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Abstract

Recently, in computer vision, a branch of machine learning, called deep learning, has

attracted high attention due to its superior performance in various computer vision tasks

such as image classification, object detection, semantic segmentation, action recognition

and image description generation. Deep learning aims at discovering multiple levels of

distributed representations, which have been validated to be discriminatively powerful in

many tasks. Visual attention is an ability of the vision system to selectively focus on the

salient and relevant features in a visual scene. The core objective of visual attention is

to achieve the least possible amount of visual information to be processed to solve the

complex high-level tasks, e.g., object recognition, which can lead the whole vision process

to become effective. The visual attention is not a new topic which has been addressed

in the conventional computer vision algorithms for many years. The development and

deployment of visual attention in deep learning algorithms are of vital importance since

the visual attention mechanism matches well with the human visual system and also shows

an improving effect in many real-world applications. This thesis is on the visual attention in

deep learning, starting from the recent progress in visual attention mechanism, followed by

several contributions on the visual attention mechanism targeting at diverse applications in

computer vision, which include the action recognition from still images, action recognition

from videos and image description generation.

Firstly, the soft attention mechanism, which was initially proposed to combine with

Recurrent Neural Networks (RNNs), especially the Long Short-term Memories (LSTMs),
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was applied in image description generation. In this thesis, instead, as one contribution

to the visual attention mechanism, the soft attention mechanism is proposed to directly

plug into the convolutional neural networks for the task of action recognition from still

images. Specifically, a multi-branch attention network is proposed to capture the object

that the human is intereating with and the scene in which the action is performing. The soft

attention mechanism applying in this task plays a significant role in capturing multi-type

contextual information during recognition. Also, the proposed model can be applied in two

experimental settings: with and without the bounding box of the person. The experimental

results show that the proposed networks achieved state-of-the-art performance on several

benchmark datasets.

For the action recognition from videos, our contribution is twofold: firstly, the hard at-

tention mechanism, which selects a single part of features during recognition, is essentially

a discrete unit in a neural network. This hard attention mechanism shows superior capacity

in discriminating the critical information/features for the task of action recognition from

videos, but is often with high variance during training, as it employs the REINFORCE

algorithm as its gradient estimator. Hence, this brought another critical research question,

i.e., the gradient estimation of the discrete unit in a neural network. In this thesis, a

Gumbel-softmax gradient estimator is applied to achieve this goal, with much lower vari-

ance and more stable training. Secondly, to learn a hierarchical and multi-scale structure

for the multi-layer RNN model, we embed discrete gates to control the information be-

tween each layer of the RNNs. To make the model differentiable, instead of using the

REINFORCE-like algorithm, we propose to use Gumbel-sigmoid to estimate the gradient

of these discrete gates.

For the task of image captioning, there are two main contributions in this thesis: pri-

marily, the visual attention mechanism can not only be used to reason on the global image

features but also plays a vital role in the selection of relevant features from the fine-grained

objects appear in the image. To form a more comprehensive image representation, as a
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contribution to the encoder network for image captioning, a new hierarchical attention

network is proposed to fuse the global image and local object features through the con-

struction of a hierarchical attention structure, to better the visual representation for the

image captioning. Secondly, to solve an inherent problem called exposure-biased issue

of the RNN-based language decoder commonly used in image captioning, instead of only

relying on the supervised training scheme, an adversarial training-based policy gradient op-

timisation algorithm is proposed to train the networks for image captioning, with improved

results on the evaluation metrics.

In conclusion, comprehensive research has been carried out for the visual attention

mechanism in deep learning and its applications, which include action recognition and im-

age description generation. Related research topics have also been discussed, for example,

the gradient estimation of the discrete units and the solution to the exposure-biased issue

in the RNN-based language decoder. For the action recognition and image captioning,

this thesis presents several contributions which proved to be effective in improving existing

methods.
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Chapter 1

Introduction

1.1 Overview

Machine learning has powered many aspects of modern society: from conventional industry

to current internet business like web search engine, social networks, and content filtering.

It is continuing to increase its impact on modern life. To name a few, the functionalities

of machine learning include recognising objects in images, translating one language to

another, match news items, recommending news based on user’s interests and of course,

select the relevant results in search engine.

Recently, one of the branches of machine learning family called deep learning has shown

dominant performance in tasks mentioned previously and becomes increasingly important

in machine learning and artificial intelligence. Conventional machine learning techniques

were limited in their ability to process natural data in their raw form. For decades, con-

structing pattern recognition system required careful engineering and considerable domain

expertise to design a feature extractor that transformed the raw data into a suitable inter-

nal representation or feature vector from which the learning subsystem, often a classifier

or predictor, could classify or predict patterns in the input. These hand-crafted features,

if not appropriately designed, could severely deteriorate the system performance. On the
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other hand, representation learning, which deep learning belongs to [2], is a set of learn-

ing methods which can be fed with only raw data and automatically discover the internal

representation of the data during the process of learning.

[5] has given an empirical view of what the representation learning means, taking the

example of one of the most popular models in deep learning called Convolutional Neural

Networks (CNNs) [6]. In [5], the authors visualize each of the layers in the trained CNN to

find what each layer represents. Interestingly, an image, for example, comes in the form of

an array of raw pixels, and the learned features in the first layer of representation usually

represent the presence of edges at particular orientations and locations in the image. The

second layer typically detects motifs by spotting specific arrangements of edges, regardless

of small variations in the edge positions. The third layer may assemble motifs into larger

combinations that correspond to parts of familiar objects, and subsequent layers would

detect objects as combinations of these parts. The representation of the CNN becomes

more abstract in the higher layers than the lower layers. The CNN is only an example of

representation learning. Not just the CNNs model but also other models like RNNs show

excellent performance in various machine learning tasks. The RNNs are especially good in

the sequence-to-sequence problem, which is very common in many real-world applications.

For instance, machine translation, image captioning, action recognition and some problems

associated with video or language are all sequence-based recognition tasks. The RNNs try

to model the sequence evolution of the features by using recurrent connections, which

proved to be effective in modeling the sequential dependencies.

Meanwhile, it has been found in the literature that humans do not focus their attention

on an entire scene at first glance [7]. Instead, they retrieve parts of the scene or objects

sequentially to find the relevant information. The visual attention mechanism had long

been the research topic in neural science, computer vision, and machine learning. Most

of the conventional computer vision algorithms applied visual attention mechanism only

based on the low-level raw features to find the saliency. With the rapid development in



Chapter 1. Introduction 3

representation learning and deep learning, more research learns the internal representa-

tions automatically during the training process. This technology also empowers the visual

attention model to automatically retrieve relevant information for the specific task instead

of solely relying on static low-level image features. Attention-based models have been

shown to achieve promising results on several challenging tasks such as neural machine

translation [8], image captioning [4] and action recognition [9].

The visual attention models are mainly categorised into bottom-up models and top-

down models [10]. The bottom-up attention models are mainly driven by the low-level

features of the visual scene. The goal of bottom-up attention is to find the salient points,

which stands out from its surrounding and attracts our attention at first glance. Most of

the traditional bottom-up attention models rely on hand-crafted low-level image features

such as colour and intensity to produce saliency map. Most of the recently applied and

effective visual attention mechanism in deep learning field belongs to the family of the top-

down attention. The top-down attention is learnt in the training process and mainly driven

by the discriminative training. It tries to learn the crucial features which are useful for the

task at hand. This basic idea of grasping the crucial features introduces the main research

topic of this thesis, which drives us to research into the mechanism of visual attention and

its application in many real-world tasks.

In this thesis, following the basic idea of the visual attention, we employed, extended

and improved the current visual attention mechanism in several computer vision tasks,

which include the action recognition from still images, the action recognition from videos

and the image description generation. The action recognition from still images is a human-

related image recognition problem, the action recognition from videos are video-based

recognition task, and the image description generation is an image understanding problem.

In this thesis, the three important applications of computer vision can be realised with the

aid of the visual attention mechanism to improve the final performance in challenging

dataset. For action recognition from still images, the contextual information associated



Chapter 1. Introduction 4

with the human is what the attention mechanism try to capture; for action recognition from

videos, the crucial information in the spatial and temporal domain is what the attention

mechanism focuses; for image description generation, the attention mechanism is to align

the corresponding object features with the generated word automatically, which is of vital

importance this kind of language-related problem.

Corresponding to the three topics, we carried out three pieces of research, all based on

the visual attention mechanism:

• Many of the previously visual attention mechanism is associated with the RNNs,

which tries to allocate attention region by considering the temporal dependencies.

In our research [11], the visual attention mechanism is shown to be powerful in

feedforward networks. By applying the multi-branch attention networks in the CNN

model, action recognition from still images can be successfully realised.

• For action recognition from videos, the visual attention mechanism is extended to

convolutional LSTM model in another research [12] to capture the spatial information

of the CNN model, to better recognise action categories in videos. The hard attention

mechanism is normally achieved by using reinforcement learning-based gradient esti-

mator in previous research, in this thesis, instead, a novel hard attention mechanism,

using Gumbel-softmax as the gradient estimator and applying in action recognition

from videos is proposed in the third research [13]. This kind of gradient estimator

is also used to form the discrete gates in learning hierarchical and multi-scale RNN

structure, which can reason on the temporal structure of the input sequence of video

frames.

• Finally, for image description generation, a hierarchical attention mechanism, which

can reason on the global image features and also the fine-grained local object features,

is proposed to form an advanced visual representation of the image. In this research,

another contribution is using a reinforcement learning-based adversarial training al-



Chapter 1. Introduction 5

gorithm to optimise the image description generator, to alleviate the exposure biased

problem in the RNN-based language model.

1.2 Motivations and Challenges

1.2.1 Motivations

When human process a visual scene, they do not acquire the information of the entire

scene at once and also do not treat the whole scene in equal, instead, they process the

scene from the most salient or important objects first, and then adjust the attention to

the relevant cues for the recognition task at hand. Take an easy example for illustration,

given a scene of a dish full of potatoes and some beef, human might first recognise that

the scene is about food since there is a dish which is the most important object in the

scene; at a second glance, human might find the potatoes, and subsequently, they find the

beef. At last, they acquire enough information to recognise the visual scene. To conclude,

unlike the common practice in the machine in which the image is stored in numbers in

equal importance, human pay attention differently to objects step by step to recognise a

visual scene.

Inspired by this phenomenon, our main motivations for this thesis are to discover and

research the implementation of the visual attention mechanism in artificial intelligence and

computer vision, and subsequently test the feasibility of the proposed attention mechanism

for diverse and challenging real-world applications in computer vision, which include the

action recognition from still image, the action recognition from video and the automatic

generation of image description.

These three tasks are all challenging and are often associated with medium or high

level semantics of visual recognition. Action categories are mid-level semantics which can

be used to bridge the low-level image features and high-level visual understanding. To

understand an image or a video, the action of the target person is with high importance
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and also one of the most difficult part of the recognition. Image description generation is

closely related with image understanding as natural language description can be considered

as a human’s way of understanding of the visual scene. Hence, another motivation of this

thesis is to research into the internal mechanism of a computer vision system in discovering

the semantics of a visual representation, and finally, trying to bridge the gap between the

visual world and semantic world.

1.2.2 Challenges

• Action recognition is a challenging task if only the still image is provided. The action

category of a person is often associated with the temporal behavior, which, is missed

in a still image. Hence, a recognition model has to fully consider the contextual

information for the action recognition from a still image. The challenge for this

task is how to employ the visual attention mechanism to discover the contextual

information in an image.

• As discussed previously, action recognition from the video is often associated with the

temporal behavior of the person. However, the temporal evolution of the visual scene

is essentially dynamic, which is much different from the image-based recognition.

The challenge lies in the modeling of these dynamics and also the application of the

attention mechanism in raising the performance of the temporal recognition problem.

• The automatic generation of image descriptions in natural language is a difficult

task since it is a cross-discipline problem combined with both computer vision and

Natural Language Processing (NLP). The image description in natural language can

be considered as a high structural output. The modeling of the structural information

with the visual attention mechanism is a challenging task, which tries to achieve a

high-level machine intelligence since many images cannot be easily described even by

a human.
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1.3 Thesis Contributions

1. A comprehensive analysis of the visual attention mechanism in computer vision is

presented in this thesis. Two important applications of computer vision and deep

learning called action recognition and image description generation are discussed.

Especially, in both of the two applications, the system performance is improved by

using the visual attention mechanism.

2. For the task of action recognition in still images, a multi-branch attention network

is proposed to capture the contextual information to improve the discriminating

capability of the model for the task. It is worthy to mention that this is one of

the early attempts to implement a visual attention mechanism in a CNN model.

(Chapter 3)

3. For the task of action recognition in videos, two types of visual attention mechanism,

including the soft attention and hard attention, are proposed and combined with

a novel hierarchical multi-scale RNN model. The final performance validates that

the hierarchical multi-scale RNN can capture the long-term dependency and the

attention mechanism demonstrates a powerful modeling capacity in grasping the key

information. (Chapter 4)

4. A novel hierarchical attention mechanism and a policy gradient optimisation tech-

nique blending with the adversarial training framework, are proposed for the task

of image captioning. The hierarchical attention mechanism can reason on both the

global image features and local object features while the policy gradient optimisation

can compensate the exposure bias problem in the RNN-based language model. The

novel architecture demonstrates good system performance. (Chapter 5)
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Figure 1.1: The structure of this thesis.

1.4 Thesis Structure

A diagram of the thesis structure is shown in Fig. 1.1. A general introduction of the top-

ic and background is provided in the Introduction, followed by the preliminaries of deep

learning and the visual attention mechanism applied in this thesis. Subsequently, two

applications, namely, action recognition and image description generation, are introduced

with different types of visual attention mechanism. Specifically, the topic of action recogni-

tion includes action recognition from still images and from videos which are all powered by

the application of the proposed visual attention mechanism. The task of image description

generation is also carried out into research with visual attention mechanism. Lastly, a

conclusion of this thesis and future works are introduced in the last chapter.



Chapter 1. Introduction 9

1.5 Publications

1.5.1 Periodical Papers

1. Shiyang Yan, Fangyu Wu, Jeremy S Smith, Wenjin Lu, Bailing Zhang: Image

Captioning Based on Hierarchical Attention Mechanism and Policy Gradient Opti-

mization. IEEE Transactions on Multimedia. (Under Review)

2. Shiyang Yan, Jeremy S Smith, Wenjin Lu, Bailing Zhang: Abnormal Event De-

tection from Videos using Two Stream Recurrent Variational Autoencoder. IEEE

Transactions on Cognitive and Developmental Systems. (Under Revision)

3. Shiyang Yan, Jeremy S Smith, Bailing Zhang: Action Recognition from Still Images

Based on Deep VLAD Spatial Pyramids. Signal Processing Image Communication,

54 (2017): 118-129.

4. Shiyang Yan, Jeremy S Smith, Yizhang Xia, Wenjin Lu, Bailing Zhang: Multi-

Scale Convolutional Neural Networks for Hand Detection. Applied Computational

Intelligence and Soft Computing, 2017 (2017).

5. Shiyang Yan, Jeremy S Smith, Wenjin Lu, Bailing Zhang: Multi-branch Attention

Networks for Action Recognition in Still Images. IEEE Transactions on Cognitive

and Developmental Systems, 2017 (2017).

6. Shiyang Yan, Jeremy S. Smith, Wenjin Lu, Bailing Zhang: Hierarchical Mult-scale

Attention Networks for Action Recognition. Signal Processing Image Communica-

tion, 61 (2018): 73-84.

1.5.2 Conference Papers

1. Shiyang Yan, Fangyu Wu, Jeremy S. Smith, Wenjin Lu, Bailing Zhang: Image Cap-

tioning using Adversarial Networks and Reinforcement Learning. 2018 International

Conference on Pattern Recognition, (ICPR 2018), Beijing, 2018.



Chapter 1. Introduction 10

2. Shiyang Yan, Jeremy S. Smith, Wenjin Lu, Bailing Zhang: CHAM: action recogni-

tion using convolutional hierarchical attention model. 2017 International Conference

on Image Processing. 2017 IEEE International Conference on Image Processing (ICIP

2017), Beijing, 2017, pp. 3958-3962.

3. Shiyang Yan, Jeremy S. Smith, Bailing Zhang: Attributes and Action Recognition

Based on Convolutional Neural Networks and Spatial Pyramid VLAD Encoding.

Asian Conference on Computer Vision (ACCV 2016), Taipei, 2016, pp. 500-514.

Springer, Cham.

4. Shiyang Yan, Yuxuan Teng, Jeremy S. Smith, Bailing Zhang: Driver behavior

recognition based on deep convolutional neural networks. Natural Computation, 2016

12th International Conference on Fuzzy Systems and Knowledge Discovery (ICNC-

FSKD 2016), Changsha, 2016, pp. 636-641.

5. Shiyang Yan, Yudi An, Jeremy S. Smith, Bailing Zhang: Action detection in office

scene based on deep convolutional neural networks. 2016 International Conference

on Machine Learning and Cybernetics (ICMLC 2016), Jeju Island, 2016, vol. 1, pp.

233-238.



Chapter 2

Preliminaries of Deep Learning

and Visual Attention Mechanism

2.1 Preliminaries of Deep Learning

Deep learning algorithms are subsets of the machine learning algorithms, which aim at

discovering multiple levels of distributed representations. Recently, various deep learning

algorithms have been proposed to solve traditional artificial intelligence problems. This

chapter aims to introduce the preliminaries of deep learning algorithms which are related

to the research topic of the thesis, followed by the introduction and review of the visual

attention mechanism.

2.1.1 Logistic Regression

Logistic Regression is a classical learning algorithm and also a fundamental part of the

neural network model [14]. Logistic Regression introduces the Logistic function into the

Linear Regression model.

11
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The distribution function of the Logistic distribution is defined as:

P (x;µ, s) =
1

e(−(x−µ)/s)
(2.1)

The Logistic Regression model implements the following conditional probabilistic dis-

tribution:

P (y = 1|x) =
e(w·x+b)

1 + e(w·x+b)

P (y = 0|x) =
1

1 + e(w·x+b)

(2.2)

where x is the input, y is the output, w and b are the parameters, w is the weight vector,

b is the bias and w · x is the dot product of w and x.

The equation 2.2 can get the conditional probabilities of the output to be 1 and 0 given

the input samples.

The odds of an event is the ratio of the probability of happening of this event to the

probability of not happening. If the probability of an event happening is P , then the odds

of this event is p
1−p , also, the log odds of the event is logit(P ) = log p

1−p .

For the Logistic Regression model, the log odds of the event is hence log P (y=1|x)
1−P (y=1|x) =

w · x, which indicates that the log odds of the Logistic Regression is a linear function of

the input x.

2.1.2 Basic Neural Network Model

From the viewpoint of a neural network, the Logistic Regression can be interpreted as

one layer neural network, with a Sigmoid (Logistic) activation function as the non-linear

mapping function, which is shown in Fig. 2.1.

If the multi-layer mapping is embedded in this system, it can form a neural network

learning model, or more specific, a feedforward neural network [15] [16]. The feedforward

networks, or Multi-layer Perceptron (MLP), are vital in deep learning models. A feedfor-
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Figure 2.1: The neural network interpretation of Logistic Regression.

ward network aims to approximate some non-linear functions. The feedforward networks

are of extreme importance to machine learning practitioners.

They form the basis of many critical applications. For example, the convolutional

network used for object recognition from images is a specific kind of feedforward network.

Feedforward networks are a conceptual stepping stone on the path to recurrent networks,

which power many natural language applications. Feedforward neural networks are called

networks because they are typically represented by composing together many different

functions. The model is a directed acyclic graph which describes how the functions are

composed together.

A general structure of the feedforward network is shown in Fig. 2.2. The neural network

has several layers in which each of them performs a matrix operation and a non-linear

mapping. The neural network model is proved to be universal approximators [17], which

can approximate any measurable functions to any desired degree of accuracy. Also, there

are no theoretical constraints for the success of feedforward networks.
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Figure 2.2: The structure of a feed forward neural network.

2.1.3 Convolutional Neural Networks

CNNs [6] are a particular type of neural network for processing data that has a known grid-

like topology. Examples include natural language or speech data, which can be considered

of as a 1D grid taking samples at regular intervals, and visual data, which can be considered

of as a 3D grid of pixels. Convolutional networks have been very successful in many real-

world applications. The name ‘convolutional neural network’ indicates that the network

employs a mathematical operation called ‘convolution’. Convolution is a special kind of

linear operation. Convolutional neural networks are neural networks that use convolution

in place of general matrices multiplication in layers of them.

A typical CNN for hand-written digits recognition is shown in Fig. 2.3. In addition to

the convolution operation in the CNN, another layer called ‘Pooling (Subsampling)’ is also

an important operation in the CNN, which will be discussed later.

Convolution Operation

The convolution operation on a continuous function is defined in Equation 2.3, it can be

interpreted as using a kernel function w(a), to calculate a weighted average of function
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Figure 2.3: A typical CNN for hand-written digits recognition [1].

x(a) and w(a).

s(t) =

∫
x(a)w(t− a)da (2.3)

From the Latin ‘convolvere’, ‘to convolve’ means to roll together. For mathematical

purposes, convolution is the integral measuring how much two functions overlap as one

passes over the other. Think of convolution as a way of mixing two functions by multiplying

them.

The convolutional operation can also be defined as asterisk, in Equation 2.4.

s(t) = (x ∗ w)(t) (2.4)

In the case of CNN terminology, the first argument, i.e., the function x, is the input

and the second argument, i.e., the function w, is referred to as the kernel. The output is

often referred to as feature map.

In most cases, the data used are sampled not in every instant, but at a certain interval,

in other words, these data are discredited. The time index t, consequently, then takes on

only integer values. The discrete convolution is defined in Equation 2.5.

s(t) = (x ∗ w)(t) =

∞∑
a=−∞

x(a)w(t− a) (2.5)
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Figure 2.4: An illustration of the convolutional operation in a CNN.

In machine learning applications, the input is usually a multidimensional array of data,

and the kernel is usually a multidimensional array of parameters that are adopted by the

learning algorithm. These multidimensional arrays will be referred as tensors.

In practice, the infinite summation can be implemented as a summation over a finite

number of array elements, if the tensors are considered as zero everywhere except where

the data is stored in the multidimensional arrays.

Also, convolutions can be used over more than one axis at a time. For instance, if

a two-dimensional image I is taken as our input, a two-dimensional kernel K is utilised.

Then, the two-dimensional convolution can be defined in Equation 2.7.

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.6)

Since the convolution operation is commutative, alternatively, Equation 2.7 can also

be written as:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2.7)

A commonly used effective operation process of convolution in a CNN is described by
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Figure 2.5: An illustration of the max pooling operation in a CNN.

Fig. 2.3.

Pooling Operation

A typical layer of a CNN consists of three steps. In the first step, the layer performs

several convolutions in parallel to produce a set of linear activations. In the second step,

each linear activation is run through a nonlinear activation function, such as the Rectified

Linear Unit (ReLU) function [18]. This step is sometimes called the detector stage. In the

third stage, a pooling function to used to modify the output of the layer.

This section aims to give a general introduction to pooling. A pooling operation replaces

the output of the neural network at a specific location with a summary statistic of the

nearby outputs. The most commonly used pooling in CNN is max-pooling. Pooling helps

to make the representation approximately invariant to small translations of the input.

Invariance to the translation means that if the input is translated by a small amount, the

values of most of the pooled outputs do not change, which increases the robustness of the

neural recognition network. The application of pooling can be seen as adding an infinitely

strong prior that the function that the layer learns must be invariant to small translations.

When this assumption is correct, it can significantly improve the statistical efficiency of

the network.

The max-pooling operation is shown in Fig. 2.5. In each colour-indicated grid, the

max-pooling selects the maximum value to replace the data in the original grid, and form
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a new tensor as an output of the max-pooling layer.

Stochastic Pooling A disadvantage of max-pooling is that it is sensitive to overfit the

training set, making it hard to generalize well during testing [19]. To solve this problem,

Zeiler et al. [20] proposed a stochastic pooling approach which replaces the conventional

deterministic pooling operations with a stochastic procedure, by randomly picking the acti-

vation within each pooling region according to a multinomial distribution. This stochastic

nature is helpful to prevent the overfitting problem.

Spatial Pyramid Pooling (SPP) and Region-of-Interest Pooling (RoI pooling)

The CNN model requires a fixed-sized input image. This restriction may bring problems

for images of arbitrary sizes, especially in the CNN-based object detection schemes. To

eliminate this limitation, He et al. [21] replaced the last pooling layer with a SPP, for

object recognition. The SPP can extract fixed-length features from arbitrary images (or

region candidates), and can be applied in a CNN structure for arbitrary tasks, to improve

the performance of the CNN model.

Subsequently, Girshick [22] proposed a simplified SPP layer for object recognition,

called RoI pooling. This pooling layer is simpler and also enables the CNN model to

handle arbitrary-sized input images. More importantly, the RoI Pooling layer enables the

parameter sharing in the computation-intensive convolutional layers [22]. This research

is extremely important in object detection. Most subsequent research [23] [24] [25], for

various tasks, employed the RoI pooling layer to deal with input images.

Spatial Transformers Due to the typically small spatial support for max-pooling, the

spatial invariance is only realised over a deep hierarchy of max-pooling and convolutions,

and the intermediate features in a CNN model are not actually invariant to large transfor-

mations of the input data [26] [27]. To mitigate this issue, Jaderberg et al. [28] proposed

an important model, the spatial transformer networks, which explicitly allows the spatial
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transformation of data in the network. The spatial transformers result in arbitrary CNN

models which learn invariance to translation, scale, rotation and more generic warping.

Also, the spatial transformer can be interpreted as an attention mechanism, but is more

flexible and can be trained purely with backpropagation without reinforcement learning

techniques.

Capsule Networks Geoffrey Hinton pointed out many drawbacks of the max-pooling

operation such as the side effect of ’coarse coding’ [29]. To address this issue, Sabour et

al. [30] proposed the ’Capsule Networks’ in which a dynamic routing scheme is proposed

between the capsules to replace the max-pooling. This type of ’routing-by-agreement’ is

more effective than the primitive form of routing in max-pooling, which allows neurons in

one layer to ignore all but the most active feature detector in a local pool. This research

is considered as an recent breakthrough in the deep learning area [31].

Activation Function

Activation in a neural network provides non-linear mappings that take the inputs and do

some mathematical operations on them. Many such activation functions exist and are

discussed as follows:

Sigmoid (Logistic) This non-linearity takes an input a real-valued function and outputs

value in the range of 0 and 1. It is similar to the Logistic Regression and has been

widely applied in neural networks for a long time. However, it suffers from saturating and

vanishing gradient problem. The Equation 4.18 defines the Sigmoid function.

