of epoch in
that among our i2n − 1 first samples we have δ

8 · ((in)2 − 1) additional L on top of the expectation
(which is at most (1/2− δ/4) · ((in)2 − 1)) is bounded as

Pr

[
dens(σt(in,jn,1), σt(in,jn,2), . . . , σt(in,jn,(in)2−1)) ≥

1

2
− δ

8

]
≤ 2 exp

(
−

2( δ8((in)2 − 1))2

(in)2 − 1

)
= 2 exp

(
− δ

2

32
((in)2 − 1)

)
.

For sufficiently large in, this is less than 1
2 . If on the other hand the number of L’s we sample is

less than (1
2 −

δ
8)((in)2 − 1), we see that (in)2 − 1 > in/(16δ) for large enough in and in that case

we have, by Lemma 9, that we stop with probability at least ξ4 in sub-epoch jn of epoch in. Thus,
for each of the infinitely many n’s for which in is sufficiently high, we have a probability of at least
ξ4

2 of stopping. Thus play must stop with probability 1.
The argument was conditioned on some fixed assignment of endpoints of sup-epochs and epochs,

but since there is such a assignment with probability 1 (since they are finite with probability 1),
we conclude that the proof works without the condition.

3.4 Proof of main result

Theorem 13. The strategy σ∗1 is
√
ξ-supremum-optimal, and for all δ > 0, with probability at least

1− δ it uses space O(log f(T )).

Proof. The space usage follows from Lemma 8. Let s be the probability that the play stops. We
now consider three cases, either (i) s = 1; or (ii)

√
ξ < s < 1; or (iii) s ≤

√
ξ. In case (i), if

s = 1, Player 1 wins with probability 1
2 −
√
ξ, by Lemma 10. In case (ii), if

√
ξ < s < 1, then, by

Lemma 10, conditioned on the play stopping, Player 1 wins with probability Ws = 1
2 −
√
ξ and,

since s < 1, by Lemma 12 W̃s = lim supT→∞ dens(σT ) ≥ 1
2 . Thus, Player 1 wins with probability

s ·Ws + (1− s) · W̃s ≥ s · (
1

2
−
√
ξ) + (1− s)1

2
≥ 1

2
−
√
ξ

In case (iii), if s ≤
√
ξ, then by Lemma 12 W̃s = lim supT→∞ dens(σT ) ≥ 1

2 . The winning probability
is then at least

s · 0 + (1− s) · 1

2
≥ 1−

√
ξ

2
≥ 1

2
−
√
ξ

4 An ε-optimal strategy that uses log log T space for the Big Match

For given ε > 0, let ξ = ε2. In this section we give a ε-optimal strategy σ∗1 for Player 1 in the Big
Match that for all δ > 0 with probability 1− δ uses O(log log T ) space. The strategy is simply an
instantiation of the strategy σ∗1 from Section 3, setting f(T ) = dlog T e. We can then let f = log T
and F (T ) = 2T .

The claim about the space usage of σ∗1 is thus already established in Section 3. To obtain the
stronger property of ε-optimality rather than just ε-supremum-optimality, we just need to establish
a lim inf version of Lemma 12.
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First we show a technical lemma. For a pure Markov strategy σ and a sequence of integers
I = {i1, i2, . . . , im}, let σI be the sequence, σi1 , σi2 , . . . , σim . Note that σk = σ{1,...,k}.

Lemma 14. Let σ be a pure Markov strategy for Player 2, δ < 1/4 be a positive real, and M be a
positive integer. Let lim infT→∞ dens(σT ) ≤ 1

2−δ. Let `1, `2, . . . be such that for all i ≥M , we have
that `i ∈ [(1− δ) · (2i+1 − 1), (1 + δ) · (2i+1 − 1)]. Then there exists a sequence k2, k3, . . . such that
for infinitely many i > M , we have that `i−1 + δ2i−2 ≤ ki ≤ `i and dens(σ{`i−1+1,...,ki}) ≤

1
2 −

δ
4 .

Proof. Let `i be as required. If there are infinitely many i such that dens(σ{`i−1+1,...,`i}) ≤
1
2 −

δ
4

then set ki = `i+1 and the lemma follows by observing (ki−`i−1) ≥ (1−δ)(2i+1−1)−(1+δ)(2i−1) =
(1−3δ)2i ≥ δ2i−2, for i > M . So assume that only for finitely many i, dens(σ{`i−1+1,...,`i}) ≤

1
2 −

δ
4 .

Thus the following claim can be applied for arbitrary large i0.

Claim 15. Let i0 ≥ M be given. If for every i ≥ i0, dens(σ{`i−1+1,...,`i}) >
1
2 −

δ
4 then there exist

j > i0 and k such that `j−1 + δ2j−2 ≤ k ≤ `j and dens(σ{`j−1+1,...,k}) ≤ 1
2 − δ.

We can use the claim to find k2, k3, . . . inductively. Start with large enough i0 ≥ M and set
ki = `i for all i ≤ i0. Then provided that we already inductively determined k2, k3, . . . , ki0 , we
apply the above claim to obtain j and k, and we set kj = k and ki = `i, for all i = i0 + 1, . . . , j− 1.

So it suffices to prove the claim. For any d ≥ 1, `i0 · 2d−1 ≤ `i0+d and

dens(σ`i0+d) ≥
(1

2 −
δ
4)(`i0+d − `i0)

`i0+d
.

Furthermore, if d ≥ 1 + log(4/δ) then `i0 ≤ δ
4`i0+d and

dens(σ`i0+d) ≥
(

1

2
− δ

4

)
− δ

4
=

1

2
− δ

2
.

Since lim infk→∞ dens(σk) ≤ 1
2 − δ, there must be k and d ≥ 1 + log(4/δ) such that `i0+d−1 ≤ k ≤

`i0+d and dens(σk) ≤ 1
2 − δ. Set j = i0 + d. Also

dens(σk) =
dens(σ`j−1)`j−1 + dens(σ{`j−1+1,...,k})(k − `j−1)

`j−1 + (k − `j−1)
,

which means(
dens(σk)− dens(σ{`j−1+1,...,k})

)
(k − `j−1) =

(
dens(σj−1)− dens(σk)

)
`j−1

≥
[(

1

2
− δ

2

)
−
(

1

2
− δ
)]

`j−1 =
δ

2
`j−1 .

Thus dens(σ{`j−1+1,...,k}) ≤ dens(σk) which in turn is less than 1
2 − δ. Furthermore, k − `j−1 ≥

δ
2`j−1 ≥ δ

2(1−δ)(2j−1) ≥ δ
42j , provided that j ≥ 2. Hence, k and j have the desired properties.

We are now ready to prove the lim inf version of Lemma 12.

Lemma 16. Let σ be an arbitrary pure Markov strategy for Player 2. If

lim inf
t→∞

dens(σ1, . . . , σt) < 1/2 ,

then when played against σ∗1 the play stops with probability 1.
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Proof. Let 0 < δ < 1
4 be such that

lim inf
t→∞

dens(σ1, . . . , σt) ≤ 1/2− δ

Pick arbitrary γ ∈ (0, 1). We will show that with probability at least 1 − γ the game stops, and
this implies the statement. Let M be given by Lemma 7 applied for γ and δ/2. Then we have that
with probability at least 1− γ, for all i ≥M and j ∈ {1, . . . , i},

t(i, j, i2)− t(i, j − 1, i2) ∈ [(1− δ

2
)2i/i, (1 +

δ

2
)2i/i] .

Pick ti,j ∈ N, for i = 1, 2, . . . and j ∈ {1, . . . , i}, so that ti,j−1 < ti,j where ti,0 stands for
ti−1,i−1. Let ti,j − ti,j−1 ∈ [(1 − δ

2)2i/i, (1 + δ
2)2i/i], for all i ≥ M and j ∈ {1, . . . , i}. Pick M ′

so that δ
2(2M

′ − 1) ≥ max{tM,0, (1 − δ
2)2M}. Define `i = ti,i for all i ≥ 1. Then for all i ≥ M ′,

`i ∈ [(1− δ) · (2i+1 − 1), (1 + δ) · (2i+1 − 1)] as

`i = ti,i = tM,0 +
∑

M≤i′≤i,1≤j≤i′
ti′,j − ti′,j−1

≤ δ

2
(2M

′ − 1) +
∑

M≤i′≤i
i′ · (1 +

δ

2
)2i
′
/i′

≤ δ

2
(2M

′ − 1) + (1 +
δ

2
) · (2i+1 − 1)

≤ (1 + δ) · (2i+1 − 1),

and similarly for the lower bound: `i ≥
∑

i′,j ti′,j− ti′,j−1 ≥ (1− δ
2)(2i+1−2M ) ≥ (1− δ) · (2i+1−1).

Thus Lemma 14 is applicable on `i with M set to M ′, and we obtain a sequence k2, k3, . . . such
that dens(σ`i−1+1,...,ki) ≤ 1

2−
δ
4 and ki−`i−1 ≥ δ2i−2 for infinitely many i. Pick any of the infinitely

many i ≥ max{M ′, 32(1 + δ)/δ} for which ki − `i−1 ≥ δ2i−2 and dens(σ`i−1+1,...,ki) ≤ 1
2 −

δ
4 . Since

δ2i−3 ≥ (1 + δ)2i/i, there is some j ∈ {1, . . . , i} such that `i−1 + δ2i−3 ≤ ki− (1 + δ)2i/i ≤ ti,j ≤ ki.
Fix such j. Since ki ≤ ti,j + (1 + δ)2i/i, we have

dens(σ`i−1+1,...,ti,j ) =
dens(σ`i−1+1,...,ki)(ki − `i−1)

ti,j + `i−1

≤
dens(σ`i−1+1,...,ki)((1 + δ)2i/i+ ti,j − `i−1)

ti,j + `i−1

≤
(

1

2
− δ

4

)
·
(

1 +
8(1 + δ)

i

)
≤ 1

2
− δ

4
+

4(1 + δ)

i
≤ 1

2
− δ

8
.

Hence, dens(σ`i−1+1,...,ti,j ) ≤ 1
2 −

δ
8 . So for some j′ ∈ {1, . . . , j}, dens(σti,j′−1+1,...,ti,j′ ) ≤

1
2 −

δ
8 . We

can state the following claim.

Claim 17. For i large enough, conditioned on t(a, b, a2) = ta,b, for all a ≥ M and all b, and
conditioned on that the game did not stop before the time ti,j′−1 + 1, the game stops during times
ti,j′−1 + 1, . . . , ti,j′ with probability at least ξ4/2.
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Conditioned on t(a, b, a2) = ta,b, for all a, b, the claim implies that the game stops with proba-
bility 1. Note that the condition is true for some valid choice of ta,b with probability 1 − γ. This
is because the claim can be invoked for infinitely many i’s and for each such i we will have ξ4/2
chance of stopping.

It remains to prove the claim. Assume t(i, j′ − 1, i2) = ti,j′−1 and t(i, j′, i2) = ti,j′ . Clearly,

dens(σti,j′−1+1,...,ti,j′−1) ≤ dens(σti,j′−1+1,...,ti,j′ ) · (2
i−1/(2i−1 − 1)) ≤ 1

2
− δ

16
,

for i large enough. So if we sample i2 − 1 times from σti,j′−1+1, . . . , σti,j′−1 we expect at most

(1
2 −

δ
16)(i2− 1) of the letters to be L. By Hoeffding’s inequality, Theorem 46 (again setting ai = 0

and bi = 1, and letting ci be i’th payoff for Player 1), the probability that we get at least δ
32(i2− 1)

additional L items on top of the expectation is given by

Pr

[
dens(σt(i,j′,1), σt(i,j′,2), . . . , σt(i,j′,i2−1)) ≥

1

2
− δ

32

]
≤ 2 exp

(
−

2( δ32(i2 − 1))2

i2 − 1

)
= 2 exp

(
− δ2

512
(i2 − 1)

)
.

