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Abstract. In this paper we develop a new techniques for asymmetric approximation
of discrete functions originated in seasonal customer demand extrapolation. We adapt
the techniques for two different settings: so called pull and push models. Our main goal
here is to find effectively the loss minimizing extrapolations. For both models we discuss
several features concerning sampling, approximation, and extrapolation.

1. Introduction

In this paper we develop a techniques for approximation of discrete functions that
has a “nearly” periodic behaviour. The problem has an applied origins, it is closely
related to forecasting (i.e., to extrapolation) of recurrent patterns in consumer demand in
superstores. There are two different models of store operation which we deal with, they
are as follows.

• Seasonal pull model: In this model the store immediately replenish a necessary
amount of items for the next unit of time.

• Seasonal push model: In this model the store order items several units of time in
advance. If one uses pull extrapolation in such settings then storage loss expecta-
tion will be higher.

While developing extrapolation models we take into account the following two types of
losses.

• Out-of-stock loss: here the company looses customers due to shortage of items in
the storage.

• Storage loss: storing exceeding number of items is also expensive. For instance this
is essential for the market of electronics when the demand of old models strongly
decreases when new models are offered for sale.

In both cases of seasonal pull and push models we aim to find the extrapolation that
minimizes the loss functional. In this paper we develop a method to find one of the
minimizers of the total loss functional explicitly. We show that the set of values of such
an extrapolation is a subset of a certain finite set. Then this minimizer can be found
by brute force case study (see Theorem 7.1). This method is much faster than standard
gradient algorithms for small values of k.
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Main stages of seasonal storage push and pull extrapolation. Both push and pull
models follow the same general pattern.

Given an observed history of trading we complete the following stages.

• Sampling and normalization: On that stage we synthesize a certain set of pe-
riodic functions from the input data, in addition we normalize every such function
such that the sum over the period equals 1. We call such functions the normalized
periodic particles. (for an alternative way of sampling, e.g., see [3]).

• Periodic approximation: First of all for both seasonal pull and push models we
introduce an extrapolation loss functional on the spaces of all normalized periodic
particles, constructed above. This functional essentially depends on the set of
normalized periodic particles. Further, using the result of Theorem 7.1, we find
best fitting periodic approximations that minimize such functionals.

• Particle discrepancy (weighting): Once a best fitting periodic approximation
is computed, we can introduce the weigh function on the set of normalized periodic
particle. A further normalized periodic particles from the best fitting periodic
approximation is, a smaller weight it has (for a general theory of denoising we
refer to [6]).

• Extrapolation minimizers: So we have constructed the set of normalized parti-
cles equipped with denoising weights. Now for both seasonal pull and push models
we introduce a weighted extrapolation loss functional on the spaces of all normal-
ized periodic particles. Again, using Theorem 7.1, we find an extrapolation that
minimizes these functionals.

• Rescaling: The obtained minimizers are computed for normalized periodic par-
ticles. So we rescale back to get a true forecast (see Remark 5.7).

Recall several approaches that are in actual use and have proved to be successful.
The classical approach to time series forecasting derives from regression analysis. The
standard regression model involves specifying a linear parametric relationship between a
set of explanatory variables and the dependent variables of the model. The parameters
of the model can be estimated in a variety of ways, for example, by least squares method
introduced by Gauss in 1794 or more ”modern” approaches introduced by N. Wiener (see
[9]) and A. Kolmogorov (see [8]).

Methods such as seasonal decomposition, Box-Jenkins and ARIMA are designed to
extract seasonal and other cyclical component signals from a series by means of an iterated
finite moving average procedure (see [1], [4], and for a general overview [5]). C.C. Holt
[7] and P.R. Winters [10] further generalized this method to include a linear component
in the extrapolation function. A few years later Brown [2] reformulated the problem in
terms of a discounted least squares regression (linear exponential smoothing).

The extrapolation techniques we develop in this paper are within seasonal time series
methods. The main difference between the listed time series methods and our methods are
as follows. First of all we do not assume the error term to be a random variable, instead
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of that we deal with functional space of all samples optimizing a certain functional on it.
Secondly we introduce a special weighted system (which is distinct to the mean absolute
percentage error) in order to find the best fitting periodic approximation, which improves
the original data. The proposed techniques were successfully implemented in a chain of
stores selling consumer electronics.