Sigmoid(x) =
1

1 + ex
(2.8)

Tanh As shown in Equation 2.9, it is clear that Tanh can be considered as a scaled up

version of a sigmoid, outputting values in the range of -1 and 1. The problem of saturating
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gradients also exists with this function. The Tanh function is widely applied in Recurrent

Neural Networks (RNNs).

Tanh(x) =
ex − e−x

ex + e−x
= 2Sigmoid(2x)− 1 (2.9)

ReLU ReLU is a linear activation function which has a threshold at zero as shown in

Equation 2.10. The convergence of gradient descent has been proved to be accelerated by

applying ReLU [18].

ReLU(x) = max(0, x) (2.10)

Training Strategies

The deep architecture and large number of parameters in a CNN model bring high perfor-

mance and also another problem, the overfitting problem during training. Several regular-

ization techniques that try to compensate this issue are introduced in this section.

Drop-out Drop-out is proposed by Geoffrey Hinton [32] and discussed in detail in [33].

During each training batch, the algorithm will randomly drop certain amount of the fea-

ture detectors to enhance the generalization ability of the model, and prevent overfitting.

Subsequently, Warde-Farley [34] analysed the feasibility of the drop-outs and pointed out

that drop-out is an effective ensemble learning method.

Pre-training and Fine-tuning One of the purposes of pre-training for deep learn-

ing practitioners is preventing overfitting. It is associated with data augmentation and

transfer-learning. Pre-training means initialising the CNN model with a set of pre-trained

parameters rather than randomly-initialised ones. Also, the deep neural networks are high-

ly non-linear function. The backpropagation algorithm might lead the neural networks to

local minima. Pre-training can provide a good start point for the initialisation of the



Chapter 2. Preliminaries of Deep Learning and Visual Attention Mechanism 21

parameters of the deep neural networks. It is a very popular practice in deep learning

area, due to the advantages that it can accelerate the learning process and improve the

generalisation capability. Erhan et al. [35] conducted an extensive research on why the

pre-training steps help in raising the system performance. Deep learning researchers em-

ploy well-known CNN architecture pre-trained on ImageNet [36] dataset and fine-tune the

model for the task at hand.

Common CNN Architectures

In this section, some of the commonly used CNN architectures in computer vision are

presented.

LeNet This CNN architecture was one of the pioneering research in CNNs by LeCun

et al. [37]. In this research, the hand-written digits were recognised by a CNN. It finds

application in reading zip codes, digits, and so on. The lack of high-level computing

machines at that time restricted the large-scale application of CNNs.

AlexNet This architecture developed by Alex Krizhevsky, Ilya Sutskever and Geoff Hin-

ton [18] is credited as the first work in CNNs to popularise it in the field of computer vision.

The network was similar to LeNet, but instead of alternating convolution layers and pool-

ing layers, AlexNet had all the convolutional layers stacked together. Also, they proved the

feasibility of ReLU function in training large-scale CNN. Moreover, compared to LeNet,

this network is much bigger and deeper. AlexNet was able to win the ImageNet Large Scale

Visual Recognition Challenge-2012 (ILSVRC-2012) [36]) competitions achieving top-1 and

top-5 error rates on test dataset.

GoogleNet This CNN architecture from Szegedy et al. [38] from Google won the ILSVR-

C 2014 competition. They proposed a new architecture called Inception (v1) that gives

more utilisation of the computing resources in the network. GoogleNet is a particular
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incarnation that has twenty-two layers of Inception module but with less parameter com-

pared to AlexNet. Later, many improvements had been made on Inception-v1, with the

principle being the introduction of batch normalisation which led to Inception-v2 by Ioffe

et al. [39]. More refinements were added to this version, and the architecture was referred

to as Inception-v3 [40]. Also, the Inception network is continuing to be developed [41].

VGG-Net A famous structure, developed by Karen Simonyan and Andrew Zisserman [42],

called VGG-Net, has been adopted by many types of research for various computer vision

tasks. The authors of [42] have done a thorough analysis of the depth factor in a CNN,

keeping all other parameters fixed. This trial could have led to a vast number of param-

eters in the network, but it was efficiently controlled by using tiny 3x3 convolution filters

in all layers. The VGG-Net was the runner-up in ILSVRC 2014 contest.

Residual-Net A severe problem, preventing the CNN to be deeper, is the vanishing

gradient problem [43]. He et al. developed a CNN framework by utilising a residual

connection between layers, can reduce the vanishing gradient effect on the training of a very

deep network [43]. A primary drawback of this framework is that it is much expensive to

evaluate due to the significant number of parameters. However, the number of parameters

can be reduced to an extent by removing the first Fully-Connected layer (most of the

parameters are in this layer in a CNN), without any effect on the final performance.

2.1.4 RNNs

As previously discussed, the vanilla neural networks and CNNs are feedforward neural

networks, which lacks the capability of processing sequential or structural data. RNNs are

a family of neural networks for processing sequential data. In contrast to the CNN which

is specialised for processing a grid of values such as an image, an RNN is specialised for a

sequence of values x(1), x(2), ..., x(t).

To go from multi-layer neural networks to recurrent neural networks, it is interesting to
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Figure 2.6: The unfolding of the computational graph of a RNN [2].

discuss one of the early ideas found in machine learning and statistical models of the 1980s:

sharing parameters across different parts of a model. Parameter sharing makes it possible

to extend the neural networks to examples of different forms and generalise across them.

If the neural networks are not able to share parameters among different time steps of a

sequential data, they cannot generalise among the data. Sharing parameters are critical if

there is a relationship in data between different time steps. A traditional fully connected

feedforward network would have separate parameters for each input feature, so it has to

learn all of the rules of the data separately at each time step. By comparison, a RNN

shares the same weights across several time steps.

To see the secrets of the RNNs, the concept of a computational graph is firstly intro-

duced. A computational graph is a way to formalise the structure of a set of computations,

such as those involved in taking inputs and parameters to outputs and final loss function.

In this section, the idea of unfolding a recurrent computation into a computational graph

that has a repetitive structure, typically corresponding to a chain of computational units,

is firstly introduced. Unfolding this graph results in the sharing of the parameters across

a neural network structure.

LSTMs

The most effective sequence models used in practical applications are called gated RNNs

in which the most widely used neural networks are LSTMs. The vanilla RNNs suffer from
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the vanishing gradient problem [44]. Roughly speaking, the error gradients would vanish

exponentially quickly with the size of the time lag between important events, which makes

training very difficult. Hence, to mitigate this problem, Hochreiter and Schmidhuber [45]

proposed a gated RNN called LSTMs.

An LSTM consists of an input gate (it), an output gate (ot), a forget gate (ft), cell

memory (ct) and hidden state (ht), which follow the following updating rules:

it = tanh(Wxi ∗ xt +Whi ∗ ht−1 + bi)

ft = σ(Wxf ∗ xt +Whf ∗ ht−1 + bf )

ot = tanh(Wxo ∗ xt +Who ∗ ht−1 + bo)

gt = σ(Wxc ∗ xt +Whc ∗ ht−1 + bc)

ct = ft · ct−1 + it · gt

ht = ot · φ(ct)

(2.11)

where ∗ indicates the matrices multiplication, · indicates elementwisely multiplication, W∗

means the weight matrices and b∗ are the bias vectors.

As can be seen from the Equation 2.11, the RNN dynamically updates the three gates,

cell memory and hidden state in every time step. The architecture of the LSTMs can be

seen in Fig. 2.7.

A criticism of the LSTM model is that it is mainly ad-hoc and that it has a substantial

number of components whose purpose is not apparent. Consequently, it is not clear why

the LSTM is an optimal architecture, it is possible that better architectures exist [46].

Gated Recurrent Unit (GRU)

A GRU is proposed by Cho et al. [47] for the task of sequence-to-sequence modelling.

Similar to the LSTM, the GRU has gating units that modulate the flow of information

inside the unit, however, without having a separate memory cells.

A GRU is defined by Equation 2.12. Fig. 2.8 demonstrates the architecture of the
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Figure 2.7: The architecture of the LSTMs.

GRU.

rt = σ(Wxr ∗ xt +Whr ∗ ht−1 + br)

zt = σ(Wxz ∗ xt +Whz ∗ ht−1 + bz)

h̃t = tanh(Wxh ∗ xt +Whh(rt · ht−1) + bh)

ht = (1− zt) · ht−1 + zt · h̃t

(2.12)

The GRU is an alternative to the LSTM which is similarly difficult to justify. [46]

provided an empirical analysis on the performance of the LSTM and GRU, indicating that

the GRU outperformed the LSTM on nearly all tasks except language modelling with the

naive initialization. [48] however, indicated that the LSTM and GRU generates different

results, depending on the tasks.

2.1.5 GANs

The Theory of the GANs

GANs are an example of the generative model. GANs was first proposed by [3] in 2014. It

is proposed initially to generate realistic images given a random signal. The fundamental

idea of GANs is to set up a game between two players. One of them is the generator, which
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Figure 2.8: The architecture of the GRU.

creates samples that are intended to come from the same distribution as the training data.

The other player is the discriminator which tries to differentiate the generated samples from

real samples. The discriminator learns using traditional supervised learning algorithms,

discriminating inputs into two categories (whether from generated or real samples). The

generator is trained to deceive the discriminator. This is an adversarial game in which

the generator tries to generate samples more like the real ones while the discriminator

is trained to better discriminate between the generated and real samples. The generator

must learn to make samples that are indistinguishable from the genuine samples to make

the game successful, and hence, the generator network can learn to generate samples that

are drawn from the same distribution as the training data.

In the original GANs, the adversarial framework applied when the models are both

MLP [3]. In fact, CNNs can also be used in this framework [49], also RNNs [50]. To learn

the generator’s distribution pg over data x, the GANs define a prior on input noise variables

pz(Z), then represent a mapping to data space as G(z; θg), where G is the generator which

is represented by a differentiable function such as neural networks. The discriminator

is another neural network, D(x; θd) which outputs a single value, representing whether

the samples are generated or real. Then the discriminator D is trained to maximise the

probability that the correct labels are assigned to the training samples and generated
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Figure 2.9: The structure of a typical GANs model [3].

samples. The generator, G, is trained simultaneously to minimize log(1 − D(G(z))). In

summary, the D and the G play a two-player minimax game as described in Equation 2.13.

The structure of a typical GANs model is shown in Fig. 2.9.

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.13)

The GANs framework is not restricted in image generation, in fact, it can be applied

in many tasks. For instance, language generation is an essential task in natural language

processing and also has significant practical value. [50] propose the SeqGAN for language

generation. As explained in Equation 2.13, the generator and discriminator are trained

simultaneously, which means that the gradient can be back propagated from the discrimi-

nator to the generator, since image generation is a continuous process. However, language

generation is a discontinuous, often token by token. To directly apply GANs on the task of

language generation is infeasible. To tackle this difficulty, [50] propose to use reinforcement

technique in which the probability of the generated samples to be real is considered as a

reward value for the generator. Hence, with the aid of reinforcement learning algorithms,

the SeqGAN can be trained, with improving results over conventional supervised learning.
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The GANs in Discrete Settings

Since in Chapter 5, the GANs in language problem is what need to be dealt with, some of

the research in this area is firstly reviewed. Despite the successes in capturing continuous

distributions such as image generation, the application of the GANs to discrete settings,

such as natural language processing tasks, is restricted. The reason is that the difficulty of

backpropagation through discrete random variables combined with the inherent instability

of the GANs training objective, prevent the conventional GANs to be feasible in natural

language processing tasks.

To address this issue, [51] proposed maximum-likelihood augmented discrete GAN (Ma-

liGAN) for discrete settings by replacing the initial GANs objective with a low-variance

objective using the discriminators output that follows the log-likelihood. [52] proposed a

boundary-seeking GANs by using the estimated difference measured from the discriminator

to compute importance weights for generated samples, providing a policy gradient optimi-

sation solution for training the generator. Instead of the policy gradient optimisation, [53]

used a Gumbel-softmax gradient estimator to deal with the discreteness problem to train

the GANs.

SeqGAN proposed in [50] is another attempt to solve this issue. The SeqGAN use

three-steps training strategy by using the policy gradient algorithm to backpropagate the

reward signal, obtained from the discriminator, to the generator. This training strategy

was also used in [54] for visual paragraph generation, but with a Wasserstein-GANs objec-

tive [55], which proves to be more stable for the GANs training. In Chapter 5, the idea of

the SeqGAN is used, but with a discriminator to evaluate the coherence and consistency

between the multi-modal information, for image captioning.
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2.2 Visual Attention Mechanism

When processing a complex visual scene, human beings do not tend to look at the visual

scene in its entirety at once. Instead, they focus on a subset of the visual content to faster

the visual analysis process. Inspired by this phenomenon, visual attention mechanism

becomes a hot research topic in computer vision, neuroscience and deep learning field. It is

widely used in object segmentation, object recognition, image caption generation, human

action recognition and visual question answering (VQA). In the last few years, deep learning

has been growing rapidly. Many CNNs and RNNs have achieved much better performance

in various computer vision and natural language processing tasks, compared to previous

traditional methods. Recent progress in deep learning witnessed a close relation between

deep learning and visual attention mechanism. The visual attention models are mainly

categorised into bottom-up models and top-down models [10].

2.2.1 Bottom-up Visual Attention

The bottom-up attention models are mainly driven by the low-level features of the visual

scene. The goal of bottom-up attention is to find the salient points, which stand out from

its surrounding and attracts our attention at first glance. Most of the traditional bottom-up

attention models rely on hand-crafted low-level image features such as colour and intensity

to produce saliency map. Histogram-based Contrast (HC) and Region-based Contrast

(RC) algorithm [56] are typical bottom-up attention methods which generate saliency map

by evaluating global contrast differences and spatially weighted coherence scores. The

bottom-up attention model [57] was implemented with Faster R-CNN [23], while spatial

regions are represented as bounding boxes, providing a significant improvement on VQA

tasks.

A related research topic, saliency detection, is also driven by the low-level visual fea-

tures. Most of the saliency detection methods [58] [59] [60] use low-level image features

such as contrast, edge, intensity, which can be considered as fixed and bottom-up approach.
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One of the drawbacks of the bottom-up attention is that it cannot automatically learn the

task-specific attention features since it is purely based on the low-level visual features.

Zhou et al. [61] applied global average pooling [62] to discriminate salient CNN features

for the target object category. It is a kind of task-relevant approach but still not flexible

enough.

2.2.2 Top-down Visual Attention

Most of the recently applied and effective visual attention mechanism in deep learning field

belongs to the family of top-down attention. Different attention models have been proposed

and applied in object recognition and machine translation. Mnih et al. [63] proposed an

attention mechanism to represent static images, videos or as an agent that interacts with

a dynamic visual environment. Also, Ba et al. [64] presented an attention-based model to

recognise multiple objects in images. The two models mentioned previously are all related

to RNNs and with the aid of a reinforcement learning strategy.

Bahdanau et al. [8] proposed a novel attention model for neural machine translation

without the prerequisite of reinforcement learning, which can be trained end-to-end by

the back propagation method. It is called a soft attention model. Later, a comprehensive

study for hard attention bound with reinforcement learning and soft attention for the

task of image captioning was published by Xu et al. [4]. Followed up researches include

action recognition with soft attention proposed by Sharma et al. [65] and video description

generation [66].

The top-down visual attention, according to the related works mentioned previously,

can be further categorised into two classes: hard attention and soft attention. The soft

attention model, usually ‘softly’ assign differentiated weights on different image regions

or locations, can be directly trained using backpropagation algorithm; The hard attention

model, however, can be considered as a discrete unit, which performs hard decision on which

part of the image features to be utilised. Backpropagation algorithm can not directly train
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it since its discreteness. Hence, it often needs some gradient approximation tricks to make

the training process working.

As an overview of the published works, soft attention models were mainly realized with

the leverage of RNNs for handling sequences or time-domain information. To directly

process static image, in Chapter 3, it is much desirable to implement soft attention models

in the general CNN frameworks. Teh et al. [67] applied the soft attention mechanism

in CNNs for weakly supervised object localisation and achieved excellent results in the

PASCAL VOC detection challenge [68]. They emphasised the relative importance on

candidate proposals to automatically select target regions with only region-level considered.

The typical soft attention and hard attention mechanism are first introduced, which

are initially proposed by [4] for image captioning task, then our proposed CNN-based soft

attention mechanism (detailed explanations and its applications can be seen in Chapter 4)

and a kind of hard attention mechanism (detailed explanations and its applications can be

seen in Chapter 4).

In Chapter 5, to unify the region-level and image-level attention framework, a hierar-

chical soft attention model is proposed by using a two-layer LSTMs network to reason on

both of the image features and region candidates. This is our contribution to the current

soft attention model, which can be applied in image captioning, action recognition and

many other related tasks.

Soft Attention Mechanism

This soft attention mechanism is proposed in [4] for image captioning. Specifically, the

model comprises an encoder and a decoder. They use a convolutional neural network pre-

trained on the ImageNet dataset [69] in order to extract a set of convolutional features.

These features, denoted as a = {a1, ..., aL}, correspond to certain portions of the 2-D

image.

The LSTMs network, proposed initially by Hochreiter and Schmidhuber in [45], is
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applied as the language decoder.

it = σ(Wxi ∗ zt +Whi ∗ ht−1 + bi)

ft = σ(Wxf ∗ zt +Whf ∗ ht−1 + bf )

ot = σ(Wxo ∗ zt +Who ∗ ht−1 + bo)

gt = σ(Wxc ∗ zt +Whc ∗ ht−1 + bc)

ct = ft · ct−1 + it · gt

ht = ot · φ(ct)

(2.14)

In Equation 2.14, it, ft, ot, ct and ht are the input gate, forget gate, output gate, cell

memory and hidden state of an LSTM network, respectively. gt and ht are the input and

the output of the LSTM model. zt is the context vector, which can be processed by the soft

attention mechanism and can capture visual information associated with a certain input

location. The soft attention mechanism has to automatically allocate adaptive weights for

the image locations to facilitate the task at hand.

eti = fatt(ai, ht−1) (2.15)

where ai ∈ {a1, ..., aL}. Equation 2.15 actually maps the image features from each location,

along with information from the hidden state, into an adaptive weight, which indicates the

importance of each image location for the recognition.

αti =
exp(eti)∑L
k=1 exp(etk)

(2.16)

Then, Equation 2.16 normalises the adaptive weights into a probability value in the

range of 0 and 1 using the Softmax function. Once these weights (summed to 1) are

computed, the weights vector αt element-wisely multiplied with image feature vector a

and summed up to the context vector zt, which can be expressed as in Equation 2.17,

which is the expectation of weighted features maps.
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zt =

L∑
i=1

αt,iai (2.17)

Then the context vector zt is forwarded to the LSTM network to generate captions,

as described in Equation 2.14. This soft attention mechanism can adaptively select the

relevant visual parts of the given image features and thus facilitate the recognition.

Hard Attention Mechanism

The hard attention was also proposed in [4]. Their hard attention was realised with the aid

of a REINFORCE-like algorithm. In this section, this kind of hard attention mechanism

is also introduced.

The location variable lt indicates where the model decides to focus attention on the tth

step of a language inference. lt,i is an indicator of a one-hot representation which can be

set to 1 if the ith location contains a relevant feature.

Specifically, a hard attentive location of {αi} is assigned:

p(li,t = 1|lj<t,a) = argmax(αt,i) = argmax

(
exp(Wiht−1)∑K×K

j=1 exp(Wjht−1)

)
(2.18)

where a represents the input image features.

An objective function Ll can be defined that is a variational lower bound on the

marginal log-likelihood log p(y|a) of observing the action label y given image features

a. Hence, Ll can be represented as:

Ll =
∑
l

p(l|a) log p(y|l, a) ≤ log
∑
l

p(l|a)p(y|l, a) = log p(y|a) (2.19)

∂Ll
∂W

=
∑
l

p(l|a)[
∂ log p(y|l, a)

∂W
+ log p(y|l, a)

∂ log p(l|a)

∂W
] (2.20)

Ideally, the gradients of Equation 2.20 is what need to be computed. However, it is not
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feasible to compute the gradient of expectation in Equation 2.20. Hence, a Monte Carlo

approximation technique is applied to estimate the gradient of the operation of expectation.

Therefore, the derivatives of the objective function with respect to the network param-

eters can be expressed as:

∂Ll
∂W

=
1

N

N∑
n=1

[
∂ log p(y|l̃n, a)

∂W
+ log p(y|l̃n, a)

∂ log p(l̃n|a)

∂W
] (2.21)

where l̃ is obtained based on the argmax operation as in Equation 2.18.

Similar with the approaches in [4], a variance reduction technique is used. With the kth

mini-batch, the moving average baseline is estimated as an accumulation of the previous

log-likelihoods with exponential decay:

bk = 0.9× bk−1 + 0.1× log p(y|l̃k, a) (2.22)

The learning rule for this hard attention mechanism is defined as follows:

∂Ll
∂W

≈ 1

N

N∑
n=1

[
∂ log p(y|l̃n, a)

∂W
+ λ(log p(y|l̃n, a)− b)∂ log p(l̃n|a)

∂W
] (2.23)

where λ is a pre-defined parameter.

As pointed out in Ba et al. [64], Mnih et al. [63] and Xu et al. [4], this is a formu-

lation which is equivalent to the REINFORCE learning rule [70]. For convenience, it is

abbreviated as REINFORCE-Hard Attention in the following sections.

2.2.3 Recent Development of the Attention Mechanism

The Development of the Attention Mechanism in Computer Vision

[63] is an early attempt to propose an attention mechanism for deep learning algorithm

in computer vision. Subsequently, the attention mechanism in computer vision and the

attention mechanism in natural language processing are intertwined and promote each
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Figure 2.10: The attention mechanism in [4]

other. The image captioning model proposed in [4] can be seen as a milestone in visual

attention mechanism, in which both a soft attention and a hard attention model are pro-

posed and analysed to improve the performance and efficiency in neural image captioning.

Fig. 2.10 shows the attention mechanism in [4]. In this figure, the brighter area indicates

the attentive regions, which normally correspond to the generated words.

In image captioning, there are many subsequent research using the visual attention

mechanism. For instance, [71] proposed to incorporate semantic attention by using at-

tributes of the image. [72] introduced novel channel-wise attention which allocates weights

on each channel of the convolutional feature maps for image captioning, with improved re-

sults. [73] used an object localizer for the bottom-up attention, and the soft attention model

described previously as the top-down attention model for image captioning, improving the

existing results by a large margin. A hierarchical attention mechanism is implemented for

image captioning, which are described in Chapter 5.

Theoretically, the attention mechanism is not restricted to the image captioning task.

For object detection, [74] train a class-specific object localization model using a reinforce-

ment learning algorithm and utilize the model for a detection task by evaluating all the
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regions, which can be considered as a type of attention mechanism. [75] proposed an at-

tention networks for object localisation. [76] used a visual attention mechanism on the

region candidates to localise objects in a weakly-supervised setting. [77] incorporated glob-

al and local contexts by using attention model to the region-based CNN (Fast RCNN [22])

for object detection, with improved results. Specially, [78] proposed a residual attention

networks, which can be easily generalized to hundreds of layers, for image classification.

Many other computer vision problems benefit from the visual attention mechanism.

For person re-identification, the attention mechanism also demonstrates improved effect.

For instance, [79] proposed an end-to-end comparative Attention Networks for person re-

identification. [80] proposed a CNN-based attention model which is specially designed for

the person re-identification in a triplet architecture. [81] formulated an idea of jointly

learning multi-granularity attention selection and feature representation for optimising

person re-identification. [82] learn context-aware sequence features and proposed a dual

attention mechanism for sequence comparison.

Moreover, for action recognition, a multi-branch attention model is proposed for action

recognition from still images, which are discussed in Chapter 3. [65] used a soft attention

mechanism with RNN networks for action recognition from videos. [83] applied a spatial

and a temporal attention-aware pooling operation for action recognition. [84] proposed a

spatial-temporal attention mechanism for action recognition in skeleton data. [85] intro-

duced an attention pooling operation for action recognition. The soft attention and the

hard attention mechanism are combined with a novel hierarchical multi-scale RNN for

action recognition from videos [13].

The Rise of the Attention Mechanism in Natural Language Processing

The attention mechanism has long been the research topic of machine learning researchers.

With the rapid development in deep learning, the attention mechanism in deep learning

is firstly developed in the area of natural language processing in [8], which developed
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a soft alignment model called soft attention mechanism for neural machine translation.

Before the introducing of attention mechanism in machine translation, translation relies

on reading a complete sentence and compress all information into a fixed-length vector, a

sentence with hundreds of words represented by a fixed-length vector will inevitably lead

to information loss, inadequate translation. The attention mechanism partially fixes this

problem. It allows the machine to look over all the information of the original sentence,

then generates a proper word according to its context.

Subsequently, many research followed the idea to improve the attention mechanism in

natural language processing. Among them, [86] proposed the self-attention mechanism

for neural machine translation and achieved the state-of-the-art results on the translation

task. According to [86], an attention function can be described as mapping a Query and a

set of Key-Value pairs to an Output, where the Query, Keys, Values, and Output are all

vectors. Specifically, there are often three steps to establish the attention mechanism:

• Calculate the similarities between the Query and the Key. There are normally three

ways to obtain the similarity

– Dot Product between the Query and the Key.

– Cosine Similarity between the Query and the Key.

– Using a neural network to estimate the similarities between the Query and the

Key.

• Normalize the similarity scores, often using Softmax function.

• Based on the attention weights which are the normalised similarity scores, calculate

the weighted sum of the Value.

In discovering the text structure, the self-attention mechanism considers the Query, the

Keys and the Values are the same things. Subsequently, numerous researches [87] [88] [88] [89]
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applied the self-attention mechanism in natural language processing due to its advantages

in computing efficiency, the long-term dependency and the parallel computing capacity [86].



Chapter 3

Contextual Action Recognition

from Still Images using

Multi-branch Attention Networks

3.1 Introduction

Action recognition is one of the central issues in computer vision as actions often serve as

the key instrument for the semantic description of an image containing humans. Actions

are also directly linked to mid-level concepts for high-level tasks such as image captioning.

Despite the tremendous progress made, there still exist many obstacles, particularly the

description of the variations in human pose, the objects a person interacts with, and the

scene where the action takes place. There are two pathways to study action recognition,

namely video-based and still image-based. Among the two, video-based action recognition

has been relatively well investigated [90] [91]. Still image based action recognition, however,

has been studied less. The lack of motion information is arguably one of the major obstacles

for still image based action recognition.

