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Abstract 

 

In this paper we develop a vector autoregressive (VAR) model for retail prices and wages 

within the Wilkie model.  The results turn out to be a slight improvement over the original 

model, but the simulated results are not very different. 
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1. Introduction 

 

1.1  This paper is the next in a series that updates the Wilkie model, originally put 

forward in Wilkie (1986) and Wilkie (1995), and follows Part 1 (Wilkie et al, 2011), Part 2 

(Wilkie & Şahin, 2016), Parts 3A, 3B and 3C (Wilkie & Şahin, 2017a, 2017b and 2017c) and 

Part 4 (Wilkie & Şahin, 2018).  In Part 4 we observed that in the model for retail prices there 

was a correlation with wages, which we had not allowed for, between the residuals of the 

inflation rate model in any year, and the residuals of the wages model in the previous year, 

which suggested that a vector autoregressive (VAR) model might be appropriate.  We 

investigate this suggestion in this paper. 

 

1.2  The first reason for having modelled the retail prices index, Q, without reference 

to the wages index, W, was that in the first version of the model in Wilkie (1986), a wages 

index was not included, being of less immediate importance than those variables that were 

modelled.  It was included in Wilkie (1996), because it was thought to be necessary for the 

valuation of pension schemes with salary-related benefits, and possibly for assessing future 

liability claims in general insurance and in future wage and salary expenses in any 

organisation.  These advantages still apply. 

 

1.3  However, some users of stochastic models (now often called Economic Scenario 

Generators) may consider that wages are an unnecessary complication of the model, and 

making them essential, as we do in this paper, is an undesirable feature. 
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1.4  Another consideration is that good international figures for average earnings are 

not readily available.  Some countries seem to prefer to publish indices of hourly wage rates 

in manufacturing industry, which is a useful statistic for a different purpose than pension 

funds would require.  We do not consider other countries in this paper. 

 

1.5  In section 2 we state the basic formula that we use.  In section 3 we give 

estimation results.  In section 4 we discuss further calculations and show the long term means 

and variances, and the correlation coefficients, comparing them with those of the original 

model.  In section 5 we show certain results for forecasting.  In section 6 we consider 

stochastic interpolation.  In section 7 we show specimen forecasts.  In section 8 we draw some 

conclusions.  We put almost all the algebra into the Appendix. 

 

 

2. Formulation 

 

2.1  The original Wilkie model for retail prices, Q(t), with parameters QMU, QA and 

QSD,  is; 

 

  I(t) = ln(Q(t+1)) – ln(Q(t)) 

 

  IN(t) = I(t) – QMU 

 

  QE(t) = QSD.QZ(t) 

 

  I(t) = QA.IN(t) + QMU + QE(t) (1) 

 

  Q(t+1) = Q(t).exp(I(t)) 

 

2.2  The fuller form of the original model for wages, W(t), with parameters WMU, 

WW1, WW2, WA and WSD, is: 

 

  J(t) = ln(W(t+1)) – ln(W(t) 

 

  JN(t) = J(t) – WW1.I(t) – WW2.I(t–1) – WMU 

 

  WE(t) = WSD.WZ(t) 

 

  J(t) = WW1.I(t) + WW2.I(t–1) + WMU + WA.JN(t) + WE(t) (2) 

 

  W(t+1) = W(t).exp(J(t)) 

 

Often QA could be taken as zero, so the term WA.JN(t) could be dropped out. 

 

2.3  To include dependence of I(t) on J(t–1) we could elaborate the formula for I(t) 

which we shall put in the form, changing the constant term from QMU to QM: 

 

  I(t) = QA.I(t – 1) + QW.J(t – 1) + QM + QE(t) (3) 

 

But this suggests that a full symmetrical VAR model might be appropriate so we put: 
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  J(t) = WQ.I(t – 1) + WA.J(t – 1) + WM + WE(t) (4) 

 

with a correlation coefficient, QWR, between QZ(t) and WZ(t).  All the parameters for this can 

be estimated jointly.  We assume throughout that QZ(t) and WZ(t) are distributed as unit 

normal, N(0, 1), although there is good evidence that the data is fatter tailed than normal. 

 

2.4  It is convenient to replace QMU in formula (1) by QM in formula (3), since this 

allows us to estimate the parameters of (3) without reference to the model for W, though the 

data for W(t) is still used.  We can then adjust formula (4) to: 

 

  J(t) = WQ.I(t – 1) + WA.J(t – 1) + WM + WBQ.QE(t) + WSD2.WZ(t) (5) 

 

Where the correlation is incorporated in the WBQ term and WSD is adjusted to WSD2.  See 

Appendix A1.1.  The parameters for formula (5) can then be estimated after formula (3) has 

been fitted.   

