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Abstract15

Crypto-currencies are digital assets designed to work as a medium of exchange, e.g., Bitcoin, but they16

are susceptible to attacks (dishonest behavior of participants). A framework for the analysis of attacks17

in crypto-currencies requires (a) modeling of game-theoretic aspects to analyze incentives for deviation18

from honest behavior; (b) concurrent interactions between participants; and (c) analysis of long-term19

monetary gains. Traditional game-theoretic approaches for the analysis of security protocols consider20

either qualitative temporal properties such as safety and termination, or the very special class of one-21

shot (stateless) games. However, to analyze general attacks on protocols for crypto-currencies, both22

stateful analysis and quantitative objectives are necessary. In this work our main contributions are as23

follows: (a) we show how a class of concurrent mean-payoff games, namely ergodic games, can model24

various attacks that arise naturally in crypto-currencies; (b) we present the first practical implementation25

of algorithms for ergodic games that scales to model realistic problems for crypto-currencies; and (c) we26

present experimental results showing that our framework can handle games with thousands of states and27

millions of transitions.28
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1 Introduction33

Economic effects of security violations. Traditionally, automated security analysis of protocols34

using game-theoretic frameworks focused on qualitative properties, such as safety or liveness [32, 21,35

2], to ensure absolute security. In many cases absolute security is too expensive, and security violations36

are inevitable. In such scenarios rather than security, the economic implications of violations should37

be accounted for. In general, economic consequences of security violations are hard to measure.38

However, there is a new application area of crypto-currencies, in which the economic impact of39

an attack can be measured in terms of the number of coins that are lost. These currencies have40

considerable market value, in the order of hundreds of billions of dollars [23], thus developing a41

framework to formally analyze the security violations and their economic consequences for crypto-42

currencies is an interesting problem.43
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Crypto-currencies. There are many active crypto-currencies today, some with considerable market44

values. Currently, the main crypto-currency is Bitcoin with a value of over 150 billion dollars at the45

time of writing [23]. Virtually all of these currencies are free from outside governance and authority46

and are not controlled by any central bank. Instead, they work based on the decentralized blockchain47

protocol. This protocol, which was first developed for monetary transactions in Bitcoin [36], sets48

down the rules for creating new units of currency and valid transactions. However, it only defines49

the outcomes of actions taken by involved parties and cannot dictate the actions themselves. So,50

the whole ecosystem operates in a game-theoretic manner. The lack of an authority also leads to51

irreversibility of transactions, so if an amount of currency is transferred unintentionally or due to52

a bug, it cannot be reclaimed. This, together with the huge market values, makes it imperative to53

develop formal methods for quantifying the economic consequences before deploying the protocols.54

Dishonest interaction. The fact that protocols define only the outcomes of actions (in terms of55

loss or earning of currency), and do not force the actions themselves, means that in some scenarios56

they might give one of the parties unfair or unintended advantage over others and an incentive to57

act dishonestly, i.e. to take an unintended action. Such behavior is called an attack. We succinctly58

describe some attacks.59

The most fundamental attack in every crypto-currency is double-spending, where one party could60

in some circumstances use the same coin twice in two different purchases. While this vulnerability61

is inherent in every blockchain protocol, people still use crypto-currencies as the probability (and62

the economic consequences) of such an attack can be bounded over time.63

Another line of attacks follow from dishonest behavior of the blockchain miners who are respons-64

ible for the underlying security of the blockchain protocol and are rewarded for their operations.65

It was shown that undesirable behavior, such as block withholding [24] or selfish mining [25],66

could increase the dishonest miner’s reward, at the expense of other (honest) miners. We explain67

the block withholding attack in more detail in Section 5.1.68

Research Questions. Analyzing attacks on crypto-currencies requires a formal framework to handle:69

(a) game-theoretic aspects and incentives for dishonest behavior; (b) simultaneous interaction of the70

participants; and (c) quantitative properties corresponding to long-term monetary gains and losses.71

These properties cannot be obtained from standard temporal or qualitative properties which have72

been the focus of previous game-theoretic frameworks [32, 21]. On the other hand, game-theoretic73

incentives are also analyzed in the security community (e.g., see [13]), but their methods are normally74

considering the very special case of one-shot (stateless) or short-term games. One-shot games cannot75

model the different states of the ecosystem or the history of actions taken by participants.76

Concurrent mean-payoff games. These games were introduced in the seminal work of Shapley [44],77

and later extended by Gillette [28]. A concurrent mean-payoff game is played by two players over78

a finite state space, where at each state both players simultaneously choose actions. The transition79

to the next state is determined by their joint actions, and each transition is assigned a reward.80

The goal of one player is to maximize the long-run average of the rewards, and the other player81

tries to minimize it. These games provide a very natural and general framework to study stateful82

games with simultaneous interactions and quantitative objectives. They lead to a very elegant and83

mathematically rich framework, and the theoretical complexity of such games has been studied for84

six decades [44, 28, 9, 30, 35, 19, 29]. However, the analysis of concurrent mean-payoff games is85

computationally intractable and no practical (such as strategy-iteration) algorithms exist to solve86

these games. Existing algorithmic approaches either require the theory of reals and quantifier87

elimination [19] or have doubly-exponential time complexity in the number of states [29], and cannot88

handle beyond toy examples of ten transitions.89

Our contributions. Our main contributions are as follows:90

1. Modeling. We propose to model long-term (infinite-horizon) economic aspects of security viola-91

tions as concurrent mean-payoff games, between the attacker and the defender. The guaranteed92

payoff in the game corresponds to the maximal loss of the defender. In particular, for blockchain93
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protocols, where the utility of every transition is naturally measurable, we show how to model94

various interesting scenarios as a sub-class of concurrent mean-payoff games, namely, concurrent95

ergodic games. In these games all states are visited infinitely often with probability 1.96

2. Practical implementation. Second, while for concurrent ergodic games a theoretical algorithm97

(strategy-iteration algorithm) exists that does not use theory of reals and quantifier elimination,98

no previous implementation exists. Moreover, the implementation of the theoretical algorithm99

poses practical challenges: (a) the algorithm guarantees convergence only in the limit; and100

(b) the algorithm requires high numerical precision and the straightforward implementation101

of the algorithm does not converge in practice. We present (i) a simple stopping criterion for102

approximation, and (ii) resolve the numerical precision problem; and to our knowledge present103

the first practical implementation of a solver for concurrent ergodic games.104

3. Experimental results. Finally, we present experimental results and show that the solver for105

ergodic games scales to thousands of states and nearly a million transitions to model realistic106

analysis problems from crypto-currencies. Note that in comparison, approaches for general107

concurrent mean-payoff games cannot handle even ten transitions (see the Remark in Section 3).108

Thus we present orders of magnitude of improvement.109

2 Crypto-Currencies110

Monetary system. A crypto-currency is a monetary system that allows secure transactions of currency111

units and dictates how new units are formed. Each transaction has a unique id and the following112

components: (i) a set of inputs; and (ii) a set of outputs and (iii) locking scripts. Each input has a113

pointer to an output of a previous transaction, and each output has an assigned monetary value. A114

locking script on an output defines a condition for using the funds stored in that output, e.g. the need115

for a digital signature. An input can use funds of the output it points to only if it can satisfy this116

condition.117

Validity. A transaction is valid if these conditions hold: (a) the total value brought by the inputs is118

greater than or equal to the total value of the outputs; (b) the inputs have not been spent before; (c)119

the inputs satisfy locking scripts.120

Note that the list of transactions is the only state of the system and higher level concepts like121

account balance and users are computed directly from it. A transaction-based system is not secure if122

transactions are sent directly between users to transfer units. While validity conditions are enough123

to make sure that only valid recipients could redirect units they once truly held, there is nothing in124

the transactions themselves to limit the user from spending the same output twice (in two different125

transactions). For this purpose a public ledger of all valid transactions, called a blockchain, is126

maintained.127

Blockchain. A ledger is a distributed database that maintains a growing ordered list of valid128

transactions. Its main novelty is that it enforces consensus among untrusted and possibly adversarial129

parties [36]. In Bitcoin (and most other major crypto-currencies) the public ledger is implemented as130

a series of blocks of transactions, each containing a reference to its previous block, and is hence called131

a blockchain. A consensus on the chain is obtained by a decentralized pseudonymous protocol. Any132

party tries to collect new transactions, form a block and add it to the chain (this process is called block133

mining). However, in order to do so, they must solve a challenging computational puzzle (which134

depends on the last block of the chain). The process of choosing the next block is as follows:135

1. The first announced valid block that solves the puzzle is added to the chain.136

2. If two valid blocks are found approximately at the same time (depending on network latency),137

then there is a temporary fork in the chain.138

Every party is free to choose either fork, and try to extend it. Hence, the underlying structure of the139

blockchain is a tree. At any given time, the longest path in the tree, aka the longest chain, is the140

consensus blockchain (see Figure 1). Due to the random nature of the computational puzzle one141

branch will eventually become strictly longer than the other, and all parties will adopt it.142

CONCUR 2018
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Figure 1 The longest chain dictates that the transaction tx belongs to Bob.