This paper is organized as follows. In Section 2 we describe the input data and de-
scribe sampling we employ. Further in Section 3 we define best seasonal pull extrapolation.
In Section 4 we introduce the push extrapolation which generalizes the pull extrapolation.
We introduce a denoising weight system in order to reduce noisy nonseasonal effects on
the space of normalized periodic particles in Section 5. In Section 6 we show how to find
minimizers of periodic σ-discrepancy which is the key point to construct a best weighted
seasonal pull extrapolation. Further in this section we discuss criteria of uniqueness of
best weighted seasonal pull extrapolations. We conclude this paper in Section 7 with
techniques to find explicitly the minimizers in the push model.

2. Input data, sampling, and periodic seasonal approximation

In this section we give basic notions and definitions. In Subsection 2.1 we set the input
data for the models we study in this articles. Further in Subsection 2.2 we show how
to construct normalized periodic particles. They are used as samples to construct the
best approximation. Finally in Subsection 2.3 we define the space of P -periodic seasonal
approximations.

2.1. Input data. The seasonal extrapolations described in this article are computed
basing on the following input data:

• T : a total number of observations (T is a positive integer);
• P : a seasonal period is a number of observations which we consider as a period (P

is a positive integer such that P ≤ T );
• pI : an out-of-stock loss value is the price that we pay for one out-of-stock loss

(pI ≥ 0);
• pII : a storage loss value is the price that we pay to store one item per one time

unit (pII ≥ 0);
• f : {1, 2, . . . , T} → R≥0: an observation data is a function whose value f(t) is

the number of items sold between observations t and t + 1 (for t = 1, . . . , T ).
Additionally we require that f does not have P consequent zero values.

Denote this input data by (T, P, p1, p2, f).

Example 1, part 1 of 2. The input data of this example is a sample of real-life data
from one company which is a chain of stores selling home electronics. The observation
function f is as on the following diagram:
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It contains 79 observations, and hence T = 79. There were recorded on a monthly
basis, i.e. P = 12. The out-of-stock and storage loss values were set by the company as
pI = pII = 1.

Remark 2.1. While studying real-life examples of observation functions it is clear most
of them have strong seasonality behaviour, like with one described in Example 1. Nev-
ertheless the pikes might occur at the neighbouring time segments in different years (as
discussed in Example 2 part 1 below), which makes them far from being periodic.

Throughout this paper we will go through the following simpler example.

Example 2, part 1 of 5. The observation function is

f = (1, 1, 1, 1, 10; 1, 1, 1, 10, 1; 1, 1, 1, 1, 10; 1, 1, 1, 1, 10).

(Here and below we write functions as sequences of values, assuming that the first element
of the sequence is the value at time 1, unless otherwise stated.) The observation function
is defined for t = 1, . . . , 20 (hence T = 20). The seasonal period P is considered to be 5.
Finally set pI = 3 and pII = 1. So the input data is(

20, 5, 3, 1, (1, 1, 1, 1, 10; 1, 1, 1, 10, 1; 1, 1, 1, 1, 10; 1, 1, 1, 1, 10)
)
.

Our task is to compute a best weighted seasonal [20, 26]-pull extrapolation (i.e., a best
weighted seasonal pull extrapolation at time 20 till time 26).
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In this example we observe a seasonal behavior, although the observation function is
not periodic in classical sense, we have

max
t∈{1,...,15}

(
|f(t+5)− f(t)|

)
= |f(10)− f(5)| = 9,

which is comparable to the maximum of the function itself (which is 10 here).

2.2. Sampling: normalized periodic particles. There are several sampling strategies
for construction of approximations. In both pull and push models we use the following
natural sampling.

Definition 2.2. Given a triple (T, P, f). For every integer i such that 1 ≤ i ≤ T−P+1
consider a periodic function fi : Z→ [0, 1] with period P defined as follows:

fi(t) =
f(t)

Si
, for t = i, . . . , i+ P − 1,

where

Si =
i+T−1∑
k=i

f(k).

