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Abstract

The a-function is a proposed quantity defined for quantum field theories which
has a monotonic behaviour along renormalisation group flows, being related to the β-
functions via a gradient flow equation involving a positive definite metric. We demon-
strate the existence of a candidate a-function for renormalisable Chern-Simons theo-
ries in three dimensions, involving scalar and fermion fields, in both non-supersymmetric
and supersymmetric cases.
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1 Introduction

It is natural to regard quantum field theories as points on a manifold with the couplings
{gI} as co-ordinates, and with a natural flow determined by the β-functions βI(g). At
fixed points the quantum field theory is scale-invariant and is expected to become a con-
formal field theory. It was suggested by Cardy [1] that there might be a four-dimensional
generalisation of Zamolodchikov’s c-theorem [2] in two dimensions, such that there is a
function a(g) which has monotonic behaviour under renormalisation-group (RG) flow (the
strong a-theorem) or which is defined at fixed points such that aUV − aIR > 0 (the weak
a-theorem). It soon became clear that the coefficient of the Gauss-Bonnet term in the
trace of the energy-momentum tensor is the only natural candidate for the a-function in
four dimensions. A proof of the weak a-theorem has been presented by Komargodski and
Schwimmer [3] and further analysed and extended in Refs. [4, 5].

In other work, a perturbative version of the strong a-theorem has been derived [6, 7]
from Wess-Zumino consistency conditions for the response of the theory defined on curved
spacetime, and with x-dependent couplings gI(x), to a Weyl rescaling of the metric [8] (see
Ref. [7] for a comprehensive set of references). 4 The essential result is that we can define
a function A which satisfies the crucial equation

∂IA = TIJβ
J , (1.1)

for a function TIJ which may in principle be computed perturbatively within the theory
extended to curved spacetime and x-dependent gI . Eq. (1.1) implies

µ
d

dµ
A = βI

∂

∂gI
A = GIJβ

IβJ (1.2)

where GIJ = T(IJ); thus verifying the strong a-theorem so long as GIJ is positive-definite.
(We shall use the notation A rather than a in anticipation of generalising this equation to
three dimensions.)

In odd dimensions there is no Weyl anomaly involving curvature invariants in the usual
fashion; though it does appear in the case of a CP-violating theory with x-dependent
couplings [11]. Therefore it is not obvious that this approach to the a-function is viable
(recall that in d = 2 and d = 4 the natural candidates for the a-function are associated with
Weyl anomaly terms of the generic form R and R2 (the Gauss-Bonnet term) respectively).
However, the general local RG approach has been used in three dimensions in Ref. [11]
to obtain other consistency conditions amongst RG quantities. Moreover, it has been
proposed that the free energy in three dimensions may have similar properties to the
four-dimensional a-function, leading to a conjectured “F -theorem” [12–14]. It has been
shown that for certain theories in three dimensions, the free energy does indeed decrease
monotonically along RG trajectories. It has also been argued on general grounds that the

4This approach has been extended to six dimensions in Refs. [9], and other relevant work on six
dimensions appears in Refs.. [10].
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β-functions should obey a gradient flow equation in the neighbourhood of conformal fixed
points, with a metric in Eq. (1.1) equal to the unit matrix to lowest order.

In this paper we take a different approach by explicitly constructing a three-dimensional
“A-function”. We consider a range of renormalisable theories in three dimensions for which
the β-functions have been computed at lowest (two-loop) order. This includes general non-
supersymmetric abelian and SU(n) Chern-Simons theories, together with the supersym-
metric SO(n) Chern-Simons theory (the examples of supersymmetric SU(n) and Sp(n)
being somewhat trivial). Using the β-functions, we show by explicit construction the exis-
tence of a function A satisfying Eq. (1.1) for a metric which is at lowest order (and hence
perturbatively) positive definite. This is of course the method employed in the classic work
of Ref. [15]. The exact relationship of our A-function with the F -function of Ref. [12–14]
is unclear. Certainly an important new feature of our results is that they appear to pass
some important higher-order (four-loop) checks. In order to elucidate this further we con-
sider a more general (but ungauged) theory where the relation of the A-function with the
β-functions is more transparent.

