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A B S T R A C T

Two pattern recognition technologies in the field of machine learning, clustering and classification, have been
applied in many domains. Density-based clustering is an essential clustering algorithm. The best known density-
based clustering method is Density-Based Spatial Clustering of Applications with Noise (DBSCAN), which can
find arbitrary shaped clusters in datasets. DBSCAN has three drawbacks: firstly, the parameters for DBSCAN are
hard to set; secondly, the number of clusters cannot be controlled by the users; and thirdly, DBSCAN cannot
directly be used as a classifier. In this paper a novel Particle swarm Optimized Density-based Clustering and
Classification (PODCC) is proposed, designed to offset the drawbacks of DBSCAN. Particle Swarm Optimization
(PSO), a widely used Evolutionary and Swarm Algorithm (ESA), has been applied in optimization problems in
different research domains including data analytics. In PODCC, a variant of PSO, SPSO-2011, is used to search the
parameter space so as to identify the best parameters for density-based clustering and classification. PODCC can
function in terms of both Supervised and Unsupervised Learnings by applying the appropriate fitness functions
proposed in this paper. With the proposed fitness function, users can set the number of clusters as input for
PODCC. The proposed method was evaluated by testing ten synthetic datasets and ten benchmarking datasets
selected from various open sources. The experimental results indicate that the proposed PODCC can perform
better than some established methods, especially with respect to imbalanced datasets.

1. Introduction

Clustering Analysis is a widely used unsupervised pattern recogni-
tion technology in the field of data mining [1]. Individual records in
datasets can be grouped into clusters based on their similarity without
knowing the ground truth partitions. The corresponding supervised pro-
cedure is known as Classification, where a classifier predictor is learnt
from training data of correctly identified observations [2]. Density-
based clustering can find arbitrary shaped clusters by detecting the
high-density hyper-spheres and merging the close hyper-spheres into
clusters. The best known density-based clustering algorithm is Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) [3].
DBSCAN uses two parameters, the radius of the hyper-spheres (𝜖) and
the minimum number of points in each hyper-sphere (Minpts). However,
DBSCAN has three drawbacks. Firstly, the parameters for DBSCAN are
hard to set; secondly, the number of clusters cannot be controlled by the
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user; and thirdly, DBSCAN cannot be directly applied for classification
purposes.

The central motivation for the work presented in this paper is the
intuition that Evolutionary and Swarm Algorithms (ESAs) [4] can be
used as a parameter tuning tool for DBSCAN. The main advantage of
ESAs is the highly robust global search performance of such algorithms.
The development of ESAs was inspired by the idea of natural selection
and animal behavior observations. Numerous categories of ESAs have
been proposed, these include: Particle Swarm Optimization (PSO) [5],
Artificial Bee Colony (ABC) [6], Ant Colony Optimization (ACO) [7],
Genetic Algorithms (GAs) [8] and Differential Evaluation (DE) [9].

In the context of DBSCAN, the clustering approach of interest with
respect to the work presented in this paper, there has been some
research directed at applying ESAs to optimize the performance of
DBSCAN. One example is that of [10] where a hybrid partitioning-based
DBSCAN method is proposed that uses a modified ant clustering algo-
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rithm; however [10], did not consider parameter optimization, which
is discussed in this paper.

One example where the nature of the parameters used in DBSCAN
was considered can be found in Ref. [11] where Genetic Algorithm
with a Density-Based Approach for Clustering (GADAC) was proposed
to determine the nature of the parameters used by DBSCAN to pro-
vide satisfactory clustering results. However, the DBSCAN parame-
ters using in GADAC are not directly optimized by the GA opera-
tions.

DE was applied to optimise for the parameters for DBSCAN in Ref.
[12]; however, the fitness function applied in Ref. [12] was only appli-
cable to supervised learning, not unsupervised learning. For unsuper-
vised learning, an internal clustering index can be used in the fit-
ness function of the ESA optimized clustering method [13]. The fitness
functions on the basis of clustering indices are continuous functions.
Since PSO performs better than GA for optimizing continuous func-
tions [14], and is more computationally efficiently than GA [15], PSO
is selected as the parameter tuning tool for DBSCAN in this paper. A
drawback of applying internal indices as a fitness function is that most
of the indices are defined for centroid-based method. It may not per-
form well for density-based clustering and imbalanced data. The appli-
cations of internal indices for DBSCAN are investigated later in this
paper.

As a population-based stochastic optimization technique, PSO can
be used to find the “good enough solution”. From the literature a num-
ber of examples can be found where PSO has been used to support
clustering. In Ref. [16] two PSO methods were proposed, one to find
the centroids of clusters and another that used K-means clustering to
seed the initial swarm. In Ref. [17] PSO was applied to search the clus-
ter centres in the arbitrary data set automatically. In Ref. [18] PSO
was coupled with the K-means clustering to cluster document collec-
tions. In Ref. [19] a hybrid method, FAPSO-ACO-K, was proposed which
combined Fuzzy Adaptive Particle Swarm Optimization (FAPSO), Ant
Colony Optimization (ACO) and K-means so as to find the best clus-
ter partition in the nonlinear partitional clustering problem. In Refs.
[20,21] a framework was proposed for Differential Evolution Particle
Swarm Optimization (DEPSO) based clustering which combined DE
with PSO. However, to the best knowledge of the authors, there has
been no work directed at using PSO for the purpose of density-based
cluster parameter optimization. The above methods also have other
limitations. Firstly, the encoding methods of clustering results based
on enumerating all items are complex to search for an optimal solution.
Secondly, the method can only be applied to the unsupervised learning.
To the best knowledge of the authors, no work using SPSO to optimize
the DBSCAN parameters for both supervised and unsupervised learn-
ing using fitness functions of the form presented in this paper has been
conducted.

Based on the above observations, this paper proposes a novel hybrid
approach, Particle swarm Optimized Density-based Clustering and Clas-
sification (PODCC), directed at optimizing the performance of density-
based clustering by finding the best parameter settings through a search
of the entire parameter space using PSO. The Standard Particle Swarm
Optimization algorithm defined in 2011 (SPSO-2011) [22] is used
to implement PODCC, since the adaptive random topology and rota-
tional invariance featured in SPSO-2011 has been shown to achieve
faster convergence to the global optimum than pervious PSO vari-
ants.

In this paper, two types of continuous fitness functions are
designed on the basis of current clustering validation indices and
the penalty functions designed for minimizing the amount of noise
and to control the number of clusters. Two categories, unsuper-
vised and supervised PODCC are proposed with different fitness func-
tions.

The rest of this paper is organized as follows. Section 2 reviews
the operation of DBSCAN and highlights the limitation of DBSCAN
using a toy example. Section 3 then presents the proposed PODCC

approach directed at addressing the limitations of DBSCAN identi-
fied in the previous section. Section 4 proposes various fitness func-
tions for PODCC. Section 5 presents the experimental design and
the results achieved. Section 6 presents the simulations of applying
PODCC to 10 open datasets. Section 7 then presents some conclu-
sions concerning the main findings of the research presented in this
paper.

