
Sequent systems for nondeterministic
propositional logics without reflexivity

Louwe B. Kuijer

University of Groningen

Abstract. In order to deal with ambiguity in statements made in a nat-
ural language I introduce nondeterministic semantics for propositional
logic with an arbitrary set C of connectives. The semantics are based
on the idea that Γ entails ∆ if and only if every possible deterministic
disambiguation of Γ entails every possible deterministic disambiguation
of ∆. I also introduce a cut-free sequent style proof system SC that is
sound and complete for the given semantics. Finally I show that while
the semantics and proof system do not satisfy reflexivity they do allow
certain kinds of substitution of equivalents.

1 Introduction

When attempting to apply logical methods to sentences in natural language we
often run into problems related to ambiguity. This ambiguity could be caused
by ambiguous predicates, but it could also be caused by ambiguous connectives.
Take for example a sentence of the form “A or B”. Such a statement is ambiguous;
the “or” could be inclusively (∨) or exclusively (⊕).

One approach for dealing with such ambiguity is to require disambiguation
before allowing the sentence to be phrased in a logic. So “A or B” would have to
be represented by either the formula A∨B or by the formula A⊕B. Unfortunately
this approach sometimes cannot be used, as it is not always possible to determine
which unambiguous sentence was meant by the speaker. Sometimes the speaker
is unable or unwilling to clarify their utterance and it is even possible that the
speaker is uncertain about what they meant.1

Another approach is to consider an ambiguous statement as nondeterministic,
where all possible disambiguations of the statement could be the meaning of
the statement. See for example [1] for an example of this approach applied to
ambiguous predicates. This approach has the advantage of being applicable even
if no good choice of disambiguation is available, at the cost of resulting in a
weaker logic. This nondeterministic approach is the one I use in this paper.

It should be noted that this approach is also to some extent usable for con-
nectives that are not merely ambiguous but not truth-functional. Consider a

1 For an example of a situation where the speaker is uncertain about what he means
consider the first paragraph of the introduction, where I state that an “or” can be
interpreted inclusively (∨) or exclusively (⊕). I do not know whether this or should
be considered inclusively or exclusively.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/162998548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

connective representing a causal implication. The causal part of the implica-
tion is not truth-functional; the truth value of p q is not known if either p
doesn’t hold or if both p and q hold. However, the truth value of p q is known
if p holds and q does not, in that case it is false. Treating p q as a formula
that is false if p is true and q is false and nondeterministically true or false in
other cases allows some reasoning about in the framework of nondeterministic
propositional logic.

In this paper I define a type of nondeterministic propositional semantics that
allows all occurrences of nondeterministic connectives to be interpreted indepen-
dently. In order to do this I start with deterministic semantics and then define
the nondeterministic semantics based on all possible (deterministic) disambigua-
tions. I also give a sound and complete proof system for the nondeterministic
logic. Because of their pleasing properties with respect to automated reasoning
I use a cut-free sequent style proof system. The proof system also turns out to
be quite elegant, despite the complicated semantics.

The structure of the paper is as follows. First, in Section 1.1 I compare my
approach to a somewhat similar existing approach using Nmatrices (see [2–4]).
Then in Section 2 I define the deterministic logic LC and in Section 3 I define
the nondeterministic logic LC . In Section 4 I give a sequent style proof system
SC which I prove to be complete for LC in Section 5. Finally, in Section 6 I
consider a few properties of LC and SC .

1.1 Comparison to Nmatrices

Semantics for nondeterministic propositional logic have been introduced in [2–
4] using so-called Nmatrices. The semantics I use here for LC are in many
ways very similar to those using Nmatrices, but with one important difference.
When using Nmatrices different occurrences of a single nondeterministic connec-
tive are allowed to have different interpretations, but only insofar as identical
(sub)formulas have the same interpretation everywhere.

For example, let ∗ represent the “or” connective that can mean either ∨ or
⊕. Then in the Nmatrices approach the formula (p ∗ q) ∧ (p ∗ q) can mean two
things; either (p ∨ q) ∧ (p ∨ q) or (p ⊕ q) ∧ (p ⊕ q). The mixed disambiguations
(p∨q)∧ (p⊕q) and (p⊕q)∧ (p∨q) are not allowed because (p∗q) and (p∗q) are
the same formula and therefore must have the same choice of disambiguation.

The importance this approach gives to identity of formulas has a few unusual
consequences, such as substitution of equivalents being unsound, even if the
equivalents are provably equivalent. When using Nmatrices the formula (p∗q)→
(p ∗ q) is a tautology but the formula ((p ∧ p) ∗ q)→ (p ∗ q) is not.

In the semantics for LC I therefore allow different occurrences of a single
nondeterministic connective to have different interpretations without restriction.
The nondeterministic formula (p ∗ q) ∧ (p ∗ q) then allows four disambiguations;
(p ∨ q) ∧ (p ∨ q), (p⊕ q) ∧ (p⊕ q), (p ∨ q) ∧ (p⊕ q) or (p⊕ q) ∧ (p ∨ q).

The approach taken in this paper does lead to different unusual consequences.
In particular, the inference relation for LC is not reflexive since for example
p ∗ q |= p ∗ q might mean p ∨ q |= p⊕ q.