2 Two-loop results

We start with the abelian Chern-Simons theory with Lagrangian [16]

L = 1
2
εµνρAµ∂νAρ + |Dµφj|2 + iψjD̂ψj

+ αψjψjφ
∗
kφk + βψjψkφ

∗
kφj + 1

4
γ(ψjψ

∗
kφjφk + ψ

∗
jψkφ

∗
jφ

∗
k)− h(φ∗

jφj)
3. (2.1)

where Dµ = ∂µ − igAµ and D̂ = γµDµ. This theory contains equal numbers of scalar-
fermion pairs (φi, ψi), i = 1 · · ·n with the same charge g, and has a global SU(n) symmetry
with respect to which (φi, ψi) transform according to the fundamental representation. It
is renormalisable, and contains five dimensionless couplings, {α, β, γ, h, g}. Of course in
Chern-Simons theories the gauge coupling g has a special role as a topological coupling
and does not run; its β-function is zero and will not be further mentioned.
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The two-loop β-functions were computed in Ref. [16] and were given as

β(2)
α =

(
8
3
n+ 2

)
α3 + 16

3
α2β +

(
8
3
n+ 3

)
αβ2 + (n+ 2)β3 + 1

4

(
8
3
n+ 17

3

)
αγ2

+ 3
4
(n+ 2)βγ2 + 3β2g2 + 1

4
γ2g2 − 2

3
(20n+ 31)αg4 − 8βg4 − 8(n+ 2)g6,

β
(2)
β =

(
8
3
n+ 6

)
α2β +

(
3n+ 16

3

)
αβ2 +

(
2
3
n+ 1

)
β3 + 3

4
(n+ 2)αγ2

+ 1
4

(
8
3
n+ 17

3

)
βγ2 − 3nβ2g2 + 1

4
(n+ 2)γ2g2 − 2

3
(8n+ 31)βg4,

β(2)
γ =

(
8
3
n+ 6

)
α2γ +

(
6n+ 34

3

)
αβγ +

(
8
3
n+ 6

)
β2γ + 1

6
(n+ 1)γ3

+ 4αγg2 + 2(n+ 1)βγg2 − 2
3
(2n− 5)γg4,

β
(2)
h = 12(3n+ 11)h2 + 4h[4nα2 + 8αβ + (n+ 3)β2]

+ (n+ 4)hγ2 − 4(5n+ 16)hg4

− [4nα4 + 16α3β + 4(n+ 5)α2β2 + 4(n+ 3)αβ3 + (n+ 3)β4]

− [(n+ 6)α2 + (3n+ 11)(αβ + 1
2
β2)]γ2 − 1

16
(n+ 3)γ4 − 2(α + β)γ2g2

+ 4(nα2 + 2αβ + β2)g4 − γ2g4 + 8(nα + β)g6 + 4(2n+ 7)g8. (2.2)

Here and elsewhere, we suppress a factor of (8π)−4 for each loop order. These two-loop
β-functions are straightforward to calculate using dimensional regularisation (DREG) with
minimal subtraction; the relevant Feynman graphs have only simple poles in ε = 3 − d,
associated of course with the absence of one-loop divergences.

It is straightforward to show that the Yukawa β-functions satisfy a relation of the form
Eq. (1.1) : ∂αA∂βA

∂γA

 =

n 1 0
1 n 0
0 0 1

4
(n+ 1)


β

(2)
α

β
(2)
β

β
(2)
γ

 , (2.3)

where

A = n
4

(
8
3
n+ 2

)
α4 + 1

6

(
n2 + 3n+ 3

)
β4 + 1

96
(n+ 1)2γ4 +

(
8
3
n+ 2

)
α3β

+ 1
3
(3n2 + 8n+ 3)β3α + 1

3
(4n2 + 9n+ 8)α2β2

+ 1
12

(4n+ 9)(n+ 1)(α2 + β2)γ2 + 1
12

(9n+ 17)(n+ 1)αβγ2

+ (1− n2)β3g2 + 1
2
(n+ 1)αγ2g2 + 1

4
(n+ 1)2βγ2g2

− n
3
(20n+ 31)α2g4 − 1

3
(8n2 + 31n+ 12)β2g4

− n
3
(2n− 5)γ2g4 − 2

3
(20n+ 31)αβg4 − 8n(n+ 2)αg6. (2.4)

The “metric” here is clearly positive-definite (except for the special case n = 1 where there
is a zero eigenvalue reflecting the equivalence of the α, β couplings in this case). Of course
the metric and A-function defined by Eq. (1.1) are only defined up to an overall scale, in the
absence of any known relation to other RG quantities such as Weyl anomaly coefficients.