At all other values of the argument the function fi is defined by periodicity: fi(t+ P ) =
fi(t). The function fi is said to be a normalized periodic particle of a triple (T, P, f). (We
assume that f is not identical to zero at any consequent P integers.)

Example 2, part 2 of 5. In our testing example we will have the following normalized
periodic particle types of normalized periodic particles:

No. Period Graphs Amount Particles

I
( 1

14
,

1

14
,

1

14
,

1

14
,
5

7

)
10 f1, . . . , f4, f11, . . . , f16

II
( 1

14
,

1

14
,

1

14
,
5

7
,

1

14

)
4 f6, f7, f8, f9

III
( 1

23
,

1

23
,

1

23
,
10

23
,
10

23

)
1 f5

IV
(1

5
,
1

5
,
1

5
,
1

5
,
1

5

)
1 f10

2.3. P -periodic seasonal approximations. In this subsection we describe techniques
of seasonal storage loss extrapolation. Later in Section 5 we improve it by introducing
denoising weighted for normalized periodic particles. We start with some general notation.
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For integers a, b satisfying a > b and h : Z→ R we formally set (similar to integration)

b∑
k=a

h(t) = −
a−1∑
k=b+1

h(t).

Note that as a consequence we have
a−1∑
k=a

h(t) = −
a−1∑
k=a

h(t), and hence
a−1∑
k=a

h(t) = 0.

Definition 2.3. Given h : Z → R≥0 and an integer t0. A discrete distribution function
for h with respect to t0 is the function

H t0 : Z→ R, where H t0(t) =
t∑

k=t0

h(k).

Let us continue with the following formal definition.

Definition 2.4. A periodic function g(t) : Z → [0, 1] with period P is said to be a
P -periodic seasonal approximation. The space of P -periodic seasonal approximation is
naturally associated with [0, 1]P .

3. Pull extrapolation model

In this section we describe the pull extrapolation model. First we start with the notion
of Macaulay brackets that describe the ramp function:

〈x〉 =

{
x if x ≥ 0
0 if x < 0

.

Let us define the loss of an extrapolation g with respect to an observation function f .

Definition 3.1. Let pI and pII be the out-of-stock and storage loss values, and let t0 be
an integer. Consider a pair of periodic functions f, g : Z→ R≥0 with period P where f is
not zero at least at one point. A periodic δ-storage loss of g with respect to f is

(1) δt0f (g) = pI ·
〈
f(t0)−g(t0)

〉
+ pII ·

( +∞∑
t=t0

〈
g(t0)− F t0(t)

〉)
.

where F t0 is the discrete distribution function for f with respect to t0 (recall that F t0(t0) =
f(t0)).

Remark 3.2. Here we consider δt0f (g) as a single brick to construct best P -periodic seasonal

approximations. Note that δt0f (g) depends entirely on g(t0), its behavior therefore is similar
to the behavior of generalized Dirac δ-functions in continuous settings.

For a P -periodic function h we set

(2) EP (h) =
P∑
t=1

h(t).
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Definition 3.3. Given an input data (T, P, p1, p2, f) and a P -periodic seasonal approxi-
mation g.

• Periodic δ-discrepancy of g with respect to the input data is defined as follows:

(3) ∆t0
f (g) =

1

T − P + 1

T−P+1∑
i=1

(
δt0fi (g) · EP (fi)

)
.

• A periodic discrepancy of g with respect to f is

(4) Df (g) =
P∑
t=1

∆t
f (g).

• Global minimizers of Df are said to be best P -periodic seasonal approximations.

• The discrepancy for a best P -periodic seasonal approximation is called the measure
of periodicity/sesonality of the observation function f .

Example 2, part 3 of 5. For our example the best 5-periodic seasonal approximation
for the normalized periodic particles is the following function:

( 1

14
,

1

14
,

1

14
,
10

23
,
5

7

)
.

Definition 3.4. Given an input data (T, P, p1, p2, f), integers t0 ≤ t1 and an interval
(finite or infinite) I such that [t0, t1] ⊂ I. Consider a function g : I ∩ N→ [0, 1].