In the recent years, many methods have been proposed to tackle action recognition

39
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Figure 3.1: Example of similar pose leading to different actions.

problems. Among them, human-object interactions have been studied as one of the impor-

tant instruments toward the recognition of object-related actions [92] [93]. As the human

pose often plays a fundamental role in action recognition, another interesting approach is

to find solutions for human pose estimation [94]. However, that approach is limited by

the fact that similar poses can be associated with different actions. This is well illustrated

in Fig. 3.1. The two children in the figure have similar poses. However, one is brushing

her teeth while the other is blowing bubbles. The problem can be alleviated by either the

introduction of contextual information, which is one of the main subjects of this chapter,

or an appropriate combination of pose and human-object interaction as proposed in [95], in

which a conditional random field is applied to jointly model the pose and objects a person

is interacting with. Other approaches for still image based action recognition include the

part-based model, with the Deformable Part Model (DPM) [96] as the most influential

one. The Poselets model [97] further developed DPM, which employs key points to build

an ensemble model of human body parts, achieving improved performance in some vision

tasks.

Intuitively, the solutions to human action classification hinge on the acquisition of local

and global contextual information. To be more specific, local information associated with

discriminative parts or objects provides detailed contextual features which would be essen-
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tial to action recognition. Object-related actions are associated with particular objects,

which often provide critical hints for recognition. Additionally, the global contextual infor-

mation about the configuration of surrounding scenes is also instrumental. To summarise,

the comprehensive description of action comprises the articulation of body parts, the ob-

jects a person interacts with and the scene in which the action is performed. The action

types in sports can well illustrate this. For example, for the action of ‘playing football’,

the poses of players, the football itself and the football pitch are all strong evidence for

this action category.

Specifically, to fully consider the contextual information when recognising actions, two

types of contextual information are introduced: the scene-level context and region-level

context, corresponding to the global and the local context respectively. The scene-level

context is to consider the surrounding scene while the region-level context is to exploit the

key body parts or objects a person is interacting with. The scene-level context is coarse-

grained, and the region-level context is more fine-grained. In practice, given an image, the

scene often means the background and region-level context are around the target person.

Hence, these two kinds of context can be dealt with at the same time.

The relationship between contextual cues and visual attention has long been recog-

nised [98]. Human perception is characterised by an important mechanism of focusing

attention selectively on different parts of a scene. In NLP, the attention model has also

been extensively studied, with applications including sequence to sequence training in ma-

chine translation [8], with the aid of two types of attention model, namely, hard attention

and soft attention. Soft attention is deterministic and can be trained using backpropa-

gation [4], which has also been extended and applied to the image captioning task [4].

Sharma et al. [65] used pooled convolutional descriptors with soft attention based models

for video-based action recognition and achieved good results. However, the above works

on attention-based networks are all implemented with RNNs. It would be interesting to

investigate the applicability of attention mechanism in the general CNNs frameworks to
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Figure 3.2: System diagram of our proposed Multi-branch Attention Networks.

which static images are the subjects to process. Though the spatial transformer network-

s proposed in [28] can be considered as an approach to realise soft attention in general

CNN framework, our motivation is different from theirs as our model operates on both

the region-level and scene level. To the best of our knowledge, this is the first research to

incorporate soft attention mechanism into CNNs for action recognition from still images.

For convenience, the proposed scheme is formed as Multi-branch Attention Networks. The

CNN model with multi-branch attention mechanism can be trained in an end-to-end way,

which can be illustrated by the system diagram shown in Fig. 3.2.

3.2 Related Works

In this section, some recent research on action recognition and attention models are re-

viewed and the relevance to our research is discussed.

3.2.1 Action Recognition

Video-based action recognition has been well studied. The recently published papers [99]

provide a good literature review. Still image-based action recognition can be roughly

categorised into three groups. The first group makes use of the human body informa-



Chapter 3. Contextual Action Recognition from Still Images using Multi-branch
Attention Networks 43

tion [94] [100]. Normally the bounding box of the human is used to indicate the location

of the person. For instance, Thurau et al. [94] exploit human poses by learning a pose

primitive for action recognition. There are also approaches making use of information

from human body parts to aid the action recognition. Maji et al. [101] developed a body

pose representation approach by learning and forming Poselets which are patches learned

from body parts. Gkioxari et al. [100] concentrated on human body parts within a CNN

model and developed a part-based approach by leveraging convolutional features, with the

effectiveness demonstrated using several publicly available datasets.

The second group use the human-object interaction to discover the action categories by

modelling the human-object pair and its interactions. For example, Yao et al. [95] modelled

a person’s body parts and objects by a conditional random field to recognise actions from

still images. Yao et al. [93] developed Grouplet to recognise human-object interactions

by encoding appearance, shape and spatial relations of multiple image patches. Desai et

al. [102] formulated the problem of action recognition as a latent structure labelling problem

and developed a unified, discriminative model for human object interaction. Recently, deep

CNNs have also been employed for action recognition. For instance, Gkioxari et al. [24]

proposed an interesting method by automatically selecting the most informative regions

(usually the objects) around the person bounding box and achieved promising results on

several datasets.

The third group have recourse to the scene context information. The background in an

image can be taken as the context or scene of an executed action. For example, Delaitre

et al. [103] studied the efficiency of different strategies based on the Bag of Visual Words

(BoVW) approaches. It was found that the information extracted from the background

does help to boost the performance of the recognition task. Similarly, Gupta et al. [104]

encoded the scene for action image analysis and achieved excellent results.

As a contrast to the previously published approaches, both the objects a person is

interacting with and the scene are considered as contextual information and are modeled
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them explicitly to form a unified, effective model. This is achieved with the aid of a soft

attention mechanism embedded into a CNN model.

3.2.2 Attention Model

One important property of human perception is that humans do not tend to process a

whole scene in its entirety at once. Instead, humans pay attention selectively on parts of

the visual scene to acquire information where it is needed [63]. Different attention models

have been proposed and applied in object recognition and machine translation. Mnih

et al. [63] proposed an attention mechanism to represent static images, videos or as an

agent that interacts with a dynamic visual environment. Also, Ba et al. [64] presented an

attention-based model to recognise multiple objects in images. The two models mentioned

above are all related with RNNs and with the aid of a reinforcement learning strategy.

Bahdanau et al. [8] proposed a novel attention model for neural machine translation

without the prerequisite of reinforcement learning, which can be trained end-to-end by

the backpropagation method. It is called a soft attention model. Later, a comprehensive

study for hard attention bound with reinforcement learning and soft attention for the

task of image captioning was published by Xu et al. [4]. Followed up researches include

action recognition with soft attention proposed by Sharma et al. [65] and video description

generation [66].

A related research topic, saliency detection, is also motivated by human perception-

s. However, most of the saliency detection methods [58] [59] [60] used low-level image

features, e.g., contrast, edge, intensity, which can be considered as fixed and bottom-up

approach in contrast with the top-down approach of attention mechanism. Usually these

methods cannot capture the task-specific information. Zhou et al. [61] applied global av-

erage pooling [62] to discriminate salient CNN features for the target object category. It

is a kind of task-relevant approach. However, it is still not flexible enough to operate on

the region-level as the soft attention does in this chapter. The region-level context, which
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is a more fine-grained feature, can be captured by region-level attention easily. In short,

the attention mechanism is a more recent and flexible approach, which can learn relevant

features for the specific task and plays a significant role in various vision tasks.

3.3 Approach

In this section, the proposed approach of Multi-branch Attention Networks for action

recognition is introduced. The augmented CNN system contains three branches: target

person region classification, scene-level attention and region-level attention.

Our model was built on the VGG16 [42], which is a very useful CNN structure for large-

scale image analysis. According to [42], the VGG16 network has five convolutional blocks,

each with three convolutional layers. The structure of convolutional layers is unchanged,

with attention networks cascading these convolutional layers.

3.3.1 Classification of target person region

Usually the benchmark action recognition datasets provide the bounding box of the tar-

get person, e.g., the PASCAL VOC 2012 Action Challenge [68] and Stanford 40 Action

Dataset [105]. As the model is fully supervised, this branch of CNN model is designed

to perform the classical recognition of person regions. The RoI pooling developed by Gir-

shick [106] is applied to pool different size regions into fixed size feature maps to facilitate

the following classification. This branch is built based on Fast RCNN [106], only with some

minor modifications. Specifically, the foreground with an overlap more than 0.5 with the

target person region are selected, and the foreground over background ratio are set as 1,

which indicates the framework is used for classification instead of detection. This can also

be considered as a kind of data augmentation because the model samples on candidate

regions instead of limiting the samples only on target person region.
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3.3.2 Region-level Attention

To exploit the fine-grained properties of a given image, the second branch for the CNN is

designed to explicitly capture more informative regions regarding the action performed. A

similar strategy of selecting regions is used, as in the R*CNN [24]. In the R*CNN, a set

of regions called secondary region is selected based on the overlap ratio with the bounding

box of the target region. In this research, a ratio threshold is also set to select regions

for this branch. Intuitively, the regions that overlap with a specific ratio usually indicate

the parts of a person or objects a person is interacting with. The regions far away from a

person will be ignored based on the overlap smaller than the threshold. As a result, more

related regions will be selected for further processing at the first step.

Subsequently, selected regions are aggregated with RoI pooling resulting in the fixed

size feature maps. In this branch, the fully connected features, instead of convolution

features, is used, because there is a certain number of regions to process. Feature from fully

connected layers have a lower dimension and hence can largely reduce the computational

burden. All the extracted features are forwarded to a successive layer to generate a score

map. If there are n regions each with d dimension, then the n feature maps can be shaped

to one feature map with a dimension of n×d. Then the score map S is with a dimension of

n×1. In practice, this is a fully connected layer which can be easily implemented. The soft

attention model requires a region location softmax to generate the attention map which is

expressed as follows:

Ai =
exp(Si)∑n
i=1 exp(Si)

(3.1)

where Ai is the element of the attention map for the ith region. To allocate weights on

regions, this attention map is elementwise multiplied with the features F:

F̃ = A� F (3.2)
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Figure 3.3: Illustration of region Attention.

Figure 3.4: Illustration of scene Attention.

where F̃ is the attentive feature map. To obtain a final feature representation of the

regions, all the weighted features are summed up into one representation:

E =
n∑
i=1

F̃i (3.3)

The feature representation of all weighted regions E can be used by the fully connected

layer to obtain classification scores. More details of the block diagram of region attention

branch are illustrated by Fig. 3.3.

3.3.3 Scene-level Attention

This branch of the CNN model is to consider the scene-level context of an action category.

As previously explained, scene or background information often plays a supportive role in



Chapter 3. Contextual Action Recognition from Still Images using Multi-branch
Attention Networks 48

action recognition. However, indiscriminative extraction of all of the background would

be counterproductive as some subregions of the scene may not be relevant to the action of

interest. To solve this problem, the attention model is applied to select the most informative

locations within the background discriminatively. Hence, the soft attention over the CNN

features of the scene or background is used as one branch to aid the action recognition.

As a scene means typically the entire image, the original convolutional features is firstly

pooled into a fixed size feature map by a new pooling layer: global RoI pooling, which

divides the entire image or feature map into several grids and then performs max pooling

inside each grid. The obtained feature map will have the same size regardless of the original

image size. More formally, an image with arbitrary size can be pooled into a feature map

F with size w×h×d, in which w, h and d are the width, height and a channel size of the

feature map, respectively.

The pooled feature map is then convolved by a 1×1 convolution layer and the output

channel of this convolution layer is also 1. A score map Z of w×h×1 can be consequently

obtained. Following the practice of soft attention in [4], the score map is further processed

by a location softmax which is defined as follows:

Aij =
exp(Zij)∑w

i=1

∑h
j=1 exp(Zij)

(3.4)

where Aij is the element of the attention map at position (i,j). Then the attention map A

is elementwise multiplied with the feature map F which can be expressed as follows:

F̃ = A� F (3.5)

where F̃ is the attentive feature map. To obtain the final feature representation of the

scene, the attentive feature map is summed over positions which can be described by:

E =

w∑
i=1

h∑
j=1

F̃ij (3.6)
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The feature E is subsequently forwarded to the fully connected layers to obtain the

classification scores. Fig. 3.4 further explains the scene-level attention mechanism imple-

mented in the Multi-branch Attention Networks.

3.3.4 Networks Architecture

Table 3.1: Network Configuration

Inputs (Images, candidate regions and labels)

Convolution Blocks (Conv1-Conv5) derived from VGG16 [42].

Scene-level attention Target person region Region-level attention

Global RoI Pooling RoI Pooling RoI Pooling
(Pooled size: 7×7) (Pooled size: 7×7) (Pooled size: 7×7)

1×1 Convolution FC1 Region-FC1
(Channel number: 1) (Dimension: 4096) (Dimension: 4096)

Softmax FC2 Linear
(Over location) (Dimension: 4096) (Dimension: 1)

Elementwise Product

Score

Softmax
(Over input regions)

Sum
Elementwise Product

(Over Location)
Scene-FC1 Sum

(Dimension: 512) (Over Input regions)

Scene-core

Region-FC2
(Dimension: 4096)

Region-FC3
(Dimension: 4096)

Region-score

Sum Scores
(Dimension: Number of Categories)

Softmax

Cross Entropy Loss

The details of the CNN architecture are given in Table 3.1. The convolutional blocks are

derived from the VGG16 model [42] which includes 5 blocks. The more detailed explanation

can be referred to [42].

There are a total of 3 branches following the convolutional blocks starting from a Global
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RoI Pooling layer followed by two RoI Pooling layers. The Global RoI Pooling compresses

the entire image into 7×7 feature map, which is used for scene-level attention networks.

It starts from a 1×1 convolution layer with a channel number of 1. A location softmax

layer is connected to generate the attention map. The feature map and attention map are

subsequently processed simultaneously and fused into a weighted sum of the features from

each location. The following fully connected layer is named ‘Scene-FC1’ of size 512. The

‘Scene-score’ can be obtained based on the outputs of the fully connected layer.

The first RoI Pooling (the middle column in Table 3.1) pools the region of the target

person into a fixed size feature to perform classical CNN recognition. The second RoI

Pooling (the right column in Table 3.1) pools candidate regions generated with selective

search algorithm into fixed size feature maps. These feature maps are then forwarded to

the fully connected layers ‘Region-FC1’ to generate feature maps with a dimension of 4096.

The region softmax transfers outputs from a linear layer into an attention map over regions.

The attention map is elementwise multiplied with the features and summed into a whole

feature representation before another two fully connected layer. The ‘Region-score’, ‘Score’

and ‘Scene-score’ are summed and activated by the Softmax layer with Cross Entropy Loss

for the training.

3.3.5 Training Strategy

The common pre-training plus fine-tuning practice of applying CNN model is applied for

this model. Specifically, the pre-trained VGG16 model on ImageNet [107] was fine-tuned

for the task at hand.

The two branches of the attention mechanism can be considered as subsets of parame-

ters towards image features, which are to be found by overall optimisation for the action

classification task. Such paramters on the optimisation task, make the direct application

of Stochatic Gradient Descend (SGD) very challenging. Our intuition is to borrow the idea

from alternating optimisation [108].
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More formally, the full parameter set of the CNN model can be considered as X =

{X1, X2}, where X1 corresponds to the parameters from the branch of the target person

region classification and region-level attention and X2 indicates the parameters from the

branch of scene-level attention. The task is to optimise the CNN model which is a function

of these parameters: F = F (X). Alternating optimisation is an iterative procedure to min-

imise all the variables by alternating restricted minimisations over the individual subsets

of variables X, in this case, X1 and X2 [108]. Specifically, a two-step training strategy is

proposed for our networks: the target person region recognition and region-level attention

are trained jointly at first. This is equal to optimise over the subset of X1. Then the scene-

level attention is added to the network while keeping the weights from the convolutional

blocks, the target person region classification and the region-level attention unchanged.

This means the optimisation over subset X2 is performed subsequently. In the first-step

training, the maximum iterations were set as 40,000. Once trained, the model was added

with the scene-level attention branch and further trained with other 25,000 iterations.

As indicated in [106], training all the convolutional layers of VGG16 model would be

unnecessary. Instead, the first two convolutional blocks are kept unchanged and trained

other layers during the first-step training.

During training, 50 candidate boxes were randomly selected based on a threshold of

overlap ratio for the training of region attention as 50 boxes can reach a balance of training

efficiency and generalisation capability. 500 candidate boxes were selected for region-level

attention network when testing as 500 boxes can cover most of the important regions.

Further increasing this number may introduce noise and also slow the testing process.

As shown in Table 3.2, for the proposed model, the training takes about 1s per iteration

and testing takes about 0.2s per image. Compared with the Fast RCNN (single branch),

the training time increased because of the additional branches. However, the differences

of testing time are minute, with 0.16s for Fast RCNN and 0.2s for our model, respectively.

Actually, when testing on PASCAL VOC 2012, both Fast RCNN and our model take about



Chapter 3. Contextual Action Recognition from Still Images using Multi-branch
Attention Networks 52

Table 3.2: Efficiency Analysis of the proposed model on a PC embedded with a TITAN X
GPU

Model Fast RCNN Ours

Training 0.70s (per iteration) 1.00s (per iteration)
Testing 0.16s (per image) 0.20s (per image)

Table 3.3: The AP results on PASCAL VOC validation set
Approach jumping phoning playing instrument reading riding bike riding horse running taking photo using computer walking Mean AP (%)

Image classification (VGG16 model) 78.9 64.0 91.5 71.6 88.6 92.6 83.2 71.1 89.7 53.9 78.5

Fast RCNN (single branch, no regression) [106] 82.4 69.9 90.7 72.1 93.5 97.0 84.1 82.7 87.6 65.6 82.6

Fast RCNN (single branch, with regression) [106] 87.4 70.2 91.2 75.0 95.4 97.8 85.7 81.6 85.9 72.4 84.3

Two branch (no regression, with threshold) 86.3 76.6 90.8 79.6 93.6 97.0 85.6 84.4 92.5 67.4 85.4

Multi-branch attention (no regression, with threshold) 87.8 77.0 92.3 81.4 94.4 96.5 86.2 82.8 92.2 71.3 86.2

Two branch (with regression, no threshold) 85.8 73.2 90.0 81.8 93.3 96.3 85.0 78.2 90.7 70.3 84.5

Multi-branch attention (with regression, no threshold) 85.6 72.7 91.4 81.3 93.4 96.6 84.8 79.1 90.4 70.8 84.6

Two branch (with regression, with threshold) 87.8 77.1 92.5 81.4 94.3 96.5 86.3 83.3 92.2 71.1 86.3

Multi-branch attention (with regression, with threshold) 87.8 78.4 93.7 81.1 95.0 97.1 86.0 85.5 93.1 73.4 87.1

5-7 minutes to finish, which indicates that the efficiency does not seriously deteriorate

though there are two more branches in the model compared with Fast RCNN.

3.4 Experiments

The Multi-branch Attention Networks were implemented based on the Caffe platform [109].

The training was conducted with stochastic gradient descent (SGD) with a batch size of

32. All the experiments were conducted with a Nividia Titan X GPU installed in a PC

running the Ubuntu 14.04 operating system.

3.4.1 Experimental Setting 1 (with the bounding box of the target per-

son)

PASCAL VOC 2012 Action Dataset

The PASCAL VOC Action dataset serves as one of the PASCAL VOC 2012 challenges [68],

which consists of 10 different actions, jumping, phoning, playing an instrument, reading,
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Table 3.4: Comparison of each of the three branches and their random combinations on
PASCAL VOC validation set.

Approach jumping phoning playing instrument reading riding bike riding horse running taking photo using computer walking Mean AP (%)

Fast RCNN alone (the first branch) 87.4 70.2 91.2 75.0 95.4 97.8 85.7 81.6 85.9 72.4 84.3

Region-level attention alone (the second branch) 80.7 70.0 88.8 79.7 89.6 94.4 81.3 75.4 88.8 66.3 81.5

Scene-level attention alone (the third branch) 66.3 67.0 82.5 66.9 77.9 84.4 71.4 62.5 85.2 46.5 71.0

The first and second branch 87.8 77.1 92.5 81.4 94.3 96.5 86.3 83.3 92.2 71.1 86.3

The first and third branch 83.2 70.0 90.3 72.7 89.5 92.6 82.0 74.4 89.7 65.3 81.0

The second and third branch 83.9 78.1 93.8 80.9 93.6 95.4 84.9 82.7 93.0 69.9 85.6

Multi-branch attention 87.8 78.4 93.7 81.1 95.0 97.1 86.0 85.5 93.1 73.4 87.1

Table 3.5: The AP results on PASCAL VOC test set

Approach CNN layers jumping phoning playing instrument reading riding bike riding horse running taking photo using computer walking Mean AP (%)

Oquab et al. [110] 8 74.8 46.0 75.6 45.3 93.5 95.0 86.5 49.3 66.7 69.5 70.2

Hoai [111] 8 82.3 52.9 84.3 53.6 95.6 96.1 89.7 60.4 76.0 72.9 76.3

Action Part [100] 16 84.7 67.8 91.0 66.6 96.6 97.2 90.2 76.0 83.4 71.6 82.6

Simonyan et al. (VGG16 model) [42] 16&19 89.3 71.3 94.7 71.3 97.1 98.2 90.2 73.3 88.5 66.4 84.0

R*CNN [24] 16 91.5 84.4 93.6 83.2 96.9 98.4 93.8 85.9 92.6 81.8 90.2

Multi-branch attention (ours) 16 92.7 86.0 93.2 83.7 96.6 98.8 93.5 85.3 91.8 80.1 90.2 *

* The official results: http://host.robots.ox.ac.uk:8080/leaderboard/displaylb_noeq.php?challengeid=11&compid=10

riding bike, riding horse, running, taking photo, using computer, walking as well as exam-

ples of people not performing some of these actions, which are labeled as other. The target

person boxes containing the people are provided both at training and testing time. During

testing, for every sample, the probabilities for all actions are calculated and the Average

Precision (AP) are computed.

The challenge organisers require participators to make use of the validation set for

parameter optimisation and the test set to report performance [68]. Hence, the performance

on the validation set are first measured and then the results of the test set are submitted

to the evaluation server. When evaluating the validation set, the training set was used

only for training. Both the training set and the validation set were applied for training

when submitting results for the test set and evaluating performance.

The comparative experiments were conducted to optimise parameters and confirm the

effectiveness of the proposed model. Table 3.3 provides the AP results on the validation

set. From the table, the following observations can be obtained:

http://host.robots.ox.ac.uk:8080/leaderboard/displaylb_noeq.php?challengeid=11&compid=10
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Figure 3.5: Visualization of region attention and scene attention on the PASCAL VOC
test set.
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Baseline approach The Fast RCNN [106] was set as the baseline approach because it

is generally acknowledged as a better object detection model with much-improved perfor-

mance than RCNN [112]. However, Fast RCNN is not limited to detection and can also be

applied in action recognition from still images [24], with some modifications. Specifically,

the foreground over background ratio in Fast RCNN is set as 1 during training, which

indicates the model does not need to discriminate foreground from a background as in the

detection scheme.

For Fast RCNN without bounding box regression, 82.6% AP was reported. Adding

bounding box regression can boost the AP performance to 84.3% which testifies again

that multi-task training with bounding box regression can boost the performance reported

earlier [106].

The proposed methods Experiments were conducted for the two-step training strategy

as explained above. The AP performance from the first-step model which uses a two-branch

network (target person region and region-level attention) is reported first. Borrowing the

benefit of bounding box regression in Fast RCNN, a regression layer is added in the first-

step training. It turns out that our model achieves better AP results than Fast RCNN, with

85.4% AP without bounding box regression and 86.3% AP when adding the bounding box

regression layer. Also, the threshold for selecting candidate boxes plays a significant role

in promoting performance. Specifically, boxes overlap more than 0.1 and less than 0.7 with

bounding boxes of the target person were selected for the branch of region attention. The

obvious improvement of AP performance when adding threshold is indicated in Table 3.3.

This is reasonable because only bounding boxes that overlap with the person in a range

can exploit useful context information such as the objects the person interacts with. After

this, the second-step training was conducted to train the Multi-branch Attention Model.

As the weights from the branch of target person bounding box classification are kept as

constants, there is no need to add bounding box regression in the second-step training.

In summary, our proposed Multi-branch Attention Networks produce the best mean AP
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value (87.1%) among all the experimental settings which validate the effectiveness of this

model.

To further evaluate our method and compare it with other newly proposed approaches,

the experimental results on the test set were generated and submitted to the PASCAL VOC

evaluation server for the final evaluation. The training strategy explained in Section 3.3.5

is used, considering both the training set and validation set of PASCAL VOC 2012 as

the training set. This is a reasonable deployment as the challenge organisers allow the

validation set to be used in training when reporting results on the test set. Once trained

with alternating optimisation of 40,000 and 25,000 iterations as the first step and second

step, respectively, the model was directly used for testing. Also, a current leading method

such as R*CNN [24], which will be discussed later, used a similar strategy. Hence, it is

also a fair deployment. Table 3.5 shows the AP results of the proposed approach and

other competing methods. Oquab et al. [110] trained an 8-layers network on the box of the

target person to perform action recognition. Hoai et al. [111] used an 8-layers CNN model

to extract features from fully-connected layers from regions at multiple locations and scales

inside the image and accumulate their scores for prediction, which is more comprehensive

than only training on the box from target person. The results of this method are also

better than Qquab et al. [110]. Simonyan et al. [42] combined the VGG16 and VGG19

network and re-trained classifier such as SVMs using fully connected features from the

target person region and entire image.

The current top-ranked method on the PASCAL VOC 2012 Action dataset is R*CNN [24]

which was trained on the target person region with a secondary box. The secondary box

was selected using the multi-instance learning method during training and testing. Specif-

ically, R*CNN applied the max operation on scores generated by secondary boxes and

combined them with the target person region for recognition. Our methods achieved the

same mean AP results with R*CNN, with a 90.2% mean AP value on the testing set.

A visualisation of the attention model is provided in Fig. 3.5. The original image,
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region-level attention and scene-level attention are plotted in separate three rows. The

brighter a place of an image is, the more important it is for recognition. The region-

level attention generates important bounding boxes while scene-level attention captures

attentive regions as indicated by the figure. It is interesting to discover that normally the

two attention models generate different regions which imply that they are complementary.

Note that all the example images are randomly selected.

Analysis of each of the three branches Table 3.4 presents the AP results of each of

the three branches and their random combinations. In single branch settings, the branch

of general image features (Fast RCNN branch) yields the best results, which shows that

the person regions play a fundamental role in recognition. Besides this branch, the most

important branch is the second branch (region-level attention), which discover the fine-

grained contextual information. From the table, it is evident that the third branch alone

(scene-level branch) cannot provide excellent results. However, as discussed previously,

when fused together with the other two branches, satisfactory results can be obtained,

which indicates that there are little correlations between scene-level attention branch and

the other two branches. This is also what is intended to accomplish by the alternating

optimisation initially, which is to guarantee that the scene-level attention is to capture the

complementary information of the other two branches. In the random combinations of two

branches, the first and second branch together generates best results. This phenomenon

shows consistency with the performance of a single branch as the first and second branch

are the two most important parts of the networks.

