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Abstract

In principal-agent models, a principal offers a contract to an agent to preform a
certain task. The agent exerts a level of effort that maximizes her utility. The prin-
cipal is oblivious to the agent’s chosen level of effort, and conditions her wage
only on possible outcomes. In this work, we consider a model in which the prin-
cipal is unaware of the agent’s utility and action space. She sequentially offers
contracts to identical agents, and observes the resulting outcomes. We present an
algorithm for learning the optimal contract under mild assumptions. We bound
the number of samples needed for the principal obtain a contract that is within ǫ
of her optimal net profit for every ǫ > 0.

1 Introduction

Recent technological advances have had a profound impact over the relationship between firms and
employees. The rapid change in employees’ required skill set combined with the availability of off-
shore, qualified, cheap hiring alternatives drove employers to adopt employees on a short-term, task
specific bases. This hiring model, dubbed dynamic workforce or gig-economy, has been growing
exponentially over the past couple of years. Bughin et al. [2016] found that 20-30% of US workers
are employed independently, at least partly, and predicts this trend will continue with popularity of
the “Lean Startup” business model, and the appearance of platforms such as “Amazon Mechanical
Turk”.

The aforementioned changes in the labor market have a profound effect on the information available
to firms when it making hiring decision. In the traditional workspace, hiring is often a long-term,
expensive procedure. Nowadays hiring is cheap and short-termed. As a result, an employer has less
information on the character and quality of her employees, thus lacking the knowledge on how to
best align their incentives with those of the firm. In this work we study a model more suitable to the
new “dynamic workforce”, and, using this model, we try to learn the best wages an employer should
offer to her employees.

Economists use the term agency problems to describe models like the above. In such mod-
els one party, the principal, offers a contract to another party, the agent, to perform a
task [Laffont and Martimort, 2009]. In his seminal paper, Ross [1973] introduce the term principal–
agent to capture these models. In the basic model, the outcome of the task is chosen randomly
from a distribution determined by the level of effort invested by the agent. A higher effort level
induces a distribution in which the probability of a better outcome is higher than in lower effort
levels. On the other hand, a higher level causes the agent greater disutility. Ross [1973] assume that
the principal is risk-neutral while the agent is risk-averse, therefore the incentives of both parties
are not fully aligned.* Hence, the effort level that is optimal from the perspective of the principal,

*When given the choice between participating in some lottery X or receiving E(X) with probability one,
a risk-averse agent will strictly prefer the latter while a risk-neutral agent is indifferent. In the Von Neumann
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is not necessarily the optimal one for the agent. To bridge this gap, the principal offers the agent
a contract in which the agent is rewarded for any additional effort. The lion’s share of previous
work assume that the principal, while oblivious to the agent’s choice, has full information about
the agent’s utility structure and the set of levels of effort she can choose from and the probability
distribution associated with every level of effort [Ross, 1973, Grossman and Hart, 1983, Holmstrom,
1979, Gershkov and Perry, 2012, Holmström, 2017]. These assumptions seem confining, especially
when considering the motivating scenario of a dynamic workplace.

Holmström [2017] identified this gap in theory as one of the main challenges in current research.
Ho et al. [2016] were among the first who theoretically tried to bridge it. They consider a setting
where there are several types of agents, each one with her own utility function, set of effort levels and
effort costs, and probability distributions over the outcomes; all of which unknown to the principal.
They considered a repeated setting with T rounds, where in every rounds the type of the agent is
chosen i.i.d. from an unknown probability distribution. Their goal was to find, before round T ,
the optimal contract from a predefined finite set S. They followed a multi-armed bandit [Robbins,
1985] approach and derive an algorithm that finds an approximately-optimal contract. However, the
contract they find is approximately-optimal only with respect to the best contract in S. They provide
no theoretical guarantees on approximating the optimal contract overall, but only for the case of one
effort level for the agent, i.e. reject the contract or accept it, known as posted-price auctions.*

In this paper we follow a similar route to Ho et al. [2016]. We assume the principal has zero informa-
tion about the agent; we assume unknown utility for the agent, unknown set of effort levels and their
associated costs, and unknown probability distribution for any effort level. The only knowledge the
principal has is the set of outcomes and their corresponding profits.

