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Abstract

The coupling of computational fluid dynamics and rigid body dynamics promises

enhanced multidisciplinary simulation capability for aircraft design and certification.

Industrial application of such coupled simulations is limited however by computational

cost. In this context, model reduction can retain the fidelity of the underlying model

while decreasing the overall computational effort. Thus, investigation of such coupled

model reduction is presented in this thesis. The technique described herein relies on

an expansion of the full order non-linear residual function in a truncated Taylor series

and subsequent projection onto a small modal basis. Two procedures are outlined to

obtain modes for the projection. First, flight dynamics eigenmodes are obtained with

an operator-based identification procedure which is capable of calculating the global

modes of the coupled Jacobian matrix related to flight dynamics without computing

all the modes of the system. Secondly, proper orthogonal decomposition is used as

a data-based method to obtain modes representing the coupled system subject to

external disturbances such as gusts. Benefits and limitations of the two methods are

investigated by analysing results for both initial and external disturbance simulations.

Three test cases of increasing complexity are presented. First, an aerofoil, free to

translate vertically and rotate, is investigated with aerodynamics based on the Euler

equations. Secondly, a two-dimensional wing-tail configuration is studied for longitudinal

dynamics. Aerodynamics is modelled with Reynolds-averaged Navier–Stokes equations

and Spalart–Allmaras turbulence model. Thirdly, a three-dimensional industrial use

case, which concerns a large civil aircraft, is investigated and longitudinal as well as

lateral dynamics are both taken into account. Overall, reduced order models relying on

both operator-based and data-based identifications are able to retain the accuracy of

the high-fidelity tools to predict accurately flight dynamics responses and loads while

reducing the computational cost by up to two orders of magnitude. If adopted, these

techniques are expected to speed-up aircraft design and lowering certification costs with

the final aim of reduced expense for airlines and, as a consequence, for flying passengers.
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Chapter 1

Introduction

On the 17th of December 1903 the age of powered, heavier-than-air aircraft began [8].

Such epoch was signed by an inexorable development in all aeronautics fields ranging

from sophisticated aerodynamic theories to material improvements [6]. However, it

was also signed by fatal accidents since safety was not a major concern for pioneers

who were developing the ability to fly for the first time. Airworthiness regulations

aiming to promote safer flight were gradually proposed as early as 1919 when the idea

of type certificate was introduced in the United Kingdom with the Air Navigation

Regulations [2, 36]. A century later, meeting certification requirements at any stage of

flight mission is an essential prerequisite to declare any civil aircraft capable of flying [57].

A flight envelope is defined by relating loads to flight speed. As an example, a typical

flight envelope for a large civil aircraft is shown in Fig. 1.1 where the aerodynamic

loads are related to the aircraft weight and given in terms of load factor.

Certification requires that the aircraft is able to fly safely at any point enclosed by

the flight envelope even if it is subject to external disturbances. One of the critical

conditions to be investigated is represented by gust encounter [57]. It consists of

sudden changes in the wind direction and intensity which alter lift, drag and moment.

Such changes represent the air turbulence and they belong to the category of weather-

related phenomena. Although current numbers of fatal accidents are low [24], gust

encounter can still cause serious problems and lead to fatalities [62]. Gusts represent

the most dangerous atmospheric hazard for large civil aircraft, as shown in Fig. 1.2,

where wind and turbulence are identified as responsible for the majority of accidents.

When it comes to certification, safety during a gust encounter is ensured by defining

a conventional gust shape called ‘1-cos’ to model the atmospheric turbulence and by

asking aircraft manufacturers to test the aircraft behaviour against it [57]. The ‘1-

cos’ gust shape was born from the idea of discrete gust introduced by Küssner [89].

Although atmospheric turbulence is a random continuous problem [136], the aircraft

response must be investigated for discrete gusts. In fact, continuous turbulence can

be decomposed in a sequence of discrete pulse excitations [2, 29]. This approach has

1



Figure 1.1: Typical flight envelope (adapted from [50, p. 235]).

(a) Absolute number of accidents and causes (b) Yearly contribution in percentage of total

Figure 1.2: Flight accidents due to weather-related phenomena (taken from [62]).

proven to be a good trade-off when compared to continuous models [158] and the current

regulation is based on the theoretical work presented in [112]. The ‘1-cos’ gust shape is

defined as function of time depending on two parameters, specifically gust length and

amplitude as shown for a vertical (also known as longitudinal) gust in Fig. 1.3. The

intensity is defined according to altitude, gust length and flight speed [57]. Although the

‘1-cos’ shape represents a mathematical idealisation of natural phenomena, a physical

interpretation is provided. The gust disturbance consists of small variations in the flow

field which can alter either the angle of attack or dynamic pressure [76, Ch. 1]. It moves

towards the aircraft at free-stream velocity and interacts with body surfaces producing

changes in aerodynamic forces. Lift, drag and moment build-up causes vertical and

rotational aircraft motions [76]. As a consequence, the resulting loads are a combination
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Figure 1.3: Shape and defining parameters for ‘1-cos’ gust.

of various effects such as force increment given by the disturbance itself, aircraft motion

as well as the mutual interaction between aircraft and gust.

In practice, certification regulations require evaluations of gust responses for a

sufficient number of gust lengths for each mass case and flight point in order to identify

the worst-case scenario and investigate the aircraft’s limit loads. Nowadays, this is

partly achieved by means of computer simulations which help the design process. The

trend, set by all major players in the aircraft market, is to achieve certification by

analysis in order to reduce time and cost. Regulation authorities work side-by-side with

manufacturers and results from computer simulations will produce safer and cheaper

products. This has been demonstrated for instance in [49, 90]. However, research is still

needed when it comes to high-fidelity gust encounter simulations, particularly if free

flight effects are included to describe physics more accurately. Their main limitation is

represented by high computational cost. Certification by analysis concerning gust loads

and flight dynamics promises to further reduce time and cost of the overall design process,

especially if applied during early design stages in a fast and reliable way. In addition, this

will be an enabling technology for designing novel configurations in the upcoming years.

In the next sections, the status for gust certification by analysis based on simulations

including flight dynamics effects is described and limitations of the current practice

are highlighted. Focus is on aircraft design and the main obstacles to increased use

of this type of high-fidelity simulations are discussed.

1.1 Application Requirements

Current industrial practice for aircraft design relies on low fidelity simulations for gust

loads evaluations. The need for fast results during the design exploration is satisfied with

linear potential aerodynamic methods which offer low fidelity at affordable computational

cost [116]. Flight dynamics effects are usually not included and the aircraft is considered

static, not moving, while the disturbances hit the surfaces [116]. However, the next

steps towards more accurate gust loads estimation are multidisciplinary simulations

involving aerodynamics and flight dynamics among other disciplines [131]. This leads to
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Figure 1.4: Block diagram representing a multidisciplinary approach to couple aerodynamics
and flight dynamics in an unsteady loop.

multidisciplinary problems which must be addressed with methods developed on purpose.

Two approaches are commonly adopted to couple aerodynamics and flight dynamics.

The first one is based on aerodynamic tables computed with computational fluid

dynamics (CFD) [65]. Such approach is usually adopted to assess flight dynamics

performance as well as to provide physical insight for flight simulators [67, 126] and

its accuracy can be compared to wind tunnel experiments in some circumstances [40].

Aerodynamic tables include data for aerodynamic forces and moments as function of

state variables such as angle of attack and Mach number. Tables cannot be computed

with CFD in real time because of the computational cost and Kriging interpolation

applied to pre-computed data was proposed as a remedy to lower computational

requirements [146]. This approach is considered quasi-steady since the flight path during

a manoeuvre is pre-defined. This leads to problems when fast motion is involved, as

reported in [146], because the mutual interaction of aerodynamics and flight dynamics

is computed only at steady state and then frozen.

The second approach relies on the assumption that each discipline involved in the

process requires input which depends on others. Specifically, the interaction is mutual

since flight dynamics states depend on aerodynamic forces and vice versa. This multi-

disciplinary approach is well explained in [37] and summarised in Fig. 1.4 with a block

diagram. One of the disciplines is advanced in time first and its output is then used

as input for the next block which produces a new output as well. These intermediate

results are used iteratively and they represent a new input for the previous block in order

to obtain results at a fixed time step. The loop is repeated until convergence and the

system then moves to the next time step. Phenomena such as gusts are included in the

aerodynamic block. The resulting system might be computationally expensive if high-
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fidelity results are provided by each subsystem. This modular approach has proven to be

reliable in the multidisciplinary context [96] and it will be used as guideline in this work

as well. An example of coupling blocks representing flight dynamics, flexible structures

and unsteady aerodynamics for gust response analysis was achieved, for instance, in [54]

using unsteady lifting line theory in the subsonic regime. Similar solutions were proposed

for gust analysis of HALE (High Altitude, Long Endurance) configurations [35, 127] since

flight dynamics effects are essential to predict accurately those systems’ behaviour. Cou-

pling can also be achieved directly in the linear aerodynamics equations with correction

terms accounting for body acceleration, as suggested in [110, 119]. Although the work

described so far summarises the industrial practice based on fast methods, it exclusively

relies on low fidelity aerodynamic models to perform multidisciplinary simulations.

Application in the transonic regime requires high-fidelity aerodynamics based on

CFD, which can describe non-linear flow phenomena like shock waves. One of the

earliest attempts to model transonic aerodynamics with CFD for a free-flight test case is

reported in [59] for a fighter aircraft solving CFD Euler equations. The multidisciplinary

model was based on a modular approach composed of two interacting subsystems which

concern aerodynamics and flight dynamics. Simulations were performed advancing in

time and exchanging information between the two subsystems at each time-step. The

need to perform such computations using a computer cluster was the main limitation

reported whereas efficient programming solutions were suggested for the data exchange.

Similarly, an example of a simulation for a manoeuvring aircraft in transonic flow is

presented in [115], running a CFD Euler solver alongside a structural modal solver in

a closed loop. The manoeuvre was pre-defined so that time-varying flight dynamics

parameters such as angle-of-attack are imposed onto the CFD solver at each time-step.

A similar approach based on two distinct and interacting subsystems was also applied

in [108] to cope with large static displacements in transonic flow.

These studies provide an effective way to cope with pre-defined manoeuvres or static

problems but an extension to unsteady gust encounter in viscous and transonic flow is

needed. Although gust disturbances are pure aerodynamic phenomena and they are

included in the aerodynamic block, particular care must be taken when introducing

them in time-domain coupled simulations. For such cases, flight dynamics unknowns

must be calculated at each time-step using the most recent values of aerodynamic forces

which, in turn, depend also on the gust disturbance. Moreover, aerodynamics also

depends on flight dynamics unknowns, leading to a two-way coupled problem. This

mutual interaction was investigated in [140] for free-flying aerofoils using CFD based

on Reynolds-averaged Navier–Stokes (RANS) equations and applying two techniques.

First, gust is simulated using a resolved approach. The disturbance propagates starting

from the boundary upwind and reaches the aerofoil by downstream propagation. This

approach resembles the natural phenomenon but it requires a fine and Cartesian mesh

in order to avoid an excessive numerical dissipation of disturbances and excessive cost.
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Figure 1.5: Effects of including flight dynamics when performing gust encounter simulations
(adapted from [117]).

Such requirements translate into a high computational cost to be paid which makes the

adoption of such solution infeasible for large test cases. The second technique for gust

modelling is called disturbance velocity method and it introduces the gust in the domain

by altering the grid velocity [109]. It is based on the equivalence between an aerodynamic

body moving in a steady flow and a steady body surrounded by a moving fluid. When

it comes to gusts, the motion of the fluid is defined by the shape of gust disturbance, i.e.

‘1-cos’ . In practice, velocity values at grid points are altered by adding velocity terms

which depend on the intensity of the gust at the specific point. Effects such as loads

alteration and rigid-body motion produced by the gust are simulated but the disturbance

alterations due to the body are ignored. However, good agreement between two methods

was obtained despite the reduced computational cost [140]. Similar results are discussed

in [73] where the disturbance velocity method and the resolved technique are compared

for a lateral gust encounter of a three-dimensional test case. The aircraft was considered

static, i.e. not moving, and matching results are provided for loads only since no motion

is simulated. The disturbance velocity method was exploited in [117] to perform gust

encounter simulation of free-flying aircraft in transonic flow and aerodynamics modelled

with RANS equations. An interesting comparison in terms of load factor for a gust

encounter is shown in this study, and reproduced in Fig. 1.5. The CFD curve corresponds

to a static aircraft whereas the CFD-FD curve shows results for the same simulation

including flight dynamics effects. Peak values are lowered and the difference ∆1 between

the resulting load factors is clear. This suggests that flight dynamics should be included

for gust simulations in order to avoid overestimation of loads. The additional two curves
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labelled CFD-FD-CSM and DLM-FD-CSM show results from simulations including

flexible structures as well as flight dynamics with aerodynamics modelled using either

CFD or doublet lattice method (DLM). The difference ∆ between them highlights the

limitations of the current industrial practice based on DLM and shows the improved

accuracy of the multidisciplinary approach based on CFD. A similar solution based on

coupling modules for CFD aerodynamics and flight dynamics and introducing gust with

disturbance velocity method is adopted in the current work to provide reference data.

With feasibility for an industry-scale adoption of multidisciplinary analyses based

on CFD already demonstrated, the main obstacle remains computational cost. A first

reduction has been achieved using linearised frequency domain (LFD) formulations. For

such methods, the CFD equations are linearised around a steady state and harmonic

excitation as well as harmonic response are assumed. Thus, a complex-valued system of

linear equations is obtained and its solution depends on the excitation frequency. In

practice, responses to harmonic disturbances are obtained solving the resulting linear

system. The left-hand side of such system is composed of the Jacobian matrix arising

from the CFD linearisation with a complex shift to account for frequency and damping.

The right-hand side is defined by the disturbance instead. LFD methods were first

developed for turbomachinery applications involving Euler flows as a short-cut towards

unsteady aerodynamics [69]. Other applications in the aerodynamic field benefit from

LFD [141] and it has been successfully applied to fluid-structure interaction problems

in the field of aeroelasticity as well [9, 142]. In such cases, disturbances are represented

by structural deformation expressed by means of mode shapes. The complex-valued

interaction terms relating changes in the aerodynamic forces due to structural motions

are then efficiently computed with LFD. The technique was scaled to industrial cases

by improving the solution procedure based on iterative linear solvers with the adoption

of better preconditioning [97] and better algorithms [156]. The improvements led to

a reduction in the computational cost by an order of magnitude [97]. An interesting

application of LFD is the calculation of dynamic derivatives which are needed for flight

dynamics studies [41]. Traditionally, quasi-steady derivatives were obtained applying a

forced periodic motion to the aerodynamic body during wind tunnel experiments or,

alternatively, dynamic derivatives were calculated with unsteady time-marching CFD

simulations. The LFD formulation allows for a quicker evaluation of such derivatives

as reported in [150] for an aircraft in a viscous transonic flow.

Recently, LFD has been applied to the evaluation of gust loads. In fact, harmonic

disturbances forming the right-hand side of the linear system can represent other

phenomena besides structural motion. In [82] airloads were calculated with the same

tools for both structural deformations and sinusoidal gusts. The phase difference between

different locations in the domain, which characterises the gust disturbance, translates

into complex numbers for the right-hand-side. Gust loads evaluation using LFD has been

scaled to industrial cases and expanded for the ‘1-cos’ gust using Fourier decomposition
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Figure 1.6: Comparison of results produced with linearised frequency domain method and
time-domain method for coupled system (taken from [81]).

in [17] where a comparison between this approach and the traditional time-domain

formulation is provided in terms of both computational cost and accuracy. It is possible

to exploit LFD for coupled problems including CFD, flight dynamics and structures as

described in [81] for a large civil aircraft subject to gust encounter. In that paper, three

degrees-of-freedom were considered, specifically rigid rotation, vertical translation and a

flexible wing bending mode. Dynamic derivatives relating aerodynamic forces to the

three degrees-of-freedom were calculated as function of frequency using LFD. Similarly,

gust derivatives were obtained by calculating the aerodynamic responses to sinusoidal

gusts and projecting the complex-valued LFD solutions onto the degrees-of-freedom of

motion. Response to a ‘1-cos’ gust is calculated expanding the gust shape in a Fourier

series and superimposing the results. Such methodology produces results matching

the time-domain reference solution as reported in Fig. 1.6 by plotting the generalised

aerodynamic forces. The methodology represents the extension towards CFD of methods

traditionally based on DLM. However, the computational effort required to compute

the dynamic derivatives with LFD and then reconstruct the unsteady response exceed
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the cost of the corresponding time-domain simulation by a factor of 6 [81]. Focus of the

study is on the aeroelastic subsystem since results are provided for the flight dynamics,

structural degrees-of-freedom and generalised aerodynamic forces. Paradoxically, most

of the information concerning the flow field, which is included in the LFD solutions

and required a large portion of computational time, is not reconstructed from the

reduced model. An alternative method, which further decreases the computational time

needed by multidisciplinary simulations based on CFD while retaining the high-fidelity

accuracy, is needed for a wider adoption of such tools.

Summarising, it is useful to highlight the link between LFD, dynamic derivatives and

gust predictions which was described in this section by referring to literature studies. The

LFD method enables the rapid computation of flow responses to sinusoidal excitations

with small amplitudes. This is achieved by linearising the CFD equations around a steady-

state and solving them in the frequency-domain. A saving in terms of computational

cost is, thus, obtained. In practice, the resulting aerodynamic forces are complex-valued

numbers which represent the sinusoidal response to the excitation. Dynamic derivatives

are found by relating the output (aerodynamic forces) to the input (the sinusoidal

excitation). Precisely, they are equal to the ratios between aerodynamic force and

the excitation, both expressed as complex numbers. Traditionally, this approach was

employed for sinusoidal structural motions (i.e. pitch rotation, plunge translation,

bending deformation and so on) in the field of aeroelasticy. When it comes to gusts, the

external disturbance is a sinusoidal alteration of the velocity field in the fluid domain.

Overall, high-fidelity aerodynamics is needed to produce more efficient and innovative

aircraft designs but computational cost limits its adoption. Fast methods, which are

able to retain high-fidelity accuracy while lowering the time for simulations, are highly

desirable. In addition, multidisciplinary studies for gust loads evaluation involving flight

dynamics represent a further improvement for simulation fidelity. The application of

fast methods in this multidisciplinary context would combine the benefits of multiple

disciplines and high-fidelity aerodynamics. This aspect is investigated in this work.

1.2 Reduced Order Modelling

In this context, reduced order models (ROMs) of high-fidelity methods represent a

promising approach for simulations coupling flight dynamics and aerodynamics. The aim

is to reduce the system’s complexity while retaining a very similar accuracy of the original

model [14]. The idea of model reduction has been applied in many fields ranging from

microelectromechanical systems [14] to aerospace applications [135] in order to reduce

computational cost or achieve a better understanding of the system’s behaviour. Often,

reduction techniques are not applied directly to the non-linear full order model since a lin-

earisation is performed prior the reduction. In such cases, linear ROMs are used [14]. In

general, formulations for non-linear reduced models exist and they rely on modelling the

9



Reduced Order 
Models 

Data-based Operator-based 

System 
identification 

Modal 
decomposition and 

projection 

Dynamic 
derivatives 

POD EMD 

Figure 1.7: A classification of model reduction techniques.

non-linearities with a polynomial of low degree [14]. However, they are outside the scope

of this work which focuses on linear reduced models instead. A schematic representation

of the most popular model reduction techniques is given in Fig. 1.7 with a tree-structure.

For sake of simplicity, the classification is not exhaustive and limited to methods which

relate to the current work and that are, therefore, described in this section.

A typical approach for multidisciplinary reduced models is borrowed from the

aeroelastic practice [72]. Owing to the fact that flight dynamics equations are of low

dimension, aerodynamics is typically represented with dynamic derivatives [134]. Flight

dynamics response is then obtained by integrating the equations of motion in time

and interpolating the pre-computed dynamic derivatives at each time-step. The flow

field information is somehow hidden by such method which focuses mainly on the flight

dynamics response. This is the usual approach but additional techniques are available

in literature [53] and they are usually based on low-fidelity aerodynamics [22]. However,

such reduction techniques, which were first developed using low-fidelity aerodynamics,

are applicable in general to larger higher-fidelity systems as well. A comprehensive

review is provided in [53] for general fluid-structure interaction problems and in [66]

for the specific problem of including flight dynamics. Reduced models can be grouped

in families according to their mathematical formulation.

System identification methods use a time-domain formulation [53], with Volterra se-

ries representing one of the most popular implementations. For example, an application

is available in [129]. The system is assumed to be a black-box and a limited set of inputs

and outputs is defined a priori. The relationships between input parameters and output

variables are determined by sampling the system response to training excitations [128].

However, a recalculation of the model is needed if an additional output variable is re-
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quested. Furthermore, this approach hides the complexity of the underlying aerodynamic

model, and flow details, which are necessarily computed, are discarded as noted in [53].

Another family of methods is based on the projection of the linearised system onto

a small modal basis. They are called model decomposition and projection methods [95].

The crucial point for them is the calculation of the modal basis since it should contain

all the information needed to rebuild full order results. Among the methods belonging

to this family, two are particularly promising. The first one is in the category of the

data-based methods and it is called proper orthogonal decomposition (POD) [95, 135],

also known as the snapshots method [70] or Karhunen-Loeve expansion [130]. It is

based on a sampling procedure performed either in time or frequency domain with

applications in almost every field of aeronautical engineering ranging from steady CFD

computations [3] to unsteady flows [93]. The system is sampled at discrete points

in time or frequency and the solutions are stored as columns of a snapshot matrix.

A saving in memory can be achieved by storing the solution for areas of interest

only, for example just for the domain points closest to the body surfaces as described

in [3]. Using the snapshot matrix, a number of POD modes equal to the number of

snapshots is calculated by means of a small eigenvalue problem. The model reduction is

performed projecting the original system onto modal bases populated with such modes.

In addition, POD modes can be sorted by their energy content [130]. This allows a

further reduction if only few POD modes are retained for the projection [70]. POD

method offers insight for a better understanding of the system as well. For example,

in [130] such method was used to identify coherent structures in the fluid flow from

both experiments and simulations [135] and, in general, it provides a way for pattern

recognition [61]. Multidisciplinary reduced order models using POD in frequency domain

can be found in [70] where it is used in conjunction with an LFD linearisation of the

underlying CFD aerodynamics. The data-based ROM is used in such work to reproduce

the aerodynamic responses to an aerofoil’s sinusoidal motions. The structural block of

the multidisciplinary workflow is not reduced while high-fidelity CFD is used only to

compute the POD modes and it is replaced in the coupling loop by the reduced model.

Another example of multidisciplinary model is proposed in [44] as a way to reduce

computational cost. The aerodynamic model is replaced with a reduced model based on

POD and uses a linearised form for the equation of motion for the rigid motions.

In the context of gust encounter, POD has been applied in [12] to evaluate the

variations of surface pressure during the gust. The snapshots were obtained from

time-domain simulations for sharp-edge gusts. Solutions for arbitrary gust shapes were

calculated applying the convolution integral and exploiting POD to reconstruct the

spatial distribution of pressure. Recently, research focused on POD reduced models

to perform gust encounter simulations and evaluate airloads directly. The method

was applied in [19] in conjunction with LFD for transonic CFD aerodynamics based

on RANS equations. The variations of aerodynamic loads produced by ‘1-cos’ gusts
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were reproduced accurately by the reduced model for linear gust amplitudes. Such

application was scaled in [18] to a large civil aircraft and expanded to include flexible

structures. The work described so far used POD to reduce the aerodynamic model

only. An application for coupling flight dynamics and CFD in a single monolithic

reduced model is still needed. Ideally, POD modes would be computed for the whole

original system which includes aerodynamics as well flight dynamics. However, the

main limitation of POD is highlighted in [153] where it is pointed out that POD-based

reduced models can be unstable even though the underlying full model is stable.

Remaining in the family of projection methods, another category gathers formulations

which are based on the eigenmode decomposition (EMD) of the underlying system [53]

and they are called hereafter operator-based methods [135]. A description of the

methodology to obtain the reduced model is given in [53] and summarised in this

paragraph. The eigenvalue problem for the linearised system is solved and eigenpairs

obtained. Note that this task is computationally expensive even for small cases when

high-fidelity aerodynamics is adopted. The reduced model is built by projecting the small

system onto modal bases which are assembled with a small number of eigenvectors. This

projection method produces a versatile ROM which facilitates a comprehensive study of

the coupled system. Previous applications include the simulation of coupled structural

and aerodynamic systems using linear potential aerodynamics for gust encounter analysis

and robust control [39, 42]. The operator-based reduction methods can be applied

easily to multidisciplinary models for which eigenvectors from the coupled system should

be used for more accurate results [154]. However, as noted in [53], eigensolutions

are tied to the specific flight condition for which they are calculated and they must

be recomputed when flight parameters change. An analytical formulation for the

operator-based model reduction is provided in [45]. It is highlighted that one of the

benefits of the method is that the Jacobian matrix of the reduced model has the same

dominant eigenvalues and eigenvectors of the original system [45]. However, the method

relies on computing the full set of eigenpairs for the system in order to identify the

dominant ones. This represents a fundamental limitation when it comes to applications

to large systems while it is trivial problem for small matrices [53].

A possible solution is provided by the reduced models based on the Schur decom-

position [124, 143] also known in literature as the Schur complement method. They

focus on a small set of unknowns and modes for the projection are obtained with the

Schur decomposition of the partitioned Jacobian matrix. The decomposition can be

applied to both direct and adjoint formulations. The resulting modes form bi-orthogonal

bases if modes belonging to direct and adjoint eigenspaces of the original system are

used [124]. In addition, the transformation from the full to the reduced model is stable

when bi-orthogonal bases are used for the projection [124].

In the field of aeroelasticity, the Schur complement method led to successful applica-

tions regarding flutter analysis using CFD aerodynamics [143]. An iterative procedure
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Figure 1.8: Tracing procedure for eigenvalues originating in structure performed with Schur
complement method (taken from [143]).

was proposed for which the eigenpairs related to the structural degrees-of-freedom were

traced during their evolution in the complex plane. The tracing starts from in-vacuum

eigensolutions, which correspond to solutions of the eigenvalue problem for the structural

model only, and continues until they become eigenpairs of the aeroelastic system. Their

difference from structural modes is clear when the eigenvalues are compared. The

structural ones have non-zero frequency and zero damping (apart from the structural

one) whereas the aeroelastic ones have both frequency and damping arising from the

coupling with fluid. In [143] the tracing is performed changing flight altitude and

starting from a large value of it. At the beginning, this corresponds to an almost

decoupled system because the density value is very low. The altitude is decreased in

steps and new eigensolutions are calculated. Flutter condition is identified when one

or more eigenvalues, which are computed iteratively, show a positive real part. The

tracing procedure can then continue beyond the flutter point.

Figure 1.8 is taken from [143] to illustrate the tracing for a Goland wing at Mach

number of 0.85 and zero degree angle-of-attack. Horizontal and vertical axes correspond

to real and imaginary parts of eigenvalues, respectively. Each line set illustrates the

tracing for a single structural mode, for a total of 8 modes. The tracing is performed

with the Schur method (symbols in the figure) and an approximate formulation based

on Kriging interpolation (dashed and continuous lines). It is interesting to note that

the part of eigenpairs belonging to the coupled system and related to the structural

degrees-of-freedom are available at every stage of the procedure. From a different point

of view, this suggests that a small number of eigenpairs of the coupled system can be

13



calculated with the Schur tracing without the need to compute the whole spectrum,

which is an almost impossible task for large systems. This information was exploited

in [142] where the Schur complement method was used to produce direct and adjoint

eigenvectors suitable for operator-based model reduction. This allowed the identification

of just few eigenpairs of the large eigenvalue problem arising from aeroelastic applications

based on CFD. The problem of identifying eigenvectors for the projection was thus

overcome and the resulting reduced model was exploited for gust encounter simulations.

Recently, the method was expanded for structural non-linearities [64] as well using linear

aerodynamics. Regarding gust encounter simulations, the operator-based approach has

shown promising results for flexible structures [18, 20]. Application of this method to

trace flight dynamics modes with the final purpose of gust encounter simulations is

particularly challenging. In fact, when the eigenspectrum is considered, eigenvalues

related to aerodynamics are situated in a dense cloud. Eigenvalues corresponding

to flight dynamics modes can be located inside that cloud where they are closely

surrounded by fluid eigenvalues. This makes the identification of flight dynamics modes

difficult and this problem will be investigated in this work.

1.3 Aim of Work and Outline of Thesis

The aim of this work is to investigate model reduction techniques applied to mul-

tidisciplinary simulations involving CFD and flight dynamics, particularly in the

context of aircraft gust encounter in the transonic regime. This is proposed as so-

lution to reduce computational cost while retaining the accuracy of the underlying

model, thus enabling the use of high-fidelity aerodynamics early during the aircraft

design. The ultimate goal is to contribute to the long-term vision of certification-

by-simulation for greener, more efficient aircraft.

Focus is on three research areas for which no study is available in literature. First,

a novel operator-based identification for flight dynamics modes is developed. Sec-

ondly, the data-based method is applied to the coupled system treated as a monolithic

entity in frequency domain. Thirdly, the theoretical framework for the model re-

duction is presented in a generic way so that it is applicable to modes coming from

both data-based and operator-based identification.

Theory for both full and reduced models are given in the next two chapters. Specif-

ically, an overview of the full order model is given in Chapter 2. It is composed of

two modules, specifically aerodynamics, which is based on RANS or Euler equations,

and flight dynamics. It is used to produce reference results and it is the target of

the model reduction which is described in Chapter 3. It is based on an expansion

of the full order non-linear residual function in a truncated Taylor series and subse-

quent projection of the Jacobian matrix onto a small modal basis. Two methods are

proposed to provide modes for the projection. The first one belongs to the family of
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operator-based methods and it is a novel extension of the Schur complement method

to flight dynamics problems which require particular care for the tracing. The second

one is a data-based approach which involves POD applied to the multidisciplinary

system. Both methods promise an effective reduction in terms of computational cost

and time, when compared to the full order model.

These model reduction techniques are exploited for the reduction of a two-dimensional

test case in Chapter 4. In particular, the test case is composed of a NACA 0012 aerofoil

free to move in the vertical direction and to rotate rigidly. Aerodynamics is modelled

with Euler equations. The small size of the problem allows for a detailed assessment of

the two reduction methods. Limitations are highlighted and remedies proposed.