2. Operation and limitations of DBSCAN

Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) was first proposed in 1996 [3]. DBSCAN can easily find the
arbitrary shape of clusters by detecting high-density hyper-spheres and
merging neighbouring hyper-spheres into clusters. As already noted,
DBSCAN uses two critical parameters, the hyper-sphere radius (𝜖) and
the minimum number of points in each hyper-sphere (Minpts). The clus-
tering results of DBSCAN are sensitive to the values of these two param-
eters. The pseudo code for the DBSCAN algorithm is given in Algorithm
1. The clustering Pattern Result (PR) is a list [c1, c2,…, cn] where each
element ci is a cluster identifier (identifier 0 indicates the noise clus-
ter), n is the number of records in the input dataset  , and the indices
indicate individual record numbers for each record s in . A mark seen
is used to distinguish between the records which have been processed
and those which still need to be processed. N𝜖(s;) is a function that
returns the subset of records in  that are presented in a particular clus-
ter (hyper-sphere) of radius 𝜖 that s ∈  . The function of card(N𝜖(s;))
returns the cardinality of the set N𝜖(s;); whilst sid(s) returns the index
in PR of s in .

Algorithm 1 DBSCAN.
Input: Dataset  , hyper-sphere radius 𝜖, the minimum number of
points in the hyper-sphere, MinPts.
Output: Pattern Result, (PR).
1. Initialise cid = 0;
2. For each record in the dataset, i.e. s ∈  ,

If s is not marked as “seen”,then
Mark s as “seen” and find N𝜖(s;),
If card(N𝜖(s;)) < MinPts, then
(PR)sid(s) = 0;

else
cid = cid + 1;
(PR)sid(s) = cid;
For s′ ∈ N𝜖(s;) and s′ is not marked as “seen”,

Mark s′ as “seen”;
Find N𝜖(s′;);
If card(N𝜖(s′;)) ≥ MinPts, then
(PR)sid(s′) = cid;

else
continue to next point

3. Return (PR).
A number of hybrid and enhanced density-based clustering methods

have also been developed on the basis of DBSCAN, namely: l-DBSCAN
[23], ST-DBSCAN [24], Rough-DBSCAN [25], P-DBSCAN [26], MR-
DBSCAN [27], PDS-DBSCAN [28], Revised DBSCAN [29], G-DBSCAN
[30], and NG-DBSCAN [31]. However, any type of DBSCAN and its
variations above has three drawbacks also mentioned in the introduc-
tion section. Firstly, it lacks a method to determine the appropriate
settings of the two parameters. Manual tuning seems to be the only
option. Secondly, unlike K-means, the number of clusters cannot be
controlled by the users since DBSCAN does not support the idea of
fixing the number of clusters on start up. Thirdly, DBSCAN cannot
be directly used as supervised learning method to perform classifica-
tion. The drawbacks can be illustrated by a simple example as fol-
lows.
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Table 1
Sample dataset.

Item ID Attribute 1 Attribute 2 Cluster Label Figure

1 −8.055 −2.913 1
2 7.111 3.188 2
3 6.953 −4.693 3
4 −3.627 −7.416 4
5 5.732 3.648 2
6 6.988 −3.216 3
7 −0.041 −9.207 4
8 −1.983 −8.748 4
9 6.827 5.266 2
10 −1.306 −8.633 4

Table 2
Clustering results of sample dataset.

Case PR (𝜖, MinPts) CD Coef. No. of Clusters

1 0 0 0 0 0 0 0 0 0 0 (9, 7) 0.364 0
2 1 2 3 4 5 6 7 8 9 8 (1, 1) 0.182 9
3 1 2 2 1 2 2 1 1 2 1 (7, 0) 0.667 2
4 0 1 0 2 1 0 2 2 1 2 (6, 3) 0.909 2

Example 1. The three drawbacks of DBSCAN can be illustrated by
considering a simple problem of clustering a dataset of 10 items as
shown in Table 1. Firstly, to demostrate the parameter setting problem,
the two parameters are randomly set for four different cases as shown in
Table 2. The clustering result for each case, generated using DBSCAN, is
shown in Fig. 1. Inspection of Fig. 1 indicates that the known clustering
shown in Table 1 is not arrived at. The results are also included in
Table 2. The second column gives the clustering pattern result PR, the
third column gives the parameter settings, the fourth column gives the
obtained Czekanowski Dice (CD) coefficient and the last column the
number of clusters. Note that with respect to the CD coefficient, the
higher the value the better the clustering result in comparison with the
ground truth clustering.

Secondly, to demonstrate the problem of the number of clusters,
it can be observed that the numbers of clusters of the four cases are
different and not the same as the number of ground truth clusters given
in Table 2.

Thirdly, the cluster labels in Table 1 cannot be optionally used in
the training to perform a classification.

To overcome the first drawback, this paper proposes Particle swarm
Optimized Density-based Clustering and Classification (PODCC) to
search for the most appropriated parameters for DBSCAN. To overcome
the second and third issues, this paper also presents a number fitness
functions used in PODCC.

3. Particle swarm Optimized Density-based Clustering and
Classification (PODCC)

The proposed Particle swarm Optimized Density-based Clustering
and Classification (PODCC) method is based on the ideas of applying
PSO [22] and cluster measurement indices to optimize the input param-
eter settings for the algorithm. The operation of PODCC is illustrated by
the data flow chart given in Fig. 2. A parameter value pair is a parti-
cle, which means a possible solution. A group of particles are generated
in a 2-dimension search space. Given that the positions ( ⃖⃖⃗Xi = (xi1, xi2))
and velocities ( ⃖⃖⃗Vi = (vi1, vi2)) of particles, the previous best particles
(⃖⃖⃗Pi = (pi1, pi2)) and the local best particle (⃖⃗L = (l1, l2)) are initialized, a
loop is executed to find the best particle of the highest fitness value. The
loop starts with updating ⃖⃖⃗Xi and ⃖⃖⃗Vi. The updated particles are passed to
the DBSCAN function to produce a cluster pattern result (PR). In this
paper, a pattern result means either a clustering result or a classifica-
tion result. The fitness values of PRs are computed by chosen fitness
functions. Two types of fitness function, unsupervised and supervised,
are considered in this paper (the nature of these functions is considered
further in Section 4). The best particles are updated with respect to the
fitness values. To ensure that the process terminates, a maximum iter-
ation (T) is specified. The loop will be terminated when T is reached.
Finally ⃖⃗L is returned and used in DBSCAN to produce the Best Pattern
Results (BPR).