2 Deterministic semantics

First we need a few notational preliminaries. Let a nonempty set P of propo-
sitional variables be given. Furthermore, let C be a set of truth-functional
connectives. For each connective ◦ ∈ C let r◦ ∈ N be the arity of ◦ and
f◦ : {0, 1}r◦ → {0, 1} the truth function of ◦.

For binary connectives I use the standard infix notation. Nullary connectives
are denoted > if the associated truth function is the constant function 1 and ⊥
if the truth function is the constant function 0.

I use p, q as variables for propositional variables, lower case Greek letters for
formulas and uppercase Greek letters for multisets of formulas. Now let us define
the language LC and the models for LC .

Definition 1 (Language LC). The language LC using the connectives in C is
the smallest set such that if p ∈ P then p ∈ LC and if ◦ ∈ C and ϕ1, · · · , ϕr◦ ∈
LC then ◦(ϕ1, · · · , ϕr◦) ∈ LC .

Definition 2 (Models). A model M is a valuation function M : P → {0, 1}
that assigns to each propositional variable the value ‘true’ (1) or ‘false’ (0).

Now we can define the semantics for LC .

Definition 3 (Satisfaction relation |=). The satisfaction relation |= between
models and formulas is defined inductively by

– M |= p if and only if M(p) = 1,
– for every ◦ ∈ C we haveM |= ◦(ϕ1, · · · , ϕr◦) if and only if f◦(v1, · · · , vr◦) =

1 where vi = 1 if and only if M |= ϕi.

Furthermore, ∀γ ∈ Γ :M |= γ is denoted by M |=∧ Γ and ∃δ ∈ ∆ :M |= δ is
denoted by M |=∨ ∆.

From this satisfaction relation we define an entailment relation.

Definition 4 (Entailment relation |=C). The entailment relation |=C is a
relation between multisets Γ,∆ ⊆ LC of formulas. We have Γ |=C ∆ if and only
if for every model M such that M |=∧ Γ it holds that M |=∨ ∆.

Lemma 1. Let Γ,∆ ⊆ LC be any finite multisets of LC formulas such that
Γ |=C ∆, and let Φ be any set of propositional variables that contains all variables
that occur in Γ or ∆. Then for any partition Φ1, Φ2 of Φ one of the following
statements holds:

1. there is a γ ∈ Γ such that Φ1, γ |=C Φ2,
2. there is a δ ∈ ∆ such that Φ1 |=C δ, Φ2.

Proof. All connectives in C are truth-functional, so the value of any formula in a
model is fully determined by the values of the propositional variables that occur
in the formula have in that model. Fix any partition Φ1, Φ2 of Φ and let M be

the set of models that satisfy all of Φ1 and none of Φ2. Then for every ψ ∈ Γ ∪∆
we either have M |= ψ for every model M∈M or M 6|= ψ for every M∈M.

Suppose there is a γ ∈ Γ such that the second possibility holds for that
formula, so M 6|= γ for every M∈M. Then every model that satisfies all of Φ1

and none of Φ2 does not satisfy γ, so every model that satisfies all of Φ1 and γ
must satisfy some of Φ2. We therefore have Φ1, γ |=C Φ2.

Suppose then that for every γ ∈ Γ the first possibility holds, so M |= γ for
everyM∈M. We have Γ |=C ∆ so for everyM∈M there is a δ ∈ ∆ such that
M |= δ. But then M |= δ for every such model, as the value of δ is constant
on M. This implies that every model that satisfies all of Φ1 and none of Φ2 also
satisfies δ, so every model that satisfies all of Φ1 must either satisfy δ or one of
Φ2. We therefore have Φ1 |=C δ, Φ2.

Note that in particular Lemma 1 implies that if Φ contains all the propositional
variables of ϕ then Φ1, ϕ |=C Φ2 or Φ1 |=C ϕ,Φ2 since ϕ |=C ϕ.

3 Nondeterministic semantics

Let us start by defining nondeterministic connectives.

Definition 5 (Nondeterministic connective). A nondeterministic connec-
tive ◦ is a connective with arity r◦ and partial truth function f◦ : {0, 1}r◦ →
{0, 1, ?}.

Note that besides > and ⊥ there is now a third possible nondeterministic
nullary connective that has the constant function ? as partial truth function. I
denote this connective by ? as well.

Definition 6 (Language LC). The language LC using the connectives in C is
the smallest set such that if p ∈ P then p ∈ LC and if ◦ ∈ C and ϕ1, · · · , ϕr◦ ∈
LC then ◦(ϕ1, · · · , ϕr◦) ∈ LC .

The logic LC is then based on the idea that a nondeterministic connective ◦
can be disambiguated as one of several deterministic connectives ◦.

Definition 7 (Disambiguation of a connective). Let ◦ be a nondetermin-
istic connective with arity r◦ and associated nondeterministic truth function f◦.
A truth-functional connective ◦ is a disambiguation of ◦ if r◦ = r◦ and for each
v ∈ {0, 1}r◦ such that f◦(v) ∈ {0, 1} it holds that f◦(v) = f◦(v).

So a disambiguation ◦ of a connective ◦ is a truth-functional connective with a
truth function f◦ where every ? from f◦ is replaced by either a 0 or a 1.

Example 1. Suppose ∗ is the nondeterministic connective with the following
truth table.

