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Abstract

Evolutionary graph theory studies the evolutionary dynamics in a pop-
ulation structure given as a connected graph. Each node of the graph
represents an individual of the population, and edges determine how off-
spring are placed. We consider the classical birth-death Moran process
where there are two types of individuals, namely, the residents with fit-
ness 1 and mutants with fitness r. The fitness indicates the reproductive
strength. The evolutionary dynamics happens as follows: in the initial
step, in a population of all resident individuals a mutant is introduced,
and then at each step, an individual is chosen proportional to the fitness
of its type to reproduce, and the offspring replaces a neighbor uniformly
at random. The process stops when all individuals are either residents or
mutants. The probability that all individuals in the end are mutants is
called the fixation probability, which is a key factor in the rate of evolu-
tion. We consider the problem of approximating the fixation probability.

The class of algorithms that is extremely relevant for approximation
of the fixation probabilities is the Monte-Carlo simulation of the pro-
cess. Previous results present a polynomial-time Monte-Carlo algorithm
for undirected graphs when r is given in unary. First, we present a simple
modification: instead of simulating each step, we discard ineffective steps,
where no node changes type (i.e., either residents replace residents, or mu-
tants replace mutants). Using the above simple modification and our re-
sult that the number of effective steps is concentrated around the expected
number of effective steps, we present faster polynomial-time Monte-Carlo
algorithms for undirected graphs. Our algorithms are always at least a
factor O(n2/ logn) faster as compared to the previous algorithms, where n
is the number of nodes, and is polynomial even if r is given in binary. We
also present lower bounds showing that the upper bound on the expected
number of effective steps we present is asymptotically tight for undirected
graphs.
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1 Introduction

In this work we present faster Monte-Carlo algorithms for approximation of the
fixation probability of the fundamental Moran process on population structures
with symmetric interactions. We start with the description of the problem.

Evolutionary dynamics Evolutionary dynamics act on populations, where
the composition of the population changes over time due to mutation and se-
lection. Mutation generates new types and selection changes the relative abun-
dance of different types. A fundamental concept in evolutionary dynamics is
the fixation probability of a new mutant [5, 10, 12, 13]: Consider a population
of n resident individuals, each with a fitness value 1. A single mutant with
non-negative fitness value r is introduced in the population as the initializa-
tion step. Intuitively, the fitness represents the reproductive strength. In the
classical Moran process the following birth-death stochastic steps are repeated:
At each time step, one individual is chosen at random proportional to the fit-
ness to reproduce and one other individual is chosen uniformly at random for
death. The offspring of the reproduced individual replaces the dead individ-
ual. This stochastic process continues until either all individuals are mutants
or all individuals are residents. The fixation probability is the probability that
the mutants take over the population, which means all individuals are mu-
tants. A standard calculation shows that the fixation probability is given by
(1−(1/r))/(1−(1/rn)). The correlation between the relative fitness r of the mu-
tant and the fixation probability is a measure of the effect of natural selection.
The rate of evolution, which is the rate at which subsequent mutations accumu-
late in the population, is proportional to the fixation probability, the mutation
rate, and the population size n. Hence fixation probability is a fundamental
concept in evolution.

Evolutionary graph theory While the basic Moran process happens in
well-mixed population (all individuals interact uniformly with all others), a fun-
damental extension is to study the process on population structures. Evolution-
ary graph theory studies this phenomenon. The individuals of the population
occupy the nodes of a connected graph. The links (edges) determine who inter-
acts with whom. Basically, in the birth-death step, for the death for replace-
ment, a neighbor of the reproducing individual is chosen uniformly at random.
Evolutionary graph theory describes evolutionary dynamics in spatially struc-
tured population where most interactions and competitions occur mainly among
neighbors in physical space [11, 2, 6, 17]. Undirected graphs represent popula-
tion structures where the interactions are symmetric, whereas directed graphs
allow for asymmetric interactions. The fixation probability depends on the pop-
ulation structure [11, 1, 7, 3]. Thus, the fundamental computational problem
in evolutionary graph theory is as follows: given a population structure (i.e.,
a graph), the relative fitness r, and ε > 0, compute an ε-approximation of the
fixation probability.
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All steps Effective steps
#steps in expectation O(n2∆2) O(n∆)

Concentration bounds Pr[τ ≥ n2∆2rx
r−1 ] ≤ 1/x Pr[τ ≥ 6n∆x

min(r−1,1) ] ≤ 2−x

Sampling a step O(1) O(∆)
Fixation algo O(n6∆2ε−4) O(n2∆2ε−2(log n+ log ε−1))

Table 1: Comparison with previous work, for constant r > 1. We denote by n,
∆, τ , and ε, the number of nodes, the maximum degree, the random variable
for the fixation time, and the approximation factor, respectively. The results in
the column “All steps” is from [4], except that we present the dependency on
∆, which was considered as n in [4]. The results of the column “Effective steps”
is the results of this paper

Monte-Carlo algorithms A particularly important class of algorithms
for biologists is the Monte-Carlo algorithms, because it is simple and easy to
interpret. The Monte-Carlo algorithm for the Moran process basically requires
to simulate the process, and from the statistics obtain an approximation of
the fixation probability. Hence, the basic question we address in this work is
simple Monte-Carlo algorithms for approximating the fixation probability. It
was shown in [16] that simple simulation can take exponential time on directed
graphs and thus we focus on undirected graphs. The main previous algorithmic
result in this area [4] presents a polynomial-time Monte-Carlo algorithm for
undirected graphs when r is given in unary. The main result of [4] shows that
for undirected graphs it suffices to run each simulation for polynomially many
steps.

Our contributions In this work our main contributions are as follows:

1. Faster algorithm for undirected graphs First, we present a simple modifi-
cation: instead of simulating each step, we discard ineffective steps, where
no node changes type (i.e., either residents replace residents, or mutants
replace mutants). We then show that the number of effective steps is con-
centrated around the expected number of effective steps. The sampling
of each effective step is more complicated though than sampling of each
step. We then present an efficient algorithm for sampling of the effective
steps, which requires O(m) preprocessing and then O(∆) time for sam-
pling, where m is the number of edges and ∆ is the maximum degree.
Combining all our results we obtain faster polynomial-time Monte-Carlo
algorithms: Our algorithms are always at least a factor n2/ log n times
a constant (in most cases n3/ log n times a constant) faster as compared
to the previous algorithm, and is polynomial even if r is given in binary.
We present a comparison in Table 1, for constant r > 1 (since the previ-
ous algorithm is not in polynomial time for r in binary). For a detailed
comparison see Table 2 in the Appendix.
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2. Lower bounds We also present lower bounds showing that the upper bound
on the expected number of effective steps we present is asymptotically tight
for undirected graphs.

Related complexity result While in this work we consider evolutionary
graph theory, a related problem is evolutionary games on graphs (which stud-
ies the problem of frequency dependent selection). The approximation prob-
lem for evolutionary games on graphs is considerably harder (e.g., PSPACE-
completeness results have been established) [9].

Technical contributions Note that for the problem we consider the goal
is not to design complicated efficient algorithms, but simple algorithms that are
efficient. By simple, we mean something that is related to the process itself, as
biologists understand and interpret the Moran process well. Our main technical
contribution is a simple idea to discard ineffective steps, which is intuitive, and
we show that the simple modification leads to significantly faster algorithms. We
show a gain of factor O(n∆) due to the effective steps, then lose a factor of O(∆)
due to sampling, and our other improvements are due to better concentration
results. We also present an interesting family of graphs for the lower bound
examples. Technical proofs omitted due to lack of space are in the Appendix.

2 Moran process on graphs

Connected graph and type function We consider the population struc-
ture represented as a connected graph. There is a connected graph G = (V,E),
of n nodes and m edges, and two types T = {t1, t2}. The two types represent
residents and mutants, and in the technical exposition we refer to them as t1
and t2 for elegant notation. We say that a node v is a successor of a node u if
(u, v) ∈ E. The graph is undirected if for all (u, v) ∈ E we also have (v, u) ∈ E,
otherwise it is directed. There is a type function f mapping each node v to a
type t ∈ T . Each type t is in turn associated with a positive integer w(t), the
type’s fitness denoting the corresponding reproductive strength. Without loss
of generality, we will assume that r = w(t1) ≥ w(t2) = 1, for some number r (
the process we consider does not change under scaling, and r denotes relative
fitness). Let W (f) =

∑
u∈V w(f(u)) be the total fitness. For a node v let deg v

be the degree of v in G. Also, let ∆ = maxv∈V deg v be the maximum degree
of a node. For a type t and type function f , let Vt,f be the nodes mapped to t
by f . Given a type t and a node v, let f [v → t] denote the following function:
f [v → t](u) = t if u = v and f(u) otherwise.

Moran process on graphs We consider the following classical Moran
birth-death process where a dynamic evolution step of the process changes a
type function from f to f ′ as follows:
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1. First a node v is picked at random with probability proportional to w(f(v)),

i.e. each node v has probability of being picked equal to w(f(v))
W (f) .