 

2.5  Formula (3) and (4) or (3) and (5) are convenient for estimation, but for future 

simulation and other calculations it is convenient to re-arrange them as: 

 

  I(t) = QA.IN(t – 1) + QW.JN(t – 1) + QMU + QE(t) (6) 

 

  J(t) = WQ.IN(t – 1) + WA.JN(t – 1) + WMU + WBQ.QE(t) + WSD2.WZ2(t) (7) 

 

with IN(t) = I(t) – QMU and JN(t) = J(t) – WMU: 

 

We can derive the values of QMU and WMU (see Appendix A2) from: 

 

  QMU = {(1 – WA).QM + QW.WM} / {(1 – WA). (1 – QA) – QW.WQ} 

 

  WMU = {WQ.QM + (1 – QA).WM} / {(1 – WA). (1 – QA) – QW.WQ} 

 

 

3. Estimation 

 

3.1  We have the annual June values of the Retail Prices Index (RPI) and its 

predecessors, and the Average Weekly Earnings Index (seasonally adjusted) from June 1921 

to June 2016.  We use these as Q(t) and W(t).  This gives us annual values of I(t) and J(t) from 

1922 to 2016, and we fit the model to the 94 values from 1923 to 2016, using  the values for 

June 1922, in the formulae for 1923.  We use maximum likelihood estimation (MLE), 

assuming normally distributed residuals.  This gives the same estimates of the values of the 

parameters as least squares, but also gives us standard errors (and covariances) for all the 

parameters. 

 

3.2  We start by estimating the parameters for formula (3), but omitting the term 

QW.JN(t – 1).  This is the same as the present model, but QM has a different value from 

QMU.  The results are shown in Table 1.  We then include the omitted term, so that the results 

are now the same as with the joint, VAR, model.  These results are also shown in Table 1.   

The improvement in log likelihood is significant at 3.01 and the extra term is also 

significantly different from zero.  But the improvement is not enormous. 
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3.3  We show the skewness and kurtosis in Table 1.  Both are large, for both models.  

This indicates that it is not correct to assume that the residuals are normally distributed, but 

we postpone  investigating this until a later Part in this series. 

 

3.4  We show at the foot of Table 1 the value of QMU, the long-term mean value 

of I(t).  For the model omitting QW, QMU can be calculated as QM / (1 – QA).  For the VAR 

model, including QW, it cannot be calculated until we also have the model for wages too, and 

then from the formula in section 2.5.  The values of QMU are not the same, but are not very 

far apart. 

 

Table 1.  MLE parameter values and standard errors (s.e.) for models for Q. 

 
 Omitting QW Including QW 

Log likelihood 259.05 262.06 

 MLE value s.e. MLE value s.e. 

QA 0.571849 0.071778 0.273990 0.138151 

QW   0.318039 0.127475 

QM 0.018134 0.004785 0.013846 0.004943 

QSD 0.038548 0.002812 0.037332 0.002723 

     

Skewness 1.30  1.49  

Kurtosis 6.26  6.78  

     

QMU 0.042354  0.043979  

 

3.5  We now do the same for the wages model, showing in Table 2 the results, first for 

the original model, and then for the new VAR model.  This can be estimated either on its 

own, after the model for Q has been fitted, or jointly with the model for Q.  The estimated 

values of the parameters are the same, except that for the joint model we obtain two different 

parameters, WSD and QWR, which are essentially the same as WBQ and WSD2 (see 

Appendix A1).  The sum of the log likelihoods of the individual models is numerically the 

same as the (algebraically more complicated) log likelihood of the joint model.  But the 

standard errors of the parameter estimates in the wages model differ, being larger in the joint 

model than in the individual one.  This is presumably because in the joint model the values of 

the standard deviations, QSD and WSD, and the correlation coefficient, QWR, are estimated 

jointly, whereas in the individual wages model the values of QSD and the QE(t) terms are 

taken as fixed and only the parameter WBQ has to be estimated.  In Table 2 we show the two 

standard errors as “s.e. (I)” for the individual model and “s.e. (VAR)” for the joint model.  

The standard errors in the model for Q are unaffected. 

 

3.6  The skewness and kurtosis for the two models are also shown.  These are not so 

large as for the model for Q, but still cast some doubt on the assumption of normally 

distributed residuals. 

 

3.7  We show also at the foot of Table 2 the values of WMU*, the long-term mean 

value of J(t).  For the original model this is calculated as WMU + (WW1 + WW2).QMU.  For 

the VAR model it is calculated from the formula in section 2.5 for WMU.  (We call it WMU* 

to avoid confusion with WMU in the original model that might be better called WM.) 

 

3.8  The log likelihood for the two models is almost the same, that for the VAR model 

being 0.33 higher than for the original model, a trivial improvement.  The same three 
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connections are included.  For the original model I(t) is included directly; for the VAR model 

it is connected through the correlation with QZ(t) or the WBQ.QE(t) term.  I(t–1) is included 

directly in both models, and the estimates of the parameters, WW2 and WQ have quite similar 

values.  J(t–1) is included directly in the VAR model, and indirectly through WA.JN(t–1) in 

the original model.  The estimates of the parameters, called WA in both models, are rather 

different. 

 

3.9  In aggregate the only improvement of the VAR model over the present one is in 

the model for Q.  This is large enough to make it worth while using this model, at the expense 

of making the wages model essential, rather than an optional extra, and making the 

calculation of expected values and variances of future forecasts rather more complicated, as 

we see in section 4. 

 

Table 2.  MLE parameter values and standard errors (s.e.) for models for W. 