Mining process. The puzzle asks for a block consisting of valid transactions, hash of the previous143

block and an arbitrary integer nonce, whose hash is less than a target value. The random nature of144

the hash function dictates a simple strategy for mining: try random nonces until a solution is found.145

So the chance of a miner to find the next block is proportional to their computational power.146

Incentives for mining. There are two incentives for miners: (i) Every transaction can donate to the147

miner who finds a new block that contains it, (ii) Each block creates a certain number of new coins148

which are then given to the miner.149

Pool mining. To lower the variance of their revenue, miners often collaborate in pools [40, 13]. The150

pools have a manager who collects the rewards from valid blocks found by the members and allocates151

funds to them in proportion to the amount of work they did. Members prove their work by sending152

partial solution blocks, which are blocks with valid transactions but lower difficulty level, i.e., the153

hash of the block is not smaller than the network threshold, but it is lower than some threshold that154

was defined by the manager. As a result, pool members obtain lower variance in rewards, but have a155

small drop in expected revenue to cover the manager’s fee. Members will get the same reward for a156

partial and full solution, but the member cannot claim the full block reward for themselves. More157

precisely, a block also dictates where the block reward goes to. Hence, even if a member broadcasts158

the new block, the reward will still go to the manager.159

Overview. A crypto-currency is a network with nodes. Some of the nodes are also miners. A node160

has a local copy of the blockchain and local transaction pool, which holds valid pending transactions161

that are still not in the blockchain. When a user performs a transaction his associated nodes broadcast162

the transaction to the network. When a node receives a new transaction it checks whether it is valid163

wrt its blockchain and transaction pool. When a node receives a new block, it verifies that it is valid164

wrt consensus chain. If it is valid it adds it to the chain and updates his transaction pool accordingly.165

Whenever a new valid transaction or block is received, the node broadcasts it to all of its neighbors.166

Proof of stake mining. An emerging criticism over the huge amount of energy that is wasted in the167

mining process led to development of proof of stake protocols. In proof of stake mining the miner is168

elected with probability that is proportional to their stake in the network (i.e., number of coin units he169

holds), rather than their computation power. Current proof of stake protocols assume a synchronous170

setting [37, 47, 33] where a miner is chosen in every time slot t0. However, they differ in the way171

they reach consensus. We study a simplified version of [33].172

1. At time t0 a miner is randomly elected. She broadcasts the next block.173

2. Until time t0 + t other miners who receive the block, verify it and if it were valid, sign it and174

broadcast the signature.175

3. The block is added to the chain only if a majority of the network sign it.176

To encourage honest behavior, the elected miner and signers get rewards when the suggested block is177

accepted.178

3 Concurrent and Ergodic Games179

We first present the basic definitions and results related to concurrent games.180
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Probability distributions. For a finite set A, a probability distribution on A is a function δ : A →181

[0, 1] such that
∑
a∈A δ(a) = 1. We denote the set of probability distributions onA byD(A). Given a182

distribution δ ∈ D(A), we denote by Supp(δ) = {x ∈ A | δ(x) > 0} the support of the distribution.183

Concurrent game structures. A concurrent stochastic game structure G = (S,A,Γ1,Γ2, δ) has184

the following components:185

A finite state space S and a finite set A of actions (or moves).186

Two move assignments Γ1,Γ2 : S → 2A \ ∅. For i ∈ {1, 2}, assignment Γi associates with each187

state s ∈ S the non-empty set Γi(s) ⊆ A of moves available to Player i at state s.188

A probabilistic transition function δ : S × A × A → D(S), which associates with every state189

s ∈ S and moves a1 ∈ Γ1(s) and a2 ∈ Γ2(s), a probability distribution δ(s, a1, a2) ∈ D(S) for190

the successor state.191

We denote by n the number of states (i.e., n = |S|), and bym the maximal number of actions available192

for a player at a state (i.e., m = maxs∈S max{|Γ1(s)|, |Γ2(s)|}). The size of the transition relation193

of a game structure is defined as |δ| =
∑
s∈S

∑
a1∈Γ1(s)

∑
a2∈Γ2(s) |Supp(δ(s, a1, a2))| ≤ n2 ·m2.194

Plays. At every state s ∈ S, Player 1 chooses a move a1 ∈ Γ1(s), and simultaneously and195

independently Player 2 chooses a move a2 ∈ Γ2(s). The game then proceeds to the successor196

state t with probability δ(s, a1, a2)(t), for all t ∈ S. A path or a play of G is an infinite sequence197

π =
(
(s0, a

0
1, a

0
2), (s1, a

1
1, a

1
2), (s2, a

2
1, a

2
2) . . .

)
of states and action pairs such that for all k ≥ 0 we198

have (i) aki ∈ Γi(sk); and (ii) sk+1 ∈ Supp(δ(sk, ak1 , ak2)). We denote by Π the set of all paths.199

I Example 1. Consider a repetitive game of rock-paper-scissors, consisting of an infinite number200

of laps, in which each lap is made of a number of rounds as illustrated in Figure 2. When a lap begins,201

the two players play rock-paper-scissors repetitively until one of them wins 3 rounds more than her202

opponent, in which case she wins the current lap of the game and a new lap begins. In each round,203

the winner is determined by the usual rules of rock-paper-scissors, i.e. rock beats scissors, scissors204

beat paper and paper beats rock. In case of a tie, each player wins the round with probability 1
2 .205

Here we have S = {−2,−1, 0, 1, 2} and Γ1 = Γ2 ≡ {R,P,S}. The game starts at state 0 and206

state s corresponds to the situation where Player 1 has won s rounds more than Player 2 in the207

ongoing lap. Edges in the figure correspond to possible transitions in the game. Each edge is labeled208

with three values a1, a2, p to denote that the game will transition from the state at the beginning209

of the edge to the state at its end with probability p if the two players decide on actions a1 and a2,210

respectively. For example, there is an edge from state 2 to state 0 labeled R,S, 1, which corresponds211

to δ(2,R,S)(0) = 1. In the figure, we use X,X in place of a1, a2 to denote that they are equal.212

Hence every play in this game corresponds to an infinite walk on the graph in Figure 2.213

Figure 2 A repetitive rock-paper-scissors game

Strategies. A strategy is a recipe to extend prefixes of a play. Formally, a strategy for Player i is a214

mapping σi : (S×A×A)∗×S → D(A) that associates with every finite sequence x ∈ (S×A×A)∗215

of state and action pairs, representing the past history of the game, and the current state s in S, a216

probability distribution σi(x · s) used to select the next move. The strategy σi can only prescribe217

moves that are available to Player i; that is, for all sequences x ∈ (S × A× A)∗ and states s ∈ S,218

we require Supp(σi(x · s)) ⊆ Γi(s). We denote by Σi the set of all strategies for Player i. Once the219

starting state s and the strategies σ1 and σ2 for the two players have been chosen, then the probabilities220

CONCUR 2018
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of measurable events are uniquely defined [46]. For an event A ⊆ Π, we denote by Prσ1,σ2
s (A) the221

probability that a path belongs to A when the game starts from s and the players use the strategies σ1222

and σ2; and Eσ1,σ2
s [·] is the expectation measure. We call a pair of strategies (σ1, σ2) ∈ Σ1 × Σ2 a223

strategy profile.224

Stationary (memoryless) and positional strategies. In general, strategies use randomization, and225

can use finite or even infinite memory to remember the history. Simpler strategies, that either do not226

use memory, or randomization, or both, are significant, as they are simple to implement and interpret.227

A strategy σi is stationary (or memoryless) if it is independent of the history but only depends on the228

current state, i.e., for all x, x′ ∈ (S ×A×A)∗ and all s ∈ S, we have σi(x · s) = σi(x′ · s), and thus229

can be expressed as a function σi : S → D(A). A strategy is pure if it does not use randomization,230

i.e., for any history there is always some unique action a that is played with probability 1. A pure231

stationary strategy σi is called positional, and represented as a function σi : S → A.232

Mean-payoff objectives. We consider maximizing limit-average (or mean-payoff) objectives for233

Player 1, and the objective of Player 2 is the opposite (i.e., the games are zero-sum). We consider234

concurrent games with a reward function R : S×A×A→ R that assigns a reward value R(s, a1, a2)235

for all s ∈ S, a1 ∈ Γ1(s), and a2 ∈ Γ2(s). For a path π =
(
(s0, a

0
1, a

0
2), (s1, a

1
1, a

1
2), . . .

