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Abstract

We prove two new results about logics involving updates and common
knowledge. The first result is that the logic LAU∗ using Arrow Common
Knowledge is more expressive than the logic LAR using Relativised Com-
mon Knowledge. The second result is that the logic LAUC using Arrow
Updates and normal Common Knowledge is equally expressive as LAU∗ .

Together with previously known results this fully determines the ex-
pressivity landscape of all logics involving any combination of normal
Common Knowledge (C), Relativized Common Knowledge (R), Arrow
Common Knowledge (U∗), Public Announcements (P) and Arrow Up-
dates (U).

Keywords: Expressivity, public announcements, arrow updates, relativized
common knowledge, arrow common knowledge
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1 Introduction

In this paper we consider all logics that can be obtained by adding a combina-
tion of common knowledge, relativised common knowledge [12], arrow common
knowledge [11], public announcements [13, 4] and arrow updates [11] to a basic
modal logic.

Generally we can use only one logic at a time. So if we have multiple logics
we have to choose between them. As such it becomes interesting to compare
them to each other. Usually every logic has its own strengths and weaknesses
so we cannot conclude that one logic is simply better than another. We can
however sometimes say that one logic is better than another in one particular
aspect, so with respect to some specific criterion.

There are several such criteria that can be used to compare logics. We
could for example look at the computational complexity for one of the decision
problems associated with the logic, or at the succinctness of the logic. Here we
want to compare logics by another criterion, namely that of their expressivity
(or expressive power). As the word suggests the expressivity of a logic is a
measure of what can be expressed in the logic. So if a logic L2 is at least as
expressive as a logic L1 then everything that can be expressed in L1 can also
be expressed in L2.

What this means is that for every L1 formula ϕ1 there is a L2 formula
ϕ2 with the same meaning; so for every L1 formula there is an equivalent L2

formula. The formulas of L1 can then be seen as abbreviations for the formulas
of L2, so everything that can be done using L1 can also be done using L2. If we
only look at what a logic can do (and not at how efficiently it does so) there is
then no reason to use L1, since L2 does at least as well in every situation.

Let us consider a well known example. Let Lprop be propositional logic with
the connectives ¬,∨,∧,→ and ↔, and let L{¬,∨} be propositional logic with
only the connectives ¬ and ∨. It is well known that for every Lprop formula
there is an equivalent L{¬,∨} formula, so L{¬,∨} is at least as expressive as
Lprop.

Here we chart the expressivity landscape of all logics under consideration,
so all 32 combinations of common knowledge, relativized common knowledge,
arrow common knowledge, public announcements and arrow updates. The ap-
proach we take is very similar to the one in [10], where the expressivity landscape
of a different (but partially overlapping) set of logics is charted.

For many of the logics the relative expressivity is already known. There are
however two important new expressivity results introduced in this paper, as well
as a number of results that follow from these two results. The first is that the
logic using relativised common knowledge is not as expressive as the logic using
arrow common knowledge. The second is that the logic using arrow updates
and normal common knowledge is equally expressive as the logic using arrow
common knowledge.
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1.1 Overview

In Section 2 we briefly introduce and informally discuss some properties and
applications of the different operators. Then, in Section 3, we give a number
of definitions that are required to compare the expressivity of the logics under
consideration. In Section 4 the expressivity landscape is shown and an overview
is given of both the previously known results and the new results. In Section 5
a proof is given of the first new result, that the logic using relativized common
knowledge is not as expressive as the logic using arrow common knowledge. In
Section 6 a proof is given of the second new result, that the logic using arrow
updates and normal common knowledge is as expressive as the logic using arrow
common knowledge.

2 Introducing the Operators

Multi-agent Kripke models can be used to model the information states of
agents. One important property of information states is that they can change.
A common way to see information change is to consider it as changes made to
the Kripke model.1

One important and very general approach to information change is to use
action models (see for example [4, 2, 3, 8]). In a logic using action models every
action [α] is associated with an action model Mα and performing [α] in a model
M changes the model to a certain submodel of the product modelM×Mα. A
notable consequence of this is that applying an action may increase the size of
your model. Another very general approach to information (and factual) change
is to use Global Graph Modifiers, see [1]. Global Graph Modifiers allow one to
add worlds, add or remove arrows and change the valuations of propositional
variables. Because worlds and arrows can be added the use of global graph
modifiers can also increase the size of your model.

Here however we focus on a particular kind of information change, where
only new information is acquired (and nothing forgotten or proven false) and
the new information is made publicly available. This restricted kind of infor-
mation change can be described using the general Action Models or Global
Graph Modifiers, but there are simpler options. New public information can
only remove access to alternatives that were previously considered possible, it
can never add new alternatives. This allows us to restrict ourselves to model
changing operators that go from a model to one of its submodels.

A model consists of a set of possible worlds, accessibility relations between
the possible worlds and the valuation of the propositional variables on the
worlds. We are modeling information change, not factual change, so the values
of the propositional variables should remain unchanged. Since we want to go

1Another approach is to consider information change as a state transition inside a larger
model. The two approaches are not fundamentally different; a change from model M1 to
model M2 can be seen as a state transition in a larger model containing both M1 and M2.
See [5] for a discussion of dynamic epistemic logic with the dynamic operations seen as state
transitions.
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from a model to one of its submodels this leaves us with the choice to let the
information change operator remove either worlds or accessibility arrows.

The most commonly used choice is to remove certain possible worlds using
public announcements (see for example [13, 4, 8]). A public announcement [ϕ]
removes all worlds where the formula ϕ does not hold from the model. A less
commonly used alternative is to remove certain accessibility arrows. A very
simple version of this is the variation on public announcements in [9, 10] where
[ϕ] does not remove the worlds where ϕ does not hold but merely the arrows to
such worlds. Removing arrows in this way has the same result as removing the
¬ϕ worlds, an inaccessible world might as well not exist.

A more powerful way to remove arrows is to use arrow updates, see [11].
An arrow update [U ] consists of a number of clauses, U = {(u1, a1, u

′
1), · · · ,

(un, an, u
′
n)}, where we do not require that ai 6= aj whenever i 6= j. An arrow

satisfies a clause (ui, ai, u
′
i) iff it is an arrow for agent ai and it goes from

a world that satisfies the start condition u1 and to a world that satisfies the
end condition u′i.

2 The update removes those arrows that satisfy none of the
clauses.3

Another operator that is often used in logics about information is the com-
mon knowledge operator CB , where B is a group of agents. The formula CBϕ
holds in a world w iff ϕ holds in all worlds w′ that are reachable from w by a
“B-path” (that is, a sequence of arrows belonging to agents in B that connect
w to a successor w1 of w, w1 to a successor w2 or w1 and so up to an arrow that
connects wn to a successor w′ of wn).

For both public announcements and arrow updates there is an associated
variant of common knowledge. The common knowledge variant for public an-
nouncements is relativized common knowledge, defined in [12]. The formula
CB(ϕ1, ϕ2) stands for ϕ2 being common knowledge relative to ϕ1. It holds in
a world w iff ϕ2 holds in all worlds w′ that are reachable from w by a B-path
that only consists of ϕ1 worlds.

The corresponding variant of common knowledge for arrow updates is arrow
common knowledge, defined in [11]. The formula {U}∗ϕ stands for ϕ being
common knowledge relative to the arrow update U . It holds in a world w iff ϕ
holds in all worlds w′ that are reachable from w by a path that only consists of
arrows that satisfy U .4

2We use the slightly awkward terms “start condition” and “end condition”, as opposed to
“precondition” and “postcondition”, in order to prevent confusion with the preconditions in
action models.

3The operator [U ] has some similarities to the operator [a1 − (ϕ1, ψ1); · · · ; an − (ϕn, ψn)]
from [1], but there are also two differences. The first difference is that [a1−(ϕ1, ψ1); · · · ; an−
(ϕn, ψn)] specifies the arrows that are to be removed whereas [U ] specifies the arrows that
are to be retained. The second and more important difference is that the clauses from [U ] are
considered simultaneously, while the clauses a1 − (ϕ1, ψ1); · · · ; an − (ϕn, ψn) are considered
sequentially.

4The ∗ in {U}∗ is a Kleene star; the operator {U}∗ is an iterated version of {U}, which is
defined byM, w |= {U}ϕ iffM, w′ |= ϕ for all worlds that are accessible from w by an arrow
satisfying a clause from U . Unfortunately {U} is visually too similar to {U}∗ to be practical,
we will write �U instead of {U}. We should be careful to distinguish {U}∗ from the operator
[U ]∗ (that is not used in this paper) that repeatedly applies an update.
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The different building blocks discussed so far can be combined in different
ways. We could for example define a logic LAPU∗ that uses basic modal logic
together with public announcements and arrow common knowledge, or a logic
LAR that uses basic modal logic together with relativized common knowledge.

2.1 Dynamic and Static Operators

The operators under consideration here can be split into two different kinds:
dynamic operators and static operators. The difference between the two kinds
is that dynamic operators change the model when they are interpreted while
static operators do not.

The dynamic operators used here are public announcements and arrow up-
dates, the static operators are the three types of common knowledge as well as
the Boolean operators and �a of basic modal logic. Two of the static operators
are combinations of common knowledge with a dynamic operator. It is worth-
while to spend a few moments to see what it means for a static operator to be
related to a dynamic operator in such a way.

Let us start by considering a logic where we have the dynamic operators,
the Boolean operators, the modal �a and a normal common knowledge operator
CB but not the two other common knowledge operators. Suppose that in this
logic we use one of the dynamic operators, say a public announcement [ϕ] in
a pointed model M, w. This announcement removes all ¬ϕ worlds from M, a
process that cannot be undone. This means that in the updated model M[ϕ]

some of the information contained in the model M is lost. In particular we
generally cannot determine from M[ϕ], w whether or not �aϕ held before the
update, so whether or notM, w |= �aϕ. Arrow updates destroy information in
the same way.

But occasionally we want to use something similar to the dynamic modalities
but that does not destroy information. This can be done by adding static op-
erators that correspond to the combination of a dynamic operator and another
operator. Such a new static operator applies its update, performs its associ-
ated operation and then un-applies the update. Or, to put it another way, it
temporarily pretends to apply a dynamic operator.

The static connective �ϕ is the combination of a � operator and a public
announcement. It first applies the announcement ϕ, then takes a step in the
updated model with � and finally it undoes the update. So we have M, w |=
�ϕψ if and only if M, w′ |= ψ for all worlds w′ that are accessible from w in
the updated model M[ϕ]. Likewise, M, w |= �Uψ if and only if M, w′ |= ψ for
all worlds w′ that are accessible from w in the updated model M[U ].

The operators �ϕ and �U do not add expressivity, however. We have
M, w |= �ϕψ if and only ifM, w′ |= ψ for all worlds w′ that are accessible from
w in the updated modelM[ϕ], so if and only ifM, w′ |= ψ for all worlds w′ that
are accessible from w in M that satisfy ϕ, so if and only if M, w |= �(ϕ→ ψ).
Formulating a formula equivalent to �Uψ is harder but it can also be done; we
haveM, w |= �Uψ if and only ifM, w |=

∧
(u1,a,u2)∈U (u1 → �(u2 → ψ)). That

the operators �ϕ and �U do not add expressivity means they would not add
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anything fundamentally new to the logic. This does not mean that they are use-
less; the operator �U is in fact used in several of the proofs in this paper. But
there is no need to take them as primitive, they can be seen as abbreviations.

Things get more complicated if we combine the dynamic operators not with
� but with common knowledge. Earlier we defined relativized common knowl-
edge CB(ϕ,ψ) as meaning “ψ holds in all worlds that are reachable by a B-
path that contains only ϕ worlds”. Note that this is equivalent to saying that
M, w |= CB(ϕ,ψ) if and only if M, w′ |= ψ for all worlds w′ that are reachable
from w by a B-path in the updated modelM[ϕ]. So relativized common knowl-
edge is indeed the static operator corresponding to the combination of common
knowledge and a public announcement.

Likewise, we defined {U}∗ψ as meaning “ψ holds in all worlds that are
reachable by a path that only uses arrows that satisfy U”. This is equivalent
to saying that M, w |= {U}∗ψ if and only if M, w′ |= ψ for all worlds w′ that
are reachable from w by a path in the updated modelM[U ]. So arrow common
knowledge is, as the name suggests, the static operator corresponding to the
combination of common knowledge and an arrow update.

The relativized common knowledge and arrow common knowledge operators
are both rather complicated, and they were introduced mainly for technical rea-
sons. Still, as [6] points out there is an informal reading of relativized common
knowledge that, while not simple, can provide some intuition behind the oper-
ator. A formula [ϕ]CBψ, which contains a public announcement and a normal
common knowledge formula, can be read as “if ψ is announced then it will be-
come common knowledge (among B) that ψ is the case”. A formula CB(ϕ,ψ) on
the other hand can be read as “if ϕ is announced then it will become common
knowledge (among B) that ψ used to be the case before the announcement”.
Likewise, [U ]CBψ can be read as “if U is announced it will become common
knowledge (among B) that ψ is the case” whereas {U}∗ψ can be read as “if U
is announced it will become common knowledge (among B) that ψ used to be
the case before the announcement”.

Unlike �ϕ and �U there is no obvious way to express CB(ϕ,ψ) and {U}∗ψ
without using one of the new static operators. In fact, in [6] it was shown
that the logic relativized common knowledge adds expressivity to a logic with
∧,¬,�a, CB and [ϕ] operators. So relativized common knowledge adds some-
thing fundamentally new to such a logic.

Arrow common knowledge is to common knowledge and arrow updates as
relativized common knowledge is to common knowledge and public announce-
ments. As such the result in [6] suggested that arrow common knowledge
would probably add expressivity to a logic with ∧,¬,�a, CB and [U ] opera-
tors. Here we prove that, surprisingly, this is not the case; for any formula using
∧,¬,�a, CB , [U ] and {U}∗ there is an equivalent formula using only ∧,¬,�a, CB
and [U ]. This means that {U}∗ does not add anything fundamentally new to
such a logic and that it could in theory be used as an abbreviation. It is not
very practical to consider {U}∗ in this way however, as the translation from
a formula with {U}∗ to one without is extremely complicated and causes an
enormous increase in formula size.

6



p, q p,¬q
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¬p, q ¬p,¬q

a, b
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b

a, b

b

b

(b) M[U ]

Figure 1: A model M representing a simple game and a model M[U ] repre-
senting the same game after a has looked at her card. Reflexive arrows are
omitted.

2.2 Public announcements and arrow updates

Public announcements are quite widely used so we assume that the reader has
encountered them before. Arrow updates on the other hand are not very com-
monly used so it seems worthwhile to give a short introduction to arrow updates,
and especially the difference between arrow updates and public announcements.

The first thing to note is that everything that can be done using public
announcements can also be done using arrow updates. In other words, arrow
updates are at least as expressive as public announcements. To see why this is
the case consider any public announcement [ϕ]. This announcement removes all
worlds that do not satisfy ϕ. With arrow updates we cannot remove any worlds,
but we can do something with the same effect: we can remove all arrows to ¬ϕ
worlds. A world that is not reachable in any way might as well not exist at all,
so this has the same effect as removing all ¬ϕ worlds.

But arrow updates can also be used in situations where public announce-
ments cannot. Let us look at a simple example, loosely based on an example
given in [11] (which was in turn based on an example in [7]).

Example 1. In a very simple card game there are two players, player a and
player b. Both players are dealt a single card, face down. Player a either has
the ace of spades (p) or the king of spades (¬p), player b either has the ace of
diamonds (q) or the king of diamonds (¬q). At this point neither player knows
which card either one of them holds. The situation as described so far can be
modeled as shown in Figure 1a.

But then suppose that a (openly) looks at her card without showing it to b.
This action is public, because a openly looks at her card. But it still creates some
private information for a, namely which card she holds. This private information
makes it impossible to model the event using a public announcement. We can
however model it quite simply using an arrow update [U ].

In every p world agent a learns that p is true, so in those worlds she no
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longer holds ¬p worlds possible. Likewise, in every ¬p world she no longer
holds p worlds possible. This means that a-arrows should only be retained if
they go from a p world to a p world or from a ¬p world to a ¬p world. We
can do this by including the clauses (p, a, p) and (¬p, a,¬p) to U . Agent b on
the other hand learns no new information that would allow him to distinguish
between worlds that he could not previously distinguish, so all b-arrows should
be retained. We can do this by including a (>, b,>) clause in U .

In the end this gives us the update U = (>, b,>), (p, a, p), (¬p, a,¬p). And
indeed, if applied toM this gives us the modelM[U ], shown in Figure 1b, which
is a faithful representation of the game after a has looked at her card.

The most important property of the update in the above example is that
the information a learns differs per world. In p worlds a learns that she holds
the ace, while in ¬p worlds she learns that she holds the king. This world-
dependence makes it impossible to fully eliminate either the p worlds or the
¬p worlds so public announcements cannot model the new information. Arrow
updates on the other hand can model the new information just fine, by removing
some (but not all) arrows between p and ¬p worlds.

3 Definitions

Let us now define the different logics that we want to compare. In order to
compare the expressivity of the different kinds of updates and common knowl-
edges it is convenient to first define a logic LT that contains all the logics we
consider. We can then compare the logics as fragments of LT . The advantage
of doing this is that it allows us to combine formulas from the different logics.
For example, [U ]CAϕ↔ {U}∗[U ]ϕ is only a well formed formula if we have one
logic that contains all of the connectives [U ], CA,↔ and {U}∗. We do have such
a logic, namely LT .

Let A be a finite nonempty set of agents and P a countable set of proposi-
tional variables.

Definition 1 (The language of LT ). The formulas of LT are given by

ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | �aϕ | CBϕ | CB(ϕ,ϕ) | [ϕ]ϕ | [U ]ϕ | {U}∗ϕ
U ::= (ϕ, a, ϕ) | (ϕ, a, ϕ), U

where p ∈ P, B ⊆ A and a ∈ A. Let ΦT be the set of formulas of LT .

We use ∧,
∨
,
∧
,→,↔,>,⊥ and ♦a in the usual way as abbreviations, omit

parenthesis where this should not cause confusion and write a for {a}. We also
slightly abuse notation by identifying an update U = (u1, a1, u

′
1), · · · , (uk, ak, u′k)

with the set U = {(u1, a1, u
′
1), · · · , (uk, ak, u′k)}. Furthermore, ifB ⊆ A we write

�Bϕ for
∧
a∈B �aϕ and (ϕ1, B, ϕ2) for {(ϕ1, a, ϕ2) | a ∈ B}. Finally, we write

� for �A.
The models for LT are the standard Kripke models. It should be noted that

although we speak of (common) knowledge we do not assume any of the frame
conditions usually associated with epistemic logic.
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Definition 2 (The models of LT ). An LT model M is a triple M = (W,R, v)
where W is a set of worlds, R : A → ℘(W × W ) assigns to each agent an
accessibility relation on W and v : P → ℘(W ) is a valuation that assigns to
each propositional variable a subset of the worlds.

We say that w is a world of M = (W,R, v) iff w ∈ W . We can now define
the semantics of LT .

