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Abstract

Many scientific and engineering problems require to perform Bayesian inferences for
unknowns of infinite dimension. In such problems, many standard Markov Chain
Monte Carlo (MCMC) algorithms become arbitrary slow under the mesh refinement,
which is referred to as being dimension dependent. To this end, a family of dimen-
sional independent MCMC algorithms, known as the preconditioned Crank-Nicolson
(pCN) methods, were proposed to sample the infinite dimensional parameters. In
this work we develop an adaptive version of the pCN algorithm, where the covari-
ance operator of the proposal distribution is adjusted based on sampling history to
improve the simulation efficiency. We show that the proposed algorithm satisfies an
important ergodicity condition under some mild assumptions. Finally we provide
numerical examples to demonstrate the performance of the proposed method.
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1 Introduction

In many real-world inverse problems, the unknowns that one wants to es-
timate are functions of space and/or time. Solving such problems with the
Bayesian approaches [11,23], often require to perform Markov Chain Monte
Carlo (MCMC) simulations in function spaces. Namely one first represents
the unknown function with a finite-dimensional parametrization, for exam-
ple, by discretizing the function on a pre-determined mesh grid, and then
performs MCMC simulations in the resulting finite dimensional space. It
has been known that standard MCMC algorithms, such as the random walk
Metropolis-Hastings (RWMH), can become arbitrarily slow as the discretiza-
tion mesh of the unknown is refined [19,21,3,15]. That is, the mixing time
of an algorithm can increase to infinity as the dimension of the discretized
parameter approaches to infinity, and in this case the algorithm is said to be
dimension-dependent. To this end, a very interesting line of research is to de-
velop dimension-independent MCMC algorithms by requiring the algorithms
to be well-defined in the function spaces. In particular, a family of dimension-
independent MCMC algorithms, known as the preconditioned Crank Nicolson
(pCN) algorithms, were presented in [6] by constructing a Crank-Nicolson dis-
cretization of a stochastic partial differential equation (SPDE) that preserves
the reference measure.

The sampling efficiency of the pCN algorithm can be improved by incorpo-
rating the data information in the proposal design, and a popular way to
achieve this goal is the adaptive MCMC methods. Simply speaking, the adap-
tive MCMC algorithms improve the proposal based on the sampling history
from the targeting distribution (c.f. [1,2,20] and the references therein) as
the iterations proceed. A major advantage of the adaptive methods is that
they only require the ability to evaluate the likelihood functions, which makes
them particularly convenient for problems with black-box models. In a recent
work [9], we develop an adaptive independence sampler MCMC algorithm for
the infinite dimensional problems. A main difficulty of independence sampler
MCMC algorithms is that the efficiency of such algorithms depends critically
on the ability of the chosen proposal, often in a parametrized form, to approx-
imate the posterior in the entire state space, and the algorithm may perform
very poorly if the proposal can not well approximate the posterior distribution.
In this respect, random walk based algorithms may be more convenient to use,
as they do not require such a “global proposal”. In this work, we present an
adaptive random walk MCMC based on the preconditioned Crank-Nicolson
(pCN) algorithm in [6]. Specifically, we adaptively adjust the covariance op-
erator of the proposal to improve the sampling efficiency. We parametrize
the covariance operator in a specific form that has been used in [17,9], and
we provide an algorithm that can efficiently update the parameter values as
the iteration proceeds. By design, the acceptance probability of our algorithm
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is well defined and thus the algorithm is dimension independent. Moreover,
we can show that the algorithm satisfies some important ergodicity condi-
tions in the infinite dimensional setting. Note that, another existing adaptive
MCMC algorithm for infinite dimensional problems is the dimension indepen-
dent adaptive Metropolis (DIAM) proposed in [5]. The DIAM is also based
on the pCN algorithm, but our method preserves an important feature of the
standard pCN algorithm, i.e., the acceptance probability being independent
on the proposal distribution, while the DIAM method does not.