Fig. 1. Clustering results of DBSCAN by using randomly generated parameters.
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Algorithm 2 PODCC.
Input: A fitness function F, dataset  , the swarm size M and
maximum iteration number T;
Output: Best Pattern Result BPR;
1. For all particles in the swarm, ∀i ∈ {1,… ,M}

1.1 Initialise particles’ positions ⃖⃖⃗Xi and velocities ⃖⃖⃗Vi;
1.2 Initialise personal/previous best ⃖⃖⃗Pi and local best ⃖⃗L;

2. For all particles in the swarm, ∀i ∈ {1,… ,M}
2.1 Update particle’s velocity by Eq. (5);
2.2 Update particle’s position by Eq. (9);
2.3 Generate the Pattern Results by
(PR) ⃖⃗Xi

= DBSCAN(, xi1, xi2);
(PR) ⃖⃗Pi

= DBSCAN(, pi1, pi2);
(PR) ⃖⃗Li

= DBSCAN(, l1, l2);
2.4 If F((PR)

⃖⃗Xi
) < F((PR)

⃖⃗Pi
), then

Update particle’s best-known position ⃖⃖⃗Pi = ⃖⃖⃗Xi;
2.5 If F((PR) ⃖⃗Pi

) < F((PR)⃗
L
), then

Update the neighbourhood’s best-known position ⃖⃗L = ⃖⃖⃗Pi;
3. Repeat step 2 until maximum iteration number T or the other
stop condition is met;
4. Generate the best Pattern Result,

i.e. BPR = (PR)⃗
L
= DBSCAN(, l1, l2).

The pseudo code for PODCC are presented in Algorithm 2. In this
paper the Standard Particle Swarm Optimization algorithm defined in
2011 (SPSO-2011) [22] was used, but clearly alternatives could be sub-
stituted. SPSO-2011 was used because the adaptive random topology
and rotational invariance featured in SPSO-2011 has been shown to
achieve faster convergence to the global optimum than pervious PSO
variants.

Returning to Algorithm 2, in Step 1, the particles are initialized
using the following equations.

xi,d = U(mind,maxd) (1)

vi,d =
U(mind,maxd) − x0

i,d
2

(2)

pi,d = x0
i,d (3)

li,d = min(f (p0
i,d)) (4)

where U(mind,maxd) is a random value in [mind,maxd] where the sub-
script d ∈ {1,2} means the dimension of the particle.

In Step 2.1, the velocity is updated using the following function:

⃖⃖⃗Vi = 𝜔⃖⃖⃗Vi + x′ − ⃖⃖⃗Xi (5)

where x′ is a random point defined in the hypersphere: i( ⃖⃖⃗Gi, ‖ ⃖⃖⃗Gi −
⃖⃖⃗Xi‖). For the ith particle, a centre of gravity ( ⃖⃖⃗Gi) is calculated using
three points: the current position ( ⃖⃖⃗Xi), a point slightly beyond the best
previous personal position (⃖⃖⃗pi), and a point slightly beyond the best
previous position in the neighbourhood ( ⃖⃗l i), as shown below:

⃖⃖⃗pi = ⃖⃖⃗Xi + c1 ⃖⃖⃖⃗U1 ⊗ (⃖⃖⃗Pi − ⃖⃖⃗Xi) (6)

⃖⃗l i = ⃖⃖⃗Xi + c2 ⃖⃖⃖⃗U2 ⊗ (⃖⃗L − ⃖⃖⃗Xi) (7)

⃖⃖⃗Gi =
⃖⃖⃗Xi + ⃖⃖⃗pi + ⃖⃗l i

3
(8)

where c1 and c2 are the cognitive and social acceleration coefficients
respectively. ⃖⃖⃖⃗U1 and ⃖⃖⃖⃗U2 are the predefined independent and uniformly
distributed random vectors respectively within the range [0,1]. ⊗

means the element-wise vector multiplication. 𝜔 is a predefined inertia
weight.

In Step 2.2, the position of the ith particle are updated according to
the equation:

⃖⃖⃗Xi = ⃖⃖⃗Xi + ⃖⃖⃗Vi (9)

In Step 2.3, by using the particles xi1 and xi2 as 𝜖 and MinPts respec-
tively, the items in the dataset  can be clustered or classified by
DBSCAN according to Algorithm 1 given in Section 2. In Steps 2.4 and
2.5, the fitness value of the pattern results can be computed by using
different fitness functions defined in Section 4 below. After the stop
condition is met, the best pair of parameters, l1 and l2, are the output
in Step 3. Finally, the optimized pattern results are returned by passing
the parameters, l1 and l2, as 𝜖 and MinPts in DBSCAN.

4. Design of fitness functions for PODCC

A number of fitness functions are designed for either unsupervised
or supervised learning using Particle swarm Optimized Density-based
Clustering and Classification (PODCC). The fundamental distinction is
that if the ground truth target class values of records in the dataset
are not used in PODCC we have unsupervised learning (clustering), if
they are used we have supervised learning (classification). Both Internal
and External Indices are used to measure clustering results. Class labels
(ground truth values) are needed for the calculations of external indices,
whilst calculations of internal indices do not require ground truth val-
ues. The unsupervised fitness function for PODCC, Fusp, is defined as
follows:

Fusp = fInt + fNK (10)

where fInt is an internal clustering index function and fNK (Eq. (15)) is
the sum of the function to control the number of clusters (fK) and the
noise minimization function (fNoise). Two widely used clustering indices,
the Davies-Bouldin (DB) index [32] and Silhouette (SIL) index [33], are
used for fInt in this paper. Given a set of N data points  = (s1,… , sN)
assigned to K clusters C = {C1,… ,Ci,… ,CK} and the centroids of each
cluster mi, i = 1,… ,K. Ci = {si

1,… , si
j,… , si

ni
} is the ith cluster, where

ni is the number of data points in Ci. The DB index is calculated as
follows:

fDB = 1
K

K∑
i=1

max
i′∈{1,…,K},i′≠i

{ ei + ei′‖mi − m′
i‖2

}, ei

= (1∕ni)
ni∑

j=1
‖si

j − mi‖2 (11)

where ei and ei′ are the measures of scatter within clusters Ci and C′
i

respectively. The silhouette statistic (SIL) is calculated using:

fSIL = 1
K

K∑
i=1

(
1
ni

ni∑
j=1

bi
j − ai

j

max(ai
j, b

i
j)

)
,where (12)

ai
j =

1
ni − 1

ni∑
k=1,k≠j

‖si
j − si

k‖ (13)

bi
j = min

h∈{1,…,K},h≠i

{
1
nh

nh∑
k=1

‖si
j − sh

k‖
}

(14)

where: (i) ai
j is the average distance between a data point si

j belonging
to a cluster Ci and all other data points in Ci, and (ii) bi

j is the minimum
average distance between the jth data point in the cluster Ci and all the
data points in the other clusters {Ch ∶ h ≠ i}. The lower the DB index
the better the clustering result, whilst the higher the SIL index the better

4
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Fig. 2. Data flow diagram outlining the operation of PODCC.

the clustering result. By default, PODCC minimizes the fitness value;
therefore fInt is fDB or− fSIL.

The function fInt cannot be solely used as a fitness function since the
best internal indices for PODCC do not lead to the best pattern results.
As shown in Fig. 3, all the data points are clustered in one cluster when
either fInt = −fSIL or fInt = fDB is the only value to be minimized. The
details of the two datasets used in Figs. 3–4 are given in Table 5 in
Section 5.

