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Strategy Complexity of Concurrent Stochastic Games
with Safety and Reachability Objectives

Krishnendu Chatterjee∗ Kristoffer Arnsfelt Hansen† Rasmus Ibsen-Jensen‡

Abstract
We consider finite-state concurrent stochastic games, played byk ≥ 2 players for an infinite number of rounds,

where in every round, each player simultaneously and independently of the other players chooses an action, whereafter
the successor state is determined by a probability distribution given by the current state and the chosen actions. We
consider reachability objectives that given a target set ofstates require that some state in the target set is visited, and
the dual safety objectives that given a target set require that only states in the target set are visited. We are interested
in the complexity of stationary strategies measured by their patience, which is defined as the inverse of the smallest
non-zero probability employed.

Our main results are as follows: We show that in two-player zero-sum concurrent stochastic games (with reach-
ability objective for one player and the complementary safety objective for the other player): (i) the optimal bound
on the patience of optimal andǫ-optimal strategies, for both players is doubly exponential; and (ii) even in games
with a single non-absorbing state exponential (in the number of actions) patience is necessary. In general we study
the class of non-zero-sum games admittingε-Nash equilibria. We show that if there is at least one playerwith reach-
ability objective, then doubly-exponential patience is needed in general forε-Nash equilibrium strategies, whereas in
contrast if all players have safety objectives, then the optimal bound on patience forε-Nash equilibrium strategies is
only exponential.

1 Introduction

Concurrent stochastic games.Concurrent stochastic games are played on finite-state graphs byk players for an
infinite number of rounds. In every round, each player simultaneously and independently of the other players chooses
moves (or actions). The current state and the chosen moves ofthe players determine a probability distribution over the
successor state. The result of playing the game (or aplay) is an infinite sequence of states and action vectors. These
games with two players were introduced in a seminal work by Shapley [34], and have been one of the most funda-
mental and well-studied game models in stochastic graph games. Matrix games (or normal form games) can model
a wide range problems with diverse applications, when thereis a finite number of interactions [29, 37]. Concurrent
stochastic games can be viewed as a finite set of matrix games,such that the choices made in the current game deter-
mine which game is played next, and is the appropriate model for many applications [17]. Moreover, in analysis of
reactive systems, concurrent games provide the appropriate model for reactive systems with components that interact
synchronously [12, 13, 2].

Objectives. An objective for a player defines the set of desired plays for the player, i.e., if a play belongs to the
objective of the player, then the player wins and gets payoff1, otherwise the player looses and gets payoff 0. The
most basic objectives for concurrent games are thereachabilityand thesafetyobjectives. Given a setF of states, a
reachability objective with target setF requires that some state inF is visited at least once, whereas the dual safety
objective with target setF requires that only states inF are visited. In this paper, we will only consider reachability and
safety objectives. A zero-sum game consists of two players (player 1 and player 2), and the objectives of the players
are complementary, i.e., a reachability objective with target setF for one player and a safety objective with target set
complement ofF for the other player. In this work, when we refer to zero-sum games we will imply that one player
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has reachability objective, and the other player has the complementary safety objective. Concurrent zero-sum games
are relevant in many applications. For example, the synthesis problem in control theory (e.g., discrete-event systemsas
considered in [32]) corresponds to reactive synthesis of [31]. The synthesis problem for synchronous reactive systems
is appropriately modeled as concurrent games [12, 13, 14]. Other than control theory, concurrent zero-sum games also
provide the appropriate model to study several other interesting problems, such as two-player poker games [28].

Properties of strategies in zero-sum games.Given a zero-sum concurrent stochastic game, the player-1valuev1(s)
of the game at a states is the limit probability with which he can guarantee his objective against all strategies of
player 2. The player-2value v2(s) is analogously the limit probability with which player 2 canensure his own
objective against all strategies of player 1. Concurrent zero-sum games are determined [16], i.e., for each states we
havev1(s) + v2(s) = 1. A strategyfor a player, given a history (i.e., finite prefix of a play) specifies a probability
distribution over the actions. Astationarystrategy does not depend on the history, but only on the current state. For
ǫ ≥ 0, a strategy isǫ-optimal for a states for playeri if it ensures his own objective with probability at leastvi(s)− ǫ
against all strategies of the opponent. A0-optimal strategy is anoptimalstrategy. In zero-sum concurrent stochastic
games, there exist stationary optimal strategies for the player with safety objectives [30, 23]; whereas in contrast, for
the player with reachability objectives optimal strategies do not exist in general, however, for everyǫ > 0 there exists
stationaryǫ-optimal strategies [16].

The significance of patience and roundedness of strategies.The basic decision problem is as follows: given a
zero-sum concurrent stochastic game and a rational threshold λ, decide whetherv1(s) ≥ λ. The basic decision
problem is inPSPACEand issquare-root sumhard [15]1. Given the hardness of the basic decision problem, the next
most relevant computational problem is to compute an approximation of the value. The computational complexity of
the approximation problem is closely related to the size of the description ofǫ-optimal strategies. Even for special
cases of zero-sum concurrent stochastic games, namelyturn-basedstochastic games, where in each state at most one
player can choose between multiple moves, the best known complexity results are obtained by guessing an optimal
strategy and computing the value in the game obtained after fixing the guessed strategy. A strategy has patiencep if
p is the inverse of the smallest non-zero probability used by adistribution describing the strategy. A rational valued
strategy has roundednessq if q is the greatest denominator of the probabilities used by thedistributions describing the
strategy. Note that if a strategy has roundednessq, then it also has patience at mostq. The description complexity
of a stationary strategy can be bounded by the roundedness. Astationary strategy with exponential roundedness,
can be described using polynomially many bits, whereas the explicit description of stationary strategies with doubly-
exponential patience is not polynomial. Thus obtaining upper bounds on the roundedness and lower bounds on the
patience is at the heart of the computational complexity analysis of concurrent stochastic games.

Strategies in non-zero-sum games and roundedness.In non-zero-sum games, the most well-studied notion of
equilibrium isNash equilibrium[26], which is a strategy vector (one for each player), such that no player has an
incentive of unilateral deviation (i.e., if the strategiesof all other players are fixed, then a player cannot switch strategy
and improve his own payoff). The existence of Nash equilibrium in non-zero-sum concurrent stochastic games where
all players have safety objectives has been established in [33]. It follows from the strategy characterization of the
result of [33] and our Lemma 41 that if such strategies have exponential roundness and forms anǫ-Nash equilibrium,
for a constant or even logarithmic number of players, forǫ > 0, then there will be polynomial-size witness for those
strategies (and the approximation of a Nash equilibrium canbe achieved inTFNP, see Remark 44). Thus again the
notion of roundedness is at the core of the computational complexity of non-zero-sum games.

Previous results and our contributions. In this work we consider concurrent stochastic games (both zero-sum and
non-zero-sum) where the objectives of the players are either reachability or safety. We first describe the relevant
previous results and then our contributions.
Previous results.For zero-sum concurrent stochastic games, the optimal bound on patience and roundedness for
ǫ-optimal strategies for reachability objectives, forǫ > 0, is doubly exponential [22, 20]. The doubly-exponential
lower bound is obtained by presenting a family of games (namely, Purgatory) where the reachability player requires
doubly-exponential patience (however, in this game the patience of the safety player is 1) [22, 20]; whereas the doubly-
exponential upper bound is obtained by expressing the values in the existential theory of reals [22, 20]. In contrast to
reachability objectives that in general do not admit optimal strategies, similar to safety objectives there are two related

1The square-root sum problem is an important problem from computational geometry, where given a set of natural numbersn1, n2, . . . , nk,
the question is whether the sum of the square roots exceed an integerb. The problem is not known to be inNP.
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classes of concurrent stochastic games that admit optimal stationary strategies, namely, discounted-sum objectives,
and ergodic concurrent games. For both these classes the optimal bound on patience and roundedness forǫ-optimal
strategies, forǫ > 0, is exponential [11, 24]. The optimal bound on patience and roundedness for optimal andǫ-optimal
strategies, forǫ > 0, for safety objectives has been an open problem.
Our contributions.Our main results are as follows:

1. Lower bound: general.We show that in zero-sum concurrent stochastic games, a lower bound on patience
of optimal andǫ-optimal strategies, forǫ > 0, for safety objectives is doubly exponential (in contrast to the
above mentioned related classes of games that admit stationary optimal strategies and require only exponential
patience). We present a family of games (namely, Purgatory Duel) where the optimal andǫ-optimal strategies,
for ǫ > 0, for both players require doubly-exponential patience.

2. Lower bound: three states.We show that even in zero-sum concurrent stochastic games with three states of
which two are absorbing (sink states with only self-loop transitions) the patience required for optimal andǫ-
optimal strategies, forǫ > 0, is exponential (in the number of actions). An optimal (resp., ǫ-optimal, forǫ > 0)
strategy in a game with three states (with two absorbing states) is basically an optimal (resp.,ǫ-optimal) strategy
of a matrix game, where some entries of the matrix game depends on the value of the non-absorbing state (as
some transitions of the non-absorbing state can lead to itself). In standard matrix games, the patience forǫ-
optimal strategies, forǫ > 0, is only logarithmic [27]; and perhaps surprisingly in contrast we show that the
patience forǫ-optimal strategies in zero-sum concurrent stochastic games with three states is exponential (i.e.,
there is a doubly-exponential increase from logarithmic toexponential).

3. Upper bound.We show that in zero-sum concurrent stochastic games, an upper bound on the patience of optimal
strategies and an upper bound on the patience and roundedness of ε-optimal strategies, forε > 0, is as follows:
(a) doubly exponential in general; and (b) exponential for the safety player if the number of value classes (i.e.,
the number of different values in the game) is constant. Hence our upper bounds on roundedness match our
lower bound results for patience. Our results also imply that if the number of value classes is constant, then the
basic decision problem is incoNP(resp.,NP) if player 1 has reachability (resp., safety) objective.

4. Non-zero-sum games.We consider non-zero-sum concurrent stochastic games withreachability and safety
objectives. First, we show that it easily follows from our example family of Purgatory Duel that if there are at
least two players and there is at least one player with reachability objective, then a lower bound on patience for
ǫ-Nash equilibrium is doubly exponential, forǫ > 0, for all players. In contrast, we show that if all players
have safety objectives, then the optimal bound on patience of strategies forǫ-Nash equilibrium is exponential,
for ǫ > 0 (i.e., for upper bound we show that there always exists anǫ-Nash equilibrium where the strategy of
each player requires at most exponential roundedness; and there exists a family of games, where for anyǫ-Nash
equilibrium the strategies of all players require at least exponential patience).

In summary, we present a complete picture of the patience androundedness required in zero-sum concurrent stochastic
games, and non-zero-sum concurrent stochastic games with safety objectives for all players. Also see Section 7.2 for
a discussion on important technical aspects of our results.

Distinguishing aspects of safety and reachability.While the optimal bound on patience and roundedness we estab-
lish in zero-sum concurrent stochastic games for the safetyplayer matches that for the reachability player, there are
many distinguishing aspects for safety as compared to reachability in terms of the number of value classes (as shown
in Table 1). For the reachability player, if there is one value class, then the patience and roundedness required is linear:
it follows from the results of [7] that if there is one value class then all the values must be either 1 or 0; and if all states
have value 0, then any strategy is optimal, and if all states have value 1, then it follows from [14, 8] that there is an
almost-sure winning strategy (that ensures the objective with probability 1) from all states and the optimal bound on
patience and roundedness is linear. The family of game graphs defined by Purgatory has two value classes, and the
reachability player requires doubly exponential patienceand roundedness, even for two value classes. In contrast, if
there are (at most) two value classes, then again the values are 1 and 0; and in value class 1, the safety player has an op-
timal strategy that is stationary and deterministic (i.e.,a positional strategy) and has patience and roundedness 1 [14],
and in value class 0 any strategy is optimal. While for two value classes, the patience and roundedness is 1 for the
safety player, we show that for three value classes (even forthree states) the patience and roundedness is exponential,
and in general the patience and roundedness is doubly exponential (and such a finer characterization does not exist for
reachability objectives). Finally, for non-zero-sum games (as we establish), if there are at least two players, then even
in the presence of one reachability player, the patience required is at least doubly exponential, whereas if all players
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have safety objectives, the patience required is only exponential.

# Value classes Reachability Safety
1 Linear One
2 Double-exponential One
3 Double-exponential Exponential

LB, Theorem 29
Constant Double-exponential Exponential

UB, Corollary 34
General Double-exponential Double-exponential

LB, Theorem 20
UB, Corollary 34

Table 1: Strategy complexity (i.e., patience and roundedness ofǫ-optimal strategies, forǫ > 0) of reachability vs
safety objectives depending on the number of value classes.Our results are bold faced, and LB (resp., UB) denotes
lower (resp., upper) bound on patience (resp., roundedness).

Our main ideas. Our most interesting results are the doubly-exponential and exponential lower bound on the patience
and roundedness in zero-sum games. We now present a brief overview about the lower bound example.

The game ofPurgatory[22, 20] is a concurrent reachability game [14] that was defined as an example showing
that thereachabilityplayer must, in order to play near optimally, use a strategy with non-zero probabilities that are
doubly exponentiallysmall in the number of states of the game (i.e., the patience is doubly exponential).

In this paper we present another example of a reachability game where this is the case for thesafetyplayer as well.
The game Purgatory consists of a (potentially infinite) sequence ofescape attempts. In an escape attempt one player is
given the role of theescapeeand the other player is given the role as theguard. An escape attempt consists of at most
N rounds. In each round, the guard selects and hides a number between1 andm, and the escapee must try to guess
the number. If the escapee successfully guesses the numberN times, the game ends with the escapee as the winner.
If the escapee incorrectly guesses a number which is strictly larger than the hidden number, the game ends with the
guard as the winner. Otherwise, if the escapee incorrectly guesses a number which is strictly smaller than the hidden
number, the escape attempt is over and the game continues.

The game of Purgatory is such that the reachability player isalways given the role of the escapee, and the safety
player is always given the role of the guard. If neither player wins during an escape attempt (meaning there is an
infinite number of escape attempts) the safety player wins. Purgatory may be modelled as a concurrent reachability
game consisting ofN non-absorbing positions in which each player hasm actions. The value of each non-absorbing
position is 1. This means that the reachability player has, for anyε > 0, a stationary strategy that wins from each
non-absorbing position with probability at least1− ε [16], but such strategies must have doubly-exponential patience.
In fact forN sufficiently large andm ≥ 2, such strategies must have patience at least2m

N/3

for ε = 1 − 4m−N/2

[20]. For the safety player however, the situation is simple: anystrategy is optimal.
We introduce a game we call thePurgatory Duelin which the safety player must also use strategies of doubly-

exponential patience to play near optimally. The main idea of the game is that it forces the safety player to behave as
a reachability player. We can describe the new game as a variation on the above description of the Purgatory game.
The Purgatory Duel consists also of a (potentially infinite)sequence of escape attempts. But now, before each escape
attempt the role of the escapee is given to each player with probability 1

2 , and in each escape attempt the rules are as
described above. The game remains asymmetric in the sense that if neither player wins during an escape attempt, the
safety player wins.

The Purgatory Duel may be modelled as a concurrent reachability game consisting of2N + 1 non-absorbing
positions, in which each player hasm actions, except for a single position where the players eachhave just a single
action.

Technical contribution.The key non-trivial aspects of our proof are as follows: first, is to come up with the family of
games, namely, Purgatory Duel, where theǫ-optimal strategies, forǫ ≥ 0, for the players are symmetric, even though
the objectives are complementary; and then the precise analysis of the game needs to combine and extend several

4



ideas, such as refined analysis of matrix games, and analysisof perturbed Markov decision processes (MDPs) which
are one-player stochastic games.

Highlights. We highlight two features of our results, namely, the surprising aspects and the significance (see Sec-
tion 7.1 for further details).