2. Next, a successor u of v is picked uniformly at random.

3. The type of u is then changed to f(v). In other words, f ′ = f [u→ f(v)].

Fixation A type t fixates in a type function f if f maps all nodes to t.
Given a type function f , repeated applications of the dynamic evolution step
generate a sequence of type functions f = f1, f2, . . . , f∞. Note that if a type
has fixated (for some type t) in fi then it has also fixated in fj for i < j. We
say that a process has fixation time i if fi has fixated but fi−1 has not. We
say that an initial type function f has fixation probability p for a type t, if the
probability that t eventually fixates (over the probability measure on sequences
generated by repeated applications of the dynamic evolution step f)

Basic questions We consider the following basic questions:

1. Fixation problem Given a type t, what is the fixation probability of t
averaged over the n initial type functions with a single node mapping to
t?

2. Extinction problem Given a type t, what is the fixation probability of t
averaged over the n initial type functions with a single node not mapping
to t?

3. Generalized fixation problem Given a graph, a type t and an type function
f what is the fixation probability of t in G, when the initial type function
is f?

Remark 1. Note that in the neutral case when r = 1, the fixation problem has
answer 1/n and extinction problem has answer 1 − 1/n. Hence, in the rest of
the paper we will consider r > 1. Also, to keep the presentation focused, in the
main article, we will consider fixation and extinction of type t1. In the Appendix
we also present another algorithm for the extinction of t2.

Results We will focus on undirected graphs. For undirected graphs, we
will give new FPRAS (fully polynomial, randomized approximation scheme)
for the fixation and the extinction problem, and a polynomial-time algorithm
for an additive approximation of the generalized fixation problem. There exists
previous FPRAS for the fixation and extinction problems [4]. Our upper bounds

are at least a factor of O( n2

logn ) (most cases O( n3

logn )) better and always in

Poly(n, 1/ε), whereas the previous algorithms are not in polynomial time for r
given in binary.
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3 Discarding ineffective steps

We consider undirected graphs. Previous work by Diaz et al. [4] showed that
the expected number of dynamic evolution steps till fixation is polynomial, and
then used it to give a polynomial-time Monte-Carlo algorithm. Our goal is to
improve the quite high polynomial-time complexity, while giving a Monte-Carlo
algorithm. To achieve this we define the notion of effective steps.

Effective steps A dynamic evolution step, which changes the type func-
tion from f to f ′, is effective if f 6= f ′ (and ineffective otherwise). The idea is
that steps in which no node changes type (because the two nodes selected in the
dynamic evolution step already had the same type) can be discarded, without
changing which type fixates/gets eliminated.

Two challenges The two challenges are as follows:

1. Number of steps The first challenge is to establish that the expected num-
ber of effective steps is asymptotically smaller than the expected number
of all steps. We will establish a factor O(n∆) improvement (recall ∆ is
the maximum degree).

2. Sampling Sampling an effective step is harder than sampling a normal
step. Thus it is not clear that considering effective steps leads to a faster
algorithm. We consider the problem of efficiently sampling an effective
step in a later section, see Section 5. We show that sampling an effective
step can be done in O(∆) time (after O(m) preprocessing).

Notation For a type function f , let Γv(f) be the subset of successors of

v, such that u ∈ Γv(f) iff f(v) 6= f(u). Also, let W ′(f) =
∑
u w(f(u)) · |Γu(f)|

deg u .

Modified dynamic evolution step Formally, we consider the following
modified dynamic evolution step (that changes the type function from f to f ′

and assumes that f does not map all nodes to the same type):

1. First a node v is picked at random with probability proportional to p(v) =

w(f(v)) · |Γv(f)|
deg v i.e. each node v has probability of being picked equal to

p(v)
W ′(f) .

2. Next, a successor u of v is picked uniformly at random among Γv(f).

3. The type of u is then changed to f(v), i.e., f ′ = f [u→ f(v)].

In the following lemma we show that the modified dynamic evolution step
corresponds to the dynamic evolution step except for discarding steps in which
no change was made.
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Lemma 1. Fix any type function f such that neither type has fixated. Let fd
(resp., fm) be the next type function under dynamic evolution step (resp., mod-
ified dynamic evolution step). Then, Pr[f 6= fd] > 0 and for all type functions
f ′ we have: Pr[f ′ = fd | f 6= fd] = Pr[f ′ = fm].

Potential function ψ Similar to [4] we consider the potential function
ψ =

∑
v∈Vt1,f

1
deg v (recall that Vt1,f is the set of nodes of type t1). We now

lower bound the expected difference in potential per modified evolutionary step.

Lemma 2. Let f be a type function such that neither type has fixated. Apply a
modified dynamic evolution step on f to obtain f ′. Then,

E[ψ(f ′)− ψ(f)] ≥ r − 1

∆ · (r + 1)
.

Proof. Observe that f differs from f ′ for exactly one node u. More precisely,
let v be the node picked in line 1 of the modified dynamic evolution step and
let u be the node picked in line 2. Then, f ′ = f [u→ f(v)]. The probability to

select v is p(v)
W ′(f) . The probability to then pick u is 1

|Γv(f)| .

We have that

• If f(u) = t2 (and thus, since it got picked f(v) = t1), then ψ(f ′)−ψ(f) =
1

deg u .

• If f(u) = t1 (and thus, since it got picked f(v) = t2), then ψ(f ′)−ψ(f) =
− 1

deg u .

Below we use the following notations:

E12 = {(v, u) ∈ E | f(v) = t1 and f(u) = t2}; E21 = {(v, u) ∈ E | f(v) = t2 and f(u) = t1}.

Thus,

E[ψ(f ′)− ψ(f)] =
∑

(v,u)∈E12

(
p(v)

W ′(f)
· 1

|Γv(f)|
· 1

deg u

)
−

∑
(v,u)∈E21

(
p(v)

W ′(f)
· 1

|Γv(f)|
· 1

deg u

)

=
∑

(v,u)∈E12

(
w(f(v))

W ′(f) · (deg u) · (deg v)

)
−

∑
(v,u)∈E21

(
w(f(v))

W ′(f) · (deg u) · (deg v)

)
.

Using that the graph is undirected we get,

E[ψ(f)− ψ(f ′)] =
∑

(v,u)∈E12

(
w(f(v))− w(f(u))

W ′(f) · (deg u) · (deg v)

)

=
1

W ′(f)

∑
(v,u)∈E12

(
r − 1

min(deg u,deg v) ·max(deg u,deg v)

)
≥ r − 1

∆ ·W ′(f)

∑
(v,u)∈E12

1

min(deg u,deg v)
=

r − 1

∆ ·W ′(f)
· S ,
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where S =
∑

(v,u)∈E12

1
min(deg u,deg v) . Note that in the second equality we use

that for two numbers a, b, their product is equal to min(a, b) · max(a, b). By
definition of W ′(f), we have

W ′(f) =
∑
u

w(f(u)) · |Γu(f)|
deg u

=
∑
u

∑
v∈Γu(f)

w(f(u))

deg u
=

∑
(v,u)∈E
f(u)6=f(v)

w(f(u))

deg u

=
∑

(v,u)∈E12

(
w(f(u))

deg u
+
w(f(v))

deg v

)
≤

∑
(v,u)∈E12

w(f(u)) + w(f(v))

min(deg u,deg v)
= (r + 1) · S .

Thus, we see that E[ψ(f ′) − ψ(f)] ≥ r−1
∆·(r+1) , as desired. This completes the

proof.

Lemma 3. Let r = x∆ for some number x > 0. Let f be a type function such
that neither type has fixated. Apply a modified dynamic evolution step on f to
obtain f ′. The probability that |Vt1,f ′ | = |Vt1,f | + 1 is at least x

x+1 (otherwise,
|Vt1,f ′ | = |Vt1,f | − 1).

Proof. Consider any type function f . Let m′ be the number of edges (u, v),
such that f(u) 6= f(v). We will argue that the total weight of nodes of type
t1, denoted W1, is at least xm′ and that the total weight of nodes of type t2,
denoted W2, is at most m′. We see that as follows:

W1 =
∑

v∈Vt1,f

w(f(v)) · |Γv(f)|
deg v

≥ x∆

∆

∑
v∈Vt1,f

|Γv(f)| = xm′ ,

using that deg v ≤ ∆ and w(f(v)) = r = x∆ in the inequality. Also,

W2 =
∑

v∈Vt2,f

w(f(v)) · |Γv(f)|
deg v

≤
∑

v∈Vt2,f

|Γv(f)| = m′ ,

using that deg v ≥ 1 and w(f(v)) = 1 in the inequality. We see that we thus
have a probability of at least x

x+1 to pick a node of type t1. Because we are
using effective steps, picking a member of type t will increment the number of
that type (and decrement the number of the other type).

Lemma 4. Consider an upper bound `, for each starting type function, on
the expected number of (effective) steps to fixation. Then for any starting type
function the probability that fixation requires more than 2 · ` · x (effective) steps
is at most 2−x.