Definition 3 (The semantics of LT ). Given an LT model M = (W,R, v), a
world w of M and ϕ,ψ formulas of LT define the satisfaction relation |= by

M, w |= p if w ∈ v(p),
M, w |= ¬ϕ if M, w 6|= ϕ,
M, w |= ϕ ∨ ψ if M, w |= ϕ or M, w |= ψ,
M, w |= �aϕ if M, w′ |= ϕ for all w′ such that (w,w′) ∈ R(a),
M, w |= [ψ]ϕ if M, w |= ψ implies M[ψ], w |= ϕ,
M, w |= [U ]ϕ if M[U ], w |= ϕ,
M, w |= CBϕ if M, w′ |= ϕ for all w′ such that (w,w′) ∈ R(B)∗,
M, w |= CB(ψ,ϕ) if M, w′ |= ϕ for all w′ such that (w,w′) ∈ R[ψ](B)∗,
M, w |= {U}∗ϕ if M, w′ |= ϕ for all w′ such that (w,w′) ∈ R∗[U ]

where

• W[ϕ] = {w ∈W | M, w |= ϕ},

• R[ϕ](a) = R(a) ∩ (W[ϕ] ×W[ϕ]) for a ∈ A,

• v[ϕ](p) = v(p) ∩W[ϕ] for p ∈ P,

• M[ϕ] = (W[ϕ], R[ϕ], v[ϕ]),

• R[U ](a) = {(w1, w2) ∈ R(a) | ∃(u, a, u′) ∈ U : M, w1 |= u and M, w2 |=
u′} for a ∈ A,

• M[U ] = (W,R[U ], v),

• R(B)∗ is the reflexive transitive closure of
⋃
a∈B R(a),

• R[ϕ](B)∗ is the reflexive transitive closure of
⋃
a∈B R[ϕ](a),

• R∗[U ] is the reflexive transitive closure of
⋃
a∈AR[U ](a).

We write M |= ϕ if M, w |= ϕ for every world w of M and |= ϕ if M |= ϕ for
every model M.

Most of the semantics are as usual, although there are a two things worth
pointing out. The first is that the common knowledge operators take the re-
flexive transitive closure of the relevant relation. This is not very unusual, but
neither is taking the transitive closure instead. The second is that a public an-
nouncement formula [ψ]ϕ is automatically true in every world ¬ψ world. Again,
this is not unusual but there are other options. The results presented in this
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paper also hold for the alternative semantics, only some very minor changes in
the proofs would be required.

What we are really interested in is not LT but certain fragments of it. We
define these fragments as in [10].

Definition 4 (Fragments of LT ). Let

• A, representing ‘agents’, stand for the connectives ¬,∨ and �a

• C, representing ‘common knowledge’, stand for the connective CB

• R, representing ‘relativised common knowledge’, stand for the connective
CB(ψ,ϕ)

• P, representing ‘public announcement’, stand for the connective [ϕ]

• U, representing ‘arrow updates’, stand for the connective [U ]

• U∗, representing ‘arrow common knowledge’, stand for the connective {U}∗.

The logic LX for a finite string X is the logic LT with the language restricted to
only those connectives that belong to a letter in X. Let ΦX be the set of formula
of LX .

So for example the logic LAUC is the logic using the connectives ¬,∨,�a, CB
and [U ]. We also sometimes denote the logic LX by the string X, so AUC is the
logic LAUC. We can easily define the relative expressivity of such fragments.

We write |= for the satisfaction relation of the fragments as well as for
the satisfaction relation of LT . There is no risk of confusion as the different
satisfaction relations coincide whenever multiple ones are defined.

Definition 5. Let L1 and L2 be fragments of LT . Then L2 is at least as
expressive as L1, denoted L1 � L2, if for each L1 formula ϕ1 there is an L2

formula ϕ2 such that
|= ϕ1 ↔ ϕ2.

We say that L2 is more expressive than L1, denoted L1 ≺ L2, if L1 � L2 and
L2 6� L1. We say that L2 and L1 are equally expressive, denoted L1 ≡ L2, if
L1 � L2 and L2 � L1.

We can coherently write |= ϕ1 ↔ ϕ2 even though ϕ1 and ϕ2 are in different
logics because both logics are fragments of LT . Note that the relation � is
reflexive and transitive. The relation ≡ inherits the reflexivity and transitivity
of � and is also symmetric, so it is an equivalence relation.

It will also be useful to define the depth of a formula.

Definition 6. For ϕ ∈ ΦT define the depth d(ϕ) of ϕ recursively by

• d(p) = 0 for p ∈ P,

• d(¬ϕ1) = d(ϕ1),
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• d(ϕ1 ∨ ϕ2) = max(d(ϕ1), d(ϕ2)),

• d(�aϕ1) = d(CBϕ1) = d(ϕ1) + 1,

• d(CB(ϕ1, ϕ2)) = d([ϕ1]ϕ2) = max(d(ϕ1), d(ϕ2)) + 1,

• d([U ]ϕ1) = d({U}∗ϕ1) = max(d(ϕ1), d(U)) + 1,

• d(U) = max(u,a,u′)∈U (d(u), d(u′) + 1).

We say that ϕ if of pure depth n if d(ϕ) = n and there is no subformula ϕ′ of
ϕ such that d(ϕ′) = n.

The only clause that may be somewhat surprising is that of d(U). The reason
for adding an extra +1 to the depth of end conditions is that they are evaluated
in the next world, and thus reach one world further than a start condition of
the same depth.

The concept of pure depth is useful to restrict the number of possibilities
for the form of a formula; an AC formula of pure depth 1 for example must be
either of the form �aϕ′ or of the form CBϕ

′. The formulas of depth n are the
Boolean combinations of the formulas of pure depth at most n.

Finally, it is useful to have a flexible definition of a path.

Definition 7. Given an LT model M = (W,R, v) and two worlds w1 and wn
of M a path π from w1 to wn is an ordered set of triples

π = ((w1, a1, w2), (w2, a2, w3), · · · , (wn−1, an−1, wn))

where n ∈ N, and ai ∈ A and (wi, wi+1) ∈ R(ai) for 1 ≤ i ≤ n− 1.
Let B ⊆ A, ϕ a formula and U an update. The path π is a B-path if ai ∈ B

for 1 ≤ i ≤ n − 1, a ϕ-path if M, wi |= ϕ for 1 ≤ i ≤ n and a U -path if for
1 ≤ i ≤ n − 1 there is a clause (u, a, u′) ∈ U such that M, wi |= u, a = ai and
M, wi+1 |= u′. Conditions can be combined, π is an (X1, · · · , Xk)-path if it is
an Xj-path for all 1 ≤ j ≤ k.

4 The logics under consideration

Using different combinations of A, C, R, P, U and U∗ we could define 26 = 64
different fragments of LT . Not all these fragments are interesting, however.

In this paper we do not consider logics that do not have the A connectives.
This is not because logics without some or all of the A connectives are guaranteed
to be uninteresting; logics with one of the common knowledge operators but not
the �a operator are for example comparable to temporal logics with “future”
but not “next”. But such logics without A are outside the scope of this paper
and left for further work.

This leaves us with 32 fragments. There are however a few easy reductions
of some connectives to other ones that allow us to reduce that number further.
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Lemma 1. For any LT formulas ϕ,ψ and any B ⊆ A we have |= [ψ]ϕ↔ (ψ →
[(ψ,A, ψ)]ϕ), |= CBϕ↔ CB(>, ϕ) and |= CB(ψ,ϕ)↔ {(ψ,B, ψ)}∗ϕ.

The proof should be immediately clear and is left to the reader. Lemma 1
allows us to restrict ourselves to fragments having at most one of the update
connectives [ϕ] or [U ] and at most one of the common knowledge connectives
CB , CB(·, ·) and {U}∗; if more than one of these connectives occurs in a logic
only the ‘strongest’ one is relevant.5

This leaves 12 logics that can be ordered two dimensionally, with the update
connective (if any) on one axis and the common knowledge connective (if any)
on the other. The logics and their relative expressivities are shown in Figure 2.

A AC AR AU∗

AP APC APR APU∗

AU AUC AUR AUU∗

Figure 2: The landscape of logics using basic modal logic (A) and a combina-
tion of public announcements (P), arrow updates (U), common knowledge (C),
relativised common knowledge (R) and arrow update common knowledge (U∗).
Arrows X −→ Y indicate that X ≺ Y. Double arrows X ←→ Y indicate that
X ≡ Y. Dashed gray arrows indicate previously established results, solid black
arrows indicate new results. For arrows that are part gray and dashed and part
black and solid the result in one direction was previously established but the
result in the other direction is new. Boundaries around nodes indicate equiv-
alence classes of logics that are equally expressive. For reasons of clarity not
all arrows are drawn, but the omitted arrows all follow from the drawn ones by
transitivity.

Note that although not all arrows are drawn the arrows in Figure 2 are
sufficient to know the relative expressivity of any of the logics by transitivity
and reflexivity of �.

4.1 Overview of previously known results

The arrows in Figure 2 that are drawn dashed and in gray were previously
known. That A ≡ AP was shown in [13]. That AC ≺ APC was shown in [4].
That AR ≡ APR was shown in [12]. In [6] it was shown that APC ≺ AR,

5Note that among other things this implies that LT ≡ LAUU∗ .
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which implies that APC ≺ APR. Finally, in [11] it was shown that AU ≡ AP,
AUU∗ ≡ AU∗ and AR � AU∗. The remaining dashed arrows in Figure 2 are
either trivial or follow from other dashed arrows by transitivity.

4.2 New expressivity results

The arrows that are drawn solid and in black in Figure 2 are new results. There
are ten such new results, each corresponding to one half of an arrow. They all
follow by transitivity from two results, however.

The first result is that AU∗ 6� AR. This result is proven in Section 5. This
result is not very surprising, it was already predicted in [11]. The second result
is that AU∗ � AUC. This result is proven in Section 6. Unlike the previous
result this result is rather surprising, considering that the difference between
AUC and AU∗ is very similar to the difference between APC and AR and we
have AR 6� APC.

The proof that AU∗ � AUC is very complicated and technical. We therefore
only give an overview of the proof in this paper itself and provide the details
as supplementary data. But before looking at even an overview of the proof it
might be worthwhile to consider what the difference between AUC and APC is
that causes APC to be less expressive than AR while AUC is as expressive as
AU∗. This difference is the ability to store information.

Recall that the informal readings of the operators CB(ϕ,ψ) and {U}∗ψ look
to the past. The formula CB(ϕ,ψ) holds if, after announcing [ϕ], it will be
common knowledge that ψ used to hold before the announcement. Likewise,
{U}∗ψ holds if, after announcing [U ], it will be common knowledge that ψ
used to hold before the announcement. So if we want to simulate CB(ϕ,ψ) in
APC or {U}∗ψ in AUC we have to find a way to store information about the
current model in such a way that it is not destroyed by the update. In APC
we cannot do this, so AR is more expressive than APC. But arrow updates are
more powerful than public announcements, and this extra power allows AUC
to store just enough information to simulate {U}∗ψ. The ways in which AUC
stores information are many and varied, but let us briefly consider one of them.

Suppose we want to apply an update U = (u1, a1, u
′
1), · · · , (un, an, u′n) but

first store information about which worlds satisfy a given formula ϕ. Then
instead of updating with [U ] we could update with a [U ′] = [(u1∧¬ϕ, a1, u

′
1), · · · ,

(un ∧ ¬ϕ, an, u′n)]. After this update every world that used to satisfy ϕ now
satisfies �⊥, allowing us to recognize it. Of course there are many complications
to this method. In particular, there might be worlds that satisfy ¬ϕ ∧ [U ]�⊥.
Such worlds will satisfy ¬ϕ ∧ [U ′]�⊥, so they will be false positives. But,
through a lot of technical work, we can exclude that possibility. The important
thing to note is that there is no similar way to store information using APC:
there is no public announcement [α] that guarantees that every ϕ world satisfies
¬[α]⊥∧ [α]�⊥ because there is no formula α that identifies the worlds that are
accessible from a ϕ world (as opposed to the ♦ϕ worlds from which a ϕ world
is accessible).
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Figure 3: The model Mc. This is an S5 models so every world has a reflexive
arrow for every agent, but these are not drawn for reasons of clarity. For every
n ∈ N the worlds sn and un+1 are connected by a, as are tn and wn+1.

5 AU∗ is more expressive than AR

The proof we give of the fact that AU∗ is more expressive than AR is very
similar to the usual proofs of such results. We want to show that AU∗ 6� AR, so
that there are AU∗ formulas for which there is no equivalent AR formula. The
most straightforward way to do this is to construct an AU∗ formula ξ and show
that there is no AR formula equivalent to it.

At this point we would like to proceed by constructing a model Mc with
two points w+ and w− such that ξ distinguishes between Mc, w

+ and Mc, w
−

even though there is no AR formula that distinguishes between the two worlds.
This would be sufficient to show that there is no AR formula equivalent to ξ.
Unfortunately this is too hard, we cannot find such a model. So we do something
slightly more complicated.

Instead of creating a model where ξ distinguishes between two particular
worlds w+ and w− we construct a model where ξ distinguishes between two
worlds u2i and u2i+1 for every i ∈ N. For each i there will be some AR formula
ϕi that distinguishes between u2i and u2i+1, but we will show that for such ϕi
it must hold that d(ϕi) > i. Every AR formula has a fixed and finite depth,
so while for each i there is an AR formula ϕi that distinguishes u2i from u2i+1

there is no AR formula ϕ∞ that distinguishes u2i from u2i+1 for every i ∈ N.
This shows that there is no AR formula equivalent to the AU∗ formula ξ.

Now let us construct the modelMc and the formula ξ. LetMc be the model
shown in Figure 3. Furthermore, let ξ = {(>, a,>), (p, c,¬p ∧ ¬q), (q, b,¬p ∧
¬q)}∗(♦a(p ∨ q) ∨ ♦b(p ∨ q)). Note that the accessibility relations on Mc are
reflexive, transitive and Euclidean so Mc is an S5 model.

Lemma 2. For every i ∈ N we have Mc, u2i |= ξ and Mc, u2i+1 6|= ξ.

Proof. First let us look at the subformula ♦a(p∨q)∨♦b(p∨q) of ξ. Every world
other than u0 and w0 satisfies ♦a(p∨ q). Furthermore, u0 satisfies ♦b(p∨ q). So
w0 is the only world in Mc that does not satisfy ♦a(p ∨ q) ∨ ♦b(p ∨ q). As a
result, any world in Mc satisfies ξ if and only if w0 is not reachable from that
world by a {(>, a,>), (p, c,¬p ∧ ¬q), (q, b,¬p ∧ ¬q)}-path.

Now let us look at the set {(>, a,>), (p, c,¬p∧¬q), (q, b,¬p∧¬q)} of clauses.
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Figure 4: The arrows inMc that satisfy {(>, a,>), (p, c,¬p∧¬q), (q, b,¬p∧¬q)}.
Reflexive arrows are omitted.
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Figure 5: An illustration of why CB(ϕ1, ϕ2) cannot distinguish between uj and
uj+1 if wj and sj do not satisfy ϕ1. Worlds not satisfying ϕ1 are crossed out.

The clause (>, a,>) is satisfied by all a arrows. Most b- and c-arrows do not
satisfy any of the clauses however; only the b-arrows from ti to ui and the c-
arrows from si to wi satisfy (q, b,¬p ∧ ¬q) and (p, c,¬p ∧ ¬q) respectively. The
arrows inMc that satisfy any of the clauses are therefore as shown in Figure 4.
The world w0 is reachable from uj by a {(>, a,>), (p, c,¬p∧¬q), (q, b,¬p∧¬q)}-
path if and only if j is odd. This implies that Mc, u2i |= ξ and Mc, u2i+1 6|= ξ
for every i ∈ N.

Now we should show that no AR formula ϕ of depth n := d(ϕ) can distin-
guish between u2i and u2i+1 for any i ≥ n. In order to make the induction
step in the proof proceed smoothly it is convenient to prove a slightly stronger
lemma.

Lemma 3. Take any n ∈ N, any i ≥ n, any x ∈ {s, t, u, w} and any ϕ ∈ ΦAR

such that d(ϕ) ≤ n. Then Mc, x2i |= ϕ if and only if Mc, x2i+1 |= ϕ.

Proof. By induction on n. As base case suppose that n = 0. Then ϕ is a Boolean
combination of propositional variables. The worlds x2i and x2i+1 have the same
values for all propositional variables so this ϕ cannot distinguish between them.

Suppose then as induction hypothesis that n > 0 and that the lemma holds
for all n′ < n. The proof for x = s is completely analogous to the proof for
x = t and the proof for x = u is likewise completely analogous to the proof for
x = w. We therefore omit the proofs for x ∈ {t, w} and only show that the
lemma holds for x ∈ {s, u}.
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Suppose towards a contradiction that ϕ distinguishes between x2i and x2i+1.
If a Boolean combination of formulas distinguishes between two worlds then so
does at least one of the combined formulas. We can therefore assume without
loss of generality that ϕ if of pure depth. Furthermore, if d(ϕ) < n it follows
immediately from the induction hypothesis that ϕ does not distinguish between
x2i and x2i+1 so we can also assume that d(ϕ) = n.

So ϕ is of pure depth n > 0, which implies that it must be of the form
�αϕ1 or CB(ϕ1, ϕ2) for some α ∈ A, B ⊆ A and ϕ1, ϕ2 ∈ ΦAR such that
d(ϕ1), d(ϕ2) < n.

First let us suppose that ϕ = �αϕ1. We have 2i ≥ 2n > 0 so for every
arrow from x2i to yk (with y ∈ {s, t, u, w} and 2i + 1 ≥ k ≥ 2i − 1) there is
a corresponding arrow from x2i+1 to yk+1 and vice versa. This implies that
in order for ϕ to distinguish between x2i and x2i+1 it is necessary that ϕ1

distinguishes between some yk and yk+1 with y ∈ {s, t, u, w} and 2i + 1 ≥ k ≥
2i − 1. But k ≥ 2i − 1 ≥ 2n − 1 > 2(n − 1) ≥ 2d(ϕ1) so ϕ distinguishing
between yk and yk+1 would contradict the induction hypothesis. The formula
ϕ therefore cannot distinguish between x2i and x2i+1.

Let us then suppose that ϕ = CB(ϕ1, ϕ2). If B does not contain both a
and at least one of b, c then (B,ϕ)-paths cannot take us far in this model: if
a 6∈ B then at most the worlds s2i, u2i, t2i and w2i are B-reachable from x2i

and if b, c 6∈ B then at most the worlds s2i, u2i+1 are B-reachable from s2i, t2i
and w2i+1 from t2i, u2i and s2i−1 from u2i or w2i and t2i−1 from w2i. In each
case there are counterparts to these worlds reachable from x2i+1 and by the
induction hypothesis ϕ2 cannot distinguish between these counterpart worlds.
So CB(ϕ1, ϕ2) cannot distinguish between x2i and x2i+1.

So in order to distinguish between x2i and x2i+1 the set B must contain both
a and at least one of b, c. If x2i and x2i+1 are reachable from each other by a
(B,ϕ1)-path then, independent of ϕ2, we haveMc, x2i |= CB(ϕ1, ϕ2) if and only
ifMc, x2i+1 |= CB(ϕ1, ϕ2). So in order to distinguish the worlds there must be
at least one ¬ϕ1 world on every B-path from x2i to x2i+1. Furthermore, this
¬ϕ1 world cannot be either x2i or x2i+1, since then CB(ϕ1, ϕ2) would reduce to
ϕ2 on both worlds and ϕ2 cannot distinguish between them.

The model Mc is constructed in such a way that if every B-path from x2i

to x2i+1 contains at least one ¬ϕ1 world then so does every B-path from either
of those worlds to any world further than two steps away. Exactly which worlds
must satisfy ¬ϕ1 depends on x and B though.