ϕ1 ϕ1 ϕ1 ∗ ϕ2

1 1 ?
1 0 1
0 1 1
0 0 0

Then there are two possible disambiguations ∗ and ∗′ of ∗, namely

ϕ1 ϕ1 ϕ1∗ϕ2

1 1 1
1 0 1
0 1 1
0 0 0

ϕ1 ϕ1 ϕ1∗′ϕ2

1 1 0
1 0 1
0 1 1
0 0 0

So the disambiguations of ∗ are a disjunction (∨)and an “exclusive or” (⊕).

Definition 8 (Disambiguation of a formula). The disambiguations of for-
mulas are given inductively by the following.

– If p ∈ P then p is a disambiguation of p.
– If ϕ = ◦(ϕ1, · · · , ϕr◦), ϕi is a disambiguation of ϕi for each 1 ≤ 1 ≤ r◦ and
◦ is a disambiguation of ◦ then ◦(ϕ1, · · · , ϕr◦) is a disambiguation of ϕ.

If Γ is a multiset of formulas then Γ is a disambiguation of Γ if Γ can be
obtained from Γ by replacing formulas with one of their disambiguations.

Definition 9 (Entailment relation |=C). Let C be the set of all connectives
that are the disambiguation of a connective in C. The entailment relation |=C

is a relation between multisets Γ,∆ ⊆ LC of LC formulas. We have Γ |=C ∆ if
and only if Γ |=C ∆ for every disambiguations Γ of Γ and ∆ of ∆.

Note that this is a very strong standard for entailment. If we have Γ |=C ∆
and Γ holds under some disambiguation then ∆ must hold under every dis-
ambiguation. Using the terminology of [1] the relation |=C not only preserves
truth on some disambiguation (truth-osd) and truth on every disambiguation
(truth-osd only), it also requires a true-osd antecedent to have a true-osd only
consequent. This is a stronger condition than the ones discussed in [1], but it
has a very clear game-theoretical or dialectical interpretation: Γ |=C ∆ if and
only if you can conclude ∆ from Γ without any possibility for an opponent to
give a disambiguation that proves you wrong. Equivalently, Γ |=C ∆ if and only
if one cannot rationally reject ∆ while accepting Γ .

For the completeness theorems given later in the paper it is very useful to
be able to work with finite multisets of formulas. I therefore give a compactness
proof for |=C here. The compactness of deterministic propositional logic is quite
well known, see for example [5] for two different versions of the proof. The proof
for the compactness of nondeterministic propositional logic can be obtained by
some small (but notationally complicated) modifications to the existing proofs.
Here I give a topological proof using Tychonoff’s theorem [6, 7], which states
that every product of compact sets is compact.

Lemma 2 (Compactness of LC). Let Γ,∆ be any multisets of LC formulas.
If Γ |=C ∆ then there are finite sub-multisets Γ ′ ⊆ Γ and ∆′ ⊆ ∆ such that
Γ ′ |=C ∆′.

Proof. In order to keep our notation simple I treat the multisets as sets in this
proof. This is purely a matter of notation, it amounts to the same thing as adding
a label to every occurrence of a formula in a multiset to make them distinct.

Let Γ,∆ be any sets of formulas such that Γ |=C ∆ and suppose towards
a contradiction that there are no finite subsets Γ ′ ⊆ Γ and ∆′ ⊆ ∆ such that
Γ ′ |=C ∆′. Let G and D be partitions of Γ and ∆ respectively that contain only
finite sets. By padding G or D with multiple copies of the empty set if necessary
we can guarantee the existence of a bijection f : G→ D.

Consider the set {0, 1} as a finite topological space (with the discrete topol-
ogy). This topological space is compact. Then by Tychonoff’s theorem the set
{0, 1}P (with the product topology) is compact. The elements of {0, 1}P are
exactly the models of LC .

For any Φ ⊆ Γ and Ψ ⊆ ∆ let V (Φ, Ψ) be the set of models M ∈ {0, 1}P
such that for some disambiguations Φ and Ψ of Φ and Ψ we have M |=∧ Φ and
M 6|=∨ Ψ . So V (Φ, Ψ) is the set of countermodels to Φ |=C Ψ . Take any G′ ⊆ G
and let D′ = f(G′). We will show that⋂

Φ∈G′
V (Φ, f(Φ)) = V

(⋃
G′,
⋃
D′
)
. (1)

The important step is that, sinceG andD are partitions of Γ and∆, the elements
of G′ are mutually disjunct, as are those of D′. This implies that if for every
Φ ∈ G′ the set Φ is a disambiguation of Φ then

⋃
Φ∈G′ Φ is a disambiguation of⋃

G′, because the disambiguations of different elements of G′ cannot disagree
about how a formula should be disambiguated. We can also go the other way,
every disambiguation

⋃
G′ of G′ induces unique disambiguations Φ for every

Φ ∈ G′ such that
⋃
G′ =

⋃
Φ∈G′ Φ.

The same holds for the disambiguations of
⋃
D′ and the disambiguations for

every f(Φ) = Ψ ∈ D′; if given Ψ for all Ψ ∈ D′ then
⋃
Ψ∈D′ Ψ is a disambiguation

of
⋃
D′ and for each disambiguation

⋃
D′ there are unique disambiguations Ψ

for all Ψ ∈ D′ such that
⋃
D′ =

⋃
Ψ∈D′ Ψ .