We note that, an alternative class of methods improve the sampling efficiency
by guiding the proposal with the local derivative information of the likeli-
hood function. Such derivative based methods include: the stochastic Newton
MCMC [14,16], the Riemann manifold Hamiltonian MC [4], the operator-
weighted proposal method [13], the dimension-independent likelihood-informed
MCMC [7], the generalized pCN algorithm [22], and so on. We reinstate that
in this work we are focused on the type of problems where the derivative in-
formation is difficult to obtain, and thus those derivative based methods are
not in our scope.

The rest of the paper is organized as the following. In section 2 we describe
the setup of infinite dimensional inference problems and present our adaptive
algorithm in detail. In section 3 we provide several numerical examples to
demonstrate the performance of the proposed algorithm. Finally we offer some
concluding remarks in section 4.

2 The adaptive pCN algorithm

2.1 Bayesian inferences in function spaces

We present the standard setup of the Bayesian inverse problem following [23].
We consider a separable Hilbert space X with inner product 〈·, ·〉X . Our goal
is to estimate the unknown u ∈ X from data y ∈ Y where Y is the data space
and y is related to u via a likelihood function exp(−Φy(u)). In the Bayesian
inference we assume that the prior µ0 of u, is a (without loss of generality) zero-
mean Gaussian measure defined on X with covariance operator C 0, i.e. µ0 =
N(0, C0). Note that C0 is symmetric positive and of trace class. The range of

C
1
2
0 ,

E = {u = C
1
2
0 x |x ∈ X} ⊂ X,

which is a Hilbert space equipped with inner product [8],

〈·, ·〉E = 〈C−
1
2

0 ·, C
− 1

2
0 ·〉X ,
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is called the Cameron-Martin space of measure µ0. In this setting, the posterior
measure µy of u conditional on data y is provided by the Radon-Nikodym
derivative:

dµy

dµ0

(u) =
1

Z
exp(−Φy(u)), (2.1)

with Z being a normalization constant, which can be interpreted as the Bayes’
rule in the infinite dimensional setting. In what follows, without causing any
ambiguity, we shall drop the superscript y in Φy and µy for simplicity, while
keeping in mind that these items depend on the data y. For the inference
problem to be well-posed, one typically requires the functional Φ to satisfy the
Assumptions (6.1) in [6]. It is known that there exists a complete orthonormal
basis {ej}j∈N on X and a sequence of non-negative numbers {αj}j∈N such that
C0ej = αjej and

∑∞
j=1 αj <∞, i.e., {ej}k∈N and {αj}k∈N being the eigenfunc-

tions and eigenvalues of C0 respectively ([8], Chapter 1). For convenience’s
sake, we assume that the eigenvalues are in a descending order: αj ≥ αj+1 for
any j ∈ N. {ej}∞j=1 are known as the Karhunen-Loève (KL) modes associated
with N (0, C0).

2.2 The Crank-Nicolson algorithms

We start by briefly reviewing the family of Crank-Nicolson (CN) algorithms
for infinite dimensional Bayesian inferences, developed in [6]. Simply speaking
the algorithms are based on the stochastic partial differential equation (SPDE)

du

ds
= −KLu+

√
2K

db

ds
, (2.2)

where L = C−10 is the precision operator for µ0, K is a positive operator, and b
is a Brownian motion in X with covariance operator the identity. The proposal
is then derived by applying the CN discretization to the SPDE (2.2), yielding,

v = u− 1

2
δKL(u+ v) +

√
2K δξ0, (2.3)

for a white noise ξ0 and δ ∈ (0, 2). In [6], two choices of K are proposed,
resulting in two different algorithms. First, one can choose K = I , the identity,
obtaining:

(2C + δI )v = (2C − δI )u+
√

8δw,

where w ∼ N (0, C0), which is known as the plain CN algorithm. Alternatively
one can choose K = C0, resulting in the pCN proposal:

v = (1− β2)
1
2u+ βw, (2.4)

where

β =

√
8δ

2 + δ
.