Proof. By Markov’s inequality after 2 · ` (effective) steps the Moran process
fixates with probability at least 1

2 , irrespective of the initial type function. We
now split the steps into blocks of length 2 · `. In every block, by the preceding
argument, there is a probability of at least 1

2 to fixate in some step of that block,
given that the process has not fixated before that block. Thus, for any integer
x ≥ 1, the probability to not fixate before the end of block x, which happens at
step 2 · ` · x is at most 2−x.
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We now present the main theorem of this section, which we obtain using the
above lemmas, and techniques from [4].

Theorem 5. Let t1 and t2 be the two types, such that r = w(t1) > w(t2) = 1.
Let ∆ be the maximum degree. Let k be the number of nodes of type t2 in the
initial type function. The following assertions hold:

• Bounds dependent on r

1. Expected steps The process requires at most 3k∆/min(r − 1, 1) ef-
fective steps in expectation, before fixation is reached.

2. Probability For any integer x ≥ 1, after 6xn∆/min(r−1, 1) effective
steps, the probability that the process has not fixated is at most 2−x,
irrespective of the initial type function.

• Bounds independent on r

1. Expected steps The process requires at most 2nk∆2 effective steps in
expectation, before fixation is reached.

2. Probability For any integer x ≥ 1, after 4xn2∆2 effective steps, the
probability that the process has not fixated is at most 2−x, irrespective
of the initial type function.

• Bounds for r ≥ 2∆

1. Expected steps The process requires at most 3k effective steps in
expectation, before fixation is reached.

2. Probability For any integer x ≥ 1, after 6xn effective steps, the
probability that the process has not fixated is at most 2−x, irrespective
of the initial type function.

4 Lower bound for undirected graphs

In this section, we will argue that our bound on the expected number of effective
steps is essentially tight, for fixed r.

We construct our lower bound graph G∆,n, for given ∆, n (sufficiently large),
but fixed r > 1, as follows. We will argue that fixation of G∆,n takes Ω(k∆)
effective steps, if there are initially exactly k members of type t2. For simplicity,
we consider ∆ > 2 and n > 4∆ (it is easy to see using similar techniques that
for lines, where ∆ = 2, the expected fixation time is Ω(k) - basically because
t1 is going to fixate with pr. ≈ 1 − 1/r, using a proof like Lemma 6, and
converting the k nodes of type t2 takes at least k efficient steps). There are
two parts to the graph: A line of ≈ n/2 nodes and a stars-on-a-cycle graph of
≈ n/2. There is 1 edge from the one of the stars in the stars-on-a-cycle graph
to the line. More formally, the graph is as follows: Let x := bn/(2∆− 2)c.
There are nodes VC = {c1, . . . , cx}, such that ci is connected to ci−1 and ci+1

for 1 < i < x. Also, c1 is connected to cx. The nodes VC are the centers of the
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c12

c22
c32

c42

c3

c13

c23

c33
c43

c1 v1 v2 v3 v4

v5v6v7v8v9

v10 v11 v12 v13 v14 v15

Figure 1: Example of a member of the family that attains the lower bound for
undirected graphs. (Specifically, it is G6,31)

stars in the stars-on-a-cycle graph. For each i, such that 2 ≤ i ≤ x, the node
ci is connected to a set of leaves V iC = {c1i , . . . , c

∆−2
i }. The set VC ∪

⋃x
i=2 V

i
C

forms the stars-on-a-cycle graph. Note that c1 is only connected to c2 and cx in
the stars-on-a-cycle graph. We have that the stars-on-a-cycle graph consists of
s = (x−1) · (∆−1) + 1 ≈ n/2 nodes. There are also nodes VL = {`1, . . . , `n−s},
such that node `i is connected to `i−1 and `i+1 for 1 < i < n/2. The nodes VL
forms the line and consists of n − s ≥ n/2 nodes. The node c1 is connected to
`1. There is an illustration of G6,31 in Figure 1.

We first argue that if at least one of V ′L = {`dn/4e, . . . , `n−s} is initially of
type t1, then with pr. lower bounded by a number depending only on r, type
t1 fixates (note that |V ′L| ≥ n/4 and thus, even if there is only a single node of
type t1 initially placed uniformly at random, it is in V ′L with pr. ≥ 1/4).

Lemma 6. With pr. above 1−1/r
2 if at least one of V ′L is initially of type t1,

then t1 fixates.

The proof is based on applying the gambler’s ruin twice. Once to find out

that the pr. that VL eventually becomes all t1 is above 1−1/r
2 (it is nearly 1−1/r

in fact) and once to find out that if VL is at some point all t1, then the pr. that t2
fixates is exponentially small with base r and exponent n− s. See the appendix
for the proof.

Whenever a node of V iC , for some i, changes type, we say that a leaf-step
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occurred. We will next consider the pr. that an effective step is a leaf-step.

Lemma 7. The pr. that an effective step is a leaf-step is at most r
∆ .

The proof is quite direct and considers that the probability that a leaf gets
selected for reproduction over a center node in the stars-on-a-cycle graph. See
the appendix for the proof.

We are now ready for the theorem.

Theorem 8. Let r > 1 be some fixed constant. Consider ∆ > 2 (the maximum
degree of the graph), n > 4∆ (sufficiently big), and some k such that 0 < k < n.
Then, if there are initially k members of type t2 placed uniformly at random,

the expected fixation time of G∆,n is above k∆(1−1/r)
32r effective steps.

Proof. Even if k = n − 1, we have that with pr. at least 1
4 , the lone node of

type t1 is initially in V ′L. If so, by Lemma 6, type t1 is going to fixate with pr.

at least 1−1/r
2 . Note that even for ∆ = 3, at least n

4 nodes of the graphs are in

V ′ :=
⋃x
i=2 V

i
C (i.e. the leaves of the stars-on-a-cycle graph). In expectation k

4
nodes of V ′ are thus initially of type t2. For fixation for t1 to occur, we must thus
make that many leaf-steps. Any effective step is a leaf-step with pr. at most r

∆

by Lemma 7. Hence, with pr. 1
4 ·

1−1/r
2 ( 1

4 is the probability that at least one

node of type t1 is in V ′L and 1−1/r
2 is a lower bound on the fixation probability

if a node of V ′L is of type t1) we must make k∆
4r effective steps before fixation

in expectation, implying that the expected fixation time is at least k∆(1−1/r)
32r

effective steps.

5 Sampling an effective step

In this section, we consider the problem of sampling an effective step. It is
quite straightforward to do so in O(m) time. We will present a data-structure
that after O(m) preprocessing can sample and update the distribution in O(∆)
time. For this result we assume that a uniformly random number can be selected
between 0 and x for any number x ≤ n · w(t) in constant time, a model that
was also implicitly assumed in previous works [4]1.

Remark 2. If we consider a weaker model, that requires constant time for each
random bit, then we need O(log n) random bits in expectation and additional
O(∆) amortized time, using a similar data-structure (i.e., a total of O(∆+log n)
amortized time in expectation). The argument for the weaker model is presented
in the Appendix. In this more restrictive model [4] would use O(log n) time per
step for sampling.

1The construction of [4] was to store a list for t1 and a list for t2 and then first decide if
a t1 or t2 node would be selected in this step (based on r and the number of nodes of the
different types) and then pick a random such node. This works when all nodes of a type has
the same weight but does not generalize to the case when each node can have a distinct weight
based on the nodes successors like here
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Sketch of data-structure We first sketch a list data-structure that sup-
ports (1) inserting elements; (2) removing elements; and (3) finding a random
element; such that each operation takes (amortized or expected) O(1) time. The
idea based on dynamic arrays is as follows:

1. Insertion Inserting elements takes O(1) amortized time in a dynamic
array, using the standard construction.

2. Deletion Deleting elements is handled by changing the corresponding
element to a null-value and then rebuilding the array, without the null-
values, if more than half the elements have been deleted since the last
rebuild. Again, this takes O(1) amortized time.

3. Find random element Repeatedly pick a uniformly random entry. If it
is not null, then output it. Since the array is at least half full, this takes
in expectation at most 2 attempts and thus expected O(1) time.

At all times we keep a doubly linked list of empty slots, to find a slot for insertion
in O(1) time.

Data-structure The idea is then as follows. We have 2∆ such list data-
structures, one for each pair of type and degree. We also have a weight associated
to each list, which is the sum of the weight of all nodes in the list, according
to the modified dynamic evolution step. When the current type function is
f , we represent each node v as follows: The corresponding list data-structure
contains |Γv(f)| copies of v (and v keeps track of the locations in a doubly
linked list). Each node v also keeps track of Γv(f), using another list data-
structure. It is easy to construct the initial data-structure in O(m) time (note:∑
v |Γv(f)| ≤ 2m).

Updating the data-structure We can then update the data-structure
when the current type function f changes to f [u → t] (all updates have that
form for some t and u), by removing u from the list data-structure (f(u),deg u)
containing it and adding it to (t, deg u). Note that if we removed x′ copies
of u from (f(u),deg u) we add deg u − x′ to (t,deg u). Also, we update each
neighbor v of u (by deleting or adding a copy to (f(v),deg v), depending on
whether f(v) = t). We also keep the weight corresponding to each list updated
and Γv(f) for all nodes v. This takes at most 4∆ data-structure insertions or
deletions, and thus O(∆) amortized time in total.