Take any M∈
⋂
Φ′∈G′ V (Φ′, f(Φ′)). This M has the property that for every

Φ ∈ G′ and Ψ = f(Φ) there are disambiguations Φ and Ψ such that M |=∧ Φ
and M 6|=∨ Ψ . The sets

⋃
Φ∈G′ Φ and

⋃
Φ∈G′ Φ are disambiguations of

⋃
G′

and
⋃
D′. Furthermore, M satisfies all of

⋃
Φ∈G′ Φ and none of

⋃
Φ∈G′ Φ so

M∈ V (
⋃
G′,
⋃
D′). We therefore have⋂

Φ∈G′
V (Φ, f(Φ)) ⊆ V

(⋃
G′,
⋃
D′
)
. (2)

Now take any M ∈ V (
⋃
G′,
⋃
D′). This M has the property that there are

disambiguations
⋃
G′ and

⋃
D′ of

⋃
G′ and

⋃
D′ such that M satisfies all of⋃

G′ and none of
⋃
D′. For each Φ ∈ G′ and Ψ = f(Φ) ∈ D′ let Φ and Ψ be

the disambiguations such that
⋃
G′ =

⋃
Φ∈G′ Φ and

⋃
D′ =

⋃
Ψ∈D′ Ψ . Then for

each Φ ∈ G′ and Ψ = f(Φ) ∈ D′ the model M satisfies all of Φ and none of Ψ

so M∈
⋂
Φ∈G′ V (Φ, f(Φ)). We therefore have

V
(⋃

G′,
⋃
D′
)
⊆
⋂
Φ∈G′

V (Φ, f(Φ)) (3)

which together with (2) implies (1).
For any Γ ′ ∈ G and ∆′ ∈ D the set V (Γ ′, ∆′) is closed because all subsets

of {0, 1}p are clopen since we started with the discrete topology. Furthermore if
follows from (1) that for any n ∈ N and any Γ ′1, · · · , Γ ′n ∈ G we have

⋂
1≤i≤n

V (Γ ′i , f(Γ ′i)) = V

 ⋃
1≤i≤n

Γ ′i ,
⋃

1≤i≤n

f(Γ ′i)

 .

The set V (
⋃

1≤i≤n Γ
′
i ,
⋃

1≤i≤n f(Γ ′i)) is nonempty because
⋃

1≤i≤n Γ
′
i and⋃

1≤i≤n f(Γ ′i) are finite subsets of Γ and ∆ so by assumption
⋃

1≤i≤n Γ
′
i 6|=C⋃

1≤i≤n f(Γ ′i). Then
⋂
Γ ′∈G V (Γ ′, f(Γ ′)) is an intersection of closed sets with

the finite intersection property so it is nonempty by the compactness of {0, 1}P .
We have ⋂

Γ ′∈G
V (Γ ′, f(Γ ′)) = V

(⋃
Γ ′∈G

Γ ′,
⋃
Γ ′∈G

f(Γ ′)

)
= V (Γ,∆),

so V (Γ,∆) is also nonempty. But this implies that Γ 6|=C ∆, which contradicts
the choice of Γ and ∆. The assumption that there are no finite subsets Γ ′ ⊆ Γ
and ∆′ ⊆ ∆ such that Γ ′ |=C ∆′ must therefore be false, which proves the
lemma.

We also need a nondeterministic variant of Lemma 1.

Lemma 3. Let Γ,∆ be any finite multisets of LC formulas such that Γ |=C

∆, and let Φ be any set of propositional variables that contains all variables
that occur in Γ or ∆. Then for any partition Φ1, Φ2 of Φ one of the following
statements holds:

1. there is a γ ∈ Γ such that Φ1, γ |=C Φ2,
2. there is a δ ∈ ∆ such that Φ1 |=C δ, Φ2.

Proof. Suppose towards a contradiction that Φ1, γ 6|=C Φ2 for all γ ∈ Γ and
Φ1 6|=C δ, Φ2 for all δ ∈ ∆. Then for each γi ∈ Γ there is a disambiguation γi
such that Φ1, γi 6|=C Φ2 and for each δi ∈ ∆ there is a disambiguation δi such
that Φ1 6|=C δi, Φ2.

Now let Γ = {γi | γi ∈ Γ} and ∆ = {δi | δi ∈ ∆}. These Γ and ∆ are
disambiguations of Γ and ∆ so from Γ |=C ∆ it follows that Γ |=C ∆. But Γ
and ∆ live in a deterministic logic, so from Lemma 1 it follows that there either
is a γ ∈ Γ such that Φ1, γi |=C Φ2 or a δ ∈ ∆ such that Φ1 |=C δi, Φ2. This
contradicts the choice of Γ and ∆, so the initial assumption must have been
wrong, which proves the lemma.

4 Proof system

The proof system consists of a few structural rules and some rules that are based
on the abbreviated partial truth tables of the connectives.

Definition 10 (Rules of S∅). The rules of S∅ are the rules Axiom (Ax), Left
Contraction (CL), Right Contraction (CR), Left Weakening (WL) and Right
Weakening (WR), given by

Ax
p ` p

Γ1, Γ2, Γ2 ` ∆
CL

Γ1, Γ2 ` ∆
Γ ` ∆1, ∆2, ∆2

CR
Γ ` ∆1, ∆2

Γ1 ` ∆
WL

Γ1, Γ2 ` ∆
Γ ` ∆1

WR
Γ ` ∆1, ∆2

The formula p in Ax is called principal, as are all elements of Γ2 in CL and WL
and all elements of ∆2 in CR and WR.