• A pull extrapolation loss at time t0 till time t1 is given by the following expression

(5) Ωt0,t1
f (g) =

t1∑
t=t0

∆t
f (g).

• Best seasonal pull extrapolation at time t0 till t1 is a global minimizer of the
functional Ωt0,t1

f (g).

We conclude this section with two general remarks.

Remark 3.5. Note that best P -periodic seasonal approximations do not necessarily sum
up to 1 at the period. For instance this is the case in Example 2 (see Example 2 part 3).
The reason for that is as follows: in order to catch the customers it is worthy to store
items in some excess.
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Remark 3.6. It is interesting to observe a continuous analog of a best P -periodic seasonal
approximation. In this case all functions are defined on intervals. For continuous periodic
δ-discrepancy we have:

∆̃t0
f (g) =

1

T−P

T−P∫
0

((
pI
〈
fλ(t0)−g(t0)

〉
+pII

( +∞∫
t0

〈
g(t0)−f t0λ (s)

〉
ds
))
·
( P∫

0

fλ(u)du

))
dλ,

and a continuous periodic discrepancy is
∫ P
0

∆̃t
f (g)dt. Here fλ is a periodic extension of f

restricted to the segment [λ, λ + P ] and further normalized (i.e., divided by the value of
the integral of f over the segment [λ, λ+ P ]).

4. Push extrapolation model

In this section we briefly give main definitions for push extrapolation model.

Definition 4.1. Let pI and pII be the out-of stock and storage loss values. Let also t0 and
t1 be two integers such that t1 ≥ t0. Consider a function f : Z → R with an unbounded
from above distribution function F t0 with respect to t0. Let g : {t0, . . . , t1} → R≥0. Then
the [t0, t1]-push extrapolation loss of g with respect to f is

(6)

Λt0,t1
f (g) =

t1∑
t=t0

(
pI ·

〈
Rt0
f,g(t)

〉
+ pII ·

〈
−Rt0

f,g(t)
〉)

+

pII ·
+∞∑

t=t1+1

〈
Rt0
f,g(t1)−F

t1(t)
〉
.

Here the reminder function is defined iteratively

Rt0
f,g(t0) = g(t0)− f(t0);

Rt0
f,g(t+1) = 〈Rt0

f,g(t)〉+ g(t+ 1)− f(t+ 1), for t = t0+1, . . . , t1.

In other words

Rt0
f,g(t) = 〈· · · 〈〈g(t0)− f(t0)〉+ g(t0+1)− f(t0+1)〉 · · ·+ g(t−1)− f(t−1)〉+ g(t)− f(t)

Remark 4.2. The periodic δ-storage loss in seasonal pull and push models are related by
a simple formula:

(7) δt0f (g) = Λt0,t0
f (g).

Let us now give weighted analogs in seasonal push model.

Definition 4.3. Let (T, P, pI , pII , f) be an input data as above, let t1 ≥ t1 be nonnegative
integers. Let also fi be normalized periodic particles for i = 1, . . . , T − P + 1.

• Consider g : {t0, . . . , t1} → R≥0. Then the seasonal [t0, t1]-push extrapolation loss
of g at time t0 is as follows:

(8) Lt0,t1f (g) =
1

T − P + 1

T−P+1∑
i=1

(
Λt0,t1
fi

(g) · EP (fi)
)
.
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• Best seasonal [t0, t1]-push extrapolation are global minimizers of Lt0,t1f .

5. Weighted seasonal extrapolation

In Example 2 we have spotted one serious problem with the methods described above.
Some of the normalized periodic particles are noisy, they are rather far from an aver-
age normalized periodic particle. In particular a from common sense suggests that the
constant normalized periodic particle of type IV: (1/5, 1/5, 1/5, 1/5, 1/5) is noisy (see
Example 2, part 2). The total sum here is 5, it is not 14 as expected. So it has a noisy
contribution to every value of the period. In fact the noise of such normalized periodic
particles can be reduced by the denoising techniques described in this section.