Reduction techniques are scaled towards a larger, albeit two-dimensional, test case in

Chapter 5. Aerodynamics is modelled with RANS equations while full longitudinal flight

dynamics is adopted. The test case involves two aerofoils representing wing and tail

sections, respectively. A trimming procedure is introduced so that non-trivial starting

conditions are taken into account. Both operator-based and data-based methods are

applied to the test case while the tracing procedure for the former is further improved

to identify flight dynamics eigenvalues inside the cloud of fluid eigenvalues.

In Chapter 6 an application of the model reduction techniques to an industrial-size

test case is presented. The test case is a large civil aircraft which translate and rotate

rigidly in the three-dimensional space. RANS equations are adopted for aerodynamics

whereas flight dynamics is implemented with a modal approach. The size of the model

makes the application of both operator-based and data-based methods a challenging

task. Overall, both techniques proved to be an effective way for the reduction of

computational cost for high-fidelity multidisciplinary simulations.

To summarise, three objectives are pursued in this work with the long-term ambition

of certification by simulation. First, the development of a fast and reliable model

reduction technique for coupled systems involving CFD and flight dynamics. The

objective is composed of three novel contributions, specifically the operator-based

identification for flight dynamics modes, the monolithic approach to the data-based

identification in frequency domain and the generic theoretical framework to perform

the reduction. This is described in Chapter 3 using the full order model introduced in

Chapter 2. Secondly, the reduction method is assessed with two-dimensional applications

in Chapters 4 and 5. Thirdly, the objective of speeding up gust encounter simulations for

aircraft design is met in Chapter 6 with an industry-relevant case which is based on a large

three-dimensional aircraft. The two- and three-dimensional test cases presented in this

work are the first applications, to the author’s best knowledge, of a projection reduced

order model for a coupled system composed of CFD aerodynamics and flight dynamics

with modes identified applying either the operator-based or the data-based technique.
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Chapter 2

Full Order Modelling

Theory of the full order model and numerical methods adopted for its implementation

are described in this chapter. The coupling of aerodynamics and flight dynamics is

achieved by implementing the two disciplines as two distinct subsystems. The first

part of the chapter focuses on the mathematical formulation of aerodynamic and flight

dynamics models. The former is modelled with computational fluid dynamics (CFD)

which is based on Navier–Stokes equations. Solving such equations for high Reynolds

numbers is a challenging task since it requires considerable computational power. So,

a reduction in computational cost is achieved by solving Reynolds-averaged Navier–

Stokes (RANS) equations which are obtained with a time-averaging procedure from

the Navier–Stokes ones. A further reduction, leading to Euler equations, is obtained

by neglecting viscosity and heat-transfer terms in the Navier–Stokes equations.

The mathematical background for flight dynamics is then presented. Equations of

motion are derived from first principles and they describe the capability of bodies to

move in space when subject to external forces. Two formulations of the equations are

presented, specifically deriving from Newton’s laws and Lagrange’s equations. Equations

for the coupled model contain both aerodynamic and flight dynamics subsystems. A

non-linear residual function, which takes into account both aerodynamic and flight

dynamics non-linear residuals, is derived. In addition, linearised frequency domain

(LFD) methods are presented. Numerical aspects of the implementation are discussed

in the second part of the chapter. An overview of numerical methods used for flight

dynamics is given. Similarly, numerical procedures for CFD are reported and a detailed

description of the gust modelling in CFD is provided. The information regarding body

motions is transferred from the flight dynamics subsystem to the aerodynamic one with

grid deformation based on radial basis function (RBF) interpolation.

The last part of the chapter describes the two CFD solvers used in the thesis, an

in-house software and DLR-TAU, respectively. The first one is a research code which

computes flow solutions by discretising RANS or Euler equations on a set of points

distributed in the computational domain. It is used for two-dimensional test cases. The
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second one is a well-known finite volume code, DLR-TAU, from the German Aerospace

Center (DLR). It has been employed for test cases ranging from aerofoil to large aircraft

configurations. It is adopted for three-dimensional cases in the thesis.

2.1 Equations of Aerodynamics

Aerodynamics is modelled with Navier–Stokes equations which describe the behaviour of

fluid flows. Their derivation from first principles is a complex task and it is described in

detail in Appendix A. Their integral form is reported hereafter since it is usually adopted

for the implementation of finite volume codes. Equation for conservation of mass is

∂

∂t

∫∫∫
V
ρ dV +

∫∫
S
ρ(V · n) dS = 0 (2.1)

where V is the finite control volume, S is the control surface, n is the normal

vector, V is the velocity vector and ρ is the density. The momentum equation,

which is derived from Newton’s second law,

∂

∂t

∫∫∫
V
ρV dV +

∫∫
S
ρV (V · n) dS =

∫∫∫
V
ρfext dV −

∫∫
S
pn dS +

∫∫
S
τ · n dS

(2.2)

introduces static pressure p and external body forces per unit mass ρfext. This is a

vector equation and the stress is expressed by means of the second order tensor τ .

Conservation of energy is given for total energy per unit mass E,

∂

∂t

∫∫∫
V
ρE dV +

∫∫
S
ρE(V · n) dS −

∫∫
S
k(∇T · n) dS =

∫∫∫
V

(ρfext · V + q̇) dV −
∫∫

S
pV · n dS +

∫∫
S

(τ · V ) · n dS

(2.3)

where T is the temperature, k is fluid’s conductivity coefficient and q̇ accounts for possible

heat sources. The set of Eqs. (2.1-2.3) is an integral form of Navier–Stokes equations

which are written for a control volume and using a Eulerian reference frame [7, 23].

The Navier–Stokes equations in differential form are reported here as well using

a Lagrangian reference frame [7, 23]. They can be derived from the integral for-
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mulation since they are mathematically equivalent

Dρ

Dt
= −ρ∇ · V (2.4)

ρ
DV

Dt
= −∇p+ ∇τ + ρfext (2.5)

ρ
D

Dt

(
e+

V 2

2

)
= ρq̇ + ∇ · (k∇T )−∇ · (pV ) + ∇ ·

(
τV
)

+ ρfext · V (2.6)

Specifically, Eq. (2.4) expresses mass conservation, Eq. (2.5) is the momentum equation

and Eq. (2.6) imposes energy conservation. Although integral and differential forms are

mathematically equivalent, one can be preferred over the other for implementation pur-

poses [7].

When moving reference frames need to be taken into account, a formulation of Navier–

Stokes equations called Arbitrary Lagrangian-Eulerian (ALE) must be adopted [51, 75].

ALE equations were developed specifically for fluid-structure interaction problems [51]

and they have been successfully applied to fluid dynamics involving rigid-body mo-

tions [52, 55]. The velocity of the reference frame is denoted U and Eq. (2.1) turns into

∂

∂t

∫∫∫
V
ρ dV −

∫∫
S
ρ(U − V ) · n dS = 0 (2.7)

which describes balance of mass. Similarly, the momentum Eq. (2.2) becomes

∂

∂t

∫∫∫
V
ρV dV −

∫∫
S
ρV (U − V ) · n dS =

∫∫∫
V
ρfext dV −

∫∫
S
pn dS +

∫∫
S
τ · n dS

(2.8)

and the conservation of energy is satisfied by rewriting Eq. (2.3) as

∂

∂t

∫∫∫
V
ρE dV −

∫∫
S
ρE(U − V ) · n dS −

∫∫
S
k(∇T · n) dS =

∫∫∫
V

(ρfext · V + q̇) dV −
∫∫

S
pV · n dS +

∫∫
S

(τ · V ) · n dS

(2.9)

When U = V , the reference frame moves at the same speed of the flow and formulation

is Lagrangian. Conversely, when U = 0, it is not moving. The formulation is then

Eulerian and Eqs. (2.7-2.9) reduce to Eqs. (2.1-2.3). Similarly, ALE equations can be

written in a differential form which is analogous to Eqs. (2.4-2.6). Such equations are

not reported here for sake of brevity and they are available in literature [52].

Navier–Stokes equations in either integral or differential form are composed of five

equations with seven variables, specifically density ρ, velocity vector V with three

components, static pressure p, internal energy e and temperature T . Two additional
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equations, thus closing the system, are obtained by assuming a perfect gas model [31].

Pressure and specific internal energy are related to the temperature,

p =ρRT (2.10)

e =cvT (2.11)

where R is perfect gas constant and cv is the specific heat capacity at constant volume.

Pressure is expressed with total energy E by substituting Eq. (2.11) into Eq. (2.10)

and applying the definition of total energy E = e + V 2

2 ,

p = (γ − 1)ρ

(
E − V

2

2

)
(2.12)

where γ = 1 + R
cv

is the ratio of specific heats whose value depends on the gas. To

complete the thermodynamic model, usually the Sutherland equation is adopted to

calculate the dynamic viscosity µ of the fluid as a function of the temperature T ,

µ = µ0
T0 + C

T + C

(
T

T0

) 3
2

(2.13)

where T0 is the reference temperature, µ0 is the reference viscosity at reference tem-

perature and C is Sutherland’s constant for the gas.

Regarding the second order stress tensor τ that appears in both momentum

and energy equations, it is composed of 9 parameters which must be determined

in order to obtain a solution for the Navier–Stokes equations. Denote u, v and w

the three components of velocity vector V = [u, v, w] in the directions x, y and

z, respectively. The tensor is defined as

τ =

 σx τxy τxz

τyx σy τyz

τzx τzy σz

 (2.14)

where each component represents a scalar value. The shear stresses are denoted with τ

and the double subscript indicates the two directions of each shear stress. For example,

τxy is the stress in the y direction on a plane perpendicular to the x axis. The principal

stresses are denoted with σ instead and they represents stresses in the orthogonal direc-

tions x, y and z. A first simplification is made when the tensor components are considered
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proportional to the velocity ratio under the assumption of Newtonian fluid [23],

σx = λ∇ · V + 2µ∂u∂x τxy = µ
(
∂u
∂y + ∂v

∂x

)
τxz = µ

(
∂u
∂z + ∂w

∂x

)
τyx = τxy σy = λ∇ · V + 2µ∂v∂y τyz = µ

(
∂v
∂z + ∂w

∂y

)
τzx = τxz τzy = τyz σz = λ∇ · V + 2µ∂w∂z

(2.15)

with λ and µ representing the second viscosity and dynamic viscosity coefficients, respec-

tively. The expression for principal stresses is further simplified with the Stoke’s hypothe-

sis [30], λ = −2
3µ. Finally, the value of µ must be determined with empirical assumptions.

So far, we focused on Navier–Stokes equations, thermodynamic model of perfect

gas and Newtonian fluid. The last aspect to be analysed in order to completely define

a CFD problem is boundary conditions [7]. Only two types of boundary conditions

are presented here since they were used in the thesis. A detailed analysis about

boundary conditions is out of the scope of this work and it can be found in [23]. The

distinction is made between solid wall and far field. The first one, called also non-slip

condition, imposes a zero relative velocity at the interface between fluid and solid

walls [46]. Mathematically, it corresponds to a Dirichlet boundary condition since

the solution is specified along the boundary [16]. Similarly, the far field condition

imposes the value of velocity at far field which is a region considered far from every

solid body [15]. The equations for boundary conditions are

V |w = 0 V |F = V∞ (2.16)

where subscripts w and F indicate the wall and the far field, respectively, and V∞ is

the free-stream velocity vector. Regarding the wall temperature, the fluid near the

wall should be in thermal equilibrium with the body and an additional condition on

the heat-flux near body surface must be imposed [23],

∂T

∂n

∣∣∣∣
n

= − q̇
k

(2.17)

where n is the surface normal and k is the fluid thermal conductivity.

Direct solution of Navier–Stokes equations is an area of active research [94, 157]

and so far it is possible just for small, academic cases [102]. Main limitation is the

requirement in terms of computational resources and applications to industrial cases

are decades away [102, 147]. Specifically, the whole ranges of both spacial and temporal

scales must be resolved to describe accurately the turbulent phenomena. Thus, a very

fine computational grid is required and its spacing ultimately depends on the non-

dimensional Reynolds number Re = ρUrefLref
µ which is defined as function of reference

velocity Uref and reference length Lref. An idea of the problem to overcome is given by
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the computational memory which would be needed to store flow solutions [33]. The

memory required for each flow solution is proportional to the number of grid points

which, in turn, depends on Re2.25. Reynolds numbers usually associated to industrial

applications are roughly 106 − 108 and they are far from the one (103) reached by the

most computationally expensive direct simulation performed so far [78]. An additional

problem is the computational speed for dealing with such large simulations which will

not be available for the foreseeable future [33]. Hence, simplified formulations are

employed instead. Two sets of equations, which can be derived from Navier–Stokes

equations by making some simplifying assumptions, are commonly adopted by the

aerospace community and described in the following paragraphs.

2.1.1 Reynolds-averaged Navier–Stokes Equations

When it comes to turbulent flows, solving the Reynolds-averaged Navier–Stokes (RANS)

equations [32, 60] is the de-facto standard adopted by the industry community [1,

102]. Such equations, which were first derived by O. Reynolds in 1895 [118], rely

on the Reynolds’s decomposition [1] to divide flow variables into average values and

fluctuations. Hence, a scalar quantity U is expressed as

U = U + Ũ (2.18)

where U is the ensemble-averaged value of U and Ũ is its fluctuation with respect

to the mean. The application of Eq. (2.18) to the Navier–Stokes equations is not

a trivial process [137]. An additional stress tensor term, which is called Reynolds

tensor τ
R

, is found as a result [23]. It depends on velocity fluctuations since its

components are defined for an incompressible flow as

τRij = −ρṼiṼj (2.19)

where Ṽi and Ṽj are the fluctuations in the i and j components of the velocity vector

V , respectively, with i, j ∈ [1, 3]. Besides τ
R

, an additional term originates from the

averaging procedure, specifically a heat-flux tensor which is added to the diffusive

heat term [23]. RANS equations allow for a quicker calculation of flow solutions if

compared to the Navier–Stokes equations. However, they need a turbulence model

for the Reynolds stress tensor in order to define a closed problem.

Turbulence models are an area of active research and a comprehensive overview is

available in [151]. They are catalogued into main families, according to the order of

the closure [23]. In practice, first order closures are usually adopted since equations

for higher order ones are difficult to solve. They rely on a single scalar value to

calculate the Reynold stress tensor. The Boussinesq hypothesis models the transfer of

momentum caused by turbulent eddies using a scalar eddy viscosity µT by analogy with
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molecular viscosity which models momentum transfer caused by molecular motion [25,

26]. The components of τ
R

in Eq. (2.19) become

τRij = −ρṼiṼj = −µT
(
∂Vi
∂xi

+
∂Vj
∂xj
− 2

3

∂Vi
∂xi

δij

)
− 2

3
ρkδij (2.20)

where δij is the Kronecker delta. Turbulence models provide the value of µT . In the

category of first order closures, they are classified according to the number of equations

adopted [91, 152].

The one-equation Spalart-Allmaras model [132] is widely adopted for research and

extensively exploited in this work as well since it is designed for aerospace applications.

The complete derivation is available in [132] whereas the resulting equations are reported

here. The turbulent eddy viscosity is defined with the Spalart-Allmaras variable ν̃,

µT = ρν̃fv1(ν̃) (2.21)

A transport equation is solved to provide values of ν̃,

Dν̃

Dt
=cb1 (1− ft2) S̃ν̃

+
1

σ

{
∇ · ((ν + ν̃)∇ν̃) + cb2 (∇ν̃)2

}
−
(
cw1fw −

cb1
k2
ft2

)( ν̃
d

)2

+ ft1V
2

(2.22)

with the right-hand side depending on the distance d from the closest wall as well as the

flow velocity V at the field point. It is completely defined with the auxiliary quantities,

χ = ν̃
ν fv1 = χ3

χ3+c3v1
fv2 = 1− χ

1+χfv1

S̃ = S + ν̃
k2d2

fv2 r = ν̃

S̃k2d2
g = r + cw2

(
r6 − r

)
fw = g

(
1+c6w3

g6+c6w3

) 1
6
ft1 = ct1gte

−ct2 ωt
V 2 (d2+g2t d2t ) ft2 = ct3e

−ct4χ2

where S is the magnitude of the vorticity and values for the constants can be found in ref-

erence [132]. Solving Eq. (2.22) is achieved imposing Dirichlet boundary conditions with

ν̃|n = 0 (2.23)

so that the value of Spalart-Allmaras variable ν̃ is zero on the solid wall.
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Figure 2.1: Reference frames for derivation of longitudinal dynamics equations.

2.1.2 Euler Equations

Another set of aerodynamic equations, which is exploited in this work, is composed

of the so-called Euler equations [23, 58]. They can be derived from the Navier–Stokes

equations by assuming an adiabatic and inviscid fluid as described in Appendix A.

They represent a simplification of Navier–Stokes ones which completely discards viscous

effects. It is a valid assumption when applied to cases, for example, of fluid flows with

very high Reynolds numbers for which the boundary layer is very thin [23]. Shock waves

are still captured by solving Euler equations. However, interesting phenomena such

as interaction of boundary layer with shock waves cannot be simulated.

With a constantly increasing computational capability, Euler equations are almost

superseded by RANS ones. However, they still have an important role in the research com-

munity as a fast method for preliminary results [71] or as a test bench for new methods.

2.2 Equations of Flight Dynamics

So far, focus was on the aerodynamic part of the full order model. In this section,

the theoretical background is given for flight dynamics. Various approaches have been

proposed in literature [155] to derive the flight dynamics equations and the classical

approach based on Newton’s law is shown in this section for longitudinal dynamics. The

aim is to obtain differential equations describing the relative, rigid motion between the

flying body and an inertial coordinate system. Two reference frames are defined for the
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derivation and they are depicted in Fig. 2.1. The first is denoted with the letter E. It

is Earth centred and it is assumed to be an inertial reference frame. The second one

is a body-fixed frame denoted with B. Its origin corresponds to the barycentre1 (also

known as centre of mass) of the body and it moves together with it. The pitch angle θ

is defined as the angle which is needed to overlap the inertial reference frame to the

body-fixed one with a counter-clockwise rotation. Note that two different orientations

are usually adopted for reference frames when it comes to flight dynamics and CFD.

Specifically, the direction which is perpendicular to the free-stream flow is assumed

positive downward for flight dynamics but negative for CFD.

The derivation is composed of three steps leading to flight dynamics equations

formulated in the body-fixed reference frame. First, the barycentre G is assumed to

move in the inertial frame E. A generic point P belonging to the body is chosen. It

moves with respect to the origin O of the inertial frame while its relative position

referred to the barycentre G does not change. Secondly, the acceleration of the generic

point P is calculated in the inertial frame. Thirdly, Newton’s second law is applied and

the resulting equations are translated into the body-fixed reference frame.

The location (XP , ZP ) of the generic point P in the inertial frame is

XP =XG + xP

ZP =ZG + zP

(2.24)

where (XG, ZG) is the barycentre position. The quantities xP and zP represent the

relative distance between P and the barycentre G in the inertial reference frame. Such

distance can be calculated in the body-fixed reference frame as well. Specifically,

the coordinates of P in the body-fixed reference frame (x, z) are rotated by θ with

respect to the inertial frame and Eq. (2.24) becomes

XP =XG + x cos θ + z sin θ

ZP =ZG − x sin θ + z cos θ

(2.25)

The derivatives with respect to time of Eq. (2.25) provide the velocity of P in the inertial

frame,

dXP

dt
=

dXG

dt
+

dx

dt
cos θ − x sin θ

dθ

dt
+

dz

dt
sin θ + z cos θ

dθ

dt

dZP
dt

=
dZG
dt
− dx

dt
sin θ − x cos θ

dθ

dt
+

dz

dt
cos θ − z sin θ

dθ

dt

(2.26)

1Note that barycentre and centre of gravity coincide for a body subject to uniform gravitational field.
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The barycentre velocity dXG
dt and dZG

dt are expressed in the body-fixed reference frame

with a rotation of θ as

dXG

dt
=U cos θ +W sin θ

dZG
dt

=− U sin θ +W cos θ

(2.27)

where the unknowns U and W are the barycentre horizontal and vertical velocity in

the body-fixed reference frame, respectively. Equation (2.27) will be later exploited to

calculate the flight path in the inertial frame by integration of body-fixed quantities.

The velocity of P in the body-fixed reference frame are named vx and vz, respectively.

They are obtained by rotating the velocity pair
(
dXP
dt ,

dZP
dt

)
by the angle θ.

vx =
dXP

dt
cos θ − dZP

dt
sin θ

vz =
dXP

dt
sin θ +

dZP
dt

cos θ

(2.28)

Substituting Eqs. (2.26) and (2.27) into Eq. (2.28) and defining q = dθ
dt leads to

vx =U + zq +
dx

dt

vz =W − xq +
dz

dt

(2.29)

where the derivatives of x and z are dx
dt = dz

dt = 0 by definition of rigid bodies.

The acceleration of P in the inertial frame is obtained by differentiating Eq. (2.26)

with respect to time.

d2XP

dt2
=

d2XG

dt2
− xq2 cos θ − x sin θ

dq

dt
− zq2 sin θ + z cos θ

dq

dt

d2ZP
dt2

=
d2ZG
dt2

+ xq2 sin θ − x cos θ
dq

dt
− zq2 cos θ − z sin θ

dq

dt

(2.30)

Similarly, the acceleration of the barycentre is obtained by differentiating Eq. (2.27). This

leads to

d2XG

dt2
=

dU

dt
cos θ +

dW

dt
sin θ − Uq sin θ +Wq cos θ

d2ZG
dt2

=− dU

dt
sin θ +

dW

dt
cos θ − Uq cos θ −Wq sin θ

(2.31)
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The acceleration of P in the body-fixed reference frame is then calculated by rotating the

pair
(
d2XP
dt2

, d
2ZP
dt2

)
by θ,

ax =
d2XP

dt2
cos θ − d2ZP

dt2
sin θ

az =
d2XP

dt2
sin θ +

d2ZP
dt2

cos θ

(2.32)

Substituting Eqs. (2.30) and (2.31) into Eq. (2.32) leads to

ax =
dU

dt
+Wq − xq2 + z

dq

dt

az =
dW

dt
− Uq − zq2 − xdq

dt

(2.33)

which is the acceleration expressed in the inertial reference frame with body-fixed

quantities. Newton’s second law is applied next. It links acceleration to force by

means of geometric parameters such as mass and inertia.

The expressions for the acceleration in Eq. (2.33) are used to apply New-

ton’s second law to the body dynamics∫
axdm =Fx

∫
azdm =Fz

∫
(axz − azx) dm =My

(2.34)

where the symbols Fx, Fz and My represent external forces. They include aerody-

namic as well as volumetric forces such as gravity. Substituting Eq. (2.33) into

Eq. (2.34), leads to the equations of motion

dU

dt

∫
dm+Wq

∫
dm− q2

∫
xdm+

dq

dt

∫
zdm =Fx

dW

dt

∫
dm− Uq

∫
dm− q2

∫
zdm− dq

dt

∫
xdm =Fz

dU

dt

∫
zdm+Wq

∫
zdm+

dq

dt

∫ (
x2 + z2

)
dm− dW

dt

∫
xdm+ Uq

∫
xdm =My

(2.35)

The terms involving
∫
xdm and

∫
zdm are static moments with respect of the centre of

mass and their value is zero by definition of the centre of mass. The total mass and

the moment of inertia are defined as
∫

dm = m and
∫ (
x2 + z2

)
dm = Iθ, respectively.

Note that both m and Iθ are computed in the longitudinal plane and they are referred
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to one unit of length in the third dimension. The resulting equations of motion involve

four flight dynamics state variables, specifically U , W , q and θ

dU

dt
+Wq =

Fx
m

dW

dt
− Uq =

Fz
m

dq

dt
=
My

Iθ

dθ

dt
= q

(2.36)

The equations of motion in Eq. (2.36) can be linearised around an equilibrium

state so that values of flight dynamics variables are the sum of equilibrium values

and fluctuations. Usually the equilibrium condition is calculated with a trimming

procedure for steady, straight flight conditions. This implies that variations of the

state vector are assumed small around the trim configuration. The flight dynamics

unknowns are defined as U = U0 + ũ, W = W0 + w̃, q = q0 + q̃ and θ = θ0 + θ̃.

Specifically, U0 and W0 are the horizontal and vertical flight speed of the body at

the equilibrium. They are related to flight speed U∞ and angle-of-incidence α0 since

U0 = U∞ cosα0 and W0 = U∞ sinα0. The terms ũ, w̃, q̃ and θ̃ are fluctuations with

respect to the equilibrium conditions. Attitude θ0 and angular velocity q0 at equilibrium

are assumed zero for level flight. Thus, q = q̃ and θ = θ̃ for the derivation reported

thereafter. The linearised equations of motion are

dũ

dt
+W0q =

Fx
m

dw̃

dt
− U0q =

Fz
m

dq̃

dt
=
My

Iθ

dθ̃

dt
= q

(2.37)

and they will be extensively used in this work together with the CFD model for the

aerodynamic components which provides aerodynamic external forces. The integration

in time of Eq. (2.37) results in time histories for the flight dynamics unknowns. The

flight path can be calculated by integrating Eq. (2.27) as a post-processing step.

The properties of the system are expressed by two non-dimensional quantities,

specifically rθ =
√
Iθ/(mb2) and mass ratio µ = m/(πρb2), where ρ is the fluid density.

This is achieved by defining a reference length b, which is assumed to be the wing

semi-chord b = c
2 in this work according to the convention in [22] for longitudinal

dynamics, and a non-dimensional time τ = tU∞/b. The forces are expressed by means

of force coefficients Fx = 1
2ρcU

2
∞Cx = ρbU2

∞Cx, Fz = ρbU2
∞Cz, My = 2ρb2U2

∞Cm. As
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a consequence, non-dimensional equations are derived from Eq. (2.37),

du∗

dτ
+W ∗0 q

∗ =
Cx
πµ

dw∗

dτ
− U∗0 q∗ =

Cz
πµ

dq∗

dτ
=

2Cm
πµr2α

dθ∗

dτ
= q∗

(2.38)

where u∗, w∗, q∗, U∗0 and W ∗0 are non-dimensional quantities. Please, note that when θ is

expressed in radians, the equality θ = θ∗ holds. The flight path in the inertial reference

frame is calculated with the corresponding non-dimensional formulation of Eq. (2.27)

dX∗G
dτ

= (U∗0 + u∗) cos θ∗ + (W ∗0 + w∗) sin θ∗

dZ∗G
dτ

=− (U∗0 + u∗) sin θ∗ + (W ∗0 + w∗) cos θ∗

(2.39)

where X∗G and Z∗G are the non-dimensional coordinates. Equation (2.39) is obtained

by substituting U = U0 + ũ and W = W0 + w̃ into Eq. (2.27) and then apply-

ing the non-dimensionalisation procedure, already presented, with reference length

b and non-dimensional time τ = tU∞/b.

These equations can be further simplified by focusing on the short-term response

of the system. The horizontal velocity u of the body is assumed constant and its

corresponding degree-of-freedom is removed.

dw∗

dτ
− U∗0 q∗ =

Cz
πµ

dq∗

dτ
=

2Cm
πµr2α

dθ∗

dτ
=q∗

(2.40)

This assumption is valid when dealing with fast phenomena such as gusts since changes

in the horizontal speed are assumed to be negligible.

So far, equations of flight dynamics have been derived for longitudinal motion and

they will be exploited in this form for two-dimensional test cases. A generalisation to

three-dimensional dynamics is available in literature [77, 122]. Equations for translation

and rotation are expressed with matrix notation as

Mb

(
dV

dt
+ Ω× V

)
=Fe

Ib
dΩ

dt
+ Ω× (IbΩ) =Me

(2.41)
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where Mb is the diagonal matrix containing the body’s mass, V is the velocity vector, Ω is

the vector of angular velocities and Ib is the 3×3 inertia matrix in the body-fixed reference

frame. Three-dimensional forces and moments are contained in the vector Fe and Me,

respectively. Dynamics described by Eq. (2.41) is complex because degrees-of-freedom

are not decoupled [34, Ch. 4]. A linearised, decoupled formulation of three-dimensional

equations can be obtained with a modal formulation. Its benefits are a simplified

mathematical model and a final form of equations which is very similar to aeroelastic

one. This allows reusing aeroelastic software tools for flight dynamics problems.

The equations of motion for rigid-body dynamics are derived in modal form using

Lagrange’s equation [155, Ch. 14]. Denote η = [η1, η2, η3, η4, η5, η6]
T as the vector

containing six generalised coordinates. In the specific case of flight dynamics, they

will correspond to the rigid-body degrees-of-freedom in a three-dimensional space (3

translations and 3 rotations). The kinetic energy K of the system is

K =
1

2

6∑
j=1

Mj

(
dηj
dt

)2

(2.42)

where Mj is the generalised mass associated with the generalised coordinate ηj .

The elastic potential energy is zero since rigid-body degrees-of-freedom have no

stiffness by definition. Gravity on the other hand contributes to the total poten-

tial energy U . Gravity acceleration is decomposed into six components gj corre-

sponding to directions ηj and leading to

U = −
6∑
j=1

Mjgjηj (2.43)

with j ∈ [1, 6]. Defining L = K − U , Lagrange’s equation is written as

d

dt

(
∂L

∂η̇j

)
− ∂L

∂ηj
= Qj ∀j ∈ [1, 6] (2.44)

where Qj takes into account aerodynamic forces in the direction of ηj . Sub-

stituting Eqs. (2.42) and (2.43) into Eq. (2.44) results in a set of 6 equations

which describe the rigid-body dynamics

Mj
d2ηj
dt2

= Qj −Mjgj = Fj ∀j ∈ [1, 6] (2.45)

The aerodynamic forces Qj are calculated using CFD while the gravity forces are

obtained from the mass of the aircraft. The resulting external force is denoted with

Fj . Equation (2.45) assumes no explicit coupling between the rigid-body modes and

this is the case when the reference frame is anchored to the body mean axis [155].

However, a decoupled modal system is not guaranteed when another reference frame
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is adopted for flight dynamics [155]. Equation (2.45) resembles the modal equation

for structural dynamics and it can be similarly written in a matrix form

M
d2η

dt2
= F (2.46)

where M is a diagonal mass matrix with entries Mj and F the vector containing gener-

alised forces.