The probability is taken over the possible choices of t(i, j′, 1) < t(i, j′, 2) < · · · < t(i, j′, i2 − 1)
assuming t(i, j′ − 1, i2) = ti,j′−1 and t(i, j′, i2) = ti,j′ . For i sufficiently large, 2e−δ

2(i2−1)/512 ≤ 1/2.
Whenever

dens(σt(i,j′,1), σt(i,j′,2), . . . , σt(i,j′,i2−1)) ≤
1

2
− δ

32

we have at least ξ4 chance of stopping by Lemma 9, as Player 1 plays σi+j
′,ξ

1 against

σt(i,j′,1), σt(i,j′,2), . . . , σt(i,j′,i2−1)

and i2 − 1 > i/δ ≥ (i + j′)/2δ for sufficiently large i. Hence, the game stops with probability at
least (1− 1/2) · ξ4 = ξ4/2. The claim, and thus the lemma, follows.

We can now conclude with the main result of this section.

Theorem 18. The strategy σ∗1 is
√
ξ-optimal, and for all δ > 0, with probability at least 1 − δ it

uses space O(log log T ).

Proof. This is proved just like Theorem 13, except that Lemma 16 is used in place of Lemma 12.

We can also improve the strategy and get the following corollary.

Corollary 19. For any natural number k, there is a strategy which is 2−k-optimal, has patience 2
and can be implemented on a Turing machine, using at most 1 random bit and amortized constant
time1 per round and with probability at least 1− δ does it use tape space O(log log(T ) + log k) upto
round T .

1i.e. for all T , let c(T ) be the computation used for the first T rounds, then c(T )
T

is some constant
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Proof. We will only sketch the necessary ingredients for the proof. We will modify the strategy σ∗1
as defined in Section 4 to use less patience. First, it is easy to see that the probability that two
sample points are ever within a polynomial in i distance of each other is small, in any sufficiently
high epoch i, and thus we can ignore this event. The idea is as follows: Each sub-epoch of epoch i
is split into blocks of length B = iO(1) ·k (where we simply keep track of the current location within
the current block, but not the current block number). The purpose of each block is to provide all
the randomness needed for the next block. Hence, it needs to (1) decide if there is a sample point
in the next block; and (2) if so where; and (3) if we should stop on that sample point. Observe that
we are ignoring the possibility that there are more than 1 sample point in a block. It is easy to see
that the number of random bits needed in total to generate all those events is less than iO(1) · k
and thus it can be done with at most 1 random bit per round, implying the patience bound. To
get the tape space bound, we utilize the three following simple ideas:

Idea 1: To get a probability like
∏
aj , for some sequence of probabilities aj of length `, one can test

if sub-events that happens with probability ai for all i all happens. This requires only space
for a counter counting up to ` and space for the event that uses the most space (by reusing
the space for the event).

Idea 2: To get an probability like 2−x (or similarly 1 − 2−x) one can simply flip x coins and if all
comes up tails, then the event happens. This requires only space for a counter counting up
to x.

Idea 3: To get an probability like y
2x , for any natural number x and y, one can simply use x random

bits. This uses x many bits of space.

Direct application of these three ideas suffice to get all three events in O(log i + log k) many bits.
Observe that we can do this easily on a two tape Turing machine (one is used for events following
idea 3 and one for the constant number of counters) and we only need amortized constant time in
each round (to increment and/or reset some subset of the counters on the first tape and perhaps
to add one more random bit or reset the second tape).

5 Lower bound on patience

When considering a strategy of a player one may want to look at how small or large the probabilities
occurring in that strategy are. The parameter of interest is the patience of the strategy which is the
reciprocal of the smallest non-zero probability occurring in the strategy. Patience is closely related
to the expected length of finite plays as small probability events will not occur if the play is too
short so they will have little influence on the overall outcome [11, 6]. Care has to be taken how to
define patience for strategies with infinitely many possible events. One thing to note of our space
efficient strategies is that the patience of the states in which we are with high probability during
the first T steps is approximately T , for rounds T close to the end of an epoch. In this section we
show that this is essentially necessary. So if the space used by the strategy with high probability
is log f(T ), then the first f(T ) states must have patience about T . Thus the smaller the space the
strategy uses the larger the patience the states must have.

The main theorem of this section states that if the patience of the f(T ) states in which Player
1 is with high probability is less than about T 1/f(T ) then the strategy is bad for Player 1. It is easy
to observe that events with probability substantially less than 1/T are unlikely to occur during the
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first T steps of the game so one should expect the patience of a good strategy for Player 1 to be in
the range between roughly T 1/f(T ) and T .

One may wonder whether the exponent 1/f(T ) in T 1/f(T ) is necessary. It turns out that it is,
so our lower bound is close to optimal using a technique like in Corollary 19.

We use the following definitions to deal with the fact that our strategies use infinitely many
transitions so their overall patience is infinite.

For a memory based strategy σ1 of Player 1 in a repeated zero-sum game with absorbing states,
the patience of a set of memory states M is defined as:

pat(M) = max

{
1

σa1(m)(a1)
,

1

σu1 (a1, a2,m)(m′)
, m,m′ ∈M,a1 ∈ A1, a2 ∈ A2

}
.

The patience of the other player is defined similarly.

Theorem 20. Let δ, ε > 0 be reals and f : N → N be an unbounded non-decreasing function such
that f(T ) ≤ 1

4 log1/ε T for all large enough T . If a strategy σ1 of Player 1 uses space log f(T ) before
time T with probability at least 1 − δ, and the patience of the set of lexicographically first f(T )
memory states is at most T 1/(2f(T )) for all T large enough, then there is a strategy σ2 of Player 2
such that u(sup, (σ1, σ2)) ≤ δ + 2ε.

Proof. Assume that ε < 1/2 and pick an integer k sufficiently large. For i > 0, define `i = ε−i and
Ti =

∑i
j=1 `j . The strategy σ2 of Player 2 proceeds in phases, each phase i is of length `i. In the

first k phases, Player 2 plays L with probability 1 − ε and R with probability ε. In each phase
i > k, Player 2 plays R for the first (1 − ε)`i steps, and afterwards he plays L with probability
1− ε and R with probability ε. Notice, if the game does not stop by Player 1 playing R at some
point then the expected lim sup payoff to Player 1 is at most ε.

Our goal is to show that if the game stops then the expected payoff to Player 1 is at most
δ+ 2ε. If the game stops during the last ε`i steps of a phase i, then the expected payoff to Player 1
is ε as the probability of Player 2 playing R at that time is ε. If the game stops during the first
(1 − ε)`i steps of a phase i > k, then the payoff of Player 1 is 1. Our goal is to argue that the
overall probability that Player 1 stops during the first (1− ε)`i steps of some phase i > k is small.

For any t > 0, denote by M(t) the set of the lexicographically first f(t) memory states (i.e.
those mapped to a number below f(t). Let C be the event that for all steps t, Player 1 is in one
of the states in M(t). For t < t′, let S(t, t′) be the event that Player 1 plays R in one of the steps
[t, t′). Let Ai(t) be the event that at time t, Player 1 is in one of the states in M(Ti) and there is
some memory state in M(Ti) that can be reached from the state current at time t and in which
there is a non-zero probability of playing R (i.e., stopping).

The probability that C does not occur is at most δ so for the rest of the proof we will assume
that C occurs. Let k be large enough, and i > k. It is clear that if S(Ti−1, Ti−1 + (1− ε)`i) occurs
then Ai(Ti−1) must have occurred as well so:

Pr[S(Ti−1, Ti−1 + (1− ε)`i)] ≤ Pr[Ai(Ti−1)] .

Furthermore, if Ai(Ti−1) occurs then Ai(t) occurs for all t < Ti−1. For t ∈ [Ti−1−ε`i−1, Ti−1−f(Ti)),
if Ai(t) occurs then within the next f(Ti) steps the strategy of Player 1 might reach a state in which
Player 1 chooses the stopping action R with non-zero probability. Because of the patience of M(Ti)
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and the fact that Player 2 plays each of his possible actions with probability at least ε during that
time steps we have for any t ∈ [Ti−1 − ε`i−1, Ti−1 − f(Ti)),

Pr[S(t, t+ f(Ti)) | Ai(t)] ≥
(

ε

pat(M(Ti))

)f(Ti)

.

Hence, the probability that Ai(Ti−1) occurs and the game did not stop yet is at most:(
1−

(
ε

pat(M(Ti))

)f(Ti)
)ε`i−1/f(Ti)

≤ e
−
(

ε
pat(M(Ti))

)f(Ti)·ε`i−1/f(Ti).

For sufficiently large T , f(T ) ≤ 1
4 log1/ε T . Furthermore, Ti ≤ 2`i and εTi − 1 ≤ Ti−1. Since i is

sufficiently large we have:

(
ε

pat(M(Ti))

)f(Ti)

· ε · `i−1

f(Ti)
≥

 ε

T
1

2f(Ti)

i

f(Ti)

· ε · Ti−1

2f(Ti)

≥ εf(Ti) · ε2 ·
T

1/2
i

2f(Ti)
− 1

≥ ε2 ·
T

1/4
i

2f(Ti)
− 1 ≥ T 1/5

i .

Since T
1/5
i � i for i large enough, we get

Pr[S(Ti−1, Ti−1 + (1− ε)`i)] ≤ ε · e−i.

We set k to be large enough so that the above analysis would work for i > k. Thus except for
probability at most δ + ε, Player 1 stops in a step when Player 2 plays R with probability only ε.
Thus the expected payoff to Player 1 is at most δ + 2ε.

6 No finite-memory ε-optimal deterministic-update Markov strat-
egy exists

A memory-based Markov strategy is an extension of a memory-based strategy that may also depend
on the round number. More precisely, for Player 1, the action map σa1 for a memory-based Markov
strategy σ1 is a map from Z+ ×M to ∆(A1) and the update map σu1 for memory-based Markov
strategies is a map from Z+×A1×A2×M to ∆(M). We say that Player 1 follows the memory-based
Markov strategy σ1 if in every round T when the game did not stop yet, he picks his next move
aT1 at random according to σa1(T,mT ), where the sequence m1,m2, . . . is given by letting m1 = ms

and for T = 1, 2, 3, . . . choosing mT+1 at random according to σuk (aT1 , a
T
2 ,mT , T ), where aT2 is the

action chosen by Player 2 at round T . The definition of memory-based Markov strategies is similar
for Player 2. Note that memory-based Markov strategies are more general than memory-based
strategies.

A memory-based (resp. Markov) strategy σ1 for Player 1 has deterministic-update, if for all
a1 ∈ A1, all a2 ∈ A2 and all m ∈ M (resp. all T ∈ Z+) the distribution σu1 (a1, a2,m) (resp.
σu1 (T, a1, a2,m)) is deterministic.
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In this section we will argue that no finite-memory ε-optimal deterministic-update Markov
strategy for Player 1 in the Big Match exists, for ε < 1

2 . Let n be some positive integer. Let σ1 be
some Markov strategy using at most n memory for Player 1. We will show that for all δ > 0, there
exists a strategy σ2 for Player 2 that ensures that u(inf, (σ1, σ2)) < δ. This shows that σ1 can only
ensure value 0.