We introduce weights to seasonal push and pull extrapolation models in Subsections 5.1
and 5.2 respectively. Further in Subsection 5.3 we discuss a particular normalized periodic
particle denoising which we use in our weighted seasonal pull and push extrapolation
models.

5.1. Weighted seasonal pull extrapolation. Let us give the following general defini-
tion.

Definition 5.1. Given an input data (T, P, p1, p2, f), integers t0 ≤ t1, and a finite or
infinite interval I such that [t0, t1] ⊂ I. Let µ = (µ1, . . . , µT−P+1) be a collection of
positive numbers. Consider a function g : I ∩ N→ [0, 1].

• Weighted periodic δ-discrepancy of g with respect to the input data is defined as
follows:

(9) ∆t0,µ
f (g) =

T−P+1∑
i=1

(
µi(f)δt0fi (g) · EP (fi)

)
.

• A weighted [t0, t1]-pull extrapolation loss at time t0 till time t1 is given by the
following expression

(10) Ωt0,t1,µ
f (g) =

t1∑
t=t0

∆t,µ
f (g).

• A best weighted seasonal [t0, t1]-pull extrapolation is a global minimizer of the func-
tional Ωt0,t1,µ

f (g).

Remark 5.2. Note that the standard seasonal pull extrapolation loss is the weighted sea-
sonal pull extrapolation loss with all weights being equal to 1

T−P+1
.

5.2. Weighted seasonal push extrapolation. Consider a similar general definition for
weighted seasonal push settings.

Definition 5.3. Given an input data (T, P, p1, p2, f), integers t0 ≤ t1. Let also fi be
normalized periodic particles with distributions functions Fi where i = 1, . . . , T−P+1.
Consider a collection of positive numbers µ = (µ1, . . . , µT−P+1). Fix a best P -periodic

seasonal approximation f̃ .
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• Let g : {t0, . . . , t1} → R≥0. Then the weighted seasonal [t0, t1]-push extrapolation
loss of g at time t0 is as follows:

Lt0,t1,µf (g) =
1

T − P + 1

T−P+1∑
i=1

µi(f)Λt0,t1
fi

(g),

• A best weighted seasonal [t0, t1]-push extrapolation is a global minimizer of Lµf .

5.3. Normalized periodic particle denoising. In both pull and push models we use
the following natural noise function.

Definition 5.4. Let f̃ be a best P -periodic seasonal approximation. Then the noise of a
P -periodic seasonal approximation g with respect to f̃ is defined as

Θf̃ (g) =
1

1 + (Df̃ (g))2
.

Remark 5.5. The set of all best P -periodic seasonal approximations is naturally ordered
lexicographically with respect to their sequence of values. So one can always pick the
smallest best P -periodic seasonal approximation with respect to lexicographical order.

Definition 5.6. Let (T, P, pI , pII , f) be an input data as above, let t0, t1 be nonneg-
ative integers satisfying t1 ≥ t0. Let also fi be normalized periodic particles for i =
1, . . . , T−P+1. Consider the smallest best P -periodic seasonal approximation f̃ with
respect to the lexicographical order. The denoising weight of the normalized periodic
particle fi is the following number

νi(f) =
Θf̃ (fi)∑T−P+1

j=0 Θf̃ (fj)
.

for i = 1, . . . , T−P+1.

Example 2, part 4 of 5. In our testing example the denoising weights are as follows

Function No. I II III IV
Weights νi 0.076 0.038 0.057 0.027

So the best weighted seasonal [21, 25]-pull extrapolation for one period is( 1

14
,

1

14
,

1

14
,
1

5
,
5

7

)
.

Here we have a correction at time 4:
Standard best approximation Best weighted [21, 25]-pull extrapolation

(
1

14
,

1

14
,

1

14
,
10

23
,
5

7

) (
1

14
,

1

14
,

1

14
,
1

5
,
5

7

)
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Remark 5.7. Assume that we have computed a best weighted seasonal [t0, t1]-push extrap-
olation g. Then one should consider

E · g : {t0, . . . , t1} → R≥0,

where E is an extrapolation of the expectation rate for the total sum for all observations
in the consequent P steps.