Stanford 40 Dataset

The proposed method was also evaluated on the Stanford 40 dataset [105] which is a larger

database containing 40 different types of daily human actions. It has 9352 images in total.

The number of images for each class ranges from 180 to 300. The dataset provides the
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Figure 3.6: The AP results for different categories on the Stanford 40 dataset.

Table 3.6: The AP results on the Stanford 40 dataset and comparison with previous results.

Method Mean AP(%)

Object bank [113] 32.5
LLC [114] 35.2
EPM [115] 40.7

DeepCAMP [116] 52.6
Khan et al. [117] 75.4

Semantic parts [118] 80.6
VLAD spatial pyramids [11] 88.5

R*CNN [24] 90.9

Fast RCNN alone [106] 85.3
Region-level attention alone 81.0
Scene-level attention alone 72.1

Two branch (ours) 90.6
Multi-branch Attention Networks (ours) 90.7

training and testing splits for each class, namely 100 images of each class for training and

the rest for testing.

Fig. 3.6 shows the bar chart of the AP values over the 40 action categories from the
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Fast RCNN (the baseline) and our Multi-branch Attention Networks. It is apparent from

the figure that our approach outperforms the baseline by a large margin, with a 90.7%

mean AP compared with 85.3% mean AP of baseline approach.

Table 3.6 shows a comparison of our methods with alternative approaches. The model

with two branches (from first-step training) shows good results. The improvement of the

mean AP result by adding the branch of scene-level attention is obvious. With the Multi-

branch Attention Networks, the mean AP result is improved to 90.7%. To conclude, a

comparable results with the current state-of-the-art method (R*CNN) on the Stanford 40

dataset are achieved with a 5.4% higher mean AP than Fast RCNN which is the baseline

method.

3.4.2 Experimental Setting 2 (without the bounding box of the target

person)

The bounding boxes of target persons are crucial during training as they provide the

fundamental feature for the person to be recognised. However, they are often hard to

obtain during real-world applications as the manual annotation for the bounding boxes

is somewhat time-consuming and painful. Also, the requirements of inputting bounding

boxes severely discourage further applications of the topic. Hence, in this section, it is

shown that when the annotations of the bounding boxes of the target person are not

provided, the proposed model can also perform well in the task of action recognition.

As the bounding box of the target person during training and testing is not utilised, the

model architecture is modified to facilitate the recognition. From results of experimental

settings 1, if lacking the general CNN features of the target person, the most important

branch is the region-level attention. Hence, in order to make the networks effective and

simple, two branches in the networks are set for this experimental settings:

• Image classification Branch: The entire image is forwarded to a Global RoI pooling

layer and perform general image classification. This is a fundamental branch which
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Table 3.7: The AP results on PASCAL VOC validation set (experimental setting 2)

Approach jumping phoning playing instrument reading riding bike riding horse running taking photo using computer walking Mean AP (%)

Image classification (VGG16 model) 78.9 64.0 91.5 71.6 88.6 92.6 83.2 71.1 89.7 53.9 78.5

Ours 78.4 72.1 91.4 75.4 88.9 93.7 84.3 70.2 90.3 55.5 80.0

Table 3.8: The AP results on PASCAL VOC test set (experimental setting 2)

Approach jumping phoning playing instrument reading riding bike riding horse running taking photo using computer walking Mean AP (%)

Simonyan et al. (Image classification) [42] - - - - - - - - - - 79.2

Zhang et al. (Minimum annotations) [119] 86.7 72.2 94.0 71.3 95.4 97.6 88.5 72.4 88.8 65.3 83.2

Ours 87.2 81.5 89.9 78.8 94.4 94.9 90.0 73.8 90.0 65.3 84.5

also provides a baseline of our two branch model.

• Region-level attention Branch: The region attention branch is to retrieve relevant

regions during recognition automatically, this is similar to the region attention branch

explained previously. The only difference here is that the bounding box selection is

omitted as the region of the target person is not provided.

During training, the two branches are trained jointly with 40,000 iterations under the

Caffe platform. The AP results on PASCAL VOC 2012 action dataset are then reported.

PASCAL VOC 2012 Action Dataset

As shown in Table 3.7, the model achieved 80.0% mean AP performance on the PASCAL

VOC validation dataset while the general image classification only achieved 78.5% mean

AP result. To further validate the proposed methods, the AP results from PASCAL

VOC evaluation server are then reported. As shown in Table 3.8, the proposed model got

84.5% mean AP, which are the state-of-the-art results among the methods without training

bounding boxes. This can be attribute to our region-level attention branch, which serves

as a model which can automatically retrieve not only the contextual information but also

the person region, in experimental setting 2.
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Table 3.9: The AP results on the Stanford 40 dataset with experimental settings 2.

Method Mean AP(%)

Image classification (VGG16 model) 81.4

Zhang et al. (Minimum annotations) [119] 82.6

Ours 85.2

Stanford 40 Dataset

Table 3.9 provides the performance on Stanford 40 action dataset on the experimental

setting 2. The proposed method achieves 85.2% mean AP results on the 40 action categories

of the dataset, which is competitive with the mean AP results (85.3%, see Table 3.6) of

Fast RCNN (with training bounding boxes). Also, our method leads the scheme in [119],

which is a recently proposed action recognition method without the training bounding

boxes.

HICO dataset

The PASCAL VOC action dataset and stanford 40 dataset can be considered as medium-

sized datasets. To further test the generalisation capability of the proposed approach on a

big dataset, experiments were also conducted on Humans Interacting with Common Ob-

jects (HICO) dataset [120]. This dataset is currently the largest one for action recognition,

which consists of 50,000 images labelled to 600 human-object interaction categories. It is

also related to Common Objects in Context (COCO) dataset [121] as each category in the

HICO dataset is composed of a verb-object pair, with objects belonging to the 80 object

categories from MS COCO. However, the HICO dataset does not provide human bounding

boxes for a pre-defined action category. Hence, it is only suitable for the experimental

setting 2 in this chapter.

Different from PASCAL VOC action dataset and stanford 40 dataset in which the action

categories are exclusive, more than one human-object interaction category is labelled for a
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Figure 3.7: The learnt region-attention map of HICO dataset in the experimental setting
2.
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Table 3.10: The mean AP results on the HICO dataset with experimental settings 2.

Method Mean AP(%)

AlexNet+SVM [120] 19.4

VGG16, Image classification [122] 29.4
VGG16, R*CNN [122] 28.5

VGG16, Scene-RCNN [122] 29.0
RoI and Scene fusion [122] 33.6

Ours 32.8

single instance. These action categories can be considered as mid-level features, in contrast

with those as high-level actions in PASCAL VOC and Stanford 40 dataset. Hence, we treat

each of the human-object interaction categories as a binary classification problem and use

Sigmoid as the activation function instead of Softmax. As the dataset is larger, we train

them with 60,000 iterations in Caffe platform and report the mean AP results of our

approach.

Table 3.10 demonstrates the mean AP results of our approach and comparison with

other methods. Specifically, the baseline approach reported in [120] applied an AlexNet

and SVM classifier for recognition, with only 19.4% mean AP. [122] reported results of

several methods. They first applied VGG16 for general image classification approach,

achieved 29.4% mean AP. For R*CNN approach, they used a pre-trained Faster RCNN

object detector to detect human bounding boxes. With these bounding boxes, they then

trained R*CNN and Scene-RCNN as in [24]. However, the mean AP results of R*CNN

and Scene-RCNN is even worse than general image classification, the possible reason, as

explained in [122], is that R*CNN try to find a single box using multi-instance learning,

which is not able to cover all 600 action categories. This is not a problem in the proposed

method because the region-level attention is fully exploited and 500 boxes are sampled

to facilitate the recognition. As shown in Table 3.10, the proposed approach achieved

competitive results with the one proposed in [122] but are simpler and more efficient. A

visualisation of learnt attention region is shown in Fig. 3.7.
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Table 3.11: P-value for the Obtained Results in the Experiments

Experimental Setting 1

Dataset Upper-tailed p-value

Pascal VOC Validation Set 0.0009
Pascal VOC Test Set 0.0052
Stanford 40 Dataset 0.0

Experimental Setting 2

Pascal VOC Validation Set 0.0260
Stanford 40 Dataset 0.0

HICO Dataset 0.0310

3.4.3 Testing the Statistical Significance of Experimental Results

For a more comprehensive evaluation of the proposed model, in addition to the mean AP

evaluation protocol, the practice in [123] [124] [125] is applied to test the statistical signif-

icance of our experimental result through Fisher-Pitman permutation tests. Specifically,

the evaluation protocol of [126] is applied to calculate the upper-tailed p-value of the AP

results from the baseline (image classification using VGG16) and the proposed model. To

test if a null hypothesis can be rejected, p-value calculated using permutation tests is a

suitable evaluation protocol [127].

A result has statistical significance when it has a low probability of occurring given the

null hypothesis [128]. Specifically, the null hypothesis is set as that the proposed model does

not bring an improvement on the performance. Then the permutation tests were performed

on all the datasets used for both of the Experimental Setting 1 and Experimental Setting

2. The results can be seen in Table 3.11. As indicated by the results, the upper-tailed p-

values from the listed datasets are close to 0. Also, all the upper-tailed p-values are smaller

than 0.05, which [127], indicates that the null hypothesis can be rejected with statistical

significance. This validates the research hypothesis that the proposed model can improve

the performance.
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3.5 Discussion

The proposed method has demonstrated impressive performances for action recognition.

This can be attributed to the following aspects:

• When modeling the contextual information, we proposed to discriminate between two

categories of context, the scene-level context and the region-level context, and model

them in a complementary way. This is illustrated in Fig. 5.3, where the attentive

parts in region-level attention and scene-level attention are captured differently.

• The two-step training strategy can better optimize the model. The first-step is to

jointly train two branches (target person box classification and region-level atten-

tion network). Intuitively, the region-level context has a close relationship with the

features extracted from the target person area. Hence, training them jointly can be

beneficial. When the weights of the firstly trained branches are fixed, in order to

optimize the model, a newly added layer is able to capture complementary informa-

tion of the first two branches. Hence, this training strategy can guarantee that the

newly added branch, namely scene-level attention network, can capture complemen-

tary information. This is also clarified by the direct increase in AP results when

accomplishing the second-step training as revealed in Table 3.3 and Table 3.6.

• As we systematically analyzed the performance of each of the three branches in

Table 3.4, we came to the conclusion that when training bounding box of target

person is missing, the most important branch is the region-level attention. Based on

this realization, a two branch model was designed for experimental setting 2, which

also achieved satisfactory results.

• The R*CNN [24] already show good results on the experimental setting 1, with com-

petitive results on several benchmark dataset compared with our methods, however,

in experimental setting 2, the R*CNN are not as good as the proposed methods. The



Chapter 3. Contextual Action Recognition from Still Images using Multi-branch
Attention Networks 66

major reason is that our model tries to capture comprehensive contextual informa-

tion whilst the R*CNN only uses the multi-instance learning to grasp the maximum

contributor to the recognition.

3.6 Conclusion

This chapter proposed a novel CNN model abbreviated as Multi-branch Attention Networks

for action recognition in still images. This model incorporates a soft attention mechanism

into a CNN model to explicitly exploit scene-level context and region-level context. The

two context branches and target person region classifications are integrated for the final

prediction. A two-step training strategy was proposed based on alternating optimisation.

Comprehensive experiments have been conducted for comparisons on both experimental

settings with and without the bounding boxes of the target person, with results on the

PASCAL VOC action dataset, the Stanford 40 dataset and HICO dataset verifying the

advantages of the proposed model. The proposed methods can be easily extended to

achieve better performance by using more advanced CNN model like Residual-Net [129].



Chapter 4

Action Recognition from Video

Sequences based on Visual

Attention Mechanism

4.1 Introduction

The task of action recognition from video sequences is the main focus of this chapter. Two

pieces of research are presented in Section 4.2 and Section 4.3, respectively. In Section 4.2,

a convolutional hierarchical attention model is proposed by utilizing convolutional LSTMs

with attention and a self-defined hierarchical architecture for action recognition. This piece

of research show good results but the self-defined hierarchical architecture is not flexible

enough in dealing with long video sequence. Hence, in the second piece of research, which

corresponds to Section 4.3, a hierarchical multi-scale RNNs is applied with two kinds of

attention mechanism: the soft attention and hard attention, for action recognition. The

hierarchical structure in this section is automatically learnt from data, and show better

performance than previous research.

67
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4.2 Action Recognition Using Convolutional Hierarchical At-

tention Model

4.2.1 Introduction

Action recognition in the video has been a popular yet challenging task which has received

significant attention from the computer vision society [130] [90]. The potential applications

of action recognition include video retrieval (i.e., YouTube videos), intelligent surveillance

and interactive systems. Compared with action recognition from still images, the temporal

dynamics provides an important clue to recognise human actions in videos.

Among the proposed models to capture the spatial-temporal transition in videos, RNNs

are the preferred candidate due to the special internal memory being able to process arbi-

trary sequences of inputs. An RNN is a class of artificial neural network where connections

between the units form a directed cycle, and the internal state created from the network

allows it to exhibit dynamic temporal behaviour. Much research was conducted on RNNs

in the 80s [131] [132] for time-series modelling, however, this was hampered for a long peri-

od by the difficulties of training, particularly the vanishing gradient problem [44]. Roughly

speaking, the error gradients would vanish exponentially quickly with the size of the time

lag between important events, which makes training very difficult. To mitigate this prob-

lem, a class of models with a long-range learning capability, called LSTMs, was introduced

by Hochreiter, et al [45]. LSTM consists of memory blocks, with each block containing

self-connected memory units to learn when to forget previous hidden states and when to

update hidden states given new information. It has been verified that complex temporal

sequences can be learnt by LSTM [133].

LSTM has a close relationship with attention models in vision research and NLP. Hu-

man perception is characterised by an vital mechanism of focusing attention selectively on

different parts of a scene which has long been an essential subject in the vision community.

An attention model can be built using LSTM on top of image features to decide when the
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model should focus on certain parts of the image sequentially. In NLP, the attention model

was proposed for the sequence to sequence training in machine translation [8], where two

types of attention model have been studied, hard attention and soft attention. Soft at-

tention is deterministic and can be trained using back-propagation [4]. Soft attention was

then extended to the image captioning task [4] since image captioning can be mostly con-

sidered as an image to language translation. Sharma, et al.[65] used pooled convolutional

descriptors with soft attention based models for action recognition and achieved good re-

sults. Continuing the previous research, the soft attention model in the action recognition

context is investigated, and several improvements are proposed. Usually the LSTM is built

on fully connected layers in which all the state-to-state transitions are matrix multiplica-

tion. This structure does not take spatial information into account. Xingjian, et al.[134]

proposed convolutional LSTM in which all the transitions are convolutional operations.

Following [134], the soft attention model is improved by using the convolutional LSTM.

In real-world applications, action is usually composed of a set of sub-actions. For

instance, jump shooting basketball often consists of three sub-actions- jumping, shooting

and landing. This is a typical hierarchical structure regarding motion dynamics. In other

words, actions are composed of multiple granularities. A straightforward way to model the

layered action would be a hierarchical structure. Following [135] in which a Hierarchical

Attention Networks (HAN) was proposed, HAN was applied with a convolutional LSTM

to recognise multiple granularities of layered action categories. The proposed model can

be termed CHAM which means Convolutional Hierarchical Attention Model (CHAM).

The main contributions can be summarised as follows:

(1) As deep features from CNNs preserve the spatial information, the soft attention

model is improved by introducing convolutional operations inside the LSTM cell and at-

tention map generation process to capture the spatial layout.

(2) To explicitly capture layered motion dependencies of video streams, a hierarchical

two layer LSTM model is built for action recognition.
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(3) The proposed model is tested on three widely applied datasets, the UCF sports

dataset [136], the Olympic dataset [137] and the HMDB51 dataset [138] with improved

results on other published work.

4.2.2 Soft attention Model for Video Action Recognition

Convolutional Soft Attention Model

LSTM was proposed by Hochreiter, et al. [45] in 1997 and have subsequently been refined.

LSTM can avoid the gradient vanishing problem and implements long-term memory by

incorporating memory units that allow the network to learn when to forget previous hidden

states and when to update hidden states. The input, forget, and output gates are composed

of a sigmoid activation layer and matrix multiplication to define how much information

flow should be passed to the next time-step. All the parameters in the gates can be learnt

in the training process.

Figure 4.1: The convolutional soft attention mechanism.
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Following the idea of [134], the state-to-state transitions in LSTM are replaced with

convolutional operations which are illustrated in Fig. 4.1. In Fig. 4.1, the dashed lines

indicate the convolution operations, all the input-to-state and state-to-state transitions are

replaced with convolutions. Moreover, the attention map is derived from the hidden layer

of the LSTM also using convolutional operations. The attention map will be elementwise

multiplied with image features to select the most informative regions to focus on.

Our soft attention model is built upon deep CNN features. The features were extracted

from the last convolutional layer from a CNN model trained on the ILSVRC-2012 [36]

database. The last convolutional features would have the shape of K×K×D. The features

are considered as K2 number of D feature vectors in which each of the feature vectors

represents overlapping receptive fields in the input image, and our soft attention model

choose to focus on different regions in each time step.

Letting σ(x) = (1 + e−x)−1 be the sigmoid non-linear activation function and φ(x) =

ex−e−x
ex+e−x = 2σ(2x)−1 be the tangent non-linear activation function, the convolutional LSTM

model with soft attention follows these updating rules:

it = σ(Wxi ∗ xt +Whi ∗ ht−1 + bi) (4.1)

ft = σ(Wxf ∗ xt +Whf ∗ ht−1 + bf ) (4.2)

ot = σ(Wxo ∗ xt +Who ∗ ht−1 + bo) (4.3)

gt = σ(Wxc ∗ xt +Whc ∗ ht−1 + bc) (4.4)

ct = ft · ct−1 + it · gt (4.5)

ht = ot · φ(ct) (4.6)

Here, it, ft, ot are the input, forget and output gates of the LSTM model, respectively.

They are calculated according to Equations 4.1 - 4.3. ct is the cell memory while ht is
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the hidden state of the LSTM model. A ∗ indicates the convolution operation. W∼, b∼

are convolutional weights and bias, respectively. The multiplication operations are all

elementwise multiplication. xt is the input to the LSTM model at each time step. It

can capture the attention information given image features and the hidden state of LSTM

from the last time step. Assuming Ft is the frame level image features which are K×K×D

dimension, xt, the attention map on image features, can be computed as follows:

xt = lijt · Ft (4.7)

lijt = SOFTMAX(Wz∗φ(Wha∗ht−1 +Wxa∗xt + ba)) (4.8)

lijt indicates the attention value of each region which is dependent on the hidden state of

the last time step and the input image features of this time step. i, j means the horizontal

and vertical position of the attention map, respectively. This is achieved by simple weight-

ing of the image features with attention values to preserve the spatial information instead

of getting the expectation of image features as in [4]. This is essentially a type of amplifi-

cation of the ‘attention’ location of features for the classification at hand. In practice, the

hidden state of the last time step and input features are convolved by maps Wha and Wxa

respectively before passing to a softmax activation layer as in Equation 4.8. The softmax

values can be considered as the importance of each region in the image features for the

model to pay attention.

Finally, the model applied the cross-entropy loss for action classification.

LOSS = −
T∑
t=1

C∑
i=1

yt,i log(ŷt,i) (4.9)

where yt is the label vector, ŷt is the classification probabilities at time step t. T is the

number of time steps and C is the number of action categories.
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Figure 4.2: The system architecture of the hierarchical model.

Hierarchical Architecture

As previously introduced, the hierarchical architecture of our CHAM is to capture layered

motion dependencies. Fig. 4.2 illustrates the system structure of our hierarchical model.

The first layer is the attention layer and is also able to reason on the more fine-grained

properties of the temporal dependency. The second layer directly connects with first layer

but skips several steps in order to catch the coarse granularity of the motion informa-

tion. Then the output features of the first layer and second layer are concatenated before

forwarding to the fully connected layers and an average pooling layer. Then a softmax

classifier is connected to generate the results.

4.2.3 Experiments

Datasets Introduction

The approach was evaluated on three datasets, namely the UCF sports [136], the Olympic

sports [137] and the more difficult HMDB51 [138]. The UCF sports dataset contains actions



Chapter 4. Action Recognition from Video Sequences based on Visual Attention
Mechanism 74

collected from various sports on broadcast channels such as ESPN and the BBC. This

dataset consists of 150 videos and with 10 different action categories present. The Olympic

sports dataset was collected from YouTube sequences [137] and contains 16 different sports

categories with 50 sequences per class. The full name of HMDB51 is Human Motion

Database and it provides three train-test splits each consisting of 5100 videos. These clips

are labelled with 51 action categories. The training set for each split has 3570 videos and

the test set has 1530 videos.

For the UCF sports dataset, the dataset are manually divided into a training and a

testing set. 75% are used for training, and 25% for testing. The frame-level accuracy are

then reported based on the testing dataset.

For the Olympic sports dataset, the original training-testing split is used with 649 clips

for training and 134 clips for testing. Following [137], the AP of each category is evaluated

on this dataset.

When evaluating our methods on HMDB51, the original training-testing split is applied

and the accuracy of each split is tested. As [65] has the results of the conventional soft

attention scheme, only the performance of our methodologies are tested.

Implementation Details

Firstly, the frame-level CNN features are extracted using MatConvNet [139] based on

Residual-152 Networks[129] trained on the ILSVRC-2012 [36] dataset. The images were

resized to 224×224, hence the dimension of each frame-level features is 7×7×2048.

Then CHAM was built using the Theano [140] platform. A convolutional kernel size of

3×3 is used for state-to-state transition in LSTM and a 1×1 convolutional kernel is used

for attention map generation to capture spatial information of the CNN features. When

the kernel size is 3×3, to ensure the states of LSTM in different time step have the same

number of columns and rows as inputs, padding is needed before the convolution operation

starts. All these convolutional kernels have 512 channels. A dropout is also applied on the
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Table 4.1: Accuracy on UCF sports
Methods Accuracy

FC-Attention [65] 70%
Conv-Attention(Ours) 72%

CHAM(Ours) 74%

output before being fed to the final softmax classifier with a ratio of 0.5.

Also, to carry out comparative studies, a Convolutional Attention Model (Conv-Attention)

using only one layer of the convolutional LSTM was built. The Fully Connected Attention

Model (FC-Attention) based soft attention [65] was also implemented as a baseline ap-

proach. The matrix dimension of state-to-state transition in the fully connected LSTM is

set as 512. The soft attention mechanism followed the settings in [65]. All the experiments

were conducted using an NVIDIA TITAN X.

For the network training, a mini-batch size of 64 samples is applied at each iteration.

For each video clip, the FC-Attention and Conv-Attention networks randomly selected 30

frames for training while CHAM selected 60 frames for training with a second LSTM layer

skip every 2 time steps. The backpropagation algorithm are applied through time and an

Adam optimiser [141] with a learning rate of 0.0001 is utilized to train the networks. The

learning rate was changed to 0.00001 after 10,000 iterations.

Results and Discussion

The results of the UCF sports dataset can be seen in Table 4.8. The Conv-Attention

which apply convolutional LSTM for soft attention achieves 72% accuracy on the UCF

sports dataset while FC-attention has 70% accuracy. CHAM has the highest accuracy of

74% which indicates that the hierarchical architecture can further improve on the system

performance.

The AP value of our methods are then recorded on the Olympics sports dataset as

shown in Table 4.9. The Conv-Attention method has a mean AP value of 75.5% which is
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Table 4.2: AP on Olympics sports
Class Vault Triple Jump Tennis serve Spring board Snatch

FC-Attention [65] 97.0% 88.4% 52.3% 60.0% 23.2%
Conv-Attention (Ours) 97.0% 94.0% 49.8% 66.4% 26.1 %

CHAM (Ours) 97.0% 98.9% 49.5% 69.2% 47.8%

Shot put Pole vault Platform 10m Long jump Javelin Throw High jump

67.4% 69.8% 84.1% 100.0% 89.6% 84.4%
60.0% 100.0 % 86.0% 98.0% 87.9% 80.0%
79.8% 60.8% 89.7% 100% 95.0% 78.7%

Hammer throw Discus throw Clean and jerk Bowling Basketball layup mAP

38.0% 100.0% 76.0% 60.0% 89.8% 73.7%
36.6% 97.8% 100.0% 46.8% 81.2% 75.5%
37.9% 97.0% 84.8% 46.7% 89.1% 76.4%

Table 4.3: Accuracy on HMDB51
Methods Accuracy

FC-Attention [65] 41.3%
Conv-Attention (Ours) 42.2%

CHAM (Ours) 43.4%

Table 4.4: Comparison with related methods on HMDB51

Methods Accuracy Spatial Image Only Fine-tuning

Softmax Rgression [65] 33.5% Yes No
Spatial Convolutional Net [90] 40.5% Yes Yes

Trajectory-based modeling [142] 40.7% No No

Average pooled LSTM [65] 40.5% Yes No
FC-Attention [65] 41.3% Yes No
ConvALSTM [143] 43.3% Yes Yes

CHAM (Ours) 43.4% Yes No

higher than the FC-attention performance (73.7%). Similarly, the improvement brought

by the hierarchical architecture is also validated on this dataset, with a 76.4% mean AP

value achieved by the proposed CHAM model. The hierarchical model is especially good

at long-term action categories, for instance, ‘Snatch’ and ‘Javelin Throw’ on which the

CHAM method leads the other approaches by a large margin.

The results on the HMDB51 dataset can be seen in Table 4.11. Similar observations

can be made: the Conv-Attention has a higher accuracy value of 42.2%, and the CHAM
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Figure 4.3: Visualization of the attention mechanism.

added another 1.2% gain to the final result, which is 43.4%.

Table 4.12 shows the comparison results on the HMDB51 dataset. From the table, the

following observations can be made:

(1) Our CHAM method outperformed most of the previous methods which are only

based on spatial image features.

(2) Even though our CNN model was not fine-tuned, the results remain competitive

compared with many approaches which had applied fine-tuning.

(3) The proposed model shows good potential to achieve better results. Future work

can be undertaken by fine-tuning the CNN model on a specific dataset.

Fig.4.3 provides some examples of visualisation of the learned attention region; the

regions of a person are brighter which means they are the attention region learned auto-

matically.
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4.2.4 Conclusion

In this chapter, a novel model: CHAM, is proposed. This is achieved by applying convolu-

tional LSTM, a novel RNN model, for the implementation of a soft attention mechanism

and a hierarchical system architecture for action recognition. The convolutional LSTM can

catch the spatial layout of the CNN features while the hierarchical system architecture can

fuse information on the temporal dependencies from multiple granularities of the dataset.

Finally, the CHAM method was tested on three widely used datasets, the UCF sports

dataset, the Olympic sports dataset and the HMDB51 dataset, with improved results.