1. Surprising aspects.The first surprising aspect of our result is the doubly-exponential lower bound for concurrent
safety games. The properties of strategies in concurrent safety games resemble concurrent disocunted games,
as in both cases optimal stationary strategies exist, and locally optimal strategies are optimal. We show that
in contrast to concurrent discounted games where exponential patience suffices for concurrent safety games
doubly-exponential patience is necessary. The second surprising aspect is the lower bound example itself. The
lower bound example is obtained as follows: (i) given Purgatory we first obtain simplified Purgatory by changing
the start state such that it deterministically goes to the next state; (ii) we then consider its dual where the roles of
the players are exchanged; and (iii) Purgatory duel is obtained by merging the start states of simplified Purgatory
and its dual. Both in simplified Purgatory and its dual, thereare only two value classes, and positional optimal
strategies exist for the safety player. Surprisingly we show that a simple merge operation gives a game with
linear number of value classes and the patience increases from 1 to doubly-exponential. Finally, the properties
of strategies in concurrent reachability and safety games differ substantially. An important aspect of our lower
bound example is that we show how to modify an example for reachability game to obtain the result for safety
games.

2. Significance.Our most important results are the lower bounds, and the mainsignificance is threefold. First,
the most well-studied way to obtain computational complexity result in games is to explicitly guess strategies,
and then verify the game obtained fixing the strategy. The lower bound for concurrent reachability games by
itself did not rule out that better complexity results can beobtained through better strategy complexity for safety
games (indeed, for constant number of value classes, we obtain a better complexity result than known before
due to the exponential bound on roundedness). Our doubly-exponential lower bound shows that in general the
method of explicitly guessing strategies would require exponential space, and would not yieldNP or coNP
upper bounds. Second, one of the most well-studied algorithm for games is the strategy-iteration algorithm.
Our result implies that any natural variant of the strategy-iteration algorithm for the safety player that explicitly
compute strategies require exponential space in the worst-case. Finally, in games, strategies that are witness to
the values and specify how to play the game, are as important as values, and our results establish the precise
strategy complexity (matching upper bound of roundedness with lower bounds of patience).

Related work.We have already discussed the relevant related works such as[30, 23, 16, 15, 22, 20, 14] on zero-sum
games. We discuss relevant related works for non-zero-sum games. The computational complexity ofconstrained
Nash equilibrium, which asks the existence of Nash (orǫ-Nash, forǫ > 0) equilibrium that guarantees at least a payoff
vector has been studied. The constrained Nash equilibrium problem is undecidable even for turn-based stochastic
games, or concurrent deterministic games with randomized strategies [35, 6]. The complexity of constrained Nash
equilibrium in concurrent deterministic games with pure strategies has been studied in [4, 5]. In contrast, we study
the complexity of computing some Nash equilibrium in randomized strategies in concurrent stochastic games, and our
result on roundedness implies that with safety objectives for all players the approximation of some Nash equilibrium
can be achieved inTFNP.

2 Definitions

Other number. Given a numberi ∈ {1, 2} let î be the other number, i.e., ifi = 1, then̂i = 2 and if i = 2, then̂i = 1.

Probability distributions. A probability distributiond over a finite setZ, is a mapd : Z → [0, 1], such that∑
z∈Z d(z) = 1. Fix a probability distributiond over a setZ. The distributiond is pure (Dirac) if d(z) = 1 for

somez ∈ Z and for convenience we overload the notation and letd = z. ThesupportSupp(d) is the subsetZ ′ of Z,
such thatz ∈ Z ′ if and only if d(z) > 0. The distributiond is totally mixedif Supp(d) = Z. Thepatienceof d is
maxz∈Supp(d)

1
d(z) , i.e., the inverse of the minimum non-zero probability. Theroundednessof d, if d(z) is a rational

number for allz ∈ Z, is the greatest denominator ofd(z). Note that roundness ofd is always at least the patience of
d. Given two elementsz, z′ ∈ Z, the probability distributiond = U(z, z′) overZ is such thatd(z) = d(z′) = 1

2 . Let
∆(Z) be the set of all probability distributions overZ.
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Concurrent game structure. A concurrent game structure fork players, consists of (1) a finite set ofstatesS,
of sizeN ; and (2) for each states ∈ S and each playeri a setAi

s of actions(andAi =
⋃

s A
i
s is the set of all

actions for playeri, for eachi; andA =
⋃

i A
i is the set of all actions) such thatAi

s consists of at mostm actions;
and (3) a stochastictransition functionδ : S × A1 × A2 × · · · × Ak → ∆(S). Also, a states is deterministicif
δ(s, a1, a2, . . . , ak) is pure (deterministic), for allai ∈ Ai

s and for alli. A states is calledabsorbingif Ai
s = {a} for

all i andδ(s, a, a, . . . , a) = s. The numberδmin is

min
s,a1,...,ak,s′∈Supp(δ(s,a1,a2,...,ak))

(δ(s, a1, a2, . . . , ak)(s
′)) ,

i.e., the smallest non-zero transition probability.

Safety and reachability objectives.Each playeri, who has a safety or reachability objective, is identified bya pair
(ti, S

i), whereti ∈ {Reach, Safety} andSi ⊆ S.

Concurrent games and how to play them.Fix a numberk of players. A concurrent game consists of a concurrent
game structure fork players and for each playeri a pair(ti, Si), identifying the type of that player. The gameG,
starting in states, is played as follows: initially a pebble is placed onv0 := s. In each time stepT ≥ 0, the pebble
is on some statevT and each player selects (simultaneously and independentlyof the other players, like in the game
rock-paper-scissors) an actionaiT+1 ∈ Ai

vT . Then, the game selectsvT+1 according to the probability distribution
δ(vT , a

1
T+1, a

2
T+1, . . . , a

k
T+1) and moves the pebble ontovT+1. The game then continues with time stepT + 1 (i.e.,

the game consists of infinitely many time steps). For a roundT , let aT+1 be the vector of choices of the actions for
the players, i.e.,(aT+1)i is the choice of playeri, for eachi. Round 0 is identified byv0 and roundT > 0 is then
identified by the pair(aT , vT ). A playPs, starting in statev0 = s, is then a sequence of rounds

(v0, (a1, v1), (a2, v2), . . . , (aT , vT ), . . . ) ,

and for eachℓ a prefix ofP ℓ
s of lengthℓ is then

(v0, (a1, v1), (a2, v2), . . . , (aT , vT ), . . . , (aℓ, vℓ)) ,

and we say thatP ℓ
s ends invℓ. For eachi, playeri wins in the playPs, if ti = Safety andvT ∈ Si for all T ≥ 0;

or if ti = Reach andvT ∈ Si, for someT ≥ 0. Otherwise, playeri loses. For eachi, playeri tries to maximize the
probability that he wins.

Strategies.Fix a playeri. A strategy is a recipe to choose a probability distributionover actions given a finite prefix of
a play. Formally, a strategyσi for playeri is a map fromP ℓ

s , for a playPs of lengthℓ starting at states, to a distribution
overAi

vℓ . Playeri followsa strategyσi, if given the current prefix of a play isP ℓ
s , he selectsaℓ+1 according toσi(P

ℓ
s ),

for all playsPs starting ats and all lengthsℓ. A strategyσi for playeri, is stationary, if for all ℓ andℓ′, and all pair of
playsPs andP ′

s′ , starting at statess ands′ respectively, such thatP ℓ
s and(P ′)ℓ

′

s′ ends in the same statet, we have that
σi(P

ℓ
s ) = σi((P

′)ℓ
′

s′); and we writeσi(t) for the unique distribution used for prefix of plays ending int. Thepatience
(resp.,roundedness) of a strategyσi is the supremum of the patience (resp., roundedness) of the distributionσi(P

ℓ
s ),

over all playsPs starting at states, and all lengthsℓ. Also, a strategyσi is pure(resp.,totally mixed) if σi(P
ℓ
s ) is pure

(resp., totally mixed), for all playsPs starting ats and all lengthsℓ. A strategy ispositionalif it is pure and stationary.
For each playeri, letΣi be the set of all strategies for the respective player.

Strategy profiles and Nash equilibria.A strategy profileσ = (σi)i is a vector of strategies, one for each player. A
strategy profileσ defines a unique probability measure on plays, denotedPrσ, when the players follow their respective
strategies [36]. Letu(G, s, σ, i) be the probability that playeri wins the gameG when the players followσ and the
play starts ins (i.e., the utility or payoff for playeri). Given a strategy profileσ = (σi)i and a strategyσ′

i for playeri,
the strategy profileσ[σ′

i] is the strategy profile where the strategy for playeri is σ′
i and the strategy for playerj is σj

for j 6= i. Fix a states andε ≥ 0. A strategy profileσ forms anε-Nash equilibrium from states if for all i and
all strategiesσ′

i for playeri, we have thatu(G, s, σ, i) ≥ u(G, s, σ[σ′
i], i) − ε. A strategy profileσ forms anε-Nash

equilibriumif it forms anε-Nash equilibrium from all statess. Also a strategy profile forms aNash equilibrium(resp.,
from states, for somes) if it forms a 0-Nash equilibrium (resp., from states). We say that a strategy profile has a
property (e.g., is stationary) if each of the strategies in the profile has that property.
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2.1 Zero-sum concurrent stochastic games

A zero-sum game consists of two players with complementary objectives. Since we only consider reachability and
safety objectives, a zero-sum concurrent stochastic game consists of a two-player concurrent stochastic game with
reachability objective for player 1 and the complementary safety objective for player 2 (such a game is also referred
to as concurrent reachability game).

Concurrent reachability game. A concurrent reachability game is a concurrent game with twoplayers, identified by
(Reach, S1) and(Safety, S \ S1). Observe that in such games, exactly one player wins each play (this implies that
the games are zero-sum). Note that for all strategy profilesσ we haveu(G, s, σ, 1) + u(G, s, σ, 2) = 1. For ease of
notation and tradition, we writeu(G, s, σ1, σ2) for u(G, s, σ1, σ2, 1), for all concurrent reachability gamesG, states
s, and strategy profilesσ = (σ1, σ2). Also if the gameG is clear from context we drop it from the notation.

Values of concurrent reachability games.Given a concurrent reachability gameG, theupper valueof G starting in
s is

val(G, s) = sup
σ1∈Σ1

inf
σ2∈Σ2

u(G, s, σ1, σ2) ;

and thelower valueof G starting ins is

val(G, s) = inf
σ2∈Σ2

sup
σ1∈Σ1

u(G, s, σ1, σ2) .

As shown by [16] we have that
val(G, s) := val(G, s) = val(G, s) ;

and this common number is called thevalueof s. We will sometimes write val(s) for val(G, s) if G is clear from the
context. We will also write val for the vector where vals = val(s).

(ε-)optimal strategies for concurrent reachability games.For anε ≥ 0, a strategyσ1 for player1 (resp.,σ2 for
player 2) is calledε-optimal if for each states we have that val(s) − ε ≤ infσ2∈Σ2 u(s, σ1, σ2) (resp., val(s) + ε ≥
supσ1∈Σ1 u(s, σ1, σ2)). For eachi, a strategyσi for playeri is calledoptimalif it is 0-optimal. There exist concurrent
reachability games in which player1 does not have optimal strategies, see [16] for an example2. On the other hand
in all gamesG player1 has a stationaryε-optimal strategy for eachε > 0. In all games player 2 has an optimal
stationary strategy (thus also anε-optimal stationary strategy for allε > 0) [30, 23]. Also, given a stationary strategy
σ1 for player 1 we have that there exists a positional strategyσ2, such thatu(s, σ1, σ2) = infσ′

2∈Σ2 u(s, σ1, σ
′
2), i.e.,

we only need to consider positional strategies for player 2.Similarly, we only need to consider positional strategies
for player 1, if we are given a stationary strategy for player2.

(ε-)optimal strategies compared to (ε-)Nash equilibria. It is well-known and easy to see that for concurrent reach-
ability games, a strategy profileσ = (σ1, σ2) is optimal if and only ifσ forms a Nash equilibrium. Also, ifσ1 is
ε-optimal andσ2 is ε′-optimal, for someε andε′, thenσ = (σ1, σ2) forms an(ε+ε′)-Nash equilibrium. Furthermore,
if σ = (σ1, σ2) forms anε-Nash equilibrium, for someε, thenσ1 andσ2 areε-optimal3.

Markov decision processes and Markov chains.For each playeri, aMarkov decision process (MDP) for playeri is
a concurrent game where the size ofAj

s is 1 for all s andj 6= i. A Markov chainis an MDP for each player (that is
the size ofAj

s is 1 for all s andj). A closed recurrent setof a Markov chainG is a maximal (i.e., no closed recurrent
set is a subset of another) setS′ ⊆ S such that for all pairs of statess, s′ ∈ S, the play starting ats reaches states′

eventually with probability 1 (note that it does not depend on the choices of the players as we have a Markov chain).
For all starting states, eventually a closed recurrent set is reached with probability 1, and then plays stay in the closed
recurrent set. Observe that fixing a stationary strategy forall but one player in a concurrent game, the resulting game
is an MDP for the remaining player. Hence, fixing a stationarystrategy for each player gives a Markov chain.

2note that it is not because that we require the strategy to be optimal for each start state, since if there was one for each start state separately then
there would be one for all, since this is not just for stationary strategies

3observe that the two latter properties implies the former, but all are included to make it clear that there is a strong connection

7



2.2 Matrix games and the value iteration algorithm

A (two-player, zero-sum) matrix game consists of a matrixM ∈ Rr×c. We will typically let M refer to both the
matrix game and the matrix and it should be clear from the context what it means. A matrix gameM is played as
follows: player 1 selects a rowa1 and at the same time, without knowing which row was selected by player 1, player 2
selects a columna2. Theoutcomeis thenMa1,a2 . Player 1 then tries to maximize the outcome and player 2 tries to
minimize it.

Strategies in matrix games.A strategyσ1 (resp.,σ2) for player 1 (resp., player 2) is a probability distribution over
the rows (resp., columns) ofM . A strategy profileσ = (σ1, σ2) is a pair of strategies, one for each player. Given a
strategy profileσ = (σ1, σ2) the payoffu(M,σ1, σ2) under those strategies is the expected outcome if player 1 picks
row a1 with probabilityσ1(a1) and player 2 picks columna2 with probabilityσ2(a2) for eacha1 anda2, i.e.,

u(M,σ1, σ2) =
∑

a1

∑

a2

Ma1,a2 · σ1(a1) · σ2(a2) .

Values in matrix games.Theupper valueof a matrix game isval(M) = supσ1
infσ2 u(M,σ1, σ2). Thelower value

of a matrix game is val(M) = infσ2 supσ1

∑
a1

u(M,σ1, σ2). One of the most fundamental results in game theory, as
shown by [37], is that val(M) := val(M) = val(M). This common number is called thevalue.

(ε-)optimal strategies in matrix games.A strategyσ1 for player 1 isε-optimal, for some numberε ≥ 0 if val(M)−
ε ≤ infσ2 u(M,σ1, σ2). Similarly, a strategyσ2 for player 2 isε-optimal, for some numberε ≥ 0 if val(M) + ε ≥
supσ1

u(M,σ1, σ2). A strategy isoptimal if it is 0-optimal. There exists an optimal strategy for each player in all
matrix games [37]. Given an optimal strategyσ1 for player 1, consider the vectorv, such thatvj = u(M,σ1, j) for
each columnj. Then we have thatvj = val(M) for eachj such that there exists an optimal strategyσ2 for player 2,
whereσ2(j) > 0. Similar analysis holds for optimal strategies of player 2.This also shows that given an optimal
strategyσ1 for player 1 we have thatu(M,σ1, σ2) is minimized for some pure strategyσ2 and similarly for optimal
strategiesσ2 for player 2. Given a matrix gameM , an optimal strategy for each player and the value ofM can be
computed in polynomial time using linear programming.

The matrix gameAs[v] and As. Fix a concurrent reachability gameG. Given a vectorv in RS and a states (in G),
the matrix gameAs[v] = [ai,j ] is the matrix game whereai,j =

∑
s′∈S δ(s, i, j)(s′) · vs′ . Given a states, the matrix

gameAs is the matrix gameAs[val]. As shown by [30, 23], each optimal stationary strategyσ2 for player 2 inG is
such that for each states the distributionσ2(s) is an optimal strategy in the matrix gameAs. Also, conversely, ifσ2(s)
is an optimal strategy inAs for eachs, thenσ2 is an optimal stationary strategy inG. Furthermore, also as shown
by [30, 23], we have that val(s) = val(As) for each states.