)
,236

the average for T steps is AvgT (π) = 1
T ·

∑T−1
i=0 R(si, ai1, ai2), and the limit-inferior average237

(resp. limit-superior average) is defined as follows: LimInfAvg(π) = lim infT→∞ AvgT (π) (resp.238

LimSupAvg(π) = lim supT→∞ AvgT (π)). For brevity we denote concurrent games with mean-239

payoff objectives as CMPGs (concurrent mean-payoff games).240

I Example 2. Consider the game in Figure 2. In this game, Player 1 wins a lap whenever a red241

edge is crossed. Therefore, in order to capture the number of laps won by Player 1, rewards can be242

assigned as: R(2, R, S) = R(2, P,R) = R(2, S, P ) = 1; R(2, X,X) = 1
2 and 0 in all other cases.243

Values and ε-optimal strategies. Given a CMPG G and a reward function R, the lower value vs244

(resp. the upper value vs) at a state s is defined as follows:245

vs = sup
σ1∈Σ1

inf
σ2∈Σ2

Eσ1,σ2
s [LimInfAvg]; vs = inf

σ2∈Σ2
sup
σ1∈Σ1

Eσ1,σ2
s [LimSupAvg].246

The determinacy result of [35] shows that the upper and lower values coincide and give the value247

of the game denoted as vs. For ε ≥ 0, a strategy σ1 for Player 1 is ε-optimal if we have vs − ε ≤248

infσ2∈Σ2 Eσ1,σ2
s [LimInfAvg].249

Ergodic Games. A CMPG G is ergodic if for all states s, t ∈ S, for all strategy profiles (σ1, σ2), if250

we start at s, then t is visited infinitely often with probability 1 in the random walk πσ1,σ2
s . The game251

in Figure 2 is not ergodic. If Player 1 keeps playing rock and Player 2 scissors, then the states −1 and252

−2 are visited at most once each. We now present a more realistic version of the same game that is253

also ergodic.254

I Example 3. Consider two players playing the repetitive game of rock-paper-scissors over a255

network, e.g. the Internet. The game is loaded on a central server that asks the players for their256

moves and provides them with rewards and information about changes in the state of the game. Given257

that the network is not perfect, there is always a small probability that one of the players is unable258

to announce his move in time to the server. In such cases, the player will lose the current round.259

Assume that this scenario happens with probability ε > 0. Then all probabilities in Figure 2 have to260

be multiplied by (1− ε) and new transitions, which are not under players’ control and are a result261

of uncertainty in the network connection, should be added to the game. These new transitions are262

illustrated in Figure 3. Here a star can be replaced by any permissible action of the players. It is easy263

to check that this variant of the game is ergodic, given that starting from any state, there is a positive264

probability of visiting any other state within 3 steps using the new transitions only.265

Results about general CMPGs. The main results for CMPGs are as follows:266

1. The celebrated result of existence of values was established in [35].267
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2. For CMPGs, stationary or finite-memory strategies are not sufficient for optimality, and even268

in CMPGs with three states (the well-known Big Match game), very complex infinite-memory269

strategies are required for ε-optimality [9].270

3. The value problem, that given a CMPG, a state s, and a threshold λ, asks whether the value at271

state s is at least λ, can be decided in PSPACE [19]; and also in m2O(n)
time, which is doubly272

exponential in the worst case, but polynomial-time in m, for n constant [29]. Both the above273

algorithms use the theory of reals and quantifier elimination for analysis.274

I Remark (Inefficiency). The quantifier elimination approach for general CMPGs considers275

formulas in the theory of reals with alternation, where the variables represent the transitions [19].276

With as few as ten transitions, quantifier elimination produces formulas with hundreds of variables277

over the existential theory of reals. In turn, the existential theory of reals has exponential-time278

complexity, is notoriously hard to solve, and its existing solvers cannot handle hundreds of variables.279

Hence, CMPGs with as few as ten transitions are not tractable.280

Results about ergodic CMPGs. The main results for ergodic CMPGs, besides the general results281

for CMPGs, are as follows:282

1. Stationary optimal strategies exist[30], but positional strategies are not sufficient for optimality.283

For precise strategy complexity see [18].284

2. Even in ergodic games, values and probabilities of optimal strategies can be irrational [18],285

and hence the relevant question is the approximation problem of values which is solvable in286

non-deterministic polynomial-time [18].287

3. The most well-known algorithm for ergodic mean-payoff games is the Hoffman-Karp strategy-288

iteration algorithm [30], which is described in detail in Appendix A.289

Note that since in ergodic games, every state is reached from every other state with probability 1, the290

value at all states is the same.291

4 Modeling Framework292

In this section we present an abstract framework to model economical consequences of attacks with293

mean-payoff games. In particular we show how broad classes of attacks can be modeled as ergodic294

games. In the next section we present concrete examples that arise from blockchain protocols. We295

start with some general aspects of mean-payoff games.296

4.1 Mean-payoff games modeling297

We describe two aspects of mean-payoff games modeling.298

1. Game graph modeling. Graph games are a standard model for reactive systems as well as299

protocols. The states and transitions of the graph represent states and transitions of the reactive300

system, and paths in the graphs represent traces of the system [38, 39]. Similarly, in modeling of301

protocols with different variables for the agents, the states of the game represent various scenarios302

of the protocols along with the valuation of the variables. The transitions represent a change of303

the scenario along with change in the valuation of the variables (for example see [21] for game304

graph modeling of protocols for digital-contract signing).305

Figure 3 Transitions due to network connectivity issues in the repetitive RPS.

CONCUR 2018
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2. Mean-payoff objective modeling. In mean-payoff objectives, the costs (or rewards) of every306

transition can represent, for example, delays, execution times, cost of context switches, cost of307

concurrency, or monetary gains and losses. The mean-payoff objective represents the long-term308

average of the rewards or the costs. The mean-payoff objective has been used for synthesis of309

better reactive systems [12], synthesis of synchronization primitives for concurrent data-structures310

to minimize average context-switch costs [15], model resource-usage in container analysis and311

frequency of function calls [20], as well as analysis of energy-related objectives [7, 6, 26].312

4.2 Crypto-currency Protocols as Mean-payoff Games313

We describe how to apply the general framework of CMPGs to crypto-currencies.314

General setting. We propose to analyze protocols as a game between a defender and an attacker. The315

defender and the attacker have complete freedom to decide on their moves. The decisions of the other316

parties in the ecosystem can be modeled as stochastic choices that are not adversarial to either of the317

players.318

Reward function. The reward function will reflect the monetary gain or loss of the defender. The319

attacker gain is not modeled as we consider the worst-case scenario in which the attacker’s objective320

is to minimize the defender’s utility.321

States. States of the game can represent the information that is relevant for the analysis of the322

protocol, such as the abstract state of the blockchain.323

Stochastic transitions. Probabilities over the transitions can model true stochastic processes e.g.,324

mining, or abstract complicated situations where the exact behavior cannot be directly computed (see325

Section 5.2) or in order to simulate the social behavior of a group (see Section 5.1).326

Concurrent interactions. Concurrent games are used when both players need to decide on their327

action simultaneously or when a single action models a behavior that continues over a time period328

and the players can only reason about their opponent’s behavior after some while (see Sections 5.1329

and 5.2).330

Result of the game. In this work we want to reason on defender’s security in a protocol wrt a331

malicious attacker who aims to decrease defender’s gain at any cost. The result of the mean-payoff332

game will describe the inevitable expected loss that the defender will have in the presence of an333

attacker and defender’s strategy describes the best way to defend himself against such an attacker.334

4.3 Modeling with Ergodic Games335

In this section we describe two classes of attacks, which can be naturally modeled with ergodic games.336

Our description here is high-level and informal, and concrete instances are considered in the next337

section. The attacks we describe are in a more general setting than crypto-currencies; however, for338

crypto-currencies the economic consequences are more natural to model.339

First class of attacks. In the first class of attacks the setting consists of two companies and the340

revenues of the companies depend on the number of users each has. Thus states represent the number341

of users. Each company can decide to attack its competing company. Performing an attack entails342

some economic costs, however it could increase the number of users of the attacking company at the343

expense of the attacked one. For example, consider two competing social networks, Alice and Bob.344

Alice can decide to launch a distributed-denial-of-service (DDOS) attack on Bob, and vice-versa.345

Such attacks entail a cost, but provide incentives for Bob users to switch to Alice. The rewards depend346

on the network revenues (i.e., number of users) and on the amount of funds the company decides to347

spend for the attack. The migration of users is a stochastic process that is biased towards the stronger348

network, but with smaller probability some users migrate to the other network. Thus the game is349

ergodic. This class represents pool attacks in the context of crypto-currencies (Sections 5.1 and 5.3).350
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Second class of attacks. Consider the scenario where the state of the game represents aspects of the351

dynamic network topology. The network evolves over the course of the time, and the actions of the352

participants also affect the network topology. However, the effect of the actions only makes local353

changes. The combination of the global changes and the local effects still ensure that different network354

states can be reached, and the game is ergodic. Attacks in such a scenario where the network topology355

determines the outcome of attack can be modeled as ergodic games. This class of attacks represent356

the zero-confirmation double-spending attack in the context of crypto-currencies (see Section 5.2).357

5 Formal Modeling of Real Attacks358

In this section we show how to model several real-world examples. These examples were described359

in the literature but were never analyzed as stateful games.360

5.1 Block Withholding Pool Attack361

Pools are susceptible to the classic block withholding attack [40], where a miner sends only partial362

solutions to the pool manager and discards full solutions. In this section we analyze block withholding363

attacks among two pools, pool A and pool B. We describe how pool A can attack pool B, and the364

converse direction is symmetric. To employ the pool block withholding attack, pool A registers at365

pool B as a regular miner. It receives tasks from pool B and transfers them to some of its own miners.366