Our contribution. We introduce a novel set of contracts we call monotone-smooth contracts; a
large subset of monotone contracts set studied in [Ho et al., 2016]. We complement this definition
with a suitable discretization of the contract space. Unlike Ho et al. [2016], we show that for any
monotone-smooth contract there exists a contract in the discretized space for which the principal’s
expected net profit is ǫ-approximated. As far as we are aware, this is the first work to do so! More-
over, our result does not assume any specific agent utility function, but rather only mild assumptions.
This allows to apply machineries from multi-armed bandit theory to find a contract ǫ-optimal against
any monotone-smooth contract. Finally, we present two important cases in which economic theory
suggests the learned contract is ǫ-optimal against any contract the principal may offer.

Further related work. Our work lies in the intersection of principal-agent models and multi-
armed bandit theory; Ho et al. [2016] provide an excellent overview of literature in the field.
Sannikov [2008, 2011], Williams [2004] study a repeated setting where the principal interacts with
the agent for multiple periods. Conitzer and Garera [2006] empirically compare several learning
algorithms in a setting similar to [Ho et al., 2016].

The Lipschitz Bandit problem [Agrawal, 1995] is a generalization of the multi-armed bandit prob-
lem in which the set of arms comes from some compact space, and the expected reward of each arm
is a Lipschitz function of the arm. It has received much attention from the bandit theory commu-
nity over the years [Kleinberg, 2005, Auer et al., 2007, Bubeck et al., 2011, Kleinberg et al., 2013,
Magureanu et al., 2014].

The technique was used in the seminal paper of Kleinberg and Leighton [2003] for learning posted-
price auctions, which can be seen as a principal-agent problem with only one outcome. There is a
flourish of studies on learning auctions [Blum et al., 2004, Elkind, 2007, Cole and Roughgarden,
2014, Balcan et al., 2016, Gonczarowski and Nisan, 2016, Morgenstern and Roughgarden, 2016,
Roughgarden and Schrijvers, 2016, Syrgkanis, 2017, Bubeck et al., 2017].

2 Preliminaries

In what follows, [m⋆] := {0, 1, . . . ,m} and [m] := {1, . . . ,m} for every natural m.

Morgenstern utility theory, if an agent is risk-averse, then she has a concave utility function; if she is risk-neutral,
then her utility is linear.

* As they highlight, it is not generally unclear whether the best contract from S can provide a good theoret-
ical guarantees for the general problem of dynamic contract design.
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We study principal-agent problems with k outcomes and n effort levels. Let 0 < π(1) < π(2) <
· · · < π(k) denote the value the principal gets under outcome i ∈ [k]. We assume that π(k) = H ,
hence the values are bounded.

A contract w = (w(1), . . . , w(k)) specifies a positive payment to the agent for every outcome;
namely, w(i) is the wage the principal pays the agent for outcome i.

Upon receiving a contract, the agent chooses an effort level e ∈ [n⋆]. Every effort level is associated
with a probability distribution fe over the set of outcomes and a cost c(e); fe(j) is the probability of
realizing outcome j when the agent chooses the effort level e. In effort level 0, the agent rejects the
contract, her utility is zero under any contract, and by convention the value for the principal is zero.
We assume that the effort levels are ordered, i.e., 1 ≺ . . . ≺ n. We follow the literature and assume
that the agent has a von Neumann-Morgenstern utility. For a contract w = (w(1), . . . , w(k)) she
chooses effort level of ê(w) as to maximize her utility, defined as

U(w, e) =

k
∑

j=1

fe(j) · u(w(j)) − c(e),

where u is a monotonically-increasing concave function. Hence, ê(w) = argmaxe∈[n∗] U(w, e).

The principal is risk-neutral; when she offers contract w to the agent, her expected net profit from
the contract is,

V (w) =
k
∑

j=1

fê(w)(j) ·
(

π(j) − w(j)
)

.

To ensure that higher effort levels yield higher expected profit for the principal, the literature com-
monly lays down some assumptions about the outcome distributions.

Assumption 1 (First-order Stochastic Dominance (FOSD)). A probability distribution associated
with higher effort first order stochastically dominates a probability distribution associated with

lower effort. Formally, if e ≻ e′ , then for every j ∈ [k] it holds that
∑k

i=j fe(i) ≥
∑k

i=j fe′(i).