4.3 Hierarchical Multi-scale Attention Networks for Action

Recognition

4.3.1 Introduction

Action recognition in videos is a fundamental task in computer vision. Recently, with the

rapid development of deep learning, and in particular, deep CNNs, a number of models

[18] [42] [38] [43] have been proposed for image recognition. However, for video-based

action recognition, a model should accept inputs with variable length and generate the

corresponding outputs. This special requirement makes the conventional CNN model that

caters for a one-versus-all classification unsuitable.

For decades RNNs have been applied to sequence-to-sequence applications, often with

good results. However, a significant limitation of the vanilla RNN models, which strictly

integrate state information over time, is the vanishing gradient effect [44]: the ability to

back propagate an error signal through a long-range temporal interval becomes increas-

ingly impossible in practice. To mitigate this problem, a class of models with a long-range

dependencies learning capability, called LSTMs, was introduced by Hochreiter and Schmid-

huber [45]. Specifically, LSTM consists of memory cells, with each cell containing units to

learn when to forget previous hidden states and when to update hidden states with new
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information.

Much sequential data often have a complex temporal structure which requires both

hierarchical and multi-scale information to be modelled properly. In language modelling,

a long sentence is often composed of many phrases which further can be decomposed into

words. Meanwhile, in action recognition, an action category can be described by many sub-

actions. For instance, ‘long jump’ contains ‘running’, ‘jumping’ and ‘landing’. As stated

in [144], a promising approach to model such hierarchical representation is the multi-scale

RNN. One popular approach of implementing multi-scale RNNs is to treat the hierarchical

timescales as pre-defined parameters. For example, Wang et al. [135] implemented a

multi-scale architecture by building multiple layers LSTM in which higher layers skip

several time steps. In their paper, the skipped number of time steps is the parameter

to be pre-defined. However, it is often impractical to pre-define such timescales without

learning, which also leads to a poor generalisation capability. Chung et al. [144] proposed

a novel RNN structure, Hierarchical Multi-scale Recurrent Neural Network (HM-RNN), to

automatically learn time boundaries from data. These temporal boundaries are similar to

rules described by discrete variables inside RNN cells. Normally, it is difficult to implement

training algorithms for discrete variables. Popular approaches include unbiased estimator

with the aid of REINFORCE [145]. In this chapter, the HM-RNN is re-implemented by

applying the recently proposed Gumbel-sigmoid function [146] [147] to realise the training

of stochastic neurons due to its efficiency [148].

In the general RNN framework for sequence-to-sequence problems, the input informa-

tion is treated uniformly without discrimination on the different parts. This will result

in the fixed length of intermediate features and hence subsequent sub-optimal system

performance. The practice is in sharp contrast to the way humans accomplish sequence

processing tasks. Humans tend to selectively concentrate on the part of the information

and at the same time ignores other perceivable information. The mechanism of selectively

focusing on relevant contents in the representation is called attention. The attention based
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RNN model in machine learning was successfully applied in NLP, and more specifically, in

neural translation [8]. For many visual recognition tasks, different portions of an image or

segments of a video have different importance, which should be selectively weighted with

attention. Xu et al. [4] systematically analysed stochastic hard attention and deterministic

soft attention models and applied them in image captioning tasks, with improved results

compared with other RNN-like algorithms. The hard attention mechanism requires a s-

tochastic neuron which is hard to train using the conventional backpropagation algorithm.

They applied REINFORCE [145] as an estimator to implement hard attention to image

captioning.

The REINFORCE is an unbiased gradient estimator for stochastic units. However, it

is very complex to implement and often has high gradient variance during training [148].

In this chapter, the applicability of Gumbel-softmax [146] [147] is studied in hard attention

because Gumbel-softmax is an efficient way to estimate discrete units during the training of

neural networks. To mitigate the problem of temperature sensitivity in Gumbel-softmax,

an adaptive temperature scheme is applied [148] in which the temperature value is also

learnt from the data. The experimental results verify that the adaptive temperature is a

convenient way to avoid manual searching for the parameter. Additionally, the determinis-

tic soft attention [4] [65] and stochastic hard attention implemented by REINFORCE-like

algorithms [63] [64] [4] are also tested in action recognition. Combined with HM-RNN

and the two types of attention models, the proposed Hierarchical Multi-scale Attention

Networks (HM-AN) are systematically evaluated for action recognition in videos, with

improved results.

Our main contributions can be summarised as follows:

• A HM-AN by implementing HM-RNN with Gumbel-sigmoid is proposed to realise

the discrete boundary detectors.

• Four methods of realising an attention mechanism, are proposed for action recognition

in videos, with improved results over many baselines.
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• By incorporating Gumbel-softmax and Gumbel-sigmoid into HM-RNN, the stochas-

tic neurons in the networks are made to be end-to-end trainable by error backprop-

agation.

• For the hard attention model based on Gumbel-softmax, an adaptive temperature

for the Gumbel-softmax is proposed, which generates much-improved results over a

constant temperature value.

• Through visualisation of the learnt attention regions, the boundary detectors of HM-

AN and the adaptive temperature values, insights for further research can be provid-

ed.

4.3.2 Related Works

Hierarchical RNNs

The modelling of hierarchical temporal information has long been an important topic in

many research areas. The most notable model is LSTM proposed by Hochreiter and

Schmidhuber [45]. LSTM employs the multi-scale updating concept, where the hidden

units’ update can be controlled by gating such as input gates or forget gates. This mech-

anism enables the LSTM to deal with long-term dependencies in the temporal domain.

Despite this advantage, the maximum time steps are limited to within a few hundred be-

cause of the leaky integration which makes the memory for long-term gradually diluted

[144]. The maximum time steps in video processing are several dozen frames which makes

the application of LSTM in video recognition very challenging.

To alleviate this problem, many researchers tried to build a hierarchical structure ex-

plicitly, for instance, HAN proposed in [135], which is implemented by skipping several

time steps in the higher layers of the stacked multi-layer LSTMs. However, the number of

time steps to be skipped is a pre-defined parameter. How to choose these parameters and

why to choose a certain number are unclear.
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More recent models like clockwork RNN [149] partitioned the hidden states of an RNN

into several modules with different timescales assigned to them. The clockwork RNN is

more computationally efficient than the standard RNN as the hidden states are updated

only at the assigned time steps. However, finding the suitable timescales is challenging

which makes the model less applicable.

To mitigate the problem, Chung et al. [144] proposed the HM-RNN. The HM-RNN

can learn the temporal boundaries from data, which allows the RNN model to build a

hierarchical structure and enables long-term dependencies automatically. However, the

temporal boundaries are stochastic discrete variables which are very hard to train using

the standard backpropagation algorithm.

A popular approach to train the discrete neurons is the REINFORCE-like [70] algo-

rithms. This is an unbiased estimator but often with high gradient variance [144]. The

original HM-RNN applied a straight-through estimator [145] because of its efficiency and

simplicity in implementation. Instead, in this chapter, the more recent Gumbel-sigmoid

[146] [147] are applied to estimate the stochastic neurons. This is much more efficient than

other approaches and achieved state-of-the-art performance among many other gradient

estimators [146].

Attention Mechanism

One important property of human perception is that humans do not tend to process a

whole scene, in its entirety, at once. Instead, humans pay attention selectively on parts of

the visual scene to acquire information where it is needed [63]. Different attention models

have been proposed and applied in object recognition and machine translation. Mnih et al.

[63] proposed an attention mechanism to represent static images, videos or as an agent that

interacts with a dynamic visual environment. Also, Ba et al. [64] presented an attention-

based model to recognise multiple objects in images. These two models are all with the

aid of REINFORCE-like algorithms.
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The soft attention model was proposed for the machine translation problem in NLP

[8], and Xu et al. [4] extended it to image caption generation as the task is analogous to

‘translating’ an image into a sentence. Specifically, they built a stochastic hard attention

model with the aid of REINFORCE and a deterministic soft attention model. The two

attention mechanisms were applied to the image captioning task, with excellent results.

Subsequently, Sharma et al. [65] built a similar model with soft attention applied to action

recognition from videos.

There are some subsequent works on the attention mechanism. For instance, in [66], the

attention model is utilised for video description generation by softly weighting the visual

features extracted from the frames in each video. Li et al. [143] combined a convolutional

LSTM [134] with the soft attention mechanism for video action recognition and detection.

Teh et al. [76] extended the soft attention into CNN networks for weakly supervised object

detection.

One important reason for applying soft attention instead of the hard version is that the

stochastic hard attention mechanism is difficult to train. Although the REINFORCE-like

algorithms [70] are unbiased estimators to train stochastic units, their gradients have high

variants. To solve this problem, recently, Jang et al. [146] proposed a novel categorical re-

parameterization technique using the Gumbel-softmax distribution. The Gumbel-softmax

is a superior estimator for categorical discrete units [146]. It has been proved to be efficient

and has high-performance [146].

Action Recognition

Action recognition has received significant attention recently. Most approaches focused on

the design of novel features, such as trajectory-based features [130], CNN based features

[150] [90] [151]. For example, [152] built a simple representation to explicitly model the

motion relationships, with outstanding results based on popular classifiers like Support

Vector Machine (SVM) on several benchmark datasets.
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Some researches built model to better exploit these powerful features by the operation of

fusion. For instance, [153] proposed a regularised Deep Neural Network (DNN) to fuse the

CNN features, the trajectory features and the audio features for action categorization, with

promising results. [90] [151] fused CNN features and motion features for better recognized

action categories in video.

RNNs have been popular for speech recognition [154], image caption generation [4], and

video description generation [66]. There have also been efforts made for the application

of LSTM RNNs in action recognition. For instance, [133] proposed an end-to-end training

system using CNN and RNN deep both in space and time to recognise activities in video.

[155] also explicitly models the video as an ordered sequence of frames using LSTM. Most

of the previous work treat image features extracted from CNNs as static inputs to an RNN

to generate action labels at each frame. The attention mechanism can discriminate the

relevant features from these static inputs and can improve the system performance. More-

over, the interpretation of CNN features will be much easier if the attention mechanism can

be applied to action recognition because the attention mechanism automatically focuses

on specific regions to facilitate the classification.

In this chapter, the HM-RNN are re-implemented to capture the hierarchical structure

of temporal information from video frames. By incorporating the HM-RNN with both

stochastic hard attention and deterministic soft attention, the long-term dependencies of

video frames can be captured.

Research related to ours also includes the attention model proposed by Xu et al. [4]

and [156]. [4] first applied both stochastic hard attention and deterministic soft attention

mechanisms for spatial locations of images for image captioning. [156] instead used weight-

ing on image patches to implement region-level attention. In this chapter, similar to [4],

both stochastic hard attention and deterministic soft attention are studied. However, when

implementing hard attention, [4] borrowed the idea of REINFORCE while the more recent

Gumbel-softmax is proposed to estimate discrete neurons in the attention mechanism.
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Figure 4.4: Network Structure of the HM-AN.

4.3.3 The proposed methods

In this section, the HM-RNN structure proposed in [144] are first re-visited, then the

proposed HM-AN networks are introduced, with details of Gumbel-softmax and Gumbel-

sigmoid to estimate the stochastic discrete neurons in the networks.

HM-RNN

HM-RNN was proposed in [144] to better capture the hierarchical multi-scale temporal

structure in sequence modelling. HM-RNN defines three operations depending on the

boundary detectors: UPDATE, COPY and FLUSH. The selection of these operations is

determined by the boundary states zl−1t and zlt−1, where l and t represent the current layer

and time step, respectively:

UPDATE, zlt−1 = 0 and zl−1t = 1;

COPY, zlt−1 = 0 and zl−1t = 0;

FLUSH, zlt−1 = 1.

(4.10)

The updating rules for the operation UPDATE, COPY and FLUSH are defined as

follows:
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clt =


f lt � clt−1 + ilt � glt, UPDATE

clt−1, COPY

ilt � glt, FLUSH

(4.11)

The updating rules for hidden states are also determined by the pre-defined operations:

hlt =


hlt−1, COPY

olt � clt, otherwise

(4.12)

The (i, f, o) indicate the input, forget and output gate, respectively. g is called the

‘cell proposal’ vector. One of the advantages of HM-RNN is that the updating operation

(UPDATE) is only executed at specific time steps instead of all the time, which significantly

reduces the computation cost.

The COPY operation copies the cell memory and hidden state from the previous time

step to the current time step in the upper layers until the end of a subsequence, as shown

in Fig. 4.4. Hence, the upper layer can capture coarser temporal information. Also, the

boundaries of subsequence are learnt from the data which is a big improvement over other

related models. To start a new subsequence, the FLUSH operation needs to be executed.

The FLUSH operation firstly forces the summarised information from the lower layers to be

merged with the upper layers, then re-initialise the cell memories for the next subsequence.

In summary, the COPY and UPDATE operations enable the upper and lower layers to

capture information on different time scales, thus realising a multi-scale and hierarchical

structure for a single subsequence. The FLUSH operation can summarise the information

from the last subsequence and forward them to the next subsequence, which guarantees

the connection and coherence between parts within a long sequence.

The values of gates (i, f, o, g) and the boundary detector z are obtained by:
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where
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t = U llh

l
t−1 (4.14)
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top−down(l)
t = U ll+1(z

l
t−1 � hl+1

t−1) (4.15)

s
bottom−up(l)
t = W l

l−1(z
l−1
t � hl+1

t ) (4.16)

and the hardsigm is estimated using the Gumbel-sigmoid which will be explained later. In

the equation, the Ul and Wl are the weight matrices, and bl is the bias matrix.

HM-AN

A RNN-based framework can tackle the sequential problems inherent in action recognition

and image captioning in computer vision. As previously explained, HM-RNN can learn

the hierarchical temporal structure from data and enable long-term dependencies. This

inspired our proposal for the HM-AN model.

As attention has been proved very useful in action recognition [65], in HM-AN, to

capture the implicit relationships between the inputs and outputs in sequence to sequence

problems, both hard and soft attention mechanisms are applied to explicitly learn the criti-

cal and relevant image features regarding the specific outputs. A more detailed explanation

is as follows.

Estimation of Boundary Detectors In the proposed HM-AN, the boundary detectors

zt are estimated with Gumbel-sigmoid, which is derived directly from the Gumbel-softmax
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proposed in [146] and [147].

The Gumbel-softmax replaces the argmax in the Gumbel-Max Trick [157] [158] with

the following Softmax function:

yi =
exp(log(πi + gi)/τ)∑k
j=1 exp(log(πj + gj)/τ)

(4.17)

where g1, ..., gk are i.i.d. sampled from the distribution Gumbel (0,1), and τ is the temper-

ature parameter. k indicates the dimension of the generated Softmax vector.

To derive the Gumbel-sigmoid, the Sigmoid function can be re-written as a Softmax of

two variables: πi and 0.

sigm(πi) =
1

(1 + exp(−πi))
=

1

(1 + exp(0− πi))

=
1

1 + exp(0)/exp(πi)
=

exp(πi)

(exp(πi) + exp(0))

(4.18)

Hence, the Gumbel-sigmoid can be written as:

yi =
exp(log(πi + gi/τ)

exp(log(πi + gi)/τ) + exp(log(g′)/τ)
(4.19)

where gi and g′ are independently sampled from the distribution Gumbel (0,1).

To obtain a discrete value, values of zt = ỹi are set as:

ỹi =


1 yi ≥ 0.5

0 otherwise

(4.20)

In our experiments, all the boundary detectors zt are estimated using the Gumbel-

sigmoid with a constant temperature of 0.3.

Deterministic Soft Attention To implement soft attention over image regions for the

action recognition task, a similar strategy is applied to the soft attention mechanism in



Chapter 4. Action Recognition from Video Sequences based on Visual Attention
Mechanism 89

Figure 4.5: The soft attention and hard attention mechanism.

[65] and [4].

Specifically, the model predicts a Softmax over K×K image locations. The location

Softmax is defined as:

lt,i =
exp(Wiht−1)∑K×K

j=1 exp(Wjht−1)
i = 1, ...,K2 (4.21)

where i means the ith location corresponding to the specific regions in the original image.

This Softmax can be considered as the probability with which the model learns the

specific regions in the image, which is important for the task at hand. Once these prob-

abilities are obtained, the model computes the expected values over image features at

different regions:

xt =
K2∑
i=1

lt,iXt,i (4.22)

Where xt is considered as inputs of the HM-AN networks. In our HM-AN implementations,

the hidden states used to determine the region softmax is defined for the first layer, i.e.,

h1t−1. The upper layers will automatically learn the abstract information of input features

as previously explained. The soft attention mechanism can be visualised in the left side of

Fig. 4.5.
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Stochastic Hard Attention

REINFORCE-like algorithm Stochastic hard attention was proposed in [4]. Their

hard attention was realised with the aid of a REINFORCE-like algorithm. In this section,

this kind of hard attention mechanism is also introduced.

The location variable lt indicates where the model decides to focus attention on the tth

frame of a video. lt,i is an indicator of a one-hot representation which can be set to 1 if

the ith location contains a relevant feature.

Specifically, a hard attentive location of {αi} is defined:

p(li,t = 1|lj<t,a) = argmax(αt,i) = argmax

(
exp(Wiht−1)∑K×K

j=1 exp(Wjht−1)

)
(4.23)

where a represents the input image features.

An objective function Ll can be defined as a variational lower bound on the marginal

log-likelihood log p(y|a) of observing the action label y given image features a. Hence, Ll

can be represented as:

Ll =
∑
l

p(l|a) log p(y|l, a) ≤ log
∑
l

p(l|a)p(y|l, a) = log p(y|a) (4.24)

∂Ll
∂W

=
∑
l

p(l|a)[
∂ log p(y|l, a)

∂W
+ log p(y|l, a)

∂ log p(l|a)

∂W
] (4.25)

Ideally, the gradients of Equation 4.25 is what need to be computed. However, it is not

feasible to compute the gradient of expectation in Equation 4.25. Hence, a Monte Carlo

approximation technique is applied to estimate the gradient of the operation of expectation.

Therefore, the derivatives of the objective function with respect to the network param-

eters can be expressed as:
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∂Ll
∂W

=
1

N

N∑
n=1

[
∂ log p(y|l̃n, a)

∂W
+ log p(y|l̃n, a)

∂ log p(l̃n|a)

∂W
] (4.26)

where l̃ is obtained based on the argmax operation as in Equation 4.23.

Similar to the approaches in [4], a variance reduction technique is used. With the kth

mini-batch, the moving average baseline is estimated as an accumulation of the previous

log-likelihoods with exponential decay:

bk = 0.9× bk−1 + 0.1× log p(y|l̃k, a) (4.27)

The learning rule for this hard attention mechanism is defined as follows:

∂Ll
∂W

≈ 1

N

N∑
n=1

[
∂ log p(y|l̃n, a)

∂W
+ λ(log p(y|l̃n, a)− b)∂ log p(l̃n|a)

∂W
] (4.28)

where λ is a pre-defined parameter.

As pointed out in Ba et al. [64], Mnih et al. [63] and Xu et al. [4], this is a formu-

lation which is equivalent to the REINFORCE learning rule [70]. For convenience, it is

abbreviated as REINFORCE-Hard Attention in the following sections.

Gumbel Softmax In the hard attention mechanism, the model selects one crucial

region instead of taking the expectation. Hence, it is a discrete stochastic unit which

cannot be trained using backpropagation. [4] applied the REINFORCE to estimate the

gradient of the stochastic neuron. Although REINFORCE is an unbiased estimator, the

variance of the gradient is large and the algorithm is complex to implement. To solve

these problems, the Gumbel-softmax is proposed to apply to estimate the gradient of the

discrete units in our model. Gumbel-softmax is better than REINFORCE and much easier

to implement [146].

The Softmax can be replaced with Gumbel-softmax in Equation 4.21 and remove the
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process of taking expectation to realise the hard attention.

lt,i =
exp(log(Wiht−1 + gi)/τ)∑K×K

j=1 exp(log(Wjht−1 + gj)/τ)
i = 1...K2 (4.29)

The Gumbel-softmax will choose a single location indicating the most important image

region for the task. However, the search space for the temperature parameter is too

large to be manually selected. The temperature is a sensitive parameter as explained in

[146]. Hence in this chapter, an adaptive temperature is applied as in [148]. The adaptive

temperature determines the value depending on the current hidden states. In other words,

instead of being treated as a pre-defined parameter, the value of temperature is learnt from

the data. Specifically, the following mechanism is used to determine the temperature:

τ =
1

Softplus(Wtemph1t + btemp) + 1
(4.30)

Where h1t is the hidden state of the first layer of our HM-AN. Equation 4.30 generates a

scalar for the temperature. In the equation, adding one can enable the temperature to fall

within the scope of 0 and 1. The hard attention mechanism can be seen on the right-hand

side of Fig. 4.5.

Application of HM-AN in Action Recognition

The proposed HM-AN can be directly applied in video action recognition. In video action

recognition, the dynamics exist in the inputs, i.e., the given video frames. With the atten-

tion mechanism embedded in RNN, the critical features of each frame can be discovered

and discriminated in order to facilitate recognition.

For action recognition, the HM-AN applies the cross-entropy loss for recognition.

LOSS = −
T∑
t=1

C∑
i=1

yt,i log(ŷt,i) (4.31)
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Figure 4.6: Action recognition with HM-AN.

where yt is the label vector, ŷt is the classification probabilities at time step t. T is the

number of time steps and C is the number of action categories. The system architecture

of action recognition using HM-AN is shown in Fig. 4.6.

4.3.4 Experiments

In this section, the implementation details are firstly explained then the experimental

results on action recognition are reported.

Implementation Details

The HM-AN are implemented using the Theano platform [159] and all the experiments are

conducted on a server embedded with a Titan X GPU. In the experiments, HM-AN is a

three layer stacked RNN. The outputs are concatenated by hidden states from three layers

and forwarded to a softmax layer.

In addition to the baseline approach (LSTM networks), four versions of HM-AN were

implemented for comparison:

• Softmax regression. This is to perform a general image classification task based on
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spatial features.

• LSTM with soft attention (Baseline). The baseline approach is set as a one layer

LSTM networks with the soft attention mechanism.

• Deterministic soft attention in HM-AN (Soft Attention). This is to determine how

soft attention mechanism performs with the HM-AN.

• Stochastic hard attention with reinforcement learning in HM-AN (REINFORCE-

Hard Attention). This type of hard attention mechanism is described in Section

4.3.3.

• Stochastic hard attention with a 0.3 temperature for Gumbel-softmax in HM-AN

(Constant-Gumbel-Hard Attention). A constant temperature is applied in Gumbel-

softmax to accomplish the proposed hard attention model.

• Stochastic hard attention with adaptive temperature for Gumbel-softmax in HM-

AN (Adaptive-Gumbel-Hard Attention). The temperature is set as a function of the

hidden states of RNN.

For the experiments, with the help of the MatConvNet platform [139], the frame-

level CNN features are first extracted from the last convolutional layer (res5cx) based on

Residue-152 Networks [43] trained on the ILSVRC-2012 [36] dataset. The images were

resized to 224×224. Hence the dimension of each frame-level features is 7×7×2048. For

the network training, a mini-batch size of 64 samples is applied at each iteration. For

each video sequence, the baseline approach randomly selected a sequence of 30 frames for

training while the proposed approaches selected a sequence of 60 frames for training in order

to verify the proposed HM-AN’s capability to capture long-term dependencies. The optimal

length for LSTM with attention is 30 and increasing the number will seriously deteriorate

the performance. In order to determine the optimal length of sequence feeding into the

networks, several trials are performed as described in Section 4.3.4, determining that the
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Table 4.5: Networks Structure Configuration.
Input to HM-AN Size of Inner Units of HM-AN

Inputs 7× 7× 2048 Hidden Unit Size 2048
Output Layers Cell Memory Size 2048

1st Layer Outputs 2048 Gate Size (i, f, o, g) 2048
2nd Layer Outputs 2048 Boundary Detector Size 2048
3rd Layer Outputs 2048 Training Parameters

Concatenation Layer 6144 Dropout 0.5
Fully connected Layer 1 1024 Learning Rate 0.00001
Fully connected Layer 2 Class Categories Video Sequence Length 60

Table 4.6: Number of Iterations and Epoches for Convergence on Different Datasets.
Dataset Iterations Epoches

UCF Sports 400 2
Olympic Sports 2500 2

HMDB51 10000 2

optimal length for the HM-AN is 60. The backpropagation algorithm are applied through

time and Adam optimiser [141] with a learning rate of 0.0001 is used train the networks.

The learning rate was changed to 0.00001 after 10,000 iterations. At test time, the class

predictions for each time step are computed and then those predictions are averaged over

60 frames. Table 4.5 provides a detailed description of the network configuration. Table

4.6 shows the number of iterations and epochs needed for convergence on different datasets.

Experimental Results and Analysis

Datasets The proposed approach are tested on three widely used datasets, namely UCF

Sports [136], the Olympic Sports datasets [137] and the more difficult Human Motion

Database (HMDB51) dataset [138]. Fig. 4.7 provides some examples of the three datasets

used in this chapter. The UCF Sports dataset contains a set of actions collected from

various sports which are typically featured on broadcast channels such as ESPN or BBC.

This dataset consists of 150 videos with a resolution of 720 × 480 and contains 10 different
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(a) UCF Sports dataset

(b) Olympic Sports dataset

(c) HMDB51 dataset

Figure 4.7: Some examples from the datasets used in this chapter.

action categories. The Olympic Sports dataset was collected from YouTube sequences [137]

and contains 16 different sports categories with 50 videos per class. Hence, there are a

total of 800 videos in this dataset. The HMDB51 dataset is a more difficult dataset which

provides three train-test splits each consisting of 5100 videos. These sequences are labelled

with 51 action categories. The training set for each split has 3570 videos, and the test set

has 1530 videos.

For the UCF Sports dataset, as there is a lack of training-testing split for evaluation,

the dataset are manually divided into training and testing sets. 75 per cent are selected

for training and the remaining 25 per cent are left for testing. The classification accuracy

are then reported on the testing dataset.

As for Olympic Sports dataset, the original training-testing split is used with the 649
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Figure 4.8: Training cost of the UCF Sports dataset.

sequences for training and 134 sequences for testing provided in the dataset. Following the

practice in [137], the AP are evaluated for each category on this dataset.

When evaluating the proposed method on HMDB51, the original training-testing split

is used and the classification accuracy on the testing set is reported.

Results

UCF Sports dataset The performance of the LSTM with soft attention proposed

in [65] are first tested on the UCF Sports dataset and obtained 70.0% accuracy. All the

experimental settings were the same as those in [65]. Then the proposed four approaches

mentioned previously are evaluated. As described in [65], the optimal sequence length is

30 frames.