The six coordinates ηj and their related generalised masses in Eq. (2.46) are usually

obtained from an in-vacuum eigenvalue analysis of the unconstrained finite element model.

Each degree-of-freedom ηj is associated with a mass-normalised mode shape vector which

contains the relative displacement of the FEM grid points in an arbitrary reference frame.

These modal shape vectors are splined to the CFD surface point distribution and results

stored in the vectors ξj , ∀j ∈ [1, 6]. The total displacement x of the surface is given by

x = Ξη Ξ = [ξ1, ξ2, ξ3, ξ4, ξ5, ξ6] (2.47)

Rigid-body motions are obtained as superposition of mode shapes amplified by the

modal amplitudes. In general, rigid-body modes coming from the eigenvalue analysis

do not correspond exactly to directions in the body-fixed reference frame such as ver-

tical or horizontal translations. In particular, each mode can be a linear combination

of translations and rotations and only the final superposition in Eq. (2.47) provides

the total displacement. This is shown in Fig. 2.2 with a representative mode shape

resulting from an eigenvalue analysis of a large civil aircraft. It is clearly composed

of both vertical translation and roll rotation so that the corresponding generalised

coordinate is a superposition of both motions.

Although this does not represent an issue for either the theoretical framework or the

numerical model, a link to the physical quantities traditionally adopted for flight dynam-

ics is not immediately available. A possible solution is to apply a transformation and

translate results using a new modal basis. Regarding flight dynamics, a new set of pure

translational and rotational modes Υ is artificially created. Denoting horizontal, lateral

and vertical translations in the inertial reference frame as xI , yI and zI , respectively,

and the roll, pitch and yaw rotations as φ, θ and ψ, the vector χ = [xI , yI , zI , φ, θ, ψ]T

contains the modal amplitudes for this new set of modes. Since the same physical rigid

motion x can now be obtained with those two sets of modes, we can write

Υχ = x = Ξη (2.48)

Mapping modal displacement η to physical quantities χ is achieved using a pseudo-inverse

matrix [111] with

χ =
(
ΥTΥ

)−1
ΥTΞη = Tη (2.49)
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Figure 2.2: Mode shape resulting from eigenvalue analysis. It is a linear combination of both
translation and rotation.

where a 6× 6 transformation matrix T =
(
ΥTΥ

)−1
ΥTΞ is introduced. The transforma-

tion matrix T is pre-computed once and used to provide physical insights about the sys-

tem.

2.3 Equations of Coupled Model

Rigid-body dynamics is described in this work by either Eqs. (2.38) or (2.46) according

to the specific implementation. Denoting wr as the vector containing nr flight dynamics

unknowns and Rr as the corresponding residual function, the flight dynamics equations

are formulated as a first order ordinary differential equation in time t,

dwr

dt
= Rr(wf ,wr) (2.50)

with the vector wf containing the nf fluid unknowns. Specifically, the residual

vector Rr is written in a general form as

Rr(wf ,wr) = fe(wr) + Cfa(wf ,wr) (2.51)

with fa representing aerodynamic forces. The formulation of the vector function fe

depends on the specific set of equations which is adopted. Specifically, fe = 0 for
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the modal formulation in Eq. (2.46), whereas it is defined as

fe =


0 0 −W ∗0 0

0 0 U∗0 0

0 0 0 0

0 0 1 0



u∗

w∗

q∗

θ∗

 (2.52)

when the formulation in Eq. (2.38) is adopted. The matrix C contains information

about geometric properties of the system. The non-linear equations describing Euler

or Navier–Stokes aerodynamics are similarly written in a semi-discrete form as

dwf

dt
= Rf (wf ,wr,ud,uc) (2.53)

where Rf is the non-linear residual corresponding to the fluid unknowns, ud

represents a possible external disturbance such as gusts and uc introduces in-

puts such as control surface deflections.

Denoting w = [wT
f ,w

T
r ]T as the vector of unknowns of the coupled system, the

state-space equations of dimension n = nf + nr can be combined as

dw

dt
= R (w,ud,uc) (2.54)

where R is the corresponding coupled non-linear residual vector. Reference solu-

tions are obtained by integrating in time the full order model (FOM) defined in

Eq. (2.54). In addition, a frequency domain formulation of full order equations is

exploited in this work and presented next.

Linearised frequency domain (LFD) formulation provides unsteady results by manip-

ulating the governing equations [41]. In this work, LFD is used to speed-up calculations

which are needed to produce reduced order models. Hereafter the derivation is presented

for the coupled system and the underlying aerodynamic and/or flight dynamics model

is not specified since it does not affect the formulation. Governing equations of the

coupled system in Eq. (2.54) are considered. Without affecting the generality, the

dependency on control surface deflection uc is dropped for sake of clarity. As a result,

the residual R depends on the solution w and the disturbance ud

dw

dt
= R (w,ud) (2.55)

Define w(t) = w0 + w̃(t) and accordingly ud(t) = ud0 + ũd(t). The residual R

is expanded in a Taylor series truncated at first order around a linearisation point

R(w0,ud0) ≈ 0

dw̃

dt
=
∂R

∂w̃
w̃ +

∂R

∂ud
ũd +O

(
|w̃|2, |ũd|2

)
(2.56)
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Note that all the residual derivatives must be computed at the equilibrium point

which is obtained with an iterative trimming procedure split into two steps. First,

equilibrium conditions, i.e. sum of forces and moments equal to zero, define the

state of the flight dynamics subsystem, i.e. velocity and attitude. Secondly, an aero-

dynamic steady state solution is computed at the equilibrium point. The matrix
∂R
∂w̃ = A is the Jacobian matrix of the coupled system

dw̃

dt
= A w̃ +

∂R

∂ud
ũd (2.57)

The equation resulting from the linearisation is translated into Laplace domain assuming

complex harmonic variation for w̃ = ŵeλt and ũd = ûde
λt with λ ∈ C

λŵ = A ŵ +
∂R

∂ud
ûd (2.58)

Right-hand and left-hand sides of the equation are simplified by isolating unknowns and

external disturbance

(A− λI) ŵ = − ∂R
∂ud

ûd (2.59)

The right-hand side contains partial derivatives of R with respect to the disturbance,

specifically ∂R
∂ud

. Although an analytical expression for such term can be formulated,

a common method for its evaluation is finite differences. In particular, a central

difference scheme can be used for which

∂R

∂ud
=
R(w0,ud0 + ε)−R(w0,ud0 − ε)

2ε
(2.60)

Once the right-hand side is defined, solving Eq. (2.59) is possible by using iterative

linear solvers [123, 156] for large, sparse systems or direct methods for small ones.

The result is the complex-valued solution vector ŵ.

The assumption of linear behaviour around the equilibrium point allows the superpo-

sition of results. This is particularly useful when non-harmonic phenomena, like ‘1-cos’

gusts, must be investigated. In such cases, the disturbance ũd is expanded in a Fourier se-

ries

ũd(t) ≈ ũN (t) =

N∑
n=−N

ûdne
i 2πn
P
t + ε (2.61)

with P defining its period, N the number of harmonics considered and ε the error.

The final result is then obtained by superposing a solution of Eq. (2.59) for each

harmonic. The number N of harmonics should be chosen to minimise the difference

between the original signal ũd(t) and the approximated one ũN (t). The process of

expanding a ‘1-cos’ gust disturbance in a Fourier series is depicted in Fig. 2.3 with

an increasing number of harmonics. Using N = 1, the ‘1-cos’ is approximated with
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Figure 2.3: Fourier decomposition of a ‘1-cos’ gust with an increasing number of harmonics.

one simple harmonic disturbance. This is not sufficient for a proper reconstruction

of the original ‘1-cos’ curve. Increasing N to N = 5 brings the curve closer to the

original one. Some differences and wobbling are still present. However, when a number

N = 15 of harmonics is used, the reconstructed curve is undistinguishable from the

reference. In addition, choosing a value N in Eq. (2.61) for a given ‘1-cos’ gust defines

the frequencies for which Eq. (2.59) must be solved.

When the focus is on the aerodynamic response only, the non-linear residual Rf

in Eq. (2.53) is considered. Although the derivation is similar to the one for the

coupled system, focus is here on the aerodynamic subsystem only. The resulting LFD

formulation is very useful when computing the aerodynamic response to variation in

the flight dynamics degrees-of-freedom. Equation (2.53) is expanded in Taylor series

truncated at the first order around an equilibrium point Rf (wf0 ,wr0 ,ud0) ≈ 0,

dw̃f

dt
=
∂Rf

∂w̃f
w̃f +

∂Rf

∂w̃r
w̃r +

∂Rf

∂ũd
ũd +O

(
|w̃f |2, |w̃r|2, |ũd|2

)
(2.62)

with wf (t) = wf0 + w̃f (t), wr(t) = wr0 + w̃r(t) and ud(t) = ud0 + ũd(t). The equation

is translated into Laplace domain assuming w̃f = ŵfe
λt, w̃r = ŵre

λt, ũd = ûde
λt,(

∂Rf

∂wf
− λI

)
ŵf = −

∂Rf

∂wr
ŵr −

∂Rf

∂ud
ûd (2.63)

and fluid dynamics unknowns are isolated. This equation can be exploited in two ways.

A first application is the computation of dynamic derivatives by assuming ud = 0(
∂Rf

∂wf
− λI

)
ŵf = −

∂Rf

∂wr
ŵr (2.64)
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Such equation is particularly useful to compute aerodynamic responses ŵf to complex

harmonic excitations in the flight dynamics degrees-of-freedom ŵr. Further details about

their computation and comparisons with time-domain results are provided in the next

Chapter 3. A second application of Eq. (2.63) is obtained whenwr = 0. This corresponds

to calculating aerodynamic responses to aerodynamic disturbances such as gusts(
∂Rf

∂wf
− λI

)
ŵf = −

∂Rf

∂ud
ûd (2.65)

In particular, when Eq. (2.65) is solved for a specific frequency and imposing no

damping, the complex-valued flow solution ŵf is the flow response to a sinusoidal

gust. Investigation for a static, not moving, aircraft during a ‘1-cos’ gust encounter

can be performed expanding the disturbance in a Fourier series, similarly to the

process described for the coupled system.

2.4 Numerical Methods

Numerical integration in time of the coupled model is performed for flight dynamics

with Eq. (2.50) and for fluid equations with Eq. (2.53) in a strongly-coupled loop

using dual time-stepping [79]. Data is exchanged between the two subsystems at

each inner iteration and solution updated.

Focusing first on flight dynamics equations, their integration is usually achieved by

means of two well-known numerical schemes, specifically the backward finite difference

scheme and the β-Newmark method [104]. The former is based on approximating the

time-domain derivative in Eq. (2.50) with a second order finite difference scheme,

dw
(i)
r

dt
=

1

∆t

(
3

2
w(i)
r − 2w(i−1)

r +
1

2
w(i−2)
r

)
(2.66)

where ∆t is the time step and the superscripts (i), (i − 1) and (i − 2) represent

the current and previous two time steps, respectively. Substituting Eq. (2.66)

into Eq. (2.50) provides an update to w
(i)
r ,

w(i)
r =

2∆tR
(i)
r + 4w

(i−1)
r −w(i−2)

r

3
(2.67)

This is performed when integrating flight dynamics with Eq. (2.38). Regarding the

β-Newmark scheme, it is widely adopted by the structural community to integrate

modal equations. Applying the scheme to Eq. (2.46) with β = 1/4 and γ = 1/2, an

update of the generalised coordinates and their time derivatives is

η(i) = η(i−1) + ∆t
dη

dt

(i−1)
+

∆t2

2
M−1F (2.68)
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Figure 2.4: Example of structured and hybrid grid.

dη

dt

(i)

=
η(i) − η(i−1)

∆t
− dη

dt

(i−1)
(2.69)

Focusing on the aerodynamics subsystem, a solution is obtained following a two-steps

procedure [23]. First, a number of grid points is placed in the physical space with a

body-fitted approach so that the point distribution follows the body shape. Two kinds of

computational grids (also known as meshes) can be obtained from the points distribution

and they are called structured and unstructured grids, respectively. Regarding the former,

lines connecting grid points form quadrilaterals for two-dimensional structured grids as

shown in Fig. 2.4(a). The regular structure leads to very fast computations, simpler

programming algorithms and a well-banded Jacobian matrix. However, structured

grids require long time to be produced because human involvement is often needed [23].

Conversely, unstructured grids have lines forming triangles as well as quadrilaterals

for two-dimensional geometries and they can be automatically generated. However,

particular care must still be paid to geometric elements closer to solid wall in order

to get good quality flow solutions in the boundary layer [23]. A trade-off is provided

by hybrid approaches where the region close to the body wall is structured and the

remaining domain is unstructured, as shown in Fig. 2.4(b) for a two-dimensional test

case. Hybrid grids are used in this work for all test cases.

Once the spatial discretisation is ready, the calculation is performed with a numerical

method. The most popular ones are finite difference [114], finite element [145] and

finite volume [98]. The latter one is the most popular method of the three and it is

adopted in this work for three-dimensional test cases. Physical space is discretised

in polyhedral volumes and the conservation laws are solved in an integral form. In

addition, some advanced techniques which are referred to as meshless [13] are adopted

in this work for two-dimensional test cases. They do not require the grid points to

be connected by lines and are based on point clouds to solve the differential form
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of governing equations. Thus, volumes are not calculated explicitly. Meshless meth-

ods are very promising for complex geometries since the number of points around a

sensitive target such as spoilers or gaps can be increased arbitrarily. However the

main drawback is the conservation of mass, momentum and energy which is not guar-

anteed because of lack of the telescopic property [85].

2.4.1 Radial Basis Function Interpolation for Grid Deformation

Grid deformation is used in this work to couple aerodynamics and flight dynamics.

In particular, the rigid body motions calculated by the flight dynamics module are

transferred to the CFD solver by means of grid deformation. This is performed with radial

basis function (RBF) interpolation [47, 100]. Note that exact values of displacement

are available for boundary points (i.e. points on body surfaces and far field) since they

are computed as a combination of rigid-body motions by the flight dynamics solver.

Interpolation affects points in the flow domain only. The displacement S(x) of points

in the flow domain is related to the position xb of the boundary points,

S(x) = p(x) +

nb∑
j=1

αjφ
(
||x− xbj ||

)
(2.70)

where nb is the number of boundary points, φ(||x− xbj ||) the radial basis function used

as interpolator and p(x) = β · x a polynomial accounting for rigid-body motions. The

coefficient vectors α and β are unknown and they must be calculated. The interpolating

functions are chosen among various formulations given in the literature. They are

divided in two categories, specifically global and compact support. The deformation

is applied to all the grid points when a function with global support is used and a

summary of global radial basis functions is given in Table 2.1. Conversely, functions

with compact support are applied to a certain area only and involve fewer points [47].

The calculation of the interpolating coefficients is based on two conditions. The

first is that the displacement at boundary points is exactly db,

S(xb) = db (2.71)

In addition, all the polynomials q with degree less than p should meet the following re-

quirement [47]:

nb∑
j=1

αjq
(
xbj
)

= 0 (2.72)

Limiting the derivation to two-dimensional problems with no loss of generality, we

can derive the RBF equation for two degrees-of-freedom x and y. The polynomial

p can be chosen as p(x, y) = β1 + β2x + β3y to take into account rigid motions in
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Table 2.1: Most common types of radial basis functions.

Function φ Name

e−ρ
2

Gaussian√
1 + ρ2 Multiquadratic

1
1+ρ2

Inverse quadratic

ρk log(ρ) k ∈ N+ Polyharmonic spline

ρ2 log(ρ) Thin plate spline

The distance ρ is usually the Euclidean norm
ρ = ||xA − xB || between vectors xA and xB .

the x and y direction and in-plane rotations. Numbering the boundary points from

0 to nb, the system in Eq. (2.73) gives the values of α and β



db1
...

dbnb
0

0

0


=



1 xb1 yb1

Mb 1
...

...

1 xbnb ybnb
1 1 1 0 0 0

xb1 . . . xbnb 0 0 0

yb1 . . . ybnb 0 0 0





αi
...

αnb
β1

β2

β3


(2.73)

The submatrix Mb is calculated applying the radial basis function to each pair of bound-

ary points as follow

Mb =


φ(0) φ (ρ1,2) . . . φ (ρ1,nb)

φ (ρ2,1) φ(0) . . . φ (ρ2,nb)
...

... φ(0)
...

φ (ρnb,1) φ (ρnb,2) . . . φ(0)

 (2.74)

with ρi,j =
√

(xbi − xbj )2 + (ybi − ybj )2. The thin plate spline radial basis function

φ(ρ) = ρ2 log ρ is a good trade-off between high-accuracy and computational cost [47].

It was chosen to perform grid deformation in this work and its application to a 10

degrees flap deflection is shown in Fig. 2.5. Note that the deformation at boundary

points is exact, while locations of all other points are proportionally modified.
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Figure 2.5: Grid deformation using RBF interpolation for aerofoil with a δ = 10 deg flap
deflection.

(a) Beginning of simulation (b) Updated gust position

Figure 2.6: Disturbance velocity method for gust simulations.

2.4.2 Disturbance Velocity Method for Gusts

Gusts are assumed to be disturbances in the flow velocity only and they are modelled

with disturbance velocity method [73]. It relies on the existing space discretisation to

alter the velocity of grid points according to the gust shape. Hence, gust velocity is

mathematically treated like grid velocity and an additional term is added to unsteady

residual calculation for the disturbance. In practice, this is achieved by altering the

velocity U in Eqs. (2.7-2.9) for every grid point according to the gust shape. The

process is illustrated in Fig. 2.6 with a simple two-dimensional schema representing CFD

grid points, prescribed gust shape and grid point velocities. At the beginning of the

simulation, grid point velocities are altered upwind the aircraft as shown in Fig. 2.6(a).

They depend on the gust location as defined by certification regulations for longitudinal

gusts [57]. Specifically, only points which are located inside the gust length are altered

for a ‘1-cos’ shape. Since no dependence on the points’ vertical positions is specified by

40



regulation, velocities are altered between the top and bottom domain boundaries. This

is represented in Fig. 2.6(a) because the disturbance is propagated vertically everywhere

in the region which falls between the gust’s horizontal beginning and end. When the

simulation advances in time, the region to alter is updated as well by assuming that

disturbances travel with free-stream velocity. This simulates a travelling gust which

depends on time as well as spatial coordinates. When the gust hits the body surface, the

disturbance is applied to the surface grid points as well. This situation is represented in

Fig. 2.6(b) where the aircraft is depicted surrounded by the disturbance. Although its

most common applications are longitudinal gusts, the disturbance velocity method has

been adopted to simulate lateral gusts as well [73]. In such cases, the alteration concerns

the lateral velocity and it depends on the lateral coordinate while the disturbance is

propagated everywhere in the horizontal and longitudinal directions.

When the system’s gust response is concerned, the disturbance velocity method

provides the right-hand side of LFD computations. Focus is on aerodynamics only since

the residual Rf in Eq. (2.65) becomes a function of grid point velocities,

Rf = Rf (wf ,wr, ẋ) (2.75)

where ẋ is the vector of grid point velocities and x the corresponding point loca-

tions. Thus, the right-hand side in Eq. (2.65) is formulated with the complex-value

variable λ and the LFD equation becomes

(
∂Rf

∂wf
− λI

)
ŵf = −λ

∂Rf

∂ẋ
x̂ (2.76)

with x = x̂eλt. The partial derivative
∂Rf
∂ẋ is calculated with finite differences by altering

grid point velocities,

∂Rf

∂ẋ
=
Rf (wf0 ,wr0 , ẋ0 + ε)−Rf (wf0 ,wr0 , ẋ0 − ε)

2ε
(2.77)

Note that the flight dynamics subsystem is not affected by gusts directly and its residual

does not depend on grid velocities, ∂Rr
∂ẋ = 0. Thus, if the partial derivative of the

coupled residual ∂R
∂ẋ is needed, for example to solve Eq. (2.59), it can be obtained by

padding the partial derivative of the aerodynamic one with the appropriate number

of zeros, ∂R
∂ẋ =

[
∂Rf
∂ẋ , 0

]T
. The disturbance velocity method has proved to be effective

when compared to a resolved gust approach for both fluid-only [73] and multidisciplinary

simulations [140]. Influence of the body on gust disturbances is neglected and this

assumption has proved to be valid for all the gust lengths required by certification [140].
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2.4.3 Computational Fluid Dynamics Software

Two CFD solvers are used throughout this work. The first is an in-house code and it

uses a meshless scheme to solve Euler, laminar and Reynolds-averaged Navier–Stokes

equations (with the Spalart–Allmaras turbulence model) [85, 86]. The computational

domain is populated with a cloud of points and a preprocessor is in charge of identifying

a number of so-called star points, i.e. points where fluid unknowns are stored. A

stencil of neighbouring points is build for each star point in order to perform spatial

discretisation. Osher’s approximate Riemann solver is used to evaluate the convective

fluxes between each point and the points in its stencil. The gradients of the flow

variables are reconstructed with the least squares method and used to provide a higher

order reconstruction of the interface values for the Riemann problem. A fully implicit

scheme is applied using local time stepping for steady-state convergence acceleration,

while the unsteady, time-dependent equations are solved with a dual-time integration

scheme. The LFD formulation in the in-house CFD code has previously been verified for

the aerodynamic subsystem in [17, 139]. It is based on a first-discretise-then-linearise,

matrix-forming approach with an analytical, hand-differentiated Jacobian matrix. The

iterative solver used for linear systems resulting from both the fully-implicit scheme

and to perform LFD computations is the generalised minimal residual solver (GMRES)

with complex arithmetic [123]. Preconditioning uses block incomplete lower-upper

factorisation. Gusts are introduced with the disturbance velocity method [73].

The second CFD solver is DLR-TAU from the German Aerospace Centre (DLR). It

is based on the finite volume method and it is widely used in the European aerospace

sector. Validation of the code is available in the literature for steady [125, 133] and

unsteady cases [103, 133]. RANS equations in conjunction with the Spalart-Allmaras

turbulence model [132] are solved. Inviscid fluxes are discretised applying a central

scheme with scalar artificial dissipation of Jameson, Schmidt and Turkel [80]. Exact gra-

dients used for viscous and source terms are computed using the Green-Gauss approach.

Steady-state solutions are obtained using backward Euler method with lower-upper

Symmetric-Gauss-Seidel iterations [56] and local time-stepping. Convergence is acceler-

ated by applying a geometric multigrid scheme. Unsteady simulations are performed

with a dual-stepping method combined with a second order backward Euler scheme.

Regarding LFD, the Jacobian matrix is hand-differentiated and a generalised conjugate

residual solver with deflated restarting is used to solve arising linear systems [156].

Preconditioning is provided with a block incomplete lower-upper factorisation of the

Jacobian matrix with zero level of fill-in applied. Similar to the in-house code, gusts

are introduced with the disturbance velocity method.
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Chapter 3

Reduced Order Modelling

The model reduction technique is described in this chapter. Starting from the full

order equations, a smaller model is obtained which contains all the information needed

to reconstruct the behaviour of the full order model at a fraction of the original

computational cost. The reduction is performed by projecting the Jacobian matrix of

the coupled system onto a small modal basis. Regarding the reduced model construction,

modes to populate the basis are calculated with either one of two techniques, specifically

operator-based and data-based mode identification.

Operator-based identification is based on eigenmode decomposition of the Jacobian

matrix. Eigenvectors related to flight dynamics are extracted from the system without

computing the whole set of eigensolutions. The procedure is performed for both adjoint

and direct eigenproblems. The second data-based approach relies on the snapshot

method. The coupled system is sampled at discrete frequencies and a snapshot matrix

is assembled with the results. Proper orthogonal decomposition (POD) is applied to

the matrix and modes representing the system’s response are obtained.

3.1 Model Reduction with Matrix Projection

The system in Eq. (2.54) is expanded in a first order Taylor series around an equi-

librium state with R(w0,ud0,uc0) ≈ 0,

dw

dt
= R(w,ud,uc) = A w̃ +

∂R

∂ud
ũd +

∂R

∂uc
ũc +O

(
|w̃|2, |ũd|2, |ũc|2

)
(3.1)

where w(t) = w0 + w̃(t) and accordingly ud(t) = ud0 + ũd(t) and uc(t) = uc0 + ũc(t).

The matrix ∂R
∂ud

is referred to as gust matrix and the product ∂R
∂ud
ũd is used to introduce

gusts modelled with the disturbance velocity approach as described in Section 2.4.2. In

particular, the vector ũd depends on the gust shape to be simulated since it represents

the phase lag between points due to the excitation. The flight dynamics residual does

not directly depend on the gust disturbance and ∂R
∂ud

is padded with zeros accordingly.
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Similarly, the term ∂R
∂uc

is calculated with finite differences and it models the effect

of control surface deflections on the aerodynamic residual.

The Jacobian matrix A of dimension n×n, with n = nf+nr, is partitioned into blocks

A =

(
Aff Afr

Arf Arr

)
(3.2)

with

Aff =
∂Rf

∂wf
, Afr =

∂Rf

∂wr

Arf = C
∂fa
∂wf

, Arr =
∂fe
∂wr

+ C
∂fa
∂o

∂o

∂wr

(3.3)

The diagonal blocks Aff and Arr are fluid and flight dynamics Jacobian matrices, re-

spectively, whereas the off-diagonal blocks describe the coupling terms. Specifically, the

matrix Arf describes the dependence of the integrated aerodynamic forces on the fluid un-

knowns and Afr represents fluid excitation due to the flight dynamics degrees-of-freedom.

The term ∂fa
∂o relates a change of aerodynamic forces to a rotation of surface normals o

while keeping the flow variables fixed. The overall term C ∂fa
∂o

∂o
∂wr

is neglected in the cur-

rent investigation since it is small in comparison to ∂fe
∂wr

which contains structural mass

and moment of inertia [9]. Both aerodynamic and structural blocks, specifically Aff

and Arr, are square and the former is the largest one since nf ≫ nr. The off-diagonal

blocks Afr and Arf are rectangular with shape nf × nr and nr × nf , respectively. Note

that the size in terms of state variables of the aerodynamic subsystem is O(nf ) > 107

when using CFD while the size of the flight dynamics one is much smaller, O(nr) = 10.

The model reduction is obtained by projecting the Taylor series in Eq. (3.1) onto a

smaller modal basis [39]. Specifically, right and left bases are used and they are named

Φ and Ψ, respectively. They are built by choosing m appropriate modes,

right: Φ =
(
φ(1) , φ(2) , . . . , φ(m)

)
left: Ψ =

(
ψ(1) , ψ(2) , . . . , ψ(m)

) (3.4)

scaled to satisfy the conditions

〈φ(j),φ(j)〉 = 1 and 〈ψ(j),φ(j)〉 = 1 ∀j ∈ [1,m] (3.5)

where the Hermitian inner product 〈x,y〉 is defined as xHy. The projection is per-

formed with the transformation of variable

w̃ = Φz, z ∈ Cm (3.6)
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and pre-multiplying with the left modal basis Ψ. Thus, the vector z contains the

reduced order unknowns. Including complex conjugate pairs in the modal basis in

Eq. (3.4) gives a real-valued vector w̃ in Eq. (3.6). This simplifies reconstructing

physical quantities from the reduced model while doubling its negligible computational

cost. The reduced order model (ROM) is then expressed as

ΨHΦ
dz

dt
= ΨHAΦ z + ΨH ∂R

∂ud
ũd + ΨH ∂R

∂uc
ũc (3.7)

and integrated in time to obtain time-domain response z(t). Initial conditions for the

integration are computed inverting the transformation in Eq. (3.6) with

z =
(
ΨHΦ

)−1
ΨHw̃ (3.8)

Note that if bi-orthogonal bases are used for which ΨHΦ = I, Eqs. (3.7) and (3.8) can

be simplified. That is the case, for example, when direct and adjoint eigenvectors of

A populate the right and left modal bases, respectively. However, the assumption of

ΨHΦ = I does not apply in general and here a more general formulation is described. As-

suming complex harmonic excitation ũd = ûde
λt and ũc = ûce

λt and complex harmonic

response z(t) = ẑeλt with λ ∈ C, Eq. (3.7) can also be rewritten in frequency domain,

ΨH (A− λI) Φẑ = −ΨH ∂R

∂ud
ûd −ΨH ∂R

∂uc
ûc (3.9)

Exploiting Eq. (3.9) is more convenient for responses to sinusoidal external excita-

tions since it provides a reduced form of Eq. (2.59) directly in frequency domain.

Equation (3.7) is adopted for time-domain integration of the ROM. However, re-

sults can be translated a posteriori in either time or frequency domain since both

equations lead to the same mathematical solution.

The modal bases in Eq. (3.4) must be built from modes representing the dominating

system behaviour. Two procedures, named operator-based and data-based modal

identification, are proposed in the following to calculate these modes.

3.2 Operator-based Modal Identification

This section describes the first of two identification methods which are employed in this

work. The modes provided for the reduction are the ones traditionally considered in

the field of flight dynamics, i.e. short period and phugoid in the longitudinal plane for

example [34, 155]. They are computed by following the evolution of rigid-body modes

when aerodynamics is gradually added to the system. The identification is composed of

three steps. First, the flight dynamics subsystem is not coupled with the aerodynamic

one. The eigenpairs of the flight dynamics set of equations, which now correspond

to in-vacuum rigid-body modes, are easily computed with direct methods. Secondly,
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the coupling with the aerodynamic subsystem is introduced with a mathematical

parameter β which ranges from 0 (uncoupled subsystems) to 1 (fully coupled system).

Thirdly, the interval [0, 1] is split into a number of intermediate values and for each

one, in turn, a tracing procedure is started from the converged solution at the previous

value of β. The tracing is needed because both eigenvalue and eigenvector change

when the coupling between flight dynamics and aerodynamic is introduced for β > 0.

The mathematical details are provided thereafter for the identification as well as the

tracing procedure which is based on Newton’s method.

The system in Eq. (2.54) is expanded by means of Eq. (3.1) and translated into

Laplace domain with complex-valued variable λ ∈ C by assuming w̃ = ŵeλt.