Note that the Axiom used here results in a very limited form of reflexivity. This
is because |=C is not reflexive. The logical rules correspond to the abbreviated
truth tables of the connectives and can be obtained by a multi-step procedure.

Definition 11 (Rules RC). The set RC rules for the abbreviated truth tables
are obtained using the following procedure.

1. Start with RC = ∅.
2. For any ◦ ∈ C, v ∈ {0, 1}r◦ and 1 ≤ i ≤ r◦ let Ui be the sequent Γ, ϕi ` ∆ if

the i-th entry of v is 0 and let Ui be the sequent Γ, ϕi ` ∆ if the i-th entry
of v is 1. Now for every ◦ ∈ C and v ∈ {0, 1}r◦ add the rule

U1 · · · Ur◦ R◦,v
Γ, ◦(ϕ1, · · · , ϕr◦) ` ∆

to RC if f◦(v) = 0, add the rule

U1 · · · Ur◦ R◦,v
Γ ` ◦(ϕ1, · · · , ϕr◦), ∆

to RC if f◦(v) = 1 and add no rule to RC if f◦(v) =?.
3. If there are two rules

U1 · · · Uj−1 Γ, ϕi ` ∆ Uj+1 · · · Uk
R◦,v

W

and

U1 · · · Uj−1 Γ ` ϕi, ∆ Uj+1 · · · Uk
R◦,v′

W

in RC then add the rule

U1 · · · Uj−1 Uj+1 · · · Uk
R◦,v′′

W

where v′′ ∈ {0, 1, ?}r◦ is the vector with the same value as v and v′ where
they agree and ? where they do not agree. Repeat this step until no more
rules can be added.

4. If there are two rules

U1 · · · Uk R1W

U ′1 · · · U ′k′ R2W

in RC with {U1, · · · , Uk} ⊂ {U ′1, · · · , U ′k′} then remove the rule R2. Repeat
this step until no more rules can be removed.

The rules for >,⊥ and ? are degenerate cases, for > and ⊥ we have the rules

>
Γ ` >, ∆ ⊥

Γ,⊥ ` ∆

and for ? we have no rules at all. The procedure given in Definition 11 terminates
for any finite set of connectives and gives a unique set of rules for a given set of
connectives. Let us consider a simple example of how this procedure works.

Example 2. Let ∗ be the binary connective with the following partial truth table.

ϕ1 ϕ2 ϕ1 ∗ ϕ2

0 0 ?
0 1 1
1 0 1
1 1 1

so ∗ behaves either like a disjunction or like guaranteed truth. Then in step 2 of
the procedure the following three rules are added.

Γ ` ϕ1, ∆ Γ, ϕ2 ` ∆ R∗,(1,0)
Γ ` ϕ1 ∗ ϕ2, ∆

Γ, ϕ1 ` ∆ Γ ` ϕ2, ∆ R∗,(0,1)
Γ ` ϕ1 ∗ ϕ2, ∆

Γ ` ϕ1, ∆ Γ ` ϕ2, ∆ R∗,(1,1)
Γ ` ϕ1 ∗ ϕ2, ∆

In step 3 we then combine the rule R∗,(1,1) with both the rule R∗,(1,0) and the
rule R∗,(0,1) to obtain the following two rules

Γ ` ϕ2, ∆ R∗,(?,1)
Γ ` ϕ1 ∗ ϕ2, ∆

Γ ` ϕ1, ∆ R∗,(1,?)
Γ ` ϕ1 ∗ ϕ2, ∆

Finally, in step 4 we remove the rules R∗,(1,0), R∗,(0,1) and R∗,(1,1) because their
premises are supersets of those of R∗,(?,1) and R∗,(1,?). In the end the rules for
∗ are therefore only the rules R∗,(?,1) and R∗,(1,?). These rules represent all we
know about ∗, namely that ϕ1 ∗ ϕ2 is true if at least one of ϕ1 and ϕ2 is true.

Definition 12 (Rule Cut). The rule Cut is given by

Γ1 ` ϕ,∆1 Γ2, ϕ ` ∆2
Cut

Γ1, Γ2 ` ∆1, ∆2

Definition 13 (Proof system SC). The proof system SC consists of the rules
S∅ together with the rules RC . The proof system SC+Cut consists of the rules
of SC together with the rule Cut.

Definition 14 (Derivation). A derivation in a proof system S is a finite la-
beled tree T such that:

– every node of T is labeled by either a sequent or an empty label,
– if a node s of T with label V has child nodes t1, · · · , tn with labels U1, · · ·Un

then

U1 · · · Un
V

is an instance of a rule of S.

The non-empty labels of nodes that do not have child nodes are called the premises
of the derivation and the label of the root is called the conclusion of the derivation.

Definition 15 (Derivable). A sequent U is derivable in a proof system S if
there is a derivation in S that has no premises and U as conclusion.

Definition 16 (Admissible). A rule

U1 · · · Un
R

V

is admissible in S if every sequent that is derivable in S+R is derivable in S.

For most of the rules of SC+Cut it should be immediately clear that they
are sound for |=C . The only rules for which there could be some doubt about
the soundness are the contraction and Cut rules. For these rules it can also quite
easily be seen that they are sound. Consider for example left contraction.