To address this problem fNK is also used, fNK returns the sum of
the function for the number of clusters (fK) and the noise minimization
function (fNoise). fNK is defined as follows:

fNK = fK + fNoise , where (15)

fK = abs(max(PR) − K)
K

(16)

fNoise = card({PRi ∈ PR ∶ PRi = 0})
N

(17)

The variable fK (Eq. (16)) is used to overcome the drawback of
DBSCAN, noted in Section 2, that the number of clusters cannot be con-
trolled by users. In some real cases, the K value is a known a priori, but
it cannot be used to guide the clustering process in standard DBSCAN.
If the K value is unknown, the user can assume some K values as the
input of PODCC. By comparing the optimized clustering results of the

different input K values, the most suitable number of clusters for the
dataset can be found. The variable fK is used to calculate the ratio of
the absolute difference between the number of clusters as PODCC pro-
cedures (i.e. max(PR)) and the number of clusters determined by the
user to K. The variable fK can be minimized to 0 when max(PR) = K.
Therefore, the number of clusters in PODCC can be control by the user.
The variable fK cannot be solely used as a fitness function since the
pattern results shown in Fig. 4 may be generated by PODCC.

The function fNoise is used to compute the percentage of noise in
pattern results during PODCC, such that it can be used to minimize the
amount of noises in the pattern results. The function fNoise cannot be
solely used as a fitness function since all data points are grouped into
one cluster (Fig. 3). The function fNK can be used as a fitness function
for unsupervised PODCC (i.e. Fusp = fNK) where no good internal index
is suitable for the dataset to be clustered (see more details in Section 5).

If the ground truth target class values of a dataset are used
in PODCC, PODCC can perform⧵classification supervised learning. A
supervised fitness function for PODCC, Fspd, is defined as follows:

Fspd = fExt (18)

fExt is the external clustering index function. An external index function
measures the similarity between two partitions, Partition 1 and Parti-
tion 2. In this case, the set of classes represents the set of clusters in
Partition 1 while Partition 2 represents some other pattern results of

5
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Fig. 3. Clustering Pattern Results using PODCC with fInt or fNoise as the Fitness Function.

Fig. 4. Results Using PODCC with fK as the Fitness Function.

which the quality to be determined. In other words, the similarity of
Partition 2 compared to the “ground truth” Partition 1 indicates the
accuracy of Partition 2. When considering a pair of points, 𝛼 and 𝛽, in
Partitions 1 and 2, there are four possibilities:

• 𝛼𝛼: the two points belong to the same cluster in both partitions.
• 𝛼𝛽: the two points belong to the same cluster in Partition 1 but not

in Partition 2.
• 𝛽𝛼: the two points belong to the same cluster in Partition 2 but not

in Partition 1.
• 𝛽𝛽: the two points do not belong to the same cluster in either parti-

tion.

A widely used external index is the Czekanowski-Dice index [34].
This was thus adopted in the supervised fitness function for PODCC.
The CD index is defined as follows:

fCD = 2𝛼𝛼
2𝛼𝛼 + 𝛼𝛽 + 𝛽𝛼

(19)

The higher the CD index the better the pattern result. Given that PODCC
is designed to minimize the fitness value by default, fExt = −fCD was

used.
A fitness function is chosen on a case-by-case basis. Details con-

cerning the process for choosing fitness function is discussed in Section
5. The operation of PODCC with two different fitness functions, fNK
and FExt = −fCD, is illustrated in Example 2, using the same dataset in
Example 1 (given in Table 1).

Example 2. The dataset of 10 data points is presented in Table 1.
The swarm size (amount of particles in the swarm) is set to 4 and the
maximum iteration is set to 10. Table 3 shows the unsupervised PODCC
results by using the fitness function Fusp = fNK presented in Eq. (15). For
example, the fitness of the pattern results produced by using the first
particle within Loop 1 is computed as follows:

fNK = abs(max(PR) − K)
K

+ card({PRi ∈ PR ∶ PRi = 0})
N

= abs(3− 4)
4

+ 3
10

= 0.55 (20)

In this case, convergence is reached in iteration 5 since the best fitness
value 0 is reached at the 5th iteration. At the end, 3 particles (Particles
1, 3, 4) reach the best fitness value.
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Table 3
Sample results of PODCC applying fNK.

Iteration Particle ID Pattern Results Parameters Set Fitness

1 1 0 1 2 0 1 2 3 3 0 3 (1.508, 2) 0.55
2 0 0 0 0 0 0 0 0 0 0 (2.054, 7) 2.00
3 0 0 0 0 0 0 0 0 0 0 (2.726, 7) 2.00
4 0 0 0 0 0 0 0 0 0 0 (8.505, 7) 2.00

5 1 1 1 1 1 1 1 1 1 1 1 (8.892, 4) 0.75
2 1 2 3 4 2 3 4 4 2 4 (5.370, 0) 0.00
3 1 2 3 4 2 3 4 4 2 4 (5.389, 0) 0.00
4 1 1 1 1 1 1 1 1 1 1 (9.999, 2) 0.75

10 1 1 2 3 4 2 3 4 4 2 4 (2.767, 0) 0.00
2 1 2 2 1 2 2 1 1 2 1 (7.260, 1) 0.50
3 1 2 3 4 2 3 4 4 2 4 (5.881, 0) 0.00
4 1 2 3 4 2 3 4 4 2 4 (6.293, 1) 0.00

Table 4
Sample results of PODCC applying fExt = −fCD.

Iteration Particle ID Pattern Results Parameters Set Fitness

1 1 0 1 0 2 1 0 2 2 1 2 (5.034, 3) −0.909
2 0 1 0 2 1 0 2 2 1 2 (4.862, 3) −0.909
3 0 0 0 0 0 0 0 0 0 0 (2.432, 8) −0.364
4 0 0 0 0 0 0 0 0 0 0 (3.058, 6) −0.364

3 1 0 0 0 0 0 0 0 0 0 0 (3.538, 6) −0.364
2 0 0 0 0 0 0 0 0 0 0 (8.170, 6) −0.364
3 1 2 3 4 2 3 4 4 2 4 (4.711, 0) −1.000
4 0 0 0 0 0 0 0 0 0 0 (9.472, 2) −0.364

10 1 1 2 3 4 2 3 4 4 2 4 (4.322, 2) −1.000
2 1 1 1 1 1 1 1 1 1 1 (8.962, 0) −0.364
3 1 2 3 4 2 3 4 4 2 4 (2.733, 1) −1.000
4 0 1 0 2 1 0 2 2 1 2 (3.025, 3) −0.909

Table 4 shows the supervised PODCC results by using the fitness
function Fspd = −fCD presented in Eq. (19). The pairs of the 10 data
points are assigned to the four possibilities as below by taking the pat-
tern results as Partition 1 and the ground truth partition as Partition
2.

• 𝛼𝛼: 10 pairs of points belong to the same cluster in both partitions.
• 𝛼𝛽: 0 pair of points belong to the same cluster in Partition 1 but not

in Partition 2.
• 𝛽𝛼: 2 pairs of points belong to the same cluster in Partition 2 but

not in Partition 1.
• 𝛽𝛽: 33 pairs of points do not belong to the same cluster in either

partition.