The function E can be computed by iteratively applying the above seasonality tech-
niques to the averaging function formed by EP (fi), i.e., to

(
EP (f1), . . . , EP (fT−P+1)

)
.

This function has a T−P+1 entry and a seasonal period P .

Example 2, part 5 of 5. In our example best weighted seasonal [21, 26]-pull ex-
trapolation is then ( 1

14
,

1

14
,

1

14
,
1

5
,
5

7
,

1

14

)
.

In order to get the final extrapolation we multiply the obtained function by the expecta-
tion E of a total amount of customers in during a period P (as mentioned in Remark 5.7).
In our case it is 14. Finally we have

(
1, 1, 1,

14

5
, 10, 1

)
.

Example 1, part 2 of 2. Let us finally conclude Example 1. On the following picture
the observed function is filled with grey. The best weighted seasonal pull extrapolation is
shown with thick line. We extend the best weighted seasonal pull extrapolation for the
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past history in order to examine the quality of extrapolation.

6. Properties of the weighted pull extrapolation

In this section we prove main statements on weighted pull extrapolation. In Subsec-
tion 6.1 we prove basic properties of weighted seasonal pull extrapolation loss. Further in
Subsection 6.2 we give a finite list which contains all the values for some best weighted
seasonal pull extrapolation. Finally in Subsection 6.3 we discuss the uniqueness of best
seasonal pull extrapolation.

6.1. Basic properties. Let us collect basic properties of weighted seasonal [t0, t1]-pull
extrapolation loss in the following proposition.

Proposition 6.1. For every integers t0 < t1 we have

i) Let g be a P -periodic seasonal approximation g. Then Ωt0,t0+P−1,µ
f = Dµf (g).

ii) Let I be an interval containing t0 and t1+P and let g : I ∩ N → [0, 1]. Then

Ωt0+P,t1+P,µ
f (g) = Ωt0,t1,µ

f (g);

iii) Let I be an interval containing t0 and t1+P and let g : I ∩ N → [0, 1]. Then

Ωt0,t1+P,µ
f (g) = Ωt0,t1,µ

f +Dµf (g).

Proof. Item (i): We have

Ωt0,t0+P,µ
f (g) =

t0+P−1,µ∑
t=t0

∆t,µ
f (g) =

P,µ∑
t=1

∆t,µ
f (g) = Dµf (g).

The second equality holds since both fi (for every admissible i) and g are periodic with
period P .

Item (ii) holds since both fi (for every admissible i) and g are periodic with period P .

Item (iii): From the above two items we have

Ωt0,t1+P,µ
f (g) = Ωt0,t1,µ

f (g) + Ωt1+1,t1+P,µ
f (g) = Ωt0,t1,µ

f (g) + Ω1,P,µ
f (g) = Ωt0,t1,µ

f +Dµf (g).
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This concludes the proof. �

6.2. On values of periodic discrepancy. The following theorem is one of the central
theorems in this article.

Theorem 6.2. Let (T, P, pI , pII , f) be an input data, let µ be a collection of positive
integers, and let t0 be an integer. Then there exists a P -periodic seasonal approximation
g that fulfills the following two conditions:

— the approximation g minimizes the weighted periodic δ-discrepancy functional ∆t0,µ
f .

— the value g(t0) is contained in the union of all values of F t0
i (t) for i = 1, . . . , T−P+1

and t = t0, . . . , t0+P−1.

We start with the following simple statement.

Lemma 6.3. The image of any best weighted P -periodic seasonal approximation is con-
tained in [0, 1].

Proof. It is clear that reducing the value to 1 or increasing negative value to 0 will reduce
the value of the corresponding weighted periodic δ-discrepancy. �

Proof of Theorem 6.2. The functional ∆t0,µ
f is piecewise linear when we vary g(t0) and fix

all the other values. In addition it is linear outside zeroes of Macaulay brackets involved
in ∆t0,µ

f , see Equation (9). Zeroes of such Macaulay brackets are either at fi(t0) or at