Construction of σ2 and the sequence of strategies σk2 . We will now describe the construction
of σ2. The strategy σ2 will be the final strategy in a finite sequence of strategies (σk2 )k. Each of the
strategies σk2 (and thus also σ2) is a deterministic memory-based Markov strategy and will use the
same set of memory statesM of size n and update map σu1 as σ1. Observe that the action map σa2
for such a strategy can be thought of as a (∞, n)-matrix A over {L,R}, where AT,m = σa2(T,m).

• Let σk,a2 be the action map for σ2.

• Let SkR = {(T,m) | σk,a2 (T,m) = R} (i.e. the pairs under which σk2 plays R).

• For all T , let MT = {(T ′,m) | T ′ ≤ T} (i.e. the memory states before round T ).

• For all T , let Sk,TR = SkR ∩MT (i.e. the pairs under which σk2 plays R before round T ).

Properties of strategies in the sequence σk2 . Besides ensuring that the last strategy σ2 in the
sequence is such that u(inf, (σ1, σ2)) < δ, our construction of σk2 will ensure the following properties:

1. Property 1. The probability to stop (using union bound) while Player 2 plays R is at most∑
(T,m)∈Sk

R

σa1(T,m)(R) ≤ (1− 2−k)δ .

2. Property 2. The infimum limit, for T going to infinite, of the fraction of all pairs before
round T under which σk2 plays R is at least

lim inf
t→∞

|Sk,TR |
n · T

≥ δ · k
n

.

The sequence has finite length. Observe that Property 2 ensures that the strategy σk2 cannot
exists, for k > n

δ , implying that the sequence has finite length. This is because σk2 , for such k,
otherwise would require that there is some T , such that the number of pairs such that σk2 plays R
before round T is strictly more than the number of pairs before round T .

The strategy σ0
2. The action map σ0,a

2 is such that σ0,a
2 (T,m) = L for all T ∈ N and m ∈ M.

The strategy has the wanted properties (because S0
R is the empty set).
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Informal inductive construction of the sequence of strategies (σk2 )k. Consider playing
σ1 against σk2 and let the play be P . If the outcome is above δ (that is, σk2 does not satisfy the
properties of σ2 and we therefore need to construct σk+1

2 ) we know two things: 1) The probability
that P stops is not 1, since otherwise the outcome is at most (1−2−k)δ, by Property 1. 2) Player 2
plays L above a δ fraction of the time (in lim-inf). In that case, since the probability to stop is
below 1, there is a round M , such that if the play reaches that round, the probability to stop
in the rest of the play is below 2−(k+1)δ. Let the sequence of memory states the players uses in
the play be (mk

T )T . The strategy σk+1
2 is then like the strategy σk2 , except for playing R then in

memory mk
T in round T . By choice of M , we get Property 1. Also, since the fraction of the time

player 2 played L in P was above δ, then σk+1
2 contains δ

n more R’s than σk2 , which is Property 2.
In Figure 3, we have an illustration of the action map of a possible sequence of strategies (σk2 )k for
n = 4 and some strategy σ1. The line illustrates the memory sequence (mk

T )T (for instance, the
sequence (m1

T )T is 4132114442333313131...) where the probability to stop somewhere on the solid
line is below 2−(k+1)δ.

Formal inductive construction of σk+1
2 . We will now show that, given σk2 , we either have that

u(inf, (σ1, σ
k
2 )) < δ or we can construct σk+1

2 with the wanted properties. In the first case σk2 has
the properties we wanted from σ2 and can then stop the sequence. We now consider the case where
u(inf, (σ1, σ

k
2 )) ≥ δ.

• Let p be the probability that the play stops, when the players follows (σ1, σ
k
2 ).

• For all T , let pT be the probability that the play stops in round T , conditioned on it not
stopping before round T .

• Let (mk
T )T be the sequence of memory states associated with σ1 (or equally σk2 ), then played

against σk2 . Note that given σ1 and σk2 , the sequence is deterministic, because the choices
of Player 2 are deterministic and if the game has not stopped, Player 1 has played L at all
earlier times and he updates its memory state deterministically.

• For all T , let Sk,Ttail = {(T ′,mk
T ′) | T ′ ≥ T} (i.e. the pairs in the memory state sequence after

round T ).

• Let v be the value of the game if it does not stop, i.e.

v = lim inf
T→∞

|(Sk,0tail \ S
k
R) ∩MT |
T

.

Note that the set (Sk,0tail \S
k
R)∩MT is the set of pairs, in the memory state sequence in which

Player 2 plays L before round T .

Using the above definitions, we see that

u(inf, (σ1, σ
k
2 )) ≤ p(1− 2−k)δ + (1− p)v .

Thus, since u(inf, (σ1, σ
k
2 )) ≥ δ we must have that p < 1 and δ ≤ v.

We will now use the following mathematical lemma.

Lemma 21. Let x < 1 be some real number. Let (xT )T be an infinite sequence, in which xT ∈ [0, 1]
and 1−

∏
T (1− xT ) = x, then

∑
T xT ≤ − log(1− x) <∞.
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Proof. We have that all xT < 1, since otherwise the product would be 0, and hence x = 1. Also,
we get that ∏

T

(1− xT ) = 1− x⇒
∑
T

log(1− xT ) = log(1− x)

⇒ −
∑
T

log(1− xT ) = − log(1− x)⇒
∑
T

xT ≤ − log(1− x) .

The last inequality comes from that f(y) = − log(1 − y) ≥ y for y ∈ [0, 1). This follows from
f(0) = 0 and f ′(y) = 1

1−y ≥ 1, for y ∈ [0, 1).

We have that 1−
∏
T (1− pT ) = p and by Lemma 21 we then get that

∑
T pT is finite. Hence,

there exists some M such that
∑∞

T=M pT ≤ δ
2k+1 .

We can now define σk+1,a
2 . Let

σk+1,a
2 (T,m) =

{
R if (T,m) ∈ Sk,Mtail

σk,a2 (T,m) otherwise

The strategy σk+1
2 satisfies the wanted properties. We will now show that σk+1

2 satisfies
the wanted properties.

1. That Property 1 is satisfied comes from that∑
(T,m)∈Sk+1

R

σa1(T,m)(R) ≤
∑

(T,m)∈Sk
R

σa1(T,m)(R) +
∑

(T,m)∈Sk,M
tail

σa1(T,m)(R)

≤ (1− 2−k)δ + 2−k−1δ = (1− 2−k−1)δ .

2. That Property 2 is satisfied can be seen as follows. We have that

lim inf
T→∞

|Sk+1,T
R |
n · T

= lim inf
T→∞

|Sk,TR |+ |(S
k,M
tail \ S

k
R) ∩MT |

n · T

≥ lim inf
T→∞

|Sk,TR |
n · T

+ lim inf
T→∞

|(Sk,Mtail \ S
k
R) ∩MT |

n · T
.

Since the properties are satisfied for σk2 , we get that lim infT→∞
|Sk,T

R |
n·T ≥ δk

n . We thus just
need to argue that

lim inf
T→∞

|(Sk,Mtail \ S
k
R) ∩MT |

n′ · T
≥ δ

n

and we are done. That statement can be seen as follows

δ ≤ v ⇒ δ ≤ lim inf
T→∞

|(Sk,0tail \ S
k
R) ∩MT |
T

⇒ δ

n
≤ lim inf

T→∞

|(Sk,0tail \ S
k
R) ∩MT |

n′ · T
⇒

δ

n
≤ lim inf

T→∞

|(Sk,Mtail \ S
k
R) ∩MT |

n · T
,

where the last inequality comes from that Sk,0tail consists of the same pairs as Sk,Mtail and then
M more.
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The above leads to the following theorem.

Theorem 22. For all ε < 1
2 , there exists no finite-memory deterministic-update ε-optimal Markov

strategy for Player 1 in the Big Match.

7 Generalized Big Match Games

In order to generalize our results to arbitrary repeated games with absorbing states, we follow the
approach of Kohlberg and consider first the subset of such games where Player 1, like in the Big
Match, has just the choice whether to declare that the game should stop or continue. But unlike
the Big Match, in case Player 1 declares the game should stop, the game will only stop with some
non-zero probability (that depends on the action of Player 2). Furthermore, Player 2 can have any
number of actions and the rewards can be arbitrary. We call such games generalized Big Match
games.

More formally, a generalized Big Match game G is specified as follows. Let A1 = {L,R} and
let A2 be any finite set. The rewards π(a1, a2) are arbitrary, but the stop probabilities ω(a1, a2)
must satisfy that ω(L, a2) = 0 and ω(R, a2) > 0 for all a2 ∈ A2.

Our strategies for generalized Big Match games will follow the same template as those given
in Sections 3 and 4. The change required is a modification of the base strategies σi,ξ1 . The proof

that these new base strategies τ i,ξ1 have the desired properties follow those for σi,ξ1 , but uses also
additional ideas similar to those of Kohlberg[11].

Given G we define the derived matrix game G̃ by

G̃a1,a2 =

{
π(a1, a2) if a1 = L

ω(a1, a2) · π(a1, a2) if a1 = R
.

Assumption 1. In the remainder of this section we make the following assumptions about the
given generalized Big Match game G:

• The entries of G̃ are integer.

• The value G̃ is 0.

• Player 1 does not have a pure optimal strategy in G̃.

We observe that the last requirement means that in the matrix game G̃ Player 1 has a unique
optimal strategy and it plays each action with non-zero probability.

Define ω = mina2 ω(R, a2) to be the minimum non-zero stop probability of G and K =
maxa1,a2 |G̃a1,a2 | be the maximum magnitude of an entry of G̃.

Remark. As noted in Observation 1, it is sufficient to consider only pure strategies for Player 2.
Unlike for the Big Match, here play may continue even when Player 1 chooses the action R, and
hence it is not sufficient to consider only pure Markov strategies for Player 2. We shall however
(as done also by Kohlberg) give only the proof for this special case and just note that the proof for
general pure strategies of Player 2 is done along the same lines
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Generalized density of pure Markov strategies In order to generalize our strategies given
in Sections 3 and 4, we must first generalize the notion of density of a pure Markov strategy σ for
Player 2. We then define

gdens(σT ) =

∑T
i=1 π(L, σi)

T
,

and further, for T ′ < T we define

gdens(σ, T ′, T ) =

∑T
i=T ′ π(L, σi)

T − T ′
.

We can make a similar correspondence between the generalized density of a play and the average
of the rewards received by Player 1. The main difference here is that the play may possibly continue
whenever Player 1 plays the action R. However, the event that Player 1 plays action R an infinite
number of times happens with probability 0, since each time Player 1 does play action R, the game
stops with probability at least ω > 0 by definition.

Observation 3. Suppose Player 2 follows a pure Markov strategy σ. Consider a play P in which
Player 1 plays only the action L. Then for any T < |P | we have

gdens(σT ) =
1

T

T∑
T ′=1

rT ,

where rT is the reward given to Player 1 in round T . Consider now an infinite play P in which
Player 1 plays action R only a finite number of times. Then we have

uinf(P ) = lim inf
T→∞

gdens(σT ) ,

and
usup(P ) = lim sup

T→∞
gdens(σT ) .

We need the following simple statement, which can be viewed as a quantified version of [11,
Lemma 2.5].

Lemma 23. Let σ be a pure Markov strategy for Player 2, and let j be any integer. If T ·
gdens(σT ) ≤ −j · 2K then

T∑
i=1

ω(R, σTi ) · π(R, σTi ) ≥ j .

Proof. Let σ1 be the (unique) optimal strategy in G̃. By Assumption 1 we have that σ1(L) > 0
and that the value of G̃ is 0. This immediately implies that σ1(L) > 1/2K, since p = σ1(L) must
satisfy an equation of the form

p · G̃L,a2 + (1− p) · G̃R,a2 = 0 ,

for some a2 ∈ A2, where the entries G̃L,a2 and G̃R,a2 are non-zero and integers of magnitude at
most K.
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Figure 4: The Big Match as a generalized Big Match game.