Note that the assumption is equivalent to the following. For every pair of effort levels e ≻ e′ and for
every sequence of real numbers a(1) ≤ · · · ≤ a(k),

k
∑

i=1

fe(i) · a(i) ≥

k
∑

i=1

fe′(i) · a(i) . (1)

Additionally, to break ties between effort levels we assume the following.

Assumption 2. When indifferent between two or more levels of effort, the agent will choose the
higher effort.

In this work, the principal is faced with a stream of agents. The agents are all different but identical—
they share a common utility function, effort levels, costs from effort, and outcome distributions asso-
ciated with each effort level. The principal proceeds in rounds t = 1, 2, . . .. On round t, the principal
offers a contract wt to the agent associated with this round. The agent privately chooses effort level
ê(wt) unbeknown to the principal. The principal observes only the outcome it independently drawn
from fê(wt), and consequently gets a net profit of π(it)− wt(it).

In what follows, for ǫ > 0, the goal of the principal is to find an ǫ-optimal contract in the minimum
number of rounds. A contract w is ǫ-optimal if V (w) ≥ V (w′) − ǫ for every w′ ∈ W , for a set of
contracts W to be defined in the sequel.

2.1 Multi-armed Bandit

In the multi-armed bandit problem [Robbins, 1985], a decision maker sequentially collects rewards
from a given set of arms. In each round, the decision maker chooses a single arm, and observes an
independent sample from a reward distribution associated with that arm. In our case, the goal of the
decision maker is, after a predetermined number of rounds, to select an ǫ-optimal arm; that is, an
arm whose expected reward is at most ǫ less than the expected reward of any arm.
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When the set of arms is finite, of size N , and the rewards are bounded in [0, B], the seminal work
of Even-Dar et al. [2006] presents an algorithm called MEDIANELIMINATION with the following
guarantee.

Theorem 1 (Even-Dar et al. [2006]). The MEDIANELIMINATION(ǫ, δ) returns an ǫ-optimal arm
with probability at least 1− δ after O((NB2/ǫ2) · log(1/δ)) rounds.

In our problem, each contract can be seen as an arm. The expected reward of each arm is exactly
the principal’s utility associated with this contract. It is then expected that the principal would sim-
ply execute MEDIANELIMINATION on the space of contracts to obtain an ǫ-optimal one. However,
the space of contracts is not finite which is crucial for MEDIANELIMINATION to run. In the se-
quel we show how to overcome this difficulty by discretizing the space of contracts, and running
MEDIANELIMINATION over the discretization.

3 Main Result

In this section we present our algorithm and analyze its sample complexity, but before doing so let
us first define the space of contracts W that we can learn. The algorithm is presented in Section 3.2.

3.1 Learnable Contracts

Let w0 > 0 be a minimum wage for any outcome.

Definition 1 (B-bounded contract). A contract w is B-bounded if w0 ≤ w(i) ≤ B for every i ∈ [k].

For a bounded contract, together with the assumption that the principal’s profits are bounded, ensures
that the principal’s expected net profit V (w) can be estimated statistically.

Definition 2 (Monotone-smooth contract). A contract w is monotone-smooth if for every i ∈ [k−1]
it holds that 0 ≤ w(i + 1)− w(i) ≤ π(i+ 1)− π(i).

For a monotone-smooth contract, Eq. (1) ensures that, keeping the contract fixed, the principal’s
utility cannot decrease if the agent increases her effort level. In the sequel, this property allows us
to bound the difference in the principal’s utility between two similar contracts.

We define W as follows.

W = {w : w is monotone-smooth and H-bounded} .

We are aware that this set seems restrictive at first glance, yet we argue that in some important special
cases, the principal’s optimal net profit is achieved by a contract from this set. For example, when
there are only two outcomes or the utility of the agent is linear (see Section 4).

3.2 Algorithm

Let w⋆ ∈ W be an optimal contract in W , that is V (w⋆) ≥ V (w) for all w ∈ W . The goal of our
algorithm is to find an ǫ-optimal contract w, namely a contract for which V (w⋆) ≤ V (w)+ ǫ within
a predetermined number of rounds. However, we conjecture that it cannot be done in general, and
to alleviate this issue we make the following assumption.

Assumption 3 (Bounded Risk-Aversion). The agent’s utility from wage u is twice continuously-
differentiable and satisfies −u′′(w)/u′(w) ≤ 1/w for all w > 0. This is equivalent to w 7→ w·u′(w)
being monotone-nondecreasing in w.