Sampling an effective step Let f be the current type function. First,
pick a random list L among the 2∆ lists, proportional to their weight. Then
pick a random node v from L. Then pick a node at random in Γv(f). This
takes O(∆) time in expectation.

Remark 3. Observe that picking a random list among the 2∆ lists, proportional
to their weight takes O(∆) time to do naively: E.g. consider some ordering of
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the lists and let wi be the total weight of list i (we keep this updated so it can
be found in constant time). Pick a random number x between 1 and the total
weight of all the lists (assumed to be doable in constant time). Iterate over the

lists in order and when looking at list i, check if x <
∑i
j=1 wj . If so, pick list

i, otherwise continue to list i + 1. By making a binary, balanced tree over the
lists (similar to what is used for the more restrictive model, see the Appendix),
the time can be brought down to O(log ∆) for this step - however the naive
approach suffices for our application, because updates requires O(∆) time.

This leads to the following theorem.

Theorem 9. An effective step can be sampled in (amortized and expected) O(∆)
time after O(m) preprocessing, if a uniformly random integer between 0 and x,
for any 0 < x ≤ n · w(t), can be found in constant time.

6 Algorithms for approximating fixation proba-
bility

We present the algorithms for solving the fixation, extinction, and generalized
fixation problems.

The Meta-simulation algorithm Similar to [4], the algorithms are in-
stantiating the following meta-simulation algorithm, that takes a distribution
over initial type functions D, type t and natural numbers u and z as input:

Function MetaSimulation(t,z,u,D)

Let y ← 0;
for (i ∈ {1, . . . , z}) do

Initialize a new simulation I with initial type function f picked
according to D;
Let j ← 0;
while (I has not fixated) do

if (j ≥ u) then
return Simulation took too long;

Set j ← j + 1;
Simulate an effective step in I;

if (t fixated in I) then
Set y ← y + 1;

return y/z;

Basic principle of simulation Note that the meta-simulation algorithm
uses O(uz∆) time (by Theorem 9). In essence, the algorithm runs z simulations
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of the process and terminates with “Simulation took too long” iff some simula-
tion took over u steps. Hence, whenever the algorithm returns a number it is the
mean of z binary random variables, each equal to 1 with probability Pr[Ft | Eu],
where Ft is the event that t fixates and Eu is the event that fixation happens
before u effective steps, when the initial type function is picked according to D
(we note that the conditional part was overlooked in [4], moreover, instead of
steps we consider only effective steps). By ensuring that u is high enough and
that the approximation is tight enough (basically, that z is high enough), we
can use Pr[Ft | Eu] as an approximation of Pr[Ft], as shown in the following
lemma.

Lemma 10. Let 0 < ε < 1 be given. Let X , E be a pair of events and x a number,

such that Pr[E ] ≥ 1− ε·Pr[X ]
4 and that x ∈ [(1−ε/2) Pr[X | E ], (1+ε/2) Pr[X | E ]].

Then
x ∈ [(1− ε) · Pr[X ], (1 + ε) · Pr[X ]] .

The value of u: uz,r Consider some fixed value of z. The value of u is

basically just picked so high that Pr[Eu] ≥ 1 − ε·Pr[Ft]
4 (so that we can apply

Lemma 10) and such that after taking union bound over the z trials, we have
less than some constant probability of stopping. The right value of u is thus
sensitive to r, but in all cases at most O(n2∆2 max(log z, log ε−1)), because of
Theorem 5. More precisely, we let

uz,r =


30n ·max(log z, log ε−1) if r ≥ 2∆

30n∆
min(r−1,1) ·max(log z, log ε−1) if 1 + 1

n·∆ ≤ r < 2∆

20n2∆2 ·max(log z, log ε−1) if r < 1 + 1
n·∆ .

Algorithm Algo1 We consider the fixation problem for t1. Algorithm
Algo1 is as follows:

1. Let D be the uniform distribution over the n type functions where exactly
one node is t1.

2. Return MetaSimulation(t1,z,uz,r,D), for z = 48 · nε2 .

Algorithm Algo2 We consider the extinction problem for t1. Algorithm
Algo2 is as follows:

1. Let D be the uniform distribution over the n type functions where exactly
one node is t2.

2. Return MetaSimulation(t1,z,uz,r,D), for z = 24/ε2.

Algorithm Algo3 We consider the problem of (additively) approximating
the fixation probability given some type function f and type t. Algorithm Algo3
is as follows:
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1. Let D be the distribution that assigns 1 to f .

2. Return MetaSimulation(t,z,uz,r,D), for z = 6/ε2.

Theorem 11. Let G be a connected undirected graph of n nodes with the highest
degree ∆, divided into two types of nodes t1, t2, such that r = w(t1) > w(t2) = 1.
Given 1

2 > ε > 0, let α = n2·∆·ε−2·max(log n, log ε−1) and β = n·∆·ε−2·log ε−1.
Consider the running times:

T (x) =


O(x) if r ≥ 2∆

O( x·∆
min(r−1,1) ) if 1 + 1

n·∆ ≤ r < 2∆

O(n ·∆2 · x) if 1 < r < 1 + 1
n·∆ .

• Fixation (resp. Extinction) problem for t1 Algorithm Algo1 (resp.
Algo2) is an FPRAS algorithm, with running time T (α) (resp. T (β)),
that with probability at least 3

4 outputs a number in [(1− ε) · ρ, (1 + ε) · ρ],
where ρ is the solution of the fixation (resp. extinction) problem for t1.

• Generalized fixation problem Given an initial type function f and a
type t, there is an (additive approximation) algorithm, Algo3, with running
time T (β), that with probability at least 3

4 outputs a number in [ρ−ε, ρ+ε],
where ρ is the solution of the generalized fixation problem given f and t.

Remark 4. There exists no known FPRAS for the generalized fixation problem
and since the fixation probability might be exponentially small such an algo-
rithm might not exist. (It is exponentially small for fixation of t2, even in the
Moran process (that is, when the graph is complete) when there initially is 1
node of type t2)

Alternative algorithm for extinction for t2 We also present an alter-
native algorithm for extinction for t2 when r is big. This is completely different
from the techniques of [4]. The alternative algorithm is based on the following
result where we show for big r that 1/r is a good approximation of the extinc-
tion probability for t2, and thus the algorithm is polynomial even for big r in
binary.

Theorem 12. Consider an undirected graph G and consider the extinction
problem for t2 on G. If r ≥ max(∆2, n)/ε, then 1

r ∈ [(1− ε) ·ρ, (1 + ε) ·ρ], where
ρ is the solution of the extinction problem for t2.

Proof sketch We present a proof sketch, and details are in the Appendix.
We have two cases:

• By [4, Lemma 4], we have ρ ≥ 1
n+r . Thus, (1 + ε) · ρ ≥ 1

r , as desired, since
n/ε ≤ r.

• On the other hand, the probability of fixation for t2 in the first effective
step is at most 1

r+1 < 1
r (we show this in Lemma 20 in the Appendix).

15



The probability that fixation happens for t2 after the first effective step is
at most ε/r because of the following reason: By Lemma 3, the probability
of increasing the number of members of t2 is at most p := 1

r/∆+1 and

otherwise it decrements. We then model the problem as a Markov chain
M with state space corresponding to the number of members of t1, using
p as the probability to decrease the current state. In M the starting state
is state 2 (after the first effective step, if fixation did not happen, then
the number of members of t1 is 2). Using that ∆2/ε ≤ r, we see that the
probability of absorption in state 0 of M from state 2 is less than ε/r.
Hence, ρ is at most (1 + ε)/r and (1− ε)ρ is thus less than 1/r.

Remark 5. While Theorem 12 is for undirected graphs, a variant (with larger r
and which requires the computation of the pr. that t1 goes extinct in the first
step) can be established even for directed graphs, see the Appendix.

Concluding remarks In this work we present faster Monte-Carlo algo-
rithms for approximating fixation probability for undirected graphs (see Re-
mark 6 in the Appendix for detailed comparison). An interesting open question
is whether the fixation probability can be approximated in polynomial time for
directed graphs.
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Appendix

7 Details of Section 3

In this section, we prove Lemma 1 and Theorem 5.

Lemma 1. Fix any type function f such that neither type has fixated. Let
fd (resp., fm) be the next type function under dynamic evolution step (resp.,
modified dynamic evolution step). Then, Pr[f 6= fd] > 0 and for all type
functions f ′ we have: Pr[f ′ = fd | f 6= fd] = Pr[f ′ = fm].

Proof. Let f, fd, fm be as in the lemma statement. First note that Pr[fd 6= f ] >
0 since G is connected and no type has fixated in f . Therefore, there must be
some edge (u, v) ∈ E, such that f(u) 6= f(v). There is a positive probability
that u and v is selected by the unmodified evolution step, in which case fd 6= f .
Thus Pr[fd 6= f ] > 0.

We consider the node selection in the two cases:

1. Let v be the node picked in the first part of the unmodified dynamic
evolution step and u be the node picked in the second part.

2. Similarly, let v′ be the node picked in the first part of the modified dynamic
evolution step and u′ be the node picked in the second part.