Now, by optimality of σ1 we have

σ1(L) · π(L, a2) + σ1(R) · ω(R, a2) · π(R, a2) ≥ 0 ,

for any a2 ∈ A2, and thus also

T∑
i=1

σ1(L) · π(L, σTi ) + σ1(R) · ω(R, σTi ) · π(R, σTi )) ≥ 0 .

By assumption T · gdens(σT ) =
∑T

i=1 π(L, σTi ) ≤ −j · 2K. Hence

T∑
i=1

ω(R, σTi ) · π(R, σTi ) ≥ − σ1(L)

σ1(R)

T∑
i=1

π(L, σTi ) ≥ 1

2K
· j · 2K = j .

The Big Match as a generalized Big Match game The Big Match as defined in Section 2
does not immediately fit our definition of generalized Big Match games, since the value of the
derived matrix game is 1/2 rather than 0. To achieve this we may simply replace the rewards of
value 0 with value −1. Doing this we see that

gdens(σT ) =
|{i | (σT )i = L}| − |{i | (σT )i = R}|

T

=
2|{i | (σT )i = L}| − T

T
= 2 dens(σT )− 1

for any σT .

7.1 Small space ε-supremum-optimal strategies in generalized Big Match games

For given ε, let ξ = ε2/(4K4). Thus ε = 2K2
√
ξ. The strategy σ∗1 for Player 1 is obtained from the

strategy of Section 3, by exchanging the base strategy σi,ξ1 with the new base strategy τ i,ξ1 defined
next.

The base strategy. Similar to σi,ξ1 , the strategy τ i,ξ1 uses deterministic updates of memory, and
uses integers as memory states The memory update function is changed to

τ i,ξ,u1 (a, j) = j − G̃R,a = j − ω(R, a)π(R, a) ,
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whereas the action function is unchanged as

τ i,ξ,a1 (j)(R) =

{
ξ4(1− ξ)i+j if i+ j > 0

ξ4 if i+ j ≤ 0
.

Note that when the Big Match is redefined as a generalized Big Match game, we have that τ i,ξ1 = σi,ξ1 .
We will next generalize the statements of Section 3 in the following paragraphs.

7.1.1 Space usage of the strategy

We will here consider the space usage of σ∗1. Like for the strategy σ∗1 for the Big Match we are
interested in the length of the epochs and can generalize Lemma 7 to generalized Big Match.

Lemma 24. For any γ, δ ∈ (0, 1/4), there is a constant M such that with probability at least 1−γ,
for all i ≥M and all j ∈ {1, . . . , i}, we have that

t(i, j, i2)− t(i, j − 1, i2) ∈ [(1− δ)F (i)/i, (1 + δ)F (i)/i] .

Proof. The proof is precisely the same as for Lemma 7, since it only concerns itself with the length
of epochs and not with the base strategy, and only the base strategy has changed as compared to
section Section 3.

We next give a generalization of Lemma 8.

Lemma 25. For all constants γ > 0, with probability at least 1 − γ, the space usage of σ∗1 is
O(log f(T ) + logK).

Proof. Observe that the base strategy τ i,ξ1 can reach a factor of 2K more memory states upto round

T than σi,ξ1 , since σi,ξ1 changes its counter by ±1 in each round while τ i,ξ1 changes its counter by
some number in {−K, . . . ,K}. Thus, σ∗1 uses at most a factor 2K more memory states then using

τ i,ξ1 as the base strategy instead of σi,ξ1 in round T for any T . The statement then follows from a
similar proof as the one for Lemma 8.

7.1.2 Play stopping implies good outcome

Lemma 26. Let T, i ≥ 1 be integers and 0 < ξ < 1 be a real number. Let σ ∈ (A2)T be an arbitrary
prefix of a pure Markov strategy for Player 2. Consider the first T rounds where the players play
G following τ i,ε1 and σ respectively.

Let S ∈ {1, . . . , T} ∪ {∞} be a random variable in case the game stops in the first T rounds
denotes that round, and is ∞ otherwise. Let U be the random variable that denotes the outcome in
case the game stops in the first T rounds, and is 0 otherwise. Then

1.
−E[U | U < 0] Pr[U < 0] ≤ ξ3(1− ξ)i−K+1 + (1− ξ)1−2KE[U | U > 0] Pr[U > 0] .

2. If gdens(σT ) ≤ −i · 2K/T then
Pr[S <∞] ≥ ξ4 · ω .
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Figure 5: Possible movement of the counter τ i,ε1 uses as memory through the rounds.

Proof. Define

d` = −
∑
`′<`

G̃R,σ`′ .

and note that d` is the value of the counter used by τ i,ξ1 as memory in step `. There is an illustration

of how d` could evolve through the steps in Figure 5. Let I = {` ∈ {1, . . . , T} | G̃R,σ` < 0} and

D = {` ∈ {1, . . . , T} | G̃R,σ` > 0} be the sets of times where the counter is incremented and
decremented, respectively. For integer d, define sets Kd by

Kd = {` ∈ {1, . . . , T} |(G̃R,σ` < 0 & d` ≤ d < d` − G̃R,σ`) or

(G̃R,σ` > 0 & d` − G̃R,σ` ≤ d < d`)} .

Intuitively, Kd is now the set of times where the counter is either incremented to pass trough the
value d and end above, or is decreased from above d passing through the value d. For instance, the
gray row of Figure 5 corresponds to a set Kd, which consists of the edges that starts below or on
the bottom of the gray row and ends over or on the top of the gray row. Each such edge are wider,
in the figure, then the remaining edges. Note that horizontal edges are not in Kd. Notice each
` ∈ {1, . . . , T} belongs to exactly |G̃R,σ` | many of the sets Kd. Also if Kd = {k1 < k2 < · · · < km},
for some m, then kj ∈ I if and only if kj+1 ∈ kj+1 ∈ D. Thus Kd is an sequence of elements
alternately from I and D, and starts with an element of I when d ≥ 0 and starts with an element
of D otherwise.

Finally let, A` ∈ {L,R} be the random variable indicating the action of Player 1 at time step
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`, and define p` = Pr[S ≥ ` & A` = R]. We now have

E[U ] =

T∑
`=1

Pr[S = `] · π(R, σ`) =

T∑
`=1

p` · ω(R, σ`)π(R, σ`)

=
T∑
`=1

p` · G̃R,σ` =
T∑
`=1

∑
d:`∈Kd

sgn(G̃R,σ`) · p`

=
∑
d

∑
`∈Kd

sgn(G̃R,σ`) · p` .

Similarly,

E[U | U < 0] Pr[U < 0] = −
∑
d

∑
`∈Kd∩I

p` ,

and
E[U | U > 0] Pr[U > 0] =

∑
d

∑
`∈Kd∩D

p` .

For integer d, define Eloss,d =
∑

`∈Kd∩I p` and Ewin,d =
∑

`∈Kd∩D p`. Recall that by definition of

τ i,ξ we have Pr[A` = R | S ≥ `] = ξ4(1− ξ)max(0,i+d`).
Consider now d ≥ 0. Then pk1 ≤ Pr[A` = R | S ≥ k1] ≤ ξ4(1− ξ)i+d−K+1, since dk1 > d−K.

For even j we have

pkj = Pr[Akj = R|S ≥ kj ] Pr[S ≥ kj ]
≥ (1− ξ)2K−1 Pr[Akj = R|S ≥ kj+1] Pr[S ≥ kj+1] = (1− ξ)2K−1pkj+1

,

since dkj ≤ d+K < dkj+1
+ 2K. It follows that

Eloss,d ≤ ξ4(1− ξ)i+d−K+1 + (1− ξ)1−2KEwin,d .

For d < 0, Eloss,d ≤ (1 − ξ)1−2KEwin,d, since for odd j, pkj ≥ (1 − ξ)2K−1pkj+1
as above. For

d < −i we can give better estimates, like in the case of Lemma 9, but it is not needed.
Taking the summation over d then gives

−E[U | U < 0] Pr[U < 0] =
∑
d

Eloss,d

≤
∑
d≥0

ξ4(1− ξ)i+d−K+1 + (1− ξ)1−2K
∑
d

Ewin,d

= ξ3(1− ξ)i−K+1 + (1− ξ)1−2KE[U | U > 0] Pr[U > 0] .

For the second part, if gdens(σT ) ≤ −i ·2K/T then Lemma 23 gives
∑T

`=1 G̃R,σ` ≥ i, and hence
dT ≤ −i. This implies that if the game reaches round T , Player 1 plays R with probability ξ4,
which means the game stops with probability at least ξ4 · ω.

Lemma 27. Let 0 < ξ < 0. Let σ be a pure Markov strategy for Player 2. Let S be the event that
the game stops. Let U be the random variable that denotes the outcome in case the game stops,
and is 0 otherwise. If Pr[S] ≥ K

√
ξ then E[U | S] ≥ −2K

√
ξ.
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Proof. The proof follows along that of Lemma 27. Let Ai,j be the set of plays in which between
round 1 and round t(i, j, 1) − 1, the game does not stop. Let Ui,j be the random variable that
denotes the outcome in case the game stops between round t(i, j, 1) and round t(i, j, i2), and is 0
otherwise. Note that E[U ] =

∑
i,j E[Ui,j | Ai,j ] Pr[Ai,j ].

Fix a possible value of all t(i, j, k)’s and denote by Y the event that these particular values
actually occur. Fix i and j. Conditioned on Y and Ai,j , between time t(i, j, 1) and t(i, j, i2)

Player 1 plays τ i,ξ1 against a fixed strategy σt(i,j,1), σt(i,j,2), . . . , σt(i,j,i2) for Player 2. By Lemma 26
we thus have

− E[Ui,j | Ui,j < 0, Y, Ai,j ] Pr[Ui,j < 0 | Y,Ai,j ]
≤ ξ3(1− ξ)i−K+1 + (1− ξ)1−2KE[Ui,j | Ui,j > 0, Y, Ai,j ] Pr[Ui,j > 0 | Y,Ai,j ] .

Since the above inequality is true conditioned on arbitrary values of t(i, j1, j2)’s, it is true also
without the conditioning:

− E[Ui,j | Ui,j < 0, Ai,j ] Pr[Ui,j < 0 | Ai,j ]
≤ ξ3(1− ξ)i−K+1 + (1− ξ)1−2KE[Ui,j | Ui,j > 0, Ai,j ] Pr[Ui,j > 0 | Ai,j ] .

Thus,

− E[U | U < 0] Pr[U < 0]

= −
∞∑
i=1

i∑
j=1

E[Ui,j | Ui,j < 0, Ai,j ] Pr[Ui,j < 0 | Ai,j ] Pr[Ai,j ]

≤
∞∑
i=1

i∑
j=1

(
ξ3(1− ξ)i−K+1+

(1− ξ)1−2KE[Ui,j | Ui,j > 0, Ai,j ] Pr[Ui,j > 0 | Ai,j ]
)

Pr[Ai,j ]

≤ ξ + (1− ξ)1−2K
∞∑
i=1

i∑
j=1

E[Ui,j | Ui,j > 0, Ai,j ] Pr[Ui,j > 0 | Ai,j ] Pr[Ai,j ]

= ξ + (1− ξ)1−2KE[U | U > 0] Pr[U > 0]

Hence

−(1− ξ)2K−1E[U | U < 0] Pr[U < 0] ≤ ξ(1− ξ)2K−1 + E[U | U > 0] Pr[U > 0] ,

and so

−E[U ] = −E[U | U < 0] Pr[U < 0]− E[U | U > 0] Pr[U > 0]

≤ −(1− (1− ξ)2K−1)E[U | U < 0] Pr[U < 0] + ξ(1− ξ)2K−1

≤ K(1− (1− ξ)2K−1) + ξ(1− ξ)2K−1

≤ K(2K − 1)ξ + ξ ≤ 2K2 · ξ,

where we use the equation 1 − (1 − x)k ≤ kx, which is valid for positive integer k and 0 ≤ x ≤ 1.
Hence the expected outcome conditioned on the game stopping can be estimated by

E[U | S] =
E[U ]

Pr[S]
≥ −2K2ξ

K
√
ξ

= −2K
√
ξ ,
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using the above estimate on E[U ] and the assumption Pr[S] ≥ K
√
ξ.