Intuitively, the assumption ensures that making small changes to a contract does not produce drasti-
cally different behavior by the agent. *

Our algorithm works as follows. The principal initially constructs a cover Wη of W , and then run
MEDIANELIMINATION on Wη. Indeed, the main technical difficulty in this paper is in defining Wη

properly so that the following result holds.

*An equivalent formulation of the assumption is that the agent’s Arrow-Pratt relative risk aversion measure

is smaller than unity, i.e.,
−x·u

′′(x)
u
′(x)

< 1. Arrow [1965], Pratt [1964]. When considering finite outcomes, this

assumption is not very restrictive (see discussion in Arrow [1965], Choi and Menezes [1992]).
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Theorem 2. Suppose that Assumptions 1 to 3 hold. Let η < 1/4k. There exists a contract space Wη

such that for every contract w ∈ W , there is a contract w′ ∈ Wη for which V (w) ≤ V (w′)+2kHη.

Moreover, the size of Wη is at most M = (log(2H/w0)/η)
k, and Wη can be constructed in time

O(kM).

The proof of the theorem is found in Section 3.3. Finally, we have our main result.

Theorem 3. Suppose that Assumptions 1 to 3 hold. Let η = ǫ/4kH . Executing
MEDIANELIMINATION(ǫ/2, δ) on the set Wη produces the following guarantee. With probability
at least 1− δ, the algorithm outputs an ǫ-optimal contract after

O

(

(

4kH log(H/w0)

ǫ

)k+2

log(1/δ)

)

rounds.

Proof. By Theorem 2 and by the choice of η, there is a w′ ∈ Wη for which V (w′) ≤ V (w⋆) + ǫ/2.
By Theorem 1, with probability 1− δ, MEDIANELIMINATION returns a contract ŵ ∈ Wη such that
V (ŵ) ≤ V (w′) + ǫ/2. Combining both results we get

V (ŵ) ≤ V (w′) + ǫ/2 ≤ V (w⋆) + ǫ/2 + ǫ/2 = V (w⋆) + ǫ ,

as required. Moreover, MEDIANELIMINATION is done in the following number of rounds:

O

(

|Wη|H
2

(ǫ/2)2
log(1/δ)

)

= O

(

(

4kH log(H/w0)

ǫ

)k+2

log(1/δ)

)

.

3.3 Discretization of the Contract Space

In this section we prove Theorem 2. We start by defining the notion of a coarse contract.

Definition 3 (η-coarse contract). A contract W is η-coarse if there exists natural numbers
l0, l1, . . . , lk−1 such that w(1) = w0 exp(η · l0), and for i ∈ [k − 1], w(i + 1) = w(i) exp(η · li).

That is, a coarse is a contract in which the ratios between wages of consecutive outcomes come from
a discrete set of options. We define:

Wη = {w : w is η-coarse and 2H-bounded} .

We prove the following.

Lemma 4. The size of Wη is at most M = (log(2H/w0)/η)
k. Moreover, Wη can be constructed in

time O(kM).

Proof. The wage of outcome i has the form w0 exp(η · l) for a natural number l, and satisfies
w(i) ≤ 2H . Therefore, the number of choices for w(i) is at most log(2H/w0)/η. Since there are
k outcomes, there must be at most M such contracts. To construct Wη we can go over all of its
elements one-by-one, which takes O(M) time.

Finally let w ∈ W , we need to show that there is w′ ∈ Wη such that V (w) ≤ V (w′) + 2kHη.
We construct w′ ∈ Wη as follows. We let l0 = ⌈log(w(1)/w0)/η⌉, and for i ∈ [k − 1], li =
⌈log(w(i + 1)/w(i))/η⌉. We can immediately observe that, by construction, w′(1) ≥ w(1) and for
i ∈ [k− 1], we have w′(i+1)/w′(i) ≥ w(i+1)/w(i). Moreover, it is clear that w′ is η-coarse and
that w′(i) ≥ w0, yet it remains to show that w′(i) ≤ 2H . For that, we have the following lemma.

Lemma 5. We have for all i ∈ [k − 1], w′(i) ≤ eηiw(i).

