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Abstract 

Porous metals are highly efficient media for active cooling and thermal management. 

However, the working fluid requires high pumping power to flow through the porous metals.  

This paper investigated the effect of structural characteristics (porosity, pore size and Cu 

particle size) on the heat transfer performance of porous Cu manufactured by Lost Carbonate 

Sintering (LCS). The heat transfer coefficient and pressure drop of porous Cu samples with 

porosity from 0.48 to 0.78, pore size from 250-1500 µm and Cu particle size from 75 to 841 

µm were measured under the one-dimensional forced convection condition using water. For 

all the samples with different pore sizes and Cu particle sizes, the optimum heat transfer 

coefficient was observed at a porosity between 0.6 and 0.7 and the pressure drop decreased 

with increasing porosity.  The effect of pore size on heat transfer coefficient was not 

pronounced while pressure drop decreased with decreasing pore size. Samples with large Cu 

particles (841 µm) had higher optimum heat transfer coefficients and lower pressure drops. 

The coefficient of performance (CoP), which can be used to describe the overall heat transfer 

performance, increased with increasing porosity, decreasing pore size and increasing Cu 

particle size. 
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Introduction 

Porous metals have excellent properties and have attracted much attention in both academia 

and industry in the last few decades [1-3]. Open-cell porous metals, in particular, are 

competitive substitutes for traditional materials, such as microchannels, in thermal 

management and active cooling. Open-cell porous Cu has been used in cooling systems for 

some electronic devices due to its good heat transfer performance, i.e., high heat transfer 

coefficient and reasonable permeability [4-6]. 

Forced convection cooling is an important active cooling method and has been used in many 

industrial and personal electronic products. Here, fluid coolant is blown or pumped to flow 

through heat sinks, such as microchannels and porous metals, to remove the heat [7]. Porous 

metals can have a higher heat transfer coefficient than their major competitor microchannels. 

However, porous metals usually cause a higher pressure drop than microchannels so they 

require a higher pumping power to move the fluid through them. Therefore, both heat transfer 

coefficient and pressure drop have to be considered in assessing their heat transfer 

performance. 

The Lost Carbonate Sintering (LCS) process can produce open-cell porous metals with a 

wide range of porosity (40-85%), pore size (75-1500 µm) and metal matrix (such as Cu, Fe, 

Ti and Ni) [8]. The LCS porous metals can provide a high internal surface area, thermal 

conductivity and many other interesting thermal properties. They are promising candidate 

materials for heat transfer applications [9, 10]. A main problem impeding their wider 

applications is their large flow resistance which leads to a high pumping power required to 

move the cooling fluid through. 

This paper studies the effects of porosity, pore size and Cu particle size on heat transfer 

coefficient and pressure drop of LCS porous Cu. 

Experimental 

Twenty three porous Cu samples with different porosities, pore sizes and Cu particle sizes 

were fabricated by the LCS process, details of which were described in [8]. The raw materials 

were commercially pure (>99.9%) Cu powders, with three different particle sizes of 75 µm, 

425 µm and 841 µm and a food grade K2CO3 powder, which was sieved into four particle 

size ranges: 250-425 µm, 425-710 µm, 710-1000 µm and 1000-1500 µm. Different 



combinations of K2CO3 and Cu powders were mixed at a pre-specified volume ratio 

according to the target porosity and then compacted into a preform at 200 MPa. For all the 

samples, the preform was first pre-sintered at 850ºC for half an hour. The samples were then 

sintered for 1 hour at 950ºC, 1000ºC and 1050ºC for Cu particle sizes of 75 µm, 425 µm and 

841 µm, respectively. 

Fig. 1 is a schematic diagram of the experimental apparatus for pressure drop and heat 

transfer coefficient measurements. All the samples had length of 30 mm, width of 20 mm and 

height of 5 mm and were placed in the flow channel, 20 mm wide and 5 mm high, for the 

measurements. The coolant of water flowed in success through a flowmeter to measure the 

flow rate, a J-type thermocouple to measure the inlet water temperature (Tw), a pressure 

transducer to measure the inlet pressure (Pin), the porous Cu sample, and another pressure 

transducer to measure the outlet pressure (Pout). The pressure drop, ΔP, can be obtained from 

the two pressure transducers by: 

∆𝑃 = 𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡                                                                                                                        (1) 

For heat transfer coefficient measurements, the heat flow was produced by the heat cartridges 

imbedded in a copper heat block. The lower part of the heat block had the same cross-section 

as the porous Cu sample, i.e., length of 30 mm and width of 20 mm, and was pressed tightly 

against the sample. The heat transfer coefficient, h, can be obtained by Newton’s law: 

ℎ =
𝑄

𝐴(𝑇𝑏−𝑇𝑤)
                                                                                                                              (2) 

where Q is the heat flow to the coolant, A is the interfacial area between the heat block and 

the sample, Tb is the temperature of the bottom surface of the heat block and Tw is the 

temperature of the water before entering the sample. 