7.1.3 Low density means play stops

Lemma 28. Let ε, δ ∈ (0, 1). Let σ be an arbitrary pure Markov strategy for Player 2. Let ai,j be
some numbers. Consider the event Y where t(i, j) = ai,j for all i, j. If lim supT→∞ gdens(σT ) ≤ −δ,
then conditioned on Y , there is an infinite sequence of sub-epochs and epochs (in, jn)n such that
gdens(σ, ain,jn , ain,jn+1) ≤ −δ/4.

Proof. The proof follows that of Lemma 11 with small changes. Thus, let M be such that for
every T ′ ≥ M we have gdens(σT

′
) ≤ −δ/2. Let (Tn)n be a sequence such that T1 ≥ M and for

all n ≥ 1 we have that Tn+1 · δ/4 ≥ K · Tn and Tn = ai,j for some i, j. Let (i′n, j
′
n)n be the

sequence such that Tn = ai′n,j′n . This means that even if gdens(σTn) = −K, the generalized density
gdens(σ, Tn + 1, Tn+1) is at most −δ/4, because gdens(σTn+1) ≤ −δ/2. But, we then get that there
exists some sub-epoch jn in epoch in, such that j′n ≤ jn ≤ j′n+1 and such that i′n ≤ in ≤ i′n+1 for
which the generalized density of that sub-epoch dens(σ, ain,jn + 1, ain,(jn+1)) is at most 1/2− δ/4,
because not all sub-epochs can have generalized density below that of the average sub-epoch. But
then (in, jn)n satisfies the lemma statement.

Lemma 29. Let σ be an arbitrary pure Markov strategy for Player 2. If

lim sup
T→∞

gdens(σT ) < 0

then when played against σ∗1 the play stops with probability 1.

Proof. The proof follows that of Lemma 12 with small changes. Let δ > 0 be such that lim supT→∞ gdens(σT ) ≤
−δ. Consider arbitrary numbers ai,j and the event Y stating that t(i, j) = ai,j for all i, j. Let
(in, jn)n be the sequence of sub-epochs and epochs shown to exists by Lemma 28 with probabil-
ity 1. That is, for each (in, jn) we have that sub-epoch jn of epoch in has generalized density at
most −δ/4. We see that, conditioned on Y that each sample are sampled uniformly at random in
each sub-epoch j of each epoch i, except for the last sample.

Now consider some fixed n. By Hoeffding’s inequality, Theorem 46 (setting ai = −K and bi = K,
and letting ci = π(L, σt(in,jn,i))), the probability that the generalized density of the subsequence
given by the first (in)2 − 1 samples is more that −δ/8 is bounded by

2 exp

(
−

2( δ8((in)2 − 1))2

((in)2 − 1)(2K)2

)
= 2 exp

(
− δ2

128 ·K2
((in)2 − 1)

)
.

For sufficiently large in, this is less than 1
2 . If on the other hand the generalized density of the

subsequence is more than −δ/8, we see that (in)2 − 1 ≥ in · 2K · 8/δ for large enough in, and in
that case we have, by Lemma 26, that the game stops with probability at least ξ4 · ω in sub-epoch
jn of epoch in. Thus, for each of the infinitely many n’s for which in is sufficiently high, we have a

probability of at least ξ4·ω
2 of stopping. Thus play must stop with probability 1.

The argument was conditioned on some fixed assignment of endpoints of sup-epochs and epochs,
but since there is such a assignment with probability 1 (since they are finite with probability 1),
we conclude that the proof works without the condition.
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7.1.4 Proof of main result

Theorem 30. The strategy σ∗1 is 2K2
√
ξ-supremum-optimal, and for all δ > 0, with probability at

least 1− δ does it use space O(log f(T ) + logK).

Proof. The space usage follows from Lemma 25. Let σ be a pure Markov strategy for Player 2. Let
S be the event that the game stops. Let U be the random variable that denotes the outcome in
case the game stops, and is equal to lim supT→∞ gdens(σT ) otherwise. By Observation 3 we have
usup(σ∗1, σ) = E[U ]. Let s = Pr[S] the the probability that the game stops. We now consider three
cases, either (i) s = 1; or (ii) K

√
ξ < s < 1; or (iii) s ≤ K

√
ξ. In case (i), by Lemma 27 we have

E[U ] = E[U | S] ≥ −2K
√
ξ.

In case (ii), by Lemma 27 E[U | S] ≥ −2K
√
ξ, since K

√
ξ < s. And by Lemma 29 we have

E[U | S] ≥ 0, since s < 1. Thus

E[U ] ≥ s · (−2K
√
ξ) + (1− s) · 0 ≥ −2K

√
ξ .

In case (iii), again by Lemma 29 we have E[U | S] ≥ 0, since s < 1. Thus

E[U ] ≥ s · (−K) + (1− s) · 0 ≥ −K2
√
ξ .

7.2 An ε-optimal strategy that uses log log T space for generalized Big Match
games

In this section we give a ε-optimal strategy σ∗1 for Player 1 in any generalized Big Match game that
for all δ > 0 with probability 1− δ uses O(log log T ) space. Similarly to how Section 4 showed that
the strategy σ∗1, if initialized correctly, from Section 3 was ε-optimal for Player 1 in the Big Match,
we here show that the strategy σ∗1 from Section 7.1, if initialized correctly, is ε-optimal. Similarly to
Section 4, the ε-optimal strategy for generalized Big Match games is simply an instantiation of the
strategy σ∗1 from Section 7.1, setting f(T ) = dlog T e. We can then let f = log T and F (T ) = 2T .
The proofs of the statements in this section is nearly identical to those of Section 4, but there are
minor changes and they are thus given here in full.

The claim about the space usage of σ∗1 is already established in Section 7.1. To obtain the
stronger property of ε-optimality rather than just ε-supremum-optimality, we just needs to establish
a lim inf version of Lemma 29, like how we in 4 gave a lim inf version of Lemma 12.

First we show a technical lemma similarly to Lemma 14. Recall that for a pure Markov strategy
σ and a sequence of integers I = {i1, i2, . . . , im}, we have that σI is the sequence, σi1 , σi2 , . . . , σim .
Again, note that σk = σ{1,...,k}.

Lemma 31. Let σ be a pure Markov strategy for Player 2, δ < 1/4 be a positive real, and M
be a positive integer. Let lim infT→∞ gdens(σT ) ≤ −δ. Let `1, `2, . . . be such that for all i ≥
M , we have that `i ∈ [(1 − δ) · (2i+1 − 1), (1 + δ) · (2i+1 − 1)]. Then there exists a sequence
k2, k3, . . . such that for infinitely many i > M , we have that `i−1 + δ/K2i−2 ≤ ki ≤ `i and that
lim infi→∞ gdens(σ{`i−1+1,...,ki}) ≤ −

δ
4 .

Proof. The proof follows Lemma 14 with small changes. Let `i be as required. If there are infinitely
many i such that gdens(σ{`i−1+1,...,`i}) ≤ −

δ
4 then set ki = `i+1 and the lemma follows by observing
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(ki− `i−1) ≥ (1− δ)(2i+1− 1)− (1 + δ)(2i− 1) = (1− 3δ)2i ≥ δ/K2i−2, for i > M . So assume that
only for finitely many i, gdens(σ{`i−1+1,...,`i}) ≤ −

δ
4 . Thus the following claim can be applied for

arbitrary large i0.

Claim 32. Let i0 ≥ M be given. If for every i ≥ i0, gdens(σ{`i−1+1,...,`i}) > −
δ
4 then there exist

j > i0 and k such that `j−1 + (δ/K)2j−2 ≤ k ≤ `j and gdens(σ{`j−1+1,...,k}) ≤ −δ.

We can use the claim to find k2, k3, . . . inductively. Start with large enough i0 ≥ M and set
ki = `i for all i ≤ i0. Then provided that we already inductively determined k2, k3, . . . , ki0 , we
apply the above claim to obtain j and k, and we set kj = k and ki = `i, for all i = i0 + 1, . . . , j− 1.

So it suffices to prove the claim. For any d ≥ 1, `i0 · 2d−1 ≤ `i0+d and

gdens(σ`i0+d) ≥
− δ

4(`i0+d − `i0)−K · `i0
`i0+d

.

Furthermore, if d ≥ 1 + log(4K/δ) then `i0 ≤ δ
4K `i0+d and

gdens(σ`i0+d) ≥ −δ
4
− δ

4
= −δ

2
.

Since lim infk→∞ gdens(σk) ≤ −δ, there must be k and d ≥ 1 + log(4/δ) such that `i0+d−1 ≤ k ≤
`i0+d and gdens(σk) ≤ −δ. Set j = i0 + d. Also

gdens(σk) =
gdens(σ`j−1)`j−1 + gdens(σ{`j−1+1,...,k})(k − `j−1)

`j−1 + (k − `j−1)
,

which means(
gdens(σk)− gdens(σ{`j−1+1,...,k})

)
(k − `j−1) =

(
gdens(σ`j−1)− gdens(σk)

)
`j−1

≥
[
−δ

2
− δ
]
`j−1 =

δ

2
`j−1 .

Thus gdens(σ{`j−1+1,...,k}) ≤ gdens(σk) which in turn is less than −δ. Furthermore, k − `j−1 ≥
δ

2K `j−1 ≥ δ
2K (1 − δ)(2j − 1) ≥ δ

4K 2j , provided that j ≥ 2. Hence, k and j have the desired
properties.

We are now ready to prove the lim inf version of Lemma 29.

Lemma 33. Let σ be an arbitrary pure Markov strategy for Player 2. If

lim inf
t→∞

gdens(σ1, . . . , σt) < 0 ,

then when played against σ∗1 the play stops with probability 1.

Proof. The proof is similarly to Lemma 16 with minor modifications. Let 0 < δ < 1
4 be such that

lim inf
t→∞

gdens(σ1, . . . , σt) ≤ −δ
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Pick arbitrary γ ∈ (0, 1). We will show that with probability at least 1 − γ the game stops, and
this implies the statement. Let M be given by Lemma 24 applied for γ and δ/2. Then we have
that with probability at least 1− γ, for all i ≥M and j ∈ {1, . . . , i},

t(i, j, i2)− t(i, j − 1, i2) ∈ [(1− δ

2
)2i/i, (1 +

δ

2
)2i/i] .