If we have Γ1, Γ2, Γ2 |=C ∆ then for any disambiguations Γ1 of Γ1, Γ2 of

Γ2, Γ2
′

of Γ2 and ∆ of ∆ we have Γ1, Γ2, Γ2
′ |=C ∆. In particular this is the

case if Γ2 = Γ2
′
, so we have Γ1, Γ2, Γ2 |=C ∆. CL is sound for deterministic

propositional logic so Γ1, Γ2 |=C ∆. This holds for any disambiguations Γ1, Γ2

and ∆ so Γ1, Γ2 |=C ∆. Soundness for CR and Cut is obtained in the same way.

5 Completeness

I prove the completeness of SC by showing the completeness of SC+Cut and
showing that Cut is admissible in SC . I start with a very limited form of com-
pleteness and then use it to show full completeness.

Lemma 4. Let ϕ be any LC formula and let Φ be a set of propositional variables
that includes all the variables that occur in ϕ and let Φ1, Φ2 be any partition of
Φ. Then Φ1, ϕ |=C Φ2 implies that Φ1, ϕ ` Φ2 is derivable in SC+Cut and
Φ1 |=C ϕ,Φ2 implies that Φ1 ` ϕ,Φ2 is derivable in SC+Cut.

Proof. I give the proof for the case where Φ1, ϕ |=C Φ2. The other case is analo-
gous by the duality of the left and right side. Suppose that ϕ,Φ, Φ1 and Φ2 are
as in the lemma and Φ1, ϕ |=C Φ2. To show is that Φ1, ϕ ` Φ2 is derivable.

The proof now proceeds by induction on the construction of ϕ. First suppose
ϕ is atomic, so ϕ = p for some p ∈ P. Then ϕ ∈ Φ2 so Φ1, ϕ ` Φ2 is derivable by
using Ax to obtain p ` p and subsequently weakening.

Suppose therefore as induction hypothesis that ϕ is not atomic, and that
the lemma holds for all subformulas of ϕ. Then ϕ = ◦(ϕ1, · · · , ϕr◦) for some
◦ ∈ C and LC formulas ϕ1, · · · , ϕr◦ . Let N1 = {i ∈ {1, · · · , r◦} | Φ1, ϕi |= Φ2},
N2 = {i ∈ {1, · · · , r◦} | Φ1 |= ϕi, Φ2} and N3 = {1, · · · , r◦} \ (N1 ∪N2).

For i ∈ N1 let Ui be the sequent Φ1, ϕi ` Φ2 and for i ∈ N2 let Ui be
the sequent Φ1 ` ϕi, Φ2. Then by the induction hypothesis Ui is derivable for
i ∈ N1 ∪ N2. Now take any i ∈ N3. Then the value of ϕi under the partition
Φ1, Φ2 depends on the chosen disambiguation of ϕi. But for every disambiguation
ϕ of ϕ we have Φ1, ϕ |=C Φ2. This implies that, given the (fixed) values of ϕj
with j ∈ (N1 ∪N2) the value of ϕ is determinate and independent of the values
of ϕi with i ∈ N3.

Let v = (v1, · · · , vr◦) ∈ {0, 1}r◦ be any vector such that vi = 1 if i ∈ N1 and
vi = 0 if i ∈ N2 and v′ = (v′1, · · · , v′r◦) ∈ {0, 1, ?}

r◦ the vector such that v′i = 1
if i ∈ N1, v′i = 0 if i ∈ N2 and v′i =? if i ∈ N3. The value of ϕ is independent of
the values of ϕi with i ∈ N3 so the rule

{Ui | 1 ≤ i ≤ r◦}
R◦,v

Φ1, ϕ ` Φ2

was added in step 2 of Definition 11. This is true regardless of the choice of vi
for i ∈ N3, so in step 3 of Definition 11 a rule

{Ui | i ∈ N1 ∪N2}
R◦,v′

Φ1, ϕ ` Φ2

is generated. It is possible that R◦,v′ is removed in step 4, but then there is a rule
R◦,v′′ that takes a subset of {Ui | i ∈ N1 ∪N2} as premises and has Φ1, ϕ ` Φ2

as conclusion. So whether or not R◦,v′ gets removed in step 4 it follows from
the fact that Ui is derivable for i ∈ N1 ∪ N2 that Φ1, ϕ ` Φ2 is derivable. This
completes the induction step and thereby the proof.

Theorem 1 (Weak completeness of SC+Cut). For every finite multisets
Γ,∆ of LC formulas we have that Γ |=C ∆ implies that Γ ` ∆ is derivable in
SC+Cut.

Proof. Let Φ = {p1, · · · , pn} be the set of propositional variables that occur in
either Γ or ∆, and Φ1, Φ2 any partition of Φ. Then from Lemma 3 it follows that
there either is a γ ∈ Γ such that Φ1, γ |=C Φ2 or a δ ∈ ∆ such that Φ1 |=C δ, Φ2.

From Lemma 4 it follows that in the first case the sequent Φ1, γ ` Φ2 is
derivable and in the second case the sequent Φ1 ` δ, Φ2 is derivable. In either
case the sequent Γ,Φ1 ` Φ2, ∆ can then be derived by weakening.