Observe that (u, v), (u′, v′) ∈ E. We will argue that for all (u′′, v′′) ∈ E, we
have that

Pr[u = u′′ ∪ v = v′′ | f(u) 6= f(v)] = Pr[u′ = u′′ ∪ v′ = v′′].

This clearly implies the lemma statement, since fd = f [u → f(v)] and fm =
f [u′ → f(v′)], by the last part of the unmodified and modified dynamic evolution
step. If f(u′′) = f(v′′), then Pr[u = u′′ ∪ v = v′′ | f(u) 6= f(v)] = 0, because
f(u′′) = f(u) 6= f(v) = f(v′′) which contradicts that f(u′′) = f(v′′). Also, if
f(u′′) = f(v′′), then Pr[u′ = u′′∪v′ = v′′] = 0, because f(u′′) = f(u′) 6= f(v′) =
f(v′′) (note f(u′) 6= f(v′) because u′ was picked from Γv′), again contradicting
that f(u′′) = f(v′′).

We therefore only need to consider that (u′′, v′′) ∈ E and f(u′′) 6= f(v′′).
The probability to pick v and then pick u in an unmodified dynamic evolution

step is w(f(v))
W (f) ·

1
deg v , for any (u, v) ∈ E and especially the ones for which

f(u) 6= f(v). Hence, Pr[u = u′′ ∪ v = v′′] = f(v′′)
W (f) ·

1
deg v′′ . Thus, also, Pr[(u =

u′′ ∪ v = v′′)
⋂

(f(u) 6= f(v))] = w(f(v′′))
W (f) ·

1
deg v′′ . We also have that

Pr[f(u) 6= f(v)] =
∑

(u,v)∈E
f(u)6=f(v)

w(f(u))

W (f)
· 1

deg u
=
∑
v∈V

w(f(v))

W (f)
· 1

deg v
·|Γv(f)| = W ′(f)

W (f)
,

19



where the second equality comes from that Γv(f) is the set of nodes u such that
(u, v) ∈ E and f(u) 6= f(v). Thus,

Pr[u = u′′∪v = v′′ | f(u) 6= f(v)] =
Pr[(u = u′′ ∪ v = v′′)

⋂
(f(u) 6= f(v))]

Pr[f(u) 6= f(v)]
=
w(f(v′′))

W ′(f)
· 1

deg v′′

The probability to pick v′ and then pick u′ in a modified dynamic evolution
step, for some (u′, v′) ∈ E is

w(f(v′)) · |Γv′ (f)|
deg v′

W ′(f)
· 1

|Γv′(f)|
=
w(f(v′))

W ′(f)
· 1

deg v′
.

Hence,

Pr[u′ = u′′∪v′ = v′′] =
w(f(v′′))

W ′(f)
· 1

deg v′′
= Pr[u = u′′∪v = v′′ | f(u) 6= f(v)] .

This completes the proof of the lemma.

Next, the proof of Theorem 5.

Theorem 5. Let t1 and t2 be the two types, such that r = w(t1) > w(t2) = 1.
Let ∆ be the maximum degree. Let k be the number of nodes of type t2 in the
initial type function. The following assertions hold:

• Bounds dependent on r

1. Expected steps The process requires at most 3k∆/min(r−1, 1) effec-
tive steps in expectation, before fixation is reached.

2. Probability For any integer x ≥ 1, after 6xn∆/min(r− 1, 1) effective
steps, the probability that the process has not fixated is at most 2−x,
irrespective of the initial type function.

• Bounds independent on r

1. Expected steps The process requires at most 2nk∆2 effective steps in
expectation, before fixation is reached.

2. Probability For any integer x ≥ 1, after 4xn2∆2 effective steps, the
probability that the process has not fixated is at most 2−x, irrespec-
tive of the initial type function.

• Bounds for r ≥ 2∆

1. Expected steps The process requires at most 3k effective steps in ex-
pectation, before fixation is reached.

2. Probability For any integer x ≥ 1, after 6xn effective steps, the prob-
ability that the process has not fixated is at most 2−x, irrespective
of the initial type function.

Proof. Observe that if k = 0, then fixation has been reached in 0 (effective)
steps. Thus assume k ≥ 1. We first argue about the first item of each case (i.e.,
about expected steps) and then about the second item (i.e., probability) of each
case.
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Expected steps of first item In every step, for r > 1, the poten-
tial increases by −k2 = r−1

∆·(r+1) , unless fixation has been achieved, in ex-

pectation by Lemma 2. Let n′ =
∑
v∈V

1
deg v be the maximum potential.

Let f be the initial type function. Observe that the potential initially is
ψ(f) =

∑
v∈Vt1,f

1
deg v =

∑
v∈V

1
deg v −

∑
v∈Vt2,f

1
deg v ≥ n′ − k. Hence, the

potential just needs to increase by at most k. Similar to [4], we consider a
modified process where if t2 fixates, then the next type function f ′ has a uni-
formly random node mapped to t1 (note that this only increases the time steps
till t1 fixates). We see that in every step, unless fixation happens for t1, the
potential increases by −k2 (in case fixation for t2 has happened in the previous
step, the potential increases by at least 1

∆ > −k2, since r−1
r+1 < 1). Applying [4,

Theorem 6], with k1 = k and −k2, we have that the number of effective steps in

expectation, when starting with the type function f , is at most k∆(r+1)
(r−1) , for the

modified process. Thus the upper bound also follows for the original process,
which fixates faster. Note that for r ≥ 2 we have that r+1

r−1 ≤ 3 and that for

1 < r < 2 we have that r+1
r−1 <

3
r−1 . Thus, r+1

r−1 ≤
3

min(r−1,1) . This establishes

the expected number of effective steps for the first item.

Expected steps of second item The fact that 2nk∆2 effective steps is
sufficient in expectation for r close to 1 can be seen as follows. Let f∗ denote
the type function that assigns all nodes to t1. Let f be the initial type function,
and we denote by f its complement, i.e., f maps every node to the opposite
type as compared to f . Similar to the proof2 of [4, Theorem 11] we get that
∆2((ψ(f∗))2 − (ψ(f))2) is sufficient in expectation, where f is the initial type
function. The change as compared to the proof of [4, Theorem 11] consists of
using that E[(ψ(f ′)−ψ(f ′′))2] ≥ ∆−2 instead of [4, Equation (3)], where f ′ is a
fixed type function and f ′′ the following type function according to a modified
dynamic evolution step. Let a be ψ(f) and b be ψ(f∗)− ψ(f) = ψ(f). Hence,
∆2((ψ(f∗))2 − (ψ(f))2) = ∆2((a+ b)2 − a2) = ∆2(2ab+ b2). This is monotone

increasing in a and b (since, a, b,∆ are positive). For all type functions f̂ , we

have that ψ(f̂) is at most the number of nodes assigned to t1 by f̂ . Hence, we
have that a = ψ(f) ≤ n− k and b = ψ(f) ≤ k. Thus

∆2((ψ(f∗))2−(ψ(f))2) = ∆2(2ab+b2) ≤ ∆2(2(n−k)k+k2) = ∆2(2nk−k2) ≤ 2nk∆2 ,

as desired.

Expected steps of third item We can consider the potential function
ψ′, which is ψ′(f ′) = |Vt1,f ′ |. We see that in every effective step the potential
increases by at least 1

3 in expectation, by Lemma 3. Similar to the first item,
we can then define a modified process and apply [4, Theorem 6], and see that
3k effective steps suffices in expectation.

2Note that the proof of [4, Theorem 11] does not directly use that r = 1, even though the
statement they end up with does
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Probability bounds of the three cases Follows from the above three
items and Lemma 4.

8 Details of Section 4

In this section we prove Lemma 6 and Lemma 7.

Lemma 6. With pr. above ≈ 1−1/r
2 if at least one of V ′L is initially of type t1,

then t1 fixates.

Proof. In this proof we consider that there is initially 1 member of t1. As shown
by [16], the fixation probability is increasing in the number of members.

If the graph just consisted of the nodes in VL (and v1 was only connected
to v2), then if the initial state had a single member of type t1, the pr. that t1
fixated would be 1−1/r

1−rx−n ≈ 1−1/r (using that it is in essence the gambler’s ruin

problem when the probability for winning each round for t2 is 1
r+1 , but t2 starts

with n−x− 1 pennies compared to 1 for t1). We see that in the original graph,
the only difference is that v1 is connected to the stars-on-a-cycle graph. Thus,
we see that as long as v1 is always a member of t2, there are no differences. We
can use that as follows: If in the initial type function the lone member of t1 is
in V ′L, then with pr. above 1/2, the node vn−x becomes of type t1 before v1,
because at all times (as long as neither v1 or vn−x has ever been of type t1),
the nodes of type t1 forms an interval {i, . . . , j} and the pr. that in the next
iteration vi−1 becomes of type t1 is equal to the pr. that in the next iteration

vj+1 becomes of type t1. Hence, we get that with pr. above 1−1/r
2(1−rx−n) ≈

1−1/r
2

at some point the members of t1 is exactly VL.
But if t2 fixates after all members of VL has become of type t1, VL must

thus eventually go from being all t1 to being all t2. We will now argue that
it is exponentially unlikely to happen. For VL to change to being all t2, we
must have that in some step, v1 has become a member of type t2. We can now
consider a stronger version of t2 (that thus have more pr. to fixate), where v1

can only become of type t1 if it was reproduced to from v2. We will say that
t2 starts an attempt whenever v1 becomes of type t2. We say that t2 wins the
attempt if VL eventually becomes only of type t2 and we say that t2 loses the
attempt if VL becomes of type t1. Note that t2 needs to win an attempt to
fixate. Again, using gambler’s ruin, we see that t2 wins any attempt with pr.