This is on the face of it a remarkable result, and we shall now show that it extends to
the other three-dimensional theories considered explicitly in Refs. [16,17]. We turn first to
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the non-abelian SU(n) Chern-Simons theory with Lagrangian

L = 1
2
εµνρAAµ∂νA

A
ρ + 1

6
gfABCεµνρAAµA

B
ν A

C
ρ + |Dµφj|2 + iψjD̂ψj

+ αψjψjφ
∗
kφk + βψjψkφ

∗
kφj + 1

4
γ(ψjψ

∗
kφjφk + ψ

∗
jψkφ

∗
jφ

∗
k)− h(φ∗

jφj)
3, (2.5)

where
Dµφj = ∂µφj − igTAjkAAµφk, (2.6)

(similarly for Dµψ) with TAjk the generators for the fundamental representation of SU(n),

satisfying [TA, TB] = ifABCTC . The non-gauge interaction terms for this theory are iden-
tical with those in the abelian theory of Eq. (2.1). The two-loop β-functions for this theory
were computed in Ref. [17]; we quote here the Yukawa β-functions which are given by

β(2)
α =

(
8
3
n+ 2

)
α3 + 16

3
α2β +

(
8
3
n+ 3

)
αβ2 + (n+ 2)β3 + 1

4

(
8
3
n+ 17

3

)
αγ2

+ 3
4
(n+ 2)βγ2 − αβg2 +

n2 − 3

2n
β2g2 +

n2 − 1

8n
γ2g2

− 40n3 − 17n2 − 40n+ 62

12n2
αg4 − 5n3 + 6n2 − 18n+ 8

4n2
βg4

+
3n4 − 4n3 + 5n2 − 8n+ 16

8n3
g6,

β
(2)
β =

(
8
3
n+ 6

)
α2β +

(
3n+ 16

3

)
αβ2 +

(
2
3
n+ 1

)
β3 + 3

4
(n+ 2)αγ2

+ 1
4

(
8
3
n+ 17

3

)
βγ2 + nαβg2 + β2g2 +

n2 − 1

4n
γ2g2 − 5(n2 − 4)

4n
αg4

− 22n3 − 23n2 − 64n+ 62

12n2
βg4 − (n2 − 4)(n− 2)

2n2
g6,

β(2)
γ =

(
8
3
n+ 6

)
α2γ +

(
6n+ 34

3

)
αβγ +

(
8
3
n+ 6

)
β2γ + 1

6
(n+ 1)γ3

+
(n− 1)(n+ 2)

n
αγg2 +

(n− 1)(2n+ 1)

n
βγg2

− (n− 1)(2n2 − 2n+ 5)

6n2
γg4. (2.7)

The non-gauge terms in Eq. (2.7) are of course identical with those in Eq. (2.2).

The corresponding A-function (with a metric identical to that appearing in the abelian
case, Eq. (2.3)), is given by

A = n
4

(
8
3
n+ 2

)
α4 + 1

6

(
n2 + 3n+ 3

)
β4 + 1

96
(n+ 1)2γ4 +

(
8
3
n+ 2

)
α3β

+ 1
3
(3n2 + 8n+ 3)β3α + 1

3
(4n2 + 9n+ 8)α2β2

+ 1
12

(4n+ 9)(n+ 1)(α2 + β2)γ2 + 1
12

(9n+ 17)(n+ 1)αβγ2

+ (n2 − 1)
[n+ 2

8n
αγ2g2 +

2n+ 1

8n
βγ2g2 + 1

2
αβ2g2 +

1

2n
β3g2

− 20n− 1

12n
α2g4 − 11n2 − 4n− 12

12n2
β2g4 − 2n2 − 2n+ 5

48n2
γ2g4

− 15n2 + 40n− 62

12n2
αβg4 +

3n2 − 8n+ 16

8n2
αg6 − 4n3 − 11n2 − 8n+ 16

8n3
βg6
]
. (2.8)
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Once again, the non-gauge terms are identical to those in Eq. (2.4).

We have so far not discussed the scalar β-function βh. For this we shall return to the
abelian case of Eq. (2.1). We expect a relation of the form

∂hA = Xβ
(2)
h + . . . (2.9)

where in principle the right-hand side could involve the Yukawa β-functions as well. How-
ever, it turns out that no such additional terms are required at this order. If we retain
only βh in Eq. 2.9 and integrate using Eq. (2.2) (assuming X is independent of h), we find
that we need to modify A in Eq. (2.4) according to A→ A+ Ah where

Ah = X
[
4(3n+ 11)h3 + 2h2[4nα2 + 8αβ + (n+ 3)β2]

+ 1
2
(n+ 4)h2γ2 − 2(5n+ 16)h2g4

− h[4nα4 + 16α3β + 4(n+ 5)α2β2 + 4(n+ 3)αβ3 + (n+ 3)β4]

− h[(n+ 6)α2 + (3n+ 11)(αβ + 1
2
β2)]γ2 − 1

16
(n+ 3)hγ4 − 2h(α + β)γ2g2

+ 4h(nα2 + 2αβ + β2)g4 − hγ2g4 + 8h(nα + β)g6 + 4h(2n+ 7)g8. (2.10)