Following the notions in [24], we call these infiltrating miners, and their mining power is called367

infiltration rate. When pool A’s infiltrating miners deliver partial solutions, pool A’s manager submits368

them to pool B’s manager and proves the portion of work they did. When the infiltrating miners369

deliver a full solution, the attacking pool manager discards it.370

At first, the total revenue of the victim pool does not change (as its effective mining rate was not371

changed), but the same sum is now divided among more miners. Thus, since the pool manager fees372

are nominal (fixed percentage of the total revenue [8]), in the short term, the manager of the victim373

pool will not lose. The attacker’s mining power is reduced, since some of its miners are used for374

block withholding, but it earns additional revenue through its infiltration of the other pool. Finally,375

the total effective mining power in the system is reduced, causing the blockchain protocol to reduce376

the difficulty. Hence, in some scenarios, the attacker can gain, even in the short run, from performing377

the attack [24].378

In the long run, if miners see a decrease in their profits (since they have to split the same revenue379

among more participants), it is likely that they consider to migrate to other pools. As a result, the380

victim pool’s total revenue will decrease.381

Our modeling. We aim to capture the long term consequences of pool attacks. We have two pools A382

and B, where B is the victim pool and A is the malicious pool who wishes to decrease B’s profits.383

There is also a group of miners C who are honest and represent the rest of the network. In return,384

pool B can defend itself by attacking back. To simulate the long term effect, in every round pool385

members from A and B may migrate from one pool to another or to and from C. The migration is a386

stochastic process that favors the pool with maximum profitability for miners. We note that given387

sufficient amount of time (say a week), a pool manager can evaluate with very high probability the388

fraction of infiltrating miners in his pool. This can be done by looking at the ratio between full and389

partial solutions. Hence, in retrospect of a week, the pools are aware of each other’s decisions, but390

within this week there is uncertainty. Therefore, we use concurrent games to analyze the worst case391

scenario for pool B.392

I Theorem 4. Consider a pair of pools A and B capable of attacking each other. Let C be the pool393

of remaining miners. If the miners in each pool migrate stochastically according to the attractiveness394

levels (as detailed below), then B can ensure a revenue of at least v on average per round, against395

any behavior of A, where v is the value of the concurrent ergodic game described below.396
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5.1.1 Details of Modeling397

We provide details of our modeling to demonstrate how such attacks can be thought of in terms of398

ergodic games. Due to page limitation and similarity, such details in other cases are relegated to399

Appendix C.400

Game states. We consider two pools, A and B and assume that any miner outside these two is401

mining independently for himself. Each state is defined by two values, i.e. the fractions of total402

computation power that belongs to A and B. We use a discretized version of this idea to model403

the game in a finite number of states and let S = {1, 2, . . . , n}2 and define ε = 1
2n+1 , where a404

state (i1, i2) ∈ S corresponds to the case where pool A owns a fraction αi1 = i1ε = i1
2n+1 of the405

total hash power and pool B controls a fraction βi2 = i2ε = i2
2n+1 of it. In this case the miners406

who work independently own a fraction γi1,i2 = 1− αi1 − βi2 of the total hash power.407

Actions at each state. Each pool can choose how much of its hash power it devotes to attacking408

the other pool. More formally, at each state s = (i1, i2), pool A has i1 choices of actions and409

Γ1(s) = {a0
1, a

1
1, a

2
1, . . . , a

i1−1
1 } where aj1 corresponds to attacking pool B with a fraction jε of410

the total computing power of the network. Similarly Γ2(s) = {a0
2, a

1
2, a

2
2, . . . , a

i2−1
2 }.411

Rewards. We want the rewards to model the revenue (profit) of pool A, denoted by rA, so we let412

R(s, ai1, a
j
2) = rA(s, ai1, a

j
2), for a1 ∈ Γ1(s), a2 ∈ Γ2(s). We write rA instead of rA(s, ai1, a

j
2)413

when there is no risk of confusion. We define rB and rC similarly and normalize the revenues:414

rA + rB + rC = 1.415

To compute these values, we define “attractiveness”. The attractiveness of a pool is its revenue416

divided by the total computing power of its miners.417

If pool A chooses the action ai1 and pool B chooses the action aj2, then pool A is using a fraction418

α′ = iε of the total network computing power to attack B and is receiving a corresponding419

fraction of B’s revenue while not contributing to it. Therefore the attractiveness of pool B will be420

equal to: attrB = rB

β+α′ . Similarly we have attrA = rA

α+β′ , where β′ = jε.421

Now consider the sources for pool A’s revenue. It either comes from A’s own mining process or422

from collecting shares of B’s revenue, therefore:423

rA = (α− α′) + α′ × attrB ,424

and similarly rB = (β − β′) + β′ × attrA. The previous four equations provide us with a425

system of linear equations which we can solve to obtain the values of rA, rB , attrA and attrB .426

Since a fraction α′ + β′ of total computation power is used on attacking other pools, we have:427

attrC = 1
1−α′−β′ .428

Game transitions (δ). Miners migrate between pools and a pool gains or loses mining power429

based on its attractiveness. If a pool is the most attractive option among the two, it gains ε new430

mining power with probability 2
3 , retains its current power with probability 1

6 and loses ε power431

with probability 1
6 . On the other hand a pool that is not the most attractive option loses ε power432

with probability 2
3 , retains its current power with probability 1

6 and attracts ε new mining power433

with probability 1
6 . These values were chosen for the purpose of demonstration of our algorithm434

and our implementation results. In practice, one can obtain realistic probabilities experimentally.435

Ergodicity. The game is ergodic because for each two states s = (s1, s2) and s′ = (s′1, s′2) where436

|s1 − s′1| ≤ 1 and |s2 − s′2| ≤ 1, there is at least 1
36 probability of going from s to s′ no matter437

what choices the players make.438

Proof of Theorem 4. Ergodicity was established in the final part above. The rest follows from the439

modeling and the determinacy result.440

5.2 Zero-confirmation Double-spending441

Nowadays, Bitcoin is increasingly used in “fast payments” such as online services, ATM withdrawals442

and vending machines [22], where the payment is followed by fast delivery of goods. While the443

blockchain consensus is appropriate for slow payments, it requires tens of minutes to confirm a444
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transaction and is therefore inappropriate for fast payments. We consider a transaction confirmed445

when it is added to the blockchain and several blocks are added after it. This mechanism is essential446

for the detection of double-spending attacks in which an adversary attempts to use some of her coins447

for two or more payments. However, even in the absence of a confirmation, it is far from trivial to448

perform a double-spending attack. In a double spending attack, the attacker publishes two transactions449

that consume the same input. The attack is successful only if the victim node received one transaction450

and provided the goods before he became aware of the other, but eventually the latter was added to451

the blockchain. In an ideal world the attacker can increase his odds by broadcasting one transaction452

directly to the victim and the other at a far apart location, while on the other hand the victim can453

defend itself by deploying several nodes in the network in strategic locations. In the real world,454

however, the full topology of the network is never known to either of the parties. Nevertheless, based455

on history and network statistics one can estimate the odds of a successful attack given the current456

state of the network [11].457

The victim has to decide on a policy for accepting zero-confirmation transactions. In particular458

he has to decide on the probability of whether to wait for a confirmation or not. If he waits for459

confirmation, then the payment is guaranteed, but customer satisfaction is damaged, and as a result460

the utility is smaller than the actual payment. If he does not wait for a confirmation, then the payment461

might be double spent. In the long term, the victim could decide to change the topology of the462

network. As it does not have full control over the topology, the outcome of the change is stochastic.463

Moreover, even when the victim does not initiate a change, the network topology is dynamic and464

keeps changing all the time. Hence, the odds of a successful attack are constantly changing in small465

stochastic steps.466

Our modeling. We aim to analyze the worst case long run loss of the victim. In our model we467

abstract the network topology state and consider only the odds of successful double spending. We468

consider a scenario where the victim’s honest customers typically purchase goods worth 10 units per469

round. In every round, the victim decides on a policy for accepting fast payment, and the attacker,470

concurrently, unaware of the victim’s policy, has to decide the size of the attack. After every round,471

the victim decides if he wants to do a thorough change in the network topology. If he decides on472

a change, then the next state is chosen uniformly from all possible states (this represents the fact473

that neither players has full knowledge on the topology). If he decides to make no change, then the474

network state might still change, due to the dynamic nature of the network. In this case the next state475

is with high probability either the current state, or a state which is slightly better or slightly worse for476

the victim, but with low probability the state changes completely to an arbitrary state in the network477

(as sometimes small changes in the topology have big impact). The rewards stem from the outcome478

of each round in the following way: The payment is the sum of the honest customer purchases and479

the payment of the attacker (if it gets into the blockchain). The reward is the payment minus some480

penalty in case the victim has decided to wait for a confirmation. The fact that the network state is481

constantly changing makes our model ergodic. A proof and more details of the following Theorem482

are provided in Appendix C.1.483

I Theorem 5. Consider a seller and an attacker in the zero-confirmation double spending problem.484

The seller can ensure profit of at least v on average per round, where v is the value of the corresponding485

CMPG.486

5.3 Proof of Stake Pool Attack487

Proof of stake protocols allow miners to centralize their stakes in a pool. In such pools the withholding488

attack is not relevant as mining does not require any physical resources. However, poolAmight attack489

an opponent pool B by not signing or broadcasting its blocks. A successful attack would prevent the490

block from getting signed by a majority of the network. The result would be a loss of mining fees for491

B and can encourage miners to migrate from the pool. An unsuccessful attack decreases A’s signing492

fee revenue.493
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Our modeling. We assume a setting similar to that of Section 5.1, where there are two opponent494

pools A and B, and the rest of the network consists of honest pools who sign every block that arrives495

on time. The states of the game are the stakes of each pool, namely α for pool A and β for pool B.496

