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State observer design for Direct Contact Membrane Distillation
Parabolic systems

Mohamed Ghattassi, Jean-Claude Vivalda and Taous Meriem Laleg-Kirati, senior IEEE member

Abstract— This paper proposes a state observer for a coupled
two dimensional partial differential equations (PDEs) system
used to describe the heat transfer in a membrane distillation
system for water desalination. The mathematical model based
on reaction-diffusion system is introduced. Sufficient conditions
for the exponential convergence of the estimation error is
presented using Lyapunov method. A numerical example is also
provided to illustrate the effectiveness of the proposed observer.

I. INTRODUCTION

Due to the increasing demand in potable water along with
the limited natural freshwater resources, many countries
rely on seawater desalination to meet their fresh water
needs. However standard water desalination systems
are usually energy inefficient and there is a pressing
need to develop sustainable water desalination systems.
Membrane distillation (MD) is an emerging technology
for sustainable desalination process. It is a hybrid system
with a membrane based thermal separation principle.
It consists of two solutions: feed (hot sea water) and
permeate (cold fresh water) separated by a micro-porous
hydrophobic membrane which allows only water vapor to
pass through the membrane pores from the feed side to
the permeate side.When reaching the permeate surface, the
water vapor condensates to produce fresh water [1], [2],
[3]. The process in MD system is driven by the pressure
gradient along the membrane sides, which is due to the
temperature difference along the membrane boundaries.
There are different MD configurations depending on a the
nature of condensation procedure. This study focuses on the
Direct-Contact Membrane Distillation (DCMD).

MD is a promising sustainable alternative to standard
water desalination systems. This is mainly due to its potential
to be directly powered by solar energy sources. However,
its low production rate along with anomalies related to
the presence of a membrane such as membrane fouling or
wetting prevent from its commercialization [4]. Therefore,
optimizing the MD systems by controlling and monitoring
the system is needed. Recent work proposed accurate two
dynamical mathematical models for the MD process [5],
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[6]. The first model is of distributed nature and is given
by coupled Advection Diffusion equations representing the
heat transfer mechanisms in both feed and permeate sides.
The second model is a reduced order model describing the
system’s dynamics using a system of algebraic differential
equations. Based on these two models, attempts of control
and monitoring strategies have been proposed [7], [8]. How-
ever in most cases the temperature inside the MD module
is required but not directly accessible for measurement [9],
[10], [11]. In order to ease the control and monitoring pro-
cess, in this paper we propose an observer based estimation
of the MD temperature. For this purpose we are interested
in the distributed model of the MD which consists of a
two-dimensional reaction-diffusion system coupled at the
boundary. In this model, we consider two control inputs
which are the feed and the permeate inlet temperatures re-
spectively, and two measured outputs for the DCMD process
which are the feed and the permeate outlet temperatures
respectively. Moreover the heat flux is also is assumed to
be a measurement of the system. State observer is designed
based on Lyapunov theory. Recently, a backstepping based
observer has been proposed for reaction-diffusion processes
evolving in multidimensional spatial domains. In this work,
the observer design is developed for a class of reaction-
diffusion system coupled on the boundary in two dimensional
case.

The paper is organized as follows. Section 2, describes the
MD model in DCMD system. Section 3 states the problem to
be investigated and introduces the proposed observer struc-
ture with the underlying Lyapunov function. The estimation
performance is illustrated through a numerical example in
Section 4.

II. DIRECT CONTACT MEMBRANE DISTILLATION
SYSTEM

A. Mathematical Model

The feed temperature f is initially defined on the follow-
ing domain (0, `1) × (0, `2) separated to the permeate by
the membrane. The thickness of the membrane δ is very
small which allow to assume that the spatial domain of
the permeate temperature is given by (`1, 2`1) × (0, `2),
see Fig.1. Finally, using the simple change of variables the
feed and permeate temperatures are defined on some domain
Ω = (0, `1) × (0, `2). Let T > 0, QT = (0, T ) × Ω,
Σ`2 = (0, T ) × (0, `2) and Σ`1 = (0, T ) × (0, `1). The
mathematical model of the DCMD process is governed by