Pick ti,j ∈ N, for i = 1, 2, . . . and j ∈ {1, . . . , i}, so that ti,j−1 < ti,j where ti,0 stands for
ti−1,i−1. Let ti,j − ti,j−1 ∈ [(1 − δ

2)2i/i, (1 + δ
2)2i/i], for all i ≥ M and j ∈ {1, . . . , i}. Pick M ′

so that δ
2(2M

′ − 1) ≥ max{tM,0, (1 − δ
2)2M}. Define `i = ti,i for all i ≥ 1. Then for all i ≥ M ′,

`i ∈ [(1− δ) · (2i+1 − 1), (1 + δ) · (2i+1 − 1)] as

`i = ti,i = tM,0 +
∑

M≤i′≤i,1≤j≤i′
ti′,j − ti′,j−1

≤ δ

2
(2M

′ − 1) +
∑

M≤i′≤i
i′ · (1 +

δ

2
)2i
′
/i′

≤ δ

2
(2M

′ − 1) + (1 +
δ

2
) · (2i+1 − 1)

≤ (1 + δ) · (2i+1 − 1),

and similarly for the lower bound: `i ≥
∑

i′,j ti′,j− ti′,j−1 ≥ (1− δ
2)(2i+1−2M ) ≥ (1− δ) · (2i+1−1).

Thus Lemma 31 is applicable on `i with M set to M ′, and we obtain a sequence k2, k3, . . . such that
gdens(σ`i−1+1,...,ki) ≤ − δ

4 and ki − `i−1 ≥ δ2i−2/K for infinitely many i. Pick any of the infinitely

many i ≥ max{M ′, 32(1 + δ)K/δ} for which ki − `i−1 ≥ δ2i−2/K and gdens(σ`i−1+1,...,ki) ≤ − δ
4 .

Since δ2i−3/K ≥ (1+δ)2i/i, there is some j ∈ {1, . . . , i} such that `i−1+δ/K2i−3 ≤ ki−(1+δ)2i/i ≤
ti,j ≤ ki. Fix such j. Since ki ≤ ti,j + (1 + δ)2i/i, we have

gdens(σ`i−1+1,...,ti,j ) =
gdens(σ`i−1+1,...,ki)(ki − `i−1)

ti,j + `i−1

≤
gdens(σ`i−1+1,...,ki)((1 + δ)2i/i+ ti,j − `i−1)

ti,j + `i−1

≤ −δ
4
·
(

1 +
8(1 + δ)

i

)
≤ −δ

4
+

4(1 + δ)

i
≤ −δ

8
.

Hence, gdens(σ`i−1+1,...,ti,j ) ≤ − δ
8 . So for some j′ ∈ {1, . . . , j}, gdens(σti,j′−1+1,...,ti,j′ ) ≤ −

δ
8 . We

can state the following claim.

Claim 34. For i large enough, conditioned on t(a, b, a2) = ta,b, for all a ≥ M and all b, and
conditioned on that the game did not stop before the time ti,j′−1 + 1, the game stops during times
ti,j′−1 + 1, . . . , ti,j′ with probability at least ξ4ω/2.

Conditioned on t(a, b, a2) = ta,b, for all a, b, the claim implies that the game stops with proba-
bility 1. Note that the condition is true for some valid choice of ta,b with probability 1 − γ. This
is because the claim can be invoked for infinitely many i’s and for each such i we will have ξ4ω/2
chance of stopping.
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It remains to prove the claim. Assume t(i, j′ − 1, i2) = ti,j′−1 and t(i, j′, i2) = ti,j′ . Clearly,

gdens(σti,j′−1+1,...,ti,j′−1) ≤ gdens(σti,j′−1+1,...,ti,j′ ) · (2
i−1/(2i−1 − 1)) ≤ − δ

16
,

for i large enough. So if we sample i2−1 times from σti,j′−1+1, . . . , σti,j′−1 the generalized density is

at most − δ
16 in expectation. By Hoeffding’s inequality, Theorem 46 (setting ai = −K and bi = K,

and letting ci = π(L, σt(in,jn,i))), the probability that the generalized density of the subsequence
given by the first i2 − 1 samples is more than −δ/32 (i.e. δ/32 greater than the expectation) is
bounded by

2 exp

(
−2(δ/32(i2 − 1))2

(i2 − 1)(2K)2

)
= 2 exp

(
− δ2

2048 ·K2
(i2 − 1)

)
.

The probability is taken over the possible choices of t(i, j′, 1) < t(i, j′, 2) < · · · < t(i, j′, i2−1) assum-

ing t(i, j′ − 1, i2) = ti,j′−1 and t(i, j′, i2) = ti,j′ . For i sufficiently large, 2 exp
(
− δ2

2048·K2 (i2 − 1)
)
≤

1/2. Also, whenever

dens(σt(i,j′,1), σt(i,j′,2), . . . , σt(i,j′,i2−1)) ≤ −
δ

32

we have at least ξ4 · ω chance of stopping by Lemma 26, as Player 1 plays τ i,ε1 against

σt(i,j′,1), σt(i,j′,2), . . . , σt(i,j′,i2−1)

and −δ32 ≤ −i · 2K/(i
2 − 1) for sufficiently large i.

Hence, the game stops with probability at least (1− 1/2) · ξ4 ·ω = ξ4 ·ω/2. The claim, and thus
the lemma, follows.

We can now conclude with the main result of this section.

Theorem 35. The strategy σ∗1 is 2K2
√
ξ-optimal, and for all δ > 0, with probability at least 1− δ

does it use space O(log log T + logK).

Proof. This is proved just like Theorem 30, except that Lemma 33 is used in place of Lemma 29.

8 Reduction of repeated games with absorbing states to general-
ized Big Match games

As explained in Section 7, for defining strategies for repeated games with absorbing states, Kohlberg
reduced such games in general form to the special case of generalized Big Match games. The actual
terminology, “generalized Big-Match games”, is due to Coulomb [3].

Performing the reduction of Kohlberg requires two things. The first thing is to determine the
value of the repeated game. Kohlberg showed that the value is the same as the limit of the value of
the associated n-stage game as n goes to infinity. The other thing is finding two optimal strategies in
an associated parametrized matrix game with certain closeness properties. Here Kohlberg appealed
just to semi-continuity of the mapping from the parameter to an optimal strategy of the matrix
game. In this section we show how to make these two ingredients efficient, namely by describing
polynomial time algorithms for them.
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Hansen et.al. [7] recently showed the existence of a polynomial time algorithm for computing
the value of any undiscounted stochastic game with a constant number of non-absorbing states.
We present below a much simpler algorithm for the case of repeated games with absorbing states
based on a characterization of the value of those given by Kohlberg [11]. This algorithm is based
only on bisection together with solving linear programs.

The algorithm of Hansen et.al. is in fact similar in spirit, based on bisection and linear pro-
gramming as well, but is applied to a discounted version of the game with a discount factor for
which no explicit expression is readily available.

Additional definitions The bit-size of an integer n is the smallest non-zero integer τ such that
|n| < 2τ . Thus τ = blog2|n|c+ 1 for non-zero n. For a polynomial p ∈ Z[x], we denote by ‖p‖∞ the
maximum magnitude of a coefficient of p.

8.1 Marginal value of matrix games and value of repeated games

A matrix game is given by a m× n real matrix A = (aij). The game is played by the two players
simultaneously choosing a pure strategy, where Player 1 chooses action i among the m rows and
Player 2 chooses action j among the n columns. Hereafter Player 1 receives payoff aij . A strategy
of a player is a probability distribution over the player’s actions. Let ∆n denote the strategies of
Player 1 and ∆m denote the strategies of Player 2. Given x ∈ ∆m and y ∈ ∆n, the expected payoff
to Player 1 when Player 1 uses strategy x and Player 2 uses strategy y is then xTAy. As shown by
von Neumann [17] every matrix game A has a value v(A) in mixed strategies, namely

v(A) = max
x∈∆m

min
y∈∆n

xTAy = min
y∈∆n

max
x∈∆m

xTAy .

Let O1(A) ⊆ ∆m and O2(A) ⊆ ∆n denote the set of optimal strategies for Player 1 and Player 2,
respectively. That is, O1(A) = {x ∈ ∆m | ∀y ∈ ∆n : xTAy ≥ v(A)} and O2(A) = {y ∈ ∆n | ∀x ∈
∆m : xTAy ≥ v(A)}.

Let B be another m× n real matrix. Mills [12] showed that the limit

∂ v(A)

∂B
:= lim

α→0+

v(A+ αB)− v(A)

α

exists and characterized the limit as the value of the game B when the strategies of Player 1 and
Player 2 are restricted to be optimal in A.

Theorem 36 (Mills).
∂ v(A)

∂B
= max

x∈O1(A)
min

y∈O2(A)
xTBy (1)

The limit ∂ v(A)
∂B is called the marginal value of A with respect to B. It is not hard to see that

Equation (1) implies that ∂ v(A)
∂B may be computed using linear programming. Indeed, we may

express that simultaneously x ∈ O1(A) and y ∈ O2(A) by linear equalities and inequalities with
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auxiliary variable v as2:

fnv −ATx ≤ 0

x ≥ 0

fTmx = 1

fmv −Ay ≥ 0

y ≥ 0

fTn y = 1

Thus for fixed x, the quantity miny∈O2(A) x
TBy may be computed by the linear program

min xTBy
s.t. ATx′ − fnv ≥ 0

fmv −Ay ≥ 0
fTmx

′ = 1
fTn y = 1
x′, y ≥ 0

with auxiliary variables x′ and v. Taking the dual we obtain

max r + s
s.t. Ap+ fmr ≤ 0

fns−ATq ≤ xTB
fTmq − fTn p = 0

p, q ≥ 0

in variables p, q, r, s, and then by reintroducing x ∈ O1(A) as variables we obtain the following

linear program for computing ∂ v(A)
∂B

max r + s
s.t. Ap+ fmr ≤ 0

fns−ATq − xTB ≤ 0
fTmq − fTn p = 0
fnv −ATx ≤ 0
Ay′ − fmv ≤ 0

fTmx = 1
fTn y

′ = 1
p, q, x, y′ ≥ 0

Appealing to the existence of polynomial time algorithms for linear programming we get:

Corollary 37. The marginal value ∂ v(A)
∂B can be computed in polynomial time in the bit-size of A

and B.

In this section it will be useful to introduce an alternative notation for repeated games with
absorbing states, their matrix form. Consider such a game given by action sets A1 and A2, the
stage payoff function π : A1 × A2 → R, and the absorption probability function ω : A1 × A2 → R.
We shall now assume A1 = {1, 2, . . . ,m} and A2 = {1, 2, . . . , n}. We then let bij = π(i, j) and
ωij = ω(i, j). The game will now be identified by a m × n matrix A = (aij), populated by the
symbolic entries aij defined by letting aij = ωijbij* if ωij > 0 and aij = bij if ωij = 0.

2By fn we mean the vector (1, . . . , 1)T of dimension n.
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Let A = (aij) be a m × n repeated game with absorbing states. The notion of the derived

matrix game Ã = (ãij) obtained from A is generalized from the definition of Section 7 to be given
by

ãij =

{
ωijbij if aij = ωjbij*

bij if aij = bij

Also, given reals u and t, we define an associated m × n matrix game denoted A(u, t), letting
entry (i, j) be

A(u, t)ij = ωijbij + (1− ωij)(tbij + (1− t)u)

= ωijbij + (1− ωij)u+ t((1− ωij)(bij − u))

Let A1 be the m× n matrix with entries ωijbij + (1− ωij)u, and A2 be the m× n matrix with
entries (1− ωij)(bij − u). In other words, we write A(u, t) = A1 + tA2. Then the limit

∂ v(A(u, t))

∂t+
:= lim

t→0+

v(A(u, t))− v(A(u, 0))

t
=
∂ v(A1)

∂A2

exists and may be computed in polynomial time by Theorem 36 and Corollary 37. Define the
extended real number ∆A(u) by the limit

∆A(u) := lim
t→0+

v(A(u, t))− u
t

.