Proof. By construction, for each i ∈ [k − 1] we have w′(i + 1)/w′(i) ≤ eη · w(i + 1)/w(i).
From this we entail that w′(i)/w′(1) ≤ exp((i − 1) · η) · w(i)/w(1). Since also by construction
w′(1) ≤ exp(η) · w(1), we get that w′(i) ≤ exp(i · η) · w(i) as required.
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With the lemma at hand, and by assumption that η < 1/2k we obtain

w′(k) ≤ exp(η · k) · w(k) ≤ e1/2H ≤ 2H .

Therefore we have w′ ∈ Wη .

We now show that, compared to w, under w′ the agent’s effort cannot decrease. Then, we use this
fact to bound the difference in the principal’s utility between w and w′.

In order to prove our first claim, we will make use of the following lemma.

Lemma 6 (Grossman and Hart [1983]). Let w1 and w2 be contracts. Then,

k
∑

i=1

(

fê(w1)(i)− fê(w2)(i)
)

·
(

u(w1(i))− u(w2(i))
)

≥ 0.

Lemma 7. The effort level the agent chooses can only increase from w to w′.

Proof. First, notice that since the wages only increase, had the agent accepted the contract w, i.e.,
chose an effort level different than 0, she would also accept contract w′. So, let e′ = ê(w′) and
e = ê(w) be the effort levels the agent chooses under contracts w′ and w respectively.

If we apply Lemma 6 with w and w′, we obtain

k
∑

i=1

(

fe′(i)− fe(i)
)

· (u(w′(i))− u(w(i))) ≥ 0 .

Assume for now that u(w′(i))− u(w(i)) is monotone nondecreasing in i. Given this, we will show
by contradiction that e′ ≻ e. So, for the sake of contradiction assume that e′ ≺ e. From the fact that
fe dominates fe′ , Eq. (1) implies that

k
∑

i=1

(

fe′(i)− fe(i)
)

·
(

u(w′(i))− u(w(i))
)

≤ 0 .

Thus,

k
∑

i=1

(fe′(i)− fe(i)) · u(w(i)) =

k
∑

i=1

(fe′(i)− fe(i)) · u(w
′(i)). (2)

Therefore, by optimality of e and e′ under contracts w and w′ respectively, we obtain

k
∑

i=1

(

fe′(i)− fe(i)
)

· u(w(i)) ≤ c(e′)− c(e), and

k
∑

i=1

(

fe′(i)− fe(i)
)

· u(w′(i)) ≥ c(e′)− c(e).

Combining Eq. (2) with the two inequalities above, we obtain that

U(w′, e′) =
k
∑

i=1

fe′(i) · u(w
′(i))− c(e′) =

k
∑

i=1

fe(i) · u(w
′(i))− c(e) = U(w′, e) .

This means that the agent is indifferent between effort levels e and e′ under contract w′. Since,
by Assumption 2, the agent chooses the highest effort in this case, we must have e ≺ e′ — a
contradiction.

Hence, in order to prove the lemma it suffices to prove that u(w′(i))− u(w(i)) is monotone nonde-
creasing in i. This is equivalent to showing that u(w′(i+ 1))− u(w′(i)) ≥ u(w(i+ 1))− u(w(i)).
Denote c = w′(i)/w(i), for c ≥ 1. By construction, w′(i+1)/w(i+1) ≥ c. Consequently, since u
is monotone nondecreasing, it suffices to show u(c ·w(i+1))−u(c ·w(i)) ≥ u(w(i+1))−u(w(i)).

Thus, the proof boils down to showing c 7→ u(c ·w(i+1))−u(c ·w(i)) is monotone nondecreasing
in c. Taking the derivative with respect to c, we need to show

u′
(

c · w(i + 1)
)

· w(i + 1)− u′
(

c · w(i)
)

· w(i) ≥ 0.

However, since the agent is BRA (Assumption 3), we have u′
(

c · w(i + 1)
)

· c · w(i + 1) ≥ u′
(

c ·

w(i)
)

· c · w(i). The proof is complete by recalling that c ≥ 1.
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We can now bound the loss the principal suffers when she offers w′ instead of w.

Lemma 8. It holds that V (w) ≤ V (w′) + 2kHη.