 
 Original model Formula (5) 

Log likelihood 312.47 312.80 

 MLE value s.e. MLE value s.e. (I) s.e. (VAR) 

WW1 0.567789 0.0597    

WW2 0.246563 0.0547    

WA 0.212206 0.0855    

WMU 0.020789 0.00393    

WSD 0.021837 0.00159    

WQ   0.262556 0.080519 0.111774 

WA   0.380394 0.074298 0.103137 

WM   0.023683 0.002880 0.003999 

WBQ   0.561160 0.060115  

WSD2   0.021759 0.001587  

      

WSD   0.030204  0.002203 

QWR   0.693584  0.053525 

      

Skewness 0.35  0.25   

Kurtosis 3.91  4.21   

      

WMU*, WMU 0.055280  0.056859   

 

 

4. Forecast means and variances 

 

4.1  For further calculations, for both the original models and the new VAR model, we 

round the parameter estimates shown in Tables 1 and 2 to four decimal places.  We also adjust 

the values of the means QMU and WMU.  We assume that QMU = 0.0250, as we did in Part 4 

(Wilkie & Şahin, 2018), since that seems a more suitable value in current conditions, than the 

historic means of 0.0423 and 0.0440.  For WMU we observe that WMU is 0.0130 greater than 

QMU for the new model and 0.0129 greater for the new model, so we choose a mean rate of 

wages growth of 0.0390 for both models.  We put WMU = 0.0390 for the new model, but for 

the old model, we need an adjustment to give WMU = 0.01864.  For the new model we also, 

for some purposes, use formula (5) for which we need WBQ and WSD2 instead of WSD and 

QWR, but to get consistent results we calculate values for these from the rounded values and 

use more decimal places. 
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4.2  Thus for the new model we use: 

 

  QA = 0.2740, QW = 0.3180, WQ = 0.2626, WA = 0.3804, 

  QSD = 0.0373, WSD = 0.0302, QWR = 0.6936 

  QMU = 0.0250, WMU = 0.0390 

  WBQ = 0.56157426, WSD2 = 0.02175489 

 

For the old models we use: 

 

  QA = 0.5718, QMU = 0.0250, QSD = 0.0385 

  WW1 = 0.5678, WW2 = 0.2466, WA = 0.2122, WMU = 0.01864, WSD = 0.0218 

 

4.3  In Part 2 we discussed the state variables, input and output variables, and initial 

conditions required for simulation.  These remain almost the same, except that in the old 

model, the value of I(–1) was required in order to calculate JN(0), and it is no longer required 

for that purpose.  However, it is required for other variables in the total model. 

 

4.4  We wish to calculate the means, variances and covariances of future values of I(t), 

QL(t), J(t) and WL(t), conditional on the starting position at some time where we take t = 0.  

For numerical examples we use both neutral initial conditions and initial conditions as at 

June 2016.  The initial conditions affect the means, but not the variances and covariances.  

This is all as shown in Part 2, but the formulae are more complicated for the VAR model.  

The algebra is discussed in Appendix A3.  We also calculate the corresponding values for the 

present model.  We show here only the results. 

 

4.5  Neutral initial conditions for both old and new models are to put 

I(0) = QMU = 0.025, W(0) =  (or WMU*) = 0.390.  The initial conditions as at June 2016 are: 

 

  I(0) = 0.0161, I(–1) =  0.0101, Q(0) = 263.1, J(0) = 0.0216, W(0) = 156.7. 

 

We need I(–1) for the old model in order to calculate JN(0).  For some purposes it is more 

convenient to use arbitrary values for Q(0) and W(0) such as 1.0, since these are 

multiplicative indices. 

 

4.6  The long-term means and standard deviations of I(t) and J(t) are shown in 

Table 3:  The means of each are the same for both models, because we have made them so.  

The standard deviations of each for the new model are a little lower than for the old, and in 

both cases the standard deviation for J(t) is lower than for I(t).  The long-term correlation 

coefficient between I(t) and J(t) is very slightly lower in the new model.   In total there is not 

very much difference. 

 

 

Table 3.  Long-terms means and standard deviations (SD) of I(t) and J(t), and correlation 

coefficient between I(t) and J(t) 

 
 Old models New VAR model 

 Mean SD CC Mean SD CC 

 

I 0.0250 0.0469 0.8081 0.0250 0.0439 0.7902 

J 0.0390 0.0412  0.0390 0.0392  
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5. Forecasting 

 

5.1  Using the formulae in the Appendix we calculate the means (formulae A1 to A4) 

and standard deviations (formulae A5 to A8 give the variances) of I(t), J(t), QL(t) and WL(t), 

for both the original model and the new VAR model  We use the initial conditions as at June 

2016.  In Figure 1 we show the means and the means plus and minus twice the standard 

deviations of the forecast values of I(t) and J(t).  If we assume normality of the innovations, 

this spread gives roughly a 95% confidence interval for the forecasts. 

 

5.2  We go ahead only ten years, by which time all the values have converged almost 

to their long term values.  We show the old model with black lines, the new with red, and 

show the values for J(t) as solid lines, and for I(t) as dashed ones.  The long-term means for 

both models are the same, because we made them so; our purpose is to show the spread.  

Consistent with the numbers in Table 3, the new model shows a slightly narrower spread than 

the old; more so for I(t) than J(t).  Also the spread for I(t) is greater than that for J(t). 