The value iteration algorithm. The conceptually simplest algorithm for concurrent reachability games is thevalue
iterationalgorithm, which is an iterative approximation algorithm.The idea is as follows: Given a concurrent reacha-
bility gameG, consider the gameGt where atime-limit t (some non-negative integer) has been introduced. The game
Gt is then played asG, except that player 2 wins if the time-limit is exceeded (i.e., he wins after roundt unless a state
in S1 has been reached before that). (The gameGt has a value like in the above definition of matrix games since the
game only has a finite number of pure strategies and thus can bereduced to a matrix game). The value ofGt starting
in states then converges to the value ofG starting ins ast goes to infinity as shown by [16]. More precisely, the
algorithm is defined on a vectorvt which is the vector wherevts is the value ofGt starting ins. We can computevts
recursively for increasingt as follows

vts =





1 if s ∈ S1

0 if s 6∈ S1 andt = 0

val(As[vt−1]) if s 6∈ S1 andt ≥ 1 .

We have thatvts ≤ vt+1
s ≤ val(s) for all t ands, and for alls we havelimt→∞ vts = val(s), as shown by [16]. As

shown by [20, 21] the smallest time-limitt such thatvts ≥ val(s) − ε can be as large asε−mΩ(N)

for some games (of
N states and at mostm actions in each state for each player) ands, for ε > 0. On the other hand it is also at most

ε−mO(N2)

as shown by [20].
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3 Zero-sum Concurrent Stochastic Games: Patience Lower Bound

In this section we will establish the doubly-exponential lower bound on patience for zero-sum concurrent stochastic
games. First we define the game family, namely,Purgatory Dueland we also recall the familyPurgatorythat will
be used in our proofs. We split our proof about the patience inPurgatory Duel in three parts. First we present some
refined analysis of matrix games, and use the analysis to firstprove the lower bound for optimal strategies, and then
for ε-optimal strategies, forε > 0.

The Purgatory Duel. In this paper we specifically focus on the following concurrent reachability game, the
Purgatory Duel4, defined on a pair of parameters(n,m). The game consists ofN = 2n + 3 states, namely
{v11 , v

1
2 , . . . , v

1
n, v

2
1 , v

2
2 , . . . , v

2
n, vs,⊤,⊥} and all butvs are deterministic. To simplify the definition of the game,

let v10 = v2n+1 = ⊥ andv20 = v1n+1 = ⊤. The states⊤ and⊥ are absorbing. For eachi ∈ {1, 2} andj ∈ {1, . . . , n},
the statevij is such thatA1

vi
j
= A2

vi
j
= {1, 2, . . . ,m} and for eacha1, a2 we have that

δ(vij , a1, a2) =





vs if a1 > a2

vi0 if a1 < a2

vij+1 if a1 = a2 .

Finally, A1
vs = A2

vs = {a} andδ(vs, a, a) = U(v11 , v
2
1). Furthermore,S1 = {⊤}. There is an illustration of the

Purgatory Duel withm = n = 2 in Figure 6.

The game Purgatory. We will also use the gamePurgatoryas defined by [20] (and also in [22] for the case of
m = 2). Purgatory is similar to the Purgatory Duel and hence the similarity in names. Purgatory is also defined on a
pair of parameters(n,m). The game consists ofN = n + 2 states, namely,{v1, v2, . . . , vn,⊤,⊥} and each state is
deterministic. To simplify the definition of the game, letvn+1 = ⊤. For eachj ∈ {1, . . . , n}, the statevj is such that
A1

vj = A2
vj = {1, 2, . . . ,m} and for eacha1, a2 we have that

δ(vj , a1, a2) =





v1 if a1 > a2

⊥ if a1 < a2

vj+1 if a1 = a2 .

The states⊤ and⊥ are absorbing. Furthermore,S1 = {⊤}. There is an illustration of Purgatory withm = n = 2 in
Figure 2.

3.1 Analysis of matrix games

In this section we present some refined analysis of some simple matrix games, which we use in the later sections to
find optimal strategies for the players and the values of the states in the Purgatory Duel.

Definition 1. Given a positive integerm and realsx, y andz, letMx,y,z,m be the(m×m)-matrix withx below the
diagonal,y in the diagonal andz above the diagonal, i.e.,

Mx,y,z,m =




y z z . . . z
x y z . . . z
... x

. . .
. . .

...

x
...

. . . y z
x x . . . x y




.

We first explain the significance of the matrix gameMx,y,z,m in relation to Purgatory Duel. Consider the Purgatory
Duel defined on parameters(n,m), for somen. We will later establish that for anyj, letv (resp.,v′) be statev1j (resp.,

4To allow a more compact notation, we have here exchanged the criterias for when the safety player wins as a guard and when the escape attempt
ends, as compared to the textual description of the game given in the introduction.
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⊤

v12

v11

vs

v21

v22

⊥

Figure 1: An illustration of the Purgatory Duel withm = n = 2. The two dashed edges have probability1
2 each.
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⊤

v2

v1

⊥

Figure 2: An illustration of Purgatory withm = n = 2.

v2j ) of the Purgatory Duel, then we have thatAv = M0,val(v1
j+1),val(vs),m (resp.,Av′

= M1,val(v2
j+1),val(vs),m). In

this section we show that for0 < z < y we have thatM = M0,y,z,m is such that val(M) > z and each optimal
strategy for either player is totally mixed. Similarly, for1 > z′ > y′ we show thatM ′ = M1,y′,z′,m is such that
val(M ′) < z and each optimal strategy for either player is totally mixed. We also compute the value and the patience
of each optimal strategy in the matrix gameM0, 12+ε, 12 ,m (since we will establish in the next section, using the results
of this section, that val(vs) = 1

2 and val(v1j ) > val(s) for all j).

Lemma 2. For all positive integersm and realsy andz such that0 < z < y, the matrix gameM = M0,y,z,m has
value strictly abovez.

Proof. Let ε > 0 be some number to be defined later. Consider the probability distributionσε
1 given by

σε
1(a) =

{
εa−1 − εa if 1 ≤ a ≤ m− 1

εm−1 if a = m .

If player 2 plays columna againstσ1, for a ≤ m− 1, then the payoffu(M,σ1, a) is y · (εa−1 − εa) + y · (1− εa−1);
and if player 2 plays columnm, then the payoffu(M,σ1,m) is y · (εm−1) + z · (1 − εm−1). For anyε such that
y · (1− ε) > z, the payoff is strictly greater thanz implying that the value ofM is strictly greater thanz.

Lemma 3. For all positive integersm and realsy andz such that0 < z < y, each optimal strategy for player 1 in
the matrix gameM0,y,z,m is totally mixed.

Proof. Consider some strategyσ1 for player 1 inM0,y,z,m which is not totally mixed. Thus there exists some rowa,
whereσ1(a) = 0. Consider the pure strategyσ2 that plays columna with probability 1. Playingσ1 againstσ2 ensures
that each outcome is eitherz or 0, i.e., the payoff is at mostz which is strictly less than the value by Lemma 2.

Lemma 4. For all positive integersm and realsy andz such that0 < z < y, each optimal strategy for player 2 in
the matrix gameM = M0,y,z,m is totally mixed.
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Proof. Given a strategyσ1 for player 1 and two rowsa′ anda′′, let the strategyσ1[a
′ → a′′] be the strategy where the

probability mass ona′ is moved toa′′, i.e.,

σ1[a
′ → a′′](a) =





σ1(a) if a′ 6= a 6= a′′

0 if a = a′

σ1(a
′) + σ1(a

′′) if a = a′′ .

Consider some optimal totally mixed strategyσ1 for player 1, which exists by Lemma 3 and letv be the value of
M . Consider some strategyσ2 for player 2 such thatu(M,σ1, σ2) = v, butσ2 is not totally mixed. We will argue that
σ2 is not optimal. This shows that any optimal strategyσ∗

2 is totally mixed, since any optimal strategyσ2 is such that
u(M,σ1, σ2) = v.

Let b′ be the first column such thatσ′
2(b) = 0. There are two cases, eitherb′ = 1 or b′ > 1. If b′ = 1 let b′′ be the

first action such thatσ2(b
′′) > 0. Let σ′

1 = σ1[b
′ → b′′]. The payoffu(M,σ′

1, σ2) of playingσ′
1 againstσ2 is strictly

more than the payoffu(M,σ1, σ2) of playingσ1 againstσ2. This is because the payoffu(M,σ′
1, b

′′) is such that

u(M,σ′
1, b

′′) = σ′
1(b

′′) · y + z ·

b′′−1∑

a=1

σ′
1(a)

= σ′
1(b

′′) · y + z ·

b′′−1∑

a=2

σ′
1(a)

= (σ1(b
′′) + σ1(1)) · y + z ·

b′′−1∑

a=2

σ′
1(a)

> σ1(b
′′) · y + z ·

b′′−1∑

a=1

σ1(a)

= u(M,σ1, b
′′) ,

where the second equality comes from thatσ′
1(1) = 0. The inequality comes from thaty > z. Also, the payoff

u(M,σ′
1, b), for b > b′′ is such that

u(M,σ′
1, b) = σ′

1(b) · y + z ·

b−1∑

a=1

σ′
1(a)

= σ1(b) · y + z ·

b−1∑

a=1

σ1(a) = u(M,σ1, b) ,

becauseσ′
1 is not different fromσ1 on those actions. We can then find the payoffu(M,σ′

1, σ2) as follows

u(M,σ′
1, σ2) =

m∑

b=1

σ2(b) · u(M,σ′
1, b)

=

m∑

b=b′′

σ2(b) · u(M,σ′
1, b)

= σ2(b
′′) · u(M,σ′

1, b
′′) +

m∑

b=b′′+1

σ2(b) · u(M,σ′
1, b)

> σ2(b
′′) · u(M,σ1, b

′′) +

m∑

b=b′′+1

σ2(b) · u(M,σ1, b)

= u(M,σ1, σ2) ,
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where the second equality comes from thatb′′ is the first actionσ2 plays with positive probability. Since the payoff
u(M,σ1, σ2) is the value, by definition ofσ2, and the payoffu(M,σ′

1, σ2) is strictly more, the strategyσ2 cannot be
optimal. This completes the case whereb′ = 1.

The case whereb′ 6= 1 follows similarly but considersσ′′
1 = σ1[b

′ → 1] instead ofσ′
1.

Lemma 5. For all positive integersm and 0 < ε ≤ 1
2 , the matrix gameM = M0, 12+ε, 12 ,m has the following

properties:

• Property 1. The patience of any optimal strategy is (i) at least(2ε)−m+1 and (ii) decreasing inε.

• Property 2. The value is (i) at most12 + ε · (2ε)m−1 and (ii) increasing inε.

• Property 3. Any optimal strategyσ1 for player 1 (resp.,σ2 for player 2) is such thatσ1(1) > 1
2 (resp.,

σ2(m) > 1
2 ).

• Property 4. For ε = 1
2 , the value isval(M) = 1

2 +
1

2m+1−2 and the patience of any optimal strategy is2m − 1.

Proof. Letσi be an optimal strategy for playeri in M , for eachi. By Lemma 3 and Lemma 4 the strategyσi is totally
mixed for eachi. We can therefore consider the vectorv. Recall thatvj = u(M,σ1, j) and that for eachj such that
σ2(j) > 0 we have thatvj = val(M). Hence, sinceσ2 is totally mixed, all entries ofM are val(M). For any row
a′ < m, thatva′ = va′+1 implies that

(
1

2
+ ε) · σ1(a

′) +
1

2
·

a′−1∑

a=1

σ1(a)

= (
1

2
+ ε) · σ1(a

′ + 1) +
1

2
·

a′∑

a=1

σ1(a) ⇒

ε · σ1(a
′) = (

1

2
+ ε) · σ1(a

′ + 1) ⇒

σ1(a
′) =

1
2 + ε

ε
· σ1(a

′ + 1) ,

indicating thatσ1(a
′) > σ1(a

′ + 1) and thus the patience is1/σ1(m). Also, sinceσ1 is a probability distribution

1 =

m∑

a=1

σ1(a)

= σ1(m) ·

m∑

a=1

( 1
2 + ε

ε

)m−a

We then get that

σ1(m) =
1

∑m
a=1

(
1
2+ε

ε

)m−a

We have that
1
2+ε

ε = 1 + 1
2ε is decreasing inε. This indicates thatσ1(m) is increasing inε and thus the patience is

decreasing inε. This shows (ii) of Property 1 for player 1. We also have that val(M) = vm indicating that

val(M) = vm

= σ1(m) · (
1

2
+ ε) +

1

2
·

m−1∑

a=1

σ1(a)

= ε · σ1(m) +
1

2

and thus, the value is increasing inε (becauseε andσ1(m) both are). This shows (ii) of Property 2.
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Also, we get that,

σ1(m) =
1

∑m
a=1

(
1
2+ε

ε

)m−a

=
εm−1

∑m
a=1(

1
2 + ε)m−a · εa−1

=
εm−1

(
1
2

)m−1
+ ε · p(ε)

,

wherep is some polynomial of degreem − 1 in which all terms have a positive sign (p is found by multiplying out∑m
a=1(

1
2 + ε)m−a · εa−1). Hence, we have thatσ1(m) is at most

σ1(m) =
εm−1

(
1
2

)m−1
+ ε · p(ε)

< (2ε)m−1 .

Thus, the patience is at least(2ε)−m+1. This shows (i) of Property 1 for player 1. Using that val(M) = ε ·σ1(m)+ 1
2

from above, we get that val(M) < 1
2 + ε · (2ε)m−1. This shows (i) of Property 2.

Furthermore, we can also consider the vectorv′ such thatv′j = u(M, j, σ2) for all j (which like v has all entries
equal to val(M)). Since the expression, whenσ2 is taken to be an unknown vector, for thej’th entry ofv′ is the same
as for them + 1 − j’th entry of v, whenσ1 is taken to be an unknown vector, we see thatσ1(a) = σ2(m + 1 − a),
implying that the patience of player 2’s optimal strategiesis also at least(2ε)−m+1 and that it is decreasing inε. This
shows Property 1 for player 2.

Observe that since the value is above1
2 , by Lemma 2, we have thatσ1(1) > 1

2 (because otherwise, if player 2
plays1 with probability 1, the payoff will not be above12 ) and thus alsoσ2(m) > 1

2 . This shows Property 3.
Also, for ε = 1

2 we see that

σ1(m) =
1

∑m
a=1

(
1
2+ε

ε

)m−a

=
1∑m

a=1 2
m−a

=
1

2m − 1
.

Similarly to above, we also get thatσ2(m) = 1
2m−1 and that val(M) = 1

2 + 1
2m+1−2 . This shows Property 4 and

completes the proof.

Lemma 6. Given a positive integerm and realsy andz such that1 > z > y, the matrix gameM = M1,y,z,m has
the following properties:

• The valueval(M) < z.

• Each optimal strategyσi for playeri is such that there exists an optimal strategyσ̂i for player̂i in M0,1−y,1−z,m

whereσi(j) = σ̂i(m− j + 1).

Proof. Let a positive integerm and realsy andz such that1 > z > y be given. ConsiderM and letv be the value of
M . Exchange the roles of the players by exchanging the rows andcolumns and multiply the matrix by−1. We get the
matrix

M1 =




−y −1 −1 . . . −1
−z −y −1 . . . −1
... −z

. . .
. . .

...

−z
...

. . . −y −1
−z −z . . . −z −y




.
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We then have that each optimal strategyσ1 in M is an optimal strategy for player 2 inM1 and similarly, each optimal
strategyσ2 for player 2 inM is an optimal strategy for player 1 inM1 (and vice versa). Also, the valuev1 of M1 is
v1 := −v.

LetM2 be the matrix whereM2
a,b = M1

m+1−a,m+1−b, i.e.,

M2 =




−y −z −z . . . −z
−1 −y −z . . . −z
... −1

. . .
. . .

...

−1
...

. . . −y −z
−1 −1 . . . −1 −y




.

For eachi, and for any optimal strategyσi for playeri in M1 the strategyσ′
i is optimal for playeri in M2, where

σ′
i(a) = σi(m+ 1− a) for eacha (and vice versa). Also, the valuev2 of M2 is v2 := v1 = −v.

Next, letM3 be the matrixM2 where we add 1 to each entry, i.e.,

M3 =




1− y 1− z 1− z . . . 1− z
0 1− y 1− z . . . 1− z
... 0

. . .
. . .

...

0
...

. . . 1− y 1− z
0 0 . . . 0 1− y




.