The fitness of the pattern results is computed using the above point
pair values as follows:

fCD = 2𝛼𝛼
2𝛼𝛼 + 𝛼𝛽 + 𝛽𝛼

= 2∗10
2∗10 + 0 + 2

= 20
22

= 0.909 (21)

In this case, convergence is reached in iteration 3 since the best fitness
value −1 is reached at the 3rd iteration by Particle 3. Half of the parti-
cles (Particle 1 and Particle 3) reach the best fitness value and the same
pattern result.

5. Experiments

This section presents the results obtained from a sequence of exper-
iments used to evaluate the proposed PODCC system. For the experi-
ments 10 datasets were used. Comparisons were conducted using com-
mon clustering and classification methods. The nature of the datasets
used is presented in Table 5. Six of the datasets featured challenging
known arbitrary shaped clusters (Datasets 1–6): (i) Two spirals, (ii)
Cluster in cluster, (iii) Corners, (iv) Half-kernel, (v) Crescent & Full
Moon and (vi) Outlier. The remaining four datasets (Datasets 7–10)
were synthetic datasets generated using software provided by Julia

Table 5
Description of 10 datasets.

ID Dataset Name No. of Classes No. of Individuals

1 Two spirals 2 3000
2 Cluster in cluster 2 1024
3 Corners 4 1000
4 Half-kernel 2 1000
5 Crescent & Full Moon 2 1000
6 Outlier 4 600
7 2d-4c-no0 4 1572
8 2d-4c-no2 4 1064
9 2d-10c-no0 10 2972
10 2d-10c-no2 10 3073

Handl [35]. The “ground truth” partitions of Datasets 1–6 are shown
in Fig. 5a, and the partitions for Datasets 7–10 are shown in Fig. 5b.

Four individual sets of experiments were conducted to evaluate the
performance of PODCC. The first three were designed for evaluating
PODCC in the context of unsupervised learning, for each experiment,
one of the unsupervised fitness functions presented on Section 4 was
used, namely: FNK (Eq. (15)), Fusp with Davies Bouldin Index (Eqs.
(10) and (11)) and Fusp with Silhouette Index (Eqs. (10) and (12)). For
the evaluation, the performance of PODCC was compared with both
DBSCAN and K-means. The fourth set of experiments was designed to
evaluate the performance of supervised PODCC using the supervised
fitness function Fspd with the Czekanowski-Dice Index (Eqs. (18) and
(19)). The performance of supervised PODCC was compared with Sup-
port Vector Machine (SVM) classification [36].

For the experiments, the following PODCC settings were used: (i)
swarm size of 40, (ii) maximum values of the two particles of 10 and the
minimum values of 0, (iii) c1, c2 (the cognitive and social acceleration
coefficients) and w (predefined inertia weight) set to 1.193, 1.193 and
0.721 respectively, and (iv) the maximum number of iterations to 50.
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Fig. 5. Ground truth partitions of datasets.
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Fig. 6. Convergences of PODCC.

For DBSCAN, the two parameters were set to random values in the
range from 0 to 10. For K-means, the K value was set according to
the given number of clusters for each dataset. For SVM, the default
settings using the e1071 package [37] were adopted. For each dataset,
the number of times that DBSCAN and K-means were run was set by
the product of the swam size times the number of iterations required
for PODCC to reach convergence. For example, if the PODCC swarm size
was set to 40, and the number of the iterations to reach the convergence
point is 24, the number of times DBSCAN and K-means was run should
be 40 × 24 = 960 times, which is the same as PODCC.

The convergence performance of PODCC in terms of the number
of iterations required to reach a stable point is illustrated in Fig. 6.
From the figure, it can be seen that PODCC converged to a stable state
after about 30 iterations. In some cases, PODCC required less than 10
iterations to reach converge. The convergence speed of PODCC should
be much faster than in the case of the Genetic Algorithm Density-Based
Approach for Clustering (GADAC) [11] which converges at about 100
iterations.

To compare the performance of unsupervised PODCC with DBSCAN
and K-means, in terms of accuracy, for each dataset, the average fit-

ness values of the selected fitness function for all the clustering results
(fitavg), the fitness value for the best clustering results (fitbest) and the
Czekanowski-Dice indices for the best clustering results (CD) were used.
The results are presented in Tables 6–8.

Table 6 presents the results obtained using PODCC applying FNK as
the fitness function, in comparison to the operation of DBSCAN and
K-means. For Dataset 1–6, the CD values show that PODCC performs
better than DBSCAN and K-means. According to the clustering results
shown in Fig. A1b and the convergence curve shown in Fig. 6a, PODCC
applying FNK can cluster Datasets 1–6 perfectly and in a relatively short
time. The fitness values of all the K-means results are 0 using FNK , as K
is known and no noise is contained in the K-means results. Even though
the fitness values of the K-means results are minimized, the CD values
obtained using K-means show that the clustering results are not satis-
factory with respect to the ground truth partitions. As the table and
Fig. A4b shows, for Datasets 7–10, the CD results using PODCC apply-
ing FNK are not better than K-means, as Datasets 7–10 are obviously
centroid-based clustering problems. Although the K-means approach is
specifically directed at centroid-based clustering, the operation of k-
means is subject to the manner in which the initial cluster centroids are

9
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Table 6
Unsupervised PODCC with FNK versus DBSCAN and K-means.

ID PODCC DBSCAN K-means

fitavg fitbest CD fitavg fitbest CD fitavg fitbest CD

1 0.475 0.000 1.000 1.174 0.000 1.000 0.000 0.000 0.501
2 0.400 0.000 1.000 0.475 0.000 1.000 0.000 0.000 0.645
3 0.716 0.000 1.000 1.045 0.000 1.000 0.000 0.000 0.399
4 1.716 0.000 1.000 0.839 0.000 1.000 0.000 0.000 0.500
5 1.719 0.000 1.000 15.877 0.000 1.000 0.000 0.000 0.567
6 2.019 0.000 1.000 9.392 0.000 1.000 0.000 0.000 0.874
7 4.755 0.000 0.744 0.540 0.000 0.744 0.000 0.000 0.973
8 0.840 0.000 0.715 1.714 0.002 0.836 0.000 0.000 0.929
9 3.441 0.000 0.385 2.340 0.000 0.386 0.000 0.000 0.902
10 1.112 0.000 0.597 1.519 0.002 0.782 0.000 0.000 0.937

Table 7
Unsupervised PODCC with Davies Bouldin index versus DBSCAN and K-means.