Suppose x = u and B ∩ {a, b, c} = {a, b, c}. Then in order for every B-
path between u2i and u2i+1 to contain at least one ¬ϕ1 world we have to have
Mc, sj 6|= ϕ1 and either Mc, tj 6|= ϕ1 or Mc, w2i+1 6|= ϕ1. But, since ϕ1 is of
depth ≤ n−1 it follows from the induction hypothesis that it cannot distinguish
between s2i+2, s2i+1, s2i and s2i−1, between w2i+2, w2i+1, w2i and w2i−1 or
between t2i+2, t2i+1, t2i and t2i−1. But then every (B,ϕ1)-path from u2i can
contain at most the worlds u2i and t2i. By the induction hypothesis none of
these worlds can be distinguished from their counterpart by ϕ2, so CB(ϕ1, ϕ2)
cannot distinguish between u2i and u2i+1. See Figure 5 for an illustration of
the (B,ϕ1)-paths if w2i and s2i do not satisfy ϕ1.
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The situations for the other options for x and B are similar. The following
table shows which worlds have to satisfy ¬ϕ1 and which worlds (B,ϕ1)-paths
from x2i can contain, at the most. Note that only maximal (with respect to set
inclusion) sets are given. For example, one of the options for ¬ϕ1 worlds in the
case x = u and {a, b, c} is sk and tk (for all 2i + 2 ≥ k ≥ 2i− 1) in which case
paths from x2i can contain only the world x2i itself. But the other option is for
sk and wk to satisfy ¬ϕ1 in which case paths from x2i could contain both u2i

and t2i.

Must satisfy ¬ϕ1 Paths from x2i can
x B ∩ {a, b, c} (∀k ∈ {2i− 1, 2i, 2i+ 1, 2i+ 2}) contain at most
u {a, b, c} sk and tk or wk {u2i, t2i}
u {a, b} sk {u2i, t2i, w2i+1}

u {a, c} sk, tk or wk
{u2i, s2i−1, t2i−1} or
{u2i, s2i−1, w2i−1}

s {a, b, c} uk and wk or tk {s2i, t2i} or {s2i, w2i}
s {a, b} uk {s2i, t2i, w2i+1}
s {a, c} tk or wk {s2i, u2i+1, t2i}

In every one of these cases it follows from the induction hypothesis that ϕ2

cannot distinguish between the path from x2i and the path from x2i+1. So
CB(ϕ1, ϕ2) does not distinguish between x2i and x2i+1.

For every possible form of ϕ we have now shown that ϕ does not distinguish
between x2i and x2i+1, contradicting the assumption that ϕ does distinguish
between them and thereby completing the proof.

Recall that we did not assume any of the frame conditions often used in
epistemic logic, so we use any K-model as opposed to only KD45-, S4- or S5-
models. The model Mc that we used is the proof of Lemma 3 is an S5 model
(and therefore also a KD45- and S4-model) though. As a result the proof does
not depend on the fact that we use K-models, allowing us to conclude that AU∗

is more expressive than AR not only over K but also over KD45, S4 and S5.

6 AUC is equally expressive as AU∗

In this section we show that AU∗ � AUC. Unfortunately the proof is very long
and technical. We therefore give only an overview of the proof here and leave
the full proof as Appendices A, B and C in the supplementary data.

6.1 Notation

Due to the technical nature of the proof even the overview is made easier by in-
troducing some more notation. First let us define some abbreviations regarding
� and ♦.

Definition 8. For any ϕ ∈ ΦT , B ⊆ A and U an arrow update let
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• �· Bϕ stand for ϕ ∧�Bϕ and ♦·Bϕ stand for ϕ ∨ ♦Bϕ,

• �Uϕ stand for
∧

(u1,a,u2)∈U (u1 → �a(u2 → ϕ)),

• ♦Uϕ stand for
∨

(u1,a,u2)∈U (u1 ∧ ♦a(u2 ∧ ϕ)).

The formulas �Uϕ and ♦Uϕ thus state that ϕ holds in every/at least one
U -successor.6

It is also convenient to be able to specify certain arrows that are not to be
retained. We do this by overlining the clauses that specify arrows that should be
removed. Let U1 = {(u1, a1, u

′
1), · · · , (uk, ak, u′k)} and U2 = {(uk+1, ak+1, u′k+1),

· · · , (uk+l, ak+l, u′k+l)}. An arrow is retained by the update U = U1 ∪ U2 iff it
satisfies at least one of the clauses of U1 and none of the clauses of U2. We
can define updates with overlined clauses as abbreviations of updates without
overlined clauses. The trick is to note that an arrow from w1 to w2 for agent a
satisfies none of the clauses in U2 if and only if for every clause (u, a, u′) ∈ U2

either M, w1 6|= u or M, w2 6|= u′. In such a case we can partition U2 into U ′

and U2 \U ′ where w1 does not satisfy the start conditions of U ′ and w2 does not
satisfy the end conditions of U2\U ′. So, for any U ′ ⊆ U2, if (ui, ai, u

′
i) ∈ U1 then(

ui ∧
∧

(uj ,ai,u′j)∈U ′
¬uj , ai, u′i ∧

∧
(uj ,ai,u′j)∈U2\U ′ ¬u

′
j

)
satisfies a clause from U1

and none of the clauses from U2.

Definition 9. For U1 = {(u1, a1, u
′
1), · · · , (uk, ak, u′k)} and U2 =

{(uk+1, ak+1, u′k+1), · · · , (uk+l, ak+l, u′k+l)} let U1 ∪ U2 stand for
ui ∧ ∧

(uj ,ai,u′j)∈U ′

¬uj , ai, u′i ∧
∧

(uj ,ai,u′j)∈U2\U ′

¬u′j

 | (ui, ai, u′i) ∈ U1, U
′ ∈ ℘(U2)

 .

We use U as shorthand for {>,A,>} ∪ {(u, ai, u′) | (u, ai, u
′) ∈ U}. The

formulas �Uϕ and ♦Uϕ thus state that ϕ holds in every/at least one world that
is a successor but not a U -successor.

We also need notation for two more concepts about formulas.

Definition 10. For ϕ ∈ ΦT let Pvar(ϕ) be the set of propositional variables
that occur in ϕ.

Definition 11. For Q ⊆ P and n ∈ N let ΦnQ := {ϕ ∈ ΦAUC | d(ϕ) ≤
n and Pvar(ϕ) ⊆ Q}.

The main use of ΦnQ will be in conjunctions
∧
ϕ∈ΦnQ

ψϕ. Strictly speaking

this is of course not a formula, as it contains an infinite number of conjuncts.
However, if Q is finite—as it will be when we use it—the set ΦnQ contains only
a finite number of mutually non-equivalent formulas. We can then consider∧
ϕ∈ΦnQ

ψϕ to be a conjunction over some maximal choice of non-equivalent

formulas in ΦnQ.

6Note that �U is the static operator associated with � and [U ] and that ♦U is the static
operator associated with ♦ and [U ], as discussed in Section 2.1.
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6.2 Variable use

In the proof that AU∗ � AUC a large number of formulas are defined. While
the names given to the formulas do not, strictly speaking, matter there is a
pattern in the naming, and knowing this pattern may aid in understanding the
proof. The proof finds a AUC formula α that is equivalent to {U}∗ϕ by using
a case distinction.

A formula δi is a AU∗ formula corresponding to case i. A formula βi is
an AUC formula that is both necessary and sufficient for being in case i, so
|= δi ↔ βi. A formula αi finally is a AUC formula that is equivalent to {U}∗ϕ
given that we are in case i, so |= (δi ∧ {U}∗ϕ)↔ (βi ∧ αi).7

6.3 The main strategy

Fix any arrow update U containing only AUC formulas and any AUC formula
ϕ and let χ := {U}∗ϕ. If we can find a AUC formula α such that |= α ↔ χ
that would suffice to show that AUC is at least as expressive as AU∗.

What we need then is a strategy to find such α. This poses two challenges.
First, given any pointed model M, w we must identify the worlds that are U -
reachable from w. Second, we must check whether ϕ holds in all of those worlds.

The most straightforward method to identify the U -reachable worlds is to
update with [U ]; the U -reachable worlds inM are exactly the reachable worlds
in M[U ]. Unfortunately the update [U ] may destroy information, so given a
world w′ ofM it may be impossible to determine fromM[U ] whetherM, w′ |=
ϕ. By using this simple method to solve the first problem we would make it
impossible to solve the second problem.

So in order to solve both problems we need to update with a different ar-
row update U ′. This U ′ will be very similar to U so the reachable worlds in
M[U ′] are mostly the U -reachable worlds inM. But in addition to most arrows
from U the update U ′ will retain just enough structure to create witnesses for
the existence of certain worlds in M. The question then is what worlds we
want to create witnesses for and how we want to use them. Again there is a
straightforward choice, namely to create witnesses for ¬ϕ worlds. But, again,
this straightforward choice runs into trouble. So instead we create witnesses
for worlds that are “on the boundary” of the U -reachable area, so those worlds
reached by a U -arrow from which a U -arrow departs. So we take U ′ in such a
way that in M[U ′] every maximal path ends in a witness world.

We then make one final change. Let U ′′ = U ′ ∪ {(¬ϕ,A,>)}. This change
cuts all paths that contain a ¬ϕ world. So in M[U ′′] maximal paths end in a
witness world if and only if they do not contain a world that was a ¬ϕ world
in M. So M, w |= {U}∗ϕ if and only if every maximal path from M[U ′′] ends
in a witness world. There are of course several complications, but those can be
dealt with. Let us look at a very simple example.

7As the choice of the symbols α, β and δ suggests there are also formulas γi. These only
occur in the detailed proof in the supplementary data though, where γi is a necessary condition
for being in case i, so |= δi → γi.
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Figure 6: An example of using ¬p worlds as witnesses. The formula ϕ holds
everywhere except where noted otherwise.

Example 2. Suppose U = (p,A, p). Then we can create witnesses for U -
reachable worlds from which a U -arrow departs by retaining arrows from p
worlds to ¬p worlds, so by taking U ′ = (p,A, p), (p,A,¬p). We then have
U ′′ = (p,A, p), (p,A,¬p), (¬ϕ,A,>). Consider the pointed models M, w and
M′, w′ as shown in Figure 6. We want to check whether every path from w (resp.
w′) inM[U ′′] (resp. M′[U ′′]) ends in a witness world, so we check for CA(�⊥ →
¬p). We have M[U ′′], w 6|= CA(�⊥ → ¬p) and M′[U ′′], w |= CA(�⊥ → ¬p) so

M, w 6|= {U}∗ϕ and M′, w′ |= {U}∗ϕ.
But even with an example as simple as U = (p,A, p) complications can occur

if we look at different models. For example, the method as described above will
not work if the origin world w satisfies either ¬p or CAp. Both these cases can
be easily dealt with however, by checking for them before applying [U ′′] and
treating them separately.

A more interesting kind of complication is ifM, w 6|= CAp but there are some
branches that are reachable from w that do satisfy CAp. If we simply apply [U ′′]
these branches will end in a p world and therefore look just like branches that
were cut short due to the presence of a ¬ϕ world. So we risk getting false
positives for the detection of ¬ϕ worlds. The solution to this complication is to
cut off all CAp branches unless they contain a ¬ϕ world. This means we have
to modify U ′′ to U ′′′ = U ′′ ∪ {(>,A, CA(p ∧ ϕ))}.

These are all the complications we can encounter for this simple U however.
The formula {(p,A, p)}∗ϕ is equivalent to

ϕ ∧ (CAp→ CAϕ) ∧ (¬CAp→

[(p,A, p), (p,A,¬p), (¬ϕ,A,>), (>,A, CA(p ∧ ϕ))]CA(�A⊥ → ¬p)),

where the first two conjuncts take care of the two degenerate cases and the third
uses witnesses as described above.

20



w

U -reachable
(from w)

Not U -reachable
(from w)

w1

ψ1

w2

¬ψ1

ψ2

w3

U U

w1

ψ1

w2

ψ2

w3

¬ψ2U U

Figure 7: Two possibilities for a U -arrow following a U -arrow.

6.4 Creating witnesses

The main strategy requires us to create witnesses for worlds that are on the
boundary of a U -area. We leave the details of how to do this to the supplemen-
tary data, but here we do present a global overview of why it is always possible
to create such a witness.

The important realization is that whenever there is a world reached by a U -
arrow and from which a U -arrow departs then there must be a simple difference
between two nearby objects. We call this difference between the two objects a
boundary condition.8

Here nearby means “reachable in at most d({U}∗ϕ) steps”. What it means
for a difference to be simple is a little more complicated. Let us take a closer
look at the situation. We have a world, call it w2, that is reached by a U -arrow
and from which a U arrow departs. Let w1 be the source of the U -arrow and
w3 the destination of the U -arrow.

Let us focus on the arrows from w1 to w2 and from w2 to w3 for a moment.
The arrow from w1 to w2 is a U -arrow so there is a clause (ψ1, a, ψ2) ∈ U that the
arrow satisfies. The arrow from w2 to w3 is not a U -arrow so in particular it does
not satisfy (ψ1, a, ψ2). Then there are three possibilities: the first possibility is
that the arrow from w2 to w3 is not an a-arrow. The second possibility is that
M, w2 6|= ψ1. The third possibility is that M, w3 6|= ψ2. For the latter two
possibilities see Figure 7.

If the first possibility holds the nearby objects that differ are arrows, and the
simple difference between them is that they belong to different agents. So the
first boundary condition is that there are nearby arrows belonging to different
agents. Let us suppose then that there are no two nearby arrows that belong
to different agents. So we are working in a single-agent part of the model.

Let us take a closer look at the second and third possibilities. In both cases
there is a U -reachable world wi satisfying ψi ∧ ♦¬ψi with i ∈ {1, 2}. This

8Note that boundary conditions are not called so because they only occur on the boundary.
Instead they are called so because they have to occur on every boundary.
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difference between the world wi satisfying ψi and the world wi+1 satisfying ¬ψi
has to “come from somewhere”.

One possible cause for the difference between wi and wi+1 is the existence of
two nearby worlds w′ and w′′ and a propositional variable p such thatM, w′ |= p
and M, w′′ 6|= p. This is the second kind of boundary condition; a difference in
the value of a propositional variable in two worlds.

Suppose then that we are in a situation where there are no nearby arrows for
different agents and no nearby difference in propositional variables. Then the
only possible cause for the difference between wi and w′i is the existence of one
or more worlds satisfying �⊥ (and some satisfying ♦>). This is the third kind
of simple difference, some worlds having a successor and other worlds having
none.

For technical reasons it is convenient to split this simple difference up unto
two boundary conditions. The first boundary condition is when there is a nearby
world satisfying ♦ψ′ ∧ ♦¬ψ′, with ψ′ a formula of depth lower than ψi. We
are still in the situation where there are no different agents and no different
propositional variables, so either the ψ′ or the ¬ψ′ branch must contain a nearby
�⊥ world. But it is not necessary that both branches contain such a world.
The other boundary condition is when wi is near a dead end. In that case
M, wi |= ♦k�⊥ ∧�k+1⊥ for some k ≤ n.

So the four kinds of boundary condition are:

1. Two arrows that belong to different agents.

2. Two worlds that have a different value for some propositional variable.

3. A world satisfying ♦ψ′ ∧ ♦¬ψ′ for some ψ′.

4. The world wi being one step further away from a dead end than the world
wi+1.

In addition to these four conditions there are also two “degenerate boundary
conditions”. These represent situations where there is no boundary at all.

5. There are reachable U -arrows but no reachable U -arrows.

6. There are no departing U -arrows at all.

These are the only possibilities. This should be intuitively clear, but we also
provide a full proof in Section C in the supplementary data.

For each of the first four boundary conditions we can create a witness, and
in the last two we do not need a witness because {U}∗ϕ reduces to CAϕ or ϕ
respectively. The witness for the first boundary condition is simply the arrow
that belongs to a different agent. The witness for the second boundary condition
is a world with a different value for the variable. The witness for the fourth
boundary condition is the dead end itself. The only difficult boundary condition
is the third, where we have ♦ψ′∧♦¬ψ′. In that case we cut off either the branch
starting at the ψ′ successor or the branch starting at the ¬ψ′ successor. This
results in a world satisfying ♦�⊥ ∧ ♦♦>, which we use as witness.
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6.5 The case distinction

We have six different boundary conditions (two of which are degenerate). Un-
fortunately each of those is solved in a different way. This can be problematic,
because there may be different branches with different boundary conditions and
we can only solve one of them at a time. The solution is to make a case distinc-
tion that allows us to solve the different conditions one at a time.

We have our four types of boundary condition and two types of degenerate
boundary condition. Based on these types we want to make a case distinction.
To every world in any model we assign one of six cases. Case number i is associ-
ated with boundary condition type i, but not in an entirely straightforward way:
a world is in case i if and only if there is at least one U -reachable world satis-
fying boundary condition type i and no U -reachable world satisfying boundary
condition type j < i. Do recall that boundary conditions may “coincidentally”
hold in worlds that are not on the boundary of the U -area. These “coincidental”
boundary conditions do count for which case we are in.

Defining the cases in this way gives us three important properties for our
case distinction. Firstly the cases are mutually exclusive, since case i requires
a lack of worlds with condition j < i. Secondly the cases are exhaustive, there
is always an accessible branch with one of the (possibly degenerate) boundary
conditions. Finally, if a world w is in case i and w′ is U -reachable from w then
w′ is either in case i or in a case j > i. After all, if a world with boundary
condition k < i would be U -reachable from w′ then the same branch would be
U -reachable from w contradicting the assumption that w is in case i.

These three properties allow us to solve all cases by “working backwards”.
We first find a formula αi+1 that is equivalent to {U}∗ϕ on worlds in case i+ 1.
Then we use the fact that we have already solved case i+ 1 to solve case i. The
process is best explained with the help of a series of example figures, so consider
Figures 8–11.

Example 3. First consider the model Mt as shown in Figure 8. If a world
satisfies boundary condition i then the world is labeled bi. There could be
boundary conditions of many different types but in order to keep the example
simple we consider an example where only boundary conditions of types 1, 2
and 3 occur.

Note that some worlds satisfy multiple boundary conditions. In particular,
every world that is the endpoint of a branch, and therefore satisfies �U⊥, sat-
isfies condition 6 in addition to any other conditions it may satisfy. This does
not matter though; if a world w satisfies conditions i and j > i then any world
that can reach w is either in case i or in some case k < i. Also note that there
is one “coincidental” boundary condition of type 1 in the lowest branch of the
model. Some of the worlds are labeled wj for some 1 ≤ j ≤ 5. We will be taking
a closer look at those worlds. The worlds w1 and w2 are in case 3, the world w3

is in case 2 and the worlds w4 and w5 are in case 1.
In order to determine on which worlds in this model the formula {U}∗ϕ

holds we start by considering those worlds that are in case 3. There are no
boundary conditions of type 4, 5 or 6 in this model so we know how to solve
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w5

w4

b1

w3

w2

¬ϕ

w1

b1 ∧ b6

b3 ∧ b6

b2 ∧ b6

b3 ∧ b6

· · ·
· · ·
· · ·
· · ·

Figure 8: The U -reachable part of an example model Mt used to illustrate the
method of working backward through the cases. The dots at the end of each
branch represent the fact that the model continues, but with non-U arrows.

w5

w4

w3

w2

w1

c3

c3

· · ·
· · ·
· · ·
· · ·

Figure 9: The model Mt[U ′′3 ]. Worlds not in case 3 are grayed out. A witness
for condition 3 is represented by c3.

w5

w4

w3

¬α3 ∧ β3

w2

α3 ∧ β3

w1

c2

· · ·
· · ·
· · ·
· · ·

Figure 10: The modelM
t[U ′′2 ∪(>,A,α3∧β3)]

. Worlds not in case 2 are grayed out.