4



It is easy to see that β ∈ [0, 1]. In both CN and pCN algorithms, the acceptance
probability is

a(v, u) = min{1, exp Φ(u)− Φ(v)}. (2.5)

2.3 The adaptive algorithm

To derive the new algorithm, we rewrite the proposal Eq. (2.3) as

v =
(I − 1

2
δKL)

(I + 1
2
δKL)

u+

√
2δK

(I + 1
2
δKL)

ξ0, (2.6)

Now we do a substitution. Namely we let

√
2δK

(I + 1
2
δKL)

= β
√

B, (2.7)

and by some simply calculation, we can verify that

(I − 1
2
δKL)

(I + 1
2
δKL)

=
√

(I − β2BL). (2.8)

Substitute Eqs. (2.7) and (2.8) into Eq. (2.6), and we obtain a new proposal:

v = (I − β2BL)
1
2u+ βw (2.9)

where w ∼ N (0,B). This proposal can be understood as a special case of
the generalized pCN or the operator weighted proposal. The major difference
is that in those two methods, the operator is determined by the derivative
information of the likelihood function, while in our algorithm, it is determined
with an adaptive method. Before discussing the details of how to determine
the operator B, we first show that under mild conditions, the proposal (2.9)
results in well-defined acceptance probability in a function space:

Proposition 1 Suppose operator B is symmetric positive and of trace class.
Let q(u, ·) be the proposal distribution associated to Eq. (2.9). Define measures
η(du, dv) = q(u, dv)µ(du) and η⊥(du, dv) = q(v, du)µ(dv) on X × X. If B
commutes with C0, η⊥ is absolutely continuous with respect to η, and

dη⊥

dη
(u, v) = exp(Φ(u)− Φ(v)).

PROOF. Define η0(du, dv) = q(u, dv)µ0(du). The measure η0 is Gaussian.
From B and C0 are commutable, we have

Eη0v ⊗ v = (I − β2BL)C0 + β2B = C0 = Eη0u⊗ u.
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Then η0 is symmetric in u, v. Now

η(du, dv) = q(u, dv)µ(du), η0(du, dv) = q(u, dv)µ0(du),

and µ,µ0 are equivalent. It follows that η and η0 are equivalent and

dη

dη0
(u, v) =

dµ

dµ0

(u) =
1

Z
exp(−Φ(u)).

Since η0 is symmetric in u, v we also have that η⊥ and η0 are equivalent and
that

dη⊥

dη0
(u, v) =

1

Z
exp(−Φ(v)).

Since equivalence of measures is transitive if follows that η and η⊥ are equiv-
alent and

dη⊥

dη
(u, v) = exp[Φ(u)− Φ(v)].

It follows immediately from the detailed balance condition that the associated
acceptance probability of proposal (2.9) is also given by Eq. (2.5).

Now we discuss how to specify the operator B, and we start with assuming B
an appropriate parametrized form. Note that an essential condition in Propo-
sition 2.3 is that B must commute with C0. To satisfy this condition, it is
convenient to design a B that has common eigenfunctions with C0. Namely,
we write B in the form of

B · =
∞∑
j=1

λj〈ej, ·〉ej, (2.10)

with λj being the coefficients. It is easy to see that B is a symmetric operator
with eigenvalue-eigenfunction pair {λj, ej}∞j=1, which implies that B and C0

commute.

A well-adopted rule in designing efficient MCMC algorithms is that the pro-
posal covariance should be close to the covariance operator of the poste-
rior [21,10]. Now suppose the posterior covariance is C , and one can determine
the proposal covariance B by solving

min
{λj}∞λ=1

‖B − C‖HS, (2.11)

where ‖ ·‖HS is the Hilbert-Schmidt norm defined as ‖A‖2HS = Tr(A∗A) where
A is any bounded operator on X and A∗ is the adjoint of A. By some basic
algebra, we can show that the optimal solution of Eq (2.11) is

λj = 〈Cej, ej〉−1
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for j = 1...∞. Since C is the posterior covariance, for any v and v′ ∈ X, we
have [8],

〈Cv, v′〉 =
∫
〈v, u−m〉〈v′, u−m〉µ(du), (2.12)

where m is the mean of µ. Using Eq. (2.12), we can derive that

λj =
∫

(xj − uj)2µ(du), (2.13)

where xj = 〈m, ej〉 and uj = 〈u, ej〉 for j = 1...∞.