Fig. 1. Schematic diagram of DCMD process.

the following Parabolic system

∂tf − αf∂xxf + βf∂yf = 0 in QT ,
∂tp− αp∂xxp+ βp∂yp = 0 in QT ,

∂xf(t, `1, y) = − 1

κf

(
λJ +

κm
δm

(f − p)
)

in Σ`2 ,

∂xf(t, 0, y) = 0 in Σ`2 ,

∂xp(t, `1, y) =
1

κp

(
λJ +

κm
δm

(f − p)
)

in Σ`2 ,

∂xp(t, 0, y) = 0 in Σ`2 ,

f(t, x, 0) = Tf (x) in Σ`1 ,

p(t, x, `1) = Tp(x) in Σ`1 ,

f(t, x, y) = f0(x, y) in Ω,

p(t, x, y) = p0(x, y) in Ω,

(1)

where p0.f0 ∈ L2(Ω), Tp, Tf ∈ L2(0, `1), αf , αp > 0
be the thermal diffusivities, and βf > 0, βp < 0 be the
velocities of flow in the feed and permeate side respectively.
kf and kp are positive constants which depend on the thermal
conductivity and thickness of the membrane. λ is the latent
heat of water. J is the trans-membrane heat flux transferred
between the feed and the permeate subsystems, it is based
on Poiseuille-flow for the mass transfer coefficient

J = CP∆P =
1

8

r2ε

δ

MPm
ηRTfp

(Pf − Pp)

where Pk, k ∈ {p, f} the vapor pressure calculated using
the Antoine equation

Pk = exp

{
23.7836− 3782.89

k − 42.85

}
with k is the temperature in Kelvin (K), CP is the Poiseuille-
flow mass transfer coefficient, Tfp = (f + p)/2 is the mean
of the temperature, Pm = (Pf + Pp)/2 is the mean pressure
of the membrane and η is the water vapor viscosity, r is the
pore size, ε is the porosity, τ is the tortuosity, M is the water
molecular weight and R is the universal gas constant.

Remark 1: Initially, heat transfer in DCMD model is
presented by the reaction diffusion parabolic system, under
some reasonable physical assumptions given in [6] and [13,
Chapter 10] we assume that the horizontal diffusivity is more
affecting and has more significance than the vertical one. For
this reason we neglected the vertical thermal diffusivity.

B. Motivations
The state-feedback controllers for the DCMD process re-

quire information on the state at each point in the domain. So,
in the practice it is not possible to measure this state directly
and we can measure only a small part of the state temperature
for the feed f(t, x, `2) and permeate p(t, x, 0)respectively
which we are drawn to use observers for recovering the
state from some measurements of the system. Moreover, the
heat flux on the interface is known, therefore the flux J is
a measurement of system. This paper is devoted to the state
observer of DCMD system where the goal is to propose an
observer to estimate the temperature along of the membrane.

III. OBSERVERS DESIGN

Let introduce the following steady state system

−αf∂xxf̄ + βf∂y f̄ = 0 in Ω,

−αp∂xxp̄− βp∂yp̄ = 0 in Ω,

∂xf̄ = − 1

κf

(
λJ +

κm
δm

(
f̄ − p̄

))
on (0, `2),

∂xp̄ =
1

κp

(
λJ +

κm
δm

(
f̄ − p̄

))
on (0, `2),

∂xf̄ = 0 on (0, `2),

∂xp̄ = 0 on (0, `2),

f̄(x, 0) = Tf (x) on (0, `1),

p̄(x, `2) = Tp(x) on (0, `1),

(2)

Let

¯̄f = f − f̄ .