λŵ = A ŵ (3.10)

The external forcing terms are ud = uc = 0 for operator-based identification. Solving

Eq. (3.10) leads to the direct and adjoint eigenvalue problems for which the solu-

tion vector w is named φ(j) and ψ(j), respectively(
A− λ(j)I

)
φ(j) = 0 and

(
AT − λ(j)I

)
ψ̄(j) = 0 ∀j ∈ [1,m] (3.11)

where (λ(j),φ(j)) and (λ(j),ψ(j)) are the corresponding eigenpairs. A subset of m direct

and adjoint eigenvectors related to flight dynamics degrees-of-freedom is included in

the modal bases for the model reduction. Notice that in this case the conditions in

Eq. (3.5) are satisfied due to the bi-orthogonality of eigenvectors,

〈ψ(j),φ(k)〉 = δjk and 〈ψ(j), φ̄(k)〉 = 0 ∀j, k ∈ [1,m] (3.12)

where δjk is the Kronecker delta. Thus, the projection in Eq. (3.7) is a Petrov-Galerkin

one with test base Ψ.

Focusing on the direct problem first, two equations in Laplace domain are ob-

tained by applying the partitioning in Eq. (3.3),(
Aff − λ(j)I

)
φ
(j)
f = −Afrφ(j)

r (3.13)

(
Arr − λ(j)I

)
φ(j)
r = −Arfφ

(j)
f (3.14)

A small non-linear eigenvalue problem of dimension nr is formulated by isolating

the flight dynamics part of the direct eigenproblem,[ (
Arr − λ(j)I

)
− βArf

(
Aff − λ(j)I

)−1
Afr

]
φ(j)
r =

S
(
λ(j)

)
φ(j)
r = 0

(3.15)
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where S
(
λ(j)

)
is the spectral Schur complement of

(
Aff − λ(j)I

)
in
(
A− λ(j)I

)
. An

artificial weighting factor β is introduced to gradually add the coupling effect be-

tween aerodynamics and flight dynamics. Specifically, when β = 0, no aerodynamic

influence on the rigid-body motions is taken into account since the interaction term

βArf
(
Aff − λ(j)I

)−1
Afr = 0. Conversely, when β = 1, the system is fully coupled

since the interaction term is taken into account when solving the eigenvalue problem.

This provides a way to mathematically tune the influence of aerodynamics on the

rigid-body degrees-of-freedom and improve convergence. Newton’s method solving for

(λ(j),φ
(j)
r ) is used to trace the evolution of the rigid-body degrees-of-freedom starting

at β = 0 to the coupled eigenvalue at β = 1. The tracing for flight dynamics modes

is not trivial and the details are given in Section 3.2.2. The corresponding fluid part

φ
(j)
f of the eigenvector is calculated for the converged solution (λ(j),φ

(j)
r ) at β = 1

by solving one additional linear equation per degree-of-freedom(
Aff − λ(j)I

)
φ
(j)
f = −Afrφ(j)

r (3.13)

The computationally expensive part of Eq. (3.15) is the repeated evaluation of the

interaction term Arf
(
Aff − λ(j)I

)−1
Afr depending on the solution λ(j). For small-sized

problems, this matrix can be computed with direct solvers whereas iterative methods

have to be applied for industrial test cases [156]. This can lead to convergence problems

since the eigenspectrum of the system can easily contain millions of eigenvalues and the

flight dynamics eigenvalue might be within the cloud of aerodynamic modes. Specifically,

when this happens the matrix
(
Aff − λ(j)I

)
is almost singular which, in turns, generates

convergence issues when computing the interaction term Arf
(
Aff − λ(j)I

)−1
Afr or

solving Eq. (3.13). A Taylor expansion for λ(j) = λ
(j)
0 + λ

(j)
ε was proposed in [9, 143]

to alleviate the problem of tracing eigenpairs related to aeroelastic problems inside

the cloud and provide a speed-up. The inverse of Aff − λ(j)I becomes

(
Aff − λ(j)I

)−1
=
(
Aff − λ

(j)
0 I
)−1

+ λ(j)ε

(
Aff − λ

(j)
0 I
)−2

+O(|λ(j)ε |2) (3.16)

where λ
(j)
ε represents a small variation of λ(j) from a reference value λ

(j)
0 . The expansion

can proceed with high-order terms but in-house tests have shown that no major benefits

are obtained beyond second order. The reference value λ
(j)
0 can be given by a previously

converged solution or by the rigid body eigenvalue.

Challenges addressed by the operator-based identification, which might not be clear

from the mathematical formulation presented so far, are described next with a schematic

eigenspectrum of a coupled Jacobian matrix for a system involving CFD aerodynamics,

flight dynamics and elastic structure shown in Fig. 3.1. The tracing of flight dynamics

eigenpairs is compared to the one of elastic modes in order to provide a clear explanation

since the latter is currently used for industrial and research applications [142]. A
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Figure 3.1: Schematic representation of an eigenspectrum for coupled system involving CFD
aerodynamics, flight dynamics and structure.

large region of the spectrum in Fig. 3.1 is occupied by aerodynamic eigenvalues. They

form a cloud which starts from the origin and spread out in the complex plane with a

characteristic dome shape. Assuming no structural damping, structural eigenvalues are

located on the imaginary axis since they have a non-zero in-vacuum frequency. When

aerodynamics is coupled with elastic structure, structural eigenvalues move from their

original location to a new position which has non-zero damping as well as non-zero

frequency [143]. Their new location is usually outside the cloud of aerodynamics modes.

Their tracing can start from in-vacuum eigenpairs and follow the evolution of the

eigenvalues in the complex plane without encountering any fluid eigenvalue. Regarding

flight dynamics modes, a different behaviour is expected. They originate from rigid-

body modes which all have both zero frequency and damping when aerodynamics is not

included in the system. Hence, all eigenvalues related to rigid-body dynamics are located

in the origin of the eigenspectrum when no aerodynamics is included. They move to

new locations which have both non-zero damping and frequency when aerodynamics is

added. Usually, their final positions are inside the cloud of aerodynamic eigenvalues.

Two challenges are identified. First, the operator-based identification must be able to

trace flight dynamics eigenpairs inside the cloud of aerodynamic modes. This could

be a problem for the calculation of the interaction term in Eq. (3.15) since a λ very
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close to an aerodynamic eigenvalue leads to an almost singular matrix
(
Aff − λ(j)I

)
.

Secondly, the starting point for the tracing is not as clear as for structural modes

since all eigenvalues are located in the origin at the beginning of the tracing. Both

challenges must be addressed by the operator-based identification for a successful model

reduction and solutions are provided in the next chapters.

The description of the operator-based identification proceeds with the adjoint

formulation for which the same challenges must be solved. The adjoint eigenvalue

problem, the solution of which is needed for the model reduction, is derived from

the adjoint formulation in Eq. (3.11)(
AT − λ(j)I

)
ψ̄(j) = 0 (3.17)

for the adjoint vector ψ(j). Note that ψ(j) is also split in fluid and flight dynamics

unknowns, ψ = [ψf ,ψr]
T , and the matrix AT is written as

AT =

(
ATff ATrf
ATfr ATrr

)
(3.18)

according to the partitioning in Eq. (3.2). Equation (3.18) is substituted in Eq. (3.17)

and a system of two equations in Laplace domain is obtained,(
ATff − λ(j)I

)
ψ̄

(j)
f = −ATrf ψ̄(j)

r (3.19)

(
ATrr − λ(j)I

)
ψ̄(j)
r = −ATfrψ̄

(j)
f (3.20)

Isolating ψ̄
(j)
f in Eq. (3.19) and substituting it into Eq. (3.20) leads to the adjoint equation

{(
ATrr − λ(j)I

)
− βATfr

(
ATff − λ(j)I

)−1
ATrf

}
ψ̄(j)
r = 0 (3.21)

which is enhanced by introducing the artificial weighting β and solved iteratively with

the same techniques adopted for direct eigenpairs. The flight dynamics part of the

adjoint eigenvector is obtained when β = 1. Manipulating the interaction term using

the equality (ABC)T = CTBTAT , this equation can equivalently be formulated as

{(
ATrr − λ(j)I

)
− β

[
Arf

(
Aff − λ(j)I

)−1
Afr

]T }
ψ̄(j)
r =

ST
(
λ(j)

)
ψ̄(j)
r = 0

(3.22)

and it is compared to Eq. (3.15). Note that the interaction term, which is the com-

putationally expensive part of the adjoint equation, can be obtained for the adjoint

problem from the computations performed for direct eigenvectors. This provides an

49



important way to save computational time by storing the interaction terms when solving

Eq. (3.15) and reusing them to solve Eq. (3.22). The fluid part of the left eigenvector

is then calculated by solving the adjoint problem in Eq. (3.19).

The derivation so far has previously been described as Schur complement method [9].

The full order CFD solver is rearranged and directly employed during the solution of

the small non-linear eigenvalue problem in Eqs. (3.15) and (3.22). The relation to more

classical analysis via dynamic derivatives is apparent. This is described next in order to

show the equivalence of the interaction term with dynamic derivatives. Substituting

the definition of Arf into Eq. (3.15), the interaction term is expressed as

Arf

(
Aff − λ(j)I

)−1
Afr = C

∂fa
∂wf

(
Aff − λ(j)I

)−1
Afr (3.23)

The term
(
Aff − λ(j)I

)−1
Afr is associated in Eq. (2.63) with the response of the fluid

unknowns to excitations in the flight dynamics degrees-of-freedom,

C
∂fa
∂wf

(
Aff − λ(j)I

)−1
Afr = C

∂fa
∂wf

∂wf

∂wr
= C

∂fa
∂wr

= CQ (3.24)

Thus, the matrix Q describes the transfer function relating flight dynamics motions to the

aerodynamic forces by means of complex-valued dynamic derivatives of the aerodynamic

system [43, 121]. The direct and adjoint eigenvalue problems in Eqs. (3.15) and (3.22)

are then rewritten using dynamic derivatives as[ (
Arr − λ(j)I

)
+ βCQ

]
φ(j)
r = 0 and

[ (
ATrr − λ(j)I

)
+ βQTCT

]
ψ̄(j)
r = 0 (3.25)

Relying on the fact that real and imaginary parts of λ(j) correspond to damping and

frequency, the dynamic derivatives are pre-computed for a finite number of complex

harmonic motions corresponding to points in the complex plane. This can be done

directly in Laplace domain by solving Eq. (3.24) or using time-domain methods described

in the next section. Interpolation techniques are used to calculate dynamic derivatives

for pairs of damping and frequency not sampled. Note that the same derivatives are

used for both direct and adjoint problems. In addition, the latter equations are identical

to Eqs. (3.15) and (3.22), if Q is computed for each point in the complex plane.

A simplification arises by neglecting the damping during the computation of the aero-

dynamic influence, similar to the p-k method for flutter analysis [72]. As a consequence,

the matrix Q would depend on frequency only and pre-computed for simple harmonic mo-

tions.

3.2.1 Dynamic Derivatives from Time-Domain Simulations

When solving Eq. (3.25), a crucial point for accurate results is the pre-computation

of dynamic derivatives, i.e. the entries of the matrix Q. Two strategies are employed,
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specifically in frequency-domain and in time-domain. The former is based on solving

Eq. (2.64) in turn for each degree-of-freedom with an LFD solver. This is the standard

procedure adopted in this work since it speeds up the computation of the reduced

model. Regarding the latter, dynamic derivatives are calculated from time-histories of

time-domain forced-motion simulations. Both methods lead to the same results and the

latter provides a verification for LFD results. It is described in detail in this section.

In literature, approaches based on the Fourier transform were proposed to calculate

the frequency response which links input (forced motion) to output (aerodynamic

coefficients) [43]. However, such approaches are limited to pure harmonic motions

and they cannot account for damping. So, a different procedure is needed when the

matrix Q have to be calculated for points in the complex plane in order to solve,

for example, Eq. (3.25). Two parameters are taken into account, decay ratio γ and

reduced frequency ω which are real and imaginary part of the complex number λ ∈ C,

respectively. Forced motions can have any combination of these two parameters, leading

to simulations for simple harmonic motions as well as decaying ones.

The method is described now in detail. The flight dynamics degrees-of-freedom are

excited in turns. Denote α as the forced variable. Its time-history is given by

α(t) = α0e
(γ+iω)t = α0e

λt (3.26)

as function of the time t. In practice, the motion imposed in a forced simulations is

α(t) = α0e
γt sin

(
ωt+

π

2

)
(3.27)

which corresponds to the real part of Eq. (3.26). A small amplitude must be

chosen for α0 in order to stay in the linear range. The generic aerodynamic

coefficient Cx represents drag, lift or moment coefficient and it is expressed in

time-domain using dynamic derivatives as

Cx = Cx0 + Cxαα+ Cxα̇α̇ (3.28)

with Cx0, Cxα and Cxα̇ to be determined. Substituting Eq. (3.26) in Eq. (3.28),

Cx = Cx0 + α0Ĉxα(λ)eλt (3.29)

Ĉxα(λ) = Cxα + λCxα̇ (3.30)

the complex-valued dynamic derivative Ĉxα(λ) is defined as function of the complex num-

ber λ.

The calculation of the dynamic derivative Ĉxα starts from assembling a matrix D

from the time history of the forced motion simulation. It has dimension nt × 3 with nt

the total number of time steps. Each column contains the coefficient of the three
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unknowns Cx0, Cxα and Cxα̇ in Eq. (3.28),

D =


1 α1 α̇1

...
...

...

1 αnt α̇nt

 (3.31)

Note that the first column is filled with 1 to account for a constant shift whereas αi and

α̇i represent the value of the flight dynamics variable and its time derivative at the time

step i. If not available, the time history of α̇ is obtained by differentiating numerically the

time history of α. The vector B is then assembled with the time history of the coefficient

Cx, B = [Cx1, . . . , Cxnt ]
T . The condition in Eq. (3.28) must be satisfied for each time

step of the forced motion simulation. Thus, a overdetermined linear system is obtained

DCx = B (3.32)

with Cx = [Cx0, Cxα , Cxα̇]. The unknown vector Cx is determined using the Moore-

Penrose inverse matrix [111],

Cx = (DTD)−1DTB = D∗B (3.33)

with the 3 × 3 matrix DTD to be inverted. This approach can be interpreted as

a least squares curve fitting of the time-domain data [92]. The dynamic deriva-

tive Ĉxα is then calculated using Eq. (3.30). The calculation of multiple dynamic

derivatives is performed by computing the matrix D∗ once and changing in turn the

vector B for coefficients of drag, lift and moment.

This method was extensively used to calculate the dynamic derivatives from URANS

data and compare their values against the corresponding LFD evaluation. The forced

motion simulations must have small amplitudes since the ultimate target is a linear

reduced order model. A value of 0.01% reference length is chosen as amplitude of

forced harmonic motions when computing dynamic derivatives through the thesis. No

attempt is made to compare the LFD results to non-linear URANS simulations with

large amplitudes. An example to illustrate the computation of a dynamic derivative

from time-domain data is provided next. Results from a forced motion simulation for

the vertical velocity of a two-dimensional wing-tail configuration is shown in Fig. 3.2(a).

The oscillation frequency ω is expressed in a non-dimensional way by defining the

reduced frequency k = ωb/U∞,where U∞ is the flow-stream velocity and b is the reference

length. A value of k = 0.05 and an amplitude of 0.0001 chord length were employed

to produce the results for Fig. 3.2(a). They show the evolution of lift coefficient when

the vertical velocity changes and the phenomenon of hysteresis is clearly visible. The

dynamic derivative was estimated as ĈLż = 12.74∠167.5◦ using the method described

in this section. This value was confirmed by an application of the Fourier transform
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Figure 3.2: Dynamic derivatives relating lift coefficient to vertical velocity.

to the time-domain data since no damping was included. The same procedure was

repeated for forced motion simulations with the same amplitude but different reduced

frequencies in order to show that LFD and time-domain approach lead to the same

results as expected. The variation of the dynamic derivative with the reduced frequency

is shown in Fig. 3.2(b). LFD results were obtained by solving Eq. (2.64) directly.

3.2.2 Newton’s Method for Mode Tracing

Newton’s method is the core tool to perform the tracing during the operator-based

identification of flight dynamics eigenpairs. Note that, as already stated at the beginning

of Section 3.2, the tracing is needed to compute the eigenpairs at a larger value of

the coupling parameter β and starting from β = 0. When the coupling value is

increased, i.e. β is increased, the eigenpair evaluated at a smaller coupling provides

an initial guess for the computation of the eigenpair at the larger coupling level. The

evaluation is performed with Newton’s method until convergence is reached. At the

end, the converged eigenpair at β = 1 represents the flight dynamics mode which

can be used as one column of the modal basis in Eq (3.4).

In general, Newton’s method is particularly suitable to find the root x∗ of a vector

function, i.e. F (x∗) = 0, and it is here described briefly with focus on the solution of

Eqs. (3.15) and (3.25). The mathematical formulation of the iterative method is obtained

by expanding the function F in a first order Taylor series around a point xk. This leads to

F (xk+1) = F (xk) +
∂F

∂xk
(xk+1 − xk) (3.34)

where xk+1 is a generic point in the neighbourhood of xk and ∂F
∂xk

is the Jacobian matrix

containing the partial derivatives of F with respect to x. Assuming F (xk+1) = 0,
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we have a new approximation for the solution x,

xk+1 = xk −
(
∂F

∂xk

)−1
F (xk) (3.35)

The method works by replacing locally the function with its tangent (subject to the condi-

tion of a non-singular Jacobian matrix) and using this assumption to locate the zero [114].

An initial guess x0 for the first iteration must be provided. The methods converges if

the initial guess is close to the solution, i.e. it lies in a suitable neighbourhood of the

solution x∗. Quadratic convergence is obtained if x0 is close to x∗ otherwise the method

provides linear convergence or diverges. The order of convergence degrades to 1 also in

case of solution with multiplicity greater than 1. A relaxation parameter m is included

to facilitate convergence so that the equation for the modified Newton’s method becomes

xk+1 = xk −m

[(
∂F

∂xk

)−1
F (xk)

]
(3.36)

and an a priori knowledge of m is required.

In the specific case of flight dynamics mode identification, the tracing proce-

dure for the modes concerns the solution of

F (λ(j),φ(j)
r ) =


[(
Arr − λ(j)I

)
+ βCQ

]
φ(j)
r = 0

〈φ(j)
r ,φ(j)

r 〉 = 1

(3.37)

according to the workflow depicted in Fig. 3.3. Specifically, Eq. (3.37) represents the

direct problem in either Eq. (3.15) or (3.25) with the additional condition of unit norm

for the eigenvector. Applying the tracing to the adjoint problem is straightforward once

the direct problem is solved. Particular focus is on the evaluation of the Jacobian matrix

by means of partial derivatives of interaction term Q. The unknown eigenvalue λ(j)

and the eigenvector φ
(j)
r are split in real/imaginary part and collected in the vector

x = [λR, λI ,φR,φI ]
T with λR = <(λ(j)), λI = =(λ(j)), φR = <(φ

(j)
r ) and φI = =(φ

(j)
r ).

The set of equations to solve, including the condition for unitary norm of φ
(j)
r , becomes

F (λR, λI ,φR,φI) =



(Arr − λRI + βCQR)φR + (λII − βCQI)φI = 0

(Arr − λRI + βCQR)φI − (λII − βCQI)φR = 0

φTRφR + φTI φI = 1

φTRφI − φTI φR = 0

(3.38)
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Figure 3.3: Tracing procedure for flight dynamics and the elastic eigenpairs.

with the last equation always satisfied. The Jacobian matrix is derived as

∂F

∂x
=



∂F1

∂λR

∂F1

∂λI
Arr − λRI + βCQR λII − βCQI

∂F2

∂λR

∂F2

∂λI
−λII + βCQI Arr − λRI + βCQR

0 0 2φTR 2φTI

0 0 φTI φTR


(3.39)

with derivatives explicitly given as

∂F1

∂λR
=

(
−I + βC

∂QR
∂λR

)
φR − βC

∂QI
∂λR

φI

∂F1

∂λI
= βC

∂QR
∂λI

φR +

(
I − βC ∂QI

∂λI

)
φI

∂F2

∂λR
= βC

∂QI
∂λR

φR +

(
−I + βC

∂QR
∂λR

)
φI

∂F2

∂λI
=

(
−I + βC

∂QI
∂λI

)
φR + βC

∂QR
∂λI

φI

(3.40)
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Splitting complex numbers in real and imaginary parts is needed in order to compute

the partial derivatives ∂QR
∂λR

, ∂QR
∂λI

, ∂QI
∂λR

and ∂QI
∂λI

. In fact, no assumption can be made

regarding the function Q(λ) and, in general, it does not satisfy the Cauchy-Riemann

equations to be complex-differentiable so that the existence of the complex-valued

derivative ∂Q
∂λ with λ ∈ C is not guaranteed [88]. The partial derivatives are computed

for the Schur formulation in Eq. (3.15) since CQ = Arf
(
Aff − λ(j)I

)−1
Afr. However,

when the dynamic derivatives method is employed, they are usually calculated with

finite differences since Q is only available in specific points of the complex plane

and reconstructed with two-dimensional interpolation. A complex-valued entry of

the matrix Q is presented in Fig. 3.4 as representative entry. Its value depends on

the real and imaginary part of the eigenvalue and both magnitude and phase are

presented with three-dimensional maps. Specifically, interpolation based on Delaunay

triangulation is used in this case [48]. It is clear that the entries of Q do not satisfy

the symmetry condition required to be complex-differentiable.

The initial guess, which is needed to start the iteration of the Newton’s solver, is

evaluated for a given value of β by solving the eigenvalue problem(
Arr − λ(j)I + βCQs

)
φ(j) = 0 (3.41)

for which the stability derivatives Qs are used to approximate Q. They can be obtained

by either direct calculation or evaluating the dynamic derivatives at frequency zero. This

approach leads to successful tracing for both flight dynamics and also for aeroelastic

eigenpairs so that the same framework can be used for both problems. A verification of

the implementation with a reproduction of bibliographic data is provided in Appendix B.
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3.3 Data-based Modal Identification

The snapshot method [130] is adopted to interpolate the response of the coupled

system involving CFD and flight dynamics subject to sinusoidal disturbances. A

snapshot matrix S of dimension n × m is obtained by combining m solutions of

Eq. (2.59), which is restated here for convenience,

(A− λI) ŵ = − ∂R
∂ud

ûd (2.59)

for frequencies in the range of interest. The number of snapshots determines the number

of possible modes. Producing the snapshots is the computationally expensive part of

the method since m complex-valued linear systems with leading dimension n need to be

solved. Equation (2.59) involves the coupled Jacobian matrix and it can be solved with

the same strategies used for the interaction matrix described above, i.e. direct or iterative

methods according to the size of the system. This is in contrast to the usual practice

which focuses on the application of Eq. (2.65) for the aerodynamic subsystem only. This

coupled formulation allows to use the theoretical framework for the model reduction

provided in Eq. (3.9) with modes computed using the data-based identification.

Proper Orthogonal Decomposition (POD) is then applied to the snapshot ma-

trix S with POD modes φ(j) defined as

φ(j) = Svj ∀j ∈ [1,m] (3.42)

where each entry of the vector vj represents the contribution of the corresponding

snapshot to the mode φ(j). The condition that vj lie along the principal axes of

the space spanned by S leads to the eigenproblem

〈S, S〉vj = σjvj ∀j ∈ [1,m] (3.43)

with larger eigenvalues σj corresponding to the dominant modes. Specifically, σ2j is

a measure of energy per unit mass as defined traditionally [144] when all entries of

S are velocities. That is usually the case of incompressible flows. However, when

entries of S have different units, for compressible flows as an example, the dot product

〈S, S〉 must be redefined to provide a consistent measure of energy [11]. The negligible

computational cost of the reduced model can be further decreased by selecting only

a subset of modes [17]. However, this additional reduction is not performed herein

to avoid the arbitrariness of POD modal selection criteria.

Contrary to the Petrov-Galerkin projection used for the operator-based approach,

the Galerkin one is used for the data-based ROMs instead. As a result, both the modal

bases Φ and Ψ contain the same POD modes and they satisfy Eq. (3.5). This can lead

to numerical issues when integrating the time-domain Eq. (3.7) since the stability of

57



the reduced model is not guaranteed even though the full order model is stable [5].

Solutions proposed in literature to assure a stable ROM range from the redefinition

of the inner product 〈S, S〉 for compressible flow [83] to non-intrusive methods which

turn an unstable ROM into a stable one by means of an a posteriori Petrov-Galerkin

projection. ROM stability and accuracy can be achieved by increasing the number

of snapshots to cover all frequencies of interest as suggested in [11]. However, the

stability of the reduced model does not represent an issue when the frequency domain

formulation provided in Eq. (3.9) is exploited. In fact, the time-domain integration is

avoided and the solution is found by solving a small complex-valued linear system. The

method presented here does not depend on the nature of the disturbance ud. However,

the POD technique will be applied in the following to gust encounter simulations by

computing the right-hand side as described in Section 2.4.2.

3.4 Notes for Finite Volume Formulations

The derivation described so far for the model reduction method does not rely on

any assumptions regarding the numerical implementation. However, particular care

must be taken when dealing with finite volume codes such as DLR-TAU. Dividing

the flow field into a number of finite volumes alters the equations for the model

reduction. The solution in every cell is considered constant and equal to the average

when a second order scheme is adopted [23]. A diagonal matrix V is defined so that

it contains the cell volumes corresponding to fluid unknowns. An identity matrix

fills the diagonal for the flight dynamics degrees-of-freedom. The matrix V should

be calculated directly by the CFD solver since it depends on the specific spatial

discretisation. The full order model in Eq. (2.54) becomes

dVw
dt

= R (w,ud,uc) (3.44)

and the presence of V propagates throughout the derivation. For example, the

LFD formulation in Eq. (2.59) becomes

(A− λV) ŵ = − ∂R
∂ud

ûd (3.45)

The presence of V leads to two major modifications. The eigenproblem in Eq.(3.43)

for the data-based identification must be reformulated as

〈S,VS〉vj = σjvj ∀j ∈ [1,m] (3.46)
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to be consistent with the formulation for finite volumes codes. Similarly, the product in

Eq. (3.5) becomes

〈ψ(j),Vφ(j)〉 = 1 ∀j ∈ [1,m] (3.47)

to account for the volume matrix V.
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Chapter 4

Model Reduction for Short-term

Dynamics

Mode identification and model reduction are described in this chapter in detail for a

two-dimensional case. Focus is on short-term response of the system to fast phenomena,

for example gust encounters, and it is dominated by the short period mode [34, 155].

It describes a damped oscillation of the aerodynamic body which lasts few seconds.

The flight speed does not change and the motion concerns mainly rigid rotation and

vertical velocity. Since short-term dynamics is dominated by the short period mode,

flight dynamics equations are simplified by discarding the horizontal degree-of-freedom.

The position of such flight dynamics mode in the eigenspectrum (either inside or outside

the cloud of eigenvalues) determines the short-term response of the system and its

accurate identification is crucial. The equations for short-term approximation, given

in Eq. (2.40), are adopted for flight dynamics. Aerodynamics is modelled with Euler

equations for a NACA 0012 aerofoil and an in-house code provided CFD aerodynamics

for transonic flow. Both operator-based and data-based identification methods were

exploited and results from the reduced order models are compared to the reference

provided by the full order model. The small size of the model and the focus on the

short-term dynamics allow for a very detailed investigation to identify potential problems

arising during the identification procedure and discuss remedies. Results are provided

for initial disturbance simulations as well as for responses to external disturbances.

The majority of these results have been presented in [106, 107].

4.1 Governing Equations

The equations derived in Section 2.2 for short-term approximation for longitudinal

dynamics are used in this chapter. This simplifies the investigation since the added

complexity of multiple flight dynamics modes is avoided. Specifically, the relevant set of
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Figure 4.1: Point distribution for NACA 0012 aerofoil and pressure coefficient at steady state.

equations is provided in Eq. (2.40) and they are restated here for convenience,

dw∗

dτ
− U∗0 q∗ =

Cz
πµ

dq∗

dτ
=

2Cm
πµr2α

dθ∗

dτ
=q∗

(2.40)

The reference length for the test case is defined as the wing semi-chord.

4.2 NACA 0012 Aerofoil

Equation (2.40) was implemented as a module of the in-house CFD solver. The

computational domain was discretised with 7860 points and the near field is shown

in Fig. 4.1(a). The steady state is calculated at a Mach number of 0.75 and 0 deg

angle-of-attack. The resulting symmetric pressure distribution is depicted in Fig 4.1(b)

where very weak shock waves are visible. The non-dimensional parameter rθ = 0.5

and two mass ratios are investigated, as discussed below. The drag is assumed to be

constantly balanced by a thrust so that the rate of horizontal speed du∗

dτ is zero. Without

affecting the generality of the approach, the centre of mass is located at the leading

edge to have a stable flight dynamics model for many flow conditions. In fact, stability

in the longitudinal plane is obtained when the centre of mass, which is the reference

point for moment calculations, is located ahead of the aerodynamic centre [87, Ch. 9],

which is at the quarter chord point for a thin aerofoil in incompressible flow [84, Ch. 1].
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4.3 Operator-based Identification

Regarding the operator-based identification, two flight dynamics modes related to

vertical translation and rotation are expected to play a key role [155] since the focus

is on the short-term longitudinal motions. The mode corresponding to the horizontal

degree-of-freedom contributes only insignificantly to the short-term response of the

system and is omitted [34]. It was found that the eigenvalue corresponding to the vertical

translation mode remains close to the origin and is thus easy to calculate. The short

period mode originating from the rigid rotation on the other hand is more challenging

to identify and details are discussed in the next paragraphs. The eigenvalue associated

to the short period moves away from the origin of the complex plane for in-vacuum

conditions to a new, as yet undefined, position when aerodynamics is imposed.

The two values of mass ratio, µ = 100 and µ = 35, lead to distinct system behaviours.

The first value µ = 100 is taken from the heavy case in [10]. It is a realistic value of µ

for a short-to-medium-range civil aircraft flying at 10000 m altitude. The second one,

µ = 35, corresponds to the same aircraft flying at sea level. Identification results are

shown with parts of the complete eigenspectrum in Fig. 4.2. Real and imaginary part

of eigenvalues are reported on horizontal and vertical axis, respectively. For instance,

a stable eigenvalue with a positive frequency is located in the upper left region of

the eigenspectrum. Three approximations of flight dynamics eigenvalues provided by

operator-based identification as well as an exact solution computed with a direct method

are depicted. Note that only the small size of the full order problem allows a direct

calculation of the eigenvalues of the coupled Jacobian matrix and this is not the case in

general. A number of 250 eigenvalues close to a shift of 0.3i were thus extracted using

MATLAB R©, specifically direct methods implemented in the function eigs().