For eachi, it is clear that an optimal strategy inσi for playeri in M2 is an optimal strategy for playeri in M3 and that
the valuev3 is v3 := 1 + v2 = 1− v. Also, we see thatM3 = M0,1−y,1−z,m and that0 < 1− z < 1− y.

We then get that1− v > 1− z from Lemma 2 and thusv < z.

3.2 The patience of optimal strategies

In this section we present an approximation of the values of the states and the patience of the optimal strategies in the
Purgatory Duel. We first show that the values of the states (besides⊤ and⊥) are strictly between 0 and 1.

Lemma 7. Each state
v ∈ {v11 , v

1
2 , . . . , v

1
n, v

2
1 , v

2
2 , . . . , v

1
2 , vs}

is such thatval(v) ∈ [ 1
mn+2 , 1−

1
mn+2 ]

Proof. Fix v ∈ {v11 , v
1
2 , . . . , v

1
n, v

2
1 , v

2
2 , . . . , v

1
2 , vs}. The fact that val(v) ≥ 1

mn+2 follows from that if player 1 plays
uniformly at random all actions in every statevij for all i, j, then against all strategies for player 2 there is a probability
of at least 1m to go (1) fromv1j to v1j+1, for all j; and (2) fromvs to v11 ; and (3) fromv2j to vs, for all j. By following
such steps for at mostn + 2 steps, the statev1n+1 = ⊤ is reached. Similarly that val(v) ≤ 1 − 1

mn+2 follows from
player 2 playing uniformly at random all actions in every statevij for all i, j (and using that⊤ cannot be reached from
⊥).

Next we show that every optimal stationary strategy for player 2 must be totally mixed.

Lemma 8. Letσ2 be an optimal stationary strategy for player 2. The distributionσ2(v
i
j) is totally mixed andval(v1j ) >

val(vs) > val(v2j ), for all i, j.

Proof. Let v = vij for some i, j. We will use that val(v) = val(Av). For i = 1 we have thatAv =

M0,val(v1
j+1),val(vs),m and fori = 2 we have thatAv = M1,val(v2

j+1),val(vs),m.
Consider firsti = 1. We will show using induction inj (with base casej = n and proceeding downwards), that

val(v1j ) > val(vs) and that the distributionσ2(v
1
j ) is totally mixed.

Base case,j = n: We have thatAv = M0,1,val(vs),m. By Lemma 7 we have that1 > val(vs) > 0 and thus, that
val(v) > val(vs) follows from Lemma 2. Thatσ2(v) is totally mixed follows from Lemma 4.

15



Induction case,j ≤ n − 1: We have thatAv = M0,val(v1
j+1),val(vs),m. By Lemma 7 we have that val(vs) > 0

and by induction we have that val(v1j+1) > val(vs) and thus, that val(v) > val(vs) follows from Lemma 2. Thatσ2(v)
is totally mixed follows from Lemma 4.

The argument fori = 2 is similar but uses Lemma 6 together with Lemma 3, instead of Lemma 4 and Lemma 2.

Next, we show that if either player follows a stationary strategy that is totally mixed on at least one side (that is, if
there is ani′, such that for eachj the stationary strategy plays totally mixed invi

′

j ), then eventually either⊤ or ⊥ is
reached with probability 1.

Lemma 9. For anyi andi′, letσi be a stationary strategy for playeri, such thatσi(v
i′

j ) is totally mixed for allj. Let
σ̂i be some positional strategy for the other player. Then, eachclosed recurrent set in the Markov chain defined by the
game andσi andσ̂i consists of only the state⊤ or only the state⊥.

Proof. In the Markov chain defined by the game andσi andσ̂i, we have that there are at most two closed recurrent
sets, namely, the one consisting of only⊤ and the one consisting of only⊥. The reasoning is as follows: If either⊤
or ⊥ is reached, then the respective state will not be left. Also,for eachj, sinceσi is totally mixed there is a positive
probability to go to eithervi

′

0 or vi
′

j+1 from vi
′

j (the remaining probability goes tovs). The probability to go fromvs
to vi

′

1 in one step is12 . Also if neither⊤ nor⊥ has been reached, thenvs is visited after at mostn + 1 steps. Hence,
in everyn+ 1 steps there is a positive probability that in the nextn + 1 steps either⊤ or ⊥ is reached (i.e., fromvs
there is a positive probability that the next states are either (i) vi

′

1 , . . . , v
i′

j , v
i′

0 ; or (ii) vi
′

1 , . . . , v
i′

n , v
i′

n+1). This shows
that eventually either⊤ or⊥ is reached with probability 1.

Remark 10. Note that Lemma 9 only requires that the strategyσi is totally mixed on one “side” of the Purgatory
Duel. For the purpose of this section, we do not use that it only requires one side to be totally mixed, since we only use
the result for optimal strategies for player 2, which are totally mixed by Lemma 8. However the lemma will be reused
in the next section, where the one sidedness property will beuseful.

The following definition basically“mirrors” a strategyσi for playeri, for eachi and gives it to the other player.
We show (in Lemma 12) that ifσ2 is optimal for player 2, then the mirror strategy is optimal for player 1. We also
show that ifσ2 is anε-optimal strategy for player 2, for0 < ε < 1

3 , then so is the mirror strategy for player 1 (in
Lemma 16).

Definition 11 (Mirror strategy). Given a stationary strategyσi for playeri, for eitheri, let the mirror strategyσσi

î
for

player î be the stationary strategy whereσσi

î
(vî

′

j ) = σi(v
i′

j ) for eachi′ andj.

We next show that player 1 has optimal stationary strategiesin the Purgatory Duel and give expressions for the
values of states.

Lemma 12. Let σ2 be some optimal stationary strategy for player 2. Then the mirror strategyσσ2

1 is optimal for

player 1. We haveval(vs) = 1
2 andval(vij) = 1− val(vîj), for all i, j.

Proof. Consider some optimal stationary strategyσ2 for player 2. It is thus totally mixed, by Lemma 8. Letσ1 = σσ2

1

be the mirror strategy for player 1.
Playingσ1 againstσ2 and starting invs we see that we have probability12 to reach⊤ and probability12 to reach

⊥, by symmetry and Lemma 9. This shows that the value is at least1
2 becauseσ2 is optimal. On the other hand,

consider some stationary strategyσ′
1 for player 1, and the mirror strategyσ′

2 = σ
σ′

1
2 for player 2. If player 2 plays

σ′
2 againstσ′

1, then the probability to eventually reach⊥ is equal to the probability to eventually reach⊤ and then
there is some probabilityp (perhaps 0) that neither will be reached. The payoffu(vs, σ

′
1, σ

′
2, 1) is then1−p

2 ≤ 1
2 . This

shows that player 1 cannot ensure value strictly more than1
2 , which is then the value ofvs. Finally, we argue thatσ1

is optimal. If not, then considerσ∗
2 such thatu(vs, σ1, σ

∗
2 , 1) < 1/2, and then the mirror strategyσ∗

1 = σ
σ∗

2
1 ensures

thatu(vs, σ∗
1 , σ2, 1) > 1/2 contradicting optimality ofσ2.

Similarly, for anyi, j, playingσ1 againstσ2 and starting invij we see that the probability with which we reach⊤

is equal to the probability of reaching⊥ starting invîj and vice versa, by symmetry. Also, by Lemma 9 the probability

to eventually reach either⊥ or⊤ is 1. Observe that the probability to reach⊥ starting invîj is at least1 − val(vîj), by
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optimality ofσ2 and that with probability 1 either⊥ is reached or⊤ is reached. Also, again becauseσ2 is optimal, the
probability to reach⊤ starting invij is at most val(vij). This shows that val(vij) ≥ 1− val(vîj). Using an argument like

the one above, we obtain that val(vij) = 1− val(vîj) and thatσ1 is optimal if the play starts invij .

Finally, we give an approximation of the values of states in the Purgatory Duel and a lower bound on the patience
of any optimal strategy of2(m−1)2mn−2

.

Theorem 13. For eachj in {1, . . . , n}, the value of statev1j in the Purgatory Duel is less than12 + 2(1−m)·mn−j−1

and for any optimal stationary strategyσi for either playeri, the patience ofσi(v
1
j ) is at least2(m−1)2mn−j−1

.

Proof. Consider some optimal stationary strategyσ2 for player 2. We will show using induction inj that val(v1j ) is

less than12 + 2(1−m)·mn−j−1 and that the patience ofσ2(v
1
j ) is at least2(m−1)2mn−j−1

. Note that using Lemma 12, a
similar result holds for optimal strategies for player 1. Let v = vij .

Base case,j = n: We see that the matrixAv is M0,1, 12 ,m and thus, by Lemma 5 (Property 1 and 2) we have that
the value

val(v) = val(Av)

=
1

2
+

1

2m+1 − 2

<
1

2
+ 2−m

=
1

2
+ 2(1−m)·m0−1 ,

andσ2(v) has patience2m − 1 > 2(m−1)2·m−1

.

Induction case,j ≤ n − 1: We see that the matrixAv is M = M0,val(vi
j+1),

1
2 ,m. By induction we have that

val(vij+1) < 1
2 + 2(1−m)·mn−j−1−1. Let ε = 2(1−m)·mn−j−1−1 and considerM ′ = M0, 12+ε, 12 ,m. By Lemma 5

(Property 1 and 2) we get that val(M ′) ≥ val(M) and that the patience ofM ′ is smaller than the one forM . Also, we
get that

val(M ′) <
1

2
+ ε · (2ε)m−1

=
1

2
+ 2m−1 · 2(1−m)·mn−j−m

=
1

2
+ 2(1−m)·mn−j−1 ,

and that the patience ofM ′ (and thusM ) is at least

(2ε)−m+1 = 2m−1 · 2(1−m)2·mn−j−1−m+1

= 2(1−m)2·mn−j−1

.

This completes the proof.

Remark 14. It can be seen using induction that the value of each state in the Purgatory Duel is a rational number.
First notice thatv1n andv2n are the value of a matrix game with numbers in{0, 12 , 1} and hence are rational. Similarly,

using induction ini, we see that forj ∈ {1, 2} the numbervji is rational, since it is the value of a matrix game with
numbers in{vj0,

1
2 , v

j
i+1} (recall thatv10 = 0 andv20 = 1).
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3.3 The patience ofε-optimal strategies

In this section we consider the patience ofε-optimal strategies for0 < ε < 1
3 . First we argue that each such strategy

for player 2 is totally mixed on one side.

Lemma 15. For all 0 < ε < 1
2 , eachε-optimal stationary strategyσ2 for player 2 is such thatσ2(v

2
j ) is totally mixed,

for all j.

Proof. Fix 0 < ε < 1
2 and fix some stationary strategyσ2 such that there existsj such thatσ2(v

2
j ) is not totally mixed.

We will show thatσ2 is notε-optimal.
Let η be such that0 < η < 1

2 − ε. Let a be an action such thatσ2(v
2
j )(a) = 0. Let ση

1 be anη-optimal
strategy inPurgatory(not the Purgatory Duel) (with the same parametersn andm). Let σ1 be the strategy such that
(i) σ1(v

2
j′ )(1) = 1 for eachj′; and (ii) σ1(v

2
j )(a) = 1; and (iii) σ1(v

1
j ) = ση

1 (vj). Consider a play starting invs.
Whenever the play is in statev2j′ , for somej′ 6= j in each step there is a probability of either going back tovs or going
to v2j′+1. Thus, the play either reachesv2j or has gone back tovs. If it reachesv2j , then the next state is eithervs or
⊤ (i.e.,v2j+1 cannot be reached). If the play is inv11 , then there is a positive probability to reach⊤ before going back

to vs, which is at least1−η
η times the probability to reach⊥ before going back tovs, sinceσ1 follows anη-optimal

strategy in Purgatory. Hence, the probability to eventually reach⊤ is at least1 − η > 1
2 + ε and thusσ2 is not

ε-optimal, since the value ofvs is 1
2 by Lemma 7.

We now show that if we mirror anε-optimal strategy, then we get anε-optimal strategy.

Lemma 16. For all 0 < ε < 1
3 , eachε-optimal stationary strategyσ2 for player 2 in the Purgatory Duel, is such that

the mirror strategyσσ2
1 is ε-optimal for player 1.

Proof. Fix 0 < ε < 1
3 and letσ2 be someε-optimal stationary strategy for player 2. Also, letσ1 = σσ2

1 be the mirror
strategy.

By Lemma 15 the strategyσ2 is such thatσ2(v
2
j ) is totally mixed, for allj. We can then apply Lemma 9 and get

that either⊤ or ⊥ is reached with probability 1. Hence, sinceσ2 is ε-optimal we reach⊥ with probability at least
1 − val(v) − ε starting inv against all strategies for player 1, for eachv. It is clear that any playP of σ2 against any

given strategyσ′
1 for player 1 starting inv corresponds, by symmetry, to a playP ′ of σσ′

1
2 againstσ1 starting inf(v),

where

f(v) =





vs if v = vs

vîj if v = vij
⊥ if v = ⊤

⊤ if v = ⊥ ,

such that in roundi we have thatPi = f(P ′
i ) and the plays are equally likely. Thus, the probability to reachf(⊥) = ⊤,

starting in statef(v), for eachv is at least1−val(v)−ε = val(f(v))−ε, where the equality follows from Lemma 12.
Hence,σ1 is ε-optimal for player 1.

Next we give a definition and a lemma, which is similar to Lemma6 in [25]. The purpose of the lemma is to
identify certain cases where one can change the transition function of an MDP in a specific way and obtain a new
MDP with larger values. We cannot simply obtain the result from Lemma 6 in [25], since the direction is opposite
(i.e., Lemma 6 in [25] considers some cases where one can change the transition function and obtain a new MDP with
smallervalues) and our lemma is also for a slightly more general class of MDPs.

Definition 17. Let G be an MDP with safety objectives. Areplacement setis a set of triples of states, actions and
distributions over the statesQ = {(s1, a1, δ1), . . . , (sℓ, aℓ, δℓ)}. Given the replacement setQ, the MDPG[Q] is an
MDP over the same states asG and with the same set of safe states, but where the transitionfunctionδ′ is

δ′(s, a) =

{
δi if s = si anda = ai for somei

δ(s, a) otherwise
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Lemma 18. LetG be an MDP with safety objectives. Consider some replacementset

Q = {(s1, a1, δ1), . . . , (sℓ, aℓ, δℓ)} ,

such that for allt andi we have that
∑

s∈S

(δ(si, ai)(s) · v
t
s) ≤

∑

s∈S

(δi(s) · v
t
s) .

Letv′
t

be the value vector forG[Q] with finite horizont. (1) For all statess and time limitst we have that

vts ≤ v′
t

s .

(2) For all statess, we have that
val(G, s) ≤ val(G[Q], s) .

Proof. We first present the proof of first item. We will show, using induction int, thatvts ≤ v′
t

s for all s. Let δ′ be the
transition function forG[Q].

Base case,t = 0: Consider some states. Clearly we have thatvts = v′
t

s because we have not changed the safe
states.

Induction case,t ≥ 1: The induction hypothesis state thatvt−1
s ≤ v′

t−1

s for all s. Consider some states. Consider
any actiona′ such that there is ani such thats = si anda = ai. We have that

∑

s′

(δ(s, a′)(s′) · vt−1
s′ ) ≤

∑

s′

(δ′(s, a′)(s′) · vt−1
s′ )

by definition for sucha′ (the statement is true for all time limits and thus also fort − 1). For all other actionsa′′ we
have that ∑

s′

(δ(s, a′′)(s′) · vt−1
s′ ) =

∑

s′

(δ′(s, a′′)(s′) · vt−1
s′ ) ,

sinceδ(s, a′′) = δ′(s, a′′). Hence,

min
a

∑

s′

(δ(s, a)(s′) · vt−1
s′ ) ≤ min

a

∑

s′

(δ′(s, a)(s′) · vt−1
s′ )

We then have, using the recursive definition ofvts, that

vts = min
a

∑

s′

(δ(s, a)(s′) · vt−1
s′ )

≤ min
a

∑

s′

(δ′(s, a)(s′) · vt−1
s′ )

≤ min
a

∑

s′

(δ′(s, a)(s′) · v′
t−1

s′ )

= v′
t
s .

where we just argued the first inequality; and the second inequality comes from the induction hypothesis and that each
factor is positive. (Note that the optimal strategy for player 2 in a matrix gameAs[vt−1] of 1 row is to pick one of the
columns with the smallest entry with probability 1 and thusvts = val(As[vt−1]) = mina

∑
s′(δ(s, a)(s

′) · vt−1
s′ ) and

similarly for v′
t

s). This completes the proof of the first item. The second item follows from the first item and since
the value of a time limited game goes to the value of the game without the time limit as the time limit grows to∞, as
shown by [16].