One of the expectations of using HM-AN is to enable long-term dependencies. In order



Chapter 4. Action Recognition from Video Sequences based on Visual Attention
Mechanism 98

Figure 4.9: Training cost of the Olympic Sports dataset.

to find the optimal length for HM-AN, certain experiments are performed. As shown in

Table 4.7, the optimal length of the video sequence is 60 frames. Increasing or decreasing

the length would cause a drop in the overall result accuracy.

HM-AN with the stochastic hard attention, which is realised with REINFORCE-like

algorithm improves the results to 82.0%. HM-AN with soft attention is similar to the

REINFORCE-Hard Attention, with an accuracy of 81.1%. The hard attention mechanism

realised by Gumbel-softmax with adaptive temperature achieves 82.0% accuracy, similar

to our REINFORCE-Hard Attention model. However, the Constant-Gumbel-Hard Atten-

tion which uses Gumbel-softmax with constant temperature value of 0.3 only yields 76.0%

accuracy, which indicates the significant role of adaptive temperature in maintaining the

system performance. Fig. 4.8 shows the curves of training cost cross-entropy for the

Adaptive-Gumbel-Hard Attention approach and REINFORCE-Hard Attention approach,

respectively. It can be seen from the figure that the REINFORCE-Hard Attention con-
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Figure 4.10: Training cost of the HMDB51 dataset.

Table 4.7: Accuracy on UCF Sports using Adaptive-Gumbel-Hard Attention with different
sequence lengths.

Sequence Length Accuracy

30 frames 70.0%
40 frames 74.0%
50 frames 78.0%
60 frames 82.0%
70 frames 80.1%

verges marginally slower than the approach of Adaptive-Gumbel-Hard Attention.

As shown in Table 4.8, the proposed model is compared with the methods proposed in

[160] in which a convolutional LSTM attention network with hierarchical architecture was

used for action recognition. The hierarchical architecture in [160] was pre-defined while the

proposed model can learn the hierarchy from the data. The improvements demonstrated

by our methods are evident as shown in Table 4.8.
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Table 4.8: Accuracy on UCF Sports
Methods Accuracy

Softmax Regression (Residue-152 Features) 66.0%
Baseline (Residue-152 Features) 70.0%

Conv-Attention [160] (Residue-152 Features) 72.0%
CHAM [160] (Residue-152 Features) 74.0%

Soft Attention (Residue-152 Features)(Ours) 81.1%
REINFORCE-Hard Attention (Residue-152 Features)(Ours) 82.0%

Constant-Gumbel-Hard Attention(Residue-152 Features) (Ours) 76.0%
Adaptive-Gumbel-Hard Attention (Residue-152 Features)(Ours) 82.0%

Olympic Sports dataset The Olympic Sports dataset is of medium size. Results

from this dataset are shown in Table 4.9. The mean Average Precision (mAP) result of

baseline approach is 73.7%. Our method HM-AN with Soft attention achieves 82.4% mAP.

However, unlike the UCF Sports dataset, the mAP result of REINFORCE-Hard Attention

is 77.1%, which is lower than the approach of Soft Attention. The Constant-Gumbel-

Hard Attention, which is implemented by Gumbel-softmax with a constant temperature

of 0.3, obtains a mAP value of 82.3%. By making the temperature value of Gumbel-

softmax adaptive, the proposed model achieves 82.7% mAP, the highest among all our

experimental results. Again, our proposed methods show superior performance compared

to the hand-designed hierarchical model in [160].

HMDB51 dataset HMDB51 is a more difficult and larger dataset. First of all,

the accuracy of softmax regression is tested, based on Residue-152 networks, with 38.2%

accuracy, which improved this approach based on GoogleNet features by 4.7%. This is

consistent with previous findings where the Residue-152 networks reported 23.0% top 1

error on ImageNet dataset [36], which is 11.2% percent less than the GoogleNet results

(34.2%) [161] [43]. However, all the subsequent experiments are all performed using features

from Residue-152 features, which verify that the performance gain is from the proposed

model instead of the advanced image features. The performance of the baseline approach
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Figure 4.11: Confusion Matrix of HM-AN with Adaptive-Gumbel-Hard Attention on the
UCF Sports dataset.

is shown in Table 4.11, with 40.8% accuracy. The three-layer LSTMs with soft attention

based on GoogleNet features was reported in [65], with 41.3% accuracy. To make the

comparison fair, the three layer LSTMs with soft attention are also tested on Residue-152
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Table 4.9: AP on Olympics Sports
Class Vault Triple Jump Tennis serve Spring board Snatch

Softmax Regression (Residue-152 Features) 97.7% 100.0% 42.8% 58.4% 31.7%
Baseline (Residue-152 Features) 97.0% 88.4% 52.3% 60.0% 23.2%

Conv-Attention (Residue-152 Features) [160] 97.0% 94.0% 49.8% 66.4% 26.1%
CHAM (Residue-152 Features) [160] 97.0% 98.9% 49.5% 69.2% 47.8%

Soft Attention (Residue-152 Features)(Ours) 99.0% 100.0% 60.7% 64.2% 38.6%
REINFORCE-Hard Attention (Residue-152 Features) (Ours) 100.0% 95.0% 50.8% 56.3% 28.6%

Constant-Gumbel-Hard Attention (Residue-152 Features) (Ours) 97.0 % 99.0% 62.6 % 58.7% 40.3%
Adaptive-Gumbel-Hard Attention (Residue-152 Features) (Ours) 98.1% 98.9% 62.1% 64.3% 45.4%

Shot put Pole vault Platform 10m Long jump Javelin Throw High jump

61.5% 88.8% 85.6% 96.6% 95.0% 79.7%
67.4% 69.8% 84.1% 100.0% 89.6% 84.4%
60.0% 100% 86.0% 98.0% 87.9% 80.0%
79.8% 60.8% 89.7% 100.0% 95.0% 78.7%
77.2% 85.4% 91.5% 98.9% 97.0 77.2%
90.6% 100.0% 86.7% 100.0% 89.7% 77.5%
87.8% 100.0% 93.1% 100.0% 93.2% 82.8%
84.1% 100.0% 94.8% 100.0% 95.3% 86.2%

Hammer throw Discus throw Clean and jerk Bowling Basketball layup mAP

32.9% 84.2% 78.0% 41.5% 89.3% 72.7%
38.0% 100.0% 76.0% 60.0% 89.8% 73.7%
36.6% 97.8% 100.0% 46.8% 81.2% 75.5%
37.9% 97.0% 84.8% 46.7% 89.1% 76.4%
44.1% 94.2% 83.8% 63.9% 89.2% 77.1%
52.9% 95.8% 92.4% 69.4% 98.1% 82.4%
54.7% 95.8% 91.3% 60.5% 100.0% 82.3%
53.8% 95.8% 84.9% 62.5% 97.0% 82.7%

features. However, a pronounced improvement on the final result can not be obtained,

with 42.4% accuracy (1.1% gains over the result from [65]). Our HM-AN model with

soft attention improves the accuracy to 43.8%. Then the REINFORCE-Hard Attention

approach is applied to this dataset. The resulting accuracy turns out to be lower than

the HM-AN with soft attention. Moreover, the model with REINFORCE-like algorithm

converges slower than the Gumbel-softmax with adaptive temperature, also with more

oscillations on the training cost, which is shown in Fig. 4.10. With a constant temperature

value of 0.3 for hard attention, the model achieves 44.0% accuracy. Again, the improvement

by adding adaptive temperature is obvious, with 44.2% accuracy on the HMDB51 dataset.

The accuracy results are further summarized in Table 4.11.

The performance of the proposed HM-AN are also compared with some published

models related to the proposed approach. The proposed approach shares similarity with

the spatial convolutional net from the two-stream scheme [90]. The difference is that the

two-stream approach performs fine-tuning on the CNN model, with improved accuracy of
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40.5%. Recent research on the two-stream approach [151] reported better results, with

47.1% accuracy. However, the evaluation of the two-stream method is based on each video

while our evaluation is based on 60 frame sequences. The sequence-based accuracy usually

is lower than the video-based accuracy as described in [162]. The video-based approaches

are only provided for reference since the evaluation of them is different from sequence-based

approaches.

For sequence-based approaches, the methods not from the RNN family but only with

the spatial image, show poor performance as illustrated in Table 4.12. Specifically, the

softmax regression approach [65] directly uses extracted image features of each frame and

performs softmax regression on them, with 33.5% accuracy. The softmax regression ap-

proach based on image features from Residue-152 networks improves the accuracy to 38.2%.

[65] reported that the LSTM without attention achieves 40.5% accuracy [65]. When adding

the soft attention mechanism, improved accuracy of 41.3% can be obtained. The Conv-

Attention [160] and ConvALSTM [143] both use convolutional LSTM with attention. The

differences are that Conv-Attention extracts features from Residue-152 Networks [43] with-

out fine-tuning while ConvALSTM extracts image features from a fine-tuned VGG16 mod-

el. The ConvALSTM leads Conv-Attention by a small margin, with 43.3% accuracy. As

explained previously, CHAM [160] has a hand-designed hierarchical architecture, which is

in contrast with ours in which the temporal hierarchy is formed through training. Our

best setting (Adaptive-Gumbel-Hard Attention) reports the highest accuracy (44.2%) a-

mong methods from the RNN family and leads the CHAM results (43.4%) by 0.8 per cent.

In sequence-based approaches, the one that outperforms ours is the Long-term temporal

convolutions [162], with 52.6% accuracy. This method has a 3D-convolution architecture

and is trained directly on the specific dataset, which is very different from our approach.

Analysis and Visualization Four approaches (Soft Attention, REINFORCE-Hard

Attention, Constant-Gumbel-Hard Attention and Adaptive-Gumbel-Hard Attention) were

tested on three different datasets: UCF Sports dataset, the Olympic Sports dataset and
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Table 4.10: Accuracy of Softmax Regression on HMDB51 based on Different Features
Image Features Accuracy

GoogleNet 33.5%
Residue-152 Network 38.2%

Table 4.11: Accuracy on HMDB51
Methods Accuracy

Softmax Regression (Residue-152 Features) 38.2%
Baseline (Residue-152 Features) 40.8%

Three LSTM Layers with Attention (Residue-152 Features) 42.4%
Soft Attention (Residue-152 Features)(Ours) 43.8%

REINFORCE-Hard Attention (Residue-152 Features)(Ours) 41.5%
Constant-Gumbel-Hard Attention (Residue-152 Features)(Ours) 44.0%
Adaptive-Gumbel-Hard Attention (Residue-152 Features)(Ours) 44.2%

Table 4.12: Comparison with related methods on HMDB51
Methods Accuracy Spatial Image Only Fine-tuning of CNN model

Video Accuracy

Spatial Convolutional Net (8 Layers CNN model) [90] 40.5% Yes Yes

Spatial Convolutional Net (VGG 16) [151] 47.1% Yes Yes

Composite LSTM Model [163] 44.0% Yes No

Trajectory-based modeling [142] 40.7% No No

Deep 3D CNN [164] 51.9% Yes Yes

Sequence Accuracy

ConvALSTM (VGG16 model) [143] 43.3% Yes Yes

Long-term temporal convolutions [162] 52.6% Yes Yes

Softmax Regression (GoogleNet Features) [65] 33.5% Yes No

Average pooled LSTM [65] (GoogleNet Features) 40.5% Yes No

Three LSTM Layers with Attention (GoogleNet Features) [65] 41.3% Yes No

Three LSTM Layers with Attention (Residue-152 Features) 42.4% Yes No

Conv-Attention (Residue-152 Features) [160] 42.2% Yes No

CHAM (Residue-152 Features) [160] 43.4% Yes No

Adaptive-Gumbel-Hard Attention (Residue-152 Features) (Ours) 44.2% Yes No

the HMDB51 dataset. On the UCF Sports dataset, the REINFORCE-Hard Attention

and Adaptive-Gumbel-Hard Attention generate satisfactory results and show better per-

formance than the soft attention and Constant-Gumbel-Hard Attention. This indicates
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Figure 4.12: Confusion Matrix of HM-AN Adaptive-Gumbel-Hard Attention on the HMD-
B51 dataset.

that the adaptive temperature is an efficient method to improve performance in the im-

plementation of Gumbel-softmax based hard attention.
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Figure 4.13: Visualization of attention maps and detected boundaries for action recogni-
tion.

On both of the Olympic Sports dataset and HMDB51 dataset, the best approach is the

Adaptive-Gumbel-Hard Attention while the REINFORCE-Hard Attention is even worse

than the soft attention mechanism. On the bigger datasets, the advantages of Gumbel-
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Figure 4.14: Visualization of temperature values with attention maps and detected bound-
aries for action recognition.

softmax include small gradient variance and simplicity, which are obvious compared with

the REINFORCE-like algorithms. This shows that Gumbel-softmax generalises well on

large and complex datasets. This is reflected not only by the result accuracy but also

by the training cost curves in Fig. 4.9 and Fig. 4.10. This conclusion is also consistent

with the findings in other recent research [148] which also applied both REINFORCE-like

algorithms and Gumbel-softmax as estimators for stochastic neurons.

The visualization of attention maps and boundary detectors learnt by the HM-AN is

shown in Fig. 4.13. In the attention maps, the brighter an area is, the more important it
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is for the recognition. The soft attention captures multi-regions while the hard attention

selects only one important region. As can be seen from the figure, in different time steps,

the attention regions are different which means the model is able to select region to facilitate

the recognition through time automatically. The z 1, z 2 and z 3 in the figure indicate the

boundary detectors in the first layer, the second layer and the third layer, respectively. In

the figure, for the boundary detectors, the black regions indicate there exists a boundary in

the time-domain whilst the grey regions show the UPDATE operation can be performed.

The HM-AN can capture the multi-scale properties in the time-domain as different layers

show different boundaries.

From the reported results, it is found that on all three datasets, the Constant-Gumbel-

Hard Attention approach is worse than the approach of Adaptive-Gumbel-Hard Attention.

This is because which temperature parameter is optimal for the dataset is not a prior

knowledge. To provide a better understanding of the network, Fig. 4.14 shown how the

adaptive temperature change along with the test samples on three datasets. The figure

shown that the adaptive temperature is about 0.6, which is very different from the pre-

defined 0.3 temperature in Constant-Gumbel-Hard Attention.

On the UCF Sports dataset, the Constant-Gumbel-Hard Attention is significantly worse

than other approaches, including the REINFORCE-Hard Attention, with only 76.0% ac-

curacy. As shown in Fig. 4.14, the temperature from the UCF Sports dataset is slightly

higher than the other two datasets, which means the 0.3 pre-defined temperature parame-

ter is not an appropriate option. Also, the approach of Adaptive-Gumbel-Hard Attention

makes the networks converge much quicker as shown in Fig. 4.8, Fig. 4.9 and Fig. 4.10,

which also explains the higher accuracy results of this method.

4.3.5 Conclusion

In this chapter, a novel RNN model, HM-AN, was proposed, which improves HM-RNN

with attention mechanism for visual tasks. Specifically, the boundary detectors in HM-AN
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are implemented by the recently proposed Gumbel-sigmoid. Two versions of the attention

mechanism were implemented and tested. Our work is the first attempt to implement hard

attention in vision tasks with the aid of Gumbel-softmax instead of REINFORCE algorith-

m. To solve the problem of a sensitive parameter of the softmax temperature, the adaptive

temperature methods were applied to improve the system performance. To validate the

effectiveness of HM-AN, experiments were conducted on action recognition from videos.

Through experimenting, it is proved that HM-AN is more effective than LSTMs with at-

tention. The attention regions of both hard and soft attention and boundaries detected

in the networks provide visualisation for the insights of what the networks have learnt.

Theoretically, our model can be built based on various features, e.g., Dense Trajectories,

to improve the performance. However, unlike many previous state-of-the-art methods like

the two-stream approach [90], the emphasis in this chapter is to prove the superiority of

the model itself compared with other RNN-like models given same features. Hence, only

the deep spatial features is applied. Note the model can be easily extended to two-stream

approach by using the optical flow features. Note that the RNN-based model is more

time-consuming than the CNN-based model in action recognition. However, our work can

facilitate further research on the hierarchical RNNs and its applications to computer vision

tasks.



Chapter 5

Image Captioning based on Visual

Attention Mechanism

5.1 Introduction

This chapter focuses on the application of the visual attention mechanism in the task

of image description generation (image captioning). Section 5.2 proposes an attention

model with adversarial training for image captioning. It uses a simple soft attention model

for image captioning and an reinforcement learning-based adversarial training scheme to

optimise the whole network. Section 5.3 improves the research in Section 5.2 in two aspects:

a hierarchical attention networks to capture more fine-grained object features is proposed.

Also, in the adversarial training scheme, a novel discriminator to measure the coherence

and consistency between the content of the image and the generated language is proposed,

with much improved effect on the final performance.

110
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5.2 Image Captioning using Attention Mechanism and Ad-

versarial Training

5.2.1 Introduction

Image captioning, i.e., automatically describing the content of an image, is a fundamen-

tal problem in machine learning which connects computer vision and natural language

processing. It tries to mimic the human ability to process huge amounts of salient vi-

sual information into descriptive language, which is one of the primary goals of artificial

intelligence.

In recent years, remarkable progresses have been made towards naturalistic image de-

scription generation [165] [166] [167] [71], owing to the development of deep learning [2].

In these works, inspired by the success of the sequence-to-sequence model of neural ma-

chine translation [8] [168], most of them represented the image as a single feature vector

from the top layer of pre-trained CNNs and cascaded RNNs to generate text. Subsequen-

t research [167] introduced the attention mechanism on image locations to discriminate

between important and relevant image features to facilitate image captioning.

However, most of the previously proposed models trained the RNN using Maximum

Likelihood Estimation (MLE) to generate image descriptions. As argued in [169], the MLE

approaches suffer from the so-called exposure bias in the inference stage: the model gener-

ates a sequence iteratively and predicts the next token based on the previously predicted

ones that may never be observed in the training data. In image captioning, the MLE also

suffers from a problem that the generated captions do not correlate well with a human

assessment of quality.

Instead of only relying on the MLE, an alternative scheme is under the framework of

the GANs [3]. GAN was first proposed to generate realistic images. GAN learns generative

models without explicitly defining a loss function from the target distribution. Instead,

GAN introduces a discriminator network which tries to differentiate real samples from
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generated samples. The whole network is trained using this adversarial training strategy.

One can subsequently build a discriminator to judge how realistic the samples generated by

the caption generator are. The caption generator is similar to the generator in conditional

GAN [170], which is conditioned on the image features.

There is an inherent problem in GAN when dealing with language problems. Language,

unlike images, is essentially a discrete problem. Directly providing these discrete tokens as

inputs to the discriminator does not allow the gradients to backpropagate through them

since they are discontinuous. One solution is to implement a Reinforcement Learning

(RL) [171] framework to estimate the gradients of the discontinuous units. However, the

RL framework, when dealing with sequence generation, has the problem of lacking the

intermediate reward, as discussed in [50]. The reward signal can only be obtained when

the whole sequence is generated. This is not suitable since what is wanted is the long-term

reward of each intermediately generated token, which is to optimise the whole sequence

better.

To tackle the issues mentioned above, the framework of GAN is applied for image

captioning. In the proposed scheme, the discriminator not only considers the similari-

ty between the generated captions and the reference captions but also the consistencies

between the captions and image features. Through evaluation of the discriminator, the

networks can better compensate for the issue where some unrealistic captions might be

generated using MLE. Also, to deal with the discreteness of language, the image caption-

ing generator is considered as an agent of RL. The feedback from the discriminator are

considered as the rewards for the generator. To update the parameters of image caption-

ing generator in this framework, the generator is considered as a stochastic parameterised

policy. The policy network is trained using Policy Gradient [172], which naturally solves

the differential difficulties in conventional GAN. Also, to solve the problem of the lack of

intermediate rewards, the idea from the famous “AlphaGo” program [173] is applied in

which a Monte Carlo roll-out strategy is used to sample the expected long-term reward
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for an intermediate move. If the sequence token generation is considered as the action

to be taken in RL, a similar Monte Carlo roll-out strategy can be applied to obtain the

intermediate rewards. [50] has successfully applied the Monte Carlo roll-out in sequence

generation. In this chapter, a similar sampling method is used to deal with intermediate

rewards during the process of caption generation.

During implementation, the caption generator is built based on the “show, attend and

tell” model [167]. The feature processing and soft attention mechanism are adopted the

same in [167]. Then the the image captioning model is considered as the generator, and

another RNN network is used as a discriminator, to automatically evaluate how realistic

the generated captions are. The outputs from the discriminator are considered as the

rewards in the RL framework. The entire networks are trained using the Policy Gradient

algorithm. The proposed model was evaluated on the COCO dataset [121], with improved

results over the model based on MLE.

Our contributions can be summarised as follows:

• GAN and RL is proposed to be applied to train a neural model for the image cap-

tioning task.

• A Monte Carlo roll-out strategy is applied to obtain intermediate rewards for RL in

the sequence generation scenario.

• Experiments prove the effectiveness of adversarial training and RL in the task of

image captioning.

5.2.2 The Proposed Method

The proposed scheme is based on GANs, in which a generator and a discriminator are

trained using the minimax game in an adversarial way. On the one hand, the generator

tries to generate realistic samples to fool the discriminator into believing they are real

ones. On the other hand, the discriminator is trained to identify the differences between
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the generated samples and real ones.

In the proposed scheme, the image captioning generator is considered as the generator in

a GAN framework, which tries to generate naturalistic image descriptions. A discriminator

is built to judge whether the generated sequence is realistic. In the vanilla GAN, the

gradient from the discriminator can be backpropagated directly to the generator, which

makes the whole network trainable. However, due to the discrete problem of language,

this is not achievable using vanilla GAN. Hence, the model is considered in the framework

of RL and a Policy Gradient is applied to estimate the gradients of the generator. In the

following subsections, the generator, the discriminator, the Policy Gradient algorithm and

the training algorithm will be explained, respectively. The system diagram can be seen in

Fig. 5.1.

Image Captioning Generator

The image caption generator is based on the model in [167]. Specifically, the model consists

of an encoder and a decoder. A convolutional neural network (Residual Net [43]) pre-

trained on the ImageNet dataset [69] is used in order to extract a set of convolutional

features. These features, denoted as a = {a1, ..., aL}, correspond to certain portions of

the 2-D image. The convolutional features are extracted instead of fully connected ones in

order to build a soft attention mechanism to discriminate the visual location of the given

image.

The LSTMs network, initially proposed by Hochreiter and Schmidhuber in [45], is

applied as the language decoder because of its superior performance in natural language

processing.
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it = σ(Wxi ∗ zt +Whi ∗ ht−1 + bi)

ft = σ(Wxf ∗ zt +Whf ∗ ht−1 + bf )

ot = σ(Wxo ∗ zt +Who ∗ ht−1 + bo)

gt = σ(Wxc ∗ zt +Whc ∗ ht−1 + bc)

ct = ft · ct−1 + it · gt

ht = ot · φ(ct)

(5.1)

In Equation 5.11, it, ft, ot, ct and ht are the input, forget, output, cell memory and

hidden state of an LSTM network, respectively. zt is the context vector, which can be

processed by a soft attention mechanism and can capture visual information associated

with certain input locations. The soft attention mechanism has to automatically allocate

adaptive weights, on image locations, to facilitate the task at hand.

eti = fatt(ai, ht−1) (5.2)

Equation 5.12 maps the image features from each location, along with information from

the hidden state, into an adaptive weight, which indicates the importance of each image

location for recognition.

αti =
exp(eti)∑L
k=1 exp(etk)

(5.3)

Then, Equation 5.13 normalises the adaptive weights into a probability value in the

range of 0 to 1 using the softmax function. Once these weights (sum to 1) are computed,

the weights vector αt is elementwisely multiplied with the image feature vector a and are

summed up to generate the context vector zt, which can be expressed as in Equation 5.14.

zt =
L∑
i=1

αt,iai (5.4)
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Figure 5.1: System Diagram of the Proposed Model.

Then the context vector zt is forwarded to the LSTM network to generate captions, as

described in Equation 5.11. This soft attention mechanism can adaptively select relevant

visual parts of the given image features and thus facilitate recognition.

Discriminator

The generated sequences and the reference sequences are simultaneously given to the dis-

criminator. Before being forwarded to the discriminator, both of the embedding matrices

of the generated sequences and the reference sequences are concatenated with the image

features, which can be seen in Fig. 5.1. This operation is to consider the coherence between

certain captions (sequences) and the corresponding image features, which can make the

generated captions more realistic and naturalistic. The reference sequences are labelled

as true while the generated sequences are labelled as false during the training of the dis-

criminator. The model is also an LSTM network with softmax cross entropy loss. Hence,
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the discriminator outputs the probabilities of a sample being true. These probabilities,

are then considered as the reward signal in the RL framework, to be utilised by the Policy

Gradient algorithm for updating the parameters of the image caption generator.

Optimization via Policy Gradient

Following [172], the objective of the policy network Gθ(yt|y1:t−1) (the image caption gener-

ator), is to generate a sequence from the start state s0 to maximize its expected long-term

reward as described in Equation 5.21:

J(θ) = E[RT |s0, θ] =
∑
y1∈Y

Gθ(y1|s0) ·QGθDθ(s0, y1) (5.5)

where RT is the reward for a complete sequence. QGθDθ(s, y) is the action-value function of

a language sequence, which is defined as the expected accumulative reward starting from

state s, taking action a, and then following policy Gθ.

The action-value function is estimated using the REINFORCE algorithm [70] and con-

siders the probability of being real, generated by the discriminator, as a reward, which can

be defined as in Equation 5.22.

QGθDθ(a = yT , s = Y1:T−1) = Dθ(Y1:T ) (5.6)

As can be seen in Equation 5.22, the discriminator only provides a reward for a complete

sequence. One should not only care about the reward for complete tokens but also the

long-term reward for the future time-steps since the long-term reward is what is actually

needed. Similar to the game of Go [173] in which the agent sometimes gives up immediate

interest but cares about the final victory, a similar Monte Carlo roll-out strategy is applied

for an intermediate state, i.e., an unfinished sequence. An N-time Monte Carlo search is
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represented as in Equation 5.23.

Y 1
1:T , ..., Y

N
1:T = MCGθ(Y1:t;N)

MC =∼Multinomial(logits)
(5.7)

where Y n
1:T is the generated sequence tokens and Y n

t+1:T is Monte Carlo sampled based

on a roll-out policy, which, in this case, is set the same as the image caption generator.

logits is the output of the LSTM decoder. MC is defined as a sampling procedure from

Multinomial distribution.

If there is no intermediate reward, the Monte Carlo roll-out strategy can sample the

possible future tokens N times and average these rewards to achieve the goal of reward

estimation, which is described in Equation 5.24.

QGθDθ (a = yt, s = Y1:t−1) = 1
N

∑N
n=1Dθ(Y

n
1:T ), Y n1:T ∈MCGθ (Y1:t;N), for t < T

Dθ(Y1:T ), for t = T

(5.8)

The Monte Carlo roll-out strategy can be better visualised in Fig. 5.8.