In every round, with probability 1 − (α + β) neither of the pools is elected to mine a block, and497

no decisions are made. Otherwise, with probability α
α+β pool A is elected and otherwise pool B is498

elected. When a pool is elected, the other pool decides whether to sign and broadcast the resulting499

block or not. In addition the network state and connectivity induce a distribution over the fraction of500

honest miners that receive the block. If the block is accepted, then its creator is rewarded with mining501

fees, and the other pool will get its signing fees only if it signed the block. A proof and more details502

of the following Theorem are provided in Appendix C.2503

I Theorem 6. Consider two pools A and B in a proof of stake mining system that can choose504

to attack each other by not signing blocks mined by the other pool. Consider that the rest of the505

network consists of independent miners who observe published blocks according to a predefined506

probability distribution and sign every valid block they observe. If the miners migrate according to507

the attractiveness levels (as described in Section 5.1), then B can ensure an average revenue of v508

against any behavior of A, where v is the value of the corresponding CMPG.509

6 Implementation and Experimental Results510

In this section we present our implementation details and experimental results. The code is available511

at http://ist.ac.at/~akafshda/concur2018.512

6.1 Implementation Challenges513

We have implemented the strategy-iteration algorithm for ergodic games (see Appendix A for pseudo-514

code and more details). To the best of our knowledge, this is the first implementation of this algorithm.515

The straightforward implementation of the strategy-iteration algorithm for ergodic games has two516

practical problems, which we describe below.517

1. No stopping criteria. First, the strategy-iteration algorithm only guarantees convergence of values518

in the limit, and since values and probabilities in strategies can be irrational, convergence cannot519

be guaranteed in a finite number of steps. Hence we need a stopping criterion for approximation.520

2. Numerical precision issues. Second, the stationary strategies in each iteration are obtained through521

solution of linear-programming, which has numerical errors, and the probabilities sum to less522

than 1. If these errors remain, they cascade over iterations, and do not ensure convergence523

in practice for large examples. Hence we need to ensure numerical precision on top of the524

strategy-iteration algorithm.525

Our solution for the above two problems are as follows:526

1. Stopping criteria. We first observe that the value sequence which is obtained converges from527

below to the value of the game. In other words, the value sequence provide a lower bound to the528

lower value of the game. Hence we consider a symmetric version which is the strategy-iteration529

algorithm for player 2, and run each iteration of the two algorithms in sequence. The version for530

player 2 provides a lower bound on the lower value for player 2, and thus from that we can obtain531

an upper bound on the upper value of player 1. Since the upper and lower values coincide, we532

thus have both an upper and lower bound on the values, and once the difference is smaller than533

ε > 0, then the algorithm has correctly approximated the value within ε and can stop and return534

the value and the strategy obtained as approximation.535

2. Numerical precision. For numerical precision, instead of obtaining the results from the linear536

program, we obtain from the linear program the set of tight and slack constraints, where the tight537

constraints represent the constraints where equality is obtained, and the other constraints are538

slack ones. From the tight constraints, which are equalities, we obtain the result using Gaussian539

elimination, which provides more precise values to the solution. We also provide other heuristics,540

http://ist.ac.at/~akafshda/concur2018
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such as adding the remaining probability to the greatest probability action, and obtain similar541

results on convergence.542

6.2 Experimental Results543

We provide experimental results for all games in Section 5. We show number of transitions in the544

game (#T), number of states in the game, the running time and number of strategy iterations (#SI) for545

every scenario.546

#T States #SI Time(s)

17050 100 4 69
56252 196 2 291
135252 289 2 389
236000 400 2 1059
331816 484 2 3880
508032 576 2 6273
720954 676 2 17014
966281 784 2 53103

1269450 900 2 100435

#T States #SI Time(s)

19940 100 2 426
40040 200 2 800
60140 300 2 1141
80240 400 2 1586
100340 500 2 2069
120440 600 2 1253
140540 700 2 2999
160640 800 2 3496
180740 900 2 3917

#T States #SI Time(s)

6076 99 18 471
20956 275 8 1338
31744 396 9 2520
44764 539 4 1073
77500 891 16 22125

119164 1331 27 32636
169756 1859 10 31597
262384 2816 12 89599

Table 1 Experimental results for block-withholding pool attack (left), zero-confirmation double-spending
(center) and proof of stake pool attack (right).

Note that #SI is not monotone in the number of states. Intuitively the number of needed iterations547

depends on the extent in which easy locally optimal strategies are also globally optimal. In addition548

the strategy iteration algorithm starts with an arbitrary random strategy, and hence the number of549

iterations also depends on the initial strategy. However, it is worthy to note that in all cases the number550

of iterations required is quite small. We also note that since the number of iterations is small, the551

crucial computational step is every iteration, where many linear-programming problems are solved.552

Outputs of the algorithm. The outputs provided the following results:553

For the block withholding pool attack game, the algorithm could guarantee a mean-payoff of554

0.49 for the victim pool. In absence of an attacker the pool becomes the most attractive option555

for miners and grows to maximum possible size with probability 1, hence if there is no other556

pool the mean-payoff will be 1. Also, if there are two pools A and B with hash powers α and557

β respectively, and they decide not to attack each other, then they will both become the most558

attractive option and will grow with the same rate, leading to a mean-payoff of α+ 1−α−β
2 for A559

and β + 1−α−β
2 for B.560

For the zero-confirmation double-spending game, the algorithm verified that the seller is guaran-561

teed to maintain at least half of her revenue, i.e., in presence of a malicious attacker, the value for562

the seller converges to 5 as the number of states increase, while it is 10 in absence of it.563

For the proof of stake pool attack game, by increasing the number of states, i.e., by refining the564

discretization, the guaranteed value (game value) decreases and tends to zero. In absence of an565

attacker, a pool A can achieve an expected payoff of 11sA at a turn where sA is the stake it holds.566

This is because it earns an average of 10sA from mining fees and sA from signing. In this case,567

since the pool becomes the most attractive option, it gains miners and reaches a stake of 1, leading568

to a mean-payoff of 11.569

For the exact details see Appendix C. Our algorithm also finds strategies that achieve these values.570

571

7 Related Work572

Basic bitcoin security. The first security analysis of the Bitcoin protocol was done by Nakamoto [36]573

who showed the resilience of the blockchain protocol against a double-spending attack. His analysis574

was later corrected by Rosenfeld [41] who showed that the use of probabilistic arguments in the575

original analysis was not sound. Rosenfeld’s analysis gives different numerical results, but still576
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certifies the original security properties. Recently Sompolinsky and Zohar [45] further refined the577

analysis by considering the fact that the attacker can observe the possible states of the blockchain578

before choosing to attack, and thus he can increase his utility by choosing the right time to attack.579

Pools attack. The danger of a block withholding attack is as old as Bitcoin pools. The attack was580

described by Rosenfeld [40] as early as 2011, as pools were becoming a dominant player in the581

Bitcoin world. While it was obvious that a pool is vulnerable to a malicious attacker, Eyal [24]582

showed that in some circumstances a pool can benefit by attacking another pool, and thus pool mining583

is vulnerable also in the presence of rational attackers. However, the analysis only considered the584

short term, i.e., the profit that the pool can get only in the short period after the attack. Laszka et585

al. [34] studied the long term impact of pools attack. In their framework miners are allowed to migrate586

from one pool to another. They analyzed the steady equilibrium in which the size of the pools become587

stable (although there is no guarantee that the game will converge to such a scenario). Our framework588

is the first to allow analysis of long term impacts without convergence assumptions.589

Zero-confirmation double-spending. Zero-confirmation double-spending was experimentally analyzed590

by Karame et al. [31] who gave numerical figures for the odds of successful double spending for591

different network states. However, their analysis did not consider the fact that the victim may592

change his connectivity state. Our work is the first analysis framework for the long term impact of593

zero-confirmation double-spending.594

Stateful analysis. A stateful analysis of blockchain attacks was done by Sapirshtein et al. [43] and by595

Sompolinsky and Zohar [45]. In their analysis the different states of the blockchain were taken into596

account during the attack. The analysis was done using MDPs (a single player game, where only one597

player makes the choices) in which only the attacker decides on his actions and the victim follows a598

predefined protocol. A recent work [16] has also considered abstraction-refinement for finite-horizon599

games in the context of smart contracts. However, it neither considers long-term behavior, nor600

mean-payoff objectives, nor can it model attacks such as double-spending and interactions between601

pools (see Appendix B for more details).602

Quantitative verification with mean-payoff games. The mean-payoff games problem has been studied603

extensively as a theoretical problem in various models [38, 39]. The mean-payoff games problem604

has also been studied in the context of verification and synthesis for performance related issues605

[12, 15, 20, 7, 6, 26] (see Section 4.1 for more details). However all these works focus on turn-based606

games, and none of them consider concurrent games. To the best of our knowledge concurrent607

mean-payoff games have not been studied in the setting of security that we consider, where the608

quantitative objective is as crucial as safety critical issues. Practical implementation of algorithms for609

ergodic CMPGs do not exist in the literature.610

Formal methods in security. There is a huge body of work on program analysis for security (see [42, 1]611

for surveys). Formal methods are used to create safe programming languages (e.g., [27, 48, 42])612

and to define new logics that can express security properties (e.g., [14, 4, 3]). They are also used to613

automatically verify security and cryptographic protocols, e.g., [2, 10] and [5] for a survey. However,614

all of these works aimed to formalize qualitative properties such as privacy violation and information615

leakage. The works of [32, 21] consider analysis of security protocols with turn-based games and616

qualitative properties. To our knowledge, our framework is the first attempt to use concurrent617

mean-payoff games as a tool for reasoning about economic effects of attacks in crypto-currencies.618