Then,

∂t
¯̄f − αf∂xx

¯̄f + βf∂y
¯̄f = 0 in QT ,

∂t ¯̄p− αp∂xx ¯̄p− βp∂y ¯̄p = 0 in QT ,

∂x
¯̄f(t, `1, y) = −γ

(
¯̄f(t, `1, y) − ¯̄p(t, `1, y)

)
on Σ`2 ,

∂x ¯̄p(t, `1, y) = γ1
(

¯̄f(t, `1, y) − ¯̄p(t, `1, y)
)

on Σ`2 ,

∂x
¯̄f(t, 0, y) = 0 on Σ`2 ,

∂x ¯̄p(t, 0, y) = 0 on Σ`2 ,
¯̄f(t, x, 0) = 0 on Σ`1 ,
¯̄p(t, x, `2) = 0 on Σ`1 ,
¯̄f(0, y, x) = f0(x, y) − f̄(x, y) in Ω,
¯̄p(0, y, x) = p0(x, y) − p̄(x, y) in Ω,

(3)

where γ = κm

κfδm
and γ1 = κm

κpδm
. We now consider the

following observer

∂tf̂ − αf∂xxf̂ + βf∂y f̂ = Lf

(
¯̄f(t, x, `2) − f̂(t, x, `2)

)
in QT ,

∂tp̂− αp∂xxp̂− βp∂y p̂ = Lp (¯̄p(t, x, 0) − p̂(t, x, 0)) in QT ,

∂xf̂(t, `1, y) = −γ
(
f̂(t, `1, y) − p̂(t, `1, y)

)
on Σ`2 ,

∂xp̂(t, `1, y) = γ1
(
f̂(t, `1, y) − p̂(t, `1, y)

)
on Σ`2 ,

∂xf̂(t, 0, y) = 0 on Σ`2 ,

∂xp̂(t, 0, y) = 0 on Σ`2 ,

f̂(t, x, 0) = 0 on Σ`1 ,

p̂(t, x, `2) = 0 on Σ`1 ,

f̂(0, y, x) = f̂0(x, y) in Ω,

p̂(0, y, x) = p̂0(x, y) in Ω,
(4)



where Lf and Lp are the observers gains. Let us give the
following error dynamic

ef = f̂ − ¯̄f, ep = p̂− ¯̄p.

Then, we have

∂te
f − αf∂xxef + βf∂ye

f = Lfe
f (t, x, `2) in QT ,

∂te
p − αp∂xxep − βp∂yep = Lpe

p(t, x, 0) in QT ,
∂xe

f (t, `1, y) = −γ
(
ef (t, `1, y)− ep(t, `1, y)

)
on Σ`2 ,

∂xe
p(t, `1, y) = γ1

(
ef (t, `1, y)− ep(t, `1, y)

)
on Σ`2 ,

∂xe
f (t, 0, y) = 0 on Σ`2 ,

∂xe
f (t, 0, y) = 0 on Σ`2 ,

ef (t, x, 0) = 0 on Σ`1 ,

ep(t, x, `2) = 0 on Σ`1 ,

ef (0, y, x) = ef0 (x, y) in Ω,

ep(0, y, x) = ep0(x, y) in Ω,
(5)

where

ef0 = f̂0 − ¯̄p0, ep0 = p̂0 − ¯̄p0.

We now introduce the main result of this paper which
consists in a sufficient stability condition guaranteeing the
exponential convergence of the estimation error towards zero.

Theorem 1: The estimation error (5) converges exponen-
tially towards zero if there exist gain observers satisfying



∥∥∥Lf∥∥∥2
∞

6 2
αfα

2
pγ

2
1βf

`2c
and∥∥∥Lp∥∥∥2

∞
6 2

αpα
2
fγ

2βp

`2c
,

(6)

where c =
(

(`1 + `2)
2
/π2
)

.

Proof: Let introduce the following Lyapunov function

V (t) =αpγ1

∫ `1

0

∫ `2

0

ef2(t, x, y)dydx

+ αfγ

∫ `1

0

∫ `2

0

ep2(t, x, y)dydx,

where

V
′
(t) =2αpγ1

∫ `1

0

∫ `2

0

ef (t, x, y)∂te
f (t, x, y)dydx

+ 2αfγ

∫ `1

0

∫ `2

0

ep(t, x, y)∂te
p(t, x, y)dydx.