We next show that for player 1, the patience ofε-optimal strategies is high.
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Lemma 19. For all 0 < ε < 1
3 , eachε-optimal stationary strategyσ1 for player 1 in the Purgatory Duel has patience

at least2m
Ω(n)

. For N = 5 the patience is2Ω(m).

Proof. Consider someε-optimal stationary strategyσ1 for player 1 in the Purgatory Duel. Fixingσ1 for player 1 in the
Purgatory Duel we obtain an MDPG′ for player 2. Letvt be the value vector forG′ with finite horizon (time-limit)t
and letδ be the transition function forG′. For eachi, let

δi(s) =





δ(v2n, i)(s) if vs 6= s 6= ⊥

δ(v2n, i)(⊥) + δ(v2n, i)(vs) if vs = s

0 if ⊥ = s

(Note thatδi is the same probability distribution asδ(v2n, i), except that the probability mass on⊥ is moved tovs.)
Consider the replacement setQ = {(v2n, 1, δ1), . . . , (v

2
n,m, δm)} and the MDPG′[Q]. We have for allt andi that

∑

s∈S

(δ(v2n, i)(s) · v
t
s) ≤

∑

s∈S

(δi(s) · v
t
s)

because
vt⊥ = vtv2

n+1
= 0 ≤ vtvs

for all t and the only difference betweenδ(v2n, i) andδi is that the probability mass on⊥ is moved tovs. We then get
from Lemma 18(2) that val(G′, vs) ≤ val(G′[Q], vs). Let σ2 be an optimal positional strategy inG′[Q]. It is easy to
see thatσ2 plays action 1 inv2j for all j, because the best player 2 can hope for is to get back tovs since⊥ cannot be
reached fromv2j in G′[Q] for anyj and if he plays some action which is not 1, then there is a positive probability that
⊤ will be reached in one step. Thus, the MDPG′[Q] corresponds to the MDP one gets by fixing the strategyσ′

1 where
σ′
1(vi) = σ1(v

1
i ) for player 1 in Purgatory. But the probability to reach⊤ in G′[Q] is at least12 − ε and henceσ′

1 is
(12 + ε)-optimal in Purgatory (note that this is Purgatory and not Purgatory Duel). As shown by [20] any such strategy

requires patience2m
Ω(n)

. Thus, anyε-optimal stationary strategy for player 1 in the Purgatory Duel requires patience
2m

Ω(n)

.
It was shown by [20] that the patience ofε-optimal strategies for Purgatory withn = 1 Purgatory state is2Ω(m),

and thus similarly for the Purgatory Duel withN = 5.

We are now ready to prove the main theorem of this section.

Theorem 20. For all 0 < ε < 1
3 , everyε-optimal stationary strategy, for either player, in the Purgatory Duel (that has

N = 2n+ 3 states and at mostm actions for each player at all states) has patience2m
Ω(n)

. For N = 5 the patience
is 2Ω(m).

Proof. The statement for strategies for player 1 follows from Lemma19. By Lemma 16, for eachε-optimal strategy
for player 2, there is anε-optimal strategy for player 1 (i.e., the mirror strategy) with the same patience. Thus the
result follows for strategies for player 2.

4 Zero-sum Concurrent Stochastic Games: Patience Lower Bound for
Three States

In this section we show that the patience of allε-optimal strategies, for all0 < ε < 1
3 , for both players in a concurrent

reachability gameG with three states of which two are absorbing, and the non-absorbing state hasm actions for each
player, can be as large as2Ω(m). The proof consists of two phases, first we show the lower bound in a game with at
mostm2 actions for each player; and second, we show that all but2m− 1 actions can be removed for both players in
the game without changing the patience.

The first game, the3-state Purgatory Duel, is intuitively speaking the Purgatory Duel forN = 5, where we replace
the statesv11 , v21 andvs with a statev′s while in essence keeping the same set ofε-optimal strategies. The idea is to
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ensure that one step in the 3-state Purgatory Duel corresponds to two steps in the Purgatory Duel withN = 5, by
having the players pick all the actions they might use in the next two steps at once. The game is formally defined as
follows:

The 3-state Purgatory Duel consists ofN = 3 states, namedv′s,⊤
′ and⊥′ respectively. The states⊤′ and⊥′ are

absorbing. The statev′s is such that

A1
v′

s
= A2

v′

s
= {(i, j) | 1 ≤ i, j ≤ m} .

Also, let δ′ be the transition function for the Purgatory Duel withN = 5. Let p be the function that given a state in
{vs,⊥,⊤} in the Purgatory Duel fori = 1 outputs the primed state (which is then a state in the 3-statePurgatory Duel).
Recall thatU(s, s′) is the uniform distribution overs ands′. Observe that the deterministic distributionsδ′(v11 , a1, a2)
andδ′(v21 , a1, a2) are in{vs,⊤,⊥} for all a1 anda2. For each pair of actions(a11, a

2
1) ∈ A1

v′

s
and(a12, a

2
2) ∈ A2

v′

s
in

the 3-state Purgatory Duel, we have that

δ(v′s, (a
1
1, a

2
1), (a

1
2, a

2
2)) =

U(p(δ′(v11 , a
1
1, a

1
2)), p(δ

′(v21 , a
2
1, a

2
2))) .

To make the game easier to understand on its own, we now give a more elaborate description of the transition function
δ without using the transition function for the Purgatory Duel. To make the pattern as clear as possible we writeU(s, s)
instead ofs for all s.

δ(v′s, (a
1
1, a

2
1), (a

1
2, a

2
2)) =




U(⊥′,⊤′) if a11 > a12 anda21 > a22
U(⊥′,⊥′) if a11 > a12 anda21 = a22
U(⊥′, v′s) if a11 > a12 anda21 < a22
U(⊤′,⊤′) if a11 = a12 anda21 > a22
U(⊤′,⊥′) if a11 = a12 anda21 = a22
U(⊤′, v′s) if a11 = a12 anda21 < a22
U(v′s,⊤

′) if a11 < a12 anda21 > a22
U(v′s,⊥

′) if a11 < a12 anda21 = a22
U(v′s, v

′
s) if a11 < a12 anda21 < a22 .

Furthermore,S1 = {⊤′}. We will useτi for strategies in the 3-state Purgatory Duel to distinguishthem from strategies
in the Purgatory Duel. There is an illustration of the Purgatory Duel withN = 5 andm = 2 in Figure 3 and the
corresponding 3-state Purgatory Duel in Figure 4.

Given a strategyτi for playeri in the 3-state Purgatory Duel we define the strategyσi in the Purgatory Duel with
N = 5 which is the projection ofτi and vice versa (note that the other direction maps to a set of strategies).

Definition 21. Given a strategyτi for player i in the 3-state Purgatory Duel, letστi
i be the stationary strategy for

playeri in the Purgatory Duel withN = 5 where

στi
i (v11)(a

1
1) =

∑

a2
1

τi(v
′
s)(a

1
1, a

2
1)

and
στi
i (v21)(a

2
1) =

∑

a1
1

τi(v
′
s)(a

1
1, a

2
1) .

Also, for any stationary strategyσi in the Purgatory Duel withN = 5, letT σi

i be the set of stationary strategies in the
3-state Purgatory Duel such thatτi ∈ T σi

i implies thatστi
i = σi.

Lemma 22. Consider anyε ≥ 0. LetG be the Purgatory Duel withN = 5 andG′ be the 3-state Purgatory Duel. For
anyε-optimal stationary strategyτi for playeri in G′, we have thatστi

i is ε-optimal starting invs in G. Similarly, for
anyε-optimal stationary strategyσi in G starting invs each strategy inT σi

i is ε-optimal inG′. Also,val(v′s) =
1
2 .
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⊤

v11

vs

v21

⊥

Figure 3: An illustration of the Purgatory Duel withN = 5 andm = 2. The two dashed edge have probability1
2 each.

⊤′

v′s

⊥′

Figure 4: An illustration of the 3-state Purgatory Duelm = 2. Thenon-dashededges have probability12 each. The
order of the actions is(1, 1), (1, 2), (2, 1), (2, 2). The actions (i.e.,(2, 2) for player 1 and(1, 1) for player 2) with
white background cannot be played in a restricted strategy.
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Proof. Consider some pair of strategiesτi andστi
i for playeri in G′ andG, respectively. Fixingτi andστi

i as the

strategy for playeri we get two MDPsH ′ andH , respectively. We will argue that val(H ′, v′s) = val(H, vs). Let v′
t

andvt be the vector of values for the value iteration algorithm in iterationt when run onH ′ andH respectively (i.e.,
the values ofH ′ andH with time limit t). We have thatv2tvs = v′

t

v′

s
by definition of the value-iteration algorithm and

the transition function in the 3-state Purgatory Duel. Hence, sincev2tvs andv′
t

v′

s
converges to the value of statevs and

v′s in H andH ′ respectively, they have the same value. We know that the value of vs is 1
2 and thus that is also the

value ofv′s.

Corollary 23. The patience ofε-optimal stationary strategies for both players, for0 < ε < 1
3 , in the 3-state Purgatory

Duel is at least2Ω(m), wherem2 is the number of actions in statevs.

Proof. The patience ofε-optimal strategies, for0 < ε < 1
3 , in the Purgatory Duel withN = 5 is 2Ω(m) from

Theorem 20. Thus, by Lemma 22, the patience of the 3-state Purgatory Duel is2Ω(m).

The restricted 3-state Purgatory Duel. The above corollary only shows that the for the 3-state Purgatory Duel, in
which one state havem2 actions and others have 1, the patience is at least2Ω(m). We now show how to decrease the
number of actions from quadratic down to linear, while keeping the same patience.

From Lemma 5 and Lemma 6 we see that for any optimal strategyσ1 for player 1 (resp.,σ2 for player 2) in
the Purgatory Duel withN = 5, we have thatσ1(v

1
1)(1) > 1

2 and thatσ1(v
2
1)(1) > 1

2 (resp.,σ2(v
1
1)(m) > 1

2

and thatσ2(v
2
1)(m) > 1

2 ). Hence, there exists an optimal strategy for player 1 in the3-state Purgatory Duel that
only plays actions on the form(1, a21) and (a11, 1) with positive probability. More precisely, the strategyτ1 where
(1) τ1(vs)((1, a21)) = σ1(v

2
1)(a

2
1); and (2)τ1(vs)((a11, 1)) = σ1(v

1
1)(a

1
1); and (3) has the remaining probability mass

on (1, 1) is optimal in the 3-state Purgatory Duel, sinceστ1
1 is σ1. Similarly for player 2 and the actions(m, a22) and

(a12,m). Let
R1 = {(i, j) | i = 1 ∨ j = 1, 1 ≤ i, j ≤ m}

and
R2 = {(i, j) | i = m ∨ j = m, 1 ≤ i, j ≤ m} .

Observe that|R1| = |R2| = 2m−1. We say that a strategy for playeri, for eachi, is restrictedif the strategy uses only
actions inRi. The sub-matrix corresponding to the restricted 3-state Purgatory Duel form = 2 is depicted as the grey
sub-matrix in Figure 4. This suggests the definition of therestricted 3-state Purgatory Duel, which is like the 3-state
Purgatory Duel, except that the strategies for the players are restricted. We next show thatε-optimal strategies in the
restricted 3-state Purgatory Duel also have high patience (note, that while this is perhaps not surprising, it does not
follow directly from the similar result for the 3-state Purgatory Duel, since it is possible that the restriction removes the
optimal best reply to some strategy which would otherwise not beε-optimal). The key idea of the proof is as follows:
(i) we show that the patience of playeri in the 3-state Purgatory Duel remains unchanged even if onlythe opponent is
enforced to use restricted strategies; and (ii) each playerhas a restricted strategy that is optimal in the 3-state Purgatory
Duel as well as in the restricted 3-state Purgatory Duel.

Lemma 24. The value of statev′s in the restricted 3-state Purgatory Duel is12

Proof. Each player has a restricted strategy which is optimal in the3-state Purgatory Duel and ensures value1
2 . Thus,

these strategies must still be optimal in the restricted 3-state Purgatory Duel and still ensure value1
2 .

The next lemma is conceptually similar to Lemma 15 forN = 5 (however, it does not follow from Lemma 15,
since the strategies for player 1 are restricted here).

Lemma 25. Let τ2 be anε-optimal stationary strategy for player 2 in the restricted3-state Purgatory Duel, for
0 < ε < 1

2 . Then,
∑m

i=1 τ2(v
′
s)(i, j) > 0, for eachj.

Proof. Fix 0 < ε < 1
2 . Let τ2 be a stationary strategy in the 3-state Purgatory Duel (note, we do not require thatτ2 is

restricted), such that there exists ana2 for which
∑

a1
τ2(v

′
s)((a1, a2)) = 0. Leta′ be smallest sucha2.

Fix 0 < η < 1
2 − ε. We show that there exists a restricted stationary strategyτ1 for player 1, ensuring that the

payoff is at least1− η > 1
2 + ε. There are two cases. Either (i)a′ = 1 or (ii) not.

23



In case (i), letσ1(v
′
s) be anη-optimal strategy for player 1 in thePurgatorywith parameters(3,m). Then consider

the strategyτ1(v′s), whereτ1(v′s)((a, 1)) = σ1(v
′
s)(a), for eacha. Observe thatτ1 is a restricted strategy. Consider

what happens ifτ1 is played againstτ2: In each roundi, as long asvi = v′s, the next state is either defined by the first
or the second component of the actions of the players. If it isdefined by the second component, then the next state
vi+1 is alwaysv′s, because player 1’s first component is1 and player 2’s first component greater than 1. Consider the
rounds where the next state is defined by the first component. In such rounds⊤ is reached with probability(1− η) · p,
for somep > 0 and⊥ is reached with probability at mostη · p, because player 1 follows anη-optimal strategy in
Purgatory on the first component. But in expectation, in every second round the first component is used and thus⊤ is
reached with probability at least1− η, which shows thatσ2 is notε-optimal.

In case (ii), consider the strategyτ1, such thatτ1(v′s)((1, a
′)) = 1. Observe thatτ1 is a restricted strategy. Consider

what happens ifτ1 is played againstτ2: In each roundi, as long asvi = v′s, the next state is either defined by the
first or the second component of the players choice. If it is defined by the first component, then the next statevi+1 is
alwaysv′s or⊤, because the choice of player 1 is1. Consider the rounds where the next state is defined by the second
component. In each such round either⊤ or v′s is reached and⊤ is reached with positive probability, since player 1
playsa′ > 1 and player 2 always plays something else and1 with positive probability. But in expectation, in every
second round the second component is used and hence⊤ is reached with probability 1 eventually, which shows that
σ2 is notε-optimal.

We will now define how to mirror strategies in the restricted 3-state Purgatory Duel.

Definition 26. Given a stationary strategyτi for playeri in the restricted 3-state Purgatory Duel, for eitheri, let ττi
î

be the stationary strategy for playerî (referred to as the mirror strategy ofτi) in the restricted 3-state Purgatory Duel
whereττi

î
(v′s)((a1, a2)) = τi(v

′
s)((a2, a1)) for eacha1 anda2.

We next show that eachε-optimal stationary strategy for player 2 can be mirrored toanε-optimal stationary for
player 1. The statement and the proof idea are similar to Lemma 16, but since the strategies for the players are
restricted here, there are some differences.

Lemma 27. For all 0 < ε < 1
2 , eachε-optimal stationary strategyτ2 for player 2 in the restricted 3-state Purgatory

Duel is such that the mirror strategyττ21 is ε-optimal for player 1 in the restricted 3-state Purgatory Duel.