ID PODCC DBSCAN K-means

fitavg fitbest CD fitavg fitbest CD fitavg fitbest CD

1 1.632 0.500 0.666 0.834 0.500 0.666 0.931 0.930 0.501
2 4e+15 0.500 0.666 3e+15 0.500 0.666 1.281 1.191 0.645
3 12.794 0.744 1.000 1.226 0.744 1.000 0.750 0.691 1.000
4 16.833 0.500 0.666 2.375 0.500 0.666 0.997 0.997 0.500
5 1.659 0.500 0.769 2.618 0.500 0.769 0.985 0.977 0.567
6 1.112 0.295 0.998 0.659 0.359 1.000 0.652 0.281 0.863
7 1.348 0.465 0.744 5.401 0.714 0.744 0.519 0.310 0.973
8 3.917 0.352 0.715 2.342 0.592 0.836 0.668 0.401 0.929
9 3.312 0.534 0.385 2.046 0.534 0.386 0.512 0.231 0.849
10 1.466 0.382 0.597 1.642 0.482 0.597 0.498 0.258 0.787

generated, and thus the generated cluster results may not be optimal.
Examples of the cluster results obtained for Datasets 7–10 are given in
Fig. A4a.

The number of clusters (K) cannot be used for DBSCAN. To address
this issue, PODCC used with FNK takes K as input. Figs. A6-A7 demon-
strate that different user-defined K values for PODCC can lead to differ-
ent pattern results. Once K is smaller than the ground truth number of
clusters, 4 in the examples, some small clusters are merged to give big-
ger clusters, for example, Figs. A6a, A6b, A7a and A7b. Similarly, when
K is larger than the ground truth number of clusters, bigger clusters are
divided into some smaller clusters, for example, Figs. A6c, A6d, A7c
and A7d.

Table 7 presents the results of PODCC applying fitness function Fusp
with the Davies Bouldin clustering index. From the table, it can be seen
that the performance of PODCC is better than DBSCAN for most of
datasets considered. The result demonstrates that PODCC can still opti-
mize the fitness values with respect to the chosen fitness function; how-
ever the presented CD values associated with PODCC are not satisfac-
tory for most of the datasets. Figs. A2a and A4c show the clusters result-

ing from PODCC with Davies Bouldin as the fitness function. Inspection
of the figures indicates that the results could be much improved. It can
thus be concluded that the DB index is not appropriate in the case of
unsupervised PODCC.

Table 8 presents the results of PODCC when a fitness function
Fusp with the Silhouette Index is used. From the table it can be seen
that PODCC performs better than DBSCAN for all the datasets consid-
ered. For Datasets 1–6, the fitbest values using PODCC are better than
those associated with K-means, but the CD values are still not satis-
factory. For Datasets 7–10, although the fitbest values of K-means are
higher than PODCC, the CD values of PODCC are better than the cor-
responding K-means values for Datasets 9–10. Comparing the results
shown in Table 7, using the Silhouette index as the basis for the fitness
function achieves the better performance than using Davies Bouldin
Index. It can thus be concluded that PODCC can address satisfacto-
rily centroid-based clustering problems using a Silhouette based fitness
function.

As already noted that supervised PODCC can be used for classifica-
tion purposes, to evaluate this, its operation was compared to SVM in

Table 8
Unsupervised PODCC with silhouette index versus DBSCAN and K-means.

ID PODCC DBSCAN K-means

fitavg fitbest CD fitavg fitbest CD fitavg fitbest CD

1 5.637 −0.500 0.666 −0.453 −0.500 0.666 −0.431 −0.432 0.501
2 −0.435 −0.500 0.666 −0.377 −0.500 0.666 −0.321 −0.376 0.645
3 −0.105 −0.455 1.000 −0.242 −0.455 1.000 −0.419 −0.455 1.000
4 0.724 −0.500 0.666 2.402 −0.500 0.666 −0.413 −0.413 0.500
5 −0.267 −0.500 0.769 0.606 −0.500 0.769 −0.415 −0.420 0.567
6 0.295 −0.731 1.000 0.982 −0.731 1.000 −0.523 −0.594 0.850
7 0.393 −0.430 0.962 1.465 −0.415 0.742 −0.599 −0.686 0.973
8 −0.070 −0.446 0.836 0.542 −0.446 0.836 −0.494 −0.595 0.929
9 0.127 −0.507 0.926 1.125 −0.499 0.909 −0.564 −0.621 0.896
10 0.209 −0.486 0.974 0.367 −0.480 0.971 −0.577 −0.630 0.833
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Table 9
Supervised PODCC with Czekanowski-dice index versus SVM.

ID PODCC SVM

CDavg BP CDbest CD

1 0.694 (0.576, 5) 1.000 0.980
2 0.733 (1.456, 9) 1.000 1.000
3 0.522 (1.566, 6) 1.000 0.976
4 0.752 (2.180, 4) 1.000 1.000
5 0.846 (3.929, 8) 1.000 1.000
6 0.844 (8.098, 1) 1.000 1.000
7 0.678 (1.189, 10) 0.974 0.922
8 0.659 (1.480, 5) 0.965 0.969
9 0.457 (0.913, 6) 0.933 0.677
10 0.615 (0.628, 4) 0.975 0.542

terms of: (i) the average Czekanowski-Dice Index of all the predicted
pattern results (CDavg) in PODCC, (ii) the Best Parameters (BP), (iii) the
corresponding CD index values of the best predicted patterns (CDbest)
of PODCC, and (iv) the CD index values of the SVM prediction results
(CD). The results are presented in Table 9. It can be seen that PODCC
performs better than SVM for all datasets except for Dataset 8. How-
ever, for Dataset 8 the CD value produced by PODCC is very close to
the SVM result. By comparing the pattern results of Dataset 8 given in
Figs. A5a and A5b, it can be seen that the boundaries of the classes pro-
duced by PODCC are clearer than the SVM results, as PODCC inherits
the character of DBCSAN which can find the presence of noises in the
datasets. Such character could be either advantage or limitation subject
to different situations.

The comparisons between proposed components are presented in
Table 10. To summarize, PODCC when using the fitness function FNK
can be applied to datasets featuring arbitrary shaped clusters; whilst
classical DBSCAN requires a manual generation and test process to
find the appropriate parameters to produce the correct results; K-means
cannot find clusters of arbitrary shape at all. PODCC when using Fusp
with the Silhouette Index can cluster centroid-based datasets. Accord-
ing to the analysis of the experimental results, the combination of PSO,
DBSCAN, and fitness function with SIL index leads to the best perfor-
mance of the unsupervised PODCC method. Supervised PODCC can deal
with all types of labelled datasets. Whilst a suitable fitness function is
chosen with respect to dataset, PODCC performs better than DBSCAN
and K-means for unsupervised learning and better than SVM for super-
vised learning.

6. Simulations

The proposed unsupervised and supervised PODCC methods with
different fitness functions have been applied to analyse the open
datasets with the classes of overlapped feature values. To compare
PODCC with Genetic Algorithm Optimized DBSCAN for Clustering
and Classification (GODCC), the SPSO part of PODCC was modified
and replaced by a GA using the GA package in R [38,39] to imple-
ment GODCC. The performance of unsupervised PODCC was compared
with the unsupervised GODCC, standard DBSCAN and K-means, whilst
the performance of supervised PODCC was compared with supervised
GODCC and SVM.