Then,

V
′
(t) = 2αfαpγ1

∫ `1

0

∫ `2

0

ef (t, x, y)∂xxe
f (t, x, y)dydx

− 2βfαpγ1

∫ `1

0

∫ `2

0

ef (t, x, y)∂ye
f (t, x, y)dydx

+ 2αpγ1

∫ `1

0

∫ `2

0

ef (t, x, y)Lfe
f (t, x, `2)dydx

+ 2αpαfγ

∫ `1

0

∫ `2

0

ep(t, x, y)∂xxe
p(t, x, y)dydx

+ 2βpαfγ

∫ `1

0

∫ `2

0

ep(t, x, y)∂ye
p(t, x, y)dydx

+ 2αfγ

∫ `1

0

∫ `2

0

ep(t, x, y)Lpe
p(t, x, 0)dydx.

(7)
By integration by part, we have∫ `1

0

∫ `2

0

ef (t, x, y)∂xxe
f (t, x, y)dydx =∫ `2

0

ef (t, `1, y)∂xe
f (t, `1, y)dy

−
∫ `1

0

∫ `2

0

(
∂xe

f (t, x, y)
)2
dydxdy,

(8)

From boundary conditions we deduce∫ `1

0

∫ `2

0

ef (t, x, y)∂xxe
f (t, x, y)dydx =

− γ
∫ `2

0

ef (t, `1, y)
(
ef (t, `1, y)− ep(t, `1, y)

)
dy

−
∫ `1

0

∫ `2

0

(
∂xe

f (t, x, y)
)2
dydx.

Similarly, we have∫ `1

0

∫ `2

0

ep(t, x, y)∂xxe
p(t, x, y)dydx =

γ1

∫ `2

0

ep(t, `1, y)
(
ef (t, `1, y)− ep(t, `1, y)

)
dy

−
∫ `1

0

∫ `2

0

(∂xe
p(t, x, y))

2
dydx,

−2βfαpγ1

∫ `1

0

∫ `2

0

ef (t, x, y)∂ye
f (t, x, y)dydx =

− βfαpγ1
∫ `1

0

(
ef
)2

(t, x, `2)dx

2βpαfγ

∫ `1

0

∫ `2

0

ep(t, x, y)∂ye
p(t, x, y)dydx =

− βpαfγ
∫ `1

0

(ep)
2

(t, x, 0)dx



Then

V
′
(t) = 2αfαpγ1

(
−
∫ `1

0

∫ `2

0

(
∂xe

f (t, x, y)
)2
dydx

+ γ

∫ `2

0

ef (t, `1, y)
(
ep(t, `1, y)− ef (t, `1, y)

)
dy
)

− βfαpγ1
∫ `1

0

(
ef
)2

(t, x, `2)dx

+ 2αpγ1

∫ `1

0

∫ `2

0

ef (t, x, y)Lfe
f (t, x, `2)dydx

+ 2αpαfγ
(
−
∫ `1

0

∫ `2

0

(∂xe
p(t, x, y))

2
dydx

+ γ1

∫ `2

0

ep(t, `1, y)
(
ef (t, `1, y)− ep(t, `1, y)

)
dy
)

− βpαfγ
∫ `1

0

(ep)
2

(t, x, 0)dx

+ 2αfγ

∫ `1

0

∫ `2

0

ep(t, x, y)Lpe
p(t, x, 0)dydx.

(9)
By using the Poincaré inequality given in [14,

Theorem 13.6.9 pages 426] then there exists
c =

(
(`1 + `2)

2
/π2
)
> 0 such that∫ `1

0

∫ `2

0

(ep(t, x, y))
2
dydx

6 c

∫ `1

0

∫ `2

0

(∂xe
p(t, x, y))

2
dydx.