So for every partition Φ1, Φ2 of Φ the sequent Γ,Φ1 ` Φ2, ∆ is derivable. For
0 ≤ m ≤ n let Φm = {p1, · · · , pn−m}. The proof now proceeds by induction
on m. I just showed that if m = 0 then for every partition Φm1 , Φ

m
2 of Φm the

sequent Γ,Φm1 ` Φm2 , ∆ is derivable.
Suppose then as induction hypothesis that m > 0 and that for partitions

Φm−11 , Φm−12 of Φm−1 the sequent Γ,Φm−11 ` Φm−12 , ∆ is derivable. Let Φm1 , Φ
m
2

be any partition of Φm. Then both Φm1 ∪ {pn−m+1}, Φ2 and Φm1 , Φ2 ∪ {pn−m+1}
are partitions of Φm−1 so Γ,Φm1 , pn−m+1 ` Φm2 , ∆ and Γ,Φm1 ` pn−m+1, Φ

m
2 , ∆

are both derivable. By using Cut (followed by CL and CR to get rid of extra
copies of Γ,∆,Φm1 and Φm2) the sequent Γ,Φm1 ` Φm2 , ∆ is then also derivable.
This completes the induction step, so Γ,Φm1 ` Φm2 , ∆ is derivable for any m and
any partition Φm1 , Φ

m
2 of Φm. Taking m = n we then get Γ ` ∆ being derivable,

which is what was to be shown.

Left to show now is that Cut is admissible in SC . The proof I give here is
very similar to existing proofs for Cut-elimination as given in for example [8–10].

Theorem 2 (Cut elimination). The rule Cut is admissible in SC .

Proof. The proof is by a case distinction on the rule R preceding the application
of Cut. In all possible cases the application of Cut could be “moved up”; that
is, it would have been possible to either apply Cut before R or to eliminate the
Cut entirely. Since Cut cannot be applied before the first step of a proof this
implies that at some point the Cut must be removed, so Cut is admissible.

Most of the cases are as in the existing Cut-elimination proofs. I omit those
cases, for details see the proofs in for example [8–10]. The case that is different
from the existing proofs is if both premises for the Cut rule are obtained using
a R◦,v rule where the Cut formula is principal. The last few steps of T are then

Γ1,±ϕ1 ` ∓ϕ1, ∆1 · · · Γ1,±ϕr◦ ` ∓ϕr◦ , ∆1
R◦,v

Γ1 ` ϕ,∆1

Γ2,±ϕ1 ` ∓ϕ1, ∆2 · · · Γ2,±ϕr◦ ` ∓ϕr◦ , ∆2
R◦,v′

Γ2, ϕ ` ∆2
Cut

Γ1, Γ2 ` ∆1, ∆2

where ϕ = ◦(ϕ1, · · · , ϕr◦). The application of R◦,v adds a ϕ on the right side of
the `, the application of R◦,v′ adds a ϕ on the left side of the `. The rules R◦,v
and R◦,v′ must therefore be different, so v 6= v′. This implies that there is at least
one i such that ϕi occurs on one side of the ` in a premise Γ1,±ϕi ` ∓ϕ1, ∆1

and on the other side in a premise Γ2,∓ϕ1 ` ±ϕ1, ∆2. So

Γ1,±ϕi ` ∓ϕ1, ∆1 Γ2,∓ϕ1 ` ±ϕ1, ∆2
Cut

Γ1, Γ2 ` ∆1, ∆2

is an alternative derivation of Γ1, Γ2 ` ∆1, ∆2. The Cut could therefore have
been applied before the R◦,v rules, which is what was to be shown.

Corollary 1 (Strong completeness of SC). For every multisets Γ,∆ of LC
formulas we have that Γ |=C ∆ implies that Γ ` ∆ is derivable in SC .

Proof. By the compactness Lemma 2 there are finite multisets Γ ′ ⊆ Γ and
∆′ ⊆ ∆ such that Γ ′ |=C ∆′, so by Theorems 1 and 2 the sequent Γ ′ ` ∆′ is
derivable in SC . Then Γ ` ∆ is also derivable in SC by weakening from Γ ′ ` ∆′.

6 Properties and applications of SC

Let us consider a few of the properties of SC . Reflexivity is not admissible in
SC , because it is not sound for |=C . Likewise, if ↔ is a classical bi-implication
and [ϕ/ψ] represents the substitution of ψ for ϕ the rule

Γ ` ∆
ϕ↔ ψ, Γ [ϕ/ψ] ` ∆[ϕ/ψ]

representing a very strong kind of substitution of equivalents is not admissible.
Two weaker kinds of substitution of equivalents are admissible though.

Lemma 5. If ↔ is the classical bi-implication and ↔∈ C the rule Substitution
of Deterministic Equivalents (EqDet) given by

ϕ ` ϕ ψ ` ψ Γ ` ∆
EqDet

ϕ↔ ψ, Γ [ϕ/ψ] ` ∆[ϕ/ψ]

and the rule Substitution of Provably Equivalents (EqPr) given by

ϕ ` ψ ψ ` ϕ Γ ` ∆
EqPr

Γ [ϕ/ψ] ` ∆[ϕ/ψ]

are admissible.

Proof. The easiest way to see that these rules are admissible is to use the sound-
ness and completeness of SC . A rule is admissible in SC if the conclusion of
the rule is derivable in SC if all the premises are. Let us first consider the rule
EqDet. Suppose that ϕ ` ϕ, ψ ` ψ and Γ ` ∆ are derivable. To show is that
ϕ↔ ψ, Γ [ϕ/ψ] ` ∆[ϕ/ψ] is derivable.