Proof. Fix ε, such that0 < ε < 1
2 . Consider someε-optimal stationary strategyτ∗2 for player 2 in the restricted

3-state Purgatory Duel. Letτ∗1 = τ
τ∗

2
1 be the mirror strategy for player 1 givenτ∗2 and letτ2 be an optimal best

reply to τ∗1 . Let τ1 = ττ21 be the mirror strategy for player 1 givenτ2. Observe that eventually either⊤ or ⊥ is
reached with probability 1, when playingτ∗1 againstτ2, by Lemma 25 and the construction of the game (since there
is a positive probability that the second component matchesin every round in which the play is inv′s). We have
thatu(v′s, τ1, τ

∗
2 ) ≤ 1

2 + ε, sinceτ∗2 is ε-optimal. This indicates that⊤′ is reached with probability at most12 + ε

when playingτ1 againstτ∗2 . Hence, by symmetry⊥′ is reached with probability at most12 + ε when playingτ∗1
againstτ2. Thus, since⊥′ or ⊤′ is reached with probability 1, we have thatu(v′s, τ

∗
1 , τ2) ≥

1
2 − ε, showing thatτ∗1 is

ε-optimal.

We next show thatε-optimal stationary strategies for player 1 requires high (exponential) patience. The state-
ment and the proof idea are similar to Lemma 19, but since the players strategies are restricted here, there are some
differences.

Lemma 28. For all 0 < ε < 1
3 , eachε-optimal stationary strategyσ1 for player 1 in the restricted 3-state Purgatory

Duel has patience2Ω(m).

Proof. Fix some0 < ε < 1
3 and someε-optimal stationary strategyσ1 for player 1 in the restricted 3-state Purgatory

Duel. The restricted 3-state Purgatory Duel then turns intoan MDPM for player 2 and we can apply Lemma 18(2).
We have thatp =

∑
a1
1
σ1(v

′
s)(a

1
1, a

2
2)/2 is the probability that player 1 plays an action with second componenta22

and the next state is defined by the second component. Letd(a21, a
2
2) be the probability distribution over successors

if player 2 plays(a21, a
2
2) in v′s. Observe that the play would go to⊥ if both players playeda22 and the next state is

defined by the second component and thus

d(a21, a
2
2)(⊥)− p ≥ 0 .
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Let

d′(a21, a
2
2)(v) =





d(a21, a
2
2)(v

′
s) + p if v = v′s

d(a21, a
2
2)(⊥)− p if v = ⊥

d(a21, a
2
2)(⊤) if v = ⊤ .

Consider the MDPM ′, which is equal toM , except that it uses the distributiond′(a21, a
2
2) instead ofd(a21, a

2
2). By

Lemma 18(2) we have that

val(M ′) ≥ val(M) ≥
1

2
− ε ≥

1

6
.

It is clear that player 2 has an optimal positional strategy in M ′ that plays(a21,m) for somea21 (this strategy is
restricted), since playing(a21, a

2
2), for somea22 < m, just increases the probability to reach⊤ in one step (because

player 1 might play some actiona12 > a22 and otherwise the play will go back tov′s). But M ′ corresponds to the
MDP obtained by playingσ1 in the Purgatory withN = 3 (wherev′s corresponds tov1), except that with probability
1
2 the play goes fromv′s back tov′s in the restricted 3-state Purgatory Duel no matter the choice of the players. This
difference clearly does not change the value. Hence,σ1 ensures payoff at least16 in the Purgatory withN = 3 and
hence has patience2Ω(m) by [20].

We are now ready for the main result of this section.

Theorem 29. For all 0 < ε < 1
3 , everyε-optimal stationary strategy, for either player, in the restricted 3-state

Purgatory Duel (that has three states, two of which are absorbing, and the non-absorbing state hasO(m) actions for
each player) has patience2Ω(m).

Proof. By Lemma 28, the statement is true for everyε-optimal stationary strategy for player 1. By Lemma 27, every
ε-optimal stationary strategy for player 2 corresponds to anε-optimal stationary strategy for player 1, with the same
patience, and thus everyε-optimal stationary strategy for player 2 has patience2Ω(m).

5 Zero-sum Concurrent Stochastic Games: Patience Upper Bound

In this section we give upper bounds on the patience of optimal and ε-optimal stationary strategies in a zero-sum
concurrent reachability gameG for the safety player. Our exposition here makes heavy use ofthe setup of Hansen et al.
[21] and will for that reason not be fully self-contained. Weassume for concreteness that the player 1 is the reachability
player and player 2 the safety player.

Hansen et al. showed [21, Corollary 42] for the more general class of Everett’s recursive games [16] that each
player has anε-optimal stationary strategy of doubly-exponential patience. More precisely, if all probabilities have
bit-size at mostτ , then each player has anε-optimal strategy of patience bounded by(1ε )

τmO(N)

. For zero-sum
concurrent reachability games the safety player is guaranteed to have an optimal stationary strategy [30, 23]. Using
this fact one may use directly the results of Hansen et al. to show that the safety player has an optimal strategy of

patience bounded by(1ε )
τmO(N2)

. We shall below refine this latter upper bound in terms of the number of value
classes of the game. The overall approach in deriving this isthe same, namely we use the general machinery of real
algebraic geometry and semi-algebraic geometry [3] to derive our bounds. In order to do this we derive a formula in
the first order theory of the real numbers that uniquely defines the value of the game, and from the value of the game
we can express the optimal strategies. The improved bound isobtained by presenting a formula where the number of
variables depend only on the number of value classes rather than the number of states.

Let belowN denote the number of non-absorbing states, andm ≥ 2 the maximum number of actions in a state for
either player. Assume that all probabilities are rational numbers with numerators and denominators of bit-size at most
τ , where the bit-size of a positive integern is given by⌊lg n⌋+ 1. We letK denote the number of value classes. We
number the non-absorbing states1, . . . , N and assume that both players have the actions{1, . . . ,m} in each of these
states. For a non-negative integerz, definebit(z) = ⌈lg z⌉.

Given valuationsv1, . . . , vN for the non-absorbing states, we define for each statek am×m matrix gameAk(v)

letting entry(i, j) beskij +
∑N

ℓ=1 p
kℓ
ij vℓ, wherepkℓij = δ(k, i, j)(ℓ) andskij is the probability of a transition to a state

where the reachability player wins, given actionsi andj in statek. Thevalue mappingoperatorM : RN → RN
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is given byM(v) =
(
val(A1(v), . . . , val(AN (v)))

)
. Everett showed that the value vector of his recursive gamesare

given by the uniquecritical vector, which in turn is defined using the value mapping. We will instead for concur-
rent reachability games use the characterization of the value vector as the coordinate-wise least fixpoint of the value
mapping. The value vectorv is thus characterized by the formula

M(v) = v ∧ (∀v′ : M(v′) = v′ ⇒ v ≤ v′) . (1)

Similarly to [21, proof of Theorem 13] we obtain the following statement.

Lemma 30. There is a quantifier free formula withN variablesv that expressesM(v) = v. The formula uses at
mostN(m + 2)4m different polynomials, each of degree at mostm + 2 and having coefficients of bit-size at most
2(N + 1)(m+ 2)2 bit(m)τ .

Now, if we instead introduce a variable for each value class,we can expressM(v) = v using onlyK free variables,
by identifying variables of the same value class. Forw ∈ RK , let v(w) ∈ RN denote the vector obtained by letting
the coordinates corresponding to value classj be assignedwj . We thus simply expressM(v(w)) = v(w) instead.
Combining this with (1) we obtain the final formula.

Corollary 31. There is a quantified formula withK free variables that describes whether the vectorv(w) is the value
vector ofG. The formula has a single block of quantifiers overK variables. Furthermore the formula uses at most
2N(m + 2)4m + K different polynomials, each of degree at mostm + 2 and having coefficients of bit-size at most
2(N + 1)(m+ 2)2 bit(m)τ .

We shall now apply thequantifier elimination[3, Theorem 14.16] andsampling[3, Theorem 13.11] procedures to
the formula of Corollary 31.

First we use Theorem 14.16 of Basu, Pollack, and Roy [3] obtaining a quantifier free formula withK variables, ex-
pressing thatw(v) is the value ofG. Next we use Theorem 13.11 of [3] to obtain a univariate representation ofw such
thatv(w) is the value vector ofG. That is, we obtain univariate real polynomialsf, g0, . . . , gK , wheref andg0 are co-
prime, such thatw = (g1(t)/g0(t), . . . , gK(t)/g0(t)), wheret is a root off . These polynomial are of degreemO(K2)

and their coefficients have bit-sizeτmO(K2). Our next task is to recover fromw an optimal strategy for the safety
player. For this we just need to select optimal strategies for the column player in each of the matrix gamesAk(v(w)).
Such optimal strategies correspond to basic feasible solutions of standard linear programs for computing the value and
optimal strategies of matrix games (cf. [21, Lemma 3]). Thismeans that there exists(m + 1) × (m + 1) matrices
M1(w), . . . ,MN(w), such that(qk1 (w), . . . , q

k
m(w)) is an optimal strategy for the column player inAk(v(w)) where

qki (w) = det((Mk(w))i)/ det(M
k(w)), where(Mk(w))i denotes the matrix obtained fromMk(w) by replacing col-

umni with the(m+1)th unit vectorem+1. As the matricesM1(w), . . . ,Mk(w) are obtained from the matrix games
A1(v(w)), . . . , AN (v(w)), the entries are degree 1 polynomial inw and having rational coefficients with numerators
and denominators of bit-size at mostτ as well. Using a simple bound on determinants [3, Proposition 8.12], and
substituting the expressiongj(t)/g0(t) for wj for eachj, we obtain a univariate representation of(qk1 (w), . . . , q

k
m(w))

for eachk given by polynomials of degreemO(K2) and their coefficients have bit-sizeτmO(K2). Substituting the root
t using resultants (cf. [21, Lemma 15]) we finally obtain the following result.

Theorem 32. LetG be a zero-sum concurrent reachability game withN non-absorbing states, at mostm ≥ 2 actions
for each player in every non-absorbing state, and where all probabilities are rational numbers with numerators and
denominators of bit-size at mostτ . Assume further thatG has at mostK value classes. Then there is an optimal
strategy for the safety player where each probability is a real algebraic number, defined by a polynomial of degree
mO(K2) and maximum coefficient bit-sizeτmO(K2).

By a standard root separation bounds (e.g. [38, Chapter 6, equation (5)]) we obtain a patience upper bound.

Corollary 33. LetG be as in Theorem 32. Then there is an optimal strategy for the safety player of patience at most

2τm
O(K2)

.

In general the probabilities of this optimal strategy will be irrational numbers. However we may employ the
rounding scheme as explained in Lemma 14 and Theorem 15 of Hansen, Koucký, and Miltersen [22] to obtain a
rationalε-optimal strategy. Lettingε = 2−ℓ we may round each probability, except the largest, upwards to L =

lg 1
ε + lg lg 1

ε +NτmO(K2) binary digits, and then rounding the largest probability down by the total amount the rest
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were rounded up. Here we use that by fixing the above strategy of patience at most2τm
O(K2)

for the safety player and
an pure strategy for the reachability player one obtains a Markov chain where each non-zero transition probability is

at least(2τm
O(K2)

)−1. We thus have the following.

Corollary 34. Let G be as in Theorem 32. Then there is anε-optimal strategy for the safety player where each

probability is a rational number with a common denominator of magnitude at most1ε lg
1
ε2

NτmO(K2)

.

We now address the basic decision problem. Lets be a state and letλ be a rational number with numerator and
denominator of bit-size at mostκ, and consider the task of deciding whetherv2(s) ≥ λ. An equivalent task is to
decide whetherv2(s)− λ ≥ 0. Sincev2(s) is a real algebraic number defined by a polynomial of degreemO(K2) and
maximum coefficient bit-sizeτmO(K2) it follows thatv2(s) − λ is a real algebraic number defined by a polynomial
of degreemO(K2) and maximum coefficient bit-size(κ + τ)mO(K2). This can be seen by subtractingλ from the
univariate representation ofv2(s) and substituting for the roott using a resultant. By standard root separation bounds

this means that either isv2(s) − λ = 0 or |v2(s) − λ| > η, for someη of the formd = 2−(κ+τ)mO(K2)

. Given an
η/2-optimal strategyσ2 for the safety player, by fixing the strategyσ2 we obtain an MDP for player 1, where we
can find the valuẽv2(s) of states using linear programming, and the computed estimateṽ2(s) for v2(s) is within
η/2 of the true value. Thus if̃v2(s) ≥ λ − η/2 we conclude thatv2(s) ≥ λ (and similarly if ṽ2(s) ≥ λ + η/2 we
conclude thatv2(s) > λ). Now, if we fix K to be a constant and consider the promise problem thatG has at mostK
value classes, then a rationalη/2-optimal strategyσ2 exists with numerators and denominators of polynomial bit-size
by Corollary 34. Now, by simply guessing non-deterministically the strategyσ2 and verifying as above we have the
following result.

Theorem 35. For a fixed constantK, the promise problem of deciding whetherv1(s) ≥ λ given a zero-sum concurrent
stochastic game with at mostK value classes is incoNP if player 1 has reachability objective and inNP if player 1
has safety objective.

Note that interestingly it does not follow similarly that the promise problem is in(coNP∩NP), because the games
are not symmetric.

Remark 36 (Complexity of approximation for constant value classes). As a direct consequence we have that for a

gameG promised to have at mostK value classes, the value of a state can be approximated inFPNP. This improves

on theFNPNP bound of Frederiksen and Miltersen [18] (that holds in general with no restriction on the number of
value classes).

6 Non-Zero-sum Concurrent Stochastic Games: Bounds on Patience and
Roundedness

In this section we consider non-zero-sum concurrent stochastic games where each player has either a reachability or a
safety objective. We first present a remark on the lower boundin the presence of even a single player with reachability
objective, and then for the rest of the section focus on non-zero-sum games where all players have safety objectives.

Remark 37. In non-zero-sum concurrent stochastic games, with at leasttwo players, even if there is one player with
reachability objectives, then at least doubly-exponential patience is required forε-Nash equilibrium strategies. We
have the property ifk = 2 and one player is a reachability player and the other is a safety player, from Section 3.3.
It is also easy to see that Lemma 9 together with Lemma 15 implythat if player 1 is identified with the objective
(Reach, {⊤}) and player 2 is identified with the objective(Reach, {⊥}) and they are playing the Purgatory Duel, then
each strategy profileσ, that forms aε-Nash equilibrium, for any0 < ε < 1

3 , in the Purgatory Duel, has patience

2m
Ω(n)

. This is because player 2 has a harder objective (a subset of the plays satisfies it) than in Section 3.3, but can
still ensure the same payoff (by using an optimal strategy for player 2 in the concurrent reachability variant, which
ensures that⊥ is reached with probability at least12 ). In this case, we say that a strategy is optimal (resp.,ε-optimal)
for a player, if it is optimal (resp.,ε-optimal) for the corresponding player in the concurrent reachability version.
It is clear that only if both strategies are optimal (resp.,ε-optimal), then the strategies forms a Nash equilibrium
(resp.,ε-Nash equilibrium). Thus the doubly-exponential lower bound follows even for non-zero-sum games with two
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reachability players. The key idea to extend to more players, of which at least one is a reachability player, is as follows:
Consider some reachability playeri. The game for which the lower bound holds can be described as follows. First
playeri picks another playerj and they then proceed to play the Purgatory Duel with parametersn,m against each
other. This can be captured by a game withk(2n + 1) + 3 states, where each matrix has size at mostmax(m, k).
Each player must then use doubly-expoential patience in every strategy profile that forms anε-Nash equilibrium, for
sufficently smallε > 0. First consider a playerj that is different fromi, and a strategy for playerj with low patience.
It follows that playeri would then simply play against playerj and win with good probability. Second, consider a
strategy for playeri with low patience and there are two cases. Either playeri gets a payoff close to12 or not. If
he gets a payoff close to12 , then the player he is most likely to play against can deviateto an optimal strategy and
increase his payoff by an amount close to12k , which playeri loses. On the other hand, if playeri gets a payoff far
from 1

2 , then he can deviate to an optimal strategy and then he gets payoff 1
2 .

The rest of the section is devoted to non-zero-sum concurrent stochastic games with safety objectives for all
players, and first we establish an exponential upper bound onpatience and then an exponential lower bound forε-
Nash equilibrium strategies, forε > 0.

6.1 Exponential upper bound on roundedness

In this section we consider non-zero-sum concurrent safetygames, withk ≥ 2 players, and such games are also called
stay-in-a-set games, by [33]. We will argue that, for all0 < ε < 1

4 , in any such game, there exists a strategy profileσ
that forms anε-Nash equilibrium and have roundedness at most

−32 · k2 · ln(ε) · n · (δmin)
−n ·m

ε
.