In practice, the posterior covariance C is not directly available, and so here
we determine the operator B with an adaptive MCMC algorithm. Simply
speaking, the adaptive algorithm starts with an initial guess of B and then
adaptively updates the B based on the sample history. Estimating all eigenval-
ues from the sample history is not practical due to the finite sample size. Here
we make a finite-dimension reduction: namely, only the first J eigenvalues are
given in the form of Eq. (2.13) which is further estimated from the sample
history and the rest of them are taken to be fixed. In particular we let

λj =


∫

(xj − uj)2µ(du) for j ≤ J

αj for j > J.
(2.14)

The argument that we compute λj as is in Eq. (2.14) may become more clear
if we look at the projections of the proposal onto each eigenmodes:

〈v, ej〉 =

(1− β2λi/αi)
1
2uj + βwj where wj ∼ N (0, λj) for j ≤ J

(1− β2)
1
2uj + βwj where wj ∼ N (0, αj) for j > J.

(2.15)
Eq. (2.15) shows the basic scheme of the algorithm: it performs an adaptive
pCN for the KL modes j ≤ J with the proposal covariance adapted to approx-
imate that of the posterior, and a standard pCN for all j > J . The intuition
behind our algorithm is based on the assumption that the (finite-resolution)
data is only informative about a finite number of KL modes of the prior. In
particular, the data can not provide information about the modes that are
highly oscillating (associated with small eigenvalues) and for those modes,
the posterior is approximately the prior. In this case, for the modes that are
informed by the data, we shall adjust the eigenvalues to approximate the pos-
terior covariance; for those that are not, the best strategy is to simply use the
covariance of the prior (which is also the posterior).

Now we discuss how to update the values of λj from posterior samples for i =
1...J . To this end, suppose we have a set of posterior samples {un}ni=0, and the
values of parameters λj are estimated using the sample average approximation
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of Eq. (2.13):

xnj =
1

n+ 1

n∑
i=0

〈ui, ej〉, (2.16a)

snj =
n∑
i=0

(unj )2, (2.16b)

λnj =
1

n+ 1

n∑
i=0

(xnj − uij)2 + ε2, (2.16c)

for j = 1...J . Here ε is a small constant, introduced to ensure the stability of
the algorithm, i.e., to keep λnj from becoming arbitrarily small. For efficiency’s
sake, we can rewrite Eq (2.16) in a recursive form

xnj =
n

n+ 1
xn−1j +

1

n+ 1
〈un, ej〉, (2.17a)

snj = sn−1j + (unj )2, (2.17b)

λnj =
1

n+ 1
snj − (xnj )2, (2.17c)

for j = 1...J and n > 0. Note here that, in principle the estimated λnj from
samples can be arbitrarily large, which causes issues as (I − β2BL) must not
be negative. Thus we let λnj = min{λnj , αj} for j = 1...J , and as a result
λj ≤ αj for j = 1...J . It is easy to see that the operator B resulting from
{λnj }Jj=1 is symmetric positive and of trace class. Finally we note that, it is
not robust to estimate the parameter values with a very small number of
samples, and to address the issue, we first draw a certain number of samples
with a standard pCN algorithm before starting the adaptation. We describe
the complete adaptive pCN (ApCN) algorithm in Algorithm 1.

Finally an important issue in the implementation is to determine the number
of adapted eigenvalues J . Here we propose to let J = min{j ∈ N} such that,

∑j
i=1 αj∑∞
i=1 αi

> ρ,

where 0 < ρ < 1 is a prescribed number (e.g. ρ = 0.99).