The heat flow to the coolant can be calculated by the temperature gradient of the lower part 

of the copper heating block: 

𝑄 = 𝜆𝐴
𝑇𝑡−𝑇𝑏

𝑑
                                                                                                                             (3) 

where λ is the thermal conductivity of copper (391 W/mK), Tt and Tb are the temperatures of 

the top and bottom spots, respectively, of the heating block measured by two T-type 

thermocouples, and d is the distance between these two spots (60 mm). 



Combining Eq. 2 and Eq. 3, the heat transfer coefficient can be determined by: 

ℎ =
𝜆(𝑇𝑡−𝑇𝑏)

𝑑(𝑇𝑏−𝑇𝑤)
                                                                                                                              (4) 

 

Fig. 1 Schematic diagram of the experimental apparatus for pressure drop and heat transfer 

coefficient measurements 
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The samples with the porosity ranging from 0.48 to 0.78, pore size from 250-1500 µm and 

Cu particle size from 75 to 841 µm were tested in this study at a flow rate of 2.0 L/min. The 

effects of these structural characteristics on heat transfer coefficient were investigated and the 

results are summarised in Fig. 2. For all the samples, the heat transfer coefficients are in the 

range of 10-25 kW/m2K. 

Porosity has a significant effect on the heat transfer coefficient. The heat transfer coefficient 

first increases with porosity until reaching a peak value (around 24 kW/m2K) at a porosity 

around 0.6 to 0.7 and then decreases with porosity. The effect of porosity on the heat transfer 

performance can be analysed by considering both conduction and convection. For a sample 

with a high porosity, the low volume of copper matrix causes low conduction of heat from 

the heat plate [9, 11], while there is sufficient convective heat transfer through the coolant. 

The overall heat transfer coefficient is therefore low due to the low conductive heat transfer. 

On the contrary, for a sample with a low porosity, the conduction of heat is increased because 

of the high volume of copper matrix. However, the convective heat transfer is reduced 

because less open channels for the coolant to flow through and less interfacial area between 

the solid matrix and the coolant. The optimum porosities, at which there is a good balance 

between conduction and convection, are 0.6, 0.63 and 0.69 for Cu particle sizes of 841 µm, 

425 µm and 75 µm, respectively. At the optimum porosities at 0.6 to 0.7, the heat transfers by 

conduction and convection are both strong and the highest heat transfer coefficient can be 

obtained. 

The effect of pore size on the heat transfer coefficient is not significant. For a given porosity 

of 0.68, for example, the heat transfer coefficients for the samples, with the same Cu particle 

size of 75 µm, and different pore sizes of 250-425 µm, 425-710 µm, 710-1000 µm and 1000-

1500 µm, are 22.9, 24.7, 22.0 and 23.6 kW/m2K, respectively. Compared with porosity, the 

effect of pore size is negligible. 

The effect of Cu particle size on the heat transfer coefficient is complex. For samples with the 

same pore size of 710-1000 µm but different Cu particle sizes, the heat transfer coefficients 

are in the ranges of 13.1-22.0 kW/m2K, 15.9-25.1 kW/m2K and 22.5-25.4 kW/m2K for Cu 

particle sizes of 75 µm, 425 µm and 841 µm, respectively. When the porosity is around 0.68, 

the effect of particle size on heat transfer coefficient is not significant. At a low porosity 

(<0.65), however, the samples with the large Cu particle size has greater heat transfer 

coefficients than those with the small Cu particle size (75 µm). An especially interesting 



trend is that the porosity corresponding to the peak heat transfer coefficient decreases with Cu 

particle size and the peak heat transfer coefficient increases slightly with Cu particle size. 

 

Fig. 2, Variations of heat transfer coefficient as a function of porosity, pore size and Cu 

particle size at a flow rate of 2.0 L/min 

Pressure drop 

The samples used in the heat transfer measurements were subjected to the pressure drop 

measurements at a flow rate of 2.0 L/min. Fig. 3 shows the variations of pressure drop as a 

function of porosity, pore size and Cu particle size.  

The pressure drop decreases with porosity for all the samples with different Cu particle sizes 

and pore sizes. At a high porosity, there is more space for the fluid flow and the chance of a 

pore being connected to other pores is also increased. As a consequence, the working fluid 

can flow through the sample more easily and the pressure drop is decreased. Low porosity 

means less space for fluid flow, the pores being interlinked by fewer windows and the fluid 

pathways in the porous metal becoming easily blocked [12, 13], leading to greater pressure 

drop [14]. The increasing number of interlinked windows for high porosity has been 

confirmed to result in low tortuosity of fluid pathways in the porous metal [15]. The low 

tortuosity also leads to low fluid resistance and thus low pressure drop. 
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The pressure drop increases with pore size for the samples with the same Cu particle size of 

75 µm. This is because the tortuosity of the fluid pathways in the porous Cu sample increases 

with pore size due to the increased chances of pores being connected to each other [15]. Low 

tortuosity means that the working fluid can flow through the sample more easily. Therefore, 

the samples with small pore sizes have low pressure drops. 