It is then clear that we need to consider higher-order contributions to Eq. (2.3), since
Eq. (2.10) will yield contributions to ∂αA of the form αh2 and α3h which are produced
by four-loop diagrams5. At the very least we should include four-loop contributions to
βα, etc on the right-hand side of Eq. (2.3). We have accordingly computed the four-loop
contributions to β-functions for α, β, γ with one Yukawa coupling and two scalar couplings;
and with three Yukawa couplings and one scalar coupling. The results are

β(4)
α = h2[8

3
(n+ 1)(n+ 2)α + 2(n+ 2)β]

− 2
3
(n+ 2)h

{
4(n+ 1)α3 + 10(n+ 2)α2β + (2n+ 9)αβ2 + (n+ 3)β3

+ 1
4
[(2n+ 11)α + (3n+ 11)β]γ2

}
+ . . . ,

β
(4)
β = 2

3
(n+ 2)(n+ 4)h2β

− 2
3
(n+ 2)h

{
2(n+ 6)α2β + (3n+ 10)αβ2 + (n+ 3)β3

+ 1
4
[3(n+ 4)α + (3n+ 11)β]γ2

}
+ . . . ,

β(4)
γ = 2

3
(n+ 2)(n+ 4)h2γ − 4

3
(n+ 2)hγ

[
(n+ 6)α2 + (3n+ 11)(αβ + 1

2
β2)
]

+ . . . , (2.11)

where the ellipses indicate pure Yukawa contributions which we have not calculated. In
general, the metric which we have given to leading order in Eq. (2.3) might be expected
to have additional higher-order corrections. However, it turns out that as far as the terms
in A in Eq. (2.10) are concerned, no corrections are required and provided we take

X = 1
6
(n+ 1)(n+ 2) (2.12)

5This is analogous to the “3-2-1” phenomenon discussed in Ref. [18].
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we have

∂αAh = nβ(4)
α + β

(4)
β ,

∂βAh = β(4)
α + nβ

(4)
β ,

∂γAh = 1
4
(n+ 1)β(4)

γ . (2.13)

We shall see later that we can shed more light on the situation by turning to the general
(but non-gauged) case; but for the present we continue in the next section by considering
the supersymmetric gauge theory.

3 The supersymmetric case

We turn to the non-abelian N = 1 supersymmetric case. Here we consider an action

S =

∫
d3xd2θ

[
−1

4
(DαΓAβ)(DβΓAα )− 1

6
gfABC(DαΓAβ)ΓBαΓCβ − 1

24
g2fABCfADEΓBαΓCβΓDα ΓEβ

− 1
2
(DαΦj + igΦkT

A
kjΓ

α
A)(DαΦj − igΓBαT

B
jl Φl)

+ 1
4
η0(ΦjΦj)

2 + 1
4
η1(ΦjT

A
jkΦk)

2
]
, (3.1)

where ΓAα is a real gauge superfield and Φ a complex matter supermultiplet (once again
in the fundamental representation). Note that here α and β are three-dimensional spinor
indices. We have a gauge coupling g and matter couplings η0, η1. We refer the reader to
Refs. [16,17] for the definition of the supercovariant derivative Dα and other details of the
notation and conventions. Of course in the abelian and also the non-abelian SU(n) case,
this action is already included in the general cases of Eqs. (2.1), (2.5).
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The β-functions are given by 6

β(2)
η1

=
[
(R31 + 1

2
Rt1 + TRCR + 2C2

R)η1 + 1
4
TRCAg

2 − 1
2
Rf1(η1 + g2)

− 1
4
CRCA(5η1 − 3g2) + 1

8
C2
A(η1 − 3g2)

]
(η21 − g4)

+ [TR(η21 + η1g
2 + g4) + CR(3η21 + 4η1g

2 + 3g4)

− 1
4
CA(5η21 + 8η1g

2 + 7g4)]R21(η1 − g2)
+
[
(6R21 + 10CR + 3TR − 3

2
CA)η21 + (2n+ 11)η1η0

+ 2CRη1g
2 − (2R21 + 1

2
CA)g4

]
η0,

β(2)
η0

=
[
(R30 + 1

2
Rt0)η1 − 1

2
Rf0(η1 + g2)

]
(η21 − g4)

+ [TR(η21 + η1g
2 + g4) + CR(3η21 + 4η1g

2 + 3g4)

− 1
4
CA(5η21 + 8η1g

2 + 7g4)]R20(η1 − g2)
+ [7CRη1η0 + 3(n+ 2)η20 + CRη0g

2

+ 2R20(3η
2
1 − g4) + (2CR + 2TR − CA)CR(η21 − g4)]η0. (3.2)