In this simulation, ten datasets were selected from the open sources.
The details of attributes and classes in the ground truth partitions for
all the datasets used are summarized in Table 11. Seven datasets were
selected from UCI repository [40] (Sonar [41], Zoo [42], Ionosphere
[43], Soybean [44], and Sani [45–47]) and R machine learning pack-
ages [48] [49], (Hacide [50] and Default [51]).

The other three datasets are the internet traffic datasets of three
different sizes which were sampled from several big open datasets
regarding TCP packet traces [52], which are the internet traffic clus-
tering/classification cases. As the proposed method does not attempt
to solve the big data problem, sampling was used. Five features of the
datasets were selected to analyse: (1) mean inter-arrival time; (2) mean
IP packet size; (3) the total number of packets; (4) the total number
of unique bytes sent; and (5) connection duration. The examples were
manually classified into different application types, including WWW,
mail, p2p, services, interactive, etc.

From the class sizes and distributions shown in Table 11, eight
datasets (Zoo, Ionosphere, Sani, Hacide, Default datasets and three traf-
fic datasets) can be considered to be imbalanced datasets. Take the
dataset Traffic for example; more than 80% of individuals are in one
class, and the rest of individuals are in the other nine classes.

For the datasets in Table 11, the PODCC settings were as follows:
(i) Swarm size was set to 50; (ii) maximum value of 𝜖 was the maxi-
mum distance among individuals; (iii) maximum value of Minpts was
the value of the number of individuals divided by the number of clus-
ters; (iv) the minimum values of 𝜖 and Minpts were 0; (v) c1, c2 (the
cognitive and social acceleration coefficients) and w (predefined inertia
weight) were set as 1.193, 1.193 and 0.721 respectively; and (vi) the
maximum number of iterations was 50. For DBSCAN, the two parame-
ters, radius and minpts, were set to random values in the search space

Table 10
The comparisons among k-means, SVM, DBSCAN and different combinations for PODCC.

ID Method Components Clustering Classification Analysis Results

1 K-means K-means Yes Noa It cannot deal with the dataset featuring arbitrary shaped
clusters; The number of clusters can be controlled by the users.

2 DBSCAN DBSCAN Yes Noa It can deal with the dataset featuring arbitrary shaped clusters;
The number of clusters cannot be controlled by the users.

3 Unsupervised PODCC with fNK PSO; DBSCAN; F = fNK Yes Nob It can deal with the dataset consisting of arbitrary shaped
clusters; The number of clusters can be controlled by the users;
The accuracy measured by CD Index has been improved
comparing to methods 2 and 4.

4 Unsupervised PODCC with DB Index PSO; DBSCAN; F = fDB + fNK Yes Nob It can deal with the dataset consisting of arbitrary shaped
clusters; The number of clusters can be controlled by the users;
The accuracy measured by CD Index has been improved
comparing to method 2.

5 Unsupervised PODCC with SIL Index PSO; DBSCAN; F = fSIL + fNK Yes Nob It can deal with the dataset consisting of arbitrary shaped
clusters; The number of clusters can be controlled by the users;
The accuracy measured by CD Index has been improved
comparing to methods 1, 2, 3, and 4.

6 SVM SVM No Yes It may not lead to the best result.
7 Supervised PODCC with CD Index PSO; DBSCAN; F = fCD No Yes The accuracy measured by CD Index has been improved

comparing to method 6.
a Even the dataset has labelled variable.
b The dataset has no labelled variable.
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Table 11
Details of the ten evaluation datasets.

Dataset No. of Attributes No. of Individuals No. of Classes Class Sizes Class Distribution Type

Soybean 36 47 4 17/10/10/10 Balanced
Sonar 60 208 2 111/97 Balanced
Zoo 16 101 7 41/20/13/10/8/5/4 Imbalanced
Ionosphere 34 351 2 225/126 Imbalanced
Sani 55 303 2 216/87 Imbalanced
Hacide 2 1250 2 1225/25 Imbalanced
Default 2 10000 2 9667/333 Imbalanced
Traffic1K 5 1000 10 831/108/25/11/7/6/5/4/2/1 Imbalanced
Traffic2K 5 2000 9 1671/200/56/20/19/14/11/5/4 Imbalanced
Traffic5K 5 5000 10 4164/519/138/50/41/39/28/13/5/3 Imbalanced

Table 12
CD index values of clustering results of PODCC, GODCC, DBSCAN, and K-means.

Dataset PODCC GODCC DBSCAN K-Means

FNK FSINK FDBNK FNK FSINK FDBNK Avg Best Avg Best

Soybean 1.000 1.000 0.401 1.000 1.000 0.401 0.470 1.000 0.903 1.000
Sonar 0.65 0.667 0.667 0.667 0.667 0.667 0.652 0.667 0.503 0.503
Zoo 0.951 0.951 0.378 0.951 0.761 0.378 0.422 0.956 0.755 0.936
Ionosphere 0.670 0.700 0.700 0.700 0.700 0.700 0.694 0.86 0.605 0.605
Sani 0.739 0.742 0.739 0.739 0.742 0.739 0.721 0.742 0.594 0.739
Hacide 0.980 0.980 0.980 0.980 0.980 0.980 0.975 0.991 0.661 0.664
Default 0.967 0.967 0.967 0.967 0.967 0.967 0.963 0.970 0.658 0.658
Traffic1K 0.824 0.825 0.811 0.825 0.825 0.825 0.823 0.825 0.333 0.388
Traffic2K 0.828 0.830 0.830 0.698 0.830 0.830 0.827 0.830 0.357 0.399
Traffic5K 0.827 0.827 0.827 0.827 0.827 0.827 0.826 0.827 0.374 0.403

of PODCC. For K-means, the K value was set according to the given
number of groups for each dataset. For fair comparisons, DBSCAN and
K-means were run for 2500 times. For SVM, the default settings using
the e1071 package in R [37] were adopted. For GA, the default settings
in the GA package [38,39] were adopted, but the size of the population
and the maximum number of iterations were changed to 50 respectively
(same number for PODCC).

Tables 12 and 13 present the simulation results of unsupervised and
supervised PODCC with the four proposed fitness functions, FNK (Eq
(15)), FSINK (Eq. (10) with Eq. (12)), FDBNK (Eq. (10) with Eq. (11)),
and FCD (Eq. (18) with Eq. (19)). The accuracy of clustering and clas-
sification results was measured by the external CD index with respect
to the ground-truth labels. Table 12 presents the results of unsuper-
vised PODCC, unsupervised GODCC, DBSCAN and K-means for the ten
datasets. By comparing the CD index values of the clustering results, it
can be found that the accuracy of unsupervised PODCC applying FNK or
FSINK is better than or equal to the average accuracy of DBSCAN, and
the best accuracy of K-means.

In Table 12, whilst the unsupervised PODCC achieves the simi-
lar accuracy as the GODCC for most cases, the accuracy of PODCC
with FSINK for the dataset Zoo and PODCC with FNK for the dataset

Traffic2K is significantly higher than the GODCC results. The major
reason that PODCC performs better than GODCC is that PODCC
adopted SPSO 2011, which performs better than GA for optimizing
continuous functions [14] and more efficiently than GA [15]. Regard-
ing continuous optimal solution, Fig. 7a demonstrates that PODCC
searches the better optimal value than GODCC. Regarding computa-
tional efficiency, Fig. 7b demonstrates that PODCC converges faster
than GODCC.