 

Figure 1.   Mean and mean ± 2 × standard deviation, for I(t) and J(t) 

for both the old and the new models. 

 

 
 

 

5.3  We do the same for QL(t) and WL(t), and then exponentiate to give the equivalent 

values of Q(t) and W(t).  The result strictly does not give the mean values of Q(t) and W(t), 

because, if we assume normality of the innovations, Q(t) and W(t) would be lognormally 

distributed, and what we call the mean is strictly the median; but the spread is still a 95% one.  

We show the results in Figure 2, for 50 years ahead.  Since this is on a logarithmic vertical 

scale it shows in effect QL(t) and WL(t) on a linear scale.  We choose arbitrary starring values 

for both Q(0) and W(0) of 1.5, in order to keep the results within two cycles of the scale. 
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5.4  The relative positions of the lines are the same as in Figure1.  The new model 

shows a slightly narrower spread than the old, and the spread for I(t) is greater than that for 

J(t). 

 

 

Figure 2.   Mean and mean ± 2 × standard deviation, for Q(t) and W(t) 

for both the old and the new models. 

 

 
 

 

6. Stochastic Interpolation 

 

6.1  In Parts 3A, 3B and 3C we discussed stochastic interpolation, using Brownian 

bridges to obtain monthly values of QL(t,m) and WL(t,m), the simulated values in month m of 

year t.  We update our analysis from June 2014 to June 2016, but the extra two years make 

little difference to the results.  However, we observe that, in fitting the annual model, we start 

with I(1923), which is calculated from QL(1922) and QL(1923), so it is more consistent to use 

the monthly values starting from June 1922, giving one extra year at the beginning.  For 

wages we explained in Part 3B why we could not start the monthly analysis till June 1934, 

and we do the same here.  Thus we analyse QL for the 94 years from 1922 to 2016, and WL 

for the 82 years from 1934 to 2016. 

 

6.2  For QL the monthly standard deviation for year t varies with the change in QL(t) 

over the year, QLD(t), which equals I(t+1), and the best formula is the same as before: 

 

σm(t) = QSM(t) = QSA + QSB × Abs(QLD(t) – QSC) 

 

but with slightly altered parameters QSA = 0.004177, QSB= 0.055982 and QSC = 0.03933.  

The correlation coefficient is 0.5963, not very different from the previous 0.5865.  The 
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correlation coefficient between the standardised forward deviations for corresponding months 

in successive years is 0.5491, a small change from 0.5469 previously, 

 

6.3  For WL we get a similar result, with rather little change from previously.  The 

most suitable formula is still: 

 

σm(t) = WSM(t) =WSA + WSB × Abs(WLD(t)) 

 

with WSA = 0.002513 and WSB= 0.011482.  The correlation coefficient is 0.3188, a small 

increase on the previous 0.2826.  The correlation coefficient between the standardised 

forward deviations for corresponding months in successive years is 0.01933, a small change 

downwards from 0.2047 previously. 

 

 

7. Simulations 

 

7.1  We are now in apposition to simulate these variables for a chosen period ahead.  

In Figure 3 we show. First the actual values of I(t) and J(t), monthly, from January 1996 to 

June 2016.  Note that I(t) and J(t) are the values of the changes in QL(t) and WL(t) over the 

preceding year, not over one month.  Then we have done simulation of I(t) and J(t) on two 

bases, the old and the new, from which we calculate simulated values of QL(t) and WL(t ).  

We than apply stochastic interpolation over QL(t) and WL(t), using Brownian bridges as 

described in section 6; and from these we calculate values for I(t) and J(t) for intermediate 

months.  We use the same random unit normal innovations for both the old and the new 

model. 

 

7.2  We show the past actual data in black and red lines, and the simulated futures in 

other colours.  We can see that the two models give quite similar future values.  This is only 

one pair of simulations, and they may not be “typical” (if any single simulation can be 

thought to be typical).  They show larger deviations of both variables, both upwards and 

downwards than the recent past data, but the upwards range is much less than that of the 

further back past, of the 1980s or the 1920s. 

 

 

8. Conclusions 

 

8.1  There are advantages and disadvantages of the new VAR model as compared with 

the old.  The log likelihood for I(t) in the VAR model is rather higher, and the resulting 

standard deviation, QSD, rather smaller than for the old model, so it can be said to describe 

the data better.  However, the change for W(t) is small.  The VAR model is symmetrical, and 

is a standard time series model; but the old model is a normal transfer function model.  Either 

model is straightforward to simulate, but one must note that the old “cascade-style” model can 

be simulated either variable by variable for a given number of years, or year by year for all 

variables.  The VAR model requires one to proceed year by year. 

 

8.2  With the VAR model, the formulae for forecast means and variances are more 

complicated than for the original model.  We have not shown the formulae for all the other 

variables which depend on I(t), as we did in Part 2, but the complications spread everywhere. 
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8.3  The results for the new model are not very different from those using the old one, 

and one may well feel that a change in any existing system is not worth the trouble.  But for 

someone starting a new development we would, on balance recommend the VAR one. 