A witness for condition 2 is represented by c2.
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w5

w4

c1

α2 ∧ β2

w3

¬α3 ∧ β3

w2

α3 ∧ β3

w1

c1 · · ·
· · ·
· · ·

· · ·
Figure 11: The modelM

t[U ′′3 ∪(>,A,α2∧β2)∪(>,A,α3∧β3)]
. Worlds not in case 1 are

grayed out. A witness for condition 1 is represented by c1.

case 3; we use an update [U ′′3 ] to create witnesses for worlds satisfying boundary
condition 3 and additionally remove arrows to ¬ϕ worlds. See Figure 9. We
can then see that every path from w1 in Mt[U ′′3 ] ends in a witness world, so
Mt, w1 |= {U}∗ϕ. There is however a path from w2 in Mt[U ′′3 ] that does not
end in a witness world so Mt, w2 6|= {U}∗ϕ.

Now we can use what we have learned about case 3 to solve case 2. Just like
in case 3 we use an update U ′′2 that creates witnesses for boundary condition
2 and that removes arrows to ¬ϕ worlds. But we add one additional clause.
Recall that we use β3 for the formula that identifies the case 3 worlds and α3

for the formula that is equivalent to {U}∗ϕ in case 3 worlds. This means that
the clause (>,A, α3 ∧ β3) removes arrows to case 3 worlds if and only if they
satisfy {U}∗ϕ.9 The resulting modelM

t[U ′′2 ∪(>,A,α3∧β3)]
is shown in Figure 10.

Note that all paths from w3 end in a witness world, so Mt, w3 |= {U} ∗ ϕ.
Finally we can use both previous cases to solve case 1. Again we start with

an update U ′′1 to create witnesses and remove arrows to ¬ϕ worlds. But now
we add two extra clauses, (>,A, α2 ∧ β2) and (>,A, α3 ∧ β3). See Figure 11 for
the resulting model M

t[U ′′3 ∪(>,A,α2∧β2)∪(>,A,α3∧β3)]
. We have Mt, w2 6|= α3, so

the arrow to w2 is not removed by the update. As a result there is a path from
w5 that does not end in a witness world, soMt, w5 6|= {U}∗ϕ. Note that, unlike
the arrow to w2, the arrow to w3 is removed, because Mt, w3 |= α2 ∧ β2. As a
result every path from w4 ends in a witness world, so Mt, w4 |= {U}∗ϕ.

6.6 Further Complications

The method detailed above allows us to deal with the most important compli-
cation, namely that there could be different branches with different boundary
conditions. Unfortunately there are several remaining complications. Notable
examples include the fact that the U -arrows retained to create witnesses might
connect one U -area to another, and the fact that for one of the witness types

9If there were branches in cases 4, 5 or 6 we would have to add additional clauses
(>,A, α4 ∧ β4), (>,A, α5 ∧ β5) and (>,A, α6 ∧ β6) as well.

25



it is impossible to tell whether a given path ends in (as opposed to contains) a
witness world. We also need a large number of subcases in addition to the six
main cases.

These complications only arise in the detailed proof however, so the ways to
deal with these complications are also given there.

6.7 Formulas Representing the Cases

Above the different cases were described informally. But before proving that
AU∗ � AUC we should find formal descriptions of the cases. Which case we
are in is determined by the existence or nonexistence of certain kinds of worlds
within a certain distance of a U -reachable world. This kind of condition is easily
phrased in AU∗ but not in AUC so let us first describe the conditions in English
and AU∗.

Recall that χ = {U}∗ϕ where ϕ is a AUC formula and U contains only AUC
formulas. Let n := d(χ). The nearby difference must then be within distance n
of a U -reachable world. For technical reasons we check for some differences up
to a distance of a multiple of n though. This gives us the following cases.

1. We are in the first case if ♦U> and there are at least two agents a1 and a2

that have an arrow within distance 3n of a U -reachable world. The AU∗

representation of this case is

δ1 := ♦U> ∧
∨

a1 6=a2∈A

(¬{U}∗�· 3n�a1⊥ ∧ ¬{U}∗�· 3n�a2⊥).

2. We are in the second case if ♦U>, we are not in the first case and there is
a propositional variable p ∈ Pvar(χ) such that both p and ¬p hold within
distance 3n of a U -reachable world. The AU∗ representation of this case
is

δ2 := ♦U> ∧ ¬δ1 ∧
∨

p∈Pvar(χ)

(¬{U}∗�· 3np ∧ ¬{U}∗�· 3n¬p).

3. We are in the third case if ♦U>, we are not in the first or second case and
there is a world w2 within distance n of a U -reachable world such that the
successors of w2 are distinguishable by a AUC formula of depth at most
2n using only the propositional variables in χ. The AU∗ representation of
this case is

δ3 := ♦U> ∧ ¬δ1 ∧ ¬δ2 ∧
∨

ψ∈Φ2n
Pvar(χ)

¬{U}∗¬♦· n(♦ψ ∧ ♦¬ψ)

4. We are in the fourth case if ♦U>, we are not in one of the previous cases
and there is a U -reachable world where ♦U> holds. The AU∗ representa-
tion of this case is

δ4 := ♦U> ∧ ¬δ1 ∧ ¬δ2 ∧ ¬δ3 ∧ ¬{U}∗¬♦U>
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5. We are in the fifth case if ♦U>, we are not in one of the previous cases and
there is no U -reachable world where ♦U> holds. The AU∗ representation
of this case is

δ5 := ♦U> ∧ ¬δ1 ∧ ¬δ2 ∧ ¬δ3 ∧ ¬δ4 ∧ {U}∗¬♦U>

6. We are in the sixth case if ¬♦U>. The AU∗ representation of this case is

δ6 := ¬♦U>.

In order to construct the AUC formula α that is equivalent to the AU∗

formula χ we first have to find AUC formulas β1, · · · , β6 such that |= βi ↔ δi
for i ∈ {1, · · · , 6}. Then we find α6 such that |= (δ6∧χ)↔ (β6∧α6), use this α6

to find α5 such that |= (δ5 ∧ χ)↔ (β5 ∧ α5) and so on until we have α1, · · · , α6

such that

α = (β1 → α1) ∧ (β2 → α2) ∧ (β3 → α3) ∧ (β4 → α4) ∧ (β5 → α5) ∧ (β6 → α6).

6.8 AU∗ � AUC

Lemma 4. There are AUC formula β1, · · · , β6 such that |= βi ↔ δi for all
1 ≤ i ≤ 6.

The proof of this is included as Section A in the supplementary data.

Lemma 5. There are AUC formulas α6, · · · , α1 such that |= (δi∧χ)↔ (δi∧αi)
for all 6 ≥ i ≥ 1.

The proof of this is included as Section B in the supplementary data.

Lemma 6. There is an AUC formula α such that |= χ↔ α.

Proof. The cases δ1, · · · , δ6 are exhaustive, so |= χ↔ ((δ1 → χ)∧· · ·∧(δ6 → χ)).
Then by Lemma 5 there are AUC formulas α1, · · · , α6 such that |= χ↔ ((δ1 →
α1) ∧ · · · ∧ (δ6 → α6)). Furthermore, by Lemma 4 there are AUC formulas
β1, · · · , β6 such that |= χ ↔ ((β1 → α1) ∧ · · · ∧ (β6 → α6)). This proves the
lemma with α = (β1 → α1) ∧ · · · ∧ (β6 → α6).

The formula χ was taken χ = {U}∗ϕ with any update U containing only
AUC formulas and any AUC formula ϕ. Lemma 6 therefore allows us to elimi-
nate all occurrences of operators {U}∗ in any AU∗ formula by first eliminating
the innermost occurrences and working outward. We therefore have the follow-
ing corollary.

Theorem 1. AUC ≡ AU∗

Proof. It was shown in [11] that AUU∗ ≡ AU∗, which together with Lemma 1
shows that AUC � AU∗. Furthermore, it follows from Lemma 6 that AU∗ �
AUC. We therefore have AUC ≡ AU∗.
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7 Conclusion

We have demonstrated two new expressivity results about logics using arrow
updates. The first result is that the logic LAU∗ using arrow common knowledge is
strictly more expressive than the logic LAR using relativised common knowledge.
This result is not surprising and had in fact been predicted in [11] where AU∗

was introduced.
The second result is that the logic LAUC using arrow updates and common

knowledge is as expressive as LAU∗ . This result is rather surprising considering
that the logic LAR was shown in [6] to be strictly more expressive than the logic
LAPC using public announcements and common knowledge, and the difference
between LAUC and LAU∗ is comparable to the difference between LAPC and
LAR.

These two new results together with results from [13], [4], [12], [6] and [11]
fully determine the expressivity landscape of all logics using any combination
of common knowledge, relativised common knowledge, public announcements,
arrow updates and arrow common knowledge. This expressivity landscape is
shown in Figure 2.

One interesting property of this landscape is that there are no logics in
it with incomparable expressivity; if LX and LY are logics of the kind under
consideration then either LX � LY or LY � LX.

A remaining open question is the succinctness of the different logics. In
particular, the translation from LAU∗ to LAUC demonstrated in this paper has
an extremely high growth in formula size. Whether this is necessarily so or
there is an efficient translation is not currently known.
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A Constructing β1, · · · , β6

In order to prove Lemma 4 we have to show that there are β1, · · · , β6 such that
|= δi ↔ βi for all 1 ≤ i ≤ 6. Here we construct the βi.

A.1 Constructing β1

Recall that case 1 is the case where there are at least two agents for which there
is an arrow departing from a world within 3n steps of a U -reachable world. We
have

δ1 = ♦U> ∧
∨

a1 6=a2∈A

(¬{U}∗�· 3n�a1⊥ ∧ ¬{U}∗�· 3n�a2⊥).

A.1.1 Subcases of case 1

There are several subcases of case 1. Let B1, · · · , B2|A|−|A|−1 be all the subsets
of A with at least two elements, ordered in such a way that if Bi ⊂ Bj then
i > j and let A = {a1, · · · , a|A|}. The subcases of case 1 are the cases 1.i.-1

with 1 ≤ 1 ≤ 2|A| − |A| − 1 and the cases 1.i.j.k with 0 ≤ i, j ≤ |A|, i 6= j and
0 ≤ k ≤ 3n.

The case 1.i.-1 corresponds to the case where there are U -paths from w that
contain multiple agents (so if there are multiple agents for which a U -arrow
departs from a U -reachable world) and Bi is exactly the set of agents for which
there is such an arrow. The case 1.i.j.k corresponds to the case where the U -
paths contain only agent ai, j is the smallest number other than i such that an
aj arrow departs from a world within distance 3n from a U -reachable world and
k is the shortest distance from a U reachable world to a world from which an
ak arrow departs.

The minimality conditions serve to make the different subcases easy to order.
The cases 1.1. − 1 to 1.2|A| − |A| − 1. − 1 followed by the cases 1.1.2.0 to
1.|A|.|A − 1|.3n are mutually exclusive, exhaustive of case 1, and taking a U -
arrow can take you from one case to a later one but never to a previous one.

A.1.2 Constructing β1.i.−1

For 1 ≤ i ≤ 2|A| − |A| − 1 let

γ1.i.−1 :=
∧
a∈Bi

[U ]¬CA�a⊥

and
β1.i.−1 := γ1.i.−1 ∧

∧
j<i

¬γ1.j.−1.

The formula β1.i.−1 holds iff the agents in Bi all occur in U -paths and there is
no superset of Bi for which this is the case, so if Bi is exactly the agents that
occur in U -paths, which is case 1.i.− 1. This already implies ♦U> so we don’t
have to include it explicitly.
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A.1.3 Formulas useful for case 1.i.j.k

Let
U0
a := U ∪ {(>, a,>)}.

Furthermore, for a ∈ A let

U i+1
a := U ia ∪ {(♦i+1♦a>,A,♦i♦a>)}.

Now let
γ1.a.i := [U ia]¬CA�a⊥.

The arrow update U ia retains exactly the arrows that are U -arrows, a-arrows or
arrows leading towards a ♦a> world within distance i.

Suppose now that there are no a-arrows departing from any world within i
steps of a U -reachable world. Then the only reachable arrows that are retained
are the U -arrows, none of which is an a-arrow by assumption. We then have
¬γ1.a.i.

Suppose on the other hand that there is an a arrow departing from a world
within i steps of a U -reachable world. Then because of the (♦j+1♦a>,A,♦j♦a>)
clauses the path to this a arrow will be retained and because of the (>, a,>)
clause the a arrow itself will be retained. We then have γ1.a.i.

We thus have |= γ1.a.i ↔ ¬{U}∗�· i�a⊥.

A.1.4 Constructing β1.i.j.k

For 1 ≤ i, j ≤ |A|, i 6= j and 0 ≤ k ≤ 3n let

γ1.i.j.k := ♦ai> ∧
∧
l 6=i

[U ]CA�aj⊥ ∧ γ1.aj .k.

Now let
β1.i.j.0 := γ1.i.j.0 ∧

∧
j′<j,j′ 6=i

¬γ1.i.j′.3n.

and for k > 0

β1.i.j.k := γ1.i.j.k ∧ ¬γ1.i.j.k−1 ∧
∧

j′<j,j′ 6=i

¬γ1.i.j′.3n.

The formula γ1.i.j.k holds iff all of the following hold: (in order of the conjunct
that guarantees the property)

• the U -paths contain only agent ai but there is an aj arrow departing from
a world within k steps of a U -reachable world

• there is no aj arrow departing from a world within k − 1 steps of a U -
reachable world

• there is no j′ < j such that j 6= i and there is an aj′ arrow departing from
a world within 3n steps of a U -reachable world.

The formula β1.i.j.k therefore holds exactly in case 1.i.j.k.
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A.1.5 Constructing β1

Let us take

β1 :=
∨

1≤i≤2|A|−|A|−1

β1.i.−1 ∨
∨

1≤i≤|A|

∨
1≤j≤|A|,j 6=i

∨
1≤k≤3n

β1.i.j.k.

Because the subcases are exhaustive of case 1 we then have |= δ1 ↔ β1.

A.2 Constructing β2

Recall that case 2 is the case where there is a propositional variable p ∈ Pvar(χ)
such that both p and ¬p hold in some world within 3n steps of a U -reachable
world. We have

δ2 = ♦U> ∧ ¬δ1 ∧
∨

p∈Pvar(χ)

(¬{U}∗�· 3np ∧ ¬{U}∗�· 3n¬p).

A.2.1 Subcases of case 2

Let Pvar(χ) = {p1, · · · , p|Pvar(χ)|}. There are also several subcases of case 2,
cases 2.i.j for 1 ≤ i ≤ |Pvar(χ)| and 0 ≤ j ≤ 3n. The case 2.i.j is the case
where both pi and ¬pi occur within distance j of a U -reachable world but not
within distance j − 1 and there is no i′ < i such that both pi′ and ¬pi′ occur
within distance 3n of a U -reachable world.

A.2.2 Constructing β2.i.j

Let
U+

2.i.0 := U,

U−2.i.0 := U,

U+
2.i.j+1 := U+

2.i.j ∪ {(♦
j+1pi, a,♦

jpi)}

and
U−2.i.j+1 := U−2.i.j ∪ {(♦

j+1¬pi, a,♦j¬pi)}.

The update [U+
2.i.j ] retains all arrows in U and all arrows to pi worlds that can be

reached within j steps. Likewise, the update [U−2.i.j ] retains all arrows in U and
all arrows to ¬pi worlds that can be reached within j steps. As such, if there is
any pi world within j steps of a U -reachable world the formula ¬[U+

2.i.j ]CA¬pi
will hold and if there is any ¬pi world within j steps of a U -reachable world the
formula ¬[U−2.i.j ]CApi will hold.

For 1 ≤ i ≤ |Pvar(χ)| and 0 ≤ j ≤ 3n let

γ2.i.j := ¬[U−2.i.j ]CApi ∧ ¬[U+
2.i.j ]CA¬pi

and
β2.i.j := ♦U> ∧ ¬β1 ∧ γ2.i.j ∧ ¬γ2.i.j−1 ∧ ¬

∨
i′<i

γ2.i′.3n.
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The formula β2.i.j thus holds iff both pi and ¬pi occur within j steps of a U -
reachable world but not within j − 1 steps of a U -reachable world and there is
no i′ < i such that both pi′ and ¬pi′ occur within 3n steps of a U -reachable
world.

A.2.3 Constructing β2

Let us take
β2 :=

∨
1≤i≤|Pvar(χ)|

∨
0≤j≤3n

β2.i.j .

Because the subcases are exhaustive of case 2 we then have |= δ2 ↔ β2.

A.3 Constructing β3

Recall that case 3 is the case where there is a world w1 near a U -reachable world
such that the successors of w1 are distinguishable by a short formula, so there
is a short ψ such that M, w1 |= ♦ψ ∧ ♦¬ψ. We have

δ3 = ♦U> ∧ ¬δ1 ∧ ¬δ2 ∧
∨

ψ∈Φ2n
Pvar(χ)

¬{U}∗¬♦· n(♦ψ ∧ ♦¬ψ)

A.3.1 Subcases of case 3

The subcases of case 3 are the cases 3.i for 0 ≤ i ≤ n. The case 3.i is the
case where the closest world w1 with successors distinguishable by formulas in
Φ2n

Pvar(χ) is at distance i from a U -reachable world.

A.3.2 Introduction to case 3

Case 3 is, unfortunately, significantly more complicated than the previous cases.
The main idea is the same, we use an update Uψ3.i that retains U -arrows and
arrows that go towards a ♦ψ∧♦¬ψ world within i steps. The difficult part is to
make sure that we can recognize in M[Uψ3.i]

whether or not a world w1 satisfied

♦ψ ∧ ♦¬ψ in M.
The main instrument for doing this will be a formula we give the name ϑ,

ϑ := ♦�⊥ ∧ ♦♦>.

The idea is that we guarantee that ¬ψ worlds have successors inM[Uψ3.i]
while ψ

worlds do not. This way, if M, w1 |= ♦ψ ∧ ♦¬ψ then M[Uψ3.i]
, w1 |= ϑ. In order

guarantee that ¬ψ worlds have successors we need another case distinction. Let

τψi := ♦U> ∨ ♦· i(♦ψ ∧ ♦¬ψ).

We now construct two updates, [Uψ.+3.i ] and [Uψ.−3.i ]. The update [Uψ.+3.i ] will give

the right result in case the ¬ψ successor of w1 satisfies τψi , the update [Uψ.−3.i ]
will give the right result in case it does not.
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A.3.3 Constructing Uψ.±3.i

First the + case. Let

Uψ.+3.0 := U ∪ {(♦ψ ∧ ♦¬ψ,A,>), (ψ,A,>)}

and
Uψ.+3.i+1 := Uψ.+3.i ∪ {(♦

i+1(♦ψ ∧ ♦¬ψ),A,♦i(♦ψ ∧ ♦¬ψ))}.

The (♦j+1(♦ψ ∧ ♦¬ψ),A,♦j(♦ψ ∧ ♦¬ψ)) clauses make sure that if there is a
world w1 within i steps of a U -reachable world with M, w1 |= ♦ψ ∧ ♦¬ψ then
this world w1 will be reachable. The (♦ψ ∧ ♦¬ψ,A,>) clause makes sure that
both a ¬ψ successor w2 and a ψ successor w3 of w1 are reachable. If w2 satisfies
τψi then either U ⊆ Uψ.+3.i or (♦j+1(♦ψ∧♦¬ψ),A,♦j(♦ψ∧♦¬ψ)) will make sure

that w2 has a successor in M[Uψ.+3.i ]. Finally, the (ψ,A,>) clause makes sure

that w3 has no successors in M[Uψ.+3.i ]. We therefore have M[Uψ.+3.i ], w1 |= ϑ and

w1 is reachable in M[Uψ.+3.i ].