Here the “reduction” coefficients RXi (where X takes the values 2, 3, t, f and i = 0, 1) are
defined by

TX = RX0T0 +RX1T1, (3.3)

where

T0 = (ΦΦ)2, T1 = (ΦTAΦ)2,

T2 = (ΦTATBΦ)2, T3 = (ΦTATBTCΦ)2,

Tt = (ΦTAΦ)(ΦTBTCΦ)tr(TA{TB, TC}), Tf = fEACfEDB(ΦTATBΦ)(ΦTCTDΦ).
(3.4)

The group invariants are defined as usual by

CR1 = TATA, TRδ
AB = tr(TATB), CAδ

AB = fACDfBCD. (3.5)

As shown in Ref. [17], the reduction coefficients may be computed for the classical groups
SU(n), SO(n) and Sp(n); however for SU(n) the identity

TAij T
A
kl = TR(δilδkj − 1

n
δijδkl) (3.6)

yields a simple relation between T0 and T1, and a similar argument (with a different iden-
tity) holds for Sp(n); so that effectively η0,1 may be replaced by a single coupling. This
is not the case for SO(n), where the analogous identity to Eq. (3.6) does not reduce the
number of quartic scalar invariants. In this case there is therefore potentially a non-trivial

6Since we now deal with supersymmetry, the issue of use of regularisation by dimensional reduction
(DRED) [19] rather than DREG arises; but since as indicated earlier, the relevant two-loop graphs have
simple poles in ε, minimal subtraction gives the same result in both cases.
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result for the A-function, so we confine our attention to this gauge group for the remainder
of this section. We have for SO(n) [17]

CR = 1
2
(n− 1)TR, CA = (n− 2)TR

R20 = 1
4
(n− 1)T 2

R, R30 = Rf0 = − 1
8
T 3
R(n− 1)(n− 2), Rt0 = Rt1 = 0,

R21 = −1
2
TR(n− 2), R31 = 1

4
T 2
R(n2 − 3n+ 3), Rf1 = 1

4
T 2
R(n− 2)(n− 3), (3.7)

so that the β-functions of Eq. (3.2) take the form

β(2)
η0

= (n− 1)
[
1
8
T 3
R(5η21 + 6η1g

2 + 5g4)(η1 − g2) + T 2
R(3η21 − 2g4)η0

+ 1
2
TR(7η1 + g2)η20

]
+ 3(n+ 2)η30,

β(2)
η1

= T 2
R

[
5
4
η31 + 1

2
(n− 2)η21g

2 + 1
4
(3− 4n)η1g

4 + 1
2
(n− 2)g6

]
+
[
1
2
(n+ 14)η21 + (n− 1)η1g

2 + 1
2
(n− 2)g4

]
TRη0 + (2n+ 11)η1η

2
0. (3.8)

The value of TR depends on the choice of scale for the representation matrices and structure
constants.There are several possible convenient choices in the SO(n) case; see Ref. [20] for
a discussion. It is straightforward to show that the β-functions satisfy(

∂η0A
∂η1A

)
=

(
4(n+1)
(n−1)

2TR
2TR 3T 2

R

)(
βη0
βη1

)
, (3.9)

where

A =
3(n+ 1)(n+ 2)

n− 1
η40 + 2

3
(n+ 1)TRg

2η30 − 1
2
(7n+ 10)T 2

Rg
4η20

− 3
2
(n+ 3)T 3

Rg
6η0 + 6(n+ 2)TRη

3
0η1 + 13

2
(n+ 2)T 2

Rη
2
0η

2
1

+ (n− 1)T 2
Rg

2η20η1 − 1
2
(5n− 2)T 3

Rg
4η0η1 + 3

2
(n− 1)T 3

Rg
2η0η

2
1

+ 5
2
(n+ 2)T 3

Rη0η
3
1 + 5

16
(n+ 2)T 4

Rη
4
1 + 1

12
(7n− 13)T 4

Rg
2η31

− 1
8
(13n− 10)T 4

Rg
4η21 + 1

4
(n− 7)T 4

Rg
6η1. (3.10)

We see from Eq. (3.9) that the metric is again positive definite.

In Eqs. (3.9), (3.10) we have extended the range of our results to include the N =
1 supersymmetric SO(n) theory, in addition to the general abelian and SU(n) theories
considered earlier. There is little to be gained from detailed consideration of the Sp(n)
supersymmetric theory; since there is in this case effectively only a single coupling, the
existence of an A-function satisfying Eq. (1.1) is trivially guaranteed.