Regarding the case with mass ratio of 100, presented in Fig. 4.2(a), the eigenvalue

corresponding to the short period mode is outside the cloud of fluid eigenvalues. The

tracing was performed by solving Eq. (3.15) with the parameter β increasing from

zero to one in 20 steps. For each step Newton’s method was used to calculate the

flight dynamics eigenpair for the new value of β using the previous converged solution

as initial guess. At β = 0, when all the eigenvalues related to the flight dynamics

degrees-of-freedom are located in the origin of the complex plane, the selection of the

mode to trace relies on a unique rigid-body eigenvector of Arr as initial guess. The

Schur complement method provides an exact solution to the eigenvalue problem, as

can be seen by comparison with the direct method. In addition, the figure includes the

results based on the approximation of the interaction matrix with dynamic derivatives.

For the approach with dynamic derivatives, the matrix Q was pre-computed at 7

reduced frequencies linearly distributed in the interval ranging from 0 to 0.8. This range’s

upper limit was chosen to include typical frequency values for the short period mode [34].

Linear interpolation is used to evaluate Q for intermediate reduced frequencies. Adding
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Figure 4.2: Eigenspectrum for operator-based identification.
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Figure 4.3: Magnitude and phase of dynamic derivative CLθ (i.e. lift coefficient with respect
to pitch) shown as representative entry of matrix Q.

more samples does not improve significantly the reconstruction of dynamic derivatives

because entries of Q have a monotonic behaviour in such range. The dynamic derivative

CLθ relating the lift coefficient to the pitch angle θ, is shown in Fig. 4.3 as a representative

entry of Q for reduced frequencies ranging between 0 and 3. Although all entries of Q

are needed for an accurate identification, the derivative CLθ is the most important one

to compute the short period mode, which describes a motion composed of rigid rotation

and vertical velocity. The magnitude of the lift coefficient in Fig. 4.3(a) starts from a

quasi-steady value of CLθ ≈ 12.18 at zero frequency and it decreases until a minimum

around a reduced frequency of 1.5. The trend is then reversed. A similar behaviour

is shown for the phase in Fig. 4.3(b) which starts at zero. A few time-domain forced

motion simulations were performed as reference and good agreement was found with the

LFD calculations for both magnitude and phase. The calculation of dynamic derivatives

from such simulations was achieved as described in Section 3.2.1. The good quality of

results is confirmed by a comparison to Theodorsen’s linear theory [63]. It provides

unsteady lift coefficient for a flat plate oscillating in incompressible flow. Prandtl-Galuert

correction was applied to take into account compressible effects [68]. The difference

between Euler CFD and Theodorsen at zero frequency in Fig. 4.3(a) is due to two

factors. First, aerofoil thickness is not taken into account by linear theory and this

leads to underestimation of lift coefficient. Secondly, transonic effects are not accounted

for by Prandtl-Galuert correction which should not be used for Mach numbers larger

than 0.3-0.5. The theoretical value of the dynamic derivative in incompressible flow,

CLθ = 2π, becomes CLθ = 2π/
√
1−M2 ≈ 9.5 at Mach number of M = 0.75. As a result,

linear theories underestimates the corresponding CFD result which is CLθ ≈ 12.18

instead. However, the qualitative trend of magnitude and phase is comparable and

they are similar to results provided in [74] for transonic flows.
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Figure 4.4: Evolution of traced eigenpair as function of β for unsuccessful tracing.

The approximation of discarding the damping when calculating the interaction

term Q leads to slightly different results compared to the Schur complement method in

Fig. 4.2(a). However, the error introduced should be seen in relation to the computational

cost which is much lower for the dynamic derivatives method. A trade-off between the

two approaches is the inclusion of damping for the calculation of the dynamic derivatives.

The pre-computation of Q was augmented to damped harmonic motions corresponding to

a finite number of points in the complex plane. The set of 7 samples already available at

zero damping was extended calculating the dynamic derivatives at the same frequencies

but with a damping corresponding to the eigenvalue solution provided by the basic

dynamic derivatives method. Note that this does not represent an optimised strategy

which should focus on a refined local sampling instead. Adding local samples of Q and

optimisation of the procedure was not attempted since it will eventually lead to the same

results of Schur complement method as pointed out in Section 3.2. Two-dimensional

linear interpolation was then used for points in the complex plane. The assumption of a

linear behaviour of entries of Q with respect to the damping improves the final solution

which is now closer to the exact result provided by the Schur complement method.

The case for the lower mass ratio of 35, when the eigenvalue related to the short

period resides inside the cloud, as shown in Fig. 4.2(b), is significantly more challenging.

The presence of fluid eigenvalues around the target eigenvalue misleads the Schur

tracer converging to fluid eigenpairs during the tracing procedure instead. This is

particularly critical when iterative methods are used to evaluate the interaction matrix,

since the iterative solver might not converge at all. The eigenvalue evolution during

an unsuccessful tracing is shown in Fig. 4.4(a). In addition, the relative importance

of the flight dynamics part of the eigenvector φr compared to the whole eigenvector φ

is depicted in Fig. 4.4(b). When β ≈ 0.8, the Schur tracer starts iterating around an

eigenpair for which the eigenvalue is not changing any more. However, it is clear from
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Fig. 4.4(b) that the ratio ||φr||/||φ|| decreases at every iteration for β > 0.8 while λ is

nearly constant. This suggests that the Schur tracer is converging to an eigenvector

whose flight dynamics part is becoming less and less important at every iteration. A

way to alleviate this problem, while adding to the computational cost, is to increase

the number of steps for the tracing. However, also this strategy fails for this case

since increasing the number of steps from 25 to 150 does not improve the results.

The problem is overcome using the dynamic derivatives method to calculate a first

approximation of the solution. This method is not sensitive to the presence of fluid

eigenvalues since it uses sample points to reconstruct Q. The resulting eigenvalue

and eigenvector were used as initial solution for the Schur complement method which

was able to converge to the exact solution in three iterations.

The same techniques for the identification of the short period were applied to the

vertical translation mode without encountering any significant difficulty. Once the flight

dynamics parts of the eigenvectors and the corresponding eigenvalues are available,

the fluid parts were computed to assemble the right modal basis. As representative

entry, the pressure component of the direct eigenvector related to the short period at

µ = 100 is shown in Fig. 4.5. Fluctuations around the shock positions are shown in

Fig. 4.5(a) and they represent the most important feature of the flow field. Differences

between the Schur complement and dynamic derivatives method are reported in 4.5(b)

for the pressure magnitude. A negative difference was found upwind whereas a region

of positive variation is located near upper and lower surfaces. The shock waves are

sensitive regions since fluctuations were found. Overall, a difference of less than 0.4%

was found in the pressure magnitude between eigenvectors resulting from the Schur

complement method and the dynamic derivatives method.

The solutions to the corresponding adjoint problems in Eqs. (3.22) and (3.25) provided

the adjoint eigenpairs required for the model reduction. Identifying these eigensolutions is

trivial once the direct solution is known. In Fig. 4.5 the pressure component of the adjoint

short period eigenvector calculated with the Schur tracing is depicted. The information

is mainly distributed in the region surrounding the aerofoil, as shown in Fig. 4.5(c)

whereas little information concerns the shock wave position. A comparison between

results coming from the Schur tracer and the dynamic derivatives method is given in

Fig. 4.5(d). A maximum positive deviation of 0.1% was found and it mainly concerns

the upwind flow field since the region close to the aerofoil presents almost no differences.

Similarly, the fluid part of the direct eigenvector concerning the short period mode

at µ = 35 was extracted with the Schur complement method and presented in Fig. 4.6

using the pressure component. Regarding the pressure magnitude in Fig. 4.6(a), it looks

very similar to the case µ = 100 since the aerofoil’s near field, in particular the shock

wave region, contains most of the information. A comparison between Schur tracing and

dynamic derivatives method is shown in Fig. 4.6(b). A major difference is visible near

the shock wave located on the aerofoil’s lower surface and another area of difference is
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(a) Magnitude of direct eigenvector (b) Difference due to neglecting damping for direct
eigenvector

(c) Magnitude of adjoint eigenvector (d) Difference due to neglecting damping for ad-
joint eigenvector

Figure 4.5: Pressure component of direct and adjoint fluid eigenvectors computed with Schur
complement method and dynamic derivative method at µ = 100.

found around the trailing edge. The corresponding adjoint eigenvector, calculated for

the case µ = 35 with the Schur method, is plotted in Fig. 4.7 presenting the pressure

component as well. The magnitude in Fig. 4.7(a) shows that most of the information is

concentrated in the region surrounding the aerofoil. When compared to results provided

by the dynamics derivatives method, differences were found in large areas of the flow

field, as shown in Fig. 4.7(b) and the largest difference is smaller than 0.2%. Overall,

adjoint eigenvectors, which were computed with the Schur tracer, have a similar pattern

for both µ = 35 and µ = 100, as shown in Fig. 4.7(a) and 4.5(c), respectively.

Two ROMs were built using the modes provided by the Schur complement method

and the dynamic derivatives approach. Results using dynamic derivatives calculated
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(a) Magnitude (b) Difference due to neglecting damping

Figure 4.6: Pressure component of direct fluid eigenvector computed with Schur complement
method and dynamic derivative method at µ = 35.

for damped harmonic motions are not included for sake of brevity since they do not

differ significantly from the ones produced with the Schur complement method. Initial

disturbance analyses with angular velocity q∗(t = 0) = 0.1 deg (per non-dimensional

time-unit) were performed for both mass ratios and results are presented in Fig. 4.8.

For µ = 100 results from the reduced model based on the Schur complement method

matches the reference full order model obtained with Eq. (2.54). Small differences are

visible in the first two peak values presumably due to the broadband excitation given

by the initial disturbance. This can excite flight dynamics as well as quickly-decaying

aerodynamic modes, leaving the system response to the dominant modes. Results from

the dynamic derivatives method show an underestimation of peak values and a general

frequency shift due to the approximations made. The case for µ = 35 presented in

Fig. 4.8(b) provides a stronger damped response as expected from the real part of the

short period eigenvalue. The reduced model built with the dynamic derivatives method

is less accurate for the transient decay even though the transition to the new equilibrium

state, characterized by a return to zero velocity, is captured. The case with µ = 35 is

not discussed further at this point since it is outside the scope of the chapter which

focuses on a first application of operator-based and data-based identification instead.

A case leading to similar results is investigated in detail in the next chapter.

The reduced model was extended by introducing an external excitation to demon-

strate its versatility. An application is described for a flap device at µ = 100 for which a

deflection law is defined as a time-dependent function. Regarding the full order model,

flap rotation is imposed at each physical time-step with radial basis function mesh

deformation, as described in Section 2.4.1, applied to the rear 25% of the aerofoil. The

flap action is introduced in the reduced model with the term ΨH ∂R
∂uc

ũc in Eq. (3.7).
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(a) Magnitude (b) Difference due to neglecting damping

Figure 4.7: Pressure component of adjoint fluid eigenvector computed with Schur complement
method and dynamic derivative method at µ = 35.
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(a) Angular velocity at µ = 100
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(b) Angular velocity at µ = 35

Figure 4.8: Response to initial disturbance in angular velocity of q∗ = 0.1 deg.

Specifically, the deflection law depicted in Fig. 4.9(a) was simulated. The maximum

rotation is 2 deg which is reached after 5 non-dimensional time units with an excitation

lasting 10 time units in total. A picture of the maximum deformation is also given

in Fig. 4.9(a). The results from the reduced model are compared with the reference

in Fig. 4.9(b). Angular velocity only is shown since similar behaviours were found

for the other flight dynamics quantities. At first, the system moves because of the

additional lift and moment increment given by the flap deflection. However, when the

flap returns to an undeflected position, the system returns to an equilibrium condition

after a few oscillations. The reduced model based on the Schur complement method

is capable of reproducing accurately full order results. Both transient and final equi-

librium are well represented. Overestimation of peak values is shown for the reduced
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(a) Deflection law and deformed grid
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(b) Angular velocity

Figure 4.9: Response to a flap excitation at µ = 100.

model based on the dynamic derivatives. The increment in angular velocity due to

the flap deflection is not captured accurately. However, the system’s dynamics is well

reproduced once the flap has returned to the undeflected position.

The inclusion of external disturbances leads to a reduced model capable of incor-

porating flight dynamics effects for gust encounter simulations, which is an objective

of this work. In particular, gust encounter simulations performed with and without

flight dynamics effects lead to different results. The former ones concern a fixed, static,

aerofoil which does not move because of the gust. Conversely, the aerofoil is free to

rotate and move vertically for the latter. An example produced with the full order

model at µ = 100 is given in Fig. 4.10, showing loads for a gust encounter of a travelling

‘1-cos’ gust with amplitude Vg = 0.1% of free-stream velocity and initial starting point

at the aerofoil leading edge. Results for motion are not reported since irrelevant for the

fixed, static, aerofoil. Two gust wavelengths with Lg = 5 and Lg = 10 chords were inves-

tigated. Including flight dynamics effects changes the peak values for lift and moment

and modifies the general behaviour. Part of the energy from the disturbance goes into

the system dynamics. As a results, the peak values are lowered and effects on rigid-body

dynamics are significant and still visible after the disturbance has passed the system.

Corresponding simulations were performed with the reduced model as well and results

are depicted in Fig. 4.11. Aerodynamic influences contained in the flight dynamics

eigenpairs are able to capture the response of the system to external disturbances such

as gusts for the two wavelengths considered. The results from the Schur complement

method are compared to the full order model showing a general good agreement. Some

differences arising in the peak values might depend on a non-complete description of the

aerodynamic phenomena. The reduced model built with the dynamic derivatives method

shows an underestimation of peak values and a shift in the frequency, when compared

to the Schur complement method. The error in the identification of the flight dynamics
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(a) Lift coefficient
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(b) Moment coefficient

Figure 4.10: Effects of including flight dynamics when simulating a gust encounter for ‘1-cos’
gust of amplitude Vg = 0.1% free-stream velocity at µ = 100. with full order model.
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(a) Gust wavelength Lg = 5
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(b) Gust wavelength Lg = 10

Figure 4.11: Gust encounter simulation for ‘1-cos’ gust with amplitude Vg = 0.1% of free-stream
velocity at µ = 100.

eigenpairs, as shown in Fig. 4.2(a) and Fig. 4.5, affects the final results by means of

Eq. (3.7). The decay ratio and frequency, linked to the real and imaginary parts of the

eigenvalues, are therefore different from exact values given by the Schur complement

method. The trend is reproduced for short and long gusts and the differences between

reduced and full model increased with the number of oscillations.

4.4 Data-based Identification

Data-based identification was investigated as well by calculating the system response

to external disturbances. In particular, the method was applied to gust encounter

simulations at µ = 100, when flight dynamics is more relevant to the system and less

coupled with aerodynamics. The application of the data-based method requires the
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Figure 4.12: POD eigenvalues.

‘1-cos’ time-domain gust signal to be translated into the frequency domain as sum of

sinusoidal gusts at distinct frequencies. The complex-valued responses of the system

to these harmonic gusts were calculated for the coupled model by solving Eq. (2.58)

with an LFD solver and then stored in a snapshot matrix. Specifically, snapshots

were calculated for 25 reduced frequencies linearly distributed in the range 0 to 2.

The frequency range, and its upper limit in particular, was chosen as described in

Section 2.3 for the expansion of the ‘1-cos’ gust in a Fourier series in Eq. (2.61). A

number of 25 harmonics were sufficient to reconstruct the ‘1-cos’ signal accurately. Thus,

25 POD modes and their complex-conjugate were obtained as a result. They do not

necessarily represent physical modes for the coupled system. No exact correspondence

with flight dynamics modes is immediately identifiable. Modes can be rated in terms

of energy content and the most energetic ones contain more information. In Fig. 4.12,

the POD eigenvalues corresponding to the first 8 modes are depicted using a bar chart.

The energy distribution shows a constant decay for each mode beyond the first and a

difference of 5 orders of magnitude between the first and the eighth mode was found.

The pressure component of the first mode is shown in Fig. 4.13(a). Information about

pressure is concentrated around the shock-wave area on both upper and lower surface

leading to a symmetric field. The shock wave is the most important feature of the flow

field. The second mode is not reported since the distribution is similar to the first one.

However, the third mode presents an asymmetric distribution of pressure magnitude

with information spread both in the flow field as well as near the surface. POD modes,

sorted by their energy contents, describe features of the flow field starting from shock

wave position in the first two modes to weak pressure fluctuations in subsequent modes.

The flight dynamics part of POD modes, which are reported in Tab. 4.1, is non-zero

since they are calculated for the coupled system. Angular velocity and pitch rotation

have an almost equal participation in the first mode whereas also the vertical velocity

component is not negligible. A similar distribution is given for the second mode while

the third mode is dominated by the component related to angular velocity.
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(a) POD mode 1 (b) POD mode 3

Figure 4.13: Magnitude of pressure component for two POD modes.

Table 4.1: Flight dynamics part of first three POD modes.

Component Mode 1 Mode 2 Mode 3

vertical velocity −0.1081 + 0.0050j −0.0995 + 0.0115j 0.0202− 0.0147j
angular velocity 0.3511− 0.9364j 0.4063− 0.9137j 0.5876 + 0.8092j

pitch rotation 0.3957 + 0.1895j 0.4501 + 0.0252j −0.0071 + 0.0018j

The set of POD modes resulting from the data-based identification is used to build

the reduced order model by means of Eq. (3.9). In Fig. 4.14, the system’s response

to the encounter with a travelling ‘1-cos’ gust with intensity Vg = 0.1% of free-stream

velocity and wavelength Lg = 10 chord lengths is depicted. Results are reported for

the reduced model built using 10 and 25 POD modes. Only vertical velocity and lift

coefficient are shown since a similar agreement is obtained for all the flight dynamics

degrees-of-freedom. Using the data-based ROM with 10 POD modes provides results

which are qualitatively comparable to the full order reference. Underestimation of peak

values and phase lag is found for both vertical velocity and lift coefficient. The error is

due to the insufficient number of POD modes included in the modal basis. Additional

simulations, whose results are not reported here, were performed using 5, 15, 20, 25 and

30 POD modes in order to identify the minimum number of modes which provides good

accuracy. Using more than 25 POD modes did not improve results. Loads and motions

are evaluated accurately for both transient decay and final steady state when 25 modes

are employed as shown in Fig. 4.14. No appreciable differences were found between the

reduced and full order models. The same simulation was performed with the operator-

based ROM as well. Overall its results match the reference. Some differences arising in

the peak values might depend on modes lacking information to completely describe the

aerodynamic phenomena. This problem will be analysed in detail in the next chapter.
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Figure 4.14: Response to gust encounter for ‘1-cos’ gust of amplitude Vg = 0.1% free-stream
velocity and gust wavelength of 10 chord lengths at µ = 100.

4.5 Computational Cost

The computational cost for ROMs can be split in two main contributions, specifically

the mode identification using LFD and the integration of ROM equations. The computa-

tional cost of one LFD solution in Eq. (2.59), which needs less than 1 m 30 s on a single

Intel Xeon E3-1245 CPU, is taken as a reference. Calculating the flight dynamic modes

with the operator-based identification using the Schur complement method needs 2 LFD

solutions for each of 20 β-steps for a total of 40 LFD solutions (60 minutes). Solving

for the adjoint eigenpairs requires only 4 additional LFD solutions since the tracing

can start from direct eigenvalues. Hence, the identification with the Schur complement

method requires 44 LFD solutions. Using dynamic derivatives reduces the required

number of LFD solutions to 14 and the adjoint problem is solved in a negligible time

since no expensive computation needs to be performed. Introducing the damping for

dynamic derivatives needs 28 LFD solutions since the sampling performed for the simple

dynamic derivative method must be repeated at least twice. Regarding the data-based

identification, it requires a number of LFD solve equal to the number of modes, thus

25 LFD solutions were required. Concerning the second contribution which is given by

the integration of ROM equations, it can be assumed negligible on any modern CPU.

These numbers compare to the full order model which takes 1 h 30 m to perform a

forced-motion simulation which provides the same results of an LFD solution. It needs

1 h 58 m for a single ‘1-cos’ gust encounter. Please, note that once the reduced model is

built, it can be employed to investigate multiple gust lengths thus obtaining a reduction

in computational cost up to two order of magnitude. This is valid for the reduced model

based on both operator-based identification and the data-based one. An application of

such desirable versatility will be provided for a industry-size test case in Chapter 6.
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4.6 Chapter Summary

This chapter described the application of the operator-based and data-based identi-

fication methods to a two-dimensional aerofoil test case. In particular, the size of

the problem allowed for a detailed investigation of the operator-based identification

with the possibility of comparing results to eigenvalue extraction using direct methods.

The tracing procedure was described for two values of the mass ratio µ for which

the system shows different behaviours. They correspond to two flight conditions of a

small-to-medium range aircraft. The operator-based identification is easier to perform

for cases when flight dynamics is a dominant aspect of the system, as it is the case for

mass ratio µ = 100. For those cases, both Schur complement method and dynamic

derivative formulation lead to accurate results compared to the reference full order

data. More challenging is the identification when the flight dynamics mode is in the

pack of aerodynamic eigenvalues at µ = 35. The dynamic derivative method is then

used to provide an initial guess for the Schur tracing. The Schur complement method

converges to the exact eigenpairs provided by the direct method for all cases analysed

while limitations were found for the dynamic derivatives method.

Initial disturbance analysis are performed with the operator-based reduced model

for both values of mass ratio. A good agreement was found for µ = 100. Conversely,

only a qualitative comparison with the full order reference can be done at µ = 35.

This different behaviour requires a detailed analysis which is provided in the next

chapter for a more complex test case. Focusing on the case µ = 100, the operator-based

reduced model was expanded towards external excitation. First, a flap deflection was

considered. The operator-based reduced model built with the Schur tracing is able to

reproduce the full order flight dynamics response accurately. The second investigation

concerned gust disturbances and the reduced model was exploited to perform gust

encounter simulations including free flight effects. Overall, the operator-based ROM

provided accurate results while some small discrepancies are shown in the peak values

for lift coefficient. The same configuration was investigated using the data-based

identification. The system response to sinusoidal gusts was sampled using an LFD

approach at various frequencies and POD modes calculated. Results from this method

show a very good agreement with the full order solutions.

The test case represented an effective test bed before expanding the method to

larger cases. All key aspects were investigated, in particular mode identification, flight

dynamics coupling with computational fluid dynamics and linearised frequency domain

methods. In the next chapter, an application of the method to a more complex test

case is presented. Furthermore, some open questions raised in this chapter regarding

operator-based ROMs at small values of mass ratios will be addressed.
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Chapter 5

Longitudinal Dynamics

Application of the mode identification and model reduction to a wing-tail configuration

is exercised in this chapter. Specifically, two aerofoil geometries are combined. They

represent wing and horizontal tail, respectively, to describe the dynamics represen-

tative of a large civil aircraft. Transonic aerodynamics is based on RANS equations

with Spalart–Allmaras turbulence model so that viscous effects, shock waves and

their mutual interactions are included in the analysis.

The horizontal degree-of-freedom plays an important role and there are two relevant

flight dynamics modes, specifically short period and phugoid. The former has been

already introduced in Chapter 4. Regarding the latter, it describes a motion composed

of slow variations in flight speed and altitude but almost negligible changes in angle-of-

attack [34, 155]. Results support the findings already shown for the aerofoil in the previ-

ous chapter and problems which arise when increasing the complexity of the model are

addressed. Key challenge tackled in this chapter is mode identification and model reduc-

tion for cases when the flight dynamics eigenpairs are immersed in the cloud of fluid eigen-

values. A quasi-steady formulation, which is based on stability derivatives, is exploited

to overcome this problem by providing the operator-based identification with a reliable

initial guess. The majority of results has been published in a refereed journal paper [106].

5.1 Governing Equations

The equations derived in Section 2.2 are used in this chapter for longitudinal dynamics.

In particular, Equations (2.38) are restated here for convenience,

du∗

dτ
+W ∗0 q

∗ =
Cx
πµ

dw∗

dτ
− U∗0 q∗ =

Cz
πµ

dq∗

dτ
=

2Cm
πµr2α

dθ∗

dτ
= q∗

(2.38)
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Figure 5.1: Wing-tail configuration analysed for longitudinal dynamics (not to scale).

The reference length for the non-dimensional parameters is defined as the wing semi-

chord while coefficients of drag, lift and moment follow the usual convention.

5.2 Wing and Tail Configuration

The configuration investigated in this chapter is representative of the longitudinal

dynamics of a large civil aircraft. The model is composed of a supercritical Crank

aerofoil for the main wing and a NACA 0008 for the horizontal tail as shown in Fig. 5.1.

The centre of gravity, which is also the reference point for moment calculation, is at

10% of the main wing chord. The horizontal tail hinge axis is at 25% of its chord. The

RANS equations are discretised on 115,224 grid points with the far-field located 100

chord lengths away from the body. The fluid flow is transonic at Mach number of 0.75

and Reynolds number based on the chord length of the main wing of 7 million. The

non-dimensional parameter rα = 3.5, while two values for the non-dimensional mass

ratio µ are investigated, specifically µ = 730 and µ = 73. The former corresponds to a

condition for which the flight dynamics modes are outside the cloud of the eigenvalues

of the couples CFD/flight dynamic system and they are dominant modes for the system

dynamics. A physical interpretation is a combination of large aircraft mass and high

altitude for which the short period mode has low damping and the related eigenvalue

is close to the imaginary axis of the complex plane. The mass ratio of µ = 73 on the

other hand corresponds to a large civil aircraft flying at about 10 km altitude.

The initial equilibrium condition is obtained with an iterative trimming procedure

based on the Broyden method [27]. Target values of lift and moment coefficients, CL0

and CM 0, are chosen based on representative level flight conditions. The independent

unknowns α and δ are defined as angle-of-attack and horizontal tail rotation, respectively,

positive clockwise. The trim equations are written as

CL(α, δ) =CL0

CM (α, δ) =CM 0

(5.1)
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Figure 5.2: Convergence of trimming procedure for unknowns and objective functions.

and the Broyden method is applied to the first order Taylor expansion of these,(
∂CL
∂α

∂CL
∂δ

∂CM
∂α

∂CM
∂δ

)[
∆α

∆δ

]
=

[
CL0 − CL
CM 0 − CM

]
(5.2)

which can be written more concisely in vector form as J∆x = ∆FA. The iterative

method starts with an rough estimation of the derivative matrix J which is approximated

using central finite differences with infinitesimal increment ε. Independent variables

are altered in turns by adding ±ε and a steady state computation is performed for

each alteration. Values of lift and moment coefficients from steady state solutions

corresponding to +ε and −ε alterations of the same independent variable are used

to compute the derivatives according to the central scheme [114]. For the following

trimming iterations, angle-of-attack and tail rotation are imposed with RBF mesh

deformation and loads are calculated restarting the steady state computation for few

iterations. An update of ∆x is then computed. After the first iteration, the derivative

matrix J is updated for the current iteration i using data from the previous step i−1 [27].

Ji = Ji−1 +
∆FA − Ji−1∆xi
||∆xi||2

∆xTi (5.3)

The trimming procedure ends when the norm ||∆x|| is below a defined tolerance.

A thrust force is added to the horizontal direction whose value is calculated to

balance the drag at equilibrium condition.

The trimming procedure was applied for values of CL0 = 0.15 and CM 0 = 0. They

are representative of a large civil aircraft in cruise. Values of ε = 1 × 10−6 and a

convergence tolerance of 1 × 10−6 were adopted. The evolution of the independent

quantities α and δ is shown in Fig. 5.2(a). A smooth transition from zero to close-to-final

values takes place in the first few iterations for both angle-of-attack and tail rotation.

After 10 iterations, only tiny modifications to the value were obtained. Similarly, lift
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Figure 5.3: Mach number field resulting from trimming procedure.

−1.0

−0.5

0.0

0.5

1.0

- c
p

(a) Wing

−1.0

−0.5

0.0

0.5

1.0

- c
p

(b) Tail

Figure 5.4: Pressure coefficient at steady state for Crank and NACA 0008 aerofoils.

and moment coefficients go through few initial oscillations as shown in Fig. 5.2(b). The

increased angle-of-attack produces an increment in lift and alters the moment. An

update to the tail rotation is needed to balance the additional moment. The convergence

criterion is satisfied after 20 iterations. The converged angle of attack and tail rotation

are 0.91 deg and −0.85 deg, respectively, with clockwise positive rotations.

The resulting steady flow, used as reference point for the subsequent linearisation,

is shown in Fig. 5.3 plotting the Mach number field. A shock wave is clearly visible

on the wing’s upper surface whereas the shock is weaker on the lower one. Particular

care was taken to have a shock free tail as common practice for large civil aircraft

and that is achieved with an aerofoil thickness of 8%. The pressure coefficient Cp on

surfaces is shown in Fig. 5.4. For the main wing in Fig. 5.4(a), the diagram is typical
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of a supercritical aerofoil and a shock wave is clearly identifiable on the upper surface.

Regarding the tail’s pressure distribution in Fig. 5.4(b), no shock wave is found. Note

that despite a tail rotation of −0.85 deg, the Cp distribution is almost-symmetric and

this suggests the horizontal tail is working at a very small angle-of-attack. This is due

to the downwash effect which alters the effective flow incidence angle for the tail [122].

5.3 Quasi-Steady Approximation

Traditionally, flight dynamics performance of aircraft is assessed using an approach based

on stability derivatives [34, 155]. While their values are computed at equilibrium points

similar to LFD methods, the traditional derivatives do not take unsteady effects into

account. The method provides a quick approximation of flight dynamics characteristics

such as eigenvalues for handling assessment. However, its quick application (and

main limitation) comes from assuming that aerodynamics is completely described

by stability derivatives. This approach was applied to the test case and results are

compared to the non-linear full order model based on URANS equations. Thus, the

difference between the traditional formulation and the non-linear CFD-based model

is highlighted. In addition, flight dynamics eigenvalues from stability derivatives will

provide a good starting point to the operator-based identification described in the

next section. More mathematical details and a reproduction of bibliography results

for verification purposes are provided in Appendix C.