2.4 Ergodicity analysis

It is well known that, the adaptation may destroy the ergodicity of the algo-
rithm, and as a result the chain constructed may not converge to the target
distribution. It has been suggested by Roberts and Rosenthal [20] that, an
adaptive MCMC algorithm has the correct asymptotic convergence, provided
that it satisfies the Diminishing Adaptation (DA) condition, which, loosely
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Algorithm 1 The adaptive pCN algorithm

1: Initialize u0 ∈ S;
2: for n = 0 to N ′ do
3: Propose v using Eq (2.4);
4: Draw θ ∼ U [0, 1]
5: Let a := min{1, exp[Φ(un)− Φ(v)]};
6: if θ ≤ a then
7: un+1 = v;
8: else
9: un+1 = un;

10: end if
11: end for
12: Compute {xN ′j , sN

′
j , λ

N ′
j }Jj=1 using Eq. (2.16) and samples {ui}N ′i=1;

13: for j = 1 to J do
14: λj = min{λj, αj};
15: end for
16: for n = N ′ to N do
17: Compute B from Eqs. (2.10) with {λnj }Jj=1;
18: Propose v using Eq (2.9);
19: Draw θ ∼ U [0, 1]
20: Let a := min{1, exp[Φ(un)− Φ(v)]};
21: if θ ≤ a then
22: un+1 = v;
23: else
24: un+1 = un;
25: end if
26: Compute {xn+1

j , sn+1
j , λn+1

j }Jj=1 using Eqs. (2.17);
27: end for

speaking, requires the transition probabilities to converge as the iteration pro-
ceeds, and the Containment condition. As the latter is regarded as merely
a technical condition which is satisfied for virtually all reasonable adaptive
schemes [20], it often suffices to prove an adaptive algorithm satisfies the DA
condition. Next we show that the proposed ApCN algorithm satisfies the DA
condition under a minor modification. Namely, we change Eq. (2.1) to be

dµy

dµ0

(u) =


1
Z

exp(−Φ(z)), ‖u‖X ≤ R

0, ‖u‖X > R,
(2.18)

where R is a prescribed positive constant. We want emphasize here that, just
like the work [10], the purpose of the modification is to simplify our proof
here, and practically speaking, its impact on the inference results should be
negligible, provided that R is taken to be sufficiently large.

Let us now set up some notations. Assume that Bn(u0, u1, · · · , un−2, u) is the
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operator B at iteration n computed with u0, u1, · · · , un−2, u through Algorithm
1. For simplicity, we define

Bn,ζn−2(u) = Bn(u0, u1, · · · , un−2, u), where ζn−2 = (u0, u1, · · · , un−2),

and let {λn,i}∞i=1 be the eigenvalues of Bn,ζn−2(u). We define qn,ζn−2(u; dv) to
be the proposal distribution associated to

v = (I − β2Bn(ζn−2, u)L)
1
2u+ βw

where w ∼ N(0,Bn,ζn−2(u)), and

Qn,ζn−2(u, dv) = a(u, v)qn,ζn−2(u, dv) + δu(dv)(1−
∫
a(u, z)qn,ζn−2(u, dz))

where a(·, ·) is given by Eq. (2.5). It can be verified that

σn,i = (1− β2λn,i
αi

)
1
2 , (2.19)

are the eigenvalues of (I − β2Bn,ζn−2(u)L)
1
2 . We then have the following theo-

rem:

Theorem 2 (DA condition) There is a fixed positive constant γ such that

sup
u∈X
‖Qn,ζn−2(u, ·)−Qn+1,ζn−1(u, ·)‖ ≤

γ

n

for any ζn−1 and ζn−2 such that ζn−1 is a direct continuation of ζn−2. Here ‖·‖
is the total variation norm.

We provide the proof of the theorem in the Appendix.