Note that the roundedness is only exponential, as compared to the doubly-exponential patience when there is at least
one reachability player (Remark 37). Note that the bound is polynomial inm andk; and also polynomial inn if
δmin = 1.

Players already lost, and all winners. For a prefix of a playP ℓ′

s , for a starting states, playPs and lengthℓ′, let
L̂(P ℓ′

s ) be the set of players that have not lost already inP ℓ′

s (note that for eachi, playeri has lost in a play prefix if a
state not inSi has been visited in the prefix). LetP ℓ′

s be some prefix of a play and we defineW (P ℓ′

s ) as the event that
each player in̂L(P ℓ′

s ) wins with probability 1.

Player-stationary strategies. As shown by [33], there exists a strategy profileσ = (σi)i that forms a Nash equi-
librium. They show that the strategyσi, for any playeri, in the witness Nash equilibrium strategy profile has the
following properties: For each set of playersΠ and states, there exists a probability distribution̂σi(Π, s), such that
for each prefix of a playP ℓ′

s , playPs and lengthℓ′, if P ℓ′

s ends ins′, we have thatσi(P
ℓ′

s ) = σ̂i(L̂(P
ℓ′

s ), s′) (i.e., the
strategy only depends on the players who have not lost yet andthe current state). Also, there exists some positional
strategyσ′

i, such that̂σi(Π, s) = σ′
i(s), for all i 6∈ Π (i.e., players who have lost already play some fixed positional

strategy). This allows them to only consider the sub-gameGΠ, which is the game in which each playeri not inΠ plays
σ′
i. Also, if there is a strategy profile which ensures that each player inΠ wins with probability 1 if the play starts ins

of GΠ, then the probability distribution̂σi(Π, s) is pure5 and it ensures that the players inΠ wins with probability 1.
We call strategies with these propertiesplayer-stationary strategies.

The real number ε and the lengthℓ. In the remainder of this section, fix0 < ε < 1
4 and fix the lengthℓ, such that

ℓ = −n · k · ln(ε/(4k)) · (δmin)
−n .

We will, in Lemma 39, argue that any player-stationary strategy is such that with probability1−ε no player loses after
ℓ steps. Also several lemmas in this section will useℓ andε.

5it is not explicitly mentioned in [33] that the distributions are pure, but it follows from the fact that if all players canensure their objectives with
probability 1, then there exists a positional strategy profile ensuring so, by just considering an MDP (with all players together) with a conjunction
of safety objectives
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The eventE(P ℓ′

s ). Given a playPs, starting in states for somes and anyℓ′, letE(P ℓ′

s ) be the event that either the
event(L̂(P ℓ′

s ) ( L̂(P ℓ′−1
s )) (i.e., some player lost at theℓ′-th step) or the eventW (P ℓ′

s ) (i.e., the remaining players
win with probability 1) happens. In [33, 2.1 Lemma] they show6:

Lemma 38. Fix a player-stationary strategy profileσ. LetT ≥ 0 denote a round (or a step of plays). LetY T,s be the
set of plays, where for all playsPs in Y T,s, either the remaining players win with probability 1 in round T (i.e., the
eventW (PT

s ) happens) or some player loses in roundT (i.e., the event̂L(PT
s ) ( L̂(PT−1

s ) happens). For a constant
c and lengthℓ′, let yc,ℓ′ = Prσ[∃T : ℓ′ < T ≤ ℓ′ + cn ∧ Ps ∈ Y T,s] denote the probability that eventY T,s happens
for someT betweenℓ′ andℓ′ + cn. Then, for all constantsc and lengthℓ′, we have that

yc,ℓ′ ≥ 1− (1− (δmin)
n)c .

Note thatT above depends on the playPs. It is straightforward that players can lose at mostk times in any play
Ps, simply because there are at mostk players, and if the remaining players win with probability 1in roundT , then
they also win with probability 1 in roundT + 1, by construction ofσ.

Proof overview. Our proof will proceed as follows. Consider the game, while the players play some player-stationary
strategy profile that forms a Nash equilibria. First, we showthat it is unlikely (low-probability event) that the players do
not play positional (like they do if the eventW (P ℓ′

s ) has happened) after some exponential number of steps. Second,
we show that if we change each of the probabilities used by an exponentially small amount as compared to the Nash
equilibria, then it is unlikely that that there will be a large difference in the first exponentially many steps. This allows
us to round the probabilities to exponentially small probabilities while the players only lose little.

Lemma 39. Fix some player-stationary strategy profileσ. Consider the setP of playsPs, underσ, such thatW (P ℓ
s )

does not happen. Then, the probabilityPrσ[P ] is less thanε/4.

Proof. Fix 0 < ε < 1
2 and a player-stationary strategy profileσ. Let c = − ln(ε/(4k)) · (δmin)

−n > 1. We will argue
that the eventE(P ℓ′

s ) happens at leastk times with probability at least1− ε/4 overc · n · k = ℓ steps.
We consider two cases, eitherδmin = 1 or 0 < δmin < 1. If δmin = 1, the event∃1 ≤ T ≤ n : E(P ℓ′+T

s )
always happens (otherwise, in case it did not in some play, then a deterministic cycle satisfying the safety objectives
of all players who have not lost yet is executed, and then the players could win by playing whatever they did the last
time they were in a given state). If0 < δmin < 1, we see thatc ≥ c′ = ln(ε/(4k))

ln(1−(δmin)−n) , since1 + x ≤ ex and that

∃1 ≤ T ≤ c′ · n : E(P ℓ′+T
s ) happens with probability at least1− ε/(4k) by Lemma 38. In either case, we have that

the event∃1 ≤ T ≤ c · n : E(P ℓ′+T
s ) happens with probability at least1− ε/(4k).

Next, split the plays up in epochs of lengthc · n each, and we get that the eventE(PT
s ) happens at least once for

T ranging over the steps of an epoch with probability at least1 − ε/(4k) and hence happens at least once in each of
the firstk epochs with probability at least1 − ε/4 using union bound. At that point the remaining players win with
probability 1. The firstk epochs have lengthc · k · n = ℓ and the lemma follows.

We use the above lemma to show that any strategy profile close to a Nash equilibrium ensures payoffs close to that
equilibrium. To do so, we use coupling (similar to [11]).

Variation distance. Thevariation distanceis a measure of the similarity between two distributions. Given a finite set
Z, and two distributionsd1 andd2 overZ, the variation distance of the distributions is

var(d1, d2) =
1

2
·
∑

z∈Z

|d1(z)− d2(z)| .

We will extend the notion of variation distances to strategies as follows: Given two strategiesσi andσ′
i for playeri the

variation distance between the strategies is

var(σi, σ
′
i) = sup

P ℓ
s

var(σi(P
ℓ
s ), σ

′
i(P

ℓ
s )) ;

i.e., it is the supremum over the variation distance of the distributions used by the strategies for finite-prefixes of plays.

6they do not explicitly show that the constant is1− (δmin)
n, but it follows easily from an inspection of the proof
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Coupling and coupling lemma. Given a pair of distributions, a coupling is a probability distribution over the joint
set of possible outcomes. LetZ be a finite set. For distributionsd1 andd2 over the finite setZ, a couplingω is a
distribution overZ × Z, such that for allz ∈ Z we have

∑
z′∈Z ω(z, z′) = d1(z) and also for allz′ ∈ Z we have∑

z∈Z ω(z, z′) = d2(z
′). One of the most important properties of coupling is the coupling lemma [1] of which we

only mention and use the second part:

• (Coupling lemma). For a pair of distributionsd1 andd2, there exists a couplingω of d1 andd2, such that for a
random variable(X,Y ) from the distributionω, we have thatvar(d1, d2) = Pr[X 6= Y ].

Smaller support. Fix a pair of strategiesσi andσ′
i for playeri for somei. We say thatσ′

i hassmaller supportthan
σi, if for all P ℓ

s we have that
Supp(σ′

i(P
ℓ
s )) ⊆ Supp(σi(P

ℓ
s )) .

Lemma 40. Letσ = (σi)i andσ′ = (σ′
i)i be player-stationary strategy profiles, such that

var(σ, σ′) ≤
ε

ℓ · k · 4
,

and such thatσ′
i has smaller support thanσi, for all i. Thenσ′ is such that

u(G, s, σ′, i) ∈ [u(G, s, σ, i)− ε/2, u(G, s, σ, i) + ε/2]

for each playeri and states.

Proof. Fix σ andσ′ according to the lemma statement. For any prefix of a playP ℓ′

s , for any states and lengthℓ′ and

playeri, we have thatvar(σi(P
ℓ′

s ), σ′
i(P

ℓ′

s )) ≤ ε
ℓ·k·4 and thus, we can create a couplingω = (X

P ℓ′

s

i , Y
P ℓ′

s

i ) between

the two distributionsσi(P
ℓ′

s ) andσ′
i(P

ℓ′

s ), i.e.,XP ℓ′

s

i ∼ σi(P
ℓ′

s ) andY P ℓ′

s

i ∼ σ′
i(P

ℓ′

s ) is such thatPr[XP ℓ′

s

i 6= Y
P ℓ′

s

i ] ≤

ε
ℓ·k·4 . Then, consider some states and consider a playPs, picked using the random variablesXP ℓ′

s

i , and a playQs,

picked using the random variablesY P ℓ′

s

i (where, if the players uses the same action inP ℓ′

s andQℓ′

s , then the next state
is also the same, using an implicit coupling). Then according to Lemma 39, the probability thatW (P ℓ

s ) occurs is at
least1 − ε/4. In that case, we are interested in the probability thatQs = Ps. Observe that we just need to ensure
thatP ℓ

s andQℓ
s are the same, since at that point the players play according to the same positional strategy, because

of the smaller support. For eachℓ′′ ≤ ℓ, if the first ℓ′′ steps match, then the next step match with probability at least
1 − ε

ℓ·k·4 · k, since each of thek players has a probability of εℓ·k·2 to differ in the two plays. Hence, allℓ steps match
with probability at least1− ε

ℓ·k·4 · ℓ · k = 1− ε/4. Hence, with probability at least1− ε/2 we have thatPs equalsQs

and thus, especially, the payoff for each player must be the same in that case. But observe thatPs is distributed like
plays underσ andQs is distributed like plays underσ′ and the statement follows.

We will next show that we only need to consider deviations to player-stationary strategies for the purpose of
player-stationary equilibria.

Lemma 41. For all player-stationary strategy profilesσ and each playeri, there exists a pure player-stationary
strategyσ′

i for playeri maximizingu(G, s, σ[σ′
i], i).

Proof. Observe first that it does not matter what playeri does if he has already lost, and we can consider him to play
some fixed positional strategy in that case. Also, when the remaining players play according toσ, we can view the
game as being an MDP, in the gamesGΠ. The objective of playeri is then to reach a sub-game ofGΠ and a state
in that sub-game, from which he cannot lose. But it is well-known that such reachability objectives have positional
optimal strategies in MDPs. Hence, this strategy forms a pure player-stationary strategy in the original game.

We will use Lemma 3 from [11]. The proof only appears in [10], where the lemma is Lemma 4.

Lemma 42. (Lemma 3, [11]). Let Z be a set of sizeℓ. Let d1 be some distribution overZ and letq ≥ ℓ be some
integer. Then there exists some distributiond2, such that for eachz ∈ Z, there exists an integerp such thatd2(z) =

p
q

and such that|d1(z)− d2(z)| <
1
q .
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We are now ready to show the main theorem of this section.

Theorem 43. For all concurrent stochastic games with allk safety players, for all0 < ε < 1
4 , there exists a player-

stationary strategy profileσ that forms anε-Nash equilibrium and has roundedness at most

4n · k2 ·m · ε−1 · ln(4k/ε) · (δmin)
−n .

Proof. Fix some player-stationary strategy profileσ that forms a Nash-equilibrium and some0 < ε < 1
4 and let

ℓ := −n · k · ln(ε/(4k)) · (δmin)
−n .

Consider some distributiond1 over some setZ. Observe that for each distributiond2 with smaller support than
d1 and such that|d1(z) − d2(z)| <

1
q , for eachz ∈ Supp(d1), we havevar(d1, d2) ≤ |Supp(d1)|

q . Then, applying

Lemma 42, forq = ℓ·k·4·m
ε andZ = Supp(d), to each probability distributiond definingσ, we see that there exists a

player-stationary strategy profileσ′ = (σ′
i)i, such that (1)

var(σ, σ′) ≤
m

q
=

ε

ℓ · k · 4
;

and (2)σ′
i has smaller support thanσi; and (3)σ′

i(P
ℓ
s ) is a fraction with denominatorq. Observe that the strategy has

roundednessq.
We now argue thatσ′ is an ε-Nash equilibrium. Consider some playeri and a player-stationary strategyσ′′

i

maximizing the probability that playeri wins when the remaining players play according toσ′, which is known to
exists by Lemma 41. From Lemma 40, we have that

u(G, s, σ[σ′′
i ], i) ≥ u(G, s, σ′[σ′′

i ], i)− ε/2

and
u(G, s, σ, i) ≤ u(G, s, σ′, i) + ε/2 .

Thus,u(G, s, σ′, i) ≥ u(G, s, σ′[σ′′
i ], i)− ε. This completes the proof.

Remark 44(Finding anε-Nash equilibria inTFNP). We explain how the results of this section imply that for non-zero-
sum concurrent stochastic games with safety objectives forall players, if the numberk of players is only a constant or
logarithmic, then we can compute anε-Nash equilibria inTFNP, whereε > 0 is given in binary as part of the input.
Note that there is a polynomial-size witness (to guess) for astationary strategy with exponential roundedness. Observe
that a player-stationary strategy for a player is defined by2k−1 + 1 stationary strategies, one used in case that the
respective player has lost, and one for each subset of other players. Thus, we can guess polynomial-size witnesses of
k player-stationary strategies with exponential roundedness, given that the number of players is at most logarithmic
in the size of the input. Hence, according to Theorem 43, we can guess a candidate strategy profileσ that forms an
ε-Nash equilibrium in non-deterministic polynomial time. For each playeri, constructing the (polynomial-sized) MDP
described in the proof of Lemma 41 and then solving it using linear programming gives us the payoff of playing the
strategy maximizing the value for playeri while the remaining players followsσ. If, for each playeri, the payoff only
differs at mostε from what achieved by playeri when all players followsσ, then the strategy profileσ is anε-Nash
equilibrium. It follows that the approximation of someε-Nash equilibria can be achieved inTFNP, given that the
number of players is at most logarithmic.

6.2 Exponential lower bound on patience

In this section, we show thatΩ((δmin)
−(n−3)/6) patience is required, for each strategy profile that forms anε-Nash

equilibrium, for any0 < ε < 1
6 , in a family of games{G(δmin)

c | c ∈ N ∧ δmin < 6−3} with two safety players.

Game family Gδmin
c . For a fixed numberc ≥ 1 and0 < δmin < 6−3, the gameGδmin

c is defined as follows: There
aren = 4 · c+ 3 states, namely,S = {vs, v1, v2,⊤,⊥} ∪ {vℓj | j ∈ {1, 2} ∧ ℓ ∈ {1, . . . , 2 · c− 1}}. For playeri in

statevj , for j = 1, 2, there are two actions, calledaj,1i andaj,2i , respectively. For each other states and each playeri,
there is a single action,a. For simplicity, for each pair of statess, s′ we writed(s, s′) for the probability distribution,
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⊤ v11 v21 v31

v1 vs v2

⊥v12v22v32

1
2

1
2

Figure 5: An illustration of the gameGδmin
2 . The probabilities are as follows: The probability of each dashed edge

is 1 − δmin; and the probability of each dotted edge isδmin; and the probability of each solid edge is 1. The only
exception is the edges fromvs, where the probability is written on each edge (it is1

2 in each case).

whered(s, s′)(s) = 1 − δmin andd(s, s′)(s′) = δmin. Also, we definev01 as⊤ andv02 as⊥. The states⊥ and⊤ are
absorbing. The statevs is such that7 δ(vs, a, a) = U(v1, v2). For eachj ∈ {1, 2}, the transition function of statevj is

δ(vj , a
j,ℓ
1 , aj,ℓ

′

2 ) =





d(vs, v
c−1
j ) if ℓ = ℓ′

d(vs, v
2c−1

ĵ
) if ℓ < ℓ′

v0
ĵ

if ℓ > ℓ′

For each other statevℓj , the transition function isδ(vℓj , a, a) = d(vs, v
ℓ−1
j ). The objective of player1 is (Safety, S \

{⊥}) and the objective of player 2 is(Safety, S \ {⊤}). See Figure 5 for an illustration ofGδmin
2 .