Hereafter, the traditional method is referred to as quasi-steady (QS). The name

is taken from literature [22, p. 279] where the QS simplification assumes very slow

unsteady aerodynamic phenomena. They are important at reduced frequencies very

close to the zero which designates the steady state behaviour. At such low frequencies

approaching zero, the dynamic derivatives are no longer complex-valued but they

become real numbers, which are referred to as stability derivatives. In this context, the

stability derivatives were calculated at µ = 73 (representing aircraft dynamics close to

cruising flight) using two strategies. First, central finite difference with two steady state

computations was employed. The value of stability derivative CLα = 14.57 corresponds

to the well-known slope of the curve relating lift coefficient to angle-of-attack. This is

shown in Fig. 5.5(a) for the CL(α) curve as well as its linear approximation. Similarly,

the evaluation of the stability derivative CM (α) is reported in Fig. 5.5(b). Secondly, LFD

solutions of Eq. (2.64) with a reduced frequency of zero provided the same values. Once

the stability derivatives are available, flight dynamics characteristics can be evaluated.

First, approximate eigenpairs for flight dynamics modes were obtained using the

stability derivatives. The short period mode and phugoid are associated to the two

complex-valued eigenvalues −0.0636 + 0.250i and −0.000565 + 0.000287i, respectively.

The difference between the two modes is clear. The former has a much higher frequency

and stronger damping whereas the latter shows little damping and very low frequency.
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Figure 5.5: Evaluation of stability derivative from steady state computation.
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Figure 5.6: Results for initial disturbance analysis in angular velocity of q∗(t = 0) = 0.1 deg.
Simulation performed with QS approach and URANS.

Secondly, the stability derivatives from the QS model were exploited to integrate

the flight dynamics equations in time for an initial disturbance simulation in the

angular velocity with q∗(t = 0) = 0.1 deg (per non-dimensional time-unit). Results

were obtained with the URANS full order model for the same excitation as well and

they are summarised in Fig. 5.6. Regarding the angular velocity shown in Fig. 5.6(a),

the QS curve has the same trend as the URANS reference and a similar oscillation

frequency. However, the decay ratio is different and this leads to underestimation of

peak values. A similar behaviour was obtained for the vertical velocity in Fig. 5.6(b).

The underestimation of peak values and also a frequency shift are clearly visible. The

same final equilibrium is eventually reached by both models. These differences could be

related to unsteady effects not described properly using stability derivatives only.

Although the QS model shows the same trend of the URANS model, the accuracy

in terms of flight dynamics response is inadequate for high-fidelity purposes. However,
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Figure 5.7: Magnitude and phase of dynamic derivative CLw (i.e. lift coefficient with respect
to plunge) shown as representative entry of Q.

the QS model provides a starting point for the ROM. In particular, the approximate

eigenpairs obtained in this section served as initial guess for the operator-based tracing.

5.4 Operator-based Identification

The operator-based identification is discussed next. The dynamic derivatives were

calculated at 7 reduced frequencies in the range 0 to 1 using an LFD solver. The

frequency range was chosen based on the estimation of flight dynamics eigenvalues

provided by the QS method. The derivative relating lift coefficient to plunge motion is

depicted in Fig. 5.7 as representative entry of the matrix Q in Eq. (3.25). It is a key entry

of Q since its value can be be linked directly to the short period frequency [34]. The

trend for magnitude, which is qualitatively comparable to results presented in Fig. 4.3,

is characterised by a decreasing curve. Similarly, the phase is shown in Fig. 5.7(b)

and it decreases as function of frequency. A local minimum is found around a reduced

frequency of 0.15. Forced motion simulations were performed with URANS to verify

the LFD calculations and results, which were obtained as described in Section 3.2.1,

are reported in Fig. 5.7 as well. The tiny amplitude employed for the time-domain

simulations is 0.0001 in order to have a linear behaviour of the system. Matching

results were found for both magnitude and phase, confirming the validity of the LFD

method. In addition to dynamic derivatives, the stability derivatives evaluated with

the QS method in Section 5.3 are included in the plots at zero frequency. This is done

to highlight the difference between static and dynamic derivatives in the context of

flight dynamics since the former do not depend on the frequency.

The same frequencies were sampled at 3 different damping values in the range from

-0.1 to 0 in order to include, later on, the real part of eigenvalues when calculating Q for

the tracing. Figure 5.8 presents results of the mode identification for both mass cases.
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Figure 5.8: Results of operator-based mode identification compared to reference solution.
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Table 5.1: Value of flight dynamics eigenvalue for mass case µ = 730.

Method Short period Phugoid

quasi-steady −0.0063 + 0.0814j −0.000063 + 0.0001903j
dyn. derivatives −0.0004 + 0.0752j −0.000001 + 0.0000011j

dyn. derivatives with damping −0.0003 + 0.0752j −0.000001 + 0.0000017j
Schur tracing −0.0005 + 0.0751j −0.000050 + 0.0000470j

Direct methods were used to calculate some eigenvalues of the coupled Jacobian matrix

which are shown as a reference solution. These reference eigenvalues were obtained using

multiple shifts distributed along the positive part of the imaginary axis. The tracing

procedure for the dynamic derivatives method started from approximate eigenpairs

obtained with the QS approach described in Section 5.3 and depicted in the plot as well.

The short period mode was identified. The phugoid mode, which differs significantly

in terms of frequency from the short period, was identified as well since the horizontal

degree-of-freedom was retained. No noticeable difference was found between the three

identification methods for µ = 730. Assuming the dynamic derivatives are a function

of frequency only is an acceptable approximation since the target eigenvalues are very

close to the imaginary axis. Table 5.1 contains the eigenvalues as provided by the

operator-based identification for both flight dynamics modes. Regarding the short

period mode, results do not change sensibly when the damping is included. The QS

method overestimates eigenvalue’s real part whereas a good approximation is produced

for the imaginary one. As far as the phugoid mode is concerned, eigenvalues from the

dynamic derivatives methods are very similar. A large difference in order of magnitude

is found for the QS method. However, it must be noted that eigenvalues for phugoid

mode are very small numbers which could be affected by numerical inaccuracies.

Concerning the mass case µ = 73, Figure 5.8(b) depicts a short period inside the

cloud of eigenvalues. Both phugoid and short period eigenvalues are affected by an error

when they are obtained with dynamic derivatives. These are calculated discarding the

real part of the eigenvalue in Eq. (3.25) and this leads to underestimation of frequency

and damping for the short period as well as overestimation of the phugoid frequency.

Including the damping improved the results and provided an initial guess for the Schur

complement method. The refinement with the Schur tracing led to the same results

provided by the direct method. Specifically, the exact eigenvalues of short period and

phugoid modes are −0.0660+0.275i and −0.000486+0.00469i, respectively. A summary

of results is provided with Tab. 5.2. Regarding the short period mode, identification

using dynamic derivatives improves when the damping is taken into account since

results are closed to the exact value provided by the Schur complement method. In

addition, the QS method provides a good approximation. Results for the phugoid mode

are reported as well. Using dynamic derivatives leads to the largest offset in terms of

frequency whereas the inclusion of damping produces accurate results.
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Table 5.2: Value of flight dynamics eigenvalue for mass case µ = 73.

Method Short period Phugoid

quasi-steady −0.0636 + 0.2502j −0.000565 + 0.0002872j
dyn. derivatives −0.0390 + 0.2444j −0.000167 + 0.0168104j

dyn. derivatives with damping −0.0660 + 0.2746j −0.000486 + 0.0046881j
Schur tracing −0.0656 + 0.2741j −0.000485 + 0.0004845j
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Figure 5.9: Response to initial disturbance in angular velocity of q∗ = 0.1 deg for mass case
µ = 730.

Once direct eigenpairs are identified solving Eqs. (3.15), the corresponding adjoint

ones are computed by solving Eq. (3.22) and starting from direct eigenvalues. The model

reduction discussed in Chapter 3 is then applied and the number of degrees-of-freedom is

reduced from 576,126 to 2. Results for an initial disturbance in the angular velocity are

shown for µ = 730 in Fig. 5.9. As expected for this case, full and reduced models show

the same behaviour in terms of motion as presented with angular velocity in Fig. 5.9(a).

Small differences are found at peak values. Similarly, lift coefficient in Fig. 5.9(b) shows a

good agreement between ROM and full order model. The largest error, quantified around

3% of maximum CL, occurs at the first oscillation. In Fig. 5.10 results for an encounter

of a ‘1-cos’ gust with an amplitude of 0.1% of the free-stream velocity and a gust

wavelength of 20 wing chord lengths is reported. The small gust amplitude was chosen

to excite the system in the linear regime. The system response is well reproduced by all

the operator-based approaches. Small differences are found between the ROM based on

dynamic derivatives and the one based on Schur tracing for vertical velocity which is

shown in Fig. 5.10(a). Specifically, the largest difference of less than 1% is found in the

first part of the simulation, before the first peak. A difference of 2% between full order

model and ROMs is shown in the first part of the simulation, up to the first peak value,

since no information is contained in the eigenpairs to represent the external disturbance.

Regarding lift coefficient in Fig. 5.10(b), the build-up due to gust is not captured fully
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Figure 5.10: Response to a ‘1-cos’ gust with intensity Vg = 0.1% of the free-stream velocity
and wavelength of 20 wing chords for mass case µ = 730.
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Figure 5.11: Response to initial disturbance in angular velocity of q∗(t = 0) = 0.1 deg at mass
ratio µ = 73.

since it is due to the external disturbance. The peak value for lift coefficient is computed

with an error of 3%. However, the full order reference is reproduced accurately once the

gust has passed. Overall, the ROMs match the full order results of initial disturbance

and gust encounter simulations, with the limitation of lift build-up due to gust, and

therefore the focus will be on the more challenging mass case µ = 73 from now on.

For this case, an initial disturbance in the angular velocity of q∗(t = 0) = 0.1 deg

(per non-dimensional time-unit) provides the response shown in Fig. 5.11(a). The

mode identification performed while discarding the real part of the eigenvalue for the

interaction matrix is not effective when the flight dynamics eigenvalues are strongly

coupled (or interacting) with aerodynamics. Using the dynamic derivatives leads

therefore to lower accuracy. Including the damping produces results which are very close

to the ones from the exact Schur complement method. Hence, for sake of clarity only
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Figure 5.12: Response to gust encounter for a ‘1-cos’ gust of amplitude Vg = 0.1% free-stream
velocity and gust wavelength of 10 chord lengths at µ = 73.

the latter will be kept in the following as reference for the operator-based identification.

The comparison between full order model and ROM based on Schur tracing shows

that the reduced model is able to reproduce the general trend of the system response.

Initial conditions have a small offset and results match the reference when oscillations

decay. However, a phase lag and an underestimation of the peak values are visible

during the transient. An explanation might be that the two modes included in the

modal basis contain only part of the required information.

This assumption is investigated further by calculating more eigenpairs with the

direct method and including them in the modal basis. Although this cannot be used as

a model reduction technique because of the prohibitive computational cost to extract

eigensolutions, it does provide a posteriori confirmation. Results of the model reduction

including an increasing number of modes surrounding the short period and phugoid is

depicted in Fig. 5.11(b). Data for the model reduction performed with flight dynamics

modes only is included as reference. Besides the two flight dynamics modes, 48 and 128

additional eigenpairs closest to the short period are subsequently added to the modal

basis. Results for the transient improve gradually and with 130 modes the system

response is well represented. Another set of 80 eigenpairs closest to the phugoid is then

added to the modal basis, for a total of 210 modes. This further improves the results

for peak values. Information about rigid-body motions is distributed in the eigenpairs

surrounding the flight dynamics eigenpairs highlighting the strong coupling. Hence, the

two flight dynamics modes contain only part of the information required for the model

reduction. In those cases, flight dynamics modes from the operator-based identification

might not be sufficient to reproduce accurately the full order results.

The analysis now proceeds with external disturbances. Results are presented in

Fig. 5.12 for a ‘1-cos’ gust with intensity Vg = 0.1% of free-stream velocity and gust

wavelength Lg = 10 chord lengths. A preliminary comparison is made between reference
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results from CFD-only and coupled gust simulations. No motion is allowed for CFD-only

simulations and Fig. 5.12(b) shows the lift build-up followed by a smooth decay. In

contrast, results of the coupled approach produce oscillating behaviour. Regarding lift

coefficient, the amplitude of the first oscillation is lower in comparison to CFD-only

simulations because part of the energy goes into the rigid-body motions. The subsequent

system response is composed of few decaying oscillations. The same simulation was

performed with an operator-based ROM containing the short period and phugoid modes.

Concerning the vertical velocity in Fig. 5.12(a), results converge to the initial value,

whereas the transient is not reproduced well, which is highlighted by phase lag and

underestimation of peak values. The first peak is due to the aerodynamic disturbance

and it is not fully captured by the flight dynamics modes. This observation is supported

in Fig. 5.12(b) for lift coefficient, where the amplitudes of the first few oscillations are

not properly described either. The strategy of adding the 208 modes surrounding the

short period and phugoid to the modal basis improves the results when the disturbance

has passed. However, differences are still visible in the first two oscillations of vertical

velocity. Subsequent fluctuations are fully captured by this reduced model as well as the

asymptotic value for the final equilibrium. The same trend is visible for lift coefficient

and the initial build-up is not completely reproduced. These modes, all coming from the

coupled Jacobian matrix, are not able to fully reproduce the effects of a pure aerodynamic

external disturbance and the first peak values are therefore not accurately captured. A

possible explanation is that gusts excite an undefined number of modes which are yet

not included in the modal basis. They are modes of the coupled system which mainly

contain aerodynamic information. Such speculation is supported by literature studies

about the model reduction of linear aerodynamic systems for which so-called gust modes

can be identified with direct methods and included in the modal basis [39]. Although the

identification of such modes with the operator-based method is theoretically possible, the

computational cost of tracing an undefined number of modes is prohibitive when using

CFD aerodynamics. Thus, an alternative method based on the data-based identification

is investigated next for external disturbances and low mass ratios.

5.5 Data-based Identification

A strategy to improve the accuracy of the reduced model for external disturbances and

low mass ratios is to use the data-based approach presented in Section 3.3 to calculate

modes for the model reduction. The modal basis containing POD modes was computed

with a number of snapshots ranging from 15 to 35. Snapshots were distributed linearly

in the frequency range between 0 and 2 to investigate a typical range of gust lengths

and optimisation of the sampling process is not attempted. The upper limit of the range

was chosen according to the Fourier decomposition of the ‘1-cos’ gust as described in

Section 2.3. Please note that in general the range’s upper limit depends on the gust
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Figure 5.13: Response to gust encounter for a ‘1-cos’ gust of amplitude Vg = 0.1% free-stream
velocity and gust wavelength of 10 chord lengths at µ = 73.

shape. Although for aeronautical applications the gust shape is defined by regulation

as ‘1-cos’ , that is not the case in general for other fields. Application to different

gust shapes could require a larger (or smaller) frequency range in order to achieve an

accurate reconstruction of the input signal with the Fourier decomposition as described

in Section 2.3. Once the frequency range is defined, the quality of results depends on

the number of snapshots used as shown in Fig. 5.13. Model reduction performed with

15 POD modes led to results not matching the full order model since a different decay

rate and a phase lag are clearly identified for the vertical velocity. The values for lift

are underestimated at the beginning and the subsequent oscillations are not reproduced

properly. Increasing the number of snapshots provides better results and the full order

results are matched with 25 POD modes. Such reduced model is capable of describing

accurately the flight dynamics response and aerodynamic forces. Some minor differences

arise for peak values of the vertical velocity after the first few oscillations. Although

these differences are negligible, they can be eliminated by further increasing the number

of snapshots up to 35. No appreciable difference is visible between the ROM with 35

POD modes and the full order model since an error of less than 0.5% is found.

The 35 POD modes can be sorted in terms of importance using the real-valued

POD eigenvalues σ in Eq. (3.43). This criterion is related to the energy content of

each mode. In Fig. 5.14, the POD eigenvalues corresponding to the first 15 modes

are reported. The energy distribution shows a strong decay after the first 3 modes.

This information can be used to perform a subsequent subselection and retain just

few modes for the reduced model. In fact, the largest eigenvalue is nine orders of

magnitude larger than the fifteenth mode which therefore contributes less to the ROM

reconstruction. In terms of physical meaning, the interpretation of POD modes is not

obvious. They describe features of the coupled system which involve fluid flow as well as

free-flight phenomena. In Fig. 5.15, some POD modes are depicted using the magnitude
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Figure 5.14: POD eigenvalues.

of the pressure component. The first mode in Fig. 5.15(a) corresponds to the most

energetic one and it concerns mainly the wing’s near field. A shock wave is clearly

identified on the upper surface while the pressure component is larger around the tail.

The distribution is mostly uniform elsewhere in the domain. A physical interpretation

matches the most important feature of the transonic flow which is the shock wave. The

following 3 modes are not depicted since they are similar to the first one. They gradually

introduce additional features apart from the shock wave. In Fig. 5.15(b), the fifth POD

mode is depicted. In terms of energy, it is associated to a value which is an order of

magnitude smaller than the first mode. It clearly describes the pressure distribution on

the wing lower surface. However, the information is spread elsewhere as well since flow

structures involving the whole domain are shown. The fifteenth POD mode presented

in Fig. 5.15(c) has an energy 1 × 109 times smaller than the first one. The pressure

magnitude is spread in the flow field and it is not concentrated anywhere in particular.

The flight dynamics parts of the POD eigenvectors is obtained from the data-based

identification as well since the method is applied to the coupled system. The flight

dynamics parts of POD modes 1, 5, and 15 are normalised to have unitary norm

and reported in Table 5.3. The largest component of mode 1 is the vertical velocity

which is followed by pitch rotation. Mode 5 is mainly composed of pitch rotation and

its second largest component is vertical velocity. A strong horizontal component is

present as well. The dominance of vertical velocity and pitch rotation is confirmed

for mode 15. In general, interpreting physical phenomena from POD modes is not

trivial since they are composed of a superposition of horizontal and vertical velocity

as well as pitch rotation. This is in contrast to the results from the operator-based

ROM for which a clear distinction between short period and phugoid mode is possible.

Sorting the POD modes by their energy contents might represent a possible way to

identify the most important features of the flow field.

The data-based reduced model provides accurate results for gust encounter sim-

ulations in the linear regime. An interesting investigation concerns the applicability
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Figure 5.15: Magnitude of pressure components of POD modes.
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Table 5.3: Flight dynamics part of three POD modes.

Component Mode 1 Mode 5 Mode 15

horizontal velocity −0.0002 + 0.0001j 0.1086− 0.1174j −0.0082 + 0.0113j
vertical velocity −0.2323 + 0.7067j −0.5150 + 0.2884j 0.7900 + 0.0079j
angular velocity −0.1883 + 0.0137j 0.0769− 0.0122j 0.0413 + 0.0524j

pitch rotation 0.0453 + 0.6395j 0.3697− 0.6952j 0.6068 + 0.0546j
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Figure 5.16: Response to gust encounter for ‘1-cos’ gusts with amplitudes of Vg = 0.1% and
Vg = 10% free-stream velocity and gust wavelength of 10 chord lengths at µ = 73.

of this methodology to larger amplitude gusts. In those cases, non-linear effects are

expected to take place. Although the reduced model should be compared to the full

order model acting linearly only, non-linear effects were investigated by performing

a ‘1-cos’ gust simulation with a wavelength of 10 chords and a large amplitude of

Vg = 10% free-stream velocity. This corresponds to an amplitude similar to EASA

regulations [57]. Results are scaled by the gust amplitude and presented in Fig. 5.16

alongside the linear full order solution and the ROM curve already shown in previous

plots and corresponding to an amplitude of Vg = 0.1% free-stream velocity. For this

particular case, a largest difference of ±5% was found between linear and non-linear

results, since non-linear effects are weak and they involve mainly peak values. The

large-amplitude gust produces results which are almost proportional to the ones pro-

duced by the small-amplitude one. This suggests two considerations. First, a linear

approximation can produce reliable results when investigating gusts with regulation

amplitude. Secondly, the reduced model based on the data-based identification, which

is not able to reproduce any non-linearity, can be accurate enough to investigate the

behaviour of the system during an encounter with a certification gust. These statements

are investigated further for an industry-size test case in the next Chapter 6.
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5.6 Computational Cost

The computational cost of the ROM can be split in two main contributions. The first

involves building the modal bases using LFD calculations for both operator-based and

data-based approaches. Obtaining an LFD solution for the wing-tail configuration

takes around 7 min on an Intel Xeon E3-1245 CPU (single-core) converging 8 orders

of magnitude. The total CPU time is summed as 2 h for operator-based ROM with

dynamic derivatives, 7 h for the one with Schur tracing refinement and 3 h for the

data-based ROM with 25 samples. The second contribution is given by the integration

of the ROM equations and omitted in this calculation since it is negligible. These

numbers are compared to the 3 days required by one non-linear full order reference

simulation coupling unsteady RANS aerodynamics and non-linear flight dynamics

equations for gust encounters on the same single-core hardware. Typical parameters

employed for the time-domain simulation were a non-dimensional time-step of 0.05.

Convergence in dual-time was met when a residual of 1 × 10−3 was reached. The

maximum number of 100 inner iterations was set and Cauchy convergence for drag

and using 19 samples with a tolerance of 1× 10−10 was enabled during inner iterations

to reduce the computational time. Considering that multiple gust lengths must be

analysed during aircraft design, a reduction factor of 100 can be obtained.

5.7 Chapter Summary

In this chapter, mode identification and model reduction were exploited for the lon-

gitudinal dynamics of a simplified test case describing the dynamics of a large civil

aircraft. Some fundamental challenges were addressed. Specifically, identification of

flight dynamics eigenpairs when they are located inside the cloud of fluid eigenval-

ues, for example at low values of mass ratio, was a crucial task to be addressed. It

was successfully performed with a hierarchy of methods which provide an increasing

level of accuracy. Tracing was applied to multiple flight dynamics modes as well. In

addition, a non-trivial equilibrium condition was taken into account using a trim-

ming procedure based on the Broyden method.

Model reduction was investigated for two parameter sets corresponding to different

mass ratios. The first case concerned a condition with dominant flight dynamics

modes and the operator-based method reproduced accurately the full order results

for both initial disturbance and gust encounter simulations. For the second case, the

flight dynamics eigenvalues were located in the cloud of aerodynamic ones. Their

identification needed a procedure based on multiple steps which started from the

results of the quasi-steady method and proceeded with a refinement based on dynamic

derivatives and Schur complement method. The operator-based identification led to

good results for initial disturbance analysis. However, results were unsatisfactory for the
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gust encounter simulations. An investigation showed that eigenvectors coming from the

coupled Jacobian matrix do not contain enough information to fully reproduce system’s

response to external disturbances. Hence, the data-based identification was performed

for such cases and a interpretation of the POD modes was suggested.

In conclusion, a key finding of this chapter is the reliable multi-step procedure which

enables an application of the method to three-dimensional test cases such as the one

described in Chapter 6. It does not need computing the full set of eigenvalues for the cou-

pled Jacobian matrix and it is capable of identifying flight dynamics eigenpairs regardless

their position in the complex plane. Based on results presented in this chapter, the

application of the proposed method is summarised as follows. First, the operator-based

identification is performed using dynamic derivatives calculated for reduced frequencies

in the range where flight dynamics modes are expected. To speed up the procedure, the

tracing can start from an approximation obtained with a quasi-steady approach. Sec-

ondly, if flight dynamics eigenvalues are far from the imaginary axis, a refinement using

the Schur complement method is required. Thirdly, if the focus is on system response

to external disturbance, the data-based identification can provide accurate results.

95



96



Chapter 6

Longitudinal/Lateral Dynamics

In this chapter, mode identification and model reduction technique are scaled from small-

sized two-dimensional applications to a practical three-dimensional test case. Technical

challenges, which arise when the investigation is scaled to large industry-relevant cases,

are addressed. Specifically, performing the tracing with Schur complement method is

computationally challenging and the operator-based identification is based on samples

of dynamic derivatives using a linearised frequency domain solver instead. The tracing

procedure was further improved to produce reliable results with a limited number of

samples. In addition, large part of the eigenspectrum, easily calculated for small cases

with direct methods, is now inaccessible. Although such information is not needed for

the reduction per se, it provided a useful reference for comparison.

A modular approach to the model reduction was developed which is composed of

three parts. First, the operator-based identification is employed for the flight dynamics

modes. Results concerning aircraft’s stability and handling quality are then available.

Secondly, the data-based identification is applied to the aerodynamic subsystem only.

Thirdly, modes coming from both operator-based identification and data-based one are

included together in the modal basis for the subsequent reduction. The modularity

consists in computing one or more of the three parts separately and being able to

build a joint reduced model afterwards. This is a time-saving approach which makes

building the reduced model for the coupled system faster. Existing software and data,

which are usually available for the aerodynamic subsystem only, can be exploited and

some computations concerning aerodynamics can be skipped.

Regarding the full order model, the equations of motion are used in modal form.

This formulation makes the implementation easier since software infrastructure already

available for structural dynamics can be exploited. Aerodynamics is provided solving

RANS equations with Spalart–Allmaras turbulence model and surface displacements,

calculated with the modal solver, are applied to the CFD grid using mesh deforma-

tion. The method was implemented using DLR-TAU for the aerodynamic subsystem.
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The coupling between CFD and rigid-body solver was achieved within the FlowSim-

ulator software framework [99]. An ad-hoc code was developed for the tracing and

for the operator-based model reduction. Existing results and tools were exploited

for the data-based identification of the aerodynamic subsystem. In particular, the

computationally expensive calculation of the snapshots matrix was avoided thanks to

results produced in [17] and made available by the authors. The majority of results

reported in this chapter have been presented in [105].

6.1 Governing Equations in Modal Form

The modal formulation of flight dynamics equations described in Section 2.2 is exploited

in this chapter for the flight dynamics model. The six modal shapes and their related

generalised masses, which are needed to solve Eq. (2.47), were obtained by analysing

the structural finite element model with MSC.Nastran [101]. They are used to perform

the integration of Eq. (2.46), which is restated here for convenience,

M
d2η

dt2
= F (2.46)

and to calculate results such as displacements and generalised forces. The mode shapes

are a linear combination of rigid-body translations and rotations in the three-dimensional

space. This becomes clear in Fig. 6.1. For example, mode 1 in Fig. 6.1(a) is composed

mainly of yaw rotation but a translational component in the longitudinal plane is visible.

Mode 4 in Fig. 6.1(d) shows roll rotation alongside vertical translation. Similarly, none

of the remaining modes corresponds to pure translational or rotational modes either.

A physical interpretation of results is provided with the transformation in Eq. (2.49).

An new set of 6 pure translational and rotational modes is created by prescribing unit

displacements, specifically translations of 1 m in each of the three directions and rotations

of 1 deg around each of the three axes according to the sign convention usually adopted in

flight dynamics [34, 122], shown in Fig. 6.2. The mode shapes for the new set of modes are

depicted in Fig. 6.3. Each of them corresponds to a single rigid-body degree-of-freedom.

This facilitates the physical interpretation of results and it is in contrast with the set

of modes in Fig. 6.1, where each mode is a linear combination of rigid motions. The

Nastran modes are store in matrix Ξ, the pure rigid-body modes are stored in matrix Υ.

The transformation T in Eq. (2.49) is computed and applied to displacements and

velocities as post-processing step in order to translate results from the Nastran set of

modes, which are used to perform computations, to the pure rigid-body modes, which

provide physical insight. The transformation is also used to obtain physical interpreta-

tions of the generalised aerodynamics force (GAF) matrix Q which is always computed

using the Nastran set of modes. When the GAF matrix is translated into the pure

rigid-body set of modes, it represents the ratio of aerodynamic forces with respect to the
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(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6

Figure 6.1: Rigid-boy mode shapes emerging from wind-off structural analysis. A scaling
factor is applied for better visibility.
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Figure 6.2: Sign convention used to present results with physical quantities.

motion in distinct directions of the reference frame shown in Fig. 6.2. Hence, its entries

can be interpreted as dynamic derivatives in the traditional flight dynamics context.

6.2 Large Civil Aircraft

Results are presented for a large civil aircraft in cruise condition flying at 10 km

altitude, Mach number of 0.85, Reynolds number of about 49 millions and a mean

aerodynamic chord (m.a.c.) of 7 metres. The geometry is representative of a modern

long-range, wide-body passenger aircraft. The mesh for CFD calculations consists of

nearly 8 million points with a far field located at 77 wing m.a.c. away from the body.

The steady state solution results from the iterative trimming procedure based on the

Broyden method [27] already discussed in Section 5.2. Conditions for straight and

level flight provide target values for lift and moment while elastic deformations are

taken into account by including 94 elastic modes in the procedure. The reference point

for rotation is the centre of mass. Angle of attack and horizontal tail rotation are

updated iteratively to meet the trimming requirements. Thrust balances drag at the

equilibrium and its orientation is assumed horizontal at all time. The CFD mesh is

deformed at each iteration to account for elastic deformation. The pressure coefficient

for the resulting steady state is shown in Fig. 6.4. A shock wave is clearly visible

on the upper surface of the wing while the horizontal tailplane is shock free. These

steady non-linearities are retained in the reduced model which describes the variations

of fluid and flight dynamics unknowns around the trimmed solution.
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(a) X translation mode (b) Roll rotation mode

(c) Y translation mode (d) Pitch rotation mode

(e) Z translation mode (f) Yaw rotation mode

Figure 6.3: Artificial pure rigid-body mode shapes enabling physical interpretation of results.
A scaling factor is applied for better visibility.
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Figure 6.4: Steady state surface pressure resulting from trimming procedure and undeformed
aircraft shape.

6.3 Operator-based Identification

The operator-based identification procedure is described next for flight dynamics modes.

The geometry resulting from the elastic trimming is now frozen and the system assumed

to evolve rigidly without any additional elastic deformation. The 6× 6 GAF matrix Q

in Eq. (3.25) was pre-computed in the frequency domain. For each of the 6 rigid-body

modes, the right-hand side of Eq. (2.63) was produced using central finite differences

and the linear system solved at the specified reduced frequencies. This corresponds to

calculating the aerodynamic responses to sinusoidal rigid motions. The complex-valued

flow solutions were then projected onto the generalised rigid-body modes providing

the frequency response function relating the sinusoidal excitations to GAFs for the 6

modes. The results of these calculations are complex-valued GAF matrices computed

at 7 positive values of reduced frequency spaced with a power law of 3 in the range

[0, 0.05]. The upper limit was chosen based on typical frequencies of flight dynamics

modes for the same class of aircraft. Magnitude and phase of two representative entries

of the GAF matrix as function of frequency are depicted in Figs. 6.5(a) and 6.5(b).