The pressure drop of the porous Cu samples decreases with the Cu particle size, mainly 

because larger Cu particles have larger interstices between them. The water can flow through 

the sample not only through the primary pores produced by the K2CO3 particles, but also 

through the interstices between the Cu particles, leading to a decreased pressure drop. 

 

Fig. 3, Variations of pressure drop as a function of porosity, pore size and Cu particle size at 

a flow rate of 2.0 L/min 

 

Coefficient of performance 

Both heat transfer coefficient and pressure drop are very important for thermal applications. 

However, good heat transfer coefficient is often associated with high pressure drop and vice 

versa. The overall performance of porous metals for heat exchange applications, such as 
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cooling systems and heat pumps, can be described by the coefficient of performance (CoP) 

[16,17], which is the ratio of the heat flux and the pumping power and can be determined by: 

𝐶𝑜𝑃 =
𝑞

𝑃𝑝
=

ℎ𝐴∆𝑇

∆𝑃𝑄
                                                                                                                    (5) 

where q is the heat flux transferred by the working fluid through the porous metal and Pp is 

the pumping power for moving the working fluid. The heat flux and pumping power can be 

calculated by the numerator and denominator terms on the right hand side of Eq. 5, 

respectively.  Here, h is heat transfer coefficient, A (6 cm2 in this work) is the interfacial area 

between the heat block and the porous Cu sample, ΔT is the difference in temperature 

between the solid surface and the cooling fluid, ΔP is pressure drop and Q is flow rate (2.0 

L/min in this work).  

The comparison of performance between different samples needs to be conducted under the 

same temperature difference between the component to be cooled and the coolant. The 

operating temperature of a commercial electronic part cannot exceed 70°C [18] and the most 

common coolant is water at room temperature of 25°C. The maximum difference in 

temperature between the solid surface of electronic part and the cooling water is therefore 

less than 45°C. For comparison purposes, ΔT is fixed as 45°C in this work. The coefficient of 

performance of the porous Cu sample in this case, i.e., when the cooling fluid is 45°C cooler 

than the solid surface, is designated as CoP45. 

Fig. 4 shows the variations of CoP45 as a function of porosity, pore size and Cu particle size. 

In most cases, the coefficient of performance increases with porosity. Because pressure drop 

decreases and heat transfer coefficient increases with porosity up to 0.7 (Figs. 2 and 3), the 

coefficient of performance increases with porosity. Although heat transfer coefficient 

becomes lower when the porosity is higher than 0.7 (Fig. 2), the significant decrease in 

pressure drop can compensate the reduction in heat transfer coefficient. The coefficient of 

performance still increases with porosity.  An exception occurred in the sample with pore size 

of 250-425 µm and Cu particle size of 75 µm, where CoP45 has a peak value at the porosity 

of 0.68. This is because there is a significant decrease in heat transfer coefficient at high 

porosity (Fig. 2), which outweighs the decrease in pressure drop. 

The coefficient of performance increases with pore size in general, although the effect of pore 

size on overall heat transfer performance is not as significant as porosity. The samples with a 



porosity of around 0.68 and the same Cu particle size of 75 µm have CoP45 values of 63, 95, 

129 and 282 for pore sizes of 1000-1500 µm, 710-1000 µm, 425-710 µm and 250-425 µm, 

respectively. This is because the heat transfer coefficients of these samples are very similar 

(Fig. 2), but the pressure drop decreases with pore size. 

The Cu particle size has a large effect on overall heat transfer performance. The CoP45 of the 

porous Cu samples with the same pore size of 710-1000 µm but different Cu particle size of 

75 µm, 425 µm and 841 µm are in the ranges of 35-144, 156-729 and 301-908, respectively, 

in the porosity range studied in this work. Take the samples with the porosity of 0.6 as an 

example, the CoP45 values for the Cu particle sizes of 75 µm and 841 µm are 35 and 832, 

respectively, with a difference nearly 24 times. The rapid improvement in the overall heat 

transfer performance with Cu particle size is due to the fact that larger Cu particle size results 

in higher heat transfer coefficient and lower pressure drop as shown in Figs. 2 and 3. 

 

 

Fig. 4, Variations of coefficient of performance (CoP45) as a function of porosity, pore size 

and Cu particle size at a flow rate of 2.0 L/min 
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The heat transfer coefficient and pressure drop of porous Cu samples produced by the LCS 

process with different porosities, pore sizes and Cu particle sizes have been investigated. The 

heat transfer coefficient is influenced by both conduction and convection. The optimum 

porosity to give the highest heat transfer coefficient is obtained at 0.6-0.7 because of a 

balance between conduction and convection. The pressure drop decreases with porosity. The 

effect of pore size on heat transfer coefficient is not pronounced while pressure drop 

decreases with decreasing pore size. The overall heat transfer performance can be described 

by the coefficient of performance (CoP). In general, CoP increases with increasing porosity, 

decreasing pore size and increasing Cu particle size. The effect of Cu particle size is 

especially large. Larger Cu particle size results in higher heat transfer coefficient and lower 

pressure drop and therefore CoP. 
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