Finally a word is in order concerning the relation between the general SU(n) theory of
Section 2 and the supersymmetric SU(n) theory defined in this section. One may obtain
the supersymmetric SU(n) theory of Eq. (3.1) from the general lagrangian of Eq. (2.5) by
imposing [17]

g → g√
2
, α→ 1

4n
[(n− 1)η0 + ng2], β → 1

4n
[(n− 1)η0 − g2],

γ → n− 1

2n
(η0 − g2), h→ η20(n− 1)2

16n2
, (3.11)
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where we have set η1 = 0 since again for SU(n) there is effectively only one coupling.
It is interesting that due to the replacement h ∼ η20, Ah in Eq. (2.10) will be entirely
O(η60). The terms in h which in the general case would have yielded the two-loop βh (upon
differentiation with respect to h) will now give rise (upon differentiation with respect to
η0) to higher-order contributions to the metric in Eq. (1.1) multiplying the two-loop βη0 .
The connection between the four-loop and two-loop β-function coefficients is no longer
apparent. A full four-loop analysis (in which it would be appropriate to use DRED rather
than DREG) might reveal equivalent constraints on the β-function; or alternatively the
requisite relations between β-function coefficients might be an automatic consequence of
supersymmetry.

4 General theory

The above results present, at first sight, persuasive evidence for an a-theorem. It is natural
to consider a generalisation to a theory with arbitrary scalar and fermion content. Thus
we consider the theory

L = 1
2
[εµνρAµ∂νAρ + (Dµφi)

2 + iψaD̂ψa] + 1
4
Yabijψaψbφiφj + 1

6!
hijklmnφiφjφkφlφmφn (4.1)

where we employ a real basis for both scalar and fermion fields. (Recall that in d = 3,
ψ = ψ∗T , and there is no obstacle to decomposing ψ into real Majorana fields.)

For the purposes of this paper we shall restrict ourselves to considering the general
theory in the ungauged case. The result for the two-loop Yukawa β-function may then be
written as

β
(2)
abij = aβ

(a)
abij + bβ

(b)
abij + cβ

(c)
abij + dβ

(d)
abij + eβ

(e)
abij, (4.2)

where β
(a−e)
abij correspond to the tensor structures given by

β
(a)
abij = YacilYcdjmYdblm + YaclmYcdjmYdbil + YacjlYcdimYdblm + YaclmYcdimYdbjl,

β
(b)
abij = YaclmYcdijYdblm,

β
(c)
abij = YcdikYabklYcdlj,

β
(d)
abij = YacijYcdlmYdblm + YadlmYdclmYcbij,

β
(e)
abij = YabikYcdklYdclj + YcdilYdclkYabkj, (4.3)

and where
a = b = c = 2, d = e = 2

3
. (4.4)

(Note that β
(d,e)
abij correspond to fermion and scalar anomalous dimension contributions.)

Upon specialising to the theory of Eq. (2.1), we obtain contributions to the β-functions of
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the three couplings α, β and γ given for β(a) by

β(a)
α = 4α3 + 6αβ2 + 2nβ3 + 1

2
γ2[3α + (3n+ 4)β]

β
(a)
β = 12α2β + 6nαβ2 + 2β3 + 1

2
γ2[3(n+ 2)α + (2n+ 3)β]

β(a)
γ = 4γ[3α2 + 3(n+ 1)αβ + (n+ 2)β2], (4.5)

for β(b,c) by

β(b)
α = β(c)

α = 2nα3 + 4α2β + 2nαβ2 + 2β3 + 1
2
γ2[(n+ 1)α + β],

β
(b)
β = β

(c)
β = 2nα2β + 4αβ2 + 1

2
βγ2,

β(b)
γ = β(c)

γ = 2γ(nα2 + 2αβ + β2), (4.6)

and for the anomalous dimension contributions β(d,e) by

β(d)
α = β(e)

α = γ̃α,

γ̃ = 2(nα2 + 2αβ + nβ2) + 1
2
(n+ 1)γ2, (4.7)

with similar results for β
(d,e)
β,γ . It is easy to check that upon adding the contributions to

βα,β,γ from Eqs. (4.5), (4.6), (4.7), and incorporating the factors of a-e from Eq. (4.4), we
obtain the β-functions given in Eq. (2.2) (upon setting the gauge coupling g = 0) up to
an overall factor of 4 which we are unable to account for. Of course such an overall factor
has no effect on the existence or otherwise of the A-function.