Table 13 presents the results of supervised PODCC with FCD, super-
vised GODCC with FCD, and SVM for the ten datasets. Both Full Train
Full Prediction (FTFP) test and 90% training set and 10% prediction
set (9T1P) test were conducted for each algorithm. FTFP means that all
data are used for training and prediction, and 9T1P means that 90% of
data was used to build a training model and the remaining 10% data
was used for prediction.

Supervised PODCC and GODCC with FCD achieved almost the same
results for all the datasets due to sufficient searching iteration for the
best results. For the datasets, Sonar, Zoo, Ionosphere, Hacide, and
Default, the accuracy of SVM prediction results is higher than both
PODCC and GODCC, but both Supervised PODCC and GODCC perform
better than SVM for the three internet traffic datasets, whilst all of the

Table 13
CD index values of classification results of PODCC, GODCC and SVM.

Dataset PODCC GODCC SVM

FTFP 9T1P FTFP 9T1P FTFP 9T1P

Soybean 1.000 1.000 1.000 1.000 1.000 1.000
Sonar 0.667 0.667 0.667 0.667 0.917 0.802
Zoo 0.955 0.956 0.955 0.956 1.000 0.944
Ionosphere 0.861 0.853 0.861 0.853 0.984 0.974
Sani 0.742 0.742 0.742 0.742 0.742 0.742
Hacide 0.991 0.991 0.991 0.991 0.993 0.992
Default 0.971 0.970 0.971 0.970 0.972 0.972
Traffic1K 0.825 0.825 0.825 0.825 0.809 0.662
Traffic2K 0.830 0.831 0.830 0.831 0.825 0.727
Traffic5K 0.827 0.827 0.827 0.827 0.827 0.811
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Fig. 7. Convergences of PODCC and GODCC for two cases.

methods achieve the same prediction results for the datasets, Soybean
and Sani. Although not all the supervised PODCC outperformed the
SVM, a notable superiority of PODCC can be found as below. PODCC
achieved better prediction results in the 9T1P test than in the FTFP.
For SVM, the accuracy of FTFP results is higher or equal to the 9T1P
results; the 9T1P results for datasets Sonar, Traffic1K, and Traffic2K
are significantly worse than the FTFP results. For PODCC, the accu-
racies of FTFP and 9T1P results are similar. For datasets Traffic2K
and Zoo, the 9T1P results of PODCC are slightly higher than its FTFP
results.

By comparing the results of different datasets in the two tables, it
can be found that both PODCC and GODCC can achieve better pattern
results for the eight imbalanced datasets than the others. The accuracy
of unsupervised PODCC results for the imbalanced datasets is signifi-
cantly higher than the K-means results; and the supervised PODCC for
three internet traffic dataset significantly outperforms SVM when 9T1P
is applied. In PODCC, the data points in the big size class can be grouped
into one class if they are in the close hyper-spheres determined by the
appropriate parameters for DBSCAN, whilst the big size class can be
forced to be divided into several small classes regardless of the density
of data points in K-means.

Overall, the analysis comes to three conclusions.

• Unsupervised PODCC with FNK and FSINK can find better cluster-
ing results than K-means. In the experiments, the PSO applied in
DBSCAN clustering method performs better than GA in some cases
(Zoo and Traffic2K).

• For the selected cases in this paper, the 9T1P setting for the super-
vised PODCC is likely to have better prediction results than the
FTFP setting, whilst 9T1P is more frequently used and practical than
FTFP.

• PODCC is recommended for the imbalanced clustering and classifi-
cation problems. For the simulation of some imbalanced datasets,
the PODCC has better performance in clustering and classification
than K-means and SVM respectively.

7. Conclusions

This paper proposes a novel method, Particle Swarm Optimized
Density-Based Clustering and Classification (PODCC) to overcome the
three drawbacks of classical Density-Based Spatial Clustering of Appli-
cations with Noise (DBSCAN). Firstly the two critical parameters for
DBSCAN are difficult to set; secondly when using DBSCAN the num-

ber of desired clusters cannot be pre-specified by the user; and thirdly
DBSCAN cannot be used in a supervised learning context where labelled
training data can be used to drive the clustering. To address the first
drawback, a Particle Swarm Optimization (PSO) based approach is pro-
posed to search the entire parameter space for DBSCAN. The second
drawback is addressed by using proposed fitness functions that take
the number of desired clusters into account. The third drawback is
addressed by another proposed fitness function, one that operates with
labelled training data, so that PODCC can also perform in a supervised
learning context.

The proposed PODCC system was evaluated using 10 datasets; com-
parisons were undertaken so as to analyse the operation of the proposed
fitness functions, and to analyse the operation of PODCC in comparisons
to DBSCAN, K-means and SVM. The experiment results show that the
unsupervised PODCC performs better than DBSCAN and K-means, and
that supervised PODCC can perform better than SVM when a suitable
fitness function is chosen.

Ten open datasets with the classes of overlapped feature values were
used to evaluated PODCC. To compare with PODCC, Genetic Algo-
rithm Optimized DBSCAN for Clustering and Classification (GODCC)
was proposed. The SPSO part of PODCC was modified and replaced by
a GA to implement GODCC. The performance of unsupervised PODCC
was compared with the unsupervised GODCC, standard DBSCAN and
K-means, whilst the performance of supervised PODCC was compared
with supervised GODCC and SVM. The results obtained indicated that
unsupervised PODCC can find better clustering results than K-means
and GODCC, when a suitable fitness function is chosen. Both unsuper-
vised and supervised PODCC methods are found to be appropriate for
both imbalanced clustering and classification problems.

For future work, the idea is to extend PODCC as a framework for ESA
optimized DBSCAN clustering and classification. More comprehensive
comparisons between different ESAs in optimizing the parameters of
DBSCAN will be conducted. Since the advantage of DBSCAN is that
it finds the arbitrary shaped clusters, the application of ESA optimized
DBSCAN methods will be explored in the area of image processing, such
as face recognition and medical image segmentation.
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Appendix

Fig. A1 Clustering Pattern Results of Datasets 1–6 Produced by K-means and Unsupervised PODCC.
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Fig. A2 Pattern Results of Datasets 1–6 Produced by Unsupervised PODCC.
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Fig. A3 Prediction Results of Datasets 1–6 Produced by Supervised PODCC and SVM.
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Fig. A4 Clustering Pattern Results of Datasets 7–10 Produced by Unsupervised PODCC and K-means.
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Fig. A5 Prediction Results of Datasets 7–10 Produced by Supervised PODCC and SVM.
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Fig. A6 PODCC Results of Dataset 7 with Different Numbers of Clusters Defined by the User.
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Fig. A7 PODCC Results of Dataset 8 with Different Numbers of Clusters Defined by the User.
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