The only problem that may arise is if there is a ψ world on the path to w1.
This possibility will be dealt with at a later stage.

Now let us consider the − case. Let

Uψ.−3.0 := {(u1, a, u2 ∧ τψ0 ) | (u1, a, u2) ∈ U}∪

{(¬τψ0 ,A,>), (♦ψ ∧ ♦¬ψ,A,>), (ψ,A,>)}

and for 0 < i ≤ n let

Uψ.−3.i := {(u1, a, u2 ∧ τψi ) | (u1, a, u2) ∈ U} ∪ {(¬τψi ,A,>), (♦ψ ∧ ♦¬ψ,A,>),

(♦i(♦ψ ∧ ♦¬ψ),A,♦i−1(♦ψ ∧ ♦¬ψ)), · · · ,

(♦(♦ψ ∧ ♦¬ψ),A,♦ψ ∧ ♦¬ψ), (ψ,A,>)}.

The − case works much like the + case. The exception is that in this case
the ¬ψ successor w2 of the ♦ψ ∧ ♦¬ψ world w1 is assumed to satisfy ¬τψi , so

it would not have a successor in M[Uψ.+3.i ]. In this case the (¬τψ0 ,A,>) clause

however guarantees that as long as M, w2 |= ♦> we have M[Uψ.−3.i ], w2 |= ♦>.

(The case M, w2 |= �⊥ will be dealt with later.)

This would cause problems because (¬τψi ,A,>) could make worlds reachable
that are neither U -reachable nor on the path to a ♦ψ ∧ ♦¬ψ world, but this
is averted by putting the extra τψi end condition in the clauses from U . While

every arrow from a ¬τψi world is retained the ¬τψi worlds themselves are only
reachable from ♦ψ ∧ ♦¬ψ worlds.

Again, problems may arise if there is a ψ world on the path to w1 and in
this case problems may also arise because of ϑ worlds appearing due to cutting
links because of the new τψi end condition. Both these problems will be dealt
with in a later stage.
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A.3.4 Constructing β3.i

For 1 ≤ i ≤ n let

β3.0 := ♦U> ∧ ¬β1 ∧ ¬β2 ∧
∨

ψ∈Φ2n
Pvar(χ)

(
¬[Uψ.+3.0 ]CA¬ϑ ∨ ¬[Uψ.−3.0 ]CA¬ϑ

)
,

γ3.i :=
∨

ψ∈Φ2n
Pvar(χ)

(
¬[Uψ.+3.i ]CA¬ϑ ∨ ¬[Uψ.−3.i ]CA¬ϑ

)
,

and
β3.i := ♦U> ∧ ¬β1 ∧ ¬β2 ∧ γ3.i ∧ ¬γ3.i−1.

This β3.i is exactly what we were looking for.

Lemma 7. For any model M, any world w of M and any 0 < i ≤ n we have
that

M, w |= ¬β1 ∧ ¬β2 ∧
∨

ψ∈Φ2n
Pvar(χ)

¬{U}∗¬(♦ψ ∧ ♦¬ψ)⇔M, w |= β3.0

and

M, w |= ¬β1 ∧¬β2 ∧¬β3.i−1 ∧
∨

ψ∈Φ2n
Pvar(χ)

¬{U}∗¬♦· i(♦ψ ∧♦¬ψ)⇔M, w |= β3.i

To see why this is the case, first recall that a disjunct ¬[Uψ.+3.i ]CA¬ϑ ∨
¬[Uψ.−3.i ]CA¬ϑ of β3.i has the same value as the disjunct ¬{U}∗¬♦· i(♦ψ∧♦¬ψ),
unless one of two problems occurs.

We now show that both problems are solved by taking the disjunction over
all formulas in Φ2n

Pvar(χ). Consider the second of the problems, that the τψi end

condition in the (u1, a, u2 ∧ τψi ) clauses of Uψ.−3.i can cause a ϑ world to come
into existence inM[Uψ.−3.i ] where no ♦ψ ∧♦¬ψ world existed inM. As a result,

we could have ¬[Uψ.−3.i ]CA¬ϑ but ¬¬{U}∗¬♦· i(♦ψ ∧ ♦¬ψ).
Suppose we are in the situation where this happens. Then there is no U -

reachable ♦· i(♦ψ∧♦¬ψ) world, so all reachable arrows that are retained by Uψ.−3.i

are U -arrows. We have a Uψ.−3.i -reachable world w1 such that M[Uψ.−3.i ], w1 |= ϑ.

Then w1 has Uψ.−3.i -successors w2 and w3 such that M[Uψ.−3.i ], w2 |= ♦> and

M[Uψ.−3.i ], w3 |= �⊥. The only clauses that could keep w2 and w3 reachable from

w1 are (u1, a, u2 ∧ τψi ) clauses, so in particular M, w2 |= τψi and M, w3 |= τψi .

The ♦· i(♦ψ ∧ ♦¬ψ) disjunct of τψi cannot hold so the other disjunct ♦U> must
hold in both worlds.

The successor of w2 must also satisfy τψi and therefore ♦U>. The world
w3 also has at least one U -successor but that arrow is not retained so all U -
successors of w3 satisfy ¬τψi and therefore ¬♦U>. But then M, w2 |= ♦U♦U>
and M, w3 |= ¬♦U♦U>. The formula ♦U♦U> is of depth at most 2n so

35



M, w1 |= ♦ψ′ ∧ ♦¬ψ′ for some ψ′ ∈ Φ2n
Pvar(χ), so while we don’t have M, w |=

¬{U}∗¬♦· i(♦ψ ∧ ♦¬ψ) we do have M, w |=
∨
ψ∈Φ2n

Pvar(χ)
¬{U}∗¬(♦ψ ∧ ♦¬ψ).

Consider then the first of the problems, that it is possible to have M, w |=
¬{U}∗¬♦· i(♦ψ ∧ ♦¬ψ) without M, w |= ¬[Uψ.+3.0 ]CA¬ϑ ∨ ¬[Uψ.−3.0 ]CA¬ϑ if there
is a ψ world on the path from w to the ♦ψ ∧ ♦¬ψ world w1.

It can be shown that in such a case there is a ψ′ such that the world w1

also satisfies ♦ψ′ ∧ ♦¬ψ′ and ψ′ does not occur on the path from w to w′.
So while we don’t have M, w |= ¬[Uψ.+3.0 ]CA¬ϑ ∨ ¬[Uψ.−3.0 ]CA¬ϑ we do have

M, w |=
∨
ψ∈Φ2n

Pvar(χ)

(
¬[Uψ.+3.i ]CA¬ϑ ∨ ¬[Uψ.−3.i ]CA¬ϑ

)
.

The proof of the existence of such a ψ′ is rather long and technical and is
therefore included in Section C of the Appendix as Lemma 21.

A.3.5 Constructing β3

We can then simply take

β3 :=
∨

0≤i≤n

β3.i.

The subcases are exhaustive of case 3, so |= δ3 ↔ β3.

A.4 Constructing β4

Recall that we are in case 4 if ♦U>, we are not in one of the previous cases and
there is a U -reachable world where ♦U> holds. We have

δ4 = ♦U> ∧ ¬δ1 ∧ ¬δ2 ∧ ¬δ3 ∧ ¬{U}∗¬♦U>

In this case, as mentioned in Section 6.4 we must have M, w1 |= ψ ∧ ♦¬ψ
for some U -reachable world w1, and this difference between w1 world and its
¬ψ successor w2 must have one of the following causes:

1. there are two agents b1, b2 and two worlds w3, w4 such that b1 6= b2,
M, w3 |= ♦b1>, M, w4 |= ♦b2> and both w3 and w4 are reachable from
w1 in at most d(ψ) steps.

2. there are a propositional variable p ∈ Pvar(ψ) and two worlds w3, w4 such
thatM, w3 |= p, M, w4 |= ¬p and both w3 and w4 are reachable from w1

in at most d(ψ) + 1 steps.

3. there are a formula ψ′ ∈ Φ
d(ψ)
Pvar(ψ) and a world w3 such thatM, w3 |= ♦ψ′∧

♦¬ψ′, w3 is reachable from w1 in at most k steps and k + d(ψ′) ≤ d(ψ).

4. there is a k ≤ d(ψ) such that M, w1 |= ♦k�⊥ ∧�k+1⊥.

The first three possibilities mentioned correspond to the first three cases of our
case distinction. If we are in case 4 we are however by definition not in one of
these case so the fourth possibility must hold.
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Let

β4 := ♦U>∧¬β1 ∧¬β2 ∧¬β3 ∧¬CA�U⊥∧CA(♦U> →
∨

1≤i≤n

♦i�⊥∧�i+1⊥).

Then |= δ4 ↔ β4. To see why this is the case note that everywhere where a
U -arrow is followed by an U -arrow we have ♦i�⊥ ∧�i+1⊥ for some 1 ≤ i ≤ n
and that every successor of a ♦i�⊥ ∧�i+1⊥ world satisfies ♦i−1�⊥ ∧�i⊥.

A.5 Constructing β5 and β6

Finding an AUC description for the last two cases is trivial. Case 5 is the case
where there are no U -arrows departing from U -reachable worlds, so

δ5 = ♦U> ∧ ¬δ1 ∧ ¬δ2 ∧ ¬δ3 ∧ ¬δ4 ∧ {U}∗¬♦U>

We can take
β5 := ♦U> ∧ CA¬♦U>.

Case 6 is the case where ¬♦U> holds,

δ6 := ¬♦U>.

The formula δ6 is itself already an AUC formula so we can simply take

β6 := δ6.

B Constructing α6, · · · , α1

In order to prove Lemma 5 we have to show that there are α6, · · · , α1 such that
|= (δi ∧ χ)↔ (δi ∧ αi) for all 6 ≥ i ≥ 1. Here we construct the αi.

Cases 6, 5 and 4 can be solved quite easily and directly. Cases 3, 2 and 1
are more difficult and are solved in the way described in Section 6.3: by cutting
at ¬ϕ worlds and then checking whether the witnesses are still reachable.

It is convenient to have a formula representing “the solution for all later
cases”. The letter ζ (with various indices) will be used to represent this.

B.1 Constructing α6 and α5

Cases 6 and 5 are very simple cases, mostly because in both cases it is impossible
to go to a different case by taking a U -arrow.

Case 6 is the case where there are no outgoing U -arrows worlds. We can
therefore take

α6 := ϕ.

Case 5 is the case where there is no U -reachable world with an U arrow
departing from it. Every reachable world is therefore U -reachable, so we can
take

α5 := CAϕ.

37



B.2 Constructing α4

In case 4 the only possible cause of two worlds being distinguishable (by a
formula of depth at most n) is that one of them satisfies ♦j�⊥ ∧ �j+1⊥ with
j < n and the other does not. For 0 ≤ i < n let σi := ♦i�⊥ ∧ �i+1⊥ and
let σn :=

∧
0≤i<n ¬σi. Note that arrows can only go either from a σn world to

another σn world or from a σj+1 world to a σj world.
The depth of ϕ is less than n, so whether it holds in a world is fully deter-

mined by which of the σi holds. Furthermore, since we are in case 4 we know
that there are both a reachable ♦U> world and a reachable ♦U world, so there
must be a U -reachable world satisfying σi with i < n.

Let w be a world and let k be the index such that M, w |= σk. It is fixed
by U and ϕ at which indices there is no outgoing U -arrow and at which indices
¬ϕ holds, so k fully determines whether χ holds. We can take

α4 :=
∧

0≤i≤n

(σi → λi)

where for each 0 ≤ i ≤ n the formula λi is either > or ⊥, as determined by U
and ϕ.

B.3 Constructing α3

The detecting formula β3 was the most complicated of the detecting formulas.
Likewise, α3 is the most complicated of the solving formulas. Here for the first
time we need the fact that we are working backward through the cases so we
can use solutions to later cases in earlier ones. Let

ζ3.n+1 := (β6 → α6) ∧ (β5 → α5) ∧ (β4 → α4).

Now suppose that for some 1 ≤ i ≤ n we are in case β3.i and the later cases
have been solved, so ζ3.i+1 is already defined.

We want to find a formula α3.i that detects whether there are U -reachable
¬ϕ worlds. In order to do this we also consider whether there are U -reachable
¬ϕ′ worlds with ϕ′ := ϕ∧�Uϕ. Doing this will allow us to ignore “side paths”
that are only a single world long in stage α3.i.3, because if there is a ¬ϕ world
on a single world “side path” then there is also a ¬ϕ′ world on the “main path”.
We can safely consider ϕ′ instead of ϕ since |= {U}ϕ↔ {U}ϕ′.

We split this into three parts; a formula α3.i.1 that detects whether there is a
¬ϕ′ world on every path towards a ♦ψ∧♦¬ψ world, a formula α3.i.2 that detects
whether there are ¬ϕ′ worlds on some but not all paths towards ♦ψ∧♦¬ψ worlds
and a formula α3.i.3 that detect whether there are U -reachable worlds that are
in a later case and satisfy ¬ϕ (note the lack of a ′ on the ϕ here). Unfortunately
we need to split the first of these cases into even more subcases, depending on
whether the ¬ψ successor of the ♦ψ ∧ ♦¬ψ world satisfies ϕ.
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B.3.1 Constructing α3.i.1

For 0 ≤ i ≤ n let

Uψ.+3.i.1.1 := Uψ.+3.i ∪ {(¬ϕ′ ∧ ¬♦·
i−1(♦ψ ∧ ♦¬ψ),A,>)},

Uψ.+3.i.1.2 := Uψ.+3.i ∪ {(ϕ′ ∧ ¬♦·
i−1(♦ψ ∧ ♦¬ψ),A,¬ϕ′ ∧ ¬♦· i−1(♦ψ ∧ ♦¬ψ))}

and

Uψ.−3.i.1 := Uψ.−3.i ∪ {(u1 ∧ ¬♦· i−1(♦ψ ∧ ♦¬ψ), a, u2 ∧ ¬ϕ′) | (u1, a, u2) ∈ U}.

Having defined these updates let

α3.i.1 := ϕ′ ∧
∨

ψ∈Φ2n
Pvar(χ)

(
¬[Uψ.+3.i.1.1]CA¬ϑ ∨ ¬[Uψ.+3.i.1.2]CA¬ϑ ∨ ¬[Uψ.−3.i.1]CA¬ϑ

)
.

If we are in case 3.i then the formula α3.i.1 is equivalent to there being at least
one U -path to a ♦i(♦ψ ∧ ♦¬ψ) world that does not pass through a ¬ϕ′ world,
as can be seen from the following two lemmas.

Lemma 8. For any M and w such that M, w |= β3.i we have

M, w |= χ⇒M, w |= α3.i.1

Proof. We are in case 3.i so there is a nearby world where ♦ψ ∧ ♦¬ψ holds.
There are three possibilities for this world, see Figure 12.

Let w5 be the U -reachable world with ♦i(♦ψ ∧ ♦¬ψ), w1 the ♦ψ ∧ ♦¬ψ
world, w2 a ¬ψ successor of w1, w3 a ψ successor of w1 and w4 a successor or
w2.

In all cases the arrows up to and including the one departing from w1 are
not cut by Uψ.+3.i.1.1, Uψ.+3.i.1.2 or Uψ.−3.i.1. In order to see why this is the case note
that the worlds up to w5 satisfy ϕ′ by the assumption that the U -path is ¬ϕ′
free and the worlds from the successor of w5 to w1 satisfy ♦· i−1(♦ψ∧♦¬ψ). The

updates Uψ.+3.i and Uψ.−3.i do not cut these arrows and the new clauses cannot
apply due to the worlds satisfying ¬ϕ′ or ♦· i−1(♦ψ ∧ ♦¬ψ). The only arrow we
need to retain that is in danger of being cut is the one from w2 to w4.

The first case, see Figure 12a, is if the arrow from w2 to w4 is a U -arrow
and M, w2 |= ϕ′. The arrow from w2 to w4 is in this case retained by [Uψ.+3.i.1.1]
because the new clause in that update only removes arrows starting from ¬ϕ′
worlds.

The second case, see Figure 12b, is if the arrow from w2 to w4 is a U -arrow
andM, w2 |= ¬ϕ′. The arrow from w2 to w4 is in this case retained by [Uψ.+3.i.1.2]
because the new clause in that update only removes arrows starting from ϕ′

worlds.
The third case, see Figure 12c, is if the arrow from w2 to w4 is not a U -arrow.

The arrow from w2 to w4 is in this case retained by [Uψ.−3.i.1] because the new
clause in that update only removes U -arrows.

In any case at least one of the updates in α3.i.1 will cause w1 to become a
reachable ϑ world, so α3.i.1 holds.
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(a) Possibility 1, solved by Uψ.+3.i.1.1
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· · ·
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¬ψ ∧ ¬ϕ′
w4
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(b) Possibility 2, solved by Uψ.+3.i.1.2
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· · ·

w5
· · ·

w1

w3

ψ

w2

¬ψ
w4

U U U

U

(c) Possibility 3, solved by Uψ.−3.i.1

Figure 12: Three possibilities for a ♦ψ ∧ ♦¬ψ world.

Lemma 9. For any M and w such that M, w |= β3.i we have that if every U -
path to a ♦i(♦ψ ∧ ♦¬ψ) world passes through a ¬ϕ′ world then M, w 6|= α3.i.1.

Proof. It should be immediately clear from the definitions of Uψ.+3.i.1.1, Uψ.+3.i.1.2 or

Uψ.−3.i.1 that updating with any of them will make the ♦ψ ∧♦¬ψ worlds unreach-
able.10 The only possibility for α3.i.1 to hold would therefore be if one of the
updates would cause a new ϑ world to come into existence by cutting at ¬ϕ′
worlds.

This however would require a U -reachable world w′ with M, w′ |= ♦[V ]> ∧
♦¬[V ]> with V a singleton update of one of the new clauses. But such an
update [V ] is of depth less than 2n so this conflicts with us being in case 3.i if
i > 0 and with no ♦ψ ∧ ♦¬ψ being U -reachable without passing a ¬ϕ′ world if
i = 0.

10There is one exception to this, if the only ¬ϕ′ world on the path is w itself. This is
excluded by the ϕ′ conjunct of α3.i.1, however.
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B.3.2 Constructing α3.i.2 for i > 0

For 1 ≤ i ≤ n let

U+
3.i.2 := {(u1 ∧ β3.i, a, u2 ∧ β3.i) | (u1, a, u2) ∈ U} ∪ {(β3.i ∧ ¬α3.i.1,A,>),

(β3.i ∧�U¬β3.i ∧ ♦i
∨

ψ∈Φ2n
Pvar(χ)

(♦ψ ∧ ♦¬ψ),A,♦i−1
∨

ψ∈Φ2n
Pvar(χ)

(♦ψ ∧ ♦¬ψ))},

U−3.i.2 := {(u1 ∧ β3.i, a, u2 ∧ β3.i) | (u1, a, u2) ∈ U}∪

{(β3.i ∧�U¬(β3.i ∧ α3.i.1) ∧ ♦i
∨

ψ∈Φ2n
Pvar(χ)

(♦ψ ∧ ♦¬ψ),

A,♦i−1
∨

ψ∈Φ2n
Pvar(χ)

(♦ψ ∧ ♦¬ψ))}

and
α3.i.2 := [U+

3.i.2]CA¬ϑ ∧ [U−3.i.2]CA¬ϑ.