 

 

Figure 3.  One pair of simulations, on both the old model and the new model, for I(t) and J(t) 

showing 20 years of past data and 30 years of simulated future values. 
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Appendix 

 

A1  Equivalence of formulae (4) and (5) 

 

A1.1  In section 2.4 we state that formula (5) for J(t) is equivalent to formula (4).  The 

formulae are the same except for the ending terms.  Formula (4) ends with WE(t), which 

equals WSD.WZ(t), and there is correlation of QWR between WZ(t) and QZ(t). Formula (5) 

ends with WBQ,QE(t) + WSD2.WZ2(t), and WZ2(t) is assumed to be independent of QZ(t).  

The equivalence is easily shown if we consider the Choleski decomposition of the correlation 

matrix: 

M = [
1 𝐶𝑄𝑊

𝐶𝑄𝑊 1
] 

 

which is 

C = [
1 0

𝐶𝑄𝑊 √1 − 𝐶𝑄𝑊2] 

 

and C.CT = M, so that C is, in a sense, the square root of M. 

 

We now put WBQ = QWR.WSD / QSD and WSD2 = WSD.√1 − 𝐶𝑄𝑊2. 

 

A 1.2  For both formulae the terms we are considering are the only stochastic ones, and 

in both cases the expected value is zero.  The formula (4) term is WSD.WZ(t) and the variance 

of this is WSD2.  The corresponding stochastic part of I(t), in formula (3) is QSD.QZ(t).  The 

covariance of I(t) and J(t) is therefore QSD.WSD.Cov[QZ(t).WZ(t)] = QSD.WSD.QWR. 

 

A1.3  We expand formula (5) to give: 

 

WBQ.QSD.QZ(t) `+ WSD2.WZ2(t)  = QWR.WSD.QZ(t) + WSD.√1 − 𝐶𝑄𝑊2. WZ2(t) 

 

The variance of this is: 

 

(WBQ.QSD)2 + WSD22 = (QWR.WSD)2 + WSD2.(1 –  QWR2) 

 

    = WSD2. (QWR2 + 1 – QWR2) 

 

= WSD2 

 

which is the same as the variance in formula (4).  The covariance between J(t) with 

formula (5) and I(t) is QWR.WSD.QSD, which is also the same as in formula (4). 

 

A1.4  In our estimation for the period 1923 to 2016 with the VAR model we get 

QSD = 0.037322, WSD = 0.030204 and QWR = 0.693584 (see Tables 1 and 2).  We can 

calculate from the formulae above that WBQ = QWR.WSD / QSD = 0.561160 and also that 

WSD2 = WSD.√1 − 𝐶𝑄𝑊2 = 0.021759, which agree exactly with those parameters estimated 

with the individual model.  Using our rounded values for the parameters we get 

WBQ = 0.056157426, and WSD2 = 0.02175489. 
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A2  Calculation of QMU and WMU 

 

A2.1  In section 2.5 we state that formula (3) and (5) can be transformed to formulae (6) 

and (7).  The formulae are: 

 

 (3)  I(t) = QA.I(t – 1) + QW.J(t – 1) + QM + QE(t) 

 

 (5)  J(t) = WQ.I(t – 1) + WA.J(t – 1) + WM + WBQ.QE(t) + WSD2.WZ(t) 

 

 (6)  I(t) = QA.IN(t – 1) + QW.JN(t – 1) + QMU + QE(t) 

 

 (7)  J(t) = WQ.IN(t – 1) + WA.JN(t – 1) + WMU + WBQ.QE(t) + WSD2.WZ2(t) 

 

with IN(t) = I(t) – QMU and JN(t) = J(t) – WMU. 

 

A2.2  Equating corresponding formulae we see that: 

 

QM  = –QA.QMU – QW.WMU + QMU = (1 – QA).QMU – QW.WMU 

 

  WM = –WQ.QMU – WA.WMU + WMU = –WQ.QMU + (1 – WA).WMU 

 

From these simultaneous equations we get: 

 

  QMU = {(1 – WA).QM + QW.WM} / {(1 – WA). (1 – QA) – QW.WQ} 

 

  WMU = {WQ.QM + (1 – QA).WM} / {(1 – WA). (1 – QA) – QW.WQ} 

 

A2.3  For our data we have QA = 0.273990, QW = 0.318039, WQ =0.262556, 

WA = 0.380294, QM = 0.013846 and WM = 0.023683, so we get QMU = 0.043979 and 

WMU = 0.056859. 

 

 

A3  Means of forecasts 

 

A3.1  Our methods here are similar to the well-known method of solving for a 

univariate recurrence relation like: 

 

  Xt = a.Xt–1 + b.Xt–2 

 

where we find the roots, x1 and x2, of the characteristic equation: 

 

  x2 = a.x + b 

 

We then put Xt = c1.x1
t + c2.x2

t 

 

And find c1 and c2 from any two given values of Xt. 