1 − 1−rx−n−1

1−rx−n = 1 − rn−x−r−1

rn−x−1 ≈
1

rn−x−1 . But the process fixates, as we showed
earlier, in 3k∆/min(r − 1, 1) effective steps, which is then an upper bound on
the number of attempts. But then the pr. that t2 ever wins an attempt is at
most

3k∆/min(r − 1, 1) · (1− rn−x − r−1

rn−x − 1
) ≈ 3k∆

rn−x
,

which is exponentially small for fixed r and we thus see that the pr. that t1
eventually has all of VL (if one of {`dn/4e, . . . , `n−x} is initially of type t1) is
approximately the pr. that t1 fixates.
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Recall that whenever a node of V iC , for some i, changes type, we say that a
leaf-step occurred.

Lemma 7. The pr. that an effective step is a leaf-step is at most r
∆ .

Proof. Consider some initial type function f . We will consider the conditional
probability of a leaf-step conditioned on a node (but not c1) in the stars-on-a-
cycle graph is selected for reproduction (clearly, if no such node is selected for
reproduction, the pr. of a leaf-step is 0). For simplicity, we will furthermore
condition on the node that gets selected for reproduction is in {ci} ∪ V iC for
some i (this is without loss of generality because all nodes in the stars-on-a-
cycle graph is in one of those sets). Let t := f(ci) and let t′ be the other type.
We will consider that x > 0 nodes of V iC is of type t′ (if no nodes of V iC is of type
t′ then the pr. of a leaf-step, conditioned on a node of {ci} ∪ V iC being selected
for reproduction is 0). For a leaf step to occur, we need to do as follows: we
must select ci for reproduction and we must select one of the nodes of V iC for
death. Let x′ ∈ {x, x + 1, x + 2} (the +2 is because of the other center nodes)
be the number of neighbors of ci which are of type t′. The fitness of ci is then
w(t) · x

′

∆ . The fitness of each node of type t′ in V iC is w(t′). If ci is picked, the
pr. of a leaf-step is x

x′ (because if a center neighbor is selected, no leaf-step
occurred). The pr. of a leaf step is then

w(t) · x
′

∆ ·
x
x′

xw(t′) + w(t)
=

w(t)

∆(w(t′) + w(t)/x)
≤ w(t)

∆w(t′)

Since in the worst case w(t) = r and w(t′) = 1, we get our result.

9 Details of Section 5

In this section we consider the weaker model, where getting even a single random
bit costs constant time.

We can use the same data-structure as in Section 5, since the data-structure
is deterministic. Thus, we just need to argue how to sample an effective step
given the data-structure. (i.e. like in the paragraph Sampling an effective
step of Section 5).

There are thus 3 things we need to consider, namely (1) picking random list
L among the 2∆ lists, proportional to their weight; (2) pick a random node v
from L and (3) pick a node at random in Γv(f).

Picking a random list among the 2∆ lists, proportional to their weight takes
O(∆) time and uses O(log ∆) random bits, e.g. as follows: We can build a
binary, balanced tree where each leaf corresponds to a list. We can then annotate
each node of the tree with the sum of the weights of all lists below it. This can
be done in O(∆) time. Afterwards, we can then find a random list proportional
to its weight using O(log ∆) bits in expectation as follows: Start at the root of
the tree.
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1. When looking at an internal node v do as follows: Let y be the number
annotated on v and let z be the number annotated on the left child. Con-
struct a random number x bit for bit, starting with the most significant,
between 0 and w = 2dlog ye. Let xi be the random variable denoting x
after i bits have been added. Let xi,1 be xi +w − 2i − 1, i.e. the greatest
number x can become if the remaining bits are all 1. If, after having added
the i’th bit, xi,1 ≤ z, continue to the left child. If, after having added the
i’th bit, xi > z and xi,1 ≤ y continue to the right child. If, after having
added the i’th bit, xi > y, start over at node v. Otherwise, add bit i+ 1
to x.

When adding a bit to x in step i, at least one of xi,1 ≤ z or xi > z becomes
satisfied with pr. 1/2. Similar, at least one of xi,1 ≤ y or xi > y becomes
satisfied with pr. 1/2. Thus, in expectation, we need four steps before we
continue to either the left, the right or back to v. Since 2dlog ye < 2y, we
have that we start over at v with pr. at most 1/2. Thus, in expectation,
after less than 8 steps, we go to either the left or the right child. Hence,
after O(log ∆) steps we reach a list.

2. When looking at a list, output it.

We can find a random element in the atleast half-full list L by repeatedly
finding a random number x between 0 and 2dlog se, where s ≤ n is the size of L.
If x is below s and is in L, output it, otherwise, find the next random number.

Note that 2dlog se < 2s. Thus, x ≤ s with pr. 1/2. If so, we have another 1/2
that entry x will be filled. Hence, we need to pick 4 numbers in expectation.
Note that this thus takes O(log n) time/random bits.

We can do similar to find an element in Γv(f) in O(log(∆)) time/random
bits.

This leads to the following theorem.

Theorem 13. If no more than one random bit can be accessed in constant time,
then an effective step can be sampled in (amortized and expected) O(∆ + log n)
time, using O(log n) expected random bits, after deterministic O(m) preprocess-
ing.

10 Details of Section 6

In this section, we prove Lemma 10 and give the correctness and time-bound
arguments for our algorithms, which implies Theorem 11.

Lemma 10. Let 0 < ε < 1 be given. Let X , E be a pair of events and x a number,

such that Pr[E ] ≥ 1− ε·Pr[X ]
4 and that x ∈ [(1−ε/2) Pr[X | E ], (1+ε/2) Pr[X | E ]].

Then
x ∈ [(1− ε) · Pr[X ], (1 + ε) · Pr[X ]] .

Proof. Fix 0 < ε < 1. Let X , E be a pair of events, such that Pr[E ] ≥ 1− ε·Pr[X ]
4

and that x ∈ [(1− ε/2) Pr[X | E ], (1 + ε/2) Pr[X | E ]].
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We have that

Pr[X ] = Pr[E ] · Pr[X | E ] + (1− Pr[E ]) · Pr[X | ¬E ]

≥ (1− ε · Pr[X ]

4
) · Pr[X | E ]

≥ Pr[X | E ]− ε · Pr[X ]

4
.

Also,

Pr[X ] = Pr[E ] · Pr[X | E ] + (1− Pr[E ]) · Pr[X | ¬E ]

≤ Pr[X | E ] +
ε · Pr[X ]

4
· Pr[X | ¬E ]

≤ Pr[X | E ] +
ε · Pr[X ]

4
.

We now see that

x ∈ [(1− ε/2) Pr[X | E ], (1 + ε/2) Pr[X | E ]]

⇒x ∈ [(1− ε/2)(1− ε/4) Pr[X ], (1 + ε/2)(1 + ε/4) Pr[X ]]

Note that
(1− ε/2) · (1− ε/4) = 1 + ε2/8− 3ε/4 > 1− ε

and
(1 + ε/2) · (1 + ε/4) = 1 + ε2/8 + 3ε/4 < 1 + 7ε/8 < 1 + ε ,

using that 0 < ε2 < ε < 1. Hence,

x ∈ [(1− ε) Pr[X ], (1 + ε) Pr[X ]] ,

as desired.

We will use the following lemmas from previous works.

Lemma 14 ([5]). The solution of the fixation problem for t1 is at least 1
n and

the solution of the extinction problem for t1 is at least 1− 1
n .

Lemma 15 ([4]). The solution of the extinction problem is greater than 1
n+r

for t2.

We next show the following lemma, which will be useful in the correctness
proofs of our algorithms.

Lemma 16. Consider running MetaSimulation(t,z,u,D) on an instance where
w(t1) = r, for some distribution D, type t and numbers z, 0 < ε < 1

2 , when u =
uz,r. Then, 1 − Pr[Eu] ≤ min(z−5, ε5) and the probability that MetaSimulation
does not output a number is smaller than min(z−4, ε4). The run time T is

T =


O(n∆z ·max(log z, log ε−1)) if r ≥ 2∆

O(n∆2 z
min(r−1,1) ·max(log z, log ε−1)) if 1 + 1

n·∆ ≤ r < 2∆

O(n2∆3z ·max(log z, log ε−1)) if r < 1 + 1
n·∆
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Proof. Let t, z,D, r, ε be as in the lemma statement. Also, let u = uz,r. The
run time of MetaSimulation(t,z,u,D) is O(uz∆) (by Theorem 9), which leads to
the desired run time when inserting uz,r. By choice of u, we have that

1− Pr[Eu] ≤ 2−5 max(log z,log ε−1) = min(z−5, ε5) ,

using Theorem 5. Thus, any single simulation takes more than u time with prob-
ability less than min(z−5, ε−5). Union bounding the z simulations, we see that
the probability that any one takes more than u time is at most min(z−4, ε−4).
Note that only in case one simulation takes more than u time does the algorithm
output something which is not a number.