Before discussing why α3.i.2 detects whether there are ¬ϕ′ worlds on some
but not all paths to ♦i(♦ψ ∧ ♦¬ψ) worlds, it is important to note that α3.i.2

works very differently from α3.i.1. In α3.i.1 an update is used that guarantees
that there is at least one reachable ϑ world if χ holds, whereas α3.i.2 uses an
update that guarantees that there is no reachable ϑ world if χ holds.

Now, to see why α3.i.2 works. There are two parts to this. The first is that if
there is no U -reachable ¬ϕ′ world then α3.i.2 holds. The second is that if there
are ¬ϕ′ worlds on some but not all U -paths to ♦i(♦ψ ∧♦¬ψ) worlds then α3.i.2

does not hold.

Lemma 10. For any M and w such that M, w |= β3.i we have

M, w |= χ⇒M, w |= α3.i.2

Proof. First, note that the (β3.i ∧ �U¬β3.i ∧ ♦i
∨
ψ∈Φ2n

Pvar(χ)
(♦ψ ∧ ♦¬ψ),A,

♦i−1
∨
ψ∈Φ2n

Pvar(χ)
(♦ψ ∧ ♦¬ψ)) clause in the + update and the corresponding

clause in the − update only retain arrows from β3.i to ♦i−1(♦ψ ∧♦¬ψ) worlds.
Such target worlds are too close to ♦ψ ∧ ♦¬ψ to be β3.i worlds; they could be
β3.i−1 at the most.

The (u1 ∧ β3.i, a, u2 ∧ β3.i) clauses only retain U -arrows from β3.i worlds to
β3.i worlds. Every worlds that is still reachable after the update was therefore
originally either U - and β3.i-reachable or the successor of such a world.

From M, w |= χ it follows that the conjunct �U¬β3.i in the start condition
of the final clause of the + update and the conjunct �U¬(β3.i ∧ α3.i.1) in the
start condition of the final clause of the − update hold in the same U -reachable
worlds, so the two clauses retain the same arrows (when restricting ourselves to
the relevant parts of the model, the parts that are still connected to w after the
update). Also, by Lemma 8 and the fact thatM, w |= χ we have that the start

41



condition of the clause (β3.i ∧ ¬α3.i.1,A,>) of the + update cannot hold in any
relevant world.

In order to show that the Lemma holds it therefore suffices to show that for

U ′3.i.2 := {(u1 ∧ β3.i, a, u2 ∧ β3.i) | (u1, a, u2) ∈ U}∪

{(β3.i ∧�U¬β3.i ∧ ♦i
∨

ψ∈Φ2n
Pvar(χ)

(♦ψ ∧ ♦¬ψ),A,♦i−1
∨

ψ∈Φ2n
Pvar(χ)

(♦ψ ∧ ♦¬ψ))}

we have M, w |= [U ′3.i.2]CA¬ϑ.
Every β3.i world either has a β3.i successor or is a ♦i(♦ψ ∧ ♦¬ψ) world

for some ψ ∈ Φ2n
Pvar(χ). If it has a β3.i successor the arrow to that successor is

retained by the (u1∧β3.i, a, u2∧β3.i) clauses. If it does not have a β3.i successor
then the

(β3.i ∧�U¬β3.i ∧ ♦i
∨

ψ∈Φ2n
Pvar(χ)

(♦ψ ∧ ♦¬ψ),A,♦i−1
∨

ψ∈Φ2n
Pvar(χ)

(♦ψ ∧ ♦¬ψ))

clause retains the arrow to a ♦i−1(♦ψ ∧ ♦¬ψ) successor. As mentioned before
this ♦i−1(♦ψ∧♦¬ψ) is not itself a β3.i world since it is too close to a (♦ψ∧♦¬ψ)
world so none of its outgoing arrows are retained.

The result is that each reachable �⊥ world inM[U ′3.i.2] is a ♦i−1(♦ψ∧♦¬ψ)
world, so each ♦�⊥ world is a β3.i ∧ �U¬β3.i world and therefore a ��⊥. A
��⊥ world cannot satisfy ϑ, so this proves the Lemma.

Now for the other part. Here we need an extra assumption in the lemma,
namely thatM, w |= α3.i.2. This assumption is harmless: ifM, w 6|= α3.i.2 then
we already know that M, w 6|= χ.

Lemma 11. For any M and w such that M, w |= β3.i we have that if

• there is a U -reachable world w′ with M, w′ |= β3.i ∧ ¬ϕ′ and

• M, w |= α3.i.1

then M, w |= ¬α3.i.2.

Proof. Fix any world w′ satisfying the condition of the Lemma. FromM, w′ |=
β3.i∧¬ϕ′ it follows thatM, w′ |= ¬α3.i.1. Let w1 be the first world on a U -path
from w to w′ that is a ¬α3.i.1 world. In particular this implies that there are
no ¬ϕ′ worlds on the path before w1.

We have M, w |= α3.i.1 and M, w1 6|= α3.i.1 so w 6= w1. This guarantees the
existence of a predecessor w2 of w1 on the U -path.

Now there are two possibilities for the predecessor w2 of w1 on the path. The
first is that w2 has a successor w3 with M, w3 |= α3.i.1. The second possibility
is that w2 has no such successor.

The formula α3.i.1 holds if and only if there is a ♦i(♦ψ ∧ ♦¬ψ) world that
is reachable without passing a ¬ϕ′ world. So if w2 is a α3.i.2 world but has no
α3.i.2 successor then it must itself be a ♦i(♦ψ ∧ ♦¬ψ) world. In this case w2
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w
· · ·

w2

α3.i.1 w3

α3.i.1

w1

¬α3.i.1

· · ·

· · ·
w′

· · ·

(a) Possibility 1: w1 has a successor w3 with M, w3 |= α3.i.1. We have M, w 6|=
[U+

3.i.2]CA¬ϑ.

w
· · ·

w2

β3.i w3

¬β3.i

w1

¬α3.i.1 β3.i

· · ·

· · ·
w′

· · ·

(b) Possibility 2: M, w1 |= ♦i(♦ψ ∧ ♦¬ψ) for some ψ ∈ Φ2n
Pvar(χ). We have M, w 6|=

[U−3.i.2]CA¬ϑ.

Figure 13: The two possibilities for the conditions of Lemma 11 to hold.

has a successor w3 withM, w3 |= ♦i−1(♦ψ ∧♦¬ψ) and thereforeM, w3 6|= β3.i.
The two cases are shown in Figure 13. There may be more arrows than the ones
shown in the figure but such arrows do not matter as long as the arrows that
are shown exist.

In the first case consider the update U+
3.i.2 as shown in Figure 13a. Arrows

that are not retained are drawn in gray and dashed. The arrows from w2 to
w1 and w3 are retained because they are (u1 ∧ β3.i, a, u2 ∧ β3.i) arrows. The
arrow from w3 to at least one of its successors is also retained by some clause—
which one depends on whether w3 has a α3.i.1 successor. The arrows from w2 to
its successors are not retained, because of the (β3.i ∧ ¬α3.i.1,A,>) clause. We
therefore have M[U+

3.i.2], w |= ¬CA¬ϑ so also M, w |= ¬α3.i.2.

In the second case, shown in Figure 13b, consider the update U−3.i.2. The
arrows from w2 to w1 and from w1 to its successor are retained because of the
(u1∧β3.i, a, u2∧β3.i) clauses. The arrow from w2 to w3 is retained because it is
a (β3.i∧�U¬(β3.i∧α3.i.1)∧♦i

∨
ψ∈Φ2n

Pvar(χ)
(♦ψ∧♦¬ψ),A,♦i−1

∨
ψ∈Φ2n

Pvar(χ)
(♦ψ∧

♦¬ψ) arrow. We therefore have M[U+
3.i.2], w |= ¬CA¬ϑ so also M, w |= ¬α3.i.2.

B.3.3 Constructing α3.0.2

The formula α3.0.2 is very similar to α3.i.2, except that there is one more special
case. In α3.i.2 we could quite easily guarantee that any α3.i.1 has a successor
after the update by allowing arrows from ♦i(♦ψ ∧ ♦¬ψ) to ♦i−1(♦ψ ∧ ♦¬ψ)
in case there is no β3.i successor. Doing the same for α3.0.2 and α3.0.1 is not
possible. This essentially forces us to use two cases for what was the + case in
α3.i.2. For similar reasons we split the − case into two cases, both of which are
also indexed by ψ.
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Let

U+.1
3.0.2 := {(u1 ∧ β3.0, a, u2 ∧ β3.0) | (u1, a, u2) ∈ U} ∪ {(β3.0 ∧ ¬α3.0.1,A,>),

(♦U (β3.0 ∧ ¬♦Uβ3.0) ∧ ♦U (β3.0 ∧ α3.0.1 ∧ ♦Uβ3.0),A, β3.0 ∧ ¬♦Uβ3.0)},

U+.2
3.0.2 := {(u1 ∧ β3.0, a, u2 ∧ β3.0) | (u1, a, u2) ∈ U} ∪ {(β3.0 ∧ ¬α3.0.1,A,>),

(♦U (β3.0 ∧ ¬♦Uβ3.0) ∧ ♦U (β3.0 ∧ α3.0.1 ∧ ♦Uβ3.0),A, β3.0 ∧ ¬♦Uβ3.0)},

U−.ψ.13.0.2 := {(u1 ∧ β3.0, a, u2 ∧ β3.0) | (u1, a, u2) ∈ U}∪

{(♦U (β3.0 ∧ ¬♦Uβ3.0) ∧ ♦U (β3.0 ∧ α3.0.1 ∧ ♦Uβ3.0),A, β3.0 ∧ ¬♦Uβ3.0)

(β3.0 ∧ α3.0.1 ∧ ♦U¬α3.0.1,A,¬ψ), (β3.0 ∧ ¬α3.0.1 ∧ ψ,A,>)},

U−.ψ.23.0.2 := {(u1 ∧ β3.0, a, u2 ∧ β3.0) | (u1, a, u2) ∈ U}∪

{(♦U (β3.0 ∧ ¬♦Uβ3.0) ∧ ♦U (β3.0 ∧ α3.0.1 ∧ ♦Uβ3.0),A, β3.0 ∧ ¬♦Uβ3.0)

(β3.0 ∧ α3.0.1 ∧ ♦U¬α3.0.1,A,¬ψ), (β3.0 ∧ ¬α3.0.1 ∧ ψ,A,>)}
and

α3.0.2 := [U+.1
3.0.2]CA¬ϑ∧[U+.2

3.0.2]CA¬ϑ∧
∧

ψ∈Φ2n
Pvar(χ)

([U−.ψ.13.0.2 ]CA¬ϑ∧[U−.ψ.23.0.2 ]CA¬ϑ).

Lemma 12. For any M and w such that M, w |= β3.0 we have

M, w |= χ⇒M, w |= α3.0.2

Proof. As in the α3.i.2 case it follows from M, w |= χ that terms containing
¬α3.0.2 cannot be relevant. All four updates then simplify to

U ′3.0.1 := {(u1 ∧ β3.0, a, u2 ∧ β3.0) | (u1, a, u2) ∈ U}∪

{(♦U (β3.0 ∧ ¬♦Uβ3.0) ∧ ♦U (β3.0 ∧ α3.0.1 ∧ ♦Uβ3.0),A, β3.0 ∧ ¬♦Uβ3.0)}.

Suppose now that there is a world w1 that is reachable after the update and that
satisfies M[U ′3.0.2], w1 |= ϑ. The update retains only arrows that were U -arrows
from and to β3.0 worlds, so M, w1 |= β3.0. Now consider the successors of w1,
worlds w2 and w3 that are reachable from w1 after the update such that w2 has
a successor in M[U ′3.0.2] and w3 does not.

The arrow from w2 to its successor must be a U -arrow from a β3.0 world
to a β3.0 world, so M, w1 |= ♦U (β3.0 ∧ ♦Uβ3.0). The arrow from w3 to its
successors on the other hand cannot be U -arrows to a β3.0 world as they would
then be retained by the update. We therefore have M, w3 |= β3.0 ∧ ¬♦Uβ3.0.
But thenM, w1 |= ♦U (β3.0∧¬♦Uβ3.0), so the arrow from w1 to w3 is cut by the
(♦U (β3.0 ∧ ¬♦Uβ3.0) ∧ ♦U (β3.0 ∧ α3.0.1 ∧ ♦Uβ3.0),A, β3.0 ∧ ¬♦Uβ3.0) clause.

This contradicts w3 being reachable from w1 after the update, so such a
world w1 cannot exist which proves the Lemma.

Now for the other part. Again, we need a harmless extra condition, namely
that M, w |= α3.0.1.
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Lemma 13. For any M and w such that M, w |= β3.0 we have that if

• there is a U -reachable world w′ with M, w′ |= β3.0 ∧ ¬ϕ′ and

• M, w |= α3.0.1

then M, w |= ¬α3.0.2.

Proof. Fix any world w′ satisfying the condition of the Lemma. From M,w′ |=
β3.0∧¬ϕ′ it follows thatM, w′ |= ¬α3.0.1. Let w1 be the first world on a U -path
from w to w′ that is a ¬α3.0.1 world. In particular this implies that there are
no ¬ϕ′ worlds on the path before w1.

Now let w2 be the predecessor of w1 on the path. There are four possibilities
for the situation around w2. The first possibility is that w2 has a U -successor
w3 satisfying β3.0 ∧ α3.0.1 ∧ ♦Uβ3.0. The second possibility is that w2 has no
successor of the kind in case 1, but does have a successor w3 satisfying β3.0 ∧
α3.0.1 ∧ ¬♦Uβ3.0.

In the third and fourth possibilities w2 has no successor satisfying β3.0∧α3.0.1.
From M, w2 |= α3.0.1 it follows that there is some ♦ψ ∧ ♦¬ψ world that is
reachable from w2 without passing over a ¬ϕ world. If none of the successors of
w2 satisfy α3.0.1 this implies that w2 must itself be a ♦ψ ∧ ♦¬ψ world for some
ψ ∈ Φ3n

Pvar(χ).

By negating this it if necessary we can take this ψ such that M, w1 |= ψ.

Let U ′3.0.2 := U−.ψ.13.0.2 \ {(β3.0 ∧ ¬α3.0.1 ∧ ψ,A,>)} = U−.ψ.23.0.2 \ {(β3.0 ∧ ¬α3.0.1 ∧
ψ,A,>)}. The difference between the third and fourth case now is whether the
¬ψ successor w3 of w2 has a successor in M[U ′3.0.2]. If it does we are in case 3,
if it does not we are in case 4.

Note that because M, w3 |= ¬ψ the (β3.0 ∧ ¬α3.0.1 ∧ ψ,A,>) and (β3.0 ∧
¬α3.0.1 ∧ ψ,A,>) clauses cannot apply to arrows from w3. This means that if
we are in case 3 then w3 has a successor in M[U−.ψ.13.0.2 ] and if we are in case 4

then w3 has no successor in M[U−.ψ.23.0.2 ].

The four different cases are shown in Figure 14. There may be more arrows
than the ones shown in the figure but such arrows do not matter as long as the
arrows that are shown exist. Arrows that are not retained are drawn in gray
and dashed.

In the first case consider the update U+.1
3.0.2 as shown in Figure 14a. The

arrows from w2 to w1 and w3 and the arrow from w3 to its successor are retained
because they are (u1∧β3.0, a, u2∧β3.0) arrows and, becauseM, w2 |= α3.0.1 and
M, w3 |= α3.0.1, not (β3.0 ∧ ¬α3.0.1,A,>) arrows. The arrows from w1 to its
successors are not retained because they are (β3.0 ∧ ¬α3.0.1,A,>) arrows. We
therefore have M[U+.1

3.0.2], w |= ¬CA¬ϑ so also M, w |= ¬α3.0.2.

In the second case consider the update U+.2
3.0.2 as shown in Figure 14b. The

arrows from w2 to w3 and w1 are retained because they are (u1∧β3.0, a, u2∧β3.0)
arrows. Arrows from w1 to its successors (which must exist because β3.0 holds
in every world on the path to w′, and therefore in particular on w1) are retained
because they are (β3.0 ∧¬α3.0.1,A,>) arrows. Arrows from w3 to its successors
are not retained; they are not (u1∧β3.0, a, u2∧β3.0) arrows because the successors
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of w3 are not β3.0 worlds and they are not (β3.0 ∧¬α3.0.1,A,>) arrows because
M, w3 |= α3.0.1. We therefore have M[U+.2

3.0.2], w |= ¬CA¬ϑ so also M, w |=
¬α3.0.2.

In the third case consider the update U−.ψ.13.0.2 as shown in Figure 14c. The
arrow from w2 to w1 is retained because it is an (u1∧β3.0, a, u2∧β3.0) arrow. The
arrow from w2 to w3 is retained because it is an (β3.0∧α3.0.1∧♦U¬α3.0.1,A,¬ψ)
arrow. The arrow from w3 to at least one of its successors is retained because by
assumption it has a successor inM[U−.ψ.13.0.2 ]. The arrows from w1 to its successors

are not retained because they are (β3.0 ∧ ¬α3.0.1 ∧ ψ,A,>) arrows. We therefore
have M[U−.ψ.13.0.2 ], w |= ¬CA¬ϑ so also M, w |= ¬α3.0.2.

In the fourth case consider the update U−.ψ.23.0.2 as shown in Figure 14d. The
arrow from w2 to w1 is retained because it is an (u1∧β3.0, a, u2∧β3.0) arrow. The
arrow from w1 to w3 is retained because it is an (β3.0∧α3.0.1∧♦U¬α3.0.1,A,¬ψ)
arrow. The arrows from w3 to its successors are not retained because by as-
sumption it has no successors inM[U−.ψ.23.0.2 ]. The arrows from w1 to its successors

are retained because they are (β3.0 ∧ ¬α3.0.1 ∧ ψ,A,>) arrows. We therefore
have M[U−.ψ.23.0.2 ], w |= ¬CA¬ϑ so also M, w |= ¬α3.0.2.

These four cases are exhaustive so this proves the Lemma.

B.3.4 Constructing α3.i.3

The formula α3.i.3 should find ¬ϕ worlds that are in cases later than 3.i, with
the possible exception of ¬ϕ worlds that are successors of β3.i worlds, as the
predecessors of these ¬ϕ worlds have already been detected as ¬ϕ′ worlds by
α3.i.1 or α3.i.2.

For 0 ≤ i ≤ n and ψ ∈ Φ2n
Pvar(χ) let

Uψ3.i.3 := {(u1 ∧ β3.i, a, u2 ∧ β3.i) | (u1, a, u2) ∈ U}∪

{(♦U (β3.i ∧ ¬♦Uβ3.i) ∧ ♦U (β3.i ∧ ♦Uβ3.i),A, β3.i ∧ ¬♦U (β3.i ∨ ζ3.i+1))}∪
{(β3.i ∧ ♦U (¬β3.i ∧ ¬ζ3.i+1),A,>), (¬β3.i ∧ ¬ζ3.i+1 ∧ ψ,A,>)}

and
α3.i.3 :=

∧
ψ∈Φ2n

Pvar(χ)

[Uψ3.i.3]CA¬ϑ.

So like with α3.i.2 we create ϑ worlds in case there are U -reachable ¬ϕ worlds.