Once the reward value from the discriminator is obtained, it is ready to update the

generator. One can use the Policy Gradient theorem from [172] and write the gradient of

the objective function (reward signal) as in Equation 5.26.

5θ J(θ) =
T∑
t=1

EY1:t−1∼Gθ [
∑
yt∈Y

5Gθ(yt|Y1:t−1) ·QGθDθ (Y1:t−1, yt)] (5.9)

Since the expectation can be approximated by sampling, the parameters of the image

caption generator can be updated using Equation 5.27.

θ ← θ + αh 5θ J(θ) (5.10)

In practice, advanced gradient algorithms such as RMSprop [174] and Adam [141] are used
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Figure 5.2: Monte Carlo roll-out.

in training the caption generator.

Adversarial Training

The image caption generator and discriminator are adversarially trained in the GAN frame-

work [3]. In GAN [170], the discriminator can pass the gradient directly to the generator.

Due to the discreteness of sequence generation, RL is applied to estimate the gradient for

the generator in our model.

Specifically, the training strategy can be described in Algorithm 2. the image caption

generator is firstly pre-trained using MLE. In practice, this is equivalent to the cross-

entropy loss [175]. Hence, the pre-training step is set as the same with [167]. The trained

model is used to generate some captions which are set as fake samples, which, along with the

reference captions, are fed to the discriminator for training. Similarly, the discriminator

is also pre-trained for certain steps. The next step is the adversarial training step, in

which the image caption generator and discriminator have trained alternatively until the

convergence of the networks.
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Algorithm 1 Image Caption Generation by Adversarial Training and Reinforcement
Learning

Require: Image Caption Generator Gθ; Discriminator Dθ.
Pre-training Gθ using MLE by some epoches.
Generating negative samples using pre-trained Gθ to train Dθ.
Pre-training Dθ by 2500 iterations.
repeat
for update generator for 1 step do

Generate a sequence Y1:T = (y1, .., yT ).
for t = 1 to T do

Compute the intermediate reward Q(t) by Monte Carlo roll-out.
end for
Update the parameters θ using Policy Gradient.

end for
for update discriminator for 1 step do

Training discriminator Dθ using reference sequence (True) and generated sequence
(Fake) using current generator.

end for
until Convergence

5.2.3 Experimental Results

Experimental protocol

The experiments were conducted using the COCO dataset [121]. To be consistent with [167],

the COCO 2014 released version was used, which includes 123,000 images. The “Karpa-

thy” splits [165] are used. The standard evaluation protocol contains BLEU [176] and

METEOR [177].

At training time, the maximum length of the input sequence is set to 20. During the

testing phase, the maximum length of the generated symbols is set to 30.

Implementation Details

The raw images are resized to 224 × 224 pixels. Then the deep convolutional features

(from the layer “res5c”) are extracted using a pre-trained Residual-152 network [43] under

the Caffe platform [109] because of its high efficiency in extracting features. The features
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Table 5.1: Comparison of image captioning results on the COCO dataset with different
image encoders

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR

Soft attention with MLE (VGG-19) 65.7 44.7 30.5 21.1 21.6

Soft attention with GAN and RL (VGG-19) 66.7 45.4 31.0 21.4 21.5

Soft attention with MLE (Residual Net) 70.0 50.3 35.4 25.1 23.6

Soft attention with GAN and RL (Residual Net) 71.6 51.8 37.1 26.5 24.3

Table 5.2: Experimental validation of the improvement by using Monte Carlo roll-out
Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR

Soft attention with GAN and RL without Monte Carlo roll-out (VGG-19) 66.0 45.0 30.4 21.1 21.3

Soft attention with GAN and RL with Monte Carlo roll-out (VGG-19) 66.7 45.4 31.0 21.4 21.5

Soft attention with GAN and RL without Monte Carlo roll-out (Residual Net) 71.2 50.9 36.8 26.2 24.0

Soft attention with GAN and RL with Monte Carlo roll-out (Residual Net) 71.6 51.8 37.1 26.5 24.3

from the first fully connected layer of the VGG16 [42] network are also extracted, to make

an experimental comparison on different image encoders. The “show, attend and tell”

model are re-implemented on the Tensorflow platform [178]. The adversarial networks and

Monte Carlo roll-out are also implemented under the same platform.

The batch size is set as 64 and learning rate to 0.0001 for both the MLE pre-training

and Adversarial training. The number of Monte Carlo roll-outs is set as 20. During

sampling, the maximum log-likelihoods that the network outputs are used. Although

other techniques, like beam search, are proven to be better than maximum log-likelihoods,

what needs to be analysed is the improvement of the model itself instead of other greedy

techniques. Hence, the maximum log-likelihoods sampling are used in both the MLE

training and adversarial training.

Results

Quantitative Evaluation

• Following [167], the generated captions are evaluated using the metrics of BLEU (1-4)

and Meteor and performed certain ablation studies in different settings.
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Table 5.3: Comparison of image captioning results on the COCO dataset with previous
methods

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR

CMU/MS Research [179] - - - - 20.4

MS Research [180] - - - - 20.7

LRCN [133] 58.7 39.0 25.0 16.5 -

BRNN [165] 64.2 45.1 30.4 20.3 -

Google NIC 66.6 46.1 32.9 24.6 -

Log Bilinear [167] 70.8 48.9 34.4 24.3 20.0

LSTM with Soft attention [167] 70.7 49.2 34.4 24.3 23.9

LSTM with hard attention [167] 71.8 50.4 35.7 25.0 23.0

RL with G-GAN [181] - - 30.5 29.7 22.4

RL with Embedding Reward [182] 71.3 53.9 40.3 30.4 25.1

Soft attention with GAN and RL (VGG-19) 66.7 45.4 31.0 21.4 21.5

Soft attention with GAN and RL (Residual Net) 71.6 51.8 37.1 26.5 24.3

(a) (b)

Figure 5.3: Visualization of attention maps.

• In addition to using the Residual Net as an image encoder, the VGG-19 [42] is also

utilised as the image encoder to see the critical role of advanced image features in

the image captioning task. The results can be seen in Table 5.1. The advanced

image features from Residual Net bring a significant gain on the overall performance

of caption generation. Take the results using MLE for example, for the metric of

BLEU (1-4); the average raise is 4.7, which is a pronounced increase for the image

captioning task.
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(a) Caption generated
by MLE:
A pizza with tomatoes
and onions on it.
Caption generated by
our model:
A pizza with cheese
and vegetables on a
plate.

(b) Caption generated
by MLE:
A crowd of people s-
tanding in front of a
building.
Caption generated by
our model:
A crowd of people s-
tanding around a large
clock tower.

(c) Caption generated
by MLE:
A group of people s-
tanding on top of a s-
now covered slope.
Caption generated by
our model:
A group of people are
skiing on a snowy hill.

(d) Caption generated
by MLE:
A small child is play-
ing a video game.
Caption generated by
our model:
A small child sitting
on a couch holding a
stuffed animal.

Figure 5.4: Visualization of generated languages.

• Given the same image features, the proposed method using GAN and RL leads the

MLE method in most of the evaluation metrics, under the same image features and

the same generator model, which proves the effectiveness of the adversarial training

and policy gradient technique, which is shown in Table 5.1.

• To study the effectiveness of Monte Carlo roll-out, a model without a Monte Carlo

roll-out strategy, i.e., the reward can only be obtained after the full captions are

generated, is first tested. The results of this model are compared with the model using

the Monte Carlo roll-out strategy, which can be seen in Table 5.2. As the results

reveal, scores from all the evaluation metrics increase by adding an intermediate

reward using Monte Carlo roll-out.

• As described in Table 5.3, the proposed method outperforms many related approaches

including the attention models [167], which validates the improved effect brought

by adversarial training and RL. RL with G-GAN [181] applies conditional GAN

and policy gradient to generate image descriptions. Although their results on the



Chapter 5. Image Captioning based on Visual Attention Mechanism 124

evaluation metrics are not improved, they prove that the generated captions are more

diverse and natural. Embedding Reward [182] applies a policy network to generate

captions and a value network to evaluate the reward. Additionally, they also apply

an advanced inference method called lookahead inference and beam search during

testing. Competitive results are also achieved on this dataset.

Qualitative Evaluation

• The visualisation of the attention maps learnt can be seen in Fig. 5.3. In different

time steps, the model adaptively selects relevant parts for the generated word. In

the figure, a red region means these parts are selected while a blue region indicates

unimportant parts.

• Some examples of generated captions are also randomly selected for both the MLE

model and our model, which are described in Fig. 5.12. In the figure, the generated

captions from our model are more accurate and realistic since our discriminator can

measure the coherence between captions and image contents.

5.2.4 Conclusion

This research focused on the image captioning task, which is a fundamental problem in

artificial intelligence. To address the inherent exposure bias problem of MLE training in

sequence problems, an adversarial training method was applied. To estimate the gradients

of the network, the feedback from the discriminator was treated as the reward signal in

the RL framework. In RL, a long-term reward for each action is needed. In sequence

generation, however, the reward can only be obtained when the sequence is generated.

To tackle this issue, a Monte Carlo roll-out sampling method was applied to estimate the

intermediate reward for each time step. The whole network was trained using the proposed

three-step training strategy, which includes pre-training the regenerator, pre-training the

discriminator, and adversarial training. Experimental results prove the improved effects of
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the proposed method. Also, visualisation shows the generated captions from the proposed

model are more accurate than the ones from MLE training.

5.3 Image Captioning based on Attention Mechanism and

Reinforcement Learning

5.3.1 Introduction

Naturalistic description of an image is one of the primary goals of computer vision, which

has received much attention in the field of artificial intelligence recently. It is a high-level

task and much more complicated than some fundamental recognition tasks, e.g., image

classification [18] [42] [43] [183], image retrieval [184] [185] [186], object detection and

recognition [112] [22] [23] [187]. This requires the system to comprehensively understand

the content of an image and bridge the gap between the image and the natural language.

Automatically generating image descriptions is useful in multimedia retrieval, and image

understanding.

Some pioneering research has been carried out in generating image descriptions [188] [180].

However, as pointed out in [165], most of these models often rely on hard-coded visual con-

cepts and sentence templates, which limits their generalisation capability. Recently, with

the rapid development of deep learning in image recognition and natural language process-

ing, the current trend of image captioning approaches [189] is to follow the encoder-decoder

framework, which shares the similarity with that in neural machine translation [47]. Most

of these approaches represented the image as a single feature vector from the top layer of

pre-trained CNNs and cascaded RNNs to generate languages.

The tasks like image captioning and machine translation can be considered as a struc-

tured output problem where the task is to map the input to an output that possesses

its structure, as stated in [190]. An inherent challenge in these tasks is the structure of

the output is closely related to the structure of the input. Hence, a critical problem in
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these tasks is alignment [190]. Take neural machine translation, for example, [8] trained a

neural model to align the output to the input for machine translation softly. Subsequent

research [4] applied the visual attention model to address this problem in image caption-

ing, with much improvement. The visual attention mechanism is to dynamically select the

relevant receptive fields in the CNN features to facilitate the image description generation,

which, in other words, is to align the output words to spatial regions of the source image.

In this chapter, the visual attention mechanism is also employed for image captioning.

Nevertheless, natural language often consists of very meticulous descriptions, which

correspond to the fine-grained objects of an image. As pointed out by [191], there are

certain limitations of the most existing neural model-based schemes due to the mere use

of the global feature representation in the image level. Some of the fine-grained objects

might not be recognised by only relying on the global image features. In this chapter, a

scheme to use a pre-trained image detection model, i.e., Faster RCNN [23], to retrieve the

fine-grained image features from the top detected objects, is proposed. These fine-grained

object features can provide complementary information for the global image representation,

which will be proved in the experiments. Regarding the model structure, the object features

are also processed by a visual attention mechanism, and are added to the original model

to form a hierarchical feature representation and hence it can generate more accurate

descriptions.

In addition to the improvement of the image feature representation, the current lan-

guage model, which is widely used in neural machine translation and image captioning,

is also considered to be improved. An issue with most of the previous language model is

the training framework, namely, the RNN using MLE to generate image descriptions. As

pointed out in [169], the MLE approaches suffer from the so-called exposure bias in the

inference stage: the model generates a sequence iteratively and predicts the next token

based on the previously predicted ones that may never be observed in the training data.

In image description generation, the MLE also suffers from a problem that the generated
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languages do not correlate well with a human assessment of quality [181].

Instead of only relying on the MLE, an alternative scheme is the GANs [3]. GAN was

first proposed to generate realistic images. The GAN learns generative models without

explicitly defining a loss function from the target distribution. Instead, GAN introduces

a discriminator network which tries to differentiate real samples from generated samples.

The whole network is trained using an adversarial training strategy. One can subsequently

build a discriminator to judge how realistic are the samples generated by the description

generator. The role of the caption generator, in this model, is similar to that of the

generator in the conditional GAN [170], which is conditioned on the image features.

However, language generation is a discrete process. Directly providing the discrete

samples as inputs to the discriminator does not allow the gradients to be backpropagated

through them. The RL [171] framework provides a solution to estimate the gradients of

the discontinuous units. The RL framework, when dealing with sequence generation, has

the problem of lacking the intermediate reward, as discussed in [50]. The reward value

can only be obtained when the whole sequence is generated. This is not suitable as what

is wanted is the long-term reward of each intermediately generated token, so the whole

sequence better optimised.

In the proposed scheme, the discriminator takes into account not only the differences

between the generated captions and the reference captions but also the consistencies be-

tween captions and image features. Through the evaluation of the discriminator, the

networks can better compensate for some unrealistic captions which might be generated

under the MLE training. However, to deal with the discreteness of language, the image

captioning generator is considered as an agent of RL. The feedback from the discriminator

are considered as the rewards for the generator. To update the parameters of the image

description generator in this framework, the generator is considered as a stochastic param-

eterised policy. The policy network is trained using Policy Gradient [172], which naturally

solve the differential difficulties in conventional GAN. Also, to solve the problem of lacking
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intermediate rewards, a similar idea with the famous “AlphaGo” program [173] is used.

A Monte Carlo roll-out strategy is applied to sample the expected long-term reward for

an intermediate move. If the token generation is considered as the action to be taken

in RL, a similar Monte Carlo roll-out strategy can be applied to obtain the intermediate

rewards. [50] has successfully applied the Monte Carlo roll-out in sequence generation. In

this chapter, a similar sampling method is used to deal with intermediate rewards during

the process of caption generation.

To summarise, our contribution in this chapter is threefold:

• A hierarchical attention mechanism is proposed to reason on the global features and

the local object features for image captioning.

• The policy gradient algorithm combined with the GAN is proposed for the training

and optimisation of the language model, with improvements over the MLE training

scheme.

• Through extensive experiments, the proposed algorithm is validated, and comparable

results with current state-of-the-art methods are achieved on the COCO dataset.

5.3.2 Related Work

Deep Model-based Image Captioning

Promoted by the recent success of deep learning network in image recognition tasks and

machine translation, the research on generating image description or image captioning

has made remarkable progress [192] [165] [180] [193] [189] [133]. As mentioned above,

most of the previously proposed approaches consider the image description generation as a

translation process, mainly by borrowing the idea of the encoder-decoder framework [194]

from neural machine translation [47]. Generally, this paradigm considers a deep CNN

model as the image encoder, which maps the image into a static feature representation,

and an RNN as a decoder to decode this static representation to an image description.
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The whole framework is trained using supervised learning under MLE. The generated

description should be grammatically correct and match the content of the image.

Specifically, Karpathy et al. [165] proposed an alignment model through a multi-modal

embedding layer. This model can align parts of description with the corresponding regions

of the image, which attracts significant attention. Jia et al. [193] proposed a variation

of LSTM, called gLSTM, for the image captioning task to mainly tackle the problem of

losing track of the image content. This model includes the semantic information along

with the whole image as inputs to generate captions. Donahue et al. [133] applied both of

the convolutional layers and recurrent layers to form a Long-term Recurrent Convolutional

Network (LRCN) for visual recognition and description.

Bahdanau et al. [8] pointed out that a potential problem with this approach is that

the model should compress all the necessary information of a source sentence into a fixed-

length representation. This may make it difficult for the neural network to cope with

long sentences. The static feature representation in the encoder-decoder framework, for

both of machine translation and image captioning, cannot automatically retrieve relevant

information from the source and thus at last influence the final performance. In neural

machine translation, Bahdanau et al. [8] proposed a kind of soft attention mechanism

for machine translation, which enables the decoder to focus on the relevant parts of the

source sentence automatically. In computer vision, the attention mechanism has long been

the focus of much research [8] [63] [64] since human perception does not tend to process a

whole scene in its entirety at once but applies some mechanisms to focus on the information

needed selectively. A comprehensive study for hard attention bound with reinforcement

learning and soft attention for the task of image captioning was published by Xu et al. [4].

Yao et al. [195] tackled the video captioning task through capturing global temporal

structures among video frames with a temporal attention mechanism, which makes the

model dynamically focus on the keyframes that are more relevant with the predicted word.

Attention Models (ATT) developed by You et al. [71] first extracted semantic concept
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proposals and fused them with RNNs into hidden states and outputs. This method used

K-NN, multi-label ranking to extract semantic concepts or attributes and fused these con-

cepts into one vector using an attention mechanism. Similarly, Yao et al. [196] embedded

attributes with image features into an RNN with various methods to boost the image cap-

tioning performance. Recently, Chen et al. [72] proposed to combine the spatial attention

and the channel-wise attention mechanism for image captioning, with improved results.

Alternatively, Li et al. [191] proposed a global-local attention mechanism to include local

features extracted from the top detected objects from a pre-trained object detector. In-

spired by [191], the local features from top detected objects are also included. However,

a hierarchical model is built in this research while they treated local and global features

equivalently.

Policy Gradient Optimization for Image Captioning

Another approach to boost the performance of language tasks is to compensate for the

so-called exposure bias problem in RNN-based MLE learning. As pointed out in [197],

RNNs are trained by MLE, which essentially minimised the KL-divergence between the

distribution of target sequences and the distribution defined by the model. This KL-

divergence objective tends to favour a model that overestimates its smoothness, which can

lead to unrealistic samples [198].

In order to tackle the problems and generate more realistic image descriptions, some re-

searches directly use evaluation metrics such as BLEU [176], METEOR [199] and ROUGE [200]

as the reward signal and build the model under the RL framework. For instance, Ranzato et

al. [201] are the first research using the policy gradient algorithm in an RNN-based sequence

model, in which a REINFORCE-based approach was used to calculate the sentence-level

reward and a Monte-Carlo technique was employed for training. Liu et al. [202] studied

several linear combinations of the evaluation metrics and proposed to use a linear combi-

nation of SPICE [203] and CIDEr [204] as the reward signal and apply a policy gradient
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algorithm to optimise the model, with improved results. This research used a Monte-Carlo

roll-out strategy to obtain the intermediate reward during the process of description gen-

eration. More recently, Bahdanau et al. [205], instead of sentence-level reward in training,

applied the token-level reward in temporal difference training for sequence generation.

As discussed previously, the GAN [3] estimates a difference measure using a binary

classifier, called a discriminator, to discriminate between the target samples and generated

samples. GANs rely on back-propagating these difference estimates through the generated

samples to train the generator to minimise these differences. Hence, the whole network

in GAN is trained in an adversarial way. The GAN was originally proposed to generate

naturalist images [3] [170] [206] [55]. Directly applying a GAN for the language problem

is impossible since sequences are composed of discrete elements in many application areas

such as machine translation and image captioning.

A possible solution to tackle the discreteness problem of language is to use the Gumbel-

Softmax approximation [146] [207]. For instance, Shetty et al. [208] use a GAN to generate

more realistic and accurate image descriptions with the aid of Gumbel-Softmax to deal

with the discontinuousness issue in language processing. Another more general solution is

to borrow an idea from the RL framework, in which the feedback from the discriminator

is considered as the reward for the language generator. Dai et al. [181] built a model

based on conditional GAN to generate different and naturalistic image descriptions and

paragraphs, which utilises a policy gradient for optimisation. Yu et al. [50] proposed

a model called SeqGAN, which unified the GAN framework and RL learning problem,

this has recently received much attention [53] [209]. They propose a three steps training

strategy, which includes the pre-training the generator, pre-training the discriminator and

the final adversarial training. In this chapter, inspired by the SeqGAN, a discriminator to

applied judge the fitness of the generated image descriptions concerning the image content

and apply the policy gradient optimisation technique [172] to train the model. Unlike the

original SeqGAN, our discriminator not only cares about the differences between the target
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Figure 5.5: The hierarchical attention model structure.

language and model-generated language but also considers the coherence of the language

with the image content.

5.3.3 Approach

In this section, the proposed method is described based on two parts: the hierarchical

attention mechanism and the policy gradient optimisation algorithm.

Hierarchical Attention Mechanism

The hierarchical attention mechanism consists of two parts: a spatial attention mecha-

nism which corresponds to global CNN features and a local attention mechanism which

corresponds to object features.

The spatial attention mechanism is based on the model in [4]. Specifically, the model

comprises an encoder and a decoder. A convolutional neural network pre-trained on the

ImageNet dataset [69] is used to extract a set of convolutional features. These features,

denoted as a = {a1, ..., aL}, correspond to certain portions of the 2-D image.

The Long Short-term Memory (LSTM) network, initially proposed by Hochreiter and

Schmidhuber in [45], is applied as the language decoder because of its superior performance

in natural language processing.
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it = σ(Wxi ∗ zt +Whi ∗ ht−1 + bi)

ft = σ(Wxf ∗ zt +Whf ∗ ht−1 + bf )

ot = σ(Wxo ∗ zt +Who ∗ ht−1 + bo)

gt = σ(Wxc ∗ zt +Whc ∗ ht−1 + bc)

ct = ft · ct−1 + it · gt

ht = ot · φ(ct)

(5.11)

In Equation 5.11, it, ft, ot, ct and ht are the input gate, forget gate, output gate, cell

memory and hidden state of an LSTM network, respectively. gt and ht are the input and

the output of the LSTM model. zt is the context vector, which can be processed by the soft

attention mechanism and can capture visual information associated with a certain input

location. The soft attention mechanism has to automatically allocate adaptive weights for

the image locations to facilitate the task at hand.

eti = fatt(ai, ht−1) (5.12)

where ai ∈ {a1, ..., aL}. Equation 5.12 actually maps the image features from each location,

along with information from the hidden state, into an adaptive weight, which indicates the

importance of each image location for the recognition.

αti =
exp(eti)∑L
k=1 exp(etk)

(5.13)

Then, Equation 5.13 normalises the adaptive weights into a probability value in the

range of 0 and 1 using the Softmax function. Once these weights (summed to 1) are

computed, these weights vector αt are element-wisely multiplied with image feature vector

a and sum them to the context vector zt, which can be expressed as in Equation 5.14. This

can be seen as the expectation of weighted features maps.



Chapter 5. Image Captioning based on Visual Attention Mechanism 134

zt =

L∑
i=1

αt,iai (5.14)

Then the context vector zt is forwarded to the LSTM network to generate captions,

as described in Equation 5.11. This soft attention mechanism can adaptively select the

relevant visual parts of the given image features and thus facilitate the recognition.

The local attention mechanism is formulated using object features and another LSTM

model. A pre-trained object detector is used to retrieve the top N detected object features,

which are denoted as d = {d1, ..., dN}. Another LSTM model with soft attention is applied

to allocate adaptive weights to each of these features.

edti = fdatt(di, h
d
t−1) (5.15)

where hd indicates the hidden state of the LSTM model for the local attention mechanism.

αdti =
exp(edti)∑L
k=1 exp(e

d
tk)

(5.16)

Similarly, Equation 5.16 normalizes the adaptive weights for local features to a probability

value with the Softmax function.

zdt = Concat(

N∑
i=1

αdt,idi, ht−1) (5.17)

Equation 5.17 demonstrates that the context vector for local attention model catching

information from both the local features and the global attention mechanism, where Concat

indicates the concatenation operation of the features. This context vector is then forwarded

to a second LSTM model as described by Equation 5.18.
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idt = σ(W d
xi ∗ zdt +W d

hi ∗ hdt−1 + bdi )

fdt = σ(W d
xf ∗ zdt +W d

hf ∗ hdt−1 + bdf )

odt = σ(W d
xo ∗ zdt +W d

ho ∗ hdt−1 + bdo)

gdt = σ(W d
xc ∗ zdt +W d

hc ∗ hdt−1 + bdc)

cdt = fdt · cdt−1 + idt · gdt

hdt = odt · φ(cdt )

(5.18)

The two LSTM models, denoted as LSTMG for the global features and LSTML for

the local features are jointly trained to map the hierarchical feature representation with

language. LSTML is at a higher level, which can be used to decode the hidden states

for the final outputs. However, the gradient vanishing problem cannot be avoided if only

the hidden states from LSTML is used to decode information. Inspired by [43] in which

a shortcut in network connections is applied to solve the gradient vanishing problem, the

hidden states from LSTMG and LSTML are concatenated to be decoded and mapped to

language vectors, which can be seen in Equation 5.19.

houtputt = Concat(ht, h
d
t )

logits = Wph
output
t

P (st|I, s0, s1, s2, ..., st−1) = Softmax(logits)

(5.19)

In MLE training, if the length of a sentence is T , the loss function can be formulated

as in Equation 5.20, which is the sum of the log likelihood of each word.

Loss =
T∑
i=0

log(p(st|I, s0, s1, s2, ..., si)) (5.20)
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Figure 5.6: Policy Gradient optimization with a discriminator to evaluate the similarity
between the generated sentence and the reference sentence.

Figure 5.7: Policy Gradient optimization with a discriminator to evaluate the coherence
between the generated sentence and the image contents.

Policy Gradient Optimization

In addition to only using the MLE to train the image caption generator, to alleviate

the previously discussed exposure bias problem in RNN-based MLE training as discussed

previously, a policy gradient optimisation algorithm is also applied in the RL framework

to increase the quality of the generated descriptions.

Both of the generated descriptions and the reference descriptions are inputs of the dis-

criminator. The level of coherence of the descriptions and image content is calculated by

the dot product, which is forwarded to the discriminator, as described in Fig. 5.7. This op-

eration is to consider the coherence between certain captions (sequences) and corresponding

image features, which can make the generated captions more realistic and naturalistic. The
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reference sequences are labelled as true while the generated sequences are labeled as false

during the training of the discriminator. The model is also an LSTM network with Softmax

Cross Entropy loss. Hence, the discriminator outputs the probabilities of a sample being

true. These probabilities, are then considered as the reward signal in the RL framework,

to be utilised in the Policy Gradient algorithm for updating the parameters of the image

caption generator.