3 Numerical examples

3.1 An ODE example

Our first example is a simple inverse problem where the forward model is
governed by an ordinary differential equation (ODE):

∂x(t)

∂t
= −u(t)x(t)

with a prescribed initial condition. Suppose that we observe the solution x(t)
several times in the interval [0, T ], and we want to infer the unknown coefficient
u(t) from the observed data.
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In our numerical experiments, we let the initial condition be x(0) = 1 and
T = 1. Now suppose that the solution is measured every T/100 time unit from
0 to T and the error in each measurement is assumed to be an independent
Gaussian N(0, 0.12). The prior is taken to be a zero mean Gaussian with
Matérn covariance [18]:

K(t1, t2) = σ2 21−ν

Γ(ν)
(
√

2ν
d

l
)νBν(

√
2ν
d

l
),

where d = |t1−t2|, Γ(·) is the Gamma function, andBν(·) is the modified Bessel
function. A random function with the Matérn covariance is [ν−1] mean square
(MS) differentiable. Several authors suggest that the Matérn covariances can
often provide a better model for many real-world physical processes than the
popular squared exponential covariances [18]. In this example, we choose l = 1,
σ = 1, and ν = 5 implying second order MS differentiability. In the numerical
tests, we represent the unknown with 501 grid points. We use synthetic data
that is generated by applying the forward model to a true coefficient u and
then adding noise to the result. The true coefficient is randomly drawn from
the prior distribution. Both the truth and the simulated data are shown in
Fig. 1. We perform the proposed adaptive pCN algorithm with 1×106 samples
and another 5× 104 pCN samples are used in the pre-run. We set the stepsize
β = 1/5, and we choose ρ = 0.99 resulting in J = 14, i.e., 14 eigenvalues being
adapted.

We show the simulation results in Figs. 2: in the left figure, we show 10 ran-
domly chosen MCMC samples from the posterior, and in the right figure, we
plot the posterior mean, as well as the 95% confidence interval, both computed
with the MCMC samples. To illustrate the diminishing of the adaption, we
plot the 1st and the 14th eigenvalues against the iterations in Fig. 3, and the
plots indicate that both parameters tend to converge to certain fixed values as
the iterations proceed. For comparison, we also draw 1.05× 106 samples from
the posterior with a standard pCN algorithm where the step size is again taken
to be β = 1/5. In Figs. 4, we compare the autocorrelation function (ACF) of
the samples drawn by the two methods at t = 0.4 (left) and t = 0.8 (right),
and the ACF results show that the adaptive pCN method performs better
than standard pCN. We then compute the ACF of lag 1000 at all the grid
points, and show the results in Fig. 5 (left), and we can see that, the ACF of
the chain generated by the ApCN is clearly lower than that of the standard
pCN at all the grid points. The effective sample size (ESS) is another popular
measure of the sampling efficiency of MCMC [12]. ESS is computed by

ESS =
N

1 + 2τ
,

where τ is the integrated autocorrelation time and N is the total sample size,
and it gives an estimate of the number of effectively independent draws in the
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Fig. 1. (for the ODE example) The truth (Left) and the data simulated with it
(Right).
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Fig. 2. (for the ODE example) Left: 10 randomly drawn samples from the posterior.
Right: the posterior mean and the 95% confidence interval.
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Fig. 3. (for the ODE example) The eigenvalues λ1 (Left) and λ14 (Right) plotted
against the number of iterations.

chain. We compute the ESS of the unknown u at each grid point and show the
results in Fig. 5 (right). The results show that the ApCN algorithm produces
much more effectively independent samples than the standard pCN.
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Fig. 5. (for the ODE example) Left: ACF (lag 100) at each grid point. Right: ESS
at each grid point.

3.2 Estimating the Robin coefficient

In the second example, we consider a one-dimensional heat conduction equa-
tion in the region x ∈ [0, L] ,

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t), (3.1a)

u(x, 0) = g(x), (3.1b)

with the following Robin boundary conditions:

− ∂u

∂x
(0, t) + ρ(t)u(0, t) = h0(t), (3.1c)

− ∂u

∂x
(L, t) + ρ(t)u(L, t) = h1(t). (3.1d)

Suppose the functions g(x), h0(x) and h1(x) are all known, and we want to
estimate the unknown Robin coefficient ρ(t) from certain measurements of the
temperature u(x, t). This example is studied in [24]. Here we choose L = 1,
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T = 1 and the functions to be

g(x) = x2 + 1, h0 = t(2t+ 1), h1 = 2 + t(2t+ 2).