 

A3.2  If we ignore the stochastic parts of the equations for I(t) and J(t) and omit the 

mean terms we have a bivariate recurrence relation for future expected values; 
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IN(t) = QA.IN(t – 1) + QW.JN(t – 1) 

 

JN(t) = WQ.IN(t – 1) + WA.JN(t – 1) 

 

We can write this in matrix form as: 

 

  xN(t) = T.xN(t–1) 

 

where xN(t) = [IN(t), JN(t)]T 

 

T = [
𝑄𝐴  𝑄𝑊
𝑊𝑄 𝑊𝐴

] 

 

A3.3  The equivalent of the roots, x1 and x2 are the eigenvalues, λ1 and λ2, of this matrix, 

obtained from |T – λ.I| = 0 

 

|
𝑄𝐴 − 𝜆 𝑄𝑊

𝑊𝑄 𝑊𝐴 − 𝜆
| = 0  

 

  (QA – λ).(WA – λ) – QW.WQ = 0  

 

  λ1, λ2 = = {(QA + WA) ± √((QA – WA)2 + 4.QW.WQ)}/2 

 

A3.4  For our data we get λ1, λ2 = 0.327192 ± 0293854 so λ1 = 0.654383 and 

λ2 = 0.033366, these are both positive and real, which is convenient.  But these are not the 

only possibilities, as we discuss further in A3.8  

 

A3.4  We assume that we start at time t = 0 with initial conditions I(0) and J(0) known.  

We can then calculate IN(0) = I(0) – QMU and JN(0) = J(0) – WMU.  Using formulae (6) and 

(7) we can calculate E[IN(1)] = QA.IN(0) + QW.JN(0) and E[JN(1)] = WQ.IN(0) + WA.JN(0) 

and recursively E[IN(t+1)] = QA.IN(t) + QW.JN(t) and E[JN(t+1)] = WQ.IN(t) + WA.JN(t).  

At this stage we omit all stochastic terms.  We have a simple bivariate recurrence relation for 

E[IN(t)] and E[JN(t)]  

 

A3.5  We now postulate that E[IN(t)] = A1.λ1
t + A2.λ2 and E[JN(t)] = B1.λ1

t + B2.λ2
t. We 

know E[IN(0)] = IN(0) and we calculate E[IN(1)] as above.  We can then put: 

 

  E[IN(0)] = A1 + A2 

 

and 

 

  E[IN(1)] = QA.IN(0) + QW.JN(0) = A1.λ1 + A2. λ 2 

 

From these we readily get: 

 

  A1 = {(QA – λ2).IN0 + QW.JN(0)} / (λ1  – λ2) 

 

A2= IN(0) – A1 = {(QA – λ1).IN0 + QW.JN(0)} / (λ2  – λ1) 

 

Then similarly we get: 
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  B1 = {(WA – λ2).JN0 + WQ.IN(0)} / (λ1  – λ2) 

 

B2= JN(0) – B1 = {(WA – λ1).JN0 + WQ.IN(0)} / (λ2  – λ1) 

 

A3.6  The proof by induction that, if E[IN(t)] = A1.λ1
t + A2.λ2

t then 

E[IN(t+1)] = A1.λ1
t+1 + A2.λ2

t+1 is tedious, and relies on the fact that λ1 and λ2 are the roots of 

the quadratic in λ, so that λ1 + λ2 = QA + WA and λ1.λ2 = QA.WA – QW.WQ.  There is a similar 

formula for E[JN(t)]. 

 

A3.7  We can now, given the relevant values of IN(0) and JN(0), readily calculate 

E[IN(t)] and E[JN(t)] for any t, and hence also E[I(t)] and E[J(t)], which are: 

 

  E[I(t)] = A1.λ1
t + A2.λ2

t + QMU (A1) 

 

  E[J(t)] = B1.λ1
t + B2.λ2

t + WMU (A2) 

 

We see also that as t → ∞, E[IN(t)] and E[JN(t)] → 0, hence E[I(t)] → QMU and E[J(t)] → 

WMU.  These results depend on |λ1| < 1 and |λ2| < 1, which is true in our case. 

 

A3.8  In A3.4 we noted that λ1 and λ2 were both are positive and real, but that there were 

other possibilities with different data.  Since, with different data, we would expect to have 

different parameter estimates, then we might have one of the roots greater than unity, so the 

system would be divergent rather than mean-reverting.  If the square root part were a little 

larger, we might get λ2 negative, which is not much trouble, since the formulae are the same, 

except that the effect of λ2
t alternates between positive and negative.  But if λ2 remains small, 

then the terms in λ2
t reduce very rapidly, and the dominant effect is that of λ1.  If λ2 were 

exactly 0, then the transition matrix would be singular, and there would be a problem in 

identifying the parameters uniquely.  Another possibility is that the term inside the square root 

is negative so the roots are a complex conjugate pair.  We have not explored this fully, but the 

algebra would be the same, with complex numbers throughout, and the effect would probably 

be that the forecast values would lie on a damped sine wave. 

 

A3.9  The forecast means for I(t) and J(t) have formulae analogous to those for I(t) in 

the original model, as shown in Part 2, except that we have terms with powers of λ1 and λ2 

instead of terms in QA   In Appendix A2.2 of that paper we had: 

 

  E[QL(t)] = QL(0) + t.QMU + QA.SumGS(QA,t).IN(0) 

 

where  SumGS(x, t) = 1 + x + x2+ … + xt–1 = (1 – xt) / (1 – x) 

 

We can then put, in our case: 

 

  E[QL(t)] = QL(0) + t.QMU + A1.λ1.SumGS(λ1,t) + A2.λ2.SumGS(λ2,t) (A3) 

 

  E[WL(t)] = WL(0) + t.WMU + B1.λ1.SumGS(λ1,t) + B2.λ2.SumGS(λ2,t) (A4) 

 

As t → ∞, E[QL(t)] → ∞ unless QMU = 0 and E[WL(t)] → ∞ unless WMU = 0. 