8 Conclusion and Future Work619

In this work we considered concurrent mean-payoff games, and in particular the subclass of ergodic620

games, to analyze attacks on crypto-currencies. There are several interesting directions to pursue:621

First, various notions of rationality are relevant to analyze games where the attacker is rational, rather622

than malicious, and aims to maximize his own utility instead of minimizing the defender’s utility623

(e.g., secure-equilibria [17] or other related notions). Second, we consider two-player games, and the624

extension to multi-player games to model crypto-currency attacks is another interesting problem.625



K. Chatterjee, A.K. Goharshady, R. Ibsen-Jensen and Y. Velner XX:15

References626

1 M. Abadi. Software security: A formal perspective - (notes for a talk). In FM 2012: Formal627

Methods - 18th International Symposium, Paris, France, August 27-31, 2012. Proceedings, pages628

1–5, 2012.629

2 M. Abadi and P. Rogaway. Reconciling two views of cryptography. In Proceedings of the IFIP630

International Conference on Theoretical Computer Science, pages 3–22. Springer, 2000.631

3 O. Arden, J. Liu, and A.C. Myers. Flow-limited authorization. In IEEE 28th Computer Security632

Foundations Symposium, CSF 2015, Verona, Italy, 13-17 July, 2015, pages 569–583, 2015.633

4 O. Arden and A. Myers. A calculus for flow-limited authorization. In 29th IEEE Symp. on Com-634

puter Security Foundations (CSF), 2016.635

5 M. Avalle, A. Pironti, and R. Sisto. Formal verification of security protocol implementations: a636

survey. Formal Aspects of Computing, 26(1):99–123, 2014.637

6 C. Baier, C. Dubslaff, J. Klein, S. Klüppelholz, and S Wunderlich. Probabilistic model checking638

for energy-utility analysis. In Horizons of the Mind. A Tribute to Prakash Panangaden - Essays639

Dedicated to Prakash Panangaden on the Occasion of His 60th Birthday, pages 96–123, 2014.640

7 C. Baier, S. Klüppelholz, H. de Meer, F. Niedermeier, and S. Wunderlich. Greener bits: Formal641

analysis of demand response. In Automated Technology for Verification and Analysis - 14th Interna-642

tional Symposium, ATVA 2016, Chiba, Japan, October 17-20, 2016, Proceedings, pages 323–339,643

2016.644

8 Bitcoin Wiki. Comparison of mining pools, 2017. URL: http://en.bitcoin.it/645

Comparison_of_mining_pools.646

9 D. Blackwell and T.S. Ferguson. The big match. AMS, 39:159–163, 1968.647

10 B. Blanchet and A. Chaudhuri. Automated formal analysis of a protocol for secure file sharing on648

untrusted storage. In IEEE Symposium on Security and Privacy, 2008.649

11 blockcypher.com. Confidence factor, 2017. URL: http://dev.blockcypher.com/650

#confidence-factor.651

12 R. Bloem, K. Chatterjee, T.A. Henzinger, and B. Jobstmann. Better quality in synthesis through652

quantitative objectives. In CAV 2009, pages 140–156, 2009. URL: http://dx.doi.org/10.653

1007/978-3-642-02658-4_14, doi:10.1007/978-3-642-02658-4_14.654

13 J. Bonneau, A. Miller, J. Clark, A. Narayanan, J.A. Kroll, and E.W. Felten. Sok: Research per-655

spectives and challenges for bitcoin and cryptocurrencies. In 2015 IEEE Symposium on Security656

and Privacy, pages 104–121. IEEE, 2015.657

14 M. Burrows, M. Abadi, and R.M. Needham. A logic of authentication. In Proceedings of the Royal658

Society of London A: Mathematical, Physical and Engineering Sciences, pages 233–271. The Royal659

Society, 1989.660

15 P. Cerný, K. Chatterjee, T.A. Henzinger, A. Radhakrishna, and R. Singh. Quantitative synthesis for661

concurrent programs. In CAV 2011, pages 243–259, 2011. URL: http://dx.doi.org/10.662

1007/978-3-642-22110-1_20, doi:10.1007/978-3-642-22110-1_20.663

16 K. Chatterjee, A.K. Goharshady, and Y. Velner. Quantitative analysis of smart contracts. In664

European Symposium on Programming (arXiv:1801.03367), 2018.665

17 K. Chatterjee, T.A. Henzinger, and M. Jurdzinski. Games with secure equilibria. In 19th IEEE Sym-666

posium on Logic in Computer Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings,667

pages 160–169, 2004.668

18 K. Chatterjee and R. Ibsen-Jensen. The complexity of ergodic mean-payoff games. In ICALP II669

2014, pages 122–133, 2014.670

19 K. Chatterjee, R. Majumdar, and T. A. Henzinger. Stochastic limit-average games are in EXPTIME.671

Int. J. Game Theory, 37(2):219–234, 2008.672

20 K. Chatterjee, A. Pavlogiannis, and Y. Velner. Quantitative interprocedural analysis. In POPL673

2015, pages 539–551, 2015. URL: http://doi.acm.org/10.1145/2676726.2676968,674

doi:10.1145/2676726.2676968.675

21 K. Chatterjee and V. Raman. Assume-guarantee synthesis for digital contract signing.676

Formal Asp. Comput., 26(4):825–859, 2014. URL: http://dx.doi.org/10.1007/677

s00165-013-0283-6, doi:10.1007/s00165-013-0283-6.678

CONCUR 2018

http://en.bitcoin.it/Comparison_of_mining_pools
http://en.bitcoin.it/Comparison_of_mining_pools
http://en.bitcoin.it/Comparison_of_mining_pools
http://dev.blockcypher.com/#confidence-factor
http://dev.blockcypher.com/#confidence-factor
http://dev.blockcypher.com/#confidence-factor
http://dx.doi.org/10.1007/978-3-642-02658-4_14
http://dx.doi.org/10.1007/978-3-642-02658-4_14
http://dx.doi.org/10.1007/978-3-642-02658-4_14
http://dx.doi.org/10.1007/978-3-642-02658-4_14
http://dx.doi.org/10.1007/978-3-642-22110-1_20
http://dx.doi.org/10.1007/978-3-642-22110-1_20
http://dx.doi.org/10.1007/978-3-642-22110-1_20
http://dx.doi.org/10.1007/978-3-642-22110-1_20
http://doi.acm.org/10.1145/2676726.2676968
http://dx.doi.org/10.1145/2676726.2676968
http://dx.doi.org/10.1007/s00165-013-0283-6
http://dx.doi.org/10.1007/s00165-013-0283-6
http://dx.doi.org/10.1007/s00165-013-0283-6
http://dx.doi.org/10.1007/s00165-013-0283-6


XX:16 Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies

22 CNN Money. Bitcoin’s uncertain future as currency, 2011. URL: http://money.cnn.com/679

video/technology/2011/07/18/t_bitcoin_currency.cnnmoney/.680

23 coinmarketcap.com. Crypto-currency market capitalizations, 2017. URL: http://681

coinmarketcap.com/.682

24 I. Eyal. The miner’s dilemma. In 2015 IEEE Symposium on Security and Privacy, pages 89–103.683

IEEE, 2015.684

25 I. Eyal and E.G. Sirer. Majority is not enough: Bitcoin mining is vulnerable. In Financial Crypto-685

graphy and Data Security, 2014.686

26 V. Forejt, M. Z. Kwiatkowska, and D. Parker. Pareto curves for probabilistic model checking. In687

Automated Technology for Verification and Analysis - 10th International Symposium, ATVA 2012,688

Thiruvananthapuram, India, October 3-6, 2012. Proceedings, pages 317–332, 2012.689

27 A.P. Fuchs, A. Chaudhuri, and J.S. Foster. Scandroid: Automated security certification of android.690

Technical report, 2009.691

28 D. Gillette. Stochastic games with zero stop probabilitites. In CTG, pages 179–188. Princeton692

University Press, 1957.693

29 K. A. Hansen, M. Koucký, N. Lauritzen, P. B. Miltersen, and E. P. Tsigaridas. Exact algorithms for694

solving stochastic games: extended abstract. In STOC, pages 205–214, 2011.695

30 A.J. Hoffman and R.M. Karp. On nonterminating stochastic games. Management Sciences,696

12(5):359–370, 1966.697

31 G. Karame, E. Androulaki, and S. Capkun. Two bitcoins at the price of one? double-spending698

attacks on fast payments in bitcoin. IACR Cryptology ePrint Archive, 2012:248, 2012.699

32 S. Kremer and J.F. Raskin. A game-based verification of non-repudiation and fair exchange proto-700

cols. Journal of Computer Security, 2003.701

33 J. Kwon. Tendermint: Consensus without mining, 2015. URL: https://blog.ethereum.702

org/2015/08/01/introducing-casper-friendly-ghost/.703

34 A. Laszka, B. Johnson, and J. Grossklags. When bitcoin mining pools run dry. In International704

Conference on Financial Cryptography and Data Security, pages 63–77. Springer, 2015.705