The remainder of this section is about showing the correctness and running
times of the various algorithms.

Lemma 17. Algorithm Algo1 is correct and runs in time T1, for

T1 =


O(n2 ·∆ · ε−2 ·max(log n, log ε−1)) if r ≥ 2∆

O( n2·∆2

ε2·min(r−1,1) ·max(log n, log ε−1)) if 1 + 1
n·∆ ≤ r < 2∆

O(n3 ·∆3 · ε−2 ·max(log n, log ε−1)) if 1 < r < 1 + 1
n·∆

Proof. Recall if r = 1, then the fixation probability of t1 is 1
n . We consider the

other cases. Otherwise, the output of Algo1 is MetaSimulation(t1,z,uz,r,D), for
z = 48 · nε2 . The run time then follows from Lemma 16.

We will utilize Lemma 10 to show the correctness of Algo1. We thus need

to ensure that Pr[Eu] ≥ 1− ε·Pr[Ft1 ]

4 and that with probability 3
4 our algorithm

outputs x, for

x ∈ [(1− ε/2) Pr[Ft1 | Eu], (1 + ε/2) Pr[Ft1 | Eu]] .

According to Lemma 16, we have that

Pr[Eu] ≥ 1−min(z−5, ε5) = 1− z−5 ≥ 1− ε

4n
≥ 1− ε · Pr[Ft1 ]

4
,

using that Pr[Ft1 ] is at least 1
n according to Lemma 14 as desired.

Error sources We see that there are two cases where Algo1 does not
output a number in [(1− ε) · Pr[Ft1 ], (1 + ε) · Pr[Ft1 ]]:

1. The algorithm does not output a number. This happens with probability
at most

min(z−4, ε4) = (48 · n
ε2

)−4 < (48 · 2

(1/2)2
)−4 = 384−4 ,

according to Lemma 16.

2. The algorithm outputs a number outside [(1− ε) ·Pr[Ft1 ], (1+ ε) ·Pr[Ft1 ]].
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Simulations are far from expectation Let the output of the algorithm,
conditioned on it being a number, be the random variable B. Observe that if

B ∈ [(1− ε/2) · Pr[Ft1 | Eu], (1 + ε/2) · Pr[Ft1 | Eu]] ,

then, according to Lemma 10, we have that B ∈ [(1−ε) ·Pr[Ft1 ], (1+ε) ·Pr[Ft1 ]],

since we already argued that Pr[Eu] ≥ 1 − ε·Pr[Ft1 ]

4 . We are thus interested in
the probability

Pr[|B − Pr[Ft1 | Eu]| ≥ ε/2 Pr[Ft1 | Eu]] .

Applying Lemma 10, with X = Ft1 , E = Eu and x = Pr[Ft1 | Eu], we see that

Pr[Ft1 | Eu] ≥ (1− ε) · Pr[Ft1 ] ≥ Pr[Ft1 ]

2 ≥ 1
2n . Thus,

Pr[|B − Pr[Ft1 | Eu]| ≥ ε/2 Pr[Ft1 | Eu]] ≤ Pr[|B − Pr[Ft1 | Eu]| ≥ ε

4n
] .

Since B is the average of z independent simulations of a binary random variable,
each of which are 1 with probability Pr[Ft1 | Eu] ≥ 1

n (by Lemma 14), we can
apply the multiplicative Chernoff bound and obtain:

Pr[|zB − z Pr[Ft1 | Eu]| ≥ zε

4n
] ≤ 2e−2z ε2

3·42n = 2e−2 .

We have that 384−4 + 2e−2 < 1/3. The desired result follows.

Lemma 18. Algorithm Algo2 is correct and runs in time T2, for

T2 =


O(n ·∆ · ε−2 · log ε−1) if r ≥ 2∆

O( n·∆2·log ε−1

ε2·min(r−1,1) ) if 1 + 1
n·∆ ≤ r < 2∆

O(n2 ·∆3 · ε−2 · log ε−1) if 1 < r < 1 + 1
n·∆

Proof. The proof is similar to Lemma 17, except applying multiplicative Cher-
noff Bound to

Pr[|zB − z Pr[Ft1 | Eu]| ≥ zεPr[Ft1 | Eu]/2] ≤ Pr[|B − Pr[Ft1 | Eu]| ≥ ε

4
] ,

using that Pr[Ft1 | Eu] ≥ 1− 1
n ≥

1
2 by Lemma 14.

Lemma 19. Algorithm Algo3 is correct and runs in time T3, for

T3 =


O(n ·∆ · ε−2 · log ε−1) if r ≥ 2∆

O( n·∆2·log ε−1

ε2·min(r−1,1) ) if 1 + 1
n·∆ ≤ r < 2∆

O(n2 ·∆3 · ε−2 · log ε−1) if 1 ≤ r < 1 + 1
n·∆

Proof. The proof is somewhat similar to Lemma 17, but there are some differ-
ences and thus we include the proof.
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The output of Algo3 is MetaSimulation(t,z,uz,r,D), for z = 6/ε2 and D the
distribution assigning probability 1 to f . We see that

Pr[Ft] = Pr[Eu] · Pr[Ft | Eu] + (1− Pr[Eu]) · Pr[Ft | ¬Eu] ≥ Pr[Ft | Eu] · Pr[Ft | Eu]

≥ (1− z−5) · Pr[Ft | Eu] ≥ Pr[Ft | Eu]− z−5 ≥ Pr[Ft | Eu]− ε/2 ,

using Lemma 16. Also,

Pr[Ft] = Pr[Eu]·Pr[Ft | Eu]+(1−Pr[Eu])·Pr[Ft | ¬Eu] ≤ Pr[Ft | Eu]+z−5 ≤ Pr[Ft | Eu]+ε/2 .

Thus, we just need to ensure that we output a number x in [Pr[Ft | Eu] −
ε/2,Pr[Ft | Eu] + ε/2] with probability at least 3

4 .
We output a number with probability at least 1− z−4 > 1− 24−4 according

to Lemma 16. In case we output a number, we can apply Hoeffding’s inequality,
since the output is the average of z trials, and obtain:

Pr[|B − Pr[Ft | Eu]| ≥ ε

2
] ≤ 2e−2z ε

2

22 = 2e−3 .

We see that we thus fail to output a number in [Pr[Ft] − ε,Pr[Ft] + ε] with
probability at most 2e−3 + 24−4 < 1/10. This completes the proof.

Theorem 11 follows from Lemmas 17, 18, 19.

11 Algorithm for extinction of t2

In this section we present the algorithm for extinction of t2. First we present
an approximation of the fixation probability.

11.1 Approximating the fixation probability

We will next show that whenever r is sufficiently big, 1
r is a good approximation

of the solution of the extinction problem for t2. To do so, we first argue that
with probability at most 1

r+1 does t1 go extinct in the first effective step, when
there is only a single random node which is a member of t1.

Lemma 20. The probability that t1 goes extinct in the first effective step is at
most 1

r+1 , when initially a single random node is of type t1.

Proof. The proof is similar to the proof of [4, Lemma 4], except that instead
of lower bounding, we try to upper bound. For each node v ∈ V , let Q(v) =∑

(u,v)∈E
1

deg u . Observe that
∑
v∈V Q(v) = n. Let p be the probability that t1

does not go extinct in the first effective step, when initially a single random node
is of type t1. From the proof of [4, Lemma 4], we see that p = r

n

∑
v∈V

1
r+Q(v) .

We want to find the minimum p such that p = r
n

∑n
i=1

1
r+qi

, subject to the

constraint that qi > 0 and
∑n
i=1 qi = n.

Claim 21. The number p is minimized for qi = 1 for all i.
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Proof. We will argue that p is minimized for qi = 1 for all i, as follows: Our
argument is by contradiction. For a vector q of length n, let pq = r

n

∑n
i=1

1
r+qi

.

Assume that q∗ = (q∗i )i∈[1,...,n] is a vector of qi’s that minimizes pq and that
q∗j 6= q∗k for some j, k (this is the case if not all are 1). Let 2z = q∗j +q∗k. Consider
the vector q′ such that q′i = q∗i for all i, except that q′j = q′k = z. We will argue

that pq
′
< pq

∗
, contradicting that q∗ minimizes pq. We have that

1

r + q∗j
+

1

r + q∗k
=

r + q∗k + r + q∗j
(r + q∗j )(r + q∗k)

=
2r + 2z

r2 + 2rz + q∗j q
∗
k

>
2r + 2z

r2 + 2rz + z2
=

1

r + z
+

1

r + z
,

since, q∗j q
∗
k < z2 and thus, since all other terms of pq

′
is equal to pq

∗
, we have

that pq
′
< pq

∗
. Thus, in the worst case qi = 1 for all i.