Clearly, ∆A(u) = ∂ v(A(u,t))
∂t+

when v(A(u, 0)) = u, and otherwise ∆A(u) is ∞ or −∞ depending on
whether v(A(u, 0)) > u or v(A(u, 0)) < u. Kohlberg showed that the value of A can be characterized
by ∆A(u).

Theorem 38 (Kohlberg). Let A be a repeated game with absorbing states. The value of A is the
unique point u0 for which

u < u0 ⇒ ∆A(u) > 0

and
u > u0 ⇒ ∆A(u) < 0 .

Using this characterization and bisection together with Corollary 37 yields a very simple algo-
rithm for approximating the value of a repeated game with absorbing states.

Proposition 39. There is an algorithm that given a repeated game with absorbing states A and
ε > 0 computes the value of A to within an additive error ε in polynomial time in the bit-size of A
and log(1/ε).

8.2 Parametrized Matrix Games

The value of a m× n matrix game A as well as an optimal strategy for Player 1 may be computed
by the following linear program in variables (x, v).

max v
s.t. fnv −ATx ≤ 0

x ≥ 0
fTmx = 1

(2)
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A basic solution to LP (2) is obtained by selecting m+1 constraints indexed by B, that includes
the equality constraint. This gives the (m+ 1)× (m+ 1) matrix MA

B , consisting of the coefficients
of these constraints, appropriately ordered (we shall assume the equality constraint is ordered
last). A basic solution is determined by B if MA

B is non-singular, and in that case it is (x, v)T =
(MA

B )−1em+1
3. By Cramer’s rule xi = det((MA

B )i)/ det(MA
B ) and v = det((MA

B )m+1)/det(MA
B ),

where (MA
B )i is the matrix obtained from MA

B by replacing column i with em+1. The basic solution
(x, v)T is a basic feasible solution (bfs) if also x ≥ 0 and fnv −ATx ≤ 0.

We consider the setting where each entry of A is a linear function in a variable t. Let A(t)
denote this matrix game. When t0 > 0 is sufficiently small, then if B defines an optimal basic
feasible solution for A(t0), then B also defines an optimal basic feasible solution for any 0 < t ≤ t0.
We give an explicit bound for this using the following fundamental root bound.

Lemma 40. [18, Chapter 6, equations (4) and (5)] Let f ∈ Z[x] be a non-zero integer polynomial.
Then for any non-zero root γ of f it holds (2‖f‖∞)−1 < |γ| < 2‖f‖∞.

Using this we have the following precise statement.

Proposition 41. Let A(t) be a m×n matrix game parametrized by t, where each entry is a linear
function in t with integer coefficients of bit-size at most τ . Let t0 = (4((m + 1)2τ+1)2(m+1))−1. If
B defines an optimal bfs for A(t0) then B also defines an optimal bfs for A(t) for all 0 < t ≤ t0.

Proof. Let PBi (t) = det((MA
B )i) and QB(t) = det(MA

B ). These are polynomials of degree at most
(m + 1) having coefficients of magnitude at most (m + 1)!2m+1(2τ )m+1 ≤ ((m + 1)2τ+1)m+1.
By Lemma 40 we then have that sgn(QB(t)) = sgn(Q(t0) and sgn(PBi (t)) = sgn(PBi (t0)) for all
0 < t ≤ t0. This means that if B defines a bfs for t0, then B also defines a bfs for all 0 < t < t0.
To ensure that the bfs defined by B is optimal we shall compare it with any other bfs defined

by a different set B′. We then need to ensure that
PB
m+1(t)

QB(t)
≥ PB′

m+1(t)

QB′ (t)
. For this we consider the

polynomial H(t) = PBm+1(t)QB
′
(t) − PB′m+1Q

B(t). Note that H is a polynomial of degree at most

2(m+1) having coefficients of magnitude at most 2((m+1)2τ+1)2(m+1). Then by Lemma 40 again,
also sgn(H(t)) = sgn(H(t0)) for all 0 < t < t0, which means that if B defines a bfs that is also
optimal for t0 the bfs it defines for all 0 < t ≤ t0 is optimal as well.

8.3 Reduction to generalized Big Match games

We give here an effective version of the reduction of Kohlberg of repeated games with absorbing
states to the special case of generalized big match games [11, Lemma 2.8 and Theorem 2.1]. We
additionally make the (rather simple) extension to repeated games with generalized absorbing
states.

We shall need the following lemma.

Lemma 42. Let P and Q be integer polynomials such that limt→0+
P (t)
Q(t) exists. Let η = 1/k for a

positive integer k and suppose ‖P‖∞ ≤M as well as ‖Q‖∞ ≤M . Then∣∣∣∣P (t)

Q(t)
− lim
t→0+

P (t)

Q(t)

∣∣∣∣ < η (3)

whenever 0 < t ≤ t0 = (6kM2)−1.
3By en we mean the standard nth unit vector of appropriate dimension.
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Proof. Note that limt→0+
P (t)
Q(t) = a

b , where b is the non-zero coefficient of Q of lowest degree,

and a is the coefficient of P of the same degree. Let H1(t) = k(bP (t) − aQ(t)) − bQ(t) and
H2(t) = k(aQ(t)− bP (t))− bQ(t). Then Equation (3) holds if and only if H1(t) < 0 and H2(t) < 0.
Noting that ‖H1‖∞ ≤ 3kM2 as well as ‖H2‖∞ ≤ 3kM2 the conclusion follows from Lemma 40.

Let A′ be a m × n repeated game with absorbing states with stage payoffs b′ij and stopping
probabilities ωij . For an optimal strategy x in A′(0, 0), define:

ωj =

m∑
i=1

xiωij

bj =

{
1
ωj

∑m
i=1 xiωijb

′
ij if ωj > 0

0 if ωj = 0

ej =

{
1

1−ωj

∑m
i=1 xi(1− ωij)b′ij if ωj < 1

0 if ωj = 1

(4)

and similarly for an optimal strategy x(t) in A′(0, t) for some given t > 0, define:

ω(t)j =
m∑
i=1

x(t)iωij

b(t)j =

{
1

ω(t)j

∑m
i=1 x(t)iωijb

′
ij if ω(t)j > 0

0 if ω(t)j = 0

e(t)j =

{
1

1−ω(t)j

∑m
i=1 x(t)i(1− ωij)b′ij if ω(t)j < 1

0 if ω(t)j = 1

(5)

Suppose that the ωij ’s are rational numbers with common denominator β1 and the nominators
and β1 are of bit-size τ1. Similarly suppose that the b′ij ’s are rational numbers with common
denominator β2 and the nominators and β2 are of bit-size τ2. By definition A′(0, t)ij = ωijb

′
ij +

t(1−ωij)b′ij . Thus the entries of A′(0, t) are linear functions in t where the coefficients are rational
numbers with common denominator β = β1β2 and the bit-sizes of the nominators and denominators
are at most τ = τ1 +τ2. Multiplying each entry of A′(0, t) by β only scales every bfs, so setting t0 =
(4((m+1)2τ+1)2(m+1))−1, whenever B defines an optimal bfs in βA′(0, t0) it also defines an optimal
bfs for A′(0, t) for all 0 < t ≤ t0, by Proposition 41. So let B define an optimal bfs for A′(0, t0).

Let now Pi(t) = det((M
βA′(0,t)
B )i) and Q(t) = det(M

βA′(0,t)
B ), and define xi(t) = Pi(t)/Q(t). Pi(t)

and Q(t) are polynomials of degree at most m + 1 having integer coefficients of magnitude at
most ((m + 1)2τ+1)m+1. Furthermore is x(t) an optimal strategy in A′(0, t) for all 0 < t ≤ t0.
Let x = limt→0+ x(t). Then x is an optimal strategy in A′(0, 0). Each coordinate xi is the ratio
between two coefficients from Pi(t) and Q(t) and is therefore a rational number with nominator
and denominator of magnitude at most ((m+ 1)2τ+1)m+1.

We have always

ω(t)j =
m∑
i=1

Pi(t)

Q(t)
ωij =

∑m
i=1 Pi(t)ωij
Q(t)
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and

1− ω(t)j =
m∑
i=1

x(t)i(1− ωij) =

∑m
i=1 Pi(t)(1− ωij)

Q(t)

Consider now the case of ω(t)j > 0. Then

b(t)j =
Q(t)∑m

i=1 Pi(t)ωij

m∑
i=1

Pi(t)

Q(t)
ωijb

′
ij =

∑m
i=1 Pi(t)ωijb

′
ij∑m

i=1 Pi(t)ωij

Consider now the case of ω(t)j < 1. Then

e(t)j =
Q(t)∑m

i=1 Pi(t)(1− ωij)

m∑
i=1

Pi(t)

Q(t)
(1− ωij)b′ij =

∑m
i=1 Pi(t)(1− ωij)b′ij∑m
i=1 Pi(t)(1− ωij)

Since x = limt→0+ x(t) we also have limt→0+ ωj(t) = ωj . Furthermore, in case that ωj > 0, we
have limt→0+ bj(t) = bj , and in case ωj = 0, we have limt→0+ ej(t) = ej .

Let η = 1/k for a positive integer k. Define t1 = (2k((m + 1)2τ+1)m+2)−1 and t2 = (6k((m +
1)2τ+1)2(m+1))−1. Note that t2 ≤ min(t0, t1).

Suppose that ωj > 0. Then ω(t)j > 0 if
∑m

i=1 Pi(t)ωij > 0. Since ωj > 0 there exists i such
that Pi(t) is a non-zero polynomial and ωij > 0. Then by Lemma 40 it follows that ω(t)j > 0 for
all 0 < t ≤ t0. Also from Lemma 42, we have |bj − b(t)j | < η whenever 0 < t ≤ t1. Suppose now

that ωj = 0. Consider the polynomial H(t) = β1
η

∑m
i=1 Pi(t)ωij−β1Q(t). We then have ω(t)j < η if

and only if H(t) < 0, for 0 < t ≤ t0. The polynomial H is of degree at most m+ 1 and has integer
coefficients of magnitude at most k((m+ 1)2τ+1)m+2. By Lemma 40 we have ω(t)j < η whenever
0 < t ≤ min(t0, t2). Also from Lemma 42 we have |ej − e(t)j | < η, whenever 0 < t ≤ t1.

Putting all these observations together gives us the following effective version of [11, Lemma
2.8].

Lemma 43. There is an algorithm that given a m × n repeated game A′ with absorbing states as
above and η = 1/k computes in polynomial time strategies x and x(t) that are optimal for Player 1
in A(0, 0) and A(0, t1), respectively, such that

1. If ωj > 0 then ω(t2)j > 0 and |bj − b(t2)j | < η.

2. If ωj = 0 then ω(t2)j < η and |ej − e(t2)j | < η.

where t2 = (6k((m+ 1)2τ+1)2(m+1))−1.

Proof. By Proposition 41 if B defines an optimal bfs for the matrix game A′(0, t2), then B also
defines an optimal bfs for A′(0, t) for all 0 < t′ < t. We may find such a B simply by solving

the LP (2) for A′(0, t2). Let now Pi(t) = det((M
A′(0,t)
B )i) and Q(t) = det(M

A′(0,t)
B ) as above. We

can compute these polynomials, which are of degree at most m + 1 by evaluating them on m + 2
distinct points from the interval (0, t2) and interpolating. We can furthermore do this evaluation
using LP (2) since we already have found B. This further gives us xi(t) = Pi(t)/Q(t), and x(t)
is an optimal strategy in the matrix game A(0, t) for all 0 < t ≤ t2. Let x = limt→0+ x(t) be the
optimal limit strategy in A′(0, 0). As in the proof of Lemma 42 we may compute each coordinate
xi by considering the non-zero coefficients of the lowest degree of Pi(t) and Q(t). We conclude that
x(t2) and x together satisfy the required properties.
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We will now show how to reduce an arbitrary repeated games with absorbing states to general-
ized Big Match games. By reduction we mean that a generalized Big Match game D is computed
from a repeated game with absorbing states A, such that a strategy σ1 for D can be extended to a
strategy τ1 for A. In case σ1 is ε′ optimal for D then τ1 is ε-optimal for A, and likewise, in case σ1

is ε′-supremum-optimal for D then τ1 is ε-supremum-optimal for A, where ε′ depends on ε and A.