Following [172], the objective of the policy network Gθ(yt|y1:t−1) (the image caption

generator), is to generate a sequence from the start state S0 to maximize its expected

long-term reward as described by Equation 5.21:

J(θ) = E[RT |s0, θ] =
∑
y1∈Y

Gθ(y1|s0) ·QGθDθ(s0, y1) (5.21)

where RT is the reward for a complete sequence. QGθDθ(s, y) is the action-value function of

a language sequence, which is defined as the expected accumulative reward starting from

state s, taking a certain action, and then following policy Gθ.

The action-value function is estimated using the REINFORCE algorithm [70] and con-

siders the probability of being real generated by the discriminator as a reward, which can

be defined as in Equation 5.22.

QGθDθ(a = yT , s = Y1:T−1) = Dθ(Y1:T ) (5.22)

As can be seen in Equation 5.22, the discriminator only provides a reward for a complete

sequence. One should not only care about the reward for a complete tokens but also the

long-term reward for the future time-steps since the long-term reward is what is actually

needed. Similar to the game of Go [173] in which the agent sometimes give up an immediate

interest but cares about the final victory, a similar Monte Carlo roll-out strategy is applied

for an intermediate state, i.e., an unfinished sequence. An N-time Monte Carlo search is
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represented in Equation 5.23.

Y 1
t+1:T , ..., Y

n
t+1:T , ..., Y

N
t+1:T = MCGθ(Y1:t;N)

MC =∼Multinomial(logits)
(5.23)

Where Y1:t is the generated sequence tokens and Y n
t+1:T is the Monte Carlo sampling

based on a roll-out policy, which, in our case, is set as the same as the image caption

generator for convenience. In reality, any policy can be applied to perform the roll-out op-

eration. logits is the output of the LSTM decoder. MC is defined as a sampling procedure

from a Multinomial distribution.

If there is no intermediate reward, the Monte Carlo roll-out strategy can sample the

future possible tokens N times and average these rewards to achieve the goal of reward

estimation, which is described in Equation 5.24.

QGθDθ(a = yt, s = Y1:t−1) =

1

N

N∑
n=1

Dθ(Y
n
1:T ), Y n

1:T ∈MCGθ(Y1:t;N), for t < T

Dθ(Y1:T ), for t = T

(5.24)

The Monte Carlo roll-out strategy can be better visualised in Fig. 5.8.

Once the reward value from the discriminator is obtained, it is ready to update the

generator. The goal is to maximise the average reward starting from the initial state as

defined in Equation 5.25.

J(θ) =
1

N

N∑
i=1

Vθ(s0|Xi, Yi) (5.25)

where N is the number of samples used for training. The Policy Gradient theorem

from [172] can be used and the gradient of the objective function (reward signal) can
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Figure 5.8: Monte Carlo roll-out.

be defined in Equation 5.26.

5θ J(θ) = EY1:t−1∼Gθ [
∑
yt∈Y
5Gθ(yt|Y1:t−1) ·QGθDθ(Y1:t−1, yt)] (5.26)

Since the expectation can be approximated by sampling, the parameters of the image

caption generator can be updated using Equation 5.27.

θ ← θ + αh 5θ J(θ) (5.27)

In practice, advanced gradient algorithms such as RMSprop [174] and Adam [141] can be

used in training the caption generator.

The image caption generator and discriminator are adversarially trained in the frame-

work of GAN [3]. In GAN [170], the discriminator can pass the gradient directly to the

generator. Due to the discreteness of the sequence generation, RL is applied to estimate

the gradient of the generator in our model.

Specifically, the training strategy is described in Algorithm 2. the image caption gener-
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ator is initially pre-trained using MLE. In practice, this is equivalent to the Cross-Entropy

loss [175]. Hence, the pre-training step can be set the same as in [4]. The trained model

is used to generate some captions which are set as fake samples, which, along with the

reference captions, are fed into the discriminator for training. Similarly, the discriminator

is also pre-trained for specific steps. The next steps are the adversarial training steps,

in which the image caption generator and discriminator have trained alternatively until

convergence of the networks.

In addition to the sentence comparison scheme introduced previously and shown in

Fig. 5.6, a scheme is also employed to evaluate the coherence between the generated cap-

tions and the image content. Specifically, both of the global features and local object

features are processed by average pooling in order to obtain fixed-size feature represen-

tation, denoted as Vi. The captions, similar to the sentence comparison scheme, are also

encoded into a fixed-size vector, using an LSTM model, denoted as Vw. The two vectors

Vi and Vw are then dot produced and forwarded to logistic function to obtain the reward

for RL training, which can be seen in Fig. 5.7.

5.3.4 Experimental Validation

Dataset Introduction

The experiments were conducted using the COCO dataset [121]. To be consistent with

the previous researches, the COCO 2014 released version is used, which includes 123,000

images. The dataset contains 82,783 images in the training set, 40,504 images in the

validation set and 40,775 images in the test set. As the ground-truth for the MSCOCO

test set is not available, the validation set is further split into a validation subset for model

selection and a test subset for social experiments. This is the “Karpathy” split [165].

It utilises the whole 82,783 training set images for training and selects 5,000 images for

validation and 5,000 images for testing from the official validation set. The standard

evaluation protocol contains BLEU [176], METEOR [199], CIDEr [204] and ROUGE-
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Algorithm 2 Image Caption Generation by Adversarial Training and Reinforcement
Learning

Require: Image Caption Generator Gθ; Discriminator Dθ.
Pre-training Gθ using MLE by some epoches.
Generating negative samples using pre-trained Gθ to train Dθ.
Pre-training Dθ by some steps.
repeat
for update-generator for 1 step do

Generate a sequence Y1:T = (y1, .., yT ).
for t = 1 to T do

Compute the intermediate reward Q(t) by Monte Carlo roll-out.
end for
Update the parameters θ using Policy Gradient.

end for
for update-discriminator for 1 step or 5 steps do

Training discriminator Dθ using reference sequence (True) and generated sequence
(Fake) using current generator.

end for
until Convergence

L [200].

BLEU is the most popular metric for the performance evaluation in machine translation.

The metric is only based on the n-gram statistics. The BLEU-1, BLEU-2, BLEU-3 and

BLEU-4 measure the performance of the 1, 2, 3, 4-gram, respectively. METEOR is based

on the harmonic mean of unigram precision and recall and seeks correlation at the corpus

level. CIDEr can be used to evaluate the generated sentences with human consensus.

ROUGE-L measures the common maximum-length subsequence for the target sentence

and the generated sentence.

Implementation Details

For all the images in the COCO dataset, the global convolutional features is obtained

(from the layer “res5c”) using a pre-trained Residual-152 network [43] on the platform of

Caffe [109], with a dimensionality of 49×2048. The local object features are also extracted
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using a Faster RCNN [23] object detection network pre-trained on the COCO dataset.

Specifically, the top K detected object features are obtained from the layer of “FC6” layer

of the VGG16 model [42] used in Faster RCNN, with the dimensionality of K × 4096.

The hierarchical attention mechanism and policy gradient optimisation are built on the

TensorFlow platform [178].

Training the Faster RCNN on the MSCOCO dataset In order to obtain better

local object features, the Faster RCNN model is trained on COCO object detection dataset.

The model is first pre-trained on the ILSVRC-2012 object detection dataset [69]. The

COCO object detection dataset shares the same images with the image caption task.

Consequently, the same splits with the image caption dataset are kept for training. The

training process on the COCO dataset is almost the same as the pre-training on ImageNet.

The initial learning rate is set to 0.001. The momentum of the stochastic gradient descent

is set to 0.9, and the weight decay is set to 0.0005.

Language Pre-processing To pre-process the language, the special symbols such as ‘.’,

‘,’, ‘(’, ‘)’ and ‘-’ are replaced with blank spaces while ‘&’ is replaced with ‘and’. Since

the maximum length of the descriptions is set as 20 words, the caption references from

the original dataset which are longer than 20 are deleted. For the vocabulary establish-

ment, following the open-source code of [165], words that occur more than 5 times in the

vocabulary are included. The symbol ‘NULL’ is mapped to 0, ‘START’ to 1 and ‘END’ to

2.

Training Details of the Model The network was first pre-trained using MLE for ten

epochs. During training, the size of the hidden states of the two LSTM models is set as 512.

The same size of hidden states of [191] is chosen as they achieved satisfactory performance

with this size of the hidden states. The batch size is set as 32 and the learning rate as 0.001,

and the Adam algorithm [141] is used to train the network. Subsequently, the discriminator
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is trained for 2500 steps, followed by an adversarial training scheme, in which the caption

generator and discriminator have trained alternatively until convergence. During the pre-

training steps of the discriminator and the policy gradient-based adversarial training as

described previously, the Adam algorithm is also applied. The learning rate for these steps

are set as 0.0001. Following the open-source code of [165], at training time, the maximum

length of the input sequence is set to 20 words. During the testing time, alternatively,

the maximum length of a generated symbols is set as 30 words. During the training of

the proposed model, a trainable word embedding layer is added from Google’s TensorFlow

platform [178]. All the experiments are conducted on a server embedded with NVIDIA

TITAN X GPU and installed with the Ubuntu 14.04 operating system.

Results

Quantitative Evaluation In this section, a comprehensive quantitative evaluation is

conducted using different experimental settings on the COCO dataset.

Comparison between the global attention, the local attention and the hier-

archical attention model The results are first obtained using only the global attention

model, which is similar to the soft attention model in [4]. Since advanced CNN fea-

tures from the Residual-152 model are used, the results of BLEU, METEOR, CIDEr and

ROUGE-L are all satisfactory and are listed in Table 5.4. Then only the local attention

model using the detected object features from a Faster RCNN detector is tested, with re-

sults which are much lower than those for the global attention model as listed in Table 5.4.

One of the possible reasons is that the Faster RCNN only uses the VGG16 model, which

is not as powerful as the Residual-152 network. Another reason is that the local object

features, despite their capability to provide complementary information to the global atten-

tion model, can sometimes miss many essential features. Finally, our proposed hierarchical

attention model is tested under MLE training, which utilises both the global and local
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attention for image captioning. The results improve the baseline significantly, which can

be seen in Table 5.4. Specifically, all of the seven evaluation metrics are improved using

our hierarchical attention model

The determination of the number of tops detected objects To determine the

best number k for the top detected objects in the local attention model, an ablation study

is performed. The 10, 20 and 30 top detected object features are extracted and tested

using the hierarchical attention model, respectively. The results can be seen in Table 5.5.

With the increase of the number k from 10 to 30, the performance increases accordingly.

Although the maximum length of our generated sentences is set as 30, not every word

represents an object. Also, intuitively, there are a maximum of 30 objects within an

image. Hence, in the following experiments, the 30 top detected object features are used

for the local attention model.

The performance of Policy Gradient with reward only from language com-

parison Next, the reinforcement learning steps can be performed. The discriminator

which only compares the similarity between the reference sentence and the generated sen-

tence is tested firstly. Specifically, the model defined in Fig. 5.6 is used. The discriminator

is first trained in 2500 steps, which is found to be sufficient for the discriminator to con-

verge. The loss curve of the image caption generator is shown in Fig. 5.9. After 2500

steps pre-training the discriminator, the loss of the image caption generator starts to de-

cline, which validates that the policy gradient starts to work. Then the generator and

discriminator are further trained adversarially for another 1 epoch and report the results

in Table 5.6. Two different settings are tested in the adversarial training steps. The first

setting is to train 1 step for the discriminator, followed by another step for the generator.

Another setting is to train the discriminator for 5 steps, followed by 1 step training for

the generator. The final results of the two setting are similar, which all slightly improve

the MLE training baseline. The reason for the improvement is because the reinforcement
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Table 5.4: Comparison of image captioning using different attention mechanism results on
the COCO dataset

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr ROUGE-L

Soft Attention [4] 70.7 49.2 34.4 24.3 23.90 - -

Global Attention 70.121 50.304 35.434 25.111 23.658 84.701 54.308
Local Attention 64.059 42.359 28.089 19.033 20.203 56.898 49.861

Hierarchical Attention 72.611 52.769 37.802 27.243 24.731 88.140 56.048

learning solves the exposure bias problem during MLE training. However, this scheme

lacks the measurement of the similarity between the generated descriptions and the image

contents, which prevents the image caption generator from generating more naturalistic

and diverse descriptions.

The performance of Policy Gradient with reward from the measurement

of coherence between language and image content To train the image caption

generator to generate more naturalistic and diverse descriptions, the model defined in

Fig. 5.6 is tested. First the global features are extracted and average pooling is performed,

resulting with a feature dimension of 2048. The dot product is used to measure these image

features and language embedding features by a discriminator, which can be considered as

the reward within the reinforcement learning framework. The experimental results from

this model can be seen in Table 5.7. However, the results from all of the seven metrics

are even lower than the MLE training baseline. One possible reason, is the measurement

of discriminator which only uses the global features, which is not consistent with the

hierarchical attention model in the generator side. As can be seen from the Table 5.7, the

results from this model are similar to that of global attention model, since the reward signal

from the discriminator tends to force the generator to produce sentences that only matches

the global features. A model exactly like in the one defined in Fig. 5.7 is built. This model

includes both of the global image features and the local object features, and thus guarantees

that the discriminator and the generator are utilizing the same information source. The

final results can be seen in Table 5.7, which outperform all of other experimental settings.
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Figure 5.9: The loss curve of the image caption generator during reinforcement learning
steps.
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Table 5.5: Comparison of image captioning results on the COCO dataset with different
numbers of objects

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr ROUGE-L

Hierarchical Attention with 10 Objects for Local Attention 70.601 50.423 36.643 25.389 24.633 87.316 55.241

Hierarchical Attention with 20 Objects for Local Attention 72.159 52.498 37.552 26.918 24.725 88.639 55.825

Hierarchical Attention with 30 Objects for Local Attention 72.611 52.769 37.802 27.243 24.731 88.140 56.048

Table 5.6: Comparison of image captioning results on the COCO dataset with different
settings for policy gradient (PG) optimization

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr ROUGE-L

MLE training only 72.611 52.769 37.802 27.243 24.731 88.140 56.048

PG with 2500 steps for pre-training D followed by 1 D and 1 G step 72.450 52.845 38.141 27.551 24.543 87.416 55.876

PG with 2500 steps for pre-training D followed by 5 D and 1 G step 72.104 52.739 38.122 27.602 24.928 89.072 56.063

Table 5.7: Comparison of image captioning results on the COCO dataset for policy gradient
(PG) optimization with discriminator for evaluation of the coherence between language and
image content.

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr ROUGE-L

MLE training only 72.611 52.769 37.802 27.243 24.731 88.140 56.048

Global Attention 70.121 50.304 35.434 25.111 23.658 84.701 54.308

PG with similarity of global features (1 D and 1 G step) 72.250 52.290 37.099 26.331 23.815 84.516 55.238

PG with similarity of global features (5 D and 1 G step) 72.234 52.120 36.887 26.065 23.957 84.224 55.244

PG with similarity of global-local features (1 D and 1 G step) 73.036 53.688 39.069 28.551 25.324 92.449 56.539

To prove the effectiveness of the proposed method, the final results on the “Karpathy”

test split are compared with previously published results, which is shown in Table 5.8.

Most of the published results on the “Karpathy” split are shown, which are grouped into

three categories. The first category corresponds to various methods without external in-

formation and reinforcement learning. The best of them (SCA-CNN-ResNet) is the spatial

and channel-wise attention model [72] in which both the spatial and channel-wise atten-

tion mechanisms are utilized for image captioning. The methods in the second group use

extra information during the training of the model. For instance, Semantic Attention [71]

utilizes rich extra data from social media to train the visual attribute predictor. Deep

Compositional Captioning (DCC) [211] generates extra data to prove its unique transfer
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Table 5.8: Comparison of image captioning results on the COCO dataset with previous
methods, where 1 indicates external information are used during the training process and
2 means that reinforcement learning is applied to optimize the model.

Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR CIDEr ROUGE-L

Google NIC [189] 66.6 46.1 32.9 24.6 - - -

m-RNN [192] 67 49 35 25 - - -

BRNN [165] 64.2 45.1 30.4 20.3 - - -

MSR/CMU [210] - - - 19.0 20.4 - -

Spatial Attention [4] 71.8 50.4 35.7 25.0 23.0 - -

gLSTM [193] 67.0 49.1 35.8 26.4 22.7 81.3 -

GLA [191] 56.8 37.2 23.2 14.6 16.6 36.2 41.9

MIXER [201] - - - 29.0 - - -

SCA-CNN-ResNet [72] 71.9 54.8 41.1 31.1 25.0 - -

Semantic Attention1 [71] 70.9 53.7 40.2 30.4 24.3 - -

DCC1 [211] 64.4 - - - 21.0 - -

RL with G-GAN2 [181] - - 30.5 29.7 22.4 79.5 47.5

RL with Embedding Reward2 [182] 71.3 53.9 40.3 30.4 25.1 93.7 52.5

Ours2 73.036 53.688 39.069 28.551 25.324 92.449 56.539

capability. The third group corresponds to the reinforcement learning technique. RL with

G-GAN [181] applies conditional GAN and policy gradient to generate image descriptions.

Although their results on the evaluation metrics are not improved, they prove that the

generated captions are more diverse and naturalistic. Embedding Reward [182] applies a

policy network to generate captions and a value network to evaluate the reward. Addi-

tionally, they also apply advanced inference method called lookahead inference and beam

search during testing. They achieve the current state-of-the-art results on the “Karpathy”

split. Although neither external knowledge nor advanced inference technique (including

beam search) are used, similar results are achieved to the current state-of-the-art meth-

ods (Embedding Reward [182] and SCA-CNN-ResNet [72]), with state-of-the-art results

on three important metrics: BLEU-1, METEOR and ROUGE-L and lead other methods

significantly. Note that the Embedding Reward method utilized a ranking loss in the dis-
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Figure 5.10: Visualization of the global attention maps and generated captions.

criminator to measure how good the generative sentence is, which is a major contribution

in the paper [182]. Instead, in our model, we use the simple classification model to mea-

sure the coherence and consistency between the generated sentence and the image content,

achieving competitive results.

Qualitative Evaluation In addition to the quantitative evaluation using the standard

metrics, a qualitative evaluation of the proposed model is performed by visualization.

Firstly, some global attention maps corresponding to each generated words as shown in

Fig. 5.10. It is obvious in the figure that the attentive regions normally correspond with

the semantic meaning of the generated word in each time step. Then some examples are

chosen to visualize the local attention weights on the detected objects, which are shown

in Fig. 5.11. Only the top 10 detected objects are retrieved because of the limited space,

also, the corresponding attentive weights obtained from the local attention mechanism are

plotted in the figure. The detector can detect some fine-grained objects, which provide

complementary information for the global attention mechanism. At last, some of the gener-

ated sentences using different methods are shown. Specifically, the ground-truth sentences,
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Figure 5.11: Visualization of the attentive weights on the top 10 detected objects.
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the descriptions generated by the MLE training-based model and by the proposed model

are shown in Fig. 5.12. The text in red are the sentences generated by the proposed model,

which are more accurate and naturalist than the MLE-based model, which are shown in

blue. Especially, the proposed model show superior performance in finding the fine-grained

properties of the image since the RL model automatically measure the coherence of the

sentences and the image content. For instance, in Fig. 5.12 (c), the proposed model suc-

cessfully determines the gender of the person in the image whilst the MLE training-based

model gets it wrong.

5.4 Conclusion

This chapter targets the image captioning task, which is a fundamental problem in artificial

intelligence. Based on the recent successes of deep learning, especially the CNN feature

representation and the LSTM with attention model, the chapter proposes the use of a

hierarchical attention mechanism, considering not only the global image features but also

detected object features, with improved results. A significant improvement over the cur-

rent RNN-based MLE training has also been demonstrated. Specifically, a GAN framework

with RL optimisation for the image captioning task is proposed to generate more accurate

and high-quality captions. The discriminator is to evaluate the coherence and consistency

between the generated sentences and image content, thus providing the rewards for opti-

misation. The whole model follows a three-step training strategy. Experiments analysis

confirms the merits of the framework and key contributors to the improved performance.

Comparable results with current state-of-the-art methods are achieved using only greedy

inference, which proves the effectiveness of the training procedure. Further work will be

conducted towards a more robust discriminator and a simple training strategy as the cur-

rent three-step training method is too complex in practice.
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(a)
Ground-truth:
A group of people s-
tanding next to a bus
under an airplane .
MLE:
A large airplane is
parked on the runway.
Ours:
A large airplane is
parked on the runway
with people walking
around.

(b)
Ground-truth:
A yellow and red bus
parked in a parking lot
with other busses.
MLE:
A yellow bus is parked
on the side of the road.
Ours:
A yellow and red bus
parked in a parking
lot.

(c)
Ground-truth:
A little boy sitting in
front of a hot dog cov-
ered in ketchup.
MLE:
A little girl is eating a
hot dog.
Ours:
A young boy is eating
a hot dog.

(d)
Ground-truth:
The lone adult cow
walks on rocks near
the beach.
MLE:
A cow is walking down
the street in the sand.
Ours:
A cow is standing
on the beach next to
body of water.

(e)
Ground-truth:
A baseball player
swinging a baseball
bat during a game.
MLE:
A baseball player is
preparing to swing at
a pitch.
Ours:
A baseball player is
swinging a bat at a
ball.

(f)
Ground-truth:
Six cows standing and
laying on the beach.
MLE:
A group of cows s-
tanding on top of a s-
now covered field.
Ours:
A group of cows s-
tanding on top of a
sandy beach.

(g)
Ground-truth:
A fat cat in the living
room watching the tv.
MLE:
A cat is sitting in a liv-
ing room with a televi-
sion.
Ours:
A cat sitting on the
floor watching a tele-
vision.

(h)
Ground-truth:
A giraffe is walking
through the forest
with tall trees.
MLE:
A giraffe is standing in
the woods with trees
in the background.
Ours:
A giraffe standing
next to a tree in a
forest.

Figure 5.12: Visualization of the generated descriptions.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

Unlike the standard way of storing visual information in the computer system, human do

not focus its attention on the whole scene at its entirety in equal importance. Instead,

they sequentially select the essential objects for the task at hand. This visual processing

method of human is a very effective mechanism, which, on the one hand, can discriminate

the importance and the unimportance, on the other hand, can generally save the processing

resource of the human brain. These two aspects are also with vital importance in a machine

intelligence system where the computing resources are precious.

In this thesis, motivated to discover the internal mechanism of the attention in computer

vision systems, the visual attention mechanism in deep learning are explored and designed

for two applications: action recognition and image description generation. The topic of

visual attention has long been a hot research topic in computer vision field. However, until

recently, the visual attention mechanism in deep learning has attracted high attention and

shows promising results in many real-world applications.

In both of the two applications in this thesis, we propose novel models by using various

ways of implementing the visual attention, to empower the machine with a more advanced
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visual processing mechanism, with an improved effect on many standard evaluation metrics

in these applications. The proposed methods have good system performance regarding

accuracy and are also efficient enough for real-world applications.

A summary of the conclusions of this thesis is given below.

1. In Chapter 1, we first give an overview of the research topics, followed by the motiva-

tions and challenges in the research topics and then present the general architecture

of the thesis and summarise the main contributions of the thesis.

2. The recent development of machine learning and its applications are introduced, fol-

lowed by a description of relevant deep learning theories and the recent development

of the visual attention mechanism. In Chapter 2, We also presents a comprehensive

review of the recent literatures of the related deep learning models.

3. In Chapter 3, a multi-branch attention network is proposed to capture the contextual

information to improve the discriminating capability of the neural network for this

task. This neural network achieved the state-of-the-art results on several public

benchmark datasets on two experimental settings: the location of the target person

is available and not available. Especially, the model achieved the 1st place in the

PASCAL VOC 2012 action recognition dataset, and the state-of-the-art results on

HICO dataset. The proposed model can be further blended with more advanced

CNN architecture like Residual-Net [43] to boost the system performance.

4. In Chapter 4, two types of visual attention mechanism, including the soft attention

and hard attention, are proposed and combined with a novel hierarchical multi-scale

RNN model, for the task of action recognition from videos. The final performance

validates that the HM-RNN can capture the long-term dependency and the proposed

hard attention mechanism demonstrates a powerful modelling capacity in grasping

the critical information. This model can combine with arbitrary video features,
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e.g., the dense trajectories. Also, this model can be easily extended to two-stream

architecture by building another stream with optical flow features.

5. In Chapter 5, a novel hierarchical attention mechanism and a policy gradient opti-

misation technique blending with the adversarial training framework, are proposed

for the task of image captioning. The hierarchical attention mechanism can reason

on both the global image features and local object features while the policy gradient

optimisation can compensate the exposure bias problem in the RNN-based language

model. The novel architecture demonstrates good system performance, achieved the

state-of-the-art results on several important evaluation metrics in the COCO dataset.

6. This thesis comprehensively studies the recent development of visual attention mech-

anism in computer vision and deep learning. In two application cases: the action

recognition and image description generation, the visual attention mechanism has

shown powerful modelling capability. Also, several related research topics have been

discussed, including the gradient estimation of the discrete unit in neural networks,

the long-term dependency in RNNs, the policy gradient optimisation and the adver-

sarial training.

6.2 Future Work

1. On the improvement of the current visual attention mechanism by using

supervision. The visual attention mechanism in this thesis are all unsupervised

attention mechanism, which is learnt during the training process. Future works

include the implementation of a supervised or guided visual attention mechanism,

which is expected to have improving effect, since the critical information is more

accurate with supervision. One of the obstacles of supervised attention mechanism

is the lack of the supervision signal. For instance, labelling the important parts of an

image in the visual attention mechanism is labour-intensive. One solution is finding a
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way to automatically retrieve this supervision signal from other tasks such as object

detection.

2. On the improvement of the long-term dependency of the RNN model

in sequence-to-sequence model. There are still other available approaches in

the implementation of an RNN model to enable long-term dependencies, a more

formal and theoretical analysis of this type of model is urgently needed, which is

included in the future research. The long-term dependency issue in RNN has long

been a critical research topic. The HM-RNN used in this thesis is one solution, but

with a very complex model structure. Implementing a simple yet effective RNN for

long sequence modelling is an urgent need. The discrete unit might still useful in

implementing this kind of networks, so are the gradient estimation algorithms. An

hierarchical structure for the long sequence, for instance, a paragraph to describe a

visual content, is considered to be included in future work.

3. On the improvement of the Policy Gradient Optimization in sequence-

to-sequence model by using Actor Critic. The Policy Gradient is with high

variance during training, a more stable and effective reinforcement learning frame-

work is expected to apply in the RNN-based language model. The future research

considers the alternative of the policy gradient method. For instance, the Actor Crit-

ic [212] is another type of reinforcement learning algorithm, which trades off the low

variance with a biased estimator. In practice, the Actor Critic seems to have a more

stable performance than the Policy Gradient-based algorithms [213].
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