It can readily be seen that for β-functions given by Eq. (4.3), the A-function given by

A = aAa + 1
4
bAb + 1

4
cAc + 1

2
dAd + 1

2
eAe, (4.8)

where

Aa = YabijYbcklYcdikYdajl,

Ab = YabijYbcklYcdijYdakl,

Ac = YabijYcdjkYabklYcdli,

Ad = YacijYcbijYbdlmYdalm,

Ae = YabilYbaljYcdilYdclj. (4.9)

satisfies Eq. (1.1) in the form
∂A

∂Yabij
= β

(2)
abij, (4.10)

where we define

∂

∂Yabij
Ya′b′i′j′ = 1

4
(δaa′δbb′ + δab′δba′)(δii′δjj′ + δij′δji′). (4.11)
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The corresponding (lowest order) contribution to the metric GIJ is therefore effectively
the unit matrix in coupling space. The different tensor structures in Eq. (4.9) are depicted
in Table 1 where a vertex represents a Y and full (“fermion”) and dashed (“scalar”) lines
represent contractions of a, b, . . . and i, j, . . . indices, respectively. Differentiation with
respect to Y therefore corresponds to removing a vertex. and is easily seen to produce a
potential β-function contribution.

Aa Ab Ac Ad Ae

Table 1: Contributions to A from Yukawa couplings

Upon specialising once again to the theory of Eq. (2.1), we obtain

Aa = nα4 + 4α3β + 6nα2β2 + 2(n2 + 1)αβ3 + nβ4

+ 1
2
(n+ 1)γ2[3α2 + 3(n+ 1)αβ + (n+ 2)β2],

Ab,c = 1
2
[n2α4 + 4nα3β + 2(n2 + 2)α2β2 + 4nαβ3 + β4 + 1

2
(n+ 1)γ2(nα2 + 2αβ + β2)],

Ad,e = 1
2
[n2α4 + 4nα3β + 2(n2 + 2)α2β2 + 4nαβ3 + n2β4

+ 1
2
(n+ 1)γ2(nα2 + 2αβ + nβ2)]; (4.12)

and again, it may readily be checked that upon inserting these expressions into Eq. (4.8),
we obtain the A-function derived in Eq. (2.4) (with, again, g = 0). So far, there is no
constraint on the two-loop coefficients a–e in Eq. (4.4). This is because the symmetries of
the tensor structures appearing in Eq. (4.8) imply a one-to-one relation between A-function
contributions and Yukawa β-function contributions. This may be seen in Table 1 where in
each diagram, the removal of any vertex leads to the same β-function contribution. The
A-function can thus be tailored term-by-term to match any values for the β-function coef-
ficients. This situation appears likely to be unchanged if we include gauge contributions,
although we have not performed the explicit calculations.

However, a crucial difference arises in the case of the scalar coupling hijklmn. The
two-loop β-function for h is given by

(β
(2)
h )ijklmn = h1β

(h1)
ijklmn + h2β

(h2)
ijklmn + h3β

(h3)
ijklmn + h4β

(h4)
ijklmn + h5β

(h5)
ijklmn, (4.13)

where

β
(h1)
ijklmn = 1

6!
(hijkpqrhlmnpqr + perms), β

(h2)
ijklmn = 1

6!
(hijklpqYabmpYabnq + perms),

β
(h3)
ijklmn = 1

6!
(hijklmpYabpqYabnq + perms), β

(h4)
ijklmn = 1

6!
(YabijYbcklYcdmpYdapn + perms),

β
(h5)
ijklmn = 1

6!
(YabijYbcmpYcdklYdapn + perms), (4.14)
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where “+ perms” completes the 6! permutations of the indices {ijklmn} and

h1 = 40
3
, h2 = 30, h3 = 4, h4 = h5 = −360. (4.15)

Eq. (1.1) may be satisfied for the coupling hijklmn by introducing extra A-function contri-
butions

A→ A+ h1Ah1 + h2Ah2 + h3Ah3 + h4Ah4 + h5Ah5 , (4.16)

where

Ah1 = 1
3
λhijklmnβ

(h1)
ijklmn, Ah2 = 1

2
λhijklmnβ

(h2)
ijklmn, Ah3 = 1

2
λhijklmnβ

(h3)
ijklmn,

Ah4 = λhijklmnβ
(h4)
ijklmn, Ah5 = λhijklmnβ

(h5)
ijklmn, (4.17)

so that manifestly
∂A

∂hijklmn
= λ(β

(2)
h )ijklmn. (4.18)

The different tensor structures in Eq. (4.17) are depicted in Table 2. Here differentiation
with respect to h corresponds to removing a vertex with six “scalar” lines (an h-vertex)
while differentiation with respect to Y corresponds as before to removing a Y vertex with
two “scalar” and two “fermion” lines.