Near-zero-sum property. Observe that either⊥ or ⊤ is reached with probability 1 (and once⊤ or ⊥ is reached, the
game stays there). The reasoning is as follows: there is a probability of at least(δmin)

2c to reach either⊤ or⊥ within
the next2c+ 1 steps from any state. If the current state isvs, then the next state is eitherv1 or v2, and fromv1 or v2
throughvℓj for eachℓ from1 to 2c−1, for somej, either⊤ or⊥ is reached, and each of the steps fromv1 or v2 onward
happens with probability at leastδmin, no matter the choice of the players. Hence, the game is in essence zero-sum,
since with probability 1 precisely one player wins.

Proof overview. Our proof has two parts. We show that there is a strategy for playeri, for eachi, that ensures that
against all strategies for the other player, the payoff is atleast12 for playeri. Also, we show that for each strategy of
playeri with patience at most(δmin)

−2/3·c, there is a strategy for the other player such that the payoffis less than16
for playeri. This then allows us to show that no strategy profile that forms a 1

6 -Nash equilibrium has patience less
than(δmin)

−2/3·c.

Lemma 45. For eachi, playeri has a strategyσi such that

inf
σî

u(G, vs, σ1, σ2, i) =
1

2
.

7recall thatU(s, s′) is the uniform distribution overs ands′
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Proof. Consider the stationary strategyσ1, where

σ1(v1)(a
1,1
1 ) = σ1(v2)(a

2,1
1 ) =

1 + (δmin)
−c

2 + (δmin)−c + (δmin)c

and

σ1(v1)(a
1,2
1 ) = σ1(v2)(a

2,2
1 ) =

1 + (δmin)
c

2 + (δmin)−c + (δmin)c
.

Observe that fixingσ1 as the strategy for player 1, the game turns into an MDP for player 2. Such games have a
positional strategy ensuring that the payoff for player 2 isas large as possible. Going through all four candidates for
σ2, one can see thatmaxσ2 u(G, vs, σ1, σ2, 2) =

1
2 . Because of the near-zero-sum property, this minimizes thepayoff

for player 1 (sinceu(G, vs, σ1, σ2, 1) + u(G, vs, σ1, σ2, 2) = 1), which is theninfσ2 u(G, vs, σ1, σ2, 1) = 1
2 . The

strategy for player 2 follows fromσ1 and the symmetry of the game.

We next argue that if playeri uses a low-patience strategy, then the opponent can ensure low payoff for playeri.

Lemma 46. Letσi be a strategy for playeri with patience at most(δmin)
−2/3·c. Then there exists a pure strategyσ̂i

such thatu(G, vs, σ1, σ2, î) > 1− 1
6 .

Proof. Consider first player1 (the argument for player 2 follows from symmetry). Letσ1 be some strategy with
patience at most(δmin)

−(n−3)/6 = (δmin)
−2/3·c.

The pure strategyσ2 is defined givenσ1 as follows. For playsP ℓ
s ending in statev1 or v2 we have that

σ2(P
ℓ
s ) =

{
aj,j2 if σ1(P

ℓ
s )(a

j,2
2 ) > 0

aj,ĵ2 if σ1(P
ℓ
s ) = aj,12 .

To argue thatu(G, vs, σ1, σ2, 2) > 1− 1
6 , we consider a playPvs picked according to(σ1, σ2), such that either⊥ or⊤

is eventually reached. This is true with probability 1. Consider the last roundℓ, such thatvℓ = vj , for somej = 1, 2.
We now consider four cases: Either we have that

1. j = 1 andσ1(P
ℓ
s )(a

j,2
2 ) > 0 or

2. j = 1 andσ1(P
ℓ
s ) = aj,12 or

3. j = 2 andσ1(P
ℓ
s )(a

j,2
2 ) > 0 or

4. j = 2 andσ1(P
ℓ
s ) = aj,12 .

The probability to eventually reach⊥ is then at least the minimum probability to eventually reach⊥ in each of
the four cases. In case (2) and case (4), we see that player 2 wins with probability 1. In case (1) observe that
from a roundℓ′ whereσ1(P

ℓ′

s )(a1,22 ) > 0 player 1 wins (i.e., reaches⊤ before enteringvs again) with probability
(1 − (δmin)

2/3·c) · (δmin)
c < (δmin)

c and player 2 wins (i.e., reaches⊥ before enteringvs again) with probability
(δmin)

2/3·c. Hence, the probability that player 1 wins if such a round is roundℓ is at most

(δmin)
c

(δmin)2/3·c + (δmin)c
<

(δmin)
c

(δmin)2/3·c
= (δmin)

c/3 <
1

6
,

where the last inequality comes from thatc ≥ 1 andδmin < 6−3. In case (3) observe that from a roundℓ′ where
σ1(P

ℓ′

s )(a2,22 ) > 0 player 1 wins (i.e., reaches⊤ before enteringvs again) with probability at most(1− (δmin)
2/3·c) ·

(δmin)
2c < (δmin)

2c and player 2 wins (i.e., reaches⊥ before enteringvs again) with probability at least(δmin)
2/3·c ·

(δmin)
c = (δmin)

5/3·c. Hence, the probability that player 1 wins if such a round is roundℓ is at most

(δmin)
2·c

(δmin)5/3·c + (δmin)2·c
<

(δmin)
2·c

(δmin)5/3·c
= (δmin)

c/3 <
1

6
,

where the last inequality comes from thatc ≥ 1 andδmin < 6−3. The desired result follows.
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We now prove the main result that no strategy with patience only (δmin)
−2/3·c can be a part of a16 -Nash equilib-

rium.

Theorem 47. For all c ∈ N and all 0 < δmin < 6−3, consider the gameGδmin
c (that hasn = 4c + 3 states and at

most two actions for each player at all states). Each strategy profileσ = (σi)i that forms an16 -Nash equilibrium has
patience at least(δmin)

−(n−3)/6.

Proof. Fix somec ∈ N and0 < δmin < 6−3. The proof will be by contradiction. Consider first player1 (the argument
for player 2 follows from symmetry). Letσ1 be some strategy with patience at most(δmin)

−(n−3)/6 = (δmin)
−2/3·c.

Consider some strategyσ2 for player 2. We consider two cases, either

u(G, vs, σ1, σ2, 2) ≤
1

2
+

1

6
=

2

3

or not. If

u(G, vs, σ1, σ2, 2) ≤
2

3
,

then player 2 can play a strategyσ′
2, shown to exist in Lemma 46, instead and get payoff strictly above1 − 1

6 = 5
6 ,

showing that(σ1, σ2) is not an1
6 -Nash equilibrium. On the other hand, if

u(G, vs, σ1, σ2, 2) >
2

3
,

then u(G, vs, σ1, σ2, 1) < 1
3 and player 1 can play a strategyσ′

1, shown to exist in Lemma 45, for which
u(G, vs, σ

′
1, σ2, 1) ≥ 1

2 . Hence,(σ1, σ2) does not form an16 -Nash equilibrium in this case either. The desired re-
sult follows.

Remark 48. Using ideas similar to Remark 37 we can construct a game withk ≥ 3 safety players in which the
patience is at least(δmin)

−(n−3)/(6k) for all strategy profiles that forms an16k -Nash equilibrium.

7 Discussion and Conclusion

In this section, we discuss some important features and interesting technical aspects of our results. Finally we conclude
with some remarks.

7.1 Important features of results

We now highlight two important features of our results, namely, the surprising aspects and the significance of the
results.

Surprising aspects of our results.We discuss three surprising aspects of our result.
1. The doubly-exponential lower bound on patience.For concurrent safety games, the properties of strategies re-

semble that of concurrent discounted games. In both cases, (1) optimal strategies exist, (2) there exist stationary
strategies that are optimal, and (3) locally optimal strategies (that play optimally in every state with respect
to the matrix games with values) are optimal. The other classof concurrent games where optimal stationary
strategies exist are concurrent ergodic mean-payoff games, however, in contrast to safety and discounted games,
in concurrent ergodic mean-payoff games not all locally optimal strategies are optimal. However, though for
concurrent discounted games as well for concurrent ergodicmean-payoff games, the optimal bound on the pa-
tience ofǫ-optimal stationary strategies, forǫ > 0, is exponential, we show a doubly-exponential lower bound
on patience ofǫ-optimal strategies for concurrent safety games, forǫ > 0.

2. The lower bound example.The second surprising aspect of our result is the lower boundexample itself, which
had been elusive for safety games. The closer the lower boundexample is to known examples, the greater is
its value, as it is easier to understand, and illustrates thesimplicity of our elusive example. Our example is
obtained as follows: We consider the Purgatory games(n+1,m), which has two value classes, and in this game
positional (pure memoryless) optimal strategies exist forthe safety player. We simplify the game by making the
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Figure 6: An illustration of the Purgatory Duel withm = n = 2. The two dashed edges have probability1
2 each.
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start state a deterministic state with one action for each player that with probability one goes to the next state.
We call this simplified Purgatory, and strategies in simplified Purgatory corresponds to strategies in Purgatory
(n,m). Then we consider the dual of the simplified Purgatory, whichis basically a mirror of the simplified
Purgatory, with roles of the players exchanged. In effect the dual is obtained by exchanging⊤ and⊥. Both in
the simplified Purgatory and the dual of simplified Purgatory, there are two value classes, and positional optimal
strategies exist for the safety player. The Puragatory duelis obtained by simply merging the start states of the
simplified Purgatory and the dual of the simplified Puragatory, thus from the start state we go to the first state of
the Purgatory(n,m) and the first state of the dual of Purgatory(n,m), each with probability half; see Figure 6.
Quite surprisingly we show that this simple merge operationgives a game where each state has a different value
(i.e., that has linear number of value classes instead of twovalue classes), and the patience of optimal strategies
increases from 1 (positional) to doubly-exponential (evenfor ǫ-optimal strategies) for the safety player.

3. From reachability to safety.The third surprising aspect is that we transfer a lower boundresult from concurrent
reachability to concurrent safety games. Typically, the behavior of strategies of concurrent reachability and
safety games are different, e.g., for reachability games optimal strategies do not exist in general, whereas they
exist for concurrent safety games; and even in concurrent reachability games where optimal strategies exist, not
all locally optimal strategies are optimal, whereas in concurrent safety games all locally optimal strategies are
optimal. Yet we show that a lower bound example for concurrent reachability games can be modified to obtain a
lower bound for concurrent safety games. Moreover, we show that the strategy complexity results with respect
to the number of value classes in concurrent safety games is different and much more refined as compared to
reachability games (see Table 1).

Significance of our result.There are several significant aspects of our result.
1. Roundedeness and patience.As a measure of strategy complexity there are two important notions: (a) round-

edness, which is more relevant from the computational aspect; and (b) patience, which is the traditional game
theoretic measure. The roundedness is always at least the patience, and in this work we present matching bounds
for patience and roundedness (i.e., our upper bounds are forroundedness which are matched with lower bounds
for patience). Thus our results present a complete picture of strategy complexity with respect to both well-known
measures.

2. Computational complexity.In the study of stochastic games, the most well-studied way to obtain computational
complexity result is to explicitly guess strategies and then verify the resulting game obtained after fixing the
strategy. The lower bound for concurrent reachability games by itself did not rule out that improved compu-
tational complexity bounds can be achieved through better strategy complexity for safety games. Indeed, for
constant number of value classes, we obtain a better complexity result due to the exponential bound on round-
edness. Our doubly-exponential lower bound shows that in general the method of explicitly guessing strategies
would require exponential space, and would not yieldNP or coNP upper bounds. In other words, our re-
sults establish that to obtainNP or coNP upper bound for concurrent safety games in general completely new
techniques are necessary.

3. Lower bound for algorithm.One of the most well-studied algorithm for games is the strategy-iteration algorithm
that explicitly modifies strategies. Our result shows that any natural variant of the strategy-iteration algorithm
for the safety player which explicitly compute strategies require exponential space in the worst-case.

4. Complexity of strategies.While the decision problem for games of whether the value is at least a threshold is
the most fundamental question, along with values, witness (close-to-)optimal strategies are required. Our results
present a tight bound on the complexity of strategies (whichare as important as values).

In summary, our main contributions are optimal bounds on strategy complexity, and our lower bounds have significant
implications: it provides worst-case lower bound for a natural class of algorithms, as well rules out a traditional method
to obtain computational complexity results.

7.2 Interesting technical aspects

Remark 49 (Difference of exponential bounds). In this work we present two different exponential bound on patience.
The first for zero-sum concurrent stochastic games, and the second for non-zero-sum concurrent stochastic games with
safety objectives for all players. However, note that the nature of the lower bounds are very different. The first lower
bound is exponential in the number of actions, and the size ofthe state space is constant. In contrast, for non-zero-sum
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concurrent stochastic games with safety objectives for allplayers, if the size of the state space is constant, then our
upper bound on patience is polynomial. The second lower bound in contrast to the first lower bound is exponential in
the number of states (and the upper bound is polynomial inm and also the number of players).

Remark 50 (Concurrent games with deterministic transitions). We now discuss our results for concurrent games
with deterministic transitions. It follows from the results of [9] that for zero-sum games, there is a polynomial-time
reduction from concurrent stochastic games to concurrent games with deterministic transitions. Hence, all our lower
bound results for zero-sum games also hold for concurrent deterministic games. Observe that this is also true for
our lower bound on non-zero sum games with at least one reachability player, since we reduce the problem to the
zero-sum case. However, in general for non-zero-sum games polynomial-time reductions from concurrent stochastic
games to concurrent deterministic games are not possible. For example, for concurrent stochastic games with safety
objectives for all players we establish an exponential lower bound on patience of strategies that constitute an1/6-Nash
equilibrium, whereas in contrast, our upper bound on patience shows that if the game is deterministic (i.e.,δmin = 1)
andǫ is constant, then there always exists anε-Nash equilibrium that requires only polynomial patience.

Remark 51 (Nature of strategies for the reachability player). Another important feature of our result is as follows:
for zero-sum concurrent stochastic games, the characterization of [19] of ǫ-optimal strategies asmonomialstrategies
for reachability objectives, separates the description ofthe strategies as a part that is a function ofǫ, and a part that is
independentǫ. The previous double-exponential lower bound on patience from [22, 20] shows that the part dependent
on ǫ requires double-exponential patience, whereas the part that is independent only requires linear patience. A
witness forǫ-optimal strategies in Purgatory (as described in [14] for the value-1 problem for general zero-sum
concurrent stochastic game) can be obtained as a ranking function on states and actions, such that the actions with
rank 0 are played with uniform probability (linear patience); and an action of ranki at a state of rankj is played
with probability roughly proportional toǫi

j

. In contrast, since we show lower bound for optimal strategies (and
the strategies are symmetric) in Purgatory Duel, our lower bound implies that also the part that is independent ofǫ
requires double-exponential patience in general (i.e., the probability description ofǫ-optimal strategies needs to be
doubly exponentially precise).

7.3 Concluding remarks

In this work, we established the strategy complexity of zero-sum and non-zero-sum concurrent games with safety and
reachability objectives. Our most important result is the doubly-exponential lower bound on patience forǫ-optimal
strategies, forǫ > 0, for the safety player in concurrent zero-sum games. Note that roundedness is at least patience,
and we present upper bounds for roundedness that match our lower bound for patience, and thus we establish tight
bounds both for roundedness and patience. Our results also imply tight bounds on “granularity” of strategies (i.e., the
minimal difference between two probabilities). Since patience is the minimum positive probability, and some actions
can be played with probability 0, a lower bound on patience isa lower bound on granularity, and an upper bound on
roundedness is an upper bound on granularity. Finally, there are many interesting directions of future work. The first
question is the complexity of the value problem for concurrent safety games. While our results show that explicitly
guessing strategies does not yield desired complexity results, an interesting question is whether new techniques can be
developed to show that concurrent safety games can be decided in coNP in general. A second interesting question is
whether variants of strategy-iteration algorithm can be developed that does not explicitly modify strategies, and does
not have worst-case exponential-space complexity.
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