 

If QMU = 0 then: 
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  E[QL(t)] → QL(0) + A1.λ1 / (1 – λ1) + A2.λ2 / (1 – λ2) 

 

If WMU = 0 then: 

 

  E[WL(t)] → WL(0) + B1.λ1 / (1 – λ1) + B2.λ2 / (1 – λ2) 

 

 

A4  Psi-weights and variances of forecasts 

 

A4.1  We now wish to calculate the variances, and later the covariances, of the forecast 

variables.  For this we can generally ignore the deterministic parts that we have used in the 

forecast means.  As we stated in part 2, we can put: 

 

  I(t) = E[I(t)] + {∑i=1,t ΨIQ(i).QSD.QZ(t+1–i)} +{∑i=1,t ΨIW(i).WSD.WZ(t+1–i)} 

 

whence we derive: 

 

 Var[I(t)] = Var[IN(t)] = {∑i=1,t ΨIQ(i)2 }.QSD2 +{∑i=1,t ΨIW(i)2}.WSD2 

       + {∑i=1,t ΨIQ(i) ΨIW(i)}.QWR.QSD.WSD 

 

where the last term recognises the correlation of QWR between QE(t) and WE(t), with a 

covariance of QWR.QSD.WSD. 

 

We have similar formulae for J(t) and for Var[J(t)]. 

 

A4.2  We use the formulae: 

 

I(t) = QA.IN(t – 1) + QW.JN(t – 1) + QMU + QSD.QZ(t) 

 

  J(t) = WQ.IN(t – 1) + WA.JN(t – 1) + WMU + WSD.WZ(t) 

 

with the covariance E[QZ(t), WZ(t)] = QWR. 

 

A 4.3  We see immediately that, for t = 1: 

 

  ΨIQ(1) = 1 

ΨIW(1) = 0 

  ΨJQ(1) = 0 

ΨJW(1) = 1 

 

and then for t = 2 that: 

 

  ΨIQ(2) = QA 

  ΨIW(2) = QW 

  ΨJQ(2) = WQ 

  ΨJW(2) = WA 

 

but we find that these formulae very quickly get complicated. 
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A4.4  We now postulate that: 

 

  ΨIQ(t) = C1.λ1
t–1 + C2.λ2

t–1 

  ΨIW(t) = D1.λ1
t–1 + D2.λ2

t–1 

  ΨJQ(t) = E1.λ1
t–1 + E2.λ2

t–1 

  ΨJW(t) = F1.λ1
t–1 + F2.λ2

t–1 

 

Note that the power applied to of λ1 and λ2 is one less than for E[IN(t)] and E[JN(t)] 

 

Using the Ψ values for t = 1 and t = 2 we get: 

 

  C1 = (QA– λ2/ (λ1 – λ2) 

  C2 = 1 – C1 = 1 – (QA– λ2) / (λ1 – λ2) = (λ1 – QA) / (λ1 – λ2) 

  D1 = QW / (λ1 – λ2) 

  D2 = –D1 = –QW / (λ1 – λ2) 

  E1 = WQ / (λ1 – λ2) 

  E2 = –E1 = –WQ / (λ1 – λ2) 

  F1 = (WA– λ1) / (λ1 – λ2) 

  F2 = 1 – F1 = 1 – (WA– λ2) 

 

We can prove the formulae for general t by induction, rather laboriously. 

 

A4.5  To get the Ψ weights for QL and WL we use the same methods as in Part 2 for QL, 

getting: 

 

  ΨQLQ(t) = C1.SumGS(λ1,t) + C2. SumGS(λ2,t) 

  ΨQLW(t) = D1.SumGS(λ1,t) + D2. SumGS(λ2,t) 

  ΨWLQ(t) = E1.SumGS(λ1,t) + E2. SumGS(λ2,t) 

  ΨJWLW(t) = F1.SumGS(λ1,t) + F2.SumGS(λ2,t) 

 

A4.6  We can now calculate the variances, again following the methods for these in 

Part 2, noting that, instead of terms with powers only of QA2 multiplying QSD2, we have 

powers of λ1
2, λ2

2 and λ1.λ2, multiplying terms in QSD2, WSD2, and the covariance 

QWR.QSD.WSD = CV 

 

Var[I(t)] = {∑i=1,t ΨIQ(i)2}.QSD2 + {∑i=1,t ΨIW(i)2}.WSD2 

   + 2{∑i=1,t ΨIQ(i). ΨIW(i)2}.CV (A5) 

 

   = {C12.SumGS(λ1
2,t) + C22.SumGS(λ2

2,t)+ 2C1.C2.SumGS(λ1.λ2,t)}.QSD2 

   + {D12.SumGS(λ1
2,t) + D22.SumGS(λ2

2,t) + 2D1.D2.SumGS(λ1.λ2,t)}.WSD2 

   + 2{C1.D1.SumGS(λ1
2,t) + C2.D2.SumGS(λ2

2,t) 