Ah1
Ah2

Ah3
Ah4

Ah5

Table 2: Higher order contributions to A from scalar coupling

So far there is no constraint on h1−5, just as in the case of a-e. However, when we
differentiate A in Eq. (4.16) with respect to Yabij, we obtain terms with the structure of
four-loop contributions to βabij (as we saw earlier in Section 2, and easily see by removing
Y vertices from diagrams in Table (2)). So if Eq. (1.1) is to remain valid, then the A-
function of Eq. (4.16) already requires that Eq. (4.10) should be extended to four-loop
order. In principle at this order Eq. (4.10) could include higher order contributions to GIJ ,
contracted with the two-loop Yukawa β-function; however it is easy to see that these do not
contribute to the h-dependent terms we are considering. We thus obtain from Eqs. (4.10),
(4.16) a prediction for the h-dependent contributions to the four-loop β function for Y ,
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given by

β
(4)
abij = λ

[
h2β

(h2)
abij + 1

2
h3β

(h3)
abij + 1

2
h4β

(h4)
abij + h5β

(h5)
abij

]
+ h-independent terms,

β
(h2)
abij = hikmnpqhjlmnpqYabkl,

β
(h3)
abij = hilmnpqhklmnpqYabkj + hjlmnpqhklmnpqYabik,

β
(h4)
abij = [(YacikYcdlmYdbnp + YacnpYcdlmYdbik)hjklmnp

+ (YackpYcdmpYdbnl + YacnlYcdmpYdbkp)hijklmn] + (i↔ j),

β
(h5)
abij = [YacklYcdjmYdbnphiklmnp + YackpYcdlmYdbnphijklmn] + (i↔ j). (4.19)

Note that in the case of the h4,5 diagrams in Table 2, there are two topologically inequivalent
types of Y -vertex and therefore differentiation with respect to Y yields two different types
of β-function contribution from each of these diagrams. Remarkably the predictions of
Eq. (4.19) are verified by explicit calculations, provided λ = 1

90
. This agreement requires

relations between two and four loop Feynman diagram pole contributions, and indeed (since
as mentioned h4 and h5 each appear in two distinct β-function contributions in Eq. (4.19))
between distinct four-loop Feynman diagrams. Yet again, these results are in agreement
with the earlier explicit results, in this case those of Eqs. (2.11), (2.13). Since λ 6= 1, the
overall metric in {Y, h} coupling space is not simply the unit matrix; however, this could
of course be arranged by a rescaling of h.

5 Conclusions

We have demonstrated explicitly the existence of a three-dimensional A-function satisfying
Eq. (1.1) for the two-loop β-functions derived earlier in Refs. [16, 17] for a range of gauge
theories coupled to scalars and fermions. Considering a more general (but ungauged)
theory, we have shown that at lowest order the existence of the A-function is guaranteed
irrespective of the values of the coefficients of the two-loop β-functions for the scalar and
Yukawa couplings; but that this A-function also entails predictions for terms in the four-
loop Yukawa β-function. We have verified that these predictions are correct. It would be
interesting to investigate the relation between our results and those of Ref. [14]. These
authors presented arguments based on conformal field theory for an “F -function” satisfying
Eq. (1.1) at lowest order, and also found a trivial metric at this order. However, their
calculations did not reveal the subtle interplay between the two and four loop β functions
which is necessary for consistency in the theory with both fermions and scalars.

It is worth pointing out that these methods could also be employed in four dimensions;
indeed,they already were to a considerable extent in Refs. [7, 21], though here the metric
was known already at leading order from explicit computation. It would appear that
in both cases the leading order metric is constant (except for a 1

g2
factor in Ggg in four

dimensions), and owing to the “3-2-1” phenomenon [18] could be determined using our
present method up to an overall factor.
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It is clearly of crucial importance to carry out the full four-loop calculation (at least
for the non-gauge theory) to complete the check that Eq. (1.1) is valid at this level. This
computation is under way and will be reported on shortly [22]. It would also be of interest
to extend our lowest order computations to a general scalar-fermion gauge theory.

Our results certainly appear to point to the all-orders validity of Eq. (1.1) in three
dimensions. One way to confirm this would be to attempt to adapt the renormalisation
group approach of Refs. [6]. As commented earlier, this approach is hampered by the
lack of natural RG quantities to serve as the natural candidate for an A-function. One
potentially significant observation is that Rφ2 is dimensionless in all dimensions but there is
no clear link between the β-function for the coefficient of this quantity and the A-function
as computed here.

Finally it would be interesting to test the monotonicity of our A-function beyond the
weak-coupling limit, by examining its behaviour at fixed points. This could in principle be
done explicitly; the fixed-point structure of the models considered in Section 2 was already
mapped out in Refs. [16,17].More speculatively, one might investigate whether the values of
A at fixed points in supersymmetric theories bore any relation tothe corresponding values
obtained by “F -maximisation” [23].
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