Equation (2.49) was used to translate the matrix into the reference frame shown

in Fig. 6.2 in order to provide physical quantities.

The tracing in Eq. (3.25) leading to the flight dynamics parts of the eigensolutions of

the coupled system is performed using Newton’s method reported in Section 3.2.2. Cubic

Hermite spline interpolation is adopted to evaluate Q at frequencies not sampled. A

relaxation parameter of 0.8 is adopted for the Newton solver. The derivative dQ
dλ ≈

∂Q
∂ω in
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(c) Eigenspectrum showing flight dynamics eigenvalues resulting
from tracing.

Figure 6.5: Operator-based identification for a large civil aircraft.
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Eq. (3.40) is taken into account during the implementation to accelerate the convergence

and it is calculated using central finite differences with ε = 1× 10−8. The procedure to

solve Eq. (3.25) starts at a small value of β = 0.15 with the calculation of the initial

guess, needed by Newton’s method, using the quasi steady state approach described in

Section 5.3. Specifically, eigensolutions of the small system in Eq. (3.25) are calculated

assuming Q = Q(ω = 0) with direct methods implemented in the eig() function in

MATLAB as previously done for the two-dimensional wing-tail configuration. It can be

noticed that the entries of Q(0) correspond to stability derivatives which are usually

adopted to investigate the behaviour of flight dynamics systems. The eigensolutions of

this simplified problem provide the initial guess for the tracing which is composed of two

loops. The outer loop increases the value of β gradually in 19 steps until the coupling

of flight dynamics and aerodynamics is fully taken into account at β = 1. At each value

of β, the inner loop is started by the Newton solver which iterates until the norm of the

residual vector reaches machine precision. The converged solution is then returned to

the outer loop which will use it as initial guess to seek the eigensolution for the next

β value. Calculation of eigenpairs corresponding to negative reduced frequencies are

obtained by complex conjugating the ones computed at positive frequencies.

The eigenvalues resulting from the tracing are shown in the complex plane in

Fig. 6.5(c). Their evolution from the rigid-body modes characterised by zero frequency

and damping is clearly visible and due to the gradual inclusion of aerodynamics. The

tracing procedure shows that these eigenvalues move to locations in the complex plane

corresponding to real numbers as well as complex conjugate pairs and a physical

interpretation can be given in terms of dynamic stability modes [34]. They are identified

using their eigenvector components in addition to frequency information available in

literature. For longitudinal dynamics, two oscillatory modes were expected, namely

short period and phugoid. The short period corresponds to the complex-conjugate pair

with the highest frequency. It describes pitch rotation and vertical velocity. Regarding

the phugoid which is characterised by varying pitch rotation and horizontal speed, it

must be noted that some simplifications are made in the full model since the thrust

orientation does not follow the pitch rotation. Although this does not fully reflect the

physical behaviour of long term dynamics, the phugoid mode can be found close to the

origin having a very long period and small damping. As a result of the simplifications,

the real part of its eigenvalue is a very small positive number.

Regarding lateral dynamics, three modes were expected, specifically Dutch roll,

spiral and roll subsidence modes. The first one corresponds to the complex conjugate

pair with the second highest frequency. It lies in the same frequency range of the short

period mode but it is completely unrelated to longitudinal dynamics since it is mainly

composed of roll and yaw rotations, as shown shortly. The roll subsidence mode is stable

with a negative real part and zero frequency. Conversely, the real-valued spiral mode is

unstable. The physical interpretation of the remaining eigenpairs is less clear compared
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(a) Adjoint eigenvector (b) Direct eigenvector

Figure 6.6: Real part of pressure component for short period eigenvector.

with the traditional scheme. Their eigenvectors represent absolute translations which do

not affect the aerodynamic response [22] and for which the eigenvalues are supposed to

be zero. However, the corresponding eigenvalues are small real numbers located around

the origin and their values could be affected by numerical inaccuracies.

The tracing procedure is performed for direct and adjoint problems solving Eq. (3.25).

The fluid parts of direct eigenvectors are then computed with Eq. (3.13) assuming

<(λ) = 0, to employ aerodynamics consistent with the calculation of dynamic derivatives.

This simplification avoids convergence problems for the linear solver as well. Such

convergence problem might arise when λ is in the cloud of the aerodynamic eigenvalues

and the shifted matrix (Aff − λI) becomes almost singular. Although computing

the cloud is computationally prohibitive, the short period mode is suspected to be

close to aerodynamic eigenvalues since the calculation of its fluid part by means of

Eq. (3.13) was extremely difficult. Solving the linear system with <(λ) = 0 avoids the

problem and simplifies the calculation of the eigenvectors’ fluid components. However,

this could lead to lower accuracy of the final reduced order model since the influence

of damping on fluid part of eigenvectors is discarded.

The real parts of pressure component for the adjoint and direct fluid part eigenvectors

related to the short period mode are depicted in Fig. 6.6. The adjoint one in Fig. 6.6(a)

shows that most of the information is located upstream. They form an asymmetric area

which extends from the aircraft to the far field. The direct eigenvector in Fig. 6.6(b)

has stronger components closer to the aircraft surface and in the wake. The sign of

pressure alternates leading to asymmetrical results. Physically, this suggests a mode

composed of vertical translation and/or rotation in the longitudinal plane. In addition,

the components of the eigenvectors show a symmetry with respect to the longitudinal

plane, as expected from a longitudinal flight dynamics mode.
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(a) Adjoint eigenvector (b) Direct eigenvector

Figure 6.7: Real part of pressure component for Dutch roll eigenvector.

Conversely, the Dutch roll, which is presented in Fig. 6.7, is a lateral mode. The

pressure distribution for the direct eigenvector is now antisymmetric in the XZ plane as

shown in Fig. 6.7(b). The trace of the steady-state shock wave is clearly visible on the

wing’s surface and the pressure distribution shows opposite signs for both wing and wake.

A physical interpretation is that the Dutch roll mode rotates the aircraft in the lateral

plane and pressure changes by increasing on the port and decreasing on the starboard.

This is a distinctive behaviour of lateral modes. The adjoint eigenvector in Fig. 6.7(a)

presents the information clustered in the region upstream the aircraft. The top view

shows that pressure in regions located on the left and right of the fuselage has an

antisymmetric behaviour. This confirms the findings obtained for the direct eigenvector.

Pressure components for the remaining eigenvectors are illustrated in Fig. 6.8.

Regarding the phugoid, its adjoint eigenvector has most of the information upstream

as shown in Fig. 6.8(a). Multiple regions can be identified where pressure alternates

between positive and negative. A similar behaviour is shown for the direct eigenvector

in Fig. 6.8(b). Regions of positive and negative pressure can be identified on the wing as

well. Both adjoint and direct eigenvectors are symmetric with respect to the XZ plane.

Compared to the short period mode in Fig. 6.6, the phugoid’s pressure distribution

appear more tidy. As far as the roll mode is concerned, its adjoint eigenvector is depicted

in Fig. 6.8(c). It is a lateral mode and the information upstream is distributed in four

bands with positive and negative pressure. In addition, lateral modes are characterized

by antisymmetric distribution of the direct eigenvector and this is confirmed for the

roll mode in Fig. 6.8(d). Pressure is lower in the starboard and higher in the port.

This provides physical insight about how the flow is affected by the roll mode. The

set of lateral and longitudinal flight dynamics modes is completed by the spiral mode.

Pressure distribution for its adjoint eigenvector is shown in Fig. 6.8(e). Areas of negative
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and positive pressure are located upstream with a smooth transition between them. A

physical interpretation is not immediate since the motion related to the spiral mode

is complex and composed of roll, yaw and vertical translation. Thus, the regions

highlighted by adjoint eigenvector reflect this behaviour. The corresponding direct

eigenvector is illustrated in Fig. 6.8(f). In the flow field the distribution is almost

antisymmetric but some small differences are present. These come from the complex

motion which is not symmetrical neither in the longitudinal nor lateral plane. Similarly,

pressure distribution on the wing’s upper surface is not perfectly symmetric and it

is composed of alternating regions of low/high pressure.

Flight dynamics parts of direct eigenvectors are discussed next. Denote (λ(j),φ(j))

as the direct eigenpair corresponding to a mode dominated by flight dynamics con-

tributions. Generalised displacements η(j), which are associated with the specific

mode and depend on time, are defined as

η(j)(t) = <(φ(j)
r eλ

(j)t) (6.1)

Displacements x(j) of the CFD mesh points are then calculated with Eq. (2.47) and

they can be exploited to produce an animation for each mode which illustrates the flight

dynamics part of the eigenvector. Some frames from such animations were extracted

and included here. They were taken at six times linearly spaced during one period

of motion in order to show changes in the aircraft position and orientation due to

the specific mode. The short period mode is characterized by changes in vertical

position as visible by comparing the frames in Fig. 6.9. Another component of the

motion is pitch rotation which is synchronised with vertical velocity. It is clearly a

longitudinal mode since no lateral motion is involved. Regarding the phugoid, it is

animated in Fig. 6.10. The motion is mainly composed of horizontal translation and,

to a lesser extent, pitch rotation. Some very small variations in vertical translation

were found as well. The period of the phugoid is much longer in comparison with

the short period’s one. In Fig. 6.11, the flight dynamics part of the Dutch roll direct

eigenvector is illustrated. It is a lateral mode which is composed of both roll and yaw

rotations. The resulting motion is complex since a small rotation in roll is followed by

an alteration of yaw and the two effects cannot be separated. Regarding its period,

it has the same order of magnitude as the short period’s one.

The reduced order model was then built. Note that the set of flight dynamics modes

obtained with the operator-based identification comes from an eigenmode decomposition

(EMD) of the Jacobian matrix. For this reason, the acronym EMD will be adopted

in the following to refer to it. The modal bases in Eq. (3.4) were assembled using

the adjoint and direct eigenvectors. Their complex conjugates were added, too, for a

total of 12 eigenvectors, specifically three complex-conjugate pairs and six real-valued

eigenvectors. The reduced model was first exploited to perform initial disturbance

107



(a) Adjoint eigenvector, Phugoid mode (b) Direct eigenvector, Phugoid mode

(c) Adjoint eigenvector, Roll mode (d) Direct eigenvector, Roll mode

(e) Adjoint eigenvector, Spiral mode (f) Direct eigenvector, Spiral mode

Figure 6.8: Real part of pressure component for Phugoid, Roll and Spiral eigenvectors.
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(a) t/T = 0 = 1 (b) t/T = 1/6

(c) t/T = 2/6 (d) t/T = 3/6

(e) t/T = 4/6 (f) t/T = 5/6

Figure 6.9: Flight dynamics part of short period direct eigenvector depicted as a series of
snapshots taken during one period. A scaling factor is applied for better visibility.
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(a) t/T = 0 = 1 (b) t/T = 1/6

(c) t/T = 2/6 (d) t/T = 3/6

(e) t/T = 4/6 (f) t/T = 5/6

Figure 6.10: Flight dynamics part of phugoid direct eigenvector depicted as a series of snapshots
taken during one period. A scaling factor is applied for better visibility.
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(a) t/T = 0 = 1 (b) t/T = 1/6

(c) t/T = 2/6 (d) t/T = 3/6

(e) t/T = 4/6 (f) t/T = 5/6

Figure 6.11: Flight dynamics part of Dutch roll direct eigenvector depicted as a series of
snapshots taken during one period. A scaling factor is applied for better visibility.
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(b) GAF response in vertical direction

Figure 6.12: Results for initial disturbance of 0.01 degree in pitch degree-of-freedom. ROM
includes flight dynamics modes (EMD) only.

analysis by time-integration and results are shown in Fig. 6.12 for a disturbance in the

pitch rotation of 0.01 degrees. Generalised aerodynamic forces were computed during

the post-processing as second derivatives of the generalised coordinates according to

Eq. (2.46). Overall, full order and reduced models show a stable response as expected

from the real part of the longitudinal eigenvalues. In Fig. 6.12(a) the pitch rotation is

presented. Initial conditions are not fully reconstructed by the reduced model and this

can be interpreted as information lost when reducing the model from about 48 million

to 12 degrees-of-freedom. The trend for pitch rotation is thereafter captured accurately

by the reduced model with results converging to the full order ones. In Fig. 6.12(b)

a similar trend is shown for the GAF in the vertical direction. The full order model

GAF shows an initial jump from a zero value followed by a slow recovery. Apart from

the discrepancy in the initial conditions already discussed for the pitch rotation, the

ROM results match the full order response well. Summarising, the reduced model

containing 12 flight dynamics modes, specifically three complex-conjugate pairs and six

real-valued eigenvectors, is able to reproduce results for initial disturbance analyses.

In addition, removing the lateral flight dynamics modes from the modal bases does

not affect the results for longitudinal disturbances as shown in Fig. 6.12 with an

additional curve for both pitch rotation and vertical direction.

The model is subsequently expanded to account for external gust disturbances by

introducing the term ∂R
∂ud

in Eq. (3.7) and defining the shape of the travelling gust

with the vector ũd. The ‘1-cos’ gust shape adopted for the investigation is depicted in

Fig. 6.13. It extends along the lateral direction while the amplitude is applied in the

vertical direction only. Results for a wavelength Lg = 116 m and two gust amplitudes Vgz

are presented in Fig. 6.14. Two curves are shown for the full order model. The first

corresponds to a gust disturbance acting linearly (Vgz = 0.01% of free-stream velocity)

whereas the second one represents a gust amplitude as prescribed by EASA regulations
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Figure 6.13: Shape of the vertical gust with gust length Lg = 116 m.

for the given gust length (Vgz = 6.1% of free-stream velocity). Although ROM results

should be compared to the linear model, including results for the certification gust helps

highlighting non-linear effects. Both reference solutions show an oscillation for the pitch

rotation GAF in Fig. 6.14(a). This is due to the alteration in pitching moment brought

by the disturbance which is followed by a response from the stable system. Non-linear

effects alter the peak values and accelerate the response decay as shown by the large

amplitude gust. An offset between linear and certification gusts is visible at the end

of the simulation. This depends on the tiny amplitude used for the linear excitation

whose effects are dissipated more quickly and it is affected by the numerical solution

scheme and chosen tolerances. The full order results are compared to the ROM which

shows some discrepancies in the peak values and a phase lag. This is due to a lack

of information to fully reconstruct the effect of aerodynamic disturbances. The flight

dynamics eigenvectors, coming from the Jacobian matrix of the coupled system, are

unable to fully account for the effects of pure aerodynamic disturbances such as gusts,

as discussed in Chapter 5. When the gust has passed the aircraft, the reduced model

converges to the full order results. This behaviour is confirmed by the vertical GAF in

Fig. 6.14(b). The first peak, which is mainly due to the aerodynamic disturbance, is not

fully predicted. Thereafter, the GAF value provided by the reduced model converges

to the reference value confirming that flight dynamics modes are able to describe the

system behaviour when not subject to external disturbances.
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Figure 6.14: Response to ‘1-cos’ gust with wavelength Lg = 116 m and gust amplitudes
Vgz = 0.01% and Vgz = 6.1% of free-stream velocity. ROM includes flight dynamics modes
(EMD) only.

6.4 Data-based Identification

A solution to reproduce full order response to external disturbances with the reduced or-

der model is provided with data-based identification which is described next. A snapshot

matrix is populated with 20 solutions to Eq. (2.65) and their complex-conjugates, each

corresponding to a harmonic fluid response for a sinusoidal gust in the reduced frequency

range [0, 2]. The upper limit of the frequency to sample was chosen based on Fourier de-

composition of the ‘1-cos’ gust for the wavelength to be investigated. POD decomposition

was applied to obtain 39 POD modes which describe the aerodynamic response only.

Considering a static aircraft, i.e. neither moving in the longitudinal nor lateral degrees-

of-freedom, the reduced model containing POD modes only is capable of reproducing the

full order results as presented in Fig. 6.15 for a ‘1-cos’ gust with amplitude Vgz = 0.01%

of free-stream velocity and gust length Lg = 116 m. Regarding the lift coefficient in

Fig. 6.15(a), full order results are characterised by a peak value followed by a smooth

decay. The reduced model follows the reference curve and peak values as well as transient

behaviour are well reproduced. A similar trend is shown for the moment coefficient

in Fig. 6.15(b) which is evaluated accurately by the reduced model, confirming that

the reduction with POD modes is a valid approach for the static case. These results

have previously been published in [17] and made available by the authors.

The POD modes were used for the free-flight problem by adding them to the modal

bases Φ and Ψ in Eq. (3.4) which were already populated with flight dynamics modes

from the operator-based identification. These are now composed of flight dynamics

modes identified with the operator-based method and POD modes given by the data-

based identification applied to the aerodynamic subsystem only. This reduced model is

denoted joint ROM since it results from the fusion of two parts. Approximate eigenvalues

of A were obtained by calculating the eigenvalues of the reduced matrix ΨHAΦ and
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Figure 6.15: Response to ‘1-cos’ gust with wavelength Lg = 116 m and gust amplitude
Vgz = 0.01% of free-stream velocity for a fixed and rigid aircraft. ROM includes POD modes
only.
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Figure 6.16: Eigenspectrum comparing approximate eigenvalues calculated with operator-based
identification, POD and joint approaches.

results are shown in Fig. 6.16. A comparison with flight dynamics eigenvalues calculated

with the operator-based identification shows that eigenvalues related to flight dynamics

are affected by the coupling since they move slightly in terms of both frequency and

damping. Approximate eigenvalues of Aff were obtained solving the eigenproblem

for ΨH
PODAffΦPOD and they are reported in Fig. 6.16 as well. Their locations in the

complex plane change when flight dynamics modes are added. The largest displacement

of 3% was found for the flight dynamics eigenvalues. Negative imaginary parts in

the global view are omitted to increase visibility.

The joint reduced model based on flight dynamics and POD modes was used to

simulate an encounter with a ‘1-cos’ gust with amplitude Vgz = 0.01% of free-stream

velocity and gust length Lg = 116 m. Results are presented in Fig. 6.17 together with
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(b) GAF response in vertical direction

Figure 6.17: Response to ‘1-cos’ gust with wavelength Lg = 116 m and gust amplitude
Vgz = 0.01% of free-stream velocity. ROM includes flight dynamics (EMD) and POD modes.

the ones obtained using flight dynamics modes only in Section 6.3. Figure 6.17(a)

shows a very good agreement between the full order model and ROM using flight

dynamics and POD modes for the GAF in pitch rotation. The general trend is well

represented and results match after the disturbance has passed the aircraft. Peak

values are also well reproduced with a minor error on the first peak. The ROM

behaviour is confirmed for the vertical GAF in Fig. 6.17(b) since the reference data is

accurately reproduced. Thus, it can be concluded that the reduced model build using

both sets of modes is able to reconstruct the system’s behaviour for a small-amplitude

‘1-cos’ gust encounter simulations. For sake of completeness, it must be noted that

the differences reported in Fig. 6.14 between system’s linear and non-linear response,

corresponding to small and large amplitude gust encounters, are not reproduced by the

linear reduced order model. Thus, the findings reported in Chapter 5 are confirmed

here and the reduced model could be considered accurate enough to assess system’s

response to certification gusts in an industrial context.

The model reduction technique provides also a reconstruction of the flow field

for each time step. This represent an advantage of this method over the approach

traditionally adopted by industry for which this calculation should be performed as

post-processing step. As an example, the pressure distribution at the peak value in

Fig. 6.17(b) is depicted in Fig. 6.18(a). It is calculated with the joint ROM and it

shows a strong shock wave on the wing upper surface. The flow field is dominated by

the shock which produces the largest jump in the pressure distribution. This result

is compared to the full order model which provided the reference. The difference in

terms of pressure coefficient is presented in Fig. 6.18(b). The largest differences are

located on the upper wing surface, close to the trailing edge. However, the maximum

difference was found to be 0.05% which indicates a very good match.
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(a) Pressure coefficient distribution (b) Difference in terms of pressure coefficient be-
tween reduced and full order models

Figure 6.18: Pressure coefficient at peak value of vertical GAF obtained from reduced order
model and comparison to reference full order results.

Regarding the cost of building the reduced model for the longitudinal dynamics of the

large civil aircraft, it can be split in two parts. The first is given by the operator-based

identification which required the calculation of 7 GAF matrices for a total of 42 LFD

solves for columns of Afs. A number of 18 additional solutions are needed to obtain

the direct and adjoint eigenvectors. The second part involves the evaluation of POD

modes with 20 solutions of Eq. (2.65). The total cost of the ROM is estimated to be

80 LFD computations. The cost of a single full order simulation is comparable to 48

LFD solves using the same hardware configuration. However, it is highlighted here that

multiple gust lengths must be investigated during the aircraft design and certification

process, and each one requires an individual full order simulation. Conversely, the

reduced model can be used to simulate encounter with gusts having different lengths,

each at a negligible computational cost, as shown in Fig. 6.19 for a ‘1-cos’ gust with

length Lg = 214 m and amplitude Vgz = 0.01% of free-stream velocity. Using only flight

dynamics modes for the reduction leads to inaccurate results for the peak values, as

already presented for the shorter gust. However, the enhanced reduced model matches

the reference in terms of transient response as well as peak values for pitch rotation

GAF as depicted in Fig. 6.19(a). Similar results are reported for the vertical direction

GAF in Fig. 6.19(b). This confirms that the model reduction technique is a valid tool

to evaluate the response of free-flying aircraft subject to gust disturbances.
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(b) GAF response in vertical direction

Figure 6.19: Response to ‘1-cos’ gust with wavelength Lg = 214 m and gust amplitude
Vgz = 0.01% of free-stream velocity. ROM includes flight dynamics (EMD) and POD modes.

6.5 Model Reduction for Lateral Dynamics

So far, applications of the model reduction method concerned longitudinal dynam-

ics. However, eigenmodes extracted with the operator-based identification contain

information to represent lateral dynamics as well. The modal bases from the operator-

based identification do not require any additional computation to be used for lateral

dynamics. An encounter with a lateral gust is analysed in this section to demon-

strate the versatility of the reduced model. This is not a comprehensive study and

it represents a proof-of-concept for future applications.

The model was exploited for a ‘1-cos’ gust with wavelength Lg = 116 m in the

lateral direction and gust amplitude Vgy = 0.01% of free-stream velocity as illustrated in

Fig. 6.20. Results for the gust encounter simulations are presented in Fig. 6.21 for the

GAF response in the roll and vertical velocities. The reduced model is able to reproduce

accurately the lateral response in the roll motion as shown in Fig. 6.21(a). The peak

value for the roll velocity is captured while reduced and full order models converge to

the same value at the end of the simulation. Results for other lateral quantities are not

reported since they show a similar behaviour. Lateral and longitudinal dynamics are

traditionally treated independently [122] and the aircraft subject to lateral gust has a

very weak response in the longitudinal dynamics as shown in Fig 6.21(b) for the vertical

GAF. Although the agreement between ROM and full order model is only qualitative,

note that the longitudinal response to lateral gusts is two orders of magnitude smaller

than the corresponding lateral response shown in Fig. 6.21(a).

The inclusion of lateral modes in the modal bases is expected to be essential to obtain

the results of Fig. 6.21(a). The effect of neglecting just one lateral mode, but retaining the

others, was hence investigated. This was done to show that a key element for a successful

reproduction of lateral dynamics is an accurate identification of the Dutch roll mode. A
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Figure 6.20: Shape of the lateral gust with gust length Lg = 116 m.
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Figure 6.21: Response to ‘1-cos’ lateral gust with wavelength Lg = 116 m and gust amplitude
Vgy = 0.01% of free-stream velocity. ROM includes flight dynamics modes (EMD) only.

gust encounter with the same parameters of Fig. 6.21(a) was simulated with the reduced

model using modal bases containing all but the Dutch roll mode. Results are shown in

Fig. 6.22 and compared to both full order reference and to the reduced model using all

modes. In Fig. 6.22(a), the effect of excluding the Dutch roll mode is clearly visible

on the GAF in the roll degree-of-freedom. The peak value is underestimated and the

reconstruction of the transient behaviour worsened. Conversely, the Dutch roll mode does

not contribute to the reconstruction of longitudinal response since very similar curves

are obtained either including or excluding it from the bases as depicted in Fig. 6.22(b).

Overall, this confirms that an accurate evaluation of lateral modes, in particular of the

Dutch roll mode, is needed to achieve goods results for the lateral response.
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Figure 6.22: Response to ‘1-cos’ lateral gust with wavelength Lg = 116 m and gust amplitude
Vgy = 0.01% of free-stream velocity. ROM modal bases do not include Dutch roll.

6.6 Chapter Summary

The chapter concerned the model reduction for a coupled system involving flight

dynamics and computational fluid dynamics applied to a large civil aircraft. This

is an upscaling of techniques already developed for two-dimensional test cases and

reported in Chapters 4 and 5. In particular, the scalability of the method towards an

industrial test case has been investigated. The problem of dealing with large models

involving large CFD grids was tackled. A key point of the investigation is that frequency

domain methods are exploited to accelerate every step of the reduced model calculation.

Thus, CFD accuracy is retained and the computational cost is kept at the minimum.

The key challenge of identifying flight dynamics modes regardless their position in

the complex-plane was performed using dynamic derivatives distributed along the

imaginary axis. Although the tracing was thus simplified, the calculation of fluid parts

of eigenvectors represented a new challenge due to almost singular matrices. This was

overcome by computing the LFD solution assuming <(λ) = 0.

The results show that the reduced model based on the operator-based identification

is capable of matching the full order reference in terms of flight dynamics response. In

particular, results obtained for the initial disturbance analysis highlighted the suitability

of the technique for large cases as well. Results for gust encounter simulations are less

accurate since the lack of aerodynamic modes leads to underestimation of peak values

for flight dynamics response. This problem is solved with the data-based identification

method, adopting a strategy similar to the two-dimensional test cases. The data-based

identification was performed on the aerodynamic subsystem only and the POD modes

were combined with modes from the operator-based identification. This allows for a

modular approach where different parts of the ROM can be exploited independently

or in conjunction with others, according to the need. Results were produced for two
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gust lengths showing a good agreement and a discussion about computational cost is

provided. The last part of the chapter described a preliminary investigation towards

lateral dynamics since the operator-based identification produced both longitudinal and

lateral modes. A lateral gust encounter simulation was performed and results compared

to the full order reference. The reduced model was capable of reproducing the lateral

dynamics response accurately. This is largely due to the good accuracy obtained when

evaluating the lateral modes as confirmed by an additional brief investigation.

Overall, the method has proved to be reliable and suitable for applications involving

practical test cases. The modular approach based on operator-based identification

with the addition of aerodynamic modes from the data-based methodology allows for

multiple applications of the same ROM. For example, the operator-based ROM is

suitable for stability analyses and to reproduce flight dynamics effects whereas the

data-based one can be trained for various external disturbances besides gusts. Focusing

on the big picture, this test case showed that this model reduction technique can

enhance the current industrial practice for gust certification by including flight dynamics

effects as well as unsteady CFD aerodynamics. Possible applications are rapid gust

encounter simulation at the edge-of-the-envelope design.
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Chapter 7

Conclusions and Outlook

Model reduction of high-fidelity systems involving both flight dynamics and aerody-

namics based on computational fluid dynamics has been the aim of this thesis. This

work follows a modal decomposition and projection model reduction philosophy. The

specific tasks addressed here are the identification of modes for the reduction, the

construction of the reduced order model and then its efficient application to gust en-

counter simulations. The work enables aircraft manufacturers to predict the aircraft’s

behaviour accurately and quickly when it is subject to gust disturbances. Thus, the

aim of certification by simulation is brought closer and overall certification cost re-

duced. The final result will be a more efficient, cleaner aircraft whose design exploits

tools first developed in this work and for which cheaper tickets have to be paid. This

is the long-term vision which inspired this research and that this work contributes

to. A chapter-by-chapter summary is provided next.

The high-fidelity full order model is composed of two subsystems, as described in

Chapter 2, which implement aerodynamics and flight dynamics. Regarding the former,

it is based on either Euler or Reynolds-averaged Navier–Stokes equations with the

Spalart-Allmaras turbulence model providing a closure for the latter. Model reduction

is described in Chapter 3. The full order non-linear residual function is expanded in a

first-order Taylor series and the Jacobian matrix projected onto a small modal basis. The

calculation of modes for the projection is achieved with either of two methods. The first

one is called operator-based identification and it is based on the Schur complement of

the Jacobian matrix partitioned in blocks. It is suitable to extract few eigenpairs related

to flight dynamics from the coupled Jacobian matrix. The tracing is performed with

Newton’s method starting from rigid-body modes. The technique has previously been

applied to structural dynamics problems. Here, it is improved with novel contributions

for the specific computation of flight dynamics modes. A theoretical link between the

Schur complement method and dynamics derivatives is derived as well. In addition,

a data-based mode identification method is presented. The response of the coupled

system is sampled for sinusoidal gusts at multiple frequencies using a linearised frequency
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domain solver. Complex-valued results are collected as columns of a snapshot matrix

and proper orthogonal decomposition is applied to it. As a result, a number of POD

modes equal to the number of snapshots is obtained and they are used to populate the

basis for the model reduction. The data-based technique has been applied in literature

to various problems. However, its frequency domain application to coupled system

composed of flight dynamics and CFD aerodynamics represents a novelty.

In Chapter 4, a first application of mode identification and model reduction is

presented. The coupled system is composed of a NACA 0012 aerofoil with transonic

aerodynamics based on Euler equations and the focus is on short-term approximation.

Full order results were reproduced accurately with the operator-based reduced model

for a large value of mass ratio. A multi-step procedure is developed for cases with

low values of mass ratio since the identification is significantly more challenging. It

consists of exploiting dynamic derivatives to provide a starting point for a refinement

stage which is performed with the Schur complement method. At the end, the method

provides results comparable to the direct extraction of eigenvalues but it does not rely

on any spectral information. The data-based identification was investigated as well.