F t0
i (t) for some integer t > 0. Since be definition fi(t0) = F t0

i (t0), every non-linearity
point is at F t0

i (t) for some t ≥ 0.
Since ∆t0,µ

f is bounded from below by zero and piecewise linear, it has a global minimum

on the real line. Since ∆t0,µ
f is piecewise linear, one can choose the global minimum at the

non-linearity point. As we have shown above, all such points are contained in the set of
all values of F t0

i .
From the definition of normalized periodic particles we have

F t0
i (t0 + P − 1) = 1

for all admissible i. Hence all values of F t0 that are in the segment [0, 1] are attained
at points t0, . . . , t0+P−1 respectively. Now the statement of the theorem follows from
Lemma 6.3. �

Corollary 6.4. Let (T, P, pI , pII , f) be an input data, let µ be a collection of positive
integers, and let t0 ≤ t1 be a pair of integers. Then there exists a best weighted seasonal
[t0, t1]-pull extrapolation g such that for every admissible t̂ the value g(t̂) is contained in

the union of all values of F t̂
i (t) for i = 1, . . . , T−P+1 and for t = t̂, . . . , t̂+P−1.

Proof. By definition we have

Ωt0,t1,µ
f =

t1∑
t=t0

∆t,µ
f .

For every integer t2 in the segment [t0, t1] the value ∆t,µ
f (g) at t2 depends only on g(t2)

and does not depend on the other values of g in the period. Hence g minimizes Ωt0,t1,µ
f if
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and only if it minimizes every summand ∆t,µ
f in the sum. This reduces Corollary 6.4 to

Theorem 6.2. �

6.3. On uniqueness of a weighted pull extrapolation. We conclude this section with
the following observation.

Remark 6.5. A best weighted seasonal [t0, t1]-pull extrapolation is uniquely defined if( T−P+1∑
i=1

aiµiEP (fi)

)
pI +

( T−P+1∑
i=1

biµiEP (fi)

)
pII 6= 0

for all choices ai = 0, 1 and bi = −P, . . . , P . This directly follows from Equation 1.
In the case of unit weights and unit EP ’s, the condition of uniqueness is that apI+bpII 6=

0 for all non-negative integers a, b, such that |a| ≤ T −P + 1 and |b| ≤ (T −P + 1) ·P . In
particular if pI/pII is irrational then the best weighted seasonal [t0, t1]-pull extrapolation
is uniquely defined in such settings.

7. Detection of best weighted seasonal [t0, t1]-push extrapolation

Note that the push extrapolation loss functional Λt0,t1
f is a piecewise linear function

where g(t0), . . . , g(t1) are considered as variables. Global minima of such functions are
obtained at points, where at least t1−t0+2 different linear domains come together. This
gives t1−t0+1 linear equations on the variable values g(t0), . . . , g(t1).

Theorem 7.1. There exists a minimizer (i.e., a best weighted seasonal [t0, t1]-push extrapolation)
of Lt0,t1,µf which is described as an intersection point of t1−t0+1 planes of the following
family:

(11)
∑
t∈I

g(t) =
∑
t∈I

fi(t) + F t1
i (t̃)

where I is an arbitrary subset of the set {t0, . . . , t1}, for the choice of normalized periodic
particles we have 1 ≤ i ≤ T−P+1, and the integer value t̃ satisfies t1− 1 ≤ t̃ ≤ t1+P−1.
(Recall that F t1

i (t1−1) = 0.)

Proof. Since Lt0,t1,µf is piecewise linear, its minimizer is at one if the vertices of Lt0,t1,µf , i.e.,

at intersection of t1−t0+2 hyperplanes of nonlinearity of Lt0,t1,µf . Each of such hyperplanes

is in fact a hyperplane of non-linearity for Λt0,t1
fi

for some i and it is defined by one of
Equations (11).

There are two type of hyperplanes where Λt0,t1
f is nonlinear. The hyperplanes of the

first type are defined by
Rt0
f,g(t) = 0.

The hyperplanes of the second type are defined by

Rt0
f,g(t)− F

t1
i (t̃) = 0.

Similarly to the proof of Theorem 6.2, the time t̃ can be chosen from the set

{t1−1, . . . , t1+P−1}.
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Now both types are of the form of Equation (11). This concludes the proof. �
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