Hence, p ≥ r
r+1 = 1− 1

r+1 . This completes the proof.

Theorem 12. Let 0 < ε < 1
2 be given. If

r ≥ max(∆2, n)/ε ,

then
1

r
∈ [(1− ε) · ρ, (1 + ε) · ρ] ,

where ρ is the solution of the extinction problem for t2.

Proof. Fix 0 < ε < 1
2 and r ≥ max(∆2, n)/ε. Let ρ be the solution of the

extinction problem for t2. We consider two cases.

1
r

is below (1 + ε) · ρ By [4, Lemma 4] (recalled as Lemma 15), we have

that ρ ≥ 1
n+r . Thus, (1 + ε) · ρ ≥ 1+ε

n+r >
1+ε

(1+ε)r = 1
r , as desired, since n/ε ≤ r.

1
r

is above (1 − ε) · ρ The probability that after the first effective step

there are two nodes of type t1 is at least 1 − 1
r+1 , by Lemma 20. In every

subsequent step before fixation, we have probability at most 1
r/∆+1 , by Lemma 3,

of decreasing the number of nodes of type t1 by 1 and otherwise we increase the
number by 1.

Modeling as Markov chain Consider a biased random walk on a line
with absorbing boundaries (this problem is also sometimes called Gambler’s
Ruin). More precisely, letM be the following Markov chain, with states {0, . . . , n},
and whenever 0 or n is reached, they will never be left (i.e., the states are ab-
sorbing). Also, in each other state i ∈ {1, . . . , n − 1}, there is a probability
of p = 1

r/∆+1 of going to i − 1 and otherwise, the next state is i + 1. The

fixation probability for t2, if fixation did not happen in the first step, is at most
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the absorption probability in state 0 in M starting in state 2. The absorption
probability in state 0 of M , starting in state 2, is well-known, and it is

( 1−p
p )n−2 − 1

( 1−p
p )n − 1

=
( r∆ )n−2 − 1

( r∆ )n − 1
<

( r∆ )n−2

( r∆ )n
= ∆2/r2 ≤ ε/r

using that 1−p
p = r

∆ in the first equality, a−1
b−1 <

a
b for all 1 < a < b in the first

inequality and ∆2/ε ≤ r in the last inequality. Hence, the probability to fixate
for t2 is below ε/r if t2 does not fixate in the first step. Thus, the probability ρ
of fixation for t2 is at most (1 + ε) · 1

r . Observe that

(1− ε)ρ ≤ (1− ε)(1 + ε) · 1

r
<

1

r
, since (1− ε)(1 + ε) = 1− ε2 < 1 .

Hence, 1
r is in [(1− ε) · ρ, (1 + ε) · ρ] as desired.

11.2 Algorithm

Algorithm Algo4 We consider the extinction problem for t2. Algorithm
Algo4 is as follows:

1. If r ≥ max(∆2, n)/ε return 1
r .

2. Let D be the uniform distribution over the n type functions where exactly
one node is t1.

3. Return MetaSimulation(t2,z,uz,r,D), for z = 24 (n+r)2

ε2 .

We next prove the following theorem.

Theorem 22. Let G be a connected undirected graph of n nodes with highest
degree ∆, divided into two types of nodes t1, t2, such that r = w(t1) > w(t2) = 1.
Let 1

2 > ε > 0.

• Extinction problem given t2 Let w = max(∆2, n)/ε and let T be

T =



O(1) if r ≥ w
O(r2 · n ·∆ · ε−2 ·max(log r, log ε−1)) if n ≤ r < w

O(n3 ·∆ · ε−2 ·max(log n, log ε−1)) if 2∆ ≤ r < n

O( n3·∆2

ε2·min(r−1,1) ·max(log n, log ε−1)) if 1 + 1
n·∆ ≤ r < 2∆

O(n4 ·∆3 · ε−2 ·max(log n, log ε−1)) if 1 < r < 1 + 1
n·∆ .

Algorithm Algo4 is an FPRAS algorithm, with running time T , that with
probability atleast 3

4 outputs a number in [(1− ε) · ρ, (1 + ε) · ρ], where ρ is
the solution of the extinction problem given t2.
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All steps Effective steps
#steps in expectation r > 1 O(n2∆2) O(n∆)

r = 1 O(n3∆3) O(n2∆2)
r < 1 O(n∆2) O(∆)

Concentration bounds r > 1 Pr[τ ≥ n2∆2rx
r−1 ] ≤ 1/x Pr[τ ≥ 6n∆x

min(r−1,1) ] ≤ 2−x

r = 1 Pr[τ ≥ n3∆3x] ≤ 1/x Pr[τ ≥ 4n2∆2x] ≤ 2−x

r < 1 Pr[τ ≥ n∆2x
1−r ] ≤ 1/x Pr[τ ≥ 6n∆x

1−r ] ≤ 2−x

Sampling a step O(1) O(∆)
Fixation for t1 O(n6∆2ε−4) O(n2∆2ε−2(log n+ log ε−1))
Extinction for t1 O(n6∆2ε−4) O(n∆2ε−2 log ε−1)
Extinction for t2 O(n5∆2ε−4) O(n3∆2ε−2(log n+ log ε−1))
Generalized fixation (additive) − O(n∆2ε−2 log ε−1)

Table 2: Comparison with previous work, for constant r. We denote by n, ∆,
τ , and ε, the number of nodes, the maximum degree, the random variable for
the fixation time, and the approximation factor, respectively. The results in the
column “All steps” is from [4], except that we present their dependency on ∆
which was considered as n. The entry marked − is done so, since [4] did not
provide an algorithm for the generalized fixation problem. The results of the
column “Effective steps” is the results of this paper

Remark 6. A detailed comparison of our results and previous results of [4]
is presented in Table 2. Note that we do not present approximation of the
fixation problem for t2 (i.e., fixation for the type with the smallest fitness).
This is because in this case the fixation probabilities can vary greatly, while

being exponentially small, even for constant r: It is close to 1−r−2

1−r−2n for star

graphs [11] and precisely 1−r−1

1−r−n for complete graphs [11]. For, for instance,
r = 1/2 it is thus close to

1− 22

1− 22n
=

22 − 1

22n − 1
≈ 2−2n+2

for star graphs and
1− 2

1− 2n
=

2− 1

2n − 1
=

1

2n − 1

for complete graphs. Observe that those two numbers differs by an exponentially
large factor. For this case [4] also do not present any polynomial-time algorithm.

Variant of Theorem 12 for directed graphs A variant of Theorem 12
can also be proven for strongly connected (i.e. graphs where there is a path
from any node to any node) directed graphs. However, the variant requires
O(m) computation.

In essence, the proof of Theorem 12 is as follows: The probability that t2
fixates in 1 step is always nearly 1

r . If t2 does not fixate in 1 step (and there are
thus at least 2 nodes of type t1), then t2 has probability at most ε/r of fixating.
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This suggests a simple scheme for the directed case: (1) Find the probability
ρ1 that t2 fixates in 1 step. (2) Show that fixating if there are two states of type
t2 is small compared to ρ1.

It is easy to find the probability that t2 fixates in 1 step in any (even di-
rected) graph, by simply consider each start configuration and computing the
probability that fixation happens in 1 step. For a fixed configuration f with one
node v of type t1, this takes time equal to the in- and out-degree of v (assuming
that the out- and in-degree of all nodes are known). Overall this thus takes
O(m) operations. The probability of fixation in 1 step for a configuration is in
[ 1
∆r+1 ,

n−1
r+(n−1) ], recalling that ∆ is the max out-degree). (This bound is easy

to establish: Let v be the node of type t1. The bounds follow from that at least
one node u of type t2 is such that v is a successor of u (resp. u is a successor
of v), because the graph is connected. On the other hand, all nodes of type t2
might be a successor of v (or the other way around)) It seems reasonably to
consider that operations on that small numbers can be done in constant time.
Therefore, we get a O(m) running time.

To then show that fixating for t2 is small (compared to ρ1) one needs a variant
of Lemma 3 for directed graphs. This can easily be done, but just shows that
the probability to increase the number of members of t2 is at most p := 1

r/(n∆)+1

(i.e. it is a factor of n worse as compared to undirected graphs). The remainder
of the proof is then similar (i.e. we consider the Markov chain M on 0, 1, . . . , n,
starting in state 2, that has pr. p of decrementing and otherwise increments).
We get that the pr. of fixating for t2 if it did not do it in the first step is at
most ε/(2∆r) < ε/(∆r + 1) if r ≥ 2∆3n2/ε. Hence, ρ1 ∈ [(1− ε) · ρ, (1 + ε) · ρ]
for such r. This leads to the following theorem.

Theorem 23. Let ε > 0 be given. Let G be a directed graph and let r ≥
2∆3n2/ε.

Consider the extinction problem for t2. Let ρ be the fixation pr. and let ρ1

be the pr. of fixation in 1 effective step. Then

ρ1 ∈ [(1− ε) · ρ, (1 + ε) · ρ] .
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