By the soundness of SC we know that ϕ |=C ϕ, ψ |=C ψ and Γ |=C ∆. Now
letM be a model such that for some disambiguations ϕ of ϕ, ψ of ψ and Γ [ϕ/ψ]
of Γ [ϕ/ψ] we have M |= ϕ ↔ ψ and M |=∧ Γ [ϕ/ψ]. From ϕ |=C ϕ it follows
that for every model all disambiguations of ϕ have the same value. Likewise,
from ψ |=C ψ it follows that all disambiguations of ψ have the same value.

Since some disambiguations of ϕ and ψ have the same value ofM this implies
that every disambiguation of ϕ has the same value as every disambiguation of ψ
in M. The disambiguations live in a deterministic truth-functional logic so we
can replace any occurrence of any disambiguation of ψ by any disambiguation
of ϕ without changing the value on M. So from M |=∧ Γ [ϕ/ψ] it follows that
M |=∧ Γ for some disambiguation Γ of Γ .

Then by Γ ` ∆ we know that M |=∨ ∆ for each disambiguation ∆ of ∆.
We can replace any disambiguation of ϕ by any disambiguation of ψ without
changing the value on M so M |=∨ ∆[ϕ/ψ] for any disambiguation ∆[ϕ/ψ].

We started with any model M satisfying ϕ ↔ ψ and Γ [ϕ/ψ] for some dis-
ambiguations and found that M satisfies ∆[ϕ/ψ] for all disambiguations, so
ϕ↔ ψ, Γ [ϕ/ψ] |=C ∆[ϕ/ψ]. By completeness this implies that ϕ↔ ψ, Γ [ϕ/ψ] `
∆[ϕ/ψ] is derivable which is what was to be shown.

Left to show is that ExPr is admissible. Suppose towards a contradiction that
ϕ ` ψ, ψ ` ϕ and Γ ` ∆ are derivable in SC but Γ [ϕ/ψ] ` ∆[ϕ/ψ] is not. Then
by the soundness of SC we have ϕ |=C ψ, ψ |=C ϕ and Γ |=C ∆ while by the
completeness of SC we have Γ [ϕ/ψ] 6|=C ∆[ϕ/ψ].

So for some disambiguations Γ [ϕ/ψ] of Γ [ϕ/ψ] and ∆[ϕ/ψ] of ∆[ϕ/ψ] we
have Γ [ϕ/ψ] 6|=C ∆[ϕ/ψ]. There are disambiguations Γ of Γ , ∆ of ∆, ϕ of ϕ and

ψ of ψ such that Γ [ϕ/ψ] = Γ [ϕ/ψ] and ∆[ϕ/ψ] = ∆[ϕ/ψ].
From ϕ |=C ψ and ψ |=C ϕ it follows that any disambiguations of ϕ and

ψ are equivalent, so in particular ϕ and ψ are equivalent. But from Γ |=C ∆
it follows that Γ |=C ∆ and by substitution of equivalents in deterministic
propositional logic this implies that Γ [ϕ/ψ] |=C ∆[ϕ/ψ], which contradicts

Γ [ϕ/ψ] 6|=C ∆[ϕ/ψ]. Our initial assumption that ϕ ` ψ, ψ ` ϕ and Γ ` ∆
are derivable and Γ [ϕ/ψ] ` ∆[ϕ/ψ] is not must therefore be false. So if ϕ ` ψ,
ψ ` ϕ and Γ ` ∆ are derivable then so is Γ [ϕ/ψ] ` ∆[ϕ/ψ].

7 Conclusion

I introduced nondeterministic semantics for propositional logic that do not sat-
isfy reflexivity. The main idea of the semantics is to use deterministic disam-
biguations of nondeterministic formulas and to say that Γ |=C ∆ if and only if
Γ |=C ∆ for all possible disambiguations Γ of Γ and ∆ of ∆. I also introduced
a sequent-style proof system SC that is sound and complete for |=C and showed
that SC allows some types of substitution of equivalents.

References

1. Lewis, D.: Logic for equivocators. Noûs 16(3) (1982) 431–441
2. Avron, A., Lev, I.: Canonical propositional gentzen-type systems. In: Proceedings

of the 1st International Joint Conference on Automated Reasoning, Springer Verlag
(2001) 529–544

3. Avron, A., Lev, I.: Non-deterministic matrices. In: Proceedings of the 34th Inter-
national Symposium on Multiple-Valued Logic. (2004) 282–287

4. Avron, A., Lev, I.: Non-deterministic multiple-valued structures. Journal of Logic
and Computation 15(3) (2005) 241–261

5. Barwise, J.: An introduction to first-order logic. In Barwise, J., ed.: Handbook of
Mathematical Logic. Elsevier Science Publishers (1977)

6. Tychonoff, A.: Ein Fixpunktsatz. Mathematische Annalen 111(1) (1935) 767–776
7. Tychonoff, A.: Über die topologische Erweiterung von Räumen. Mathematische

Annalen 102(1) (1930) 544–561
8. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge University

Press (1996)
9. Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press

(2001)
10. von Plato, J.: A proof of gentzen’s hauptsatz without multicut. Archive for Math-

ematical Logic 40(1) (2001) 9–18