Lemma 14. For any M and w such that M, w |= β3.i we have

M, w |= χ⇒M, w |= α3.i.3

Proof. IfM, w |= χ then only (u1∧β3.i, a, u2∧β3.i) arrows are retained. Further-
more, the (♦U (β3.i ∧ ¬♦Uβ3.i) ∧ ♦U (β3.i ∧ ♦Uβ3.i),A, β3.i ∧ ¬♦Uβ3.0) clause
guarantees that no ϑ worlds are created in these β3.i worlds. We therefore
have [Uψ3.i.3]CA¬ϑ, independent of ψ, so M, w |= α3.i.3.
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w
· · ·

w2

α3.0.1 w3

α3.0.1

w1

¬α3.0.1

β3.0· · ·

· · ·
w′

· · ·

(a) Possibility 1: M, w3 |= β3.0 ∧ α3.0.1 ∧ ♦Uβ3.0. We have M, w 6|= [U+.1
3.0.2]CA¬ϑ.

w
· · ·

w2

α3.0.1 w3

α3.0.1

w1

¬α3.0.1

¬β3.i· · ·

· · ·
w′

· · ·

(b) Possibility 2: M, w3 |= β3.0 ∧ α3.0.1 ∧ ¬♦Uβ3.0. We have M, w 6|= [U+.2
3.0.2]CA¬ϑ.

w
· · ·

w2

β3.0 w3

¬ψ

w1

ψ

· · ·

· · ·
w′

· · ·

U−.ψ.13.0.2

(c) Possibility 3: M, w2 |= ♦ψ ∧ ♦¬ψ and M, w3 |= ♦
U
−.ψ.1
3.0.2

>. We have M, w 6|=
[U−.ψ.13.0.2 ]CA¬ϑ.

w
· · ·

w2

β3.0 w3

¬ψ

w1

ψ

· · ·

· · ·
w′

· · ·

U−.ψ.23.0.2

(d) Possibility 4: M, w2 |= ♦ψ ∧ ♦¬ψ and M, w3 |= �
U
−.ψ.2
3.0.2

⊥. We have M, w 6|=
[U−.ψ.23.0.2 ]CA¬ϑ.

Figure 14: The four possibilities for the conditions of Lemma 13 to hold.
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Now for the other side, with another harmless extra condition.

Lemma 15. For any M and w such that M, w |= β3.i we have that if

• there is a U -reachable world w′ with M, w′ |= ¬β3.i ∧ ¬ϕ and

• M, w |= α3.i.1 ∧ α3.i.2

then M, w |= ¬α3.i.3.

Proof. Fix any world w′ satisfying the condition of the Lemma. First note that
fromM, w |= α3.i.1∧α3.i.2 it follows that there is no U -reachable world satisfying
β3.i ∧¬ϕ′. The w′ satisfying the condition of the Lemma must therefore be the
successor of another U -reachable ¬β3.i world.

By the assumption that w′ is U -reachable there is a U -path from w to w′. Let
w1 be the first ¬β3.i world on this path. In particular this implies that w1 6= w′.
Let w2 be the predecessor of w1 on the path. There are four possibilities for the
situation around w2, the third of which can only occur if i > 0 and the fourth
of which can only occur if i = 0.

The first possibility is that there is a successor w3 of w2 such thatM, w3 |=
β3.i∧♦Uψ3.i.3> for some ψ. Note that the only clause that depends on ψ has ¬β3.i

in the start conditions so it follows that w3 satisfies this condition for all ψ. The
second possibility is that w2 has no successor as in case 1, but it does have a
successor w3 such thatM, w3 |= β3.i ∧�Uψ3.i.3⊥. The third possibility is if i > 0

and w2 has no β3.i successors, in which case it must have a ♦i−1(♦ψ′ ∧ ♦¬ψ′)
successor w3. The fourth possibility is if i = 0 and w2 has no β3.i successors, in
which case it must have ψ′ and ¬ψ′ successors for some ψ′.

The four different cases are shown in Figure 14. There may be more arrows
at some points than the ones shown in the figure but such arrows do not matter
as long as the arrows that are shown exist. Arrows that are not retained are
drawn in gray and dashed. In all four cases the relevant update is Uψ3.i.3 for
some ψ, but the ψ in question may differ.

In the first case take ψ such that M, w1 6|= ψ, see Figure 15a. The ar-
rows from w2 to w3 and w1 are retained because they are (β3.i ∧ ♦U (¬β3.i ∧
¬ζ3.i+1),A,>) arrows (and neither w1 not w3 satisfies β3.i ∧ ¬♦U (β3.i ∨ ζ3.i+1)
so the overlined clause does not apply). The arrow from w3 to at least one of its
successors is retained because of the assumption that M, w3 |= β3.i ∧ ♦Uψ3.i.3

>.

The arrows from w1 to its successors are not retained because the only arrows
from ¬β3.i worlds that are retained have a conjunct ψ in the start condition.
We therefore have M[Uψ3.i.3], w |= ¬CA¬ϑ so also M, w |= ¬α3.i.3.

In the second case take ψ such that M, w1 |= ψ, see Figure 15b. The
arrows from w2 to w3 and w1 are retained because they are (β3.i ∧ ♦U (¬β3.i ∧
¬ζ3.i+1),A,>) arrows (and neither w1 not w3 satisfies β3.i ∧ ¬♦U (β3.i ∨ ζ3.i+1)
so the overlined clause does not apply). The arrows from w3 to its successors to
its successors are not retained because of the assumption that M, w3 |= β3.i ∧
�Uψ3.i.3

⊥. The arrows from w1 to its successors are however retained because
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they are (¬β3.i ∧ ¬ζ3.i+1 ∧ ψ,A,>) arrows. We therefore have M[Uψ3.i.3], w |=
¬CA¬ϑ so also M, w |= ¬α3.i.3.

In the third case we have M, w3 |= ♦i−1(♦ψ′ ∧ ♦¬ψ′). This implies that
the arrow from w2 to w3 is not a U -arrow, as we couldn’t other wise have
M, w2 |= β3.i. Since the arrow from w2 to w1 is a U -arrow this implies that
there are formulas in ΦknPvar(χ) that distinguish between w1 and w3. Let ψ be

such a distinguishing formula with the additional property that M, w3 |= ¬ψ,
see Figure 15c. The arrows from w2 to w3 and w1 are retained because they are
(β3.i ∧ ♦U (¬β3.i ∧ ¬ζ3.i+1),A,>) arrows. Arrows from w3 to its successors are
not retained because the only arrows from ¬β3.i worlds that are retained have a
conjunct ψ in the start condition. Arrows from w1 to its successors are however
retained because they are (¬β3.i ∧¬ζ3.i+1 ∧ψ,A,>) arrows. We therefore have
M[Uψ3.i.3], w |= ¬CA¬ϑ so also M, w |= ¬α3.i.3.

In the fourth case we haveM, w2 |= ♦ψ′∧♦¬ψ′. Choose ψ such that ψ ≡ ψ′
or ψ ≡ ¬ψ′ and furthermore M, w1 |= ψ. Let w3 be a successor of w2 with
M, w2 |= ¬ψ. Then, like in the third case the arrows from w2 to w3 and w1 are
retained because they are (β3.i∧♦U (¬β3.i∧¬ζ3.i+1),A,>) arrows. Arrows from
w3 to its successors are not retained because the only arrows from ¬β3.i worlds
that are retained have a conjunct ψ in the start condition. Arrows from w1 to
its successors are however retained because they are (¬β3.i ∧ ¬ζ3.i+1 ∧ ψ,A,>)
arrows. We therefore have M[Uψ3.i.3], w |= ¬CA¬ϑ so also M, w |= ¬α3.i.3.

These four cases are exhaustive so this proves the Lemma.

B.3.5 Constructing α3.i

Let
α3.i := α3.i.1 ∧ α3.i.2 ∧ α3.i.3

and
ζ3.i := ζ3.i+1 ∧ (β3.i → α3.i).

For any M, w such that M, w |= β3.i we now have the following results:

• M, w |= χ⇒M, w |= α3.i.1 ∧ α3.i.2 ∧ α3.i.3

• if there is a U -reachable ¬ϕ ∧ β3.i world and M, w |= α3.i.1 then M, w |=
¬α3.i.2

• if there is a U -reachable ¬ϕ∧¬β3.i world andM, w |= α3.i.1 ∧ α3.i.2 then
M, w |= ¬α3.i.3.

Since any U -reachable ¬ϕ world must satisfy either ¬ϕ∧ β3.i or ¬ϕ∧¬β3.i this
is sufficient to show that M, w |= χ⇔M, w |= α3.i.

We can then take
α3 :=

∧
0≤i≤n

(β3.i → α3.i).
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(c) Possibility 3: M, w3 |= ∧♦i−1(♦ψ′ ∧ ♦¬ψ′).

w
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β3.0 w3
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· · ·

· · ·
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(d) Possibility 4: M, w2 |= ♦ψ ∧ ♦¬ψ.

Figure 15: The four possibilities for the conditions of Lemma 15 to hold. In
each case we have M, w |= ¬[Uψ3.i.3]CA¬ϑ for an appropriate choice of ψ.
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B.4 Constructing α2

Since α2 has two extra indices for subcases the formula ζ2.i.j is slightly harder
to define than ζ3.i. The base case is ζ2.|Pvar(χ)|+1.0 given here, the other cases
are defined by induction at the end of this section.

ζ2.|Pvar(χ)|+1.0 := (β6 → α6) ∧ (β5 → α5) ∧ (β4 → α4) ∧ (β3 → α3).

B.4.1 Constructing α2.i.0

If we are in case 2.i.0 we know that there are both a U -reachable pi world and a
U -reachable ¬pi world. The solution α2.i.0 works by creating two updates. The
+ update will guarantee that the only �⊥ worlds are pi worlds—except if there
is a U -reachable ¬pi ∧¬χ world. The − update will likewise guarantee that the
�⊥ worlds are ¬pi worlds unless there is a U -reachable pi ∧ ¬χ world.

For 1 ≤ i ≤ |Pvar(χ)| let

U+
2.i.0 := {(u1 ∧ β2.i.0, a, u2 ∧ (β2.i.0 ∨ pi ∨ ¬ζ2.i.1)) | (u1, a, u2) ∈ U}

∪ {(¬pi ∧ ¬ϕ,A,>)},
U−2.i.0 := {(u1 ∧ β2.i.0, a, u2 ∧ (β2.i.0 ∨ ¬pi ∨ ¬ζ2.i.1)) | (u1, a, u2) ∈ U}

∪ {(pi ∧ ¬ϕ,A,>)}

and
α2.i.0 := [U+

2.i.0]CA(�⊥ → pi) ∧ [U−2.i.0]CA(�⊥ → ¬pi).

Lemma 16. For any M and w such that M, w |= β2.i.0 we have

M, w |= χ⇔M, w |= α2.i.0.

Proof. I show the results for U+
2.i.0, the − case is the same except for an inter-

changing of pi and ¬pi.
First suppose M, w |= χ. Then the overlined clause in U+

2.i.0 cannot apply.
Likewise, the ¬ζ2.i.1 term cannot occur, so U+

2.i.0 simplifies to

U+′
2.i.0 := {(u1 ∧ β2.i.0, a, u2 ∧ (β2.i.0 ∨ pi)) | (u1, a, u2) ∈ U}.

Let w′ be any U -reachable world that has no successors after the update. Then
it is either a ¬β2.i.0 world or a β2.i.0 ∧ ¬♦U (β2.i.0 ∨ pi) world.

If w′ is a ¬β2.i.0 world then it must be a pi world in order to satisfy the end
condition of an arrow. If it is a β2.i.0 ∧ ¬♦U (β2.i.0 ∨ pi) world then there are
both a pi world and a ¬pi world U -reachable from w′ but this is not the case
for any of its successors. But all its successors satisfy ¬pi so w′ must itself be a
pi world. This shows that M, w |= [U+

2.i.0]CA(�⊥ → pi).
Now suppose that M, w |= ¬χ. Then there is a U -reachable ¬ϕ world w′.

Assume without loss of generality that w′ is the first ¬ϕ world on the U -path
from w to w′.

IfM, w1 |= β2.i.0∧¬pi then the path to w1 is retained by the update because
all arrows in it are (u1 ∧ β2.i.0, a, u2 ∧ β2.1.0) arrows. Arrows from w′ are not

51



retained however, because they are {(¬pi ∧ ¬ϕ,A,>) arrows. We therefore have
M, w |= ¬[U+

2.i.0]CA(�⊥ → pi).
If M, w1 |= ¬β2.i.0 ∧ ¬pi let w1 be the last β2.i.0 world on the U -path from

w to w′ and w2 the successor of w1 along this path. There is a ¬pi world
U -reachable from w2, but not both a ¬pi and a pi world. This implies that
in particular M, w2 |= ¬pi. Furthermore, w2 is in a later case and has a U -
reachable ¬ϕ world soM, w2 |= ¬ζ2.i.1. The arrow from w1 to w2 is therefore a
(u1∧β2.i.0, a, u2∧¬ζ2.i.1) arrow and therefore retained by the update. No arrow
from w2 is retained because every start condition includes a β2.i.1 conjunct. We
therefore have M, w |= ¬[U+

2.i.0]CA(�⊥ → pi).
Mutatis mutandis this also shows that if M, w |= χ then also M, w |=

[U−2.i.0]CA(�⊥ → pi) and that if the first U -reachable ¬ϕ world is a pi world
then M, w |= ¬[U−2.i.0]CA(�⊥ → pi), which completes the proof.

B.4.2 Constructing α2.i.j with j > 0

Let

U+
2.i.j := {(u1 ∧ β2.i.j , a, u2 ∧ (β2.i.j ∨ ¬ζ2.i.j+1) | (u1, a, u2) ∈ U)}∪

{(♦· j¬pi,A,♦· j−1¬pi), (β2.i.j ∧ ¬ϕ,A,>), (¬pi,A,>)},

U−2.i.j := {(u1 ∧ β2.i.j , a, u2 ∧ (β2.i.j ∨ ¬ζ2.i.j+1) | (u1, a, u2) ∈ U)}∪

{(♦· jpi,A,♦· j−1pi), (β2.i.j ∧ ¬ϕ,A,>), (pi,A,>)}

and

α2.i.j := (pi → [U+
2.i.j ]CA(�⊥ → ¬pi)) ∧ (¬pi → [U−2.i.j ]CA(�⊥ → pi)).

Lemma 17. For any M and w such that M, w |= β2.i.j we have

M, w |= χ⇔M, w |= α2.i.j .

Proof. I show the results for U+
2.i.0, the − case is the same except for an inter-

changing of pi and ¬pi.
Unless a β2.i.j∧¬ϕ or ¬ζ2.i.j+1 world is encountered the update U+

2.i.0 retains
all arrows to U -reachable β2.i.j worlds by the (u1∧β2.i.j , a, u2∧(β2.i.j∨¬ζ2.i.j+1)
clauses and all paths to the nearby ¬pi worlds by the (♦· j¬pi,A,♦· j−1¬pi) clause.
The worlds on the way to the ¬pi world are pi worlds with a ¬pi world reachable
in less than j steps so they are not β2.i.j worlds. The ¬pi world itself may be a

β2.i.j world but its outgoing arrows are not retained because of the (¬pi,A,>)
clause.

This implies that the ¬ζ2.i.j+1 possibility in the end condition of (u1 ∧
β2.i.j , a, u2 ∧ (β2.i.j ∨ ¬ζ2.i.j+1) and the (β2.i.j ∧ ¬ϕ,A,>) can only apply in
U -reachable worlds.
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Suppose M, w |= χ and M, w |= pi. Then the ¬ζ2.i.j+1 term and the

(β2.i.j ∧ ¬ϕ,A,>) clause cannot apply in U -reachable worlds so the update sim-
plifies to

U+′
2.i.j :={(u1 ∧ β2.i.j , a, u2 ∧ β2.i.j) | (u1, a, u2) ∈ U)}∪

{(♦· j¬pi,A,♦· j−1¬pi), (¬pi,A,>)}.

Any pi∧β2.i.j world has a successor after this update, since it has either an arrow
to a β2.i.j world that is retained or an arrow to a ♦j−1¬pi world that is retained.
The pi worlds on the way from a β2.i.j world to a ¬pi world also have a successor
after the update because they have an arrow to a ♦· j−1¬pi world that is retained.
These are the only U+′

2.i.j-reachable pi worlds, soM, w |= [U+′
2.i.j ]CA(�⊥ → ¬pi)

and therefore also M, w |= [U+
2.i.j ]CA(�⊥ → ¬pi).

Suppose on the other hand that M, w |= ¬χ and M, w |= pi. Then there is
a U -reachable world w′ with M, w′ |= ¬ϕ. Suppose without loss of generality
that w′ is the first ¬ϕ world on the U -path from w to w′.

If M, w′ |= β2.i.j it is reachable after the update U+
2.i.j but has no successor

after that update because of the (β2.i.j ∧ ¬ϕ,A,>) clause. From M, w |= pi
and M, w |= β2.i.j with j > 0 it also follows that M, w′ |= pi, so M, w |=
¬[U+

2.i.j ]CA(�⊥ → ¬pi).
If M, w′ |= ¬β2.i.j let w1 be the last β2.i.j world on the U -path from w to

w′ and w2 the successor of w1 along this path. Then w1 is reachable after the
update U+

2.i.j . The arrow from w1 to w2 is also retained by the update because
it is an (u1 ∧ β2.i.j , a, u2 ∧ ¬ζ2.i.j+1) arrow. Arrows from w2 are not retained
however, becauseM, w2 |= ¬β2.i.j∧¬♦· j¬pi. FromM, w |= pi andM, w |= β2.i.j

with j > 0 it also follows that M, w′ |= pi, so M, w |= ¬[U+
2.i.j ]CA(�⊥ → ¬pi).

This shows that [U+
2.i.j ]CA(�⊥ → ¬pi) is equivalent to χ under the condi-

tions β2.i.j and pi. Mutatis mutandis it also shows that [U−2.i.j ]CA(�⊥ → pi) is
equivalent to χ under the conditions β2.i.j and ¬pi. This proves the Lemma.

B.4.3 Constructing α2

We can now give the definition of ζ2.i.j :

ζ2.i.3n+1 := ζ2.i+1.0,

ζ2.i.j := ζ2.i.j+1 ∧ (β2.i.j → α2.i.j).

We can also define α2:

α2 :=
∧

1≤i≤|Pvar(χ)|

∧
0≤j≤3n

(β2.i.j → α2.i.j)
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B.5 Constructing α1

B.5.1 Constructing α1.i.j.k

Let

U1.i.j.0 := {(u1 ∧ β1.i.j.0, a, u2 ∧ (β1.i.j.0 ∨ ¬ζ1.i.j.0+1)) | (u1, a, u2) ∈ U}∪

{(>, aj ,>), (β1.i.j.0 ∧ ¬ϕ,A,>)},

U1.i.j.k := {(u1 ∧ β1.i.j.k, a, u2 ∧ (β1.i.j.k ∨ ¬ζ1.i.j.k+1)) | (u1, a, u2) ∈ U}∪

{(♦· k♦aj>,A,♦·
k−1♦aj>), (>, aj ,>), (β1.i.j.k ∧ ¬ϕ,A,>)}

and
α1.i.j.k := [U1.i.j.k]CA\{aj}¬�⊥.

Lemma 18. For any M and w such that M, w |= β1.i.j.k we have

M, w |= χ⇔M, w |= α1.i.j.k.