+ (C1.D2 + C2.D1).SumGS(λ1.λ2,t)}.CV 

 

   = {C12.QSD2 + D12.WSD2 + 2C1.D1.CV}.SumGS(λ1
2,t) 

  + {C22.QSD2 + D22.WSD2 + 2C2.D2.CV}.SumGS(λ2
2,t) 

+ 2{C1.C2.QSD2 + D1.D2.WSD2 + (C1.D2 + C2.D1).CV}.SumGS(λ1.λ2,t) 

 

  = IVA.SumGS(λ1
2,t) + IVB.SumGS(λ2

2,t) + IVC.SumGS(λ1.λ2,t) 

 

where 
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  IVA = C12.QSD2 + D12.WSD2 + 2C1.D1.CV 

  IVB = C22.QSD2 + D22.WSD2 + 2C2.D2.CV 

  IVC = 2{C1.C2.QSD2 + D1.D2.WSD2 + (C1.D2 + C2.D1).CV} 

 

Var[J(t)] = JVA.SumGS(λ1
2,t) + JVB.SumGS(λ2

2,t) + JVC.SumGS(λ1.λ2,t) (A6) 

 

where 

  JVA = E12.QSD2 + F12.WSD2 + 2E1.F1.CV 

  JVB = E22.QSD2 + F22.WSD2 + 2E2.F2.CV 

  JVC = 2{E1.E2.QSD2 + F1.F2.WSD2 + (E1.F2 + F2.E1).CV} 

 

As t → ∞ Var[I(t)] →  IVA / (1 – λ1
2) + IVB / (1 – λ2

2) + IVC / (1 – λ1.λ2) 

 

  Var[J(t)] → JVA / (1 – λ1
2) + JVB / (1 – λ2

2) + JVC / (1 – λ1.λ2) 

 

Var[QL(t)] = IVA.{t – 2λ1SumGS(λ1,t) + λ1
2SumGS(λ1

2,t)} / (1– λ1)
2 

 + IVB.{t – 2λ2SumGS(λ2,t) + λ2
2SumGS(λ2

2,t)} / (1– λ2)
2 

 + IVC.{t – λ1SumGS(λ1,t) – λ2SumGS(λ1,t) + λ1.λ2SumGS(λ1.λ2,t)} / (1– λ1) (1– λ2) (A7) 

 

Var[WL(t)] = JVA.{t – 2λ1SumGS(λ1,t) + λ1
2SumGS(λ1

2,t)} / (1– λ1)
2 

 + JVB.{t – 2λ2SumGS(λ2,t) + λ2
2SumGS(λ2

2,t)} / (1– λ2)
2 

 + JVC.{t – λ1SumGS(λ1,t) – λ2SumGS(λ1,t) + λ1.λ2SumGS(λ1.λ2,t)} / (1– λ1) (1– λ2)  (A8) 

 

As t → ∞ Var[QL(t)] → ∞ and Var[WL(t)] → ∞ 

 

 

A5  Covariances of forecasts 

 

5.1  We start with: 

 

Covar[I(t),J(t)] = ∑i=1,t {ΨIQ(i).ΨJQ(i)}.QSD2 + ∑i=1,t {ΨIW(i).ΨJw(i)}.WSD2 

 + ∑i=1,t {ΨIQ(i).ΨJW(i) + ΨIW(i).ΨJQ(i)}.CV 

 

and after a great deal of manipulation we get: 

 

Covar[I(t),J(t)] = QWVA.SumGS(λ1
2,t) + QWVB.SumGS(λ2

2,t) 

 + QWVC SumGS(λ1.λ2,t) 

 

where 

  QWVA = C1.E1.QSD2 + D1.F1.WSD2+ (C1.F1 + D1.E1).CV 

  QWVB = C2.E2.QSD2 + D2.F2.WSD2 + (C2.F2 + D2.E2).CV 

  QWVC = (C2.E1 + C1.E2).QSD2+ (D2.F1 + D1.F2).WSD2 

    + (C2.F1. + C1.F2 + D2 E1 + D1.E2).CV 

 

As t → ∞ Covar[I(t) ,J(t)] → QWVA / (1 – λ1
2) + QWVB / (1 – λ2

2) + QWVC / (1 – λ1.λ2) 

 

Similarly 
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Covar[QL(t),WL(t)] = QWVA. {t – 2λ1SumGS(λ1,t) + λ1
2SumGS(λ1

2,t)} / (1– λ1)
2 

+ QWVB. {t – 2λ2SumGS(λ2,t) + λ2
2SumGS(λ2

2,t)} / (1– λ2)
2 

+ QWVC. {t – λ1SumGS(λ1,t) – λ2SumGS(λ1,t) + λ1.λ2SumGS(λ1.λ2,t)} / (1– λ1) (1– λ2) 

 

As t → ∞ Covar[I(t) ,J(t)] →∞ 

 

A6  Final note 

 

6.1  Many of the results in this Appendix can be expressed in matrix notation, and if 

the number of variables were large this would be more compact.  However, for practical 

calculation it seems necessary to work through the eigenvalues anyway, and since these are 

easily calculated for a 2 by 2 matrix, as is the inverse, we consider it neater, in this case, to 

avoid matrix notation in most places. 

 

 

END 

 