Moreover, we have the same inequality for ef . Then

V
′
(t) 6 −2αfαpγ1γ

∫ `2

0

(
ef (t, `1, y)− ep(t, `1, y)

)2
dy

− 2
αfαpγ1

c

∫ `1

0

∫ `2

0

(
ef (t, x, y)

)2
dydx

− βfαpγ1
∫ `1

0

(
ef
)2

(t, x, `2)dx

+ 2

∫ `1

0

∫ `2

0

ef (t, x, y)Lfe
f (t, x, `2)dydx

− 2
αfαpγ

c

∫ `1

0

∫ `2

0

(ep(t, x, y))
2
dydx

− βpαfγ
∫ `1

0

(ep)
2

(t, x, 0)dx

+ 2

∫ `1

0

∫ `2

0

ep(t, x, y)Lpe
p(t, x, 0)dydx.

(10)
Using young’s inequality, we have for all ε2, ε3 > 0

2

∫ `1

0

∫ `2

0

ef (t, x, y)Lfe
f (t, x, `2)dydx

6 ε2

∫ `1

0

∫ `2

0

(
ef (t, x, y)Lf

)2
dydx

+
`2
ε2

∫ `1

0

(
ef
)2

(t, x, `2)dx,

(11)

2

∫ `1

0

∫ `2

0

ep(t, x, y)Lpe
p(t, x, 0)dydx

6 ε3

∫ `1

0

∫ `2

0

(ep(t, x, y)Lp)
2
dydx+

`2
ε3

∫ `1

0

(ep)
2

(t, x, 0)dx,

(12)

Taking ε2 = `2
βfαpγ1

and ε3 = `2
βpαfγ

V
′
(t) 6 −2

αfαpγ1
c

∫ `1

0

∫ `2

0

(
ef (t, x, y)

)2
dydx

+
`2

βfαpγ1

∫ `1

0

∫ `2

0

(ef (t, x, y)Lf )2 dydx

− 2
αfαpγ

c

∫ `1

0

∫ `2

0

(ep(t, x, y))2 dydx

+
`2

βpαfγ

∫ `1

0

∫ `2

0

(ep(t, x, y)Lp)2 dydx.

(13)

The observers gain satisfy condition (6) then there exists
ρ = ρ(αfβf , αpβp, c) > 0 such that

V
′
(t) 6 −ρV (t) (14)

This ends the proof of this theorem.

IV. NUMERICAL ILLUSTRATIONS

In this section, simulation results are presented to illustrate
the convergence of the proposed observer for the DCMD
model. We use real process parameters values given in the
paper [6] which is provided by the Water Desalination and
Reuse Center at KAUST. We consider Ω = (0, `1)× (0, `2)
where `1 = 0.001m and `2 = 1m. The finite difference
method is used for the numerical approximation. The Dirich-
let boundary conditions are equal to Tf = 60K and Tp =
20K, respectively. The initial data are assumed to be equal
to f0 = 10K and p0 = 80K, where the initial conditions
of the observer are given by f̂0 = 13K and p̂0 = 7K. We
assume that Nx = 100 and Ny = 200. The time step is equal
to δt = 10−2. We fix the observer’s gains to

Lf =
αfα

2
pγ

2
1βf

4
, Lp =

αpα
2
fγ

2βp

4
,

satisfying the exponential convergence condition given by
(6). Figures 2 and 3 show the profile of the permeate and
feed temperature for the state and estimate temperature.
Moreover, figures 4 and 5 present the evolution for the feed
and permeate temperature at x = `1/2 respectively for the
final time. Figures 6 and 7 illustrate the L2−norm of error of
estimation which verifies the effectiveness of the proposed
observer.

V. CONCLUSION

This paper proposed an observer design for a system of ad-
vection diffusion equations coupled at the boundary and used
to describe heat transfer in DCMD process. The observer
estimates the feed and permeate temperatures distribution
at the membrane. Sufficient conditions for the convergence
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Fig. 2. The profile of temperature for the feed and the permeate temperature
at final time.
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permeate temperature at final time.
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of the observer are proposed using the Lyapunov theory.
Simulation results based on real physical parameters values
are presented to illustrate the convergence of the proposed
observer.
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