35 J.F. Mertens and A. Neyman. Stochastic games. IJGT, 10:53–66, 1981.706

36 S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.707

37 NxtCommunity. Nxt whitepaper, 2014. URL: http://bravenewcoin.com/assets/708

Whitepapers/NxtWhitepaper-v122-rev4.pdf.709

38 A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL’89, pages 179–190. ACM710

Press, 1989.711

39 P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems. IEEE Transactions on712

Control Theory, 77:81–98, 1989.713

40 M. Rosenfeld. Analysis of bitcoin pooled mining reward systems. arXiv, 2011.714

41 M. Rosenfeld. Analysis of hashrate-based double spending. CoRR, abs/1402.2009, 2014.715

42 A. Sabelfeld and A.C. Myers. Language-based information-flow security. IEEE Journal on Selected716

Areas in Communications, 21(1):5–19, 2003.717

43 A. Sapirshtein, Y. Sompolinsky, and A. Zohar. Optimal selfish mining strategies in bitcoin. arXiv718

preprint arXiv:1507.06183, 2015.719

44 L.S. Shapley. Stochastic games. PNAS, 39:1095–1100, 1953.720

45 Y. Sompolinsky and A. Zohar. Bitcoin’s security model revisited. CoRR, abs/1605.09193, 2016.721

46 M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state systems. In FOCS’85,722

pages 327–338. IEEE Computer Society Press, 1985.723

47 V. Zamfir. Introducing casper, the friendly ghost, 2015. URL: https://blog.ethereum.724

org/2015/08/01/introducing-casper-friendly-ghost/.725

48 D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers. A hardware design language for timing-sensitive726

information-flow security. In Proceedings of the Twentieth International Conference on Architec-727

tural Support for Programming Languages and Operating Systems, ASPLOS ’15, Istanbul, Turkey,728

March 14-18, 2015, pages 503–516, 2015.729

http://money.cnn.com/video/technology/2011/07/18/t_bitcoin_currency.cnnmoney/
http://money.cnn.com/video/technology/2011/07/18/t_bitcoin_currency.cnnmoney/
http://money.cnn.com/video/technology/2011/07/18/t_bitcoin_currency.cnnmoney/
http://coinmarketcap.com/
http://coinmarketcap.com/
http://coinmarketcap.com/
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
http://bravenewcoin.com/assets/Whitepapers/NxtWhitepaper-v122-rev4.pdf
http://bravenewcoin.com/assets/Whitepapers/NxtWhitepaper-v122-rev4.pdf
http://bravenewcoin.com/assets/Whitepapers/NxtWhitepaper-v122-rev4.pdf
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/


K. Chatterjee, A.K. Goharshady, R. Ibsen-Jensen and Y. Velner XX:17

A The Hoffman-Karp Strategy-iteration Algorithm730

For an ergodic CMPG G and a state t, the basic informal description of the algorithm is as follows.731

In every iteration i, the algorithm considers a stationary strategy σi1, and then improves the strategy732

locally as follows: first it computes the potential vσ
i
1
s (described below) given σi1, and then for every733

state s, the algorithm locally computes an arbitrary optimal distribution at s to improve the potential.734

The intuitive description of the potential is as follows: Fix the specific state t as the target state (where735

the potential must be 0); and given a stationary strategy σ, consider a modified reward function that736

assigns the original reward minus the value ensured by σ. Then the potential for every state s other737

than the specified state t is the expected sum of rewards under the modified reward function for the738

random walk from s to t. The local improvement step is obtained as a solution of a matrix game with739

the potentials. The formal description of the algorithm is given in Figure 4, and the formal definition740

of the expected one-step reward ExpRew and one-step function OneSt is below.741

Notations: ExpRew and OneSt. The expected one-step reward ExpRew(s, σi1, a2) for a stationary742

strategy σi1 for Player 1, that specifies a distribution σi1(s) for every state, and an action a2 ∈ Γ2(s),743

is as follows:744

ExpRew(s, σi1, a2) =
∑

a1∈Γ1(s)

R(s, a1, a2) · σi1(s)(a1) .745

Similarly, we will also use the following notation:746

δ(s, σi1, a2)(s′) =
∑

a1∈Γ1(s)

δ(s, a1, a2)(s′) · σi1(s)(a1) .747

For notional convenience, given a vector x = (xi)i∈S , a state s and a pair of distributions d1 ∈748

D(Γ1(s)) and d2 ∈ D(Γ2(s)), we let OneSt(x, d1, d2, s) be749

OneSt(x, d1, d2, s) =
∑

a1∈Γ1(s)
a2∈Γ1(s)
s′∈S

d1(a1) · d2(a2) · δ(s, a1, a2)(s′) · xs′ .750

Also, given a vector x = (xi)i∈S , a state s and a stationary strategy profile σ = (σ1, σ2), we will let751

OneSt(x, σ, s) be752

OneSt(x, σ, s) = OneSt(x, σ1(s), σ2(s), s)753

Computation of every iteration. The computation of every iteration is as follows. The computation754

of the unique solution gi and (vis)s∈S is obtained in polynomial time using linear programming.755

The fact that the solution is unique follows from the fact that once a strategy for Player 1 is fixed,756

we obtain an MDP for Player 2, and then the MDP solution is unique. The value sequence (gi)i≥1757

obtained by the Hoffman-Karp algorithm converges to the value g of the game [30].758

B Comparison with other game-theoretic works759

Previous works [16, 13] consider either one-shot or finite-horizon games for security analysis. In760

contrast, the main differences of our work are as follows:761

Finite-horizon (or bounded-horizon) games can be reduced to one-shot games with an exponential762

blow up in the number of strategies. Thus one-shot and finite-horizon games are conceptually763

similar, though there are computational complexity differences. In contrast to finite-horizon764

games, we consider infinite-horizon games, which is conceptually different from finite-horizon765

games and there is no reduction (even with a blow up) to finite-horizon or one-shot games.766
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Function HoffmanKarp(G,t)
Let σ1

1 be a Player-1 stationary strategy;
for (i ∈ Z+) do

Compute gi, (vi
s)s∈S as the unique solution of

gi + vi
s = min

a2∈Γ2(s)
(ExpRew(s, σi

1, a2) + OneSt(vi, σi
1(s), a2, s)

∀s ∈ S

vi
t = 0;

for (s ∈ S) do
Let Ms be the matrix game defined as follows;
for (a1 ∈ Γ1(s) and a2 ∈ Γ2(s)) do

Ps[a1, a2] := OneSt(vi, a1, a2, s);
Ms[a1, a2] := R(s, a1, a2) + Ps[a1, a2];

if (σi
1(s) is an optimal distribution for Ms) then
σi+1

1 (s) := σi
1(s);

else
σi+1

1 (s) := Optimal distribution over Γ1(s) for Ms;

if (σi+1
1 = σi

1) then
return σi

1;

Figure 4 Strategy-iteration algorithm for solving ergodic games

In finite-horizon games for crypocurrency, the focus is on abstraction-refinement [16]. In contrast,767

we consider a special class of games (ergodic games) and use algorithmic approaches for finding768

their values.769

In this work we consider attacks that are inherent in the Blockchain, such as double-spending and770

pool-attacks. Previous works do not consider the analysis of such attacks.771

C Formal Modeling of Problems as Concurrent Games772

C.1 Formal Modeling of Zero-confirmation Double-spending773

Game states. Each state of the game corresponds to a probability of success for double spending774

attack which is an abstraction of the network topology.775

We discretized the game into n+ 1 states and set776

S = {0, 1, . . . , n}.777

The state 0 is called a shuffling state. Each other state i corresponds to a double spending success778

probability of pi = 0.1 + (i−1)×0.4
n for 1 ≤ i ≤ n. Player 1 is the seller and player 2 is the779

malicious buyer.780

Actions at each state. The shuffling state, 0, corresponds to the seller deciding to disconnect781

and reconnect to the network so as to randomly obtain one of the other states. Therefore each782

player has only one action, i.e. no choice, in this state. We denote these actions by a0
1 and a0

2783

respectively.784

At each other state the seller can decide to disconnect from the network and then reconnect to785

it. Moreover he can choose whether to require a confirmation and wait for it, so the seller has 4786

possible actions. We denote these actions by ai1 as in the following table:787
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action reconnect confirmation

a0
1 No No
a1

1 Yes No
a2

1 No Yes
a3

1 Yes Yes

788

The malicious buyer can decide how much double spending to attempt. He can attempt between 1789

and 20 units of double spending. We denote the action of attempting d units of double spending790

as ad2.791

Game transitions. If the game is in the shuffling state, the next state will be one of the other n792

states and all of them are equally likely, i.e.793

δ(0, a0
1, a

0
2)(i) = 1

n
,794

for 1 ≤ i ≤ n.795

Otherwise, if the seller decides to reset his connection to the network, the game will be transitioned796

to the shuffling state with probability 1, no matter what choice was made by the buyer. More797

formally,798

δ(s, a1
1, a2)(0) = δ(s, a3

1, a2)(0) = 1,799

for all s ∈ S \ {0} and a2 ∈ Γ2(s).800

Otherwise, if the seller decides to wait for a confirmation, then the attack will be unsuccessful801

and if he does not wait for a confirmation, then the current state defines the odds of a successful802

attack. So the attack will succeed with probability803

pa(s, a1) =
{
ps a1 ∈ {a0

1, a
1
1}

0 a1 ∈ {a2
1, a

3
1}
.804

We consider two cases. If the attack is successful, the game transitions to state n, i.e. the state805

with the highest probability of double-spending success,806

δa(s, a1, a2)(n) = pa(s, a1),807

for s ∈ S \ {0}, a1 ∈ {a0
1, a

2
1} and a2 ∈ Γ2(s). Intuitively, this is because if the attacker was808

successful once, he can repeat the attack.809

If the attack fails, then if the game is at state s, it goes to each of the states s− 1, s and s+ 1 (if810

they exist and are non-zero) with equal probability. This captures small changes in the topology811

of the network that can be caused by factors that are not parties to the game, like other people812

reconnecting to the network. Also the game will transition to the shuffling state with a small813

probability pdc. This models the natural loss of connection that may occur in the network and cause814

the seller to reconnect even though he did not intentionally decide to do so. In the implementation815

we set pdc = 0.001. More formally by letting Ns = {s− 1, s, s+ 1} ∩ {1, 2, . . . , n}, we have816