Proof. Since we focus on scenarios where the optimal contract is monotone-smooth, we get that the
net profit of the principal at the optimal contract, π(i) − w(i), is nondecreasing in i. Furthermore,
from Eq. (1), keeping w fixed, the principal only benefits from an increase of the agent’s effort level.
Denote e = ê(w) and e′ = ê(w′). From Lemma 7 we know that e′ ≻ e. We have,

V (w) =

k
∑

i=1

fe(i) ·
(

π(i)− w(i)
)

≤
k
∑

i=1

fe′(i) ·
(

π(i)− w(i)
)

= V (w′) +
k
∑

i=1

fe′(i) ·
(

w′(i)− w(i)
)

. (3)

Now by Lemma 5, w′(i) ≤ ei·η · w(i) for all i ∈ [k]. Since ex − 1 ≤ 2x for all x ∈ [0, 1] and since
η < 1/k, we obtain

w′(i)− w(i) ≤ (ei·η − 1) · w(i) ≤ 2 · η · i · w(i) ≤ 2 · η · k ·H .

Combining the latter with Eq. (3), we get V (w) ≤ V (w′) + 2 · η · k ·H .

4 Applications

In this section we highlight two cases that received attention in the past. For each of them, when
Assumptions 1 to 3 hold, the optimal contract will be in the set W , and thus by learning an
ε−optimal contract in W , we approximate the best contract the principle could have offered the
agent had she known her utility function, effort levels and costs, and the distributions they induce
over outcomes.

Two outcomes. Firstly, we focus on the case where there are only two outcomes and show that the
optimal contract is in W.

Lemma 9. When there are only two outcomes, the optimal contract is monotone-smooth and 2H-
bounded.

Proof. By Grossman and Hart [1983], the optimal contract in the two outcome case is of the shape:
w(2) = w(1)+a(π(2)−π(1)) for some a ∈ [0, 1]. By plugging this expression into the inequality in
Definition 2, we get that the optimal contract is monotone-smooth. To see that the optimal contract is
2H-bounded, let e denote her chosen effort level. Since the principal’s utility at the optimal contract
is nonnegative, fe(1)w(1)+fe(2)w(2) ≤ fe(1)π(1)+fe(2)π(2) ≤ H , and in particular w(1) ≤ H .
Now, w(2) = w(1) + a(π(2)− π(1)) ≤ H + 1 ·H = 2H .

Thus, by Theorem 3, applied to our discretized contract space, MEDIANELIMINATION finds an
ǫ-optimal contract under Assumptions 1 to 3. Note, the FOSD assumption (Assumption 1) is stan-
dard in the literature, hence our result essentially requires only the bounded risk-averse assumption
(Assumption 3).

Risk neutral agent. Carroll [2015] studies a setting in the agent is risk-neutral, and the principal
has only partial knowledge of the agent’s action space. Had the principal known the complete action
space of the agent, the optimal contract would have been linear. In this setting, the principal can
derive the optimal linear contract with respect to only the known actions of the agent. Carroll
[2015] show that her profit from the actual action taken by the agent (which can be one that the
principal is unaware of) can only be higher than the principal’s expectations.

In the following lemma we show that when the agent is risk-neutral, the optimal theoretical contract
is in W , and thus our algorithm learns a contract that approximates it.
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Lemma 10. If the agent is risk-neutral then the optimal contract is H-bounded and monotone-
smooth.

Proof. When the agent is risk neutral, the optimal contract is of the shape w(i) = π(i)−α for some
constant α ∈ R+ (Proposition 14.B.2 on page 482 in Mas-Colell et al. [1995]). As π(i+1) > π(i),
this contract is monotone-smooth. And as π(k) ≤ H it is also H-bounded.

5 Conclusions

In this paper we studied the principal-agent problem when the principal has zero information about
the the agent. We focus on the class of monotone-smooth contracts and show that when the optimal
contract is monotone-smooth and the agent is bounded risk-averse, then we can learn an approx-
imately optimal contract. We complemented this result with a multi-armed bandit algorithm that
finds an approximately optimal contract and we provided bounds on the number of samples it needs.

When the output space of the task is binary, or when the agent is risk-neutral, economic theory
suggests that the optimal contract is monotone-smooth. Thus the net profit of the principal generated
by the resulting contract approximates the optimal net profit she can achieve in general.

Several intriguing questions remain. It is interesting to understand whether the assumption of
bounded risk-aversion is needed to guarantee learning of monotone-smooth contracts. The answer
to this question is not obvious even when there are only two outcomes. Furthermore, we wish to find
other conditions and assumptions that allow learning. On the other hand, we conjecture that there
exist cases in which learning is not possible at all. Lower bounds, or even partial characterizations
of such cases would be of great interest.
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