The solution is measured every T/200 time unit from 0 to T and the error
in each measurement is assumed to be an independent Gaussian N(0, 0.12).
In the computation, 501 equally spaced grid points are used to represent the
unknown. Moreover, the prior is the same as that used in the ODE example.

The data is generated the same as the first example, with the true Robin
coefficient randomly drawn from the prior distribution. Both the truth and
the simulated data are shown in Fig. 6. We implement the adaptive pCN
algorithm, where we choose β = 1/5, and ρ = 0.99 resulting in J = 14. With
the algorithm, we draw 5.5×105 samples from the posterior, including 5×104

pCN samples in the pre-run, and the average acceptance probability is around
20%. In the left plot of Figs. 7, we show 10 randomly chosen MCMC samples
from the posterior, and in the right plot, we show the posterior mean and
the 95% confidence interval, both computed with the MCMC samples. Once
again, we sample the posterior with standard pCN algorithm for comparison,
and in particular we run pCN with two different stepsizes: first we use β = 1/5
which is the same as that used the ApCN algorithm; we then use β = 1/300,
yielding higher acceptance probability. In each case, we draw 5.5×105 samples,
and the average acceptance probability for β = 1/5 is around 0.3%, and that
for β = 1/300 is around 20%, which matches that of the ApCN algorithm. In
Figs. 8, we compare the ACF of the samples drawn by the two methods at
t = 0.1 (left) and t = 0.9 (right). One can see from the figures that, the ACF
of the chain generated by the pCN with β = 1/300 decreases slightly faster
than that with β = 1/20, thanks to the higher acceptance probability, while
the result of the ApCN is significantly better than both of them. We then
compute the ACF of lag 1000 as well as the ESS at all the grid points, and
show the results in Figs. 9. Once again, both the ACF and the ESS results
suggest that the sampling efficiency of the ApCN is significantly higher than
that of the standard pCN algorithm.

4 Conclusions

In summary, we consider MCMC simulations for Bayesian inferences in func-
tion spaces. In particular, we develop an adaptive variant of the pCN algo-
rithm to improve the sampling efficiency. The implementation of the ApCN
algorithm is rather simple, without requiring any information of the underly-
ing models, and during the iteration the proposal can be efficiently updated
with explicit formulas. We also show that the adaptive pCN algorithm satis-
fies certain ergodicity condition. Finally we demonstrate the effectiveness and
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Fig. 6. (for the Robin example) The truth (Left) and the data simulated with it
(Right).
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Fig. 7. (for the Robin example) Left: 10 randomly drawn samples from the posterior.
Right: the posterior mean and the 95% confidence interval.

0 200 400 600 800 1000
0.2

0.4

0.6

0.8

1
t=0.1

lag

A
C

F

 

 

pCN (β=1/20)

pCN (β=1/300)

ApCN (β=1/20)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1
t=0.9

lag

A
C

F

 

 

pCN (β=1/20

pCN (β=1/300)

ApCN (β=1/20)

Fig. 8. (for the Robin example) ACF for the pCN and the ApCN methods at t = 0.1
and t = 0.9.

efficiency of the ApCN algorithm with several numerical examples. We expect
the algorithm can be of use in many practical problems, especially in those
involving blackbox models.

Finally we note that, a major limitation of the ApCN algorithm (and of the
standard pCN as well) is that the stepsize β is ultimately restricted to be
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Fig. 9. (for the Robin example) Left: ACF (lag 1000) at each grid point. Right: the
ESS at each grid point.

less than 1, while in many problems, larger step-sizes may be needed so that
the resulting acceptance probability is in a favorable range. As a result, the
ApCN algorithm in its present form may yield undesirably high acceptance
probability. We plan to address the issue by making improvements on the
present algorithm in a future work.