Theorem 44. Let A be a m × n repeated game with absorbing states and let ε = 2−`. Assume
the stage payoff bij are rational numbers such that |bij | ≤ 1. Assume the stopping probabilities ωij
are rational numbers with common denominator β1 and the nominator and β1 are of bit-size at
most τ1. Then A can be reduced in polynomial time to a generalized Big Match game satisfying
Assumption 1 with integer entries of magnitude at most (24(m+ 2)2`+τ1+1)20(m+2)2(2n+1).

Proof. We will have 4 sources of error: In approximating the value of A, in rounding the entries of
A, from the strategy for the generalized Big Match to which we reduce, and finally from additional
strategies of Player 2 that are not part of this. We shall allow ε/4 to all these.

First we use the Algorithm of Proposition 39 to compute u such that

u+
ε

2
≤ v(A) < u+

3ε

4
. (6)

Using u we translate and round the entries of A to obtain another repeated game with absorbing
states A′ with the same stopping probabilities but with stage payoff b′ij given by

b′ij =

⌊
bij − u
ε/4

⌋
ε

4
.

Using Equation (6) we have that ε/4 ≤ v(A′) < 3ε/4. Also the rounded and translated stage payoffs
b′ij satisfy −2 ≤ b′ij ≤ 2 and are rational numbers with common denominator β2 = 4/ε = 2`+2 and
nominators of bit-size at most τ2 = `+ 3.

Since v(A′) > 0 from Theorem 38 we have that ∆A′(0) > 0, and this means that v(A′(0, t)) can
be bounded below by a linear function in an interval to the right of 0. We shall make this explicit
below, providing constants δ and t1 such that

v(A′(0, t)) ≥ δt (7)

whenever 0 ≤ t ≤ t1.
So ∆A′(0) = limt→0+

v(A′(0,t))
t > 0. We first fix δ > 0 and then determine a corresponding

t1. If v(A′(0, 0)) > 0 we may choose any δ > 0. If v(A′(0, 0)) = 0 we should choose δ such that
δ < ∆A′(0).

Let τ = τ1 + τ2 and β = β1β2. Scaling the entries of A′(0, t) by β and setting t0 = (4((m +
1)2τ+1)2(m+1))−1, whenever B defines an optimal bfs for βA′(0, t0) it also defines an optimal bfs
for A′(0, t) for all 0 < t ≤ t0 by Proposition 41. So let B define an optimal bfs for A′(0, t0).

Let now P (t) = det((M
βA′(0,t)
B )m+1) and Q(t) = det(M

βA′(0,t)
B ). Then when 0 < t ≤ t0 we have

v(A′(0, t)) = P (t)
βQ(t) . The polynomials P and Q are of degree at most m + 1 and having integer

coefficients of magnitude at most ((m+ 1)2τ+1)m+1.
Suppose that v(A′(0, 0)) = 0. Then

∆A′(0) =
∂ v(A′(0, t))

∂t+
= lim

t→0+

d
dtP (t)Q(t)− P (t) ddtQ(t)

β(Q(t))2
.
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Thus ∆A′(0) is the ratio between the coefficients of integers polynomial where the denominator has
coefficients of maximum magnitude 2τ ((m+ 1)2τ+1)2(m+1). It follows that

1

2
∆A′(0) ≥ (((m+ 1)2τ+1)2m+3)−1

so we let δ = (((m+ 1)2τ+1)2m+3)−1. To determine t1 we need to ensure that v(A′(0, t)) ≥ δt. To
this end, define the polynomial H(t) = P (t)/δ−βtQ(t). This is an integer polynomial of degree at
most m+ 2 and ‖H‖∞ ≤ 2((m+ 1)2τ+1)3m+4. By Lemma 40, letting t1 = (4((m+ 1)2τ+1)3m+4)−1

we obtain the desired Equation (7).
Let η = δ/4 and use the algorithm from Lemma 43 to compute strategies x(t2) and x, where

t2 = (24((m+ 1)2τ+1)4(m+1))−1. Note that t2 ≤ t1. Also note for later that δ ≤ 2−τ2 = ε/8.
We may now proceed as in [11, Theorem 2.1]. Player 1 will commit to at every stage playing

either the strategy x or the strategy x(t2). In this way Player 1 becomes restricted to the 2 × n
repeated game with absorbing states C = (cij), where

c1j =

{
ωjbj* if ωj > 0

ej if ωj = 0
(8)

and similarly

c2j =

{
ω(t2)jb(t2)j* if ω(t2)j > 0

e(t2)j if ω(t2)j = 0
(9)

Since x is optimal in A′(0, 0) Equation (7) gives for all j,

ωjbj =
m∑
i=1

xiωijb
′
ij ≥ 0 (10)

and similarly since x(t2) is optimal in A′(0, t2) Equation (7) gives for all j,

ω(t2)jb(t2)j + (1− ω(t2)j)t2e(t2)j =
m∑
i=1

x(t2)i
(
ωijb

′
ij + t2(1− ωijb′ij)

)
≥ δt2 (11)

Let J = {j ∈ {1, . . . , n} | ωj = 0 and ω(t2)j > 0}, and consider any j ∈ J . Since ωj = 0,
Lemma 43 gives ω(t2)j < η = δ/4. Since |b′ij | ≤ 2, we then get ω(t2)je(t2)j ≤ δ/2, and Equation (11)
gives

ω(t2)jb(t)j + t2e(t2)j ≥ δt2/2 .

Also from Lemma 43 we have |ej − e(t2)j | < η ≤ δ/2, which means e(t2)j ≥ ej − δ/2, which in
turn means we have

ω(t2)jb(t2)j + t2ej ≥ 0 .

Let C̃ = (c̃ij) be the derived matrix game from C. For j ∈ J , c̃1j = ej and c̃2j = ω(t2)jb(t2)j .
Thus, dividing by 1 + t2 we get

1

1 + t2
c̃2j +

t2
1 + t2

c̃1j ≥ 0 ,

which means that the value of the matrix game C̃ restricted to the columns of J is at least 0. We
define a 2× |J | repeated game with absorbing states C ′ = (c′ij) by restricting C to the columns J
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and subtracting a value from each entry such the value of the derived matrix game C̃ ′ is 0. More
precisely, let v be the value of C̃ restricted to the columns of J , and for j ∈ J we let c′1j = ej − v
and c′2j = ω(t2)j(b(t2)− v/ω(t2)j)*.

Using the expressions previously obtained for ω(t)j , b(t)j , and e(t)j , we have that for 0 < t ≤ t0,
each of ω(t)j , b(t)j , e(t)j , and ω(t)jb(t)j can be expressed as rational functions of integer polynomials
of degree at most m+1 and integer coefficients of magnitude at most ((m+1)2τ+1)m+2. This means
that ej = limt→0+ e(t)j is a rational number with nominator and denominator of magnitude at most
((m + 1)2τ+1)m+2 as well. We can bound the nominator and denominator of the numbers ω(t2)j ,
b(t2)j , and ω(t2)jb(t2)j by estimating the magnitudes after substitution of t2 in the corresponding
rational functions. This yield that they are rational numbers with nominator and denominator
of magnitude at most ((m + 1)2τ+1)m+1(24((m + 1)2τ+1)4(m+1))m+2 ≤ (24(m + 1)2τ+1)4(m+2)2 .
Now the value v is given by the value of a 2× 2 sub-game of the matrix game C̃ restricted to the
columns of J . This in turn means that v has nominator and denominator of magnitude at most
4(24(m+ 1)2τ+1)16(m+2)2 .

We can now estimate the entries of C̃ ′ = (c̃′ij). These are just the entries from C̃ subtracted v.

Hence they all have nominator and denominators of magnitude at most 8(24(m+1)2τ+1)20(m+2)2 ≤
(24(m+ 2)2τ+1)20(m+2)2 .

We now scale the entries of C ′ obtaining another repeated game with absorbing states D such
that the entries of D̃ are integers. We simply do this by multiplying by least common multiple M
of all the denominators of the entries of C̃ ′. Note that M ≤ (24(m+2)2τ+1)40(m+2)2n, which makes
the entries of D̃ integers of magnitude at most K = (24(m+ 2)2τ+1)20(m+2)2(2n+1).

In case D̃ does not have a pure optimal strategy, then D satisfies Assumption 1, and we let σ1

be a memory based strategy for Player 1 for D with action map σa1 and update map σu1 that is

either ε/(4M)-optimal or ε/(4M)-supremum optimal. In case that D̃ has a pure optimal strategy
we simple take σ1 to be the strategy that plays this pure action always.

From σ1 we now construct a strategy τ1 for A. The action map τa1 will sample an action from
σa1 . In case of a L sample, τa1 will sample the final action from x and in case of a R sample, τa1
will sample the final action from x(t2). The update map will be a simple filtering map τu1 given as
follows. Let (m, j) be a pair of a memory state m and an action j of Player 2. In case j ∈ J we let
τu1 (m, j) = σu1 (m, j). But if j /∈ J we let τu1 (m, j) stay in the memory state m, that is we let the
next state be m with probability 1.

Looking at the rounds where j ∈ J , the strategy τ1 inherits the performance of σ1. Consider
now j /∈ J . Then we have either (a) ωj = 0 and ω(t2)j = 0 or (b) ωj > 0. In case (a) Equation (11)
gives e(t2) ≥ δ and from Lemma 43 follows ej ≥ 0. In case (b) Equation (10) gives bj ≥ 0. From
Lemma 43 follows ω(t2)j > 0 as well as b(t2)j ≥ −η = −δ/4 ≥ −ε/32. Thus in each case the
expected stage payoff is at least u− ε/32 ≥ v(A)− ε.

Note that logK = O(m2n(τ + logm)) = O(m2n(log 1/ε + τ1 + logm)), which means that for
each δ > 0 with probability at least 1− δ the resulting strategy ε-supremum optimal strategy will
use space O(f(T ) +m2n(log 1/ε+ τ1 + logm)) and the resulting ε-optimal strategy will use space
O(log log T +m2n(log 1/ε+ τ1 + logm)).
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A Tail inequalities

Theorem 45 (Multiplicative Chernoff bound). Let X =
∑n

i=1Xi where X1, . . . , Xn are random
variables independently distributed in [0, 1]. Then for any ε > 0

Pr[X ≥ (1 + ε)E[X]] ≤
(

eε

(1 + ε)(1+ε)

)E[X]

≤ exp

(
− ε2

2 + ε
E[X]

)
,

and

Pr[X ≤ (1− ε)E[X]] ≤
(

e−ε

(1− ε)(1−ε)

)E[X]

≤ exp

(
−ε

2

2
E[X]

)
.

Hoeffding [8] gave the following bound for sampling without replacement.

Theorem 46 (Hoeffding). Let a population C consist of N values c1, . . . , cN , where ai ≤ ci ≤ bi.
Let X1, . . . , Xn denote a random sample without replacement from C and X =

∑n
i=1Xi. Then

Pr[|X − E[X]| ≥ t] ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.
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