δb(s, a1, a2)(0) = pdc(1− pa(s, a1)),817

818

δb(s, a1, a2)(s′) = 1− pa(s, a1)
|Ns|

× (1− pdc),819

where s ∈ S \ {0}, s′ ∈ Ns, a1 ∈ {a0
1, a

2
1} and a2 ∈ Γ2(s).820

Finally we set the probability of transitioning to a state s′ as the sum of the two probabilities821

obtained in the cases above:822

δ(s, a1, a2)(s′) = δa(s, a1, a2)(s′) + δb(s, a1, a2)(s′)823

for s, s′ ∈ S \ {0}, a1 ∈ {a0
1, a

2
1} and a2 ∈ Γ2(s).824
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Rewards. The rewards model net income (profit) of the seller. Transitions from the shuffling state825

carry a reward of zero, since the seller is unable to sell any goods while his connection is being826

reset. Formally,827

R(0, a0
1, a

0
2) = 0.828

Assuming that the seller has a profit ratio of p. We model the rewards to capture his profit. In the829

implementation we have set p = 0.5. Recall that the malicious buyer, when choosing action ad2,830

is trying to double-spend an amount d, 1 ≤ d ≤ 20 and that other buyers are interested in buying831

10 units of goods from the seller.832

Again we consider two cases. If the double spending attack is successful, this will yield to a total833

payoff of −d(1− p) for the seller while an unsuccessful attack gives him a profit of dp. So we834

can set835

R1(s, a1, a
d
2) = dp(1− pa(s, a1))− d(1− p)pa(s, a1)836

for s ∈ S \ {0}, a1 ∈ Γ1(s) and 1 ≤ d ≤ 20.837

Now we focus on the profit of selling to other (non-malicious) buyers. If the seller decides to838

wait for a confirmation, he will not be able to serve a fraction f of his other customers, who are839

not willing to wait. We have set f = 0.5 in the implementation. So he gets a total revenue of840

10p(1− f) from his other customers. On the other hand, if he does not wait for a confirmation he841

will receive a payoff of 10p, so842

R2(s, a0
1, a

d
2) = R2(S, a1

1, a
d
2) = 10p,843

844

R2(s, a2
1, a

d
2) = R2(s, a3

1, a
d
2) = 10p(1− f),845

for s ∈ S \ {0} and 1 ≤ d ≤ 20.846

The final payoff is the sum of profits that the seller makes by selling to the malicious buyer and847

others, i.e.848

R(s, a1, a2) = R1(s, a1, a2) +R2(s, a1, a2)849

for s ∈ S \ {0}, a1 ∈ Γ1(s) and a2 ∈ Γ2(s).850

Ergodicity. This game is ergodic. Starting with any state and strategy profile, the shuffling state,851

0, is visited infinitely often with probability 1. This is because any choice of actions by the852

two players at each turn would switch the game to the shuffling state with probability at least853

pdc. Since the shuffling state is visited infinitely often, and since all other states have a non-zero854

probability of following the shuffling state, we conclude that every state in the game is visited855

infinitely often with probability 1 and hence the game is ergodic.856

Proof of Theorem 5. We have already shown that the game is ergodic. The rest is obtained from the857

modeling and the determinacy result.858

C.2 Formal Modeling of Proof of Stake Pool Attack859

Game States. We consider two pools, A and B and, as in the block withholding game, assume860

that any miner outside the two pools mines independently and set ε = 1
2n+1 . We set S ⊆861

{1, 2, . . . , n} × {1, 2, . . . , n} × {0, 0.01, 0.02, . . . , 1}, where each state in S is of the form of862

a 3-tuple like s = (i, j, p) and corresponds to a situation in the game where pool A has a total863

mining power of iε, pool B has jε and whenever a mined block is announced, the number of864

independent stake signatures that it receives is drawn from the Poisson distribution with parameter865

(1 − iε − jε)p. The intuition is that p is a measure of connectivity of the network and each866

miner sees the block and signs it with this probability. We are using Poisson distribution as a867

rough continuous approximation of the binomial distribution. In real life, the distribution can be868

obtained by trial and error on the network.869
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Actions at each state. Each pool has two choices at each state: to sign a block mined by the other870

pool, or to refrain from signing. We show these with as1, a
r
1 for pool A and as2, a

r
2 for B.871

Rewards. We consider pool A’s revenue as game rewards. Several cases should be considered:872

1. If A is chosen to mine the next block and the mined block gets signed by a majority of stakes,873

either including B or not, then A gets a mining reward of 10 units.;874

2. If B is chosen to mine the next block and A opts to sign it then A gets a signing reward of iε,875

i.e. the total signing reward for each block is 1 unit;876

3. Similarly if an independent miner, or A itself for that matter, gets to mine the next block, A’s877

revenue will be iε units 1.878

More concretely, we have RA = R1 + R2 + R3, where RA is the revenue of pool A and879

Ri corresponds to revenues from each of the parts above. Let CDF denote the cumulative880

distribution function corresponding to the distribution mentioned above, then we have:881

R1 = 10iε×


1 iε ≥ 1

2
1 B chooses as2 and iε+ jε ≥ 1

2
1− CDF ( 1

2 − iε) B chooses ar2 and iε < 1
2

1− CDF ( 1
2 − iε− jε) B chooses as2 and iε+ jε < 1

2

,882

The first case corresponds to the situation where A has enough stakes to sign his own block883

with a majority. The second case is when A and B form a majority together and B has chosen884

to sign A’s block. In the third case, A is not holding a majority and B is not signing the block,885

so in order for A to get the block mining fees, a fraction of other miners holding at least 1
2 − iε886

must sign the block. The fourth case captures the state where both A and B sign the block but887

they do not form a majority.888

R2 = jε×
{

0 A chooses ar1
iε A chooses as1

,889

R3 = iε(1− jε).890

Pool B’s revenue, RB , can be defined similarly and will be used in the next part.891

Game transitions. The attractiveness of a pool is defined as its revenue divided by its stake, i.e.892

attrA = RA

iε and attrB = RB

jε . We do not consider the attractiveness of independent mining in893

this game. A pool gains or loses mining stake based on its attractiveness. If it is the most attractive894

of the two, it gains ε stake with probability 2
3 , retains its current stake with probability 1

6 and loses895

ε stake with probability 1
6 . Otherwise, it loses ε stake with probability 2

3 and retains and gains896

with probability 1
6 each. This is very similar to the case in the block withholding game.897

The value of p remains the same or switches to one of the neighboring values with equal probability.898

This captures small changes in the network.899

Ergodicity. The argument for ergodicity is similar to the case of block withholding game.900

Proof of Theorem 6. As above, ergodicity of the game is established in the exact same manner901

as in the block withholding game. The rest follows straightforwardly from the modeling and the902

determinacy result.903

C.3 Details of Experimental Results904

Number of States. The number of states in each of the experiments is determined as follows:905

1. Block withholding pool attack game. In this game the number of states depends on the discretiza-906

tion factor of the mining power. For example, for a discretization factor n, we say that pool A has907

m units if its total mining power is m/n fraction of the entire computation power of the network.908

Since we need to keep track of the mining power of A and B we have O(n2) states.909

1 We assume that A always signs blocks found by itself and independent miners.

CONCUR 2018



XX:22 Ergodic Mean-Payoff Games for the Analysis of Attacks in Crypto-Currencies

2. Zero-confirmation double-spending game. Here the number of states are exactly the different910

abstracted network states. For example if the minimal (maximal) odds for successful double-911

spending are 30% (70%) and we consider a discretization factor of 1/n%, then we will have 40n912

states.913

3. Proof of stake pool attack game. Here the number of states is dependent upon both the discretiza-914

tion factor of mining stakes of the pools and the number of different abstracted network states. For915

example, if we consider s network states and discretize mining stakes similar to Part 1 above, then916

the game will have O(sn2) states to keep track of the stakes of both pools and the connectivity of917

the network.918

Experiment Machine and Parameters. We obtained the results using an AMD Dual-core919

Opteron 885 (2.6 GHz) processor over Debian 3.2 OS with 32 GB of RAM and ε = 0.01. The input920

is an ergodic game as described in Section 5 and we are using Poisson distribution as the distribution921

mentioned in the formal modeling of the proof of stake pool attack game.922
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