Proof. First suppose that M, w |= χ. Then the ¬ζ1.i.j.k+1 possibility and

the (β1.i.j.k ∧ ¬ϕ,A,>) cannot apply. The remaining possibilities leave ex-
actly those paths intact that lead to U -reachable β1.i.j.k worlds or from a U -
reachable β1.i.j.k world a nearby ♦aj> world. The only candidates for being
�⊥ worlds are the worlds that are reached by the (>, aj ,>) clause and worlds
that can only be reached by passing through such a world. This implies that
M[U1.i.j.k], w |= CA\{aj}¬�⊥, so M, w |= α1.i.j.k.

Now suppose that M, w |= ¬χ. Then there is a U -reachable world w′ with
M, w′ |= ¬ϕ. Suppose without loss of generality that w′ is the first ¬ϕ world
on the U -path from w to w′.

IfM, w′ |= β1.i.j.k it is reachable after the update U1.i.j.k but has no successor

after that update because of the (β1.i.j.k ∧ ¬ϕ,A,>) clause so M[U1.i.j.k], w
′ |=

�⊥. We therefore have M, w |= ¬α1.i.j.k.
If M, w′ |= ¬β1.i.j.k let w1 be the last β1.i.j.k world on the U -path from w

to w′ and w2 the successor of w1 along this path. Then w1 is reachable after
the update U1.i.j.k. The arrow from w1 to w2 is also retained by the update
because it is an (u1 ∧ β1.i.j.k, a, u2 ∧ ¬ζ1.i.j.k+1) arrow. Arrows from w2 are not
retained however, because M, w2 |= ¬β1.i.j.k ∧ ¬♦· j♦aj>. This implies that w2

is a reachable �⊥ world after the update, so M, w |= ¬α1.i.j.k.

B.5.2 Constructing α1.i.−1

Recall that B1, · · · , B2|A|−|A|−1 are all the subsets of A with at least two el-
ements, ordered in such a way that if Bi ⊂ Bj then i > j and β1.i.−1 is the
case where the agents in Bi are exactly the agents for which there is a U -arrow
departing from a U -reachable world.
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For any 1 ≤ i ≤ 2|A| − |A| − 1 and any j such that aj ∈ Bi let

U j1.i.−1 := {(u1 ∧ (β1.i.−1 ∨ ¬ζ1.i+1.−1), a, u2∧
(β1.i.−1 ∨ ¬ζ1.i+1.−1)) | (u1, a, u2) ∈ U}∪
{(u1 ∧ [U ]¬CA�aj⊥, a, u2 ∧ [U ]¬CA�aj⊥) | (u1, a, u2) ∈ U}∪

{(u1, aj , u2) | (u1, aj , u2) ∈ U} ∪ {(¬ϕ,A,>)}

and
α1.i.−1 :=

∧
j:aj∈Bi

[U j1.i.−1]CA�A\aj♦>

Lemma 19. For any M and w such that M, w |= β1.i.−1 we have

M, w |= χ⇔M, w |= α1.i.−1.

Proof. First, suppose M, w |= χ. The update U j1.i.−1 only retains U -arrows so

then the ζ1.i+1.−1 term and the (¬ϕ,A,>) clause cannot apply. The clauses
(u1∧β1.i.−1, a, u2∧β1.i.−1) and (u1∧ [U ]¬CA�aj⊥, a, u2∧ [U ]¬CA�aj⊥) retain
exactly the paths that go to worlds from which there is a U -reachable world
with a departing (u1, aj , u2) arrow. Let w′ be any U j1.i.−1 reachable �⊥ world.
Then it cannot have been reached by a (u1 ∧ β1.i.−1, a, u2 ∧ β1.i.−1) or (u1 ∧
[U ]¬CA�aj⊥, a, u2 ∧ [U ]¬CA�aj⊥) arrows, as in those cases there is always
either an (u1∧[U ]¬CA�aj⊥, a, u2∧[U ]¬CA�aj⊥) arrow or an (u1, aj , u2) arrow
departing from the target world. The world w′ can therefore only be reached
by a (u1, aj , u2) arrow. This implies that M, w |= [U j1.i.−1]CA�A\aj♦>.

Now suppose that M, w |= ¬χ. Then there is a U -reachable world w′ with
M, w′ |= ¬ϕ. Suppose without loss of generality that w′ is the first ¬ϕ world
on the U -path from w to w′. Then for any j ∈ Bi we haveM, w′ |= [U j1.i.−1]�⊥
because of the (¬ϕ,A,>) clause.

If M, w′ |= β1.i.−1 then w′ is reachable in MUj1.i.−1
for any j ∈ Bi because

of the (u1∧ (β1.i.−1∨¬ζ1.i+1.−1), a, u2∧ (β1.i.−1∨¬ζ1.i+1.−1)) clauses. Take any
j such that there at least one of the retained arrows from the predecessor of w′

to w′ is a non-j arrow. Then M, w |= [U j1.i.−1]¬CA�A\aj♦>.
If M, w′ |= ¬β1.i.−1 let w1 be the last β1.i.−1 world on the U -path from w

to w′ and w2 the successor of w1 along this path. The world w′ is reachable
in MUj1.i.−1

for any j ∈ Bi because of the (u1 ∧ (β1.i.−1 ∨ ¬ζ1.i+1.−1), a, u2 ∧
(β1.i.−1 ∨¬ζ1.i+1.−1)) clauses; the path up to w1 consists of (u1 ∧β1.i.−1, a, u2 ∧
β1.i.−1) arrows, the arrow from w1 to w2 is an (u1 ∧ β1.i.−1, a, u2 ∧ ¬ζ1.i+1.−1)
arrow and the path from w2 to w′ consists of (u1∧¬ζ1.i+1.−1, a, u2∧¬ζ1.i+1.−1)
arrows. Take any j such that there at least one of the retained arrows from the
predecessor of w′ to w′ is a non-j arrow. Then M, w |= [U j1.i.−1]¬CA�A\aj♦>.

B.5.3 Constructing α1

We can now define α1 and ζ for the appropriate indices.
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α1 :=
∧

1≤i≤2|A|−|A|−1

(β1.i.−1 → α1.i.−1)∧
∧

1≤i≤|A|

∧
1≤j≤|A|,j 6=i

∧
1≤k≤3n

(β1.i.j.k → α1.i.j.k).

The definition of ζ is a bit more complicated in this case than it is in the
other cases due to the more complex indexing. First let us define ζ1.i.j.k.

ζ1.|A|.|A|−1.3n+1 := (β6 → α6)∧ (β5 → α5)∧ (β4 → α4)∧ (β3 → α3)∧ (β2 → α2)

ζ1.i.j.3n+1 :=

{
ζ1.i.j+1.0 if j + 1 6= i
ζ1.i.j+2.0 if j + 1 = i and i 6= |A|

ζ1.i.|A|+1.0 := ζ1.i+1.1.0

ζ1.i.j.k := ζ1.i.j.k+1 ∧ (β1.i.j.k → α1.i.j.k).

Now we can define ζ1.i.−1 by

ζ1.|A|+1.−1 := ζ1.1.2.0

and
ζ1.i.−1 := ζ1.i+1.−1 ∧ (β1.i.−1 → α1.i.−1).

C Proofs of auxiliary lemmas

Lemma 20. Let M be a model, w1 and w2 worlds in the model and ψ an AUC
formula such that w2 is a successor of w1, M, w1 |= ψ and M, w2 |= ¬ψ. Then
one of the following holds:

1. there are two agents b1, b2 and two worlds w3, w4 such that b1 6= b2,
M, w3 |= ♦b1>, M, w4 |= ♦b2> and both w3 and w4 are reachable from
w1 in at most d(ψ) steps.

2. there are a propositional variable p ∈ Pvar(ψ) and two worlds w3, w4 such
that M, w3 |= p, M, w4 |= ¬p and both w3 and w4 are reachable from w1

in at most d(ψ) + 1 steps.

3. there are a formula ψ′ ∈ Φ
d(ψ)
Pvar(ψ) and a world w3 such that M, w3 |=

♦ψ′ ∧ ♦¬ψ′ and there is a k ∈ N such that w3 is reachable from w1 in at
most k steps and k + d(ψ′) ≤ d(ψ).

4. there is a k ≤ d(ψ) such that M, w1 |= ♦k�⊥ ∧�k+1⊥.

Proof. The proof is by showing that if the conditions hold and we are not in one
of the first two cases then we are in one of the last two cases, and by induction
on the depth of ψ.

The base case is trivial; if ψ is of depth 0 then it is a boolean combination of
propositional variables so there is at least one propositional variable that takes
different values in the two worlds so we are in case 2.
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Suppose therefore thatM, w1, w2 and ψ are as in the Lemma, that d(ψ) > 0,
that the first two possibilities do not hold and that the Lemma holds for all ψ′

with d(ψ′) < d(ψ). If a boolean combination of formulas distinguishes between
two worlds then so does at least one of the combined formulas so we can assume
without loss of generality that ψ is either of pure depth or the negation of a
formula of pure depth.11

A formula of pure depth > 0 or the negation thereof must have ♦a,�a, [U ],
¬[U ], CB or ¬CB as main connective. Now consider the following validities:

[U ]p ↔ p
[U ]¬ξ ↔ ¬[U ]ξ

[U ](ξ1 ∨ ξ2) ↔ [U ]ξ1 ∨ [U ]ξ2
[U ]�aξ1 ↔

∧
(ξ2,a,ξ3)∈U (ξ2 → �a(ξ3 → [U ]ξ1))

ξ ↔ [(>,A,>)]ξ.

They allow us to find a formula equivalent to ψ that is of the form p, of the
form ♦aψ′, of the form �aψ′, of the form [U ′]CBψ

′ or of the form ¬[U ′]CBψ
′

for some p ∈ P, a ∈ A, B ⊆ A, ψ′ ∈ Φ
d(ψ)−1
Pvar(ψ) and update U ′ with d(U ′) < d(ψ).

We already discussed formulas of the form p, so we can restrict to formulas of
the forms ♦aψ′, �aψ′, [U ′]CBψ

′ or ¬[U ′]CBψ
′ without loss of generality.

• Suppose ψ is of the form ♦aψ′. Then there are three possibilities.

– Suppose M, w2 6|= ψ′. Then M, w1 |= ♦ψ′ ∧ ♦¬ψ′ so we are in case
3.

– Suppose M, w2 |= ψ′ ∧�a⊥. Then either M, w1 |= ♦�a⊥∧ ♦¬�a⊥
so we are in case 3 or M, w1 |= ♦�a⊥ ∧��a⊥. In the latter case it
follows from the fact that we are not in case 1 and that there is an
a-arrow departing from w1 that M, w1 |= ♦�⊥ ∧��⊥ so we are in
case 4.

– Suppose M, w2 |= ψ′ ∧ ♦a>. Then w2 has a successor w3 with
M, w3 |= ¬ψ′. We can then apply the Lemma to ψ′, w2 and w3 by
the induction hypothesis. If one of the first three cases holds for ψ′,
w2 and w3 it immediately follows that the same case holds for ψ,
w1 and w2 as these cases allow the relevant worlds to be a certain
distance away. Suppose then that the fourth case holds for ψ′, w2

and w3 so M, w2 |= ♦k
′
�⊥ ∧ �k

′+1⊥ for some k′ ≤ d(ψ′). Then
either all successors of w1 satisfy the same formula in which case
M, w1 |= ♦k�⊥ ∧ �k+1⊥ for k = k′ + 1 ≤ d(ψ) so we are in case 4
or at least one successor of w1 does not satisfy the formula in which
caseM, w1 |= ♦(♦k

′
�⊥∧�k′+1⊥)∧♦¬(♦k

′
�⊥∧�k′+1⊥) so we are

in case 3.

11We could of course require ψ to be of pure depth and still have it distinguish w1 and w2.
Allowing ψ to be a negation of a formula of pure depth allows us to guarantee that ψ holds
in w1 and not in w2.
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• Suppose ψ is of the form �aψ′. We are not in case 1 so there is only one
agent nearby. We therefore also have M, w1 |= �ψ′ and M, w2 |= ¬�ψ′.
Since w2 is a successor of w1 we haveM, w2 |= ψ′. But w2 has a successor
w3 with M, w3 |= ¬ψ′. We can then apply the Lemma to ψ′, w2 and w3

by the induction hypothesis. By the same reasoning as in the last subcase
of the previous possibility it then follows that the Lemma holds for ψ, w1

and w2.

• Suppose ψ is of the form [U ′]CBψ
′. Then there are three possibilities.

– Suppose there is no B-arrow from w1 to w2. Then the arrow from
w1 to w2 must be of an agents a 6∈ B and from the fact that we are
not in case 1 it follows that there are only a arrows from w2. But
then we must have M, w2 |= ¬ψ′ and M, w |= ψ′ so we can apply
the Lemma to ψ′, w1 and w2, from which it immediately follows that
the Lemma holds for ψ, w1 and w2.

– Suppose there is a B-arrow from w1 to w2 and M, w2 |= ¬ψ′. Then
we can apply the Lemma to ψ′, w1 and w2, from which it immediately
follows that the Lemma holds for ψ, w1 and w2.

– Suppose there is a B-arrow from w1 to w2 and M, w2 |= ψ′. Then
the arrow from w1 to w2 must not be a U -arrow and there must be a
U -arrow from w2 to a successor w3 of w2. From the fact that we are
not in case 1 it follows that the arrow from w1 to w2 and the arrow
from w2 to w3 must belong to the same agent. Let (u1, a, u2) be the
U ′ clause for which there is an arrow from w2 to w3. Then we must
have either M, w1 |= ¬u1 and M, w2 |= u1 or M, w2 |= ¬u2 and
M, w3 |= u2. In the first case we can apply the Lemma to ¬u1, w1

and w2 and it follows immediately that the Lemma holds for ψ′, w1

and w2. In the second case we can apply the lemma to u2, w1 and
w2 from which it follows that the Lemma holds for ψ′, w1 and w2 by
the same reasoning as in the last subcase of the first possibility.

• Suppose ψ is of the form ¬[U ′]CBψ
′. Then there are two possibilities.

– Suppose M, w1 |= ¬ψ′. From M, w2 |= ¬¬[U ′]CBψ
′ it follows that

M, w2 |= ψ′. We can then apply the Lemma for ψ′, w1 and w2 and
it follows immediately that the Lemma holds for ψ, w1 and w2.

– SupposeM, w2 |= ψ′. Then there must be a successor w3 of w1 with
M, w3 |= ¬[U ′]CBψ

′, so we have M, w1 |= ♦ψ ∧ ♦¬ψ. We therefore
are in case 3.

This completes the induction step and thereby the proof.

Lemma 21. LetM be a model, w and w1 worlds inM, ψ a formula in ΦkPvar(χ)

with k ≤ 3n and π = ((w, b, w′), · · · , (w′′, b′, w1)) a path from w to w′ such that

• all arrows in π except possibly some or all of the last 3n − k ones are
U -arrows,
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• M, w |= ¬β1 ∧ ¬β2,

• M, w1 |= ♦ψ ∧ ♦¬ψ,

• there is no ψ′ ∈ ΦkPvar(χ) with d(ψ′) < d(ψ) and M, w1 |= ♦ψ′ ∧ ♦ψ′ and

• there are no ψ′ ∈ ΦkPvar(χ) and w2 on π with d(ψ′) ≤ d(ψ), w2 6= w1 and

M, w2 |= ♦ψ′ ∧ ♦ψ′.

Then there is a formula ξ ∈ ΦkPvar(χ) such that M, w1 |= ♦ξ ∧ ♦¬ξ, there is no

w2 on π with M, w2 |= ξ and for any successor w3 of w1 with M, w3 |= ¬ξ we
have M, w3 |= ♦>.

Proof. First, suppose that there is a successor w3 of w1 with M, w3 |= �⊥.
FromM, w |= ¬β2 and the fact that all but the last n arrows in π are U arrows
it follows that for each propositional variable p all successors of w1 have the
same value for p. Since ψ distinguishes two successors of w1 this implies that
w1 must also have a successor satisfying ¬�⊥. We can then take ξ = �⊥.

Suppose then that every successor of w1 satisfies ♦>. If a boolean combi-
nation of formulas distinguishes between two worlds then at least one of the
combined formulas distinguishes them as well, so we can assume without loss
of generality that ψ is either of pure depth or the negation of a formula of pure
depth. Since this still allows for the negating of a formula we can furthermore
assume that M, w |= ¬ψ.

If there is no ψ world on π we can take ξ = ψ. Assume therefore that there
is a ψ world on π and let w2 be the first ψ world on the path. We have taken ψ
such that M, w |= ¬ψ, so w2 6= w, so there is a predecessor w3 of w2 on π with
M, w3 |= ¬ψ.

We can then apply Lemma 20 to ¬ψ, w3 and w2. The first two possibilities
of Lemma 20 cannot be the case, as this would require either two agents to have
arrows within 3n steps of a U -reachable world or a propositional variable p such
that both p and ¬p hold in some world within 3n steps of a U -reachable world.

The fourth possibility cannot occur either, as no ♦ψ ∧ ♦¬ψ world can oc-
cur after a ♦j�⊥ ∧ �j+1⊥ world unless there are either multiple agents or a
propositional difference nearby, which there aren’t.

We must therefore be in the third possibility: there are a formula ψ′ ∈
Φ
d(ψ)
Pvar(ψ) and a world w4 such that M, w4 |= ♦ψ′ ∧ ♦¬ψ′, w4 is reachable from

w3 in at most l steps and l + d(ψ′) ≤ d(ψ).
There may be multiple worlds on π that satisfy ♦l

′
(♦ψ′ ∧ ♦¬ψ′) for some

l′ with l′ + d(ψ′) ≤ d(ψ). Let w5 be such a world on π that minimizes l′ −m
where m is the distance between the world and w1. Note that since there is no
♦ψ′ ∧ ♦¬ψ′ world on π before w1 we must have l ≥ 1, so d(ψ′) < d(ψ).

Every successor of w5 must satisfy ♦l
′−1(♦ψ′ ∧ ♦¬ψ′) since otherwise we

would have M, w5 |= ♦(♦l
′−1(♦ψ′ ∧ ♦¬ψ′)) ∧ ♦¬(♦l

′−1(♦ψ′ ∧ ♦¬ψ′)). In par-
ticular the successor w6 of w5 along π satisfies ♦l

′−1(♦ψ′ ∧ ♦¬ψ′). But for the
same reason every successor of w6 satisfies ♦l

′−2(♦ψ′ ∧ ♦¬ψ′).
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This can be repeated until we either reach the l′-th successor of w5 or until
we reach w1, whichever comes first. If the distance m between w5 and w1 is at
least l′ we will reach the l′-th successor w7 of w5 on π which satisfies ♦ψ′∧♦¬ψ′.
But d(ψ′) < d(ψ) so there can be no such world on π. This is a contradiction,
so m must be less than l′ and we have M, w1 |= ♦l

′−m(♦ψ′ ∧ ♦¬ψ′). Since the
depth of ψ is minimal for distinguishing the successors of w1 we also have that
all successors of w1 satisfy ♦l

′−m(♦ψ′ ∧ ♦¬ψ′).
Let ξ = ψ∧♦l′−m−1(♦ψ′∧♦¬ψ′). Then d(ξ) = d(ψ) and Pvar(ξ) = Pvar(ξ)

so ξ ∈ ΦkPvar(χ). Furthermore, we have M, w1 |= ♦ξ ∧ ♦¬ξ. And, because w5

was chosen to minimize l′ − m we have M, w′ |= ¬♦l′−m−1(♦ψ′ ∧ ♦¬ψ′) and
therefore M, w′ |= ¬ξ for all w′ on π.
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