Based on the Fourier decomposition of the ‘1-cos’ gust shape, a range of frequencies

was identified and the sampling procedure performed for multiple sinusoidal gusts on

the whole system including both aerodynamics and flight dynamics. Few tens of modes

were able to produce results matching the full order model. Overall, the test case is the

first application, to the author’s best knowledge, of a projection reduced order model

for a coupled system composed of CFD aerodynamics and flight dynamics with modes

identified applying either the operator-based or the data-based technique. The list of key

challenges which were tackled in Chapter 4 includes the tracing of flight dynamics modes

inside the cloud of fluid modes for the operator-based identification and the sampling

performed on the coupled system for the data-based one. They enable the application of

both identification methods to larger test cases which are shown in the following chapters.

An application of mode identification and model reduction to longitudinal dynamics

is presented in Chapter 5. The system is composed of a supercritical aerofoil and a

NACA 0012 which resemble a typical wing-tail configuration for large civil aircraft.

Aerodynamics is based on Reynolds-averaged Navier–Stokes equations and the equilib-

rium condition for the linearisation is computed with a trimming procedure based on

Broyden’s method. Results showing good performance of operator-based reduced model

were produced at a large value of mass ratio, thus confirming the findings yielded in

Chapter 4. However, such reduced models provide only a qualitative reconstruction of

results at lower mass ratios. An additional investigation showed that modes coming

from the Jacobian matrix cannot accurately reconstruct the response to gusts at low

mass ratios since they do not contain information about any external disturbance.

A solution to this problem was proposed with the data-based identification method.

The coupled system was sampled at a finite number of frequencies and POD modes
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calculated. The results, which match the reference solution, were compared to the

operator-based ones. Although almost no difference exists when flight dynamics is

dominant at large values of mass ratio, results from the reduced model built using

the data-based method are more accurate when flight dynamics eigenvalues are inside

the aerodynamic cloud at lower mass ratios. Overall, the reduction in terms of com-

putational time is estimated to be two orders of magnitude for this two-dimensional

problem. Challenges addressed in Chapter 5 concern a more complex aerodynamics

based on Reynolds-averaged Navier–Stokes equations, a non-trivial equilibrium resulting

from a trimming procedure, the tracing of multiple flight dynamics modes with the

operator-based method and scaling the data-based method toward larger test cases.

The model reduction method is applied to a three-dimensional industrial use case in

Chapter 6. It represents a large civil aircraft flying at transonic speed. Aerodynamics is

modelled with Reynolds-averaged Navier–Stokes equations with the Spalart-Allmaras

model whereas flight dynamics relies on a modal formulation. Challenges depending

on the large dimension of the CFD subsystem were faced. For example, no spectral

information is available at all for this test case since eigenpairs extraction is prohibitive

also for few eigenvalues. This is a realistic scenario for a practical application of the

method. The operator-based mode identification was performed for both longitudinal

and lateral flight dynamics modes. Besides short period and phugoid, modes such as

Dutch roll, roll subsidence and spiral divergence were identified. Despite the short period

being supposedly located inside the cloud of aerodynamic eigenvalues, the multi-step

tracing approach developed in the previous Chapter 5 proved to be reliable for all

flight dynamics modes. In addition, the operator-based identification provided insights

about aircraft handling qualities and sensitive regions of fluid domain thanks to both

adjoin and direct eigenvectors. Results calculated with the operator-based reduced

model are accurate as far as initial disturbance analysis is concerned. However, results

for ‘1-cos’ gust encounters are less accurate. For them, the data-based approach was

investigated as alternative. Including flight dynamics modes as well as few POD modes

in the modal basis makes the reduced model capable of reproducing full order results

for gust encounter simulations. A preliminary investigation for lateral gusts showed

that the lateral flight dynamics modes, which were identified with the operator-based

method and included in the modal basis too, proved to be sufficient to reproduce the

lateral dynamics of the large civil aircraft. However, further research is still needed. A

quantification of computational time needed to build and use the reduced model showed

that a comparable amount of time is needed by the full order model to run a single

simulation. However, a saving of up to one order of magnitude is achieved when multiple

gust lengths must be investigated and this is the case during aircraft certification.

Overall, both mode identification and model reduction methods proved to be an

effective way to perform quick simulations coupling flight dynamics and CFD aero-

dynamics, in particular for gust encounters, even when cost of building the ROM is
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Figure 7.1: Eigenspectrum resulting from the operator-based identification for a system
including aerodynamics, flight dynamics and structural dynamics.

taken into account. This represents a step toward a faster design process and brings

the long-term objective of aircraft certification by simulation closer. Novel aspects of

the work to the author’s best knowledge are the operator-based identification for flight

dynamics modes, the application of the data-based method in frequency domain to the

coupled system treated as a monolithic entity and the common theoretical framework

for both data-based and operator-based reduction. The test cases presented in the

thesis are novel applications of model reduction to both two-dimensional and three-

dimensional problems. The reduced model was able to reproduce full order results with

a computational cost saving ranging from one to two order of magnitude.

7.1 Future Work

Some areas of potential future research can be identified. Further research is needed

to include elastic effects in addition to flight dynamics ones since this is the ultimate

certification requirement. The mutual interaction between flexible structure and flight

dynamics degrees-of-freedom is expected to generate modes which describe both rigid

dynamics and a deformable structure. The test case to be investigated would be the large

civil aircraft described in Chapter 6. In fact, it is based on flight dynamics equations

written in modal form and the software framework is designed to be able to cope with

structural modes as well. Preliminary results from the operator-based identification for

the system including CFD aerodynamics, flight dynamics and structural dynamics are

reported in Fig. 7.1 to describe the challenges lying ahead. The spectrum depicted in

Fig. 7.1 contains three sets of modes. The first one is composed of flight dynamics modes
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which were obtained in Chapter 6 for the rigid aircraft. The second set contains elastic

modes for a static, non-moving, aircraft which were calculated by tracing the in-vacuum

structural modes. They typically describe an aeroelastic system which does not include

any free-flight effect. When flight dynamics and structural dynamics are included

together in the same model, rigid-body and structural degrees-of-freedom interact. The

operator-based identification performed on the system including aerodynamics, flight

dynamics and structural dynamics returned eigenvalues which are the third set included

in Fig. 7.1. They have an offset when compared to the eigenvalues obtained for the

distinct models. Such difference is more evident for flight dynamics modes since their

frequency and damping are both lowered. Regarding elastic modes, their frequencies are

not affected significantly but their damping values are. These preliminary results show

the next challenges to be faced in order to obtain a reduced model capable of including

flight dynamics and CFD-based aerodynamics to perform gust encounter simulations of

a flexible aircraft. In the long-term, control surfaces could be included in the reduced

order model as well by building on results provided in Chapter 4 for a flap excitation.

The final aim would be a quick method for gust suppression applied to flexible aircraft.

Apart from the incremental improvements described so far, additional areas of re-

search can be identified which relate to this work. Inclusion of non-linear effects could be a

promising target as shown for large amplitude gusts in both Chapters 5 and 6. In addition,

fluid non-linear effects such as shock separation could be included as well. A straight-

forward, albeit computationally expensive, way to obtain non-linear reduced model

would be to include high-order terms to the Taylor expansion of the non-linear full order

residual described in Section 3.1. An example of this high-order expansion is given in [64]

for non-linear structure and linear aerodynamics. Once the non-linear ROM is available,

it will provide enhanced accuracy for gust encounter simulations since non-linear effects,

which are present for ‘1-cos’ gusts with certification amplitude, would be captured by

the reduced model. In addition, a new scenario, i.e. dynamic manoeuvre simulations,

could be investigated. In fact, the evolving flight conditions during a manoeuvre would

require the non-linear ROM to be capable of taking into account large displacements.

Furthermore, the main limitation of model reduction based on operator-based

identification could be tackled. Specifically, modal bases are tied to a particular

flight condition and they must be recomputed when a flight parameter change [53].

However, multiple conditions must be investigated in certification context, thus multiple

reduced models have to be computed. A way to alleviate this problem is highly

desirable. A possible solution is the pre-computation of multiple modal bases, each

one corresponding to a distinct flight condition in the range of interest. Interpolation

as described in [4] could provide the reduced model with the correct modal basis for

the flight condition to be investigated. Thus, a further reduction of computational

cost can be reached using the tools developed in this work.
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Appendix A

Derivation of Aerodynamic

Equations

Behaviour of any fluid flows is governed by three principles: conservation of mass,

Newton’s second law, which equates force to the product of mass times acceleration,

and conservation of energy [7]. These principles are expressed mathematically with

a set of equations named after two scientists from the 19th century who made semi-

nal contribution to fluid dynamics, specifically Claude–Louis Navier and Sir George

Gabriel Stokes. Solving Navier–Stokes equations provides flow properties, such as

density or enthalpy, in various points of the flow field. Deriving such equations

from first principles is not a trivial task [23].

Two mathematical formulations, specifically integral and differential, can be obtained

to describe the same problem and the two strategies to derive them are schematically

depicted in Fig. A.1. Equations for mass, momentum and energy conservation are

translated into integral or differential equations adopting either a finite control volume

or infinitesimal element model. These models use an Eulerian and Lagrangian reference

frame, respectively. Choosing one of the two models determines the final form of the

equations. Differences between the two models are described graphically in Fig. A.2.

The first one, which uses an Eulerian formulation, is based on the idea of a finite

control volume V which is a finite region of the flow domain with an arbitrary shape.

The surface surrounding the volume is called control surface and indicated with S.

Assuming the control volume fixed in space, the fluid flows through the control surface.

The second method, which uses a Lagrangian formulation, is described in Fig. A.2(b)

and it is based on an infinitesimal element which moves following the flow. Denote

t1 and t2 two values of time. The element is located at two different points in the

space since its path defines a streamline as shown in the picture. Properties such

as volume and energy change, too, and element’s velocities V1 and V1 can differ

in terms of magnitude and direction. However, its mass, i.e. the number of flow

particles forming the infinitesimal element, is constant.
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2) Newton’s second law
3) Conservation of energy
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Math manipulation

Figure A.1: Derivation of Navier–Stokes equation.

The derivation of Navier–Stokes equations is described next for the finite control

volume. The physical principle of conservation for a generic quantity U is obtained by

equating the net flow out of the control surface to the time ratio of change of U inside

the control volume. Denote dS an infinitesimal area on the control surface S and n

as the corresponding unitary normal vector. The conservation equation of U is

∂

∂t

∫∫∫
V
U dV +

∫∫
S

(FC − FD) · n dS =

∫∫∫
V
QV dV +

∫∫
S
QS · n dS (A.1)

where V is the finite control volume, FC = UV · n is the convective flux, FD =

k∇V · n is the diffusive flux with coefficient k, QV is the volume source and QS is

the surface source1. Replacing the scalar quantity U with density, leads to the mass

conservation equation (also known as continuity equation),

∂

∂t

∫∫∫
V
ρ dV +

∫∫
S
ρ(V · n) dS = 0 (2.1)

where ρ and V are density and Cartesian velocity vector on the control surface,

respectively. Volume and surface sources of mass are not possible and diffu-

sive flux of mass is zero as well. Hence, only the convective flux FC = ρV ·
n affects the time ratio of the mass.

To apply the conservation law in Eq. (A.1) to momentum, which is defined as the

vector quantity ρV dV , a generalization of Eq. (A.1) with tensor calculus is needed [38].

Specifically, fluxes and surface source term are expressed by means of second order

tensors. The convective flux is FC = −ρV V where the tensor V V represents the

1The divergence theorem is adopted so that
∫∫∫
V(∇ · •) dV =

∫∫
S
• · n dS for a vector •.
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Figure A.2: Two points-of-view to derive Navier–Stokes equations.

momentum flux per unit mass2. No diffusive flux for momentum is possible. Regarding

the volume source term QV , it is given by external body forces ρfext per unit mass

applied to the control volume. The surface source term accounts for surface forces per

unit mass by introducing in the equation pressure p and surface stress tensor τ · n.

The tensor τ has size 3 × 3 and it includes elements accounting for both shear and

normal stresses in three dimensions. The resulting equation is

∂

∂t

∫∫∫
V
ρV dV +

∫∫
S
ρV (V · n) dS =

∫∫∫
V
ρfext dV −

∫∫
S
pn dS +

∫∫
S
τ · n dS

(2.2)

The energy conservation principle from thermodynamics is translated into an integral

equation by applying Eq. (A.1) to the total energy per unit mass E. It is defined as the

sum of internal energy e and kinetic energy V 2

2 . The convective flux for total energy

is then FC = ρEV . Fourier’s law of heat conduction [144] is adopted for the diffusive

flux FD = −k∇T with temperature T and fluid’s conductivity coefficient k. Regarding

the volume source per unit mass, QV , it accounts for both possible heat sources q̇ and

the work done by body forces ρfext · V . The surface source term QS is the sum of the

time rate of work done by the pressure force per unit mass (-pV ) and by the shear

2The tensor product between a vector a with size N and a vector b with size M is a second order

tensor C with Cij = aibj and i ∈ [0, N ], j ∈ [0,M ]. More details in [21, App. A].
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stresses (τ · V ). The resulting equation for energy conservation is

∂

∂t

∫∫∫
V
ρE dV +

∫∫
S
ρE(V · n) dS −

∫∫
S
k(∇T · n) dS =

∫∫∫
V

(ρfext · V + q̇) dV −
∫∫

S
pV · n dS +

∫∫
S

(τ · V ) · n dS

(2.3)

Equations (2.1), (2.2) and (2.3) are an integral form of Navier–Stokes equations for a

fixed control volume. Alternative formulations, which are not reported here for sake

of brevity, are needed when the control volume is either in a moving reference frame

or it deforms. An overview of such equations is available in [23, App. A.4].

The derivation of Navier–Stokes equation in differential form is limited here to

the mass continuity equation without loss of generality. The starting point is the

infinitesimal fluid element which moves following the flow, Fig. A.2(b). Its constant

mass is defined as product of density and infinitesimal volume, δm = ρδV. The

substantial derivative3 of the mass is zero by definition.

Dδm

Dt
= ρ

DδV
Dt

+ δVDρ

Dt
= 0 (A.2)

It can be proven [7] that 1
δV

DδV
Dt = ∇ · V and the mass conservation equation becomes

Dρ

Dt
= −ρ∇ · V (A.3)

The same procedure adopted for mass continuity provides equations for both mo-

mentum and energy, resembling the strategy adopted in the previous paragraph for

integral equations. Although the complete derivation is skipped, the resulting set

of differential equations is reported here

Dρ

Dt
= −ρ∇ · V (2.4)

ρ
DV

Dt
= −∇p+ ∇τ + ρfext (2.5)

ρ
D

Dt

(
e+

V 2

2

)
= ρq̇ + ∇ · (k∇T )−∇ · (pV ) + ∇ ·

(
τV
)

+ ρfext · V (2.6)

They represent the Navier–Stokes equations in a differential formulation and they are

analogous to Eqs. (2.1-2.3). Specifically, Eq. (2.4) expresses mass conservation, Eq. (2.5)

is the momentum equation and Eq. (2.6) imposes energy conservation.

Although integral and differential formulations are mathematically connected, some

differences can be found. The integral form allows discontinuities inside the control

3The substantial derivative of a scalar quantity U is defined as DU
Dt

= ∂U
∂t

+ V ·∇U . More details
in [7, Ch. 2].
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volume. In fact, their presence does not affect the integration process. Conversely, the

differential formulation assumes that flow properties are differentiable and, hence, no

discontinuities are allowed. In practice, this aspect must be taken into account when

dealing with discontinuities such as shock waves. The two formulations lead to different

CFD implementations and one of the two can be more suitable for a given problem

since it can avoid, for example, phenomena such as numerical oscillations [7].

Euler equations

Another set of aerodynamic equations, which is exploited in this work, was pro-

posed by Leonhard Euler who first described them in his work Principia motus flu-

idorum, written in Latin and presented at the Royal Academy of Prussia in Berlin

on August 31, 1752 [58]. Although Euler equations historically precede the Navier–

Stokes ones, they can be derived from the latter assuming an adiabatic and inviscid

fluid. For example, dropping all the terms concerning viscosity and thermal effects

in Eq. (2.4-2.6) leads to their differential form

Dρ

Dt
= −ρ∇ · V

ρ
DV

Dt
= −∇p+ ρf

ρ
D

Dt

(
e+

V 2

2

)
= ρq̇ −∇ · (pV ) + ρf · V

(A.4)

Such equations represent a simplification of Navier–Stokes ones which discard viscous

effects. It is a valid assumption when applied to cases, for example, of fluid flows with

very high Reynolds numbers for which the boundary layer is very thin [23]. Shock waves

are still captured by solving Euler equations. However, interesting phenomena such

as interaction of boundary layer with shock waves cannot be simulated.
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Appendix B

Verification of Mode Tracing

The tracing procedure was applied in Chapters 4, 5 and 6 to identify flight dynamics

modes and the same implementation was verified by reproducing literature results. In

particular, a test case involving rigid-body and structural degrees-of-freedom was chosen

to perform a flutter analysis. It is a well-known case since its theoretical background

is given in [120] and results can be reproduced with an input file for Nastran which

is available in the MSC.Nastran handbook [101, Ch. 8, Example HA145A].

The configuration is composed of a lumped mass and an aerodynamic body con-

nected by means of linear and rotational springs as shown in Fig. B.1. This re-

sembles a wing and fuselage configuration. The system can translate freely in the

vertical direction and the three degrees-of-freedom for the system are y (fuselage

vertical translation), h (relative distance between wing and fuselage) and α (wing

rigid rotation). Denote m and mf the wing and fuselage masses, respectively. The

dimensional equations describing system’s dynamics are

mf ÿ − khh = −mfg

mÿ +mḧ+ Sαα̈+ khh = −mg − L(t)

Sα

(
ÿ + ḧ

)
+ Iαα̈+ kαα = − Sαg +M(t)

(B.1)

where kh is the linear spring constant, kα is the rotational spring constant, g is the

gravitational acceleration, Sα is the static moment around the elastic axis and Iα is

the inertia around the same axis. Aerodynamic lift and moment are denoted L and M ,

respectively, and they are assumed to be function of time. The uncoupled wing plunging

and pitching frequencies are ωh and ωα, respectively. The non-dimensional velocity, also

known as reduced velocity, is defined as U∗ = U
bωα

where b is the wing semi-chord and

U is the dimensional free-stream velocity. Values for structural parameters were taken

directly from [120] in non-dimensional form or from [101] in imperial units.
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Figure B.1: Configuration for the body-free flutter analysis.

Equations (B.1) are translated in Laplace domain and the set is rewritten in matrix

form for the tracing as [
Arr(βU

∗)− λI + CQ
]
φ(j)
r = 0 (B.2)

which is a formulation very similar to Eq. (3.25). The matrix Arr depends on the

reduced velocity and the tracing is performed by changing β. The first guess needed

by Newton’s solver to trace structural eigenpairs is given by structural modes and

frequencies in vacuum. The tracing starts from the rigid-body modes for the flight

dynamics ones. Flutter point is identified by checking real parts of the structural

eigenvalues since a positive value indicates an unstable system.

Three aerodynamic models were adopted to calculate the matrix Q. First,

Theodorsen’s model was implemented [138]. It is a well-known model for incom-

pressible flow which is widely adopted by the aeroelastic research community [22].

It provides expressions for lift and moment coefficients directly in frequency domain

by introducing the complex-valued Theodorsen function. In this case, the matrix Q

in Eq. (B.2) depends on frequency only and the tracing method reduces to the p-k

method traditionally used for flutter analysis [72]. Secondly, Wagner’s time-domain

aerodynamic model was implemented. It assumes unsteady, incompressible and inviscid

flows [148] and it predicts aerodynamic performance of an accelerating flat plate with

great accuracy as reported in [113] and demonstrated experimentally in [149]. When

Wagner’s model is used, the term Q in Eq. (B.2) depends on both frequency and

damping. The tracing corresponds to the p method for flutter analysis [72]. Thirdly,

CFD aerodynamics based on Euler equations was adopted. Specifically, the same

combination of grid and solver exploited to produce results in Chapter 4 was adopted

for this case too. The grid is showed in Fig. 4.1(a) while the steady state solution
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Figure B.2: Results from the body-free flutter analysis.

in depicted in Fig. 4.1(b). An exact formulation for matrix CQ is used, specifically

CQ = −Arf (Aff − λI)−1Afr, and it is computed on the fly during the tracing so

that the formulation coincides with the Schur complement method [143].

Results from the tracing performed with all the three methods are shown with a V-g

plot in Fig. B.2(a) for the fluttering mode. They are compared to the reference values

provided by Nastran. Regarding CFD aerodynamics, the critical speed is evaluated to

be 153 ft/s. The tracing started at 18 ft/s with an increment of 4 ft/s up to 300 ft/s and

each step converged with a residual of 1× 10−12. These results compare successfully to

the ones provided by the p-k method implemented with Theodorsen aerodynamics. The

tracing started at 0 ft/s for the latter method and no structural damping was introduced.

The crossing happened at 156.5 ft/s. Regarding the Wagner model for the p method,

the real part of the eigenvalue is taken into account when calculating the aerodynamic

forces. As a consequence, the slope of the curve at the flutter point is different. In

the end, a flutter speed of 159.6 ft/s was found. All these values are compared to the

results from Nastran which adopts an approximation of the Theodorsen function [63].

The flutter speed is estimated in 158.6 ft/s and it corresponds to the bibliography

value found in [120]. In conclusion, the tracing was successful for all the aerodynamic

models and a largest error of 3% with respect to the reference was found in the flutter

speed calculation. Differences in the curve slopes in Fig. B.2(a) highlight the different

nature of the aerodynamic tools. However, the critical speed is not affected because

zero damping is assumed at flutter point. Regarding frequencies in Fig. B.2(b), a very

good agreement was found between results from the tracing and the literature reference.

Overall, the purpose of verify the correct implementation of the Newton’s method

was fulfilled. The theoretical formulation presented in Eqs. (3.34-3.41) was implemented

and verified by solving Eq. (B.2) for a literature case using multiple aerodynamic tools.

Results confirmed the correct implementation and the reliability of the method.
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Appendix C

Short Period and Phugoid

Approximation

Flight dynamics modes such as short period and phugoid can be estimated using

stability derivatives [34, 155]. This represents the traditional approach which is in-

dependent from the aerodynamic model as long as the stability derivatives are avail-

able. Such model served in this work as verification for the CFD methods and to

estimate flight dynamics eigenvalues as discussed in Section 5.3. In this appendix,

its implementation is described and the model is verified by reproducing bibliogra-

phy results in both time and Laplace domain.

The external forces and moment in Eq. (2.37) are expanded with Bryan’s ap-

proach [28]. They become

Fx = Xuu+Xu̇u̇+Xww +Xẇẇ +Xqq +Xq̇ q̇ +Xθθ +Xθ̇θ̇ +Xδδ +Xηη

Fz = Zuu+ Zu̇u̇+ Zww + Zẇẇ + Zqq + Zq̇ q̇ + Zθθ + Zθ̇θ̇ + Zδδ

My = Muu+Mu̇u̇+Mww +Mẇẇ +Mqq +Xq̇ q̇ +Mθθ +Mθ̇θ̇ +Mδδ

(C.1)

and two additional external forces are added to account for engine thrust η and con-

trol surface deflection δ. Thus, the flight dynamics equations (2.37) for longitudi-
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nal dynamics are rewritten in matrix form as
m−Xu̇ −Xẇ −Xq̇ 0

−Zu̇ m− Zẇ −Zq̇ 0

−Mu̇ −Mẇ Iy −Mq̇ 0

0 0 0 1



u̇

ẇ

q̇

θ̇

 =


Xu Xw Xq 0

Zu Zw Zq 0

Mu Mw Mq 0

0 0 0 0



u

w

q

θ



+


0 0 −mWe −mg cos θ0

0 0 mUe −mg sin θ0

0 0 0 0

0 0 1 0



u

w

q

θ



+


Xδ

Zδ

Mδ

0

 δ +


Xη

0

0

0

 η

(C.2)

They can be integrated in time to simulate an initial disturbance analysis or a re-

sponse to elevator deflection. Alternatively, they can be translated in Laplace do-

main for an eigenvalue analysis. Discarding inputs and focusing on the homoge-

neous form, the eigenvalue problem becomes

(A− λI)wr = 0 (C.3)

where the Jacobian matrix A is obtained from Eq. (C.2) as

A =


m−Xu̇ −Xẇ −Xq̇ 0

−Zu̇ m− Zẇ −Zq̇ 0

−Mu̇ −Mẇ Iy −Mq̇ 0

0 0 0 1


−1

Xu Xw Xq −mWe −mg cos θ0

Zu Zw Zq +mUe −mg sin θ0

Mu Mw Mq 0

0 0 1 0


(C.4)

with θ0 indicating the pitch angle at equilibrium conditions. This model was implemented

in Python and it requires the stability derivatives as input.

Two cases are reported here as verification of the implementation. The first

one is taken from [155, p. 269]. The velocity is U∞ = 175 m/s with air density

ρ = 1.10 kg/m3, mass m = 10000 kg, inertia Iy = 144000 kgm2 and gravitational

acceleration g = 9.81 m/s2. The aerodynamic coefficients are provided for wing

CLαw = 4.5 rad−1, tail CLαt = 3.2 rad−1, elevator CLαe = 1.5 rad−1 and the drag

coefficient CD = 0.1. The geometry of the aeroplane is defined by wing chord c = 2 m,

wing surface Sw = 30 m2 and tail surface St = 7.5 m2 while the three-dimensional

effects are taken into account with a downwash factor ke = 0.35. The distance between
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(b) Pitch rotation

Figure C.1: Results of operator-based mode identification compared to reference solution
provided in [155].

the centre of gravity and the wing aerodynamic centre is denoted Lw while Lt is the

corresponding distance for the tail. The derivatives in Eq. (C.1) are expressed by

means of a combination of geometric quantities as well as wing and tail aerodynamic

coefficients. As a result the only non-zero derivatives are

Zw =− 1

2
ρU∞ (SwCLαw + StCLαt(1− ke) + SwCD)

Zq =− 1

2
ρU∞StCLαtLt

Zδ =− 1

2
ρU2
∞StCLαe

Mw = +
1

2
ρU∞ (SwCLαwLw − StCLαt(1− ke)Lt)

Mq =− 1

2
ρU∞StCLαtL

2
t

Mδ =− 1

2
ρU2
∞StCLαeLt

(C.5)

and this formulation allows for a short-term approximation involving the short pe-

riod mode only. Results are provided in literature for the response to 1 deg eleva-

tor deflection and a comparison is provided in Fig. C.1 for the angular velocity and

pitch rotation. The response matches for both quantities while a similar agreement

was obtained for the other flight dynamics unknowns. The short period frequency

was estimated in 0.3 Hz with Eq. (C.3).

The second case chosen for the verification was taken from [34, p. 106]. Parameters

are given in imperial units with ρ = 0.00238 slug/ft3, velocity U∞ = 305 ft/s, mass

m = 746 slugs, inertia Iy = 65000 slug/ft2 and gravitational constant g = 32.2 ft/s2.
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Table C.1: Stability derivatives taken from [34, p. 106]

Variable Horizontal force X Vertical force Z Moment M

u -26.26 slug/s -159.64 slug/s 0
w 79.82 slug/s -328.24 slug/s -1014 slug ft/s
ẇ 0 0 -36.4 slug ft/s
q 0 0 -18135 slug ft2/s
η 0 -16502 slug ft/s2/rad -303575 slug ft/s2/rad
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Figure C.2: Time-domain integration performed using the results reproduced from [34].

Values of the stability derivatives are provided and reported in Table C.1 for reference.

Notice that some of the derivative in the horizontal direction X� are available. This

allows for the calculation of the phugoid mode. Solving Eq. (C.3) for this case, lead

to two pairs of complex-conjugate eigenvalues, specifically

λSP = −0.44586984133± 2.16437192886i

λPh = −0.0166306948626± 0.147431081456i

(C.6)

The first one, λSP , has a frequency of 0.34 Hz and it is associated with the short period

mode. The second one has a frequency which is lower by an order of magnitude and

it correspond to the phugoid mode. Their values are provided by the bibliographic

reference as solutions of the equation (s2 + 0.033s+ 0.022)(s2 + 0.893s+ 4.884) where s

is a complex variable. They are s1 = −0.0165± 0.1474i and s2 = −0.4465± 2.164i and

they match the results obtained from the model. Equations (C.2) were then integrated

in time for an initial disturbance in angular speed of q = 0.01 rad/s and results are

shown in Fig. C.2. Short term oscillations are visible in Fig. C.2(b). These are given by

the short period mode and they quickly disappear because of the large damping. Slower

oscillations with a longer period are instead associated with the phugoid mode. They

involve the long-term dynamics and affect the horizontal speed as shown in Fig. C.2(a).

156


	Abstract
	Acknowledgements
	Declaration
	List of Publications
	List of Figures
	List of Tables
	List of Symbols
	List of Acronyms
	Introduction
	Application Requirements
	Reduced Order Modelling
	Aim of Work and Outline of Thesis

	Full Order Modelling
	Equations of Aerodynamics
	Reynolds-averaged Navier–Stokes Equations
	Euler Equations

	Equations of Flight Dynamics
	Equations of Coupled Model
	Numerical Methods
	Radial Basis Function Interpolation for Grid Deformation
	Disturbance Velocity Method for Gusts
	Computational Fluid Dynamics Software


	Reduced Order Modelling
	Model Reduction with Matrix Projection
	Operator-based Modal Identification
	Dynamic Derivatives from Time-Domain Simulations
	Newton's Method for Mode Tracing

	Data-based Modal Identification
	Notes for Finite Volume Formulations

	Model Reduction for Short-term Dynamics
	Governing Equations
	NACA 0012 Aerofoil
	Operator-based Identification
	Data-based Identification
	Computational Cost
	Chapter Summary

	Longitudinal Dynamics
	Governing Equations
	Wing and Tail Configuration
	Quasi-Steady Approximation
	Operator-based Identification
	Data-based Identification
	Computational Cost
	Chapter Summary

	Longitudinal/Lateral Dynamics
	Governing Equations in Modal Form
	Large Civil Aircraft
	Operator-based Identification
	Data-based Identification
	Model Reduction for Lateral Dynamics
	Chapter Summary

	Conclusions and Outlook
	Future Work

	Bibliography
	Derivation of Aerodynamic Equations
	Verification of Mode Tracing
	Short Period and Phugoid Approximation