A Proof of Theorem 2

We provide a proof of Theorem 2 in this appendix, which largely follows the
proof for the finite dimensional adaptive Metropolis algorithm given in [10].
We start with the following inequality:

|Qn,ζn−2(u,A)−Qn+1,ζn−1(u,A)|

= |
∫
A a(u, v)qn,ζn−2(u, dv) + δA(u)(1−

∫
X qn,ζn−2(u, dz)a(u, z))

−
∫
A a(u, v)qn+1,ζn−1(u, dv) + δA(u)(1−

∫
X qn+1,ζn−1(u, dz)a(u, z))|

≤ 2
∫
X a(u, v)|dqn,ζn−2

(u,·)
dµ0

(v)− dqn+1,ζn−1
(u,·)

dµ0
(v)|µ0(dv)

≤ 2
∫
X |

dqn,ζn−2
(u,·)

dµ0
(v)− dqn+1,ζn−1

(u,·)
dµ0

(v)|µ0(dv)

≤ 2
∫
X |

dqn,ζn−2
(u,·)

dµ0
(v)− dq̃

dµ0
(v)|µ0(dv) + 2

∫
X |

dq̃
dµ0

(v)− dqn+1,ζn−1
(u,·)

dµ0
(v)|µ0(dv),

where q̃ is the Gaussian measure that has the same mean with qn,ζn−2(u, ·) and
has the same covariance operator with qn+1,ζn−1(u, ·). It should be clear that
q̃ is equivalent to µ0. Now let

I1 =
∫
X
|dqn,ζn−2(u, ·)

dµ0

(v)− dq̃

dµ0

(v)|µ0(dv) (A.1)
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and

I2 =
∫
X
| dq̃
dµ0

(v)− dqn+1,ζn−1(u, ·)
dµ0

(v)|µ0(dv).

First we consider I1. Since qn,ζn−2(u, ·) and q̃ are both Gaussian measures with
same mean, and their covariance operators have the same eigenfunctions and
at most J different eigenvalues, we can show that,

I1 =
∫
RJ
|
J∏
i=1

1√
2πβ2λn,i

exp(− x2i
2β2λn,i

)−
J∏
i=1

1√
2πβ2λn+1,i

exp(− x2i
2β2λn+1,i

)|dx1 · · · dxJ .

(A.2)
Thanks to the modified likelihood function (2.18), it is easy to see that there
exist constants C1, C2 > 0 such that

|λn,i − λn+1,i| ≤
C1

n
, and λn+1,i ≥ C2, (A.3)

for i = 1...J . Using these results, and by some elementary calculus, one can
derive that I1 < C3/n for some constant C3 > 0.

We now consider I2. Let

∆m = (I − β2Bn,ζn−2(u)L)
1
2u− (I − β2Bn+1,ζn−1(u)L)

1
2u.

and it can be seen that 〈∆m, ei〉 = 0 for ∀i > J . We re-write I2 as

I2 =
∫
X
|1− dqn+1,ζn−1(u, ·)

dq̃
(v)|q̃(dv),

where

dqn+1,ζn−1(u, ·)
dq̃

(v) = exp(−1

2
‖(β2Bn,ζn−2(u))−

1
2 ∆m‖2+〈v, (β2Bn,ζn−2(u))−1∆m〉).

Similar to I1, we can also write I2 as a finite dimensional integral:

I2 =
∫
RJ
|
J∏
i=1

1√
2πβ2λn+1,i

exp(−(xi − 〈∆m, ei〉)2

2β2λn+1,i

−
J∏
i=1

1√
2πβ2λn+1,i

exp(− x2i
2β2λn+1,i

)|dx1 · · · dxJ .

It then follows from Eqs. (2.19) and (A.3) that there exist constants C4, C5 > 0
such that

|σn,i − σn+1,i| ≤
C4

n
, and σn,i, σn+1,i ≥ C5, (A.4)

for i = 1...J . We thus have,

|〈∆m, ei〉| = |σn,i − σn+1,i| · |〈u, ei〉| ≤
C6

n
,

17



for some constant C6 > 0. Once again, by some elementary calculus, we can
obtain I2 ≤ C7

n
for some constant C7 > 0, which completes the proof.
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