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Abstract 

The role of infectious bronchitis virus accessory proteins 3a, 3b and 4b 

Mr Ross Howden Hall 

Infectious bronchitis (IB) is a respiratory disease in domestic fowl caused by the 

gammacoronavirus infectious bronchitis virus (IBV). Current approaches to 

combat this disease are hindered due to vaccines unable to cross-protect against 

the many different strains of IBV. To develop novel therapies or more cross-

protective vaccines, a better understanding of IBV molecular biology is required. 

IBV is known to express four accessory proteins, 3a, 3b, 5a, and 5b, as well as a 

sub-genomic RNA that has the potential to code for an additional 11 kDa protein, 

referred to as 4b. The role of this sub-genomic RNA is not known, as is whether 

this transcript is translated during infection. IBV accessory proteins are 

dispensable for replication and are thought to play a role in virulence or 

pathogenicity. The functions of 3a and 3b are unknown, although they have been 

shown to play a part in the interferon response in a yet unknown manner. Using 

in vitro assays and mass spectrometry, the mechanism of action of 3a on the 

interferon response was determined. IBV 3a inhibits and stimulates interferon 

expression in a dose-dependent manner by regulating the turnover of interferon 

signalling proteins, MAVS and IRF7. Flow cytometry has identified a role for IBV 

3b in inducing apoptosis during infection, possibly by interacting with apoptotic 

proteins VDAC2 or BAG6. Lastly, using an antibody raised against the predicted 

4b peptide sequence, 4b was detected during infection, confirming it as the fifth 

IBV accessory protein. Furthermore, mass spectrometry was utilised to identify a 

role for 4b in regulating cellular translation and the stress granule response. 

Accessory proteins are highly conserved in the many different strains of IBV and 

are usually pathogenicity factors making them potential targets for novel therapies. 

Researching the role of these accessory proteins is essential to understand how 

IBV causes IB and for the development of more targeted therapies 

 or more cross-protective vaccines.  
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ROS – Reactive Oxygen Species 

RSV – Respiratory Syncytial Virus 

RT – Reverse Transcription 

RTC – Replication-Transcription Complex 

rVV – Recombinant Vaccinia Virus 

S – Viral Spike Protein 

SARS-CoV – Severe Acute Respiratory Syndrome Coronavirus 

SDS-PAGE – Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis 

SG – Stress Granule 

sgRNA – Sub-genomic RNA 

STAT1/3/7 – Signal Transducer and Activator of Transcription 1/3/7 
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TCoV – Turkey Coronavirus 

TBK1 – TANK-Binding Kinase 1 

TDS – Transient Dominant Selection 

TGEV – Transmissible Gastroenteritis Virus  

TIA-1 – T-Cell-Restricted Intracellular Antigen-1 

TIAR – TIA-1-Related Protein 

TLR3/7 – TOLL-Like Receptor 3/7 

TNF – Tumour necrosis factor 

TRAF3 – TNF Receptor-Associated Factor 3 

TRIM25 – Tripartite Motif-Containing Protein 25 

TRS – Transcription Regulatory Sequence 

TRS-B – TRS-Body 

TRS-L – TRS-Leader 

UPR – Unfolded Protein Response 

UTR – Untranslated Region 

VDAC – Voltage-dependent Anion Channel 

VLP – Virus-Like Particle 

WT – Wild-type 
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1. Introduction 

1.1 Infectious Bronchitis Disease 

Infectious bronchitis (IB) is a highly contagious globally endemic disease that 

infects domestic fowl (Gallus gallus). Symptoms of this respiratory disease 

include snicking, coughing, red eyes, and rales. Infected fowl can also suffer from 

poor weight gain and lower/poorer egg production (Chen et al. 1996, Cavanagh 

2003). Due to these symptoms, the disease causes a significant economic loss 

to the British poultry industry of around £24 million per year (Defra 2002). The 

etiological agent, infectious bronchitis virus (IBV), mainly infects the epithelial 

cells of the respiratory tract but can also infect the epithelial cells of the kidneys; 

where it can cause nephrotoxicity, as well as the ovaries and oviduct. Current 

vaccine strategies against IBV rely on the use of live attenuated and inactivated 

vaccines. These vaccines offer poor cross-protection against the many different 

strains of IBV and are resource intensive to manufacture. There is thus a growing 

need to better understand IBV molecular biology to develop more novel therapies 

(Tomley et al. 1987, Koch et al. 1990).   

 

1.2 Infectious Bronchitis Virus 

IBV belongs to the gammacoronavirinae genus, of the coronavirinae subfamily, in 

the Nidovirales order. The coronavirinae subgroup is split into four genera, alpha-, 

beta-, gamma- and deltacoronaviruses, summarised in Table 1.1. Coronaviruses 

contain a single-stranded positive-sense RNA genome (+ssRNA), which are 

among the largest RNA genomes found in viruses. Coronavirus genomes are 
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around 26 – 32Kb in length and have both a 5′-end methylated cap and 3′-end 

polyadenylated tail (Masters 2006). The genome of IBV is around 26.7Kb and is 

currently organised into six regions, expressed as six messenger RNAs (mRNA). 

Messenger RNA 1 contains two open-reading frames (ORFs); 1a and 1b, which 

comprises two-thirds of the genome at the 5′-end. ORF 1b overlaps with 1a and 

is only translated after a -1 ribosomal frameshift (Brierley et al. 1987) (Figure 

1.1A). Polyproteins 1a (pp1a) and 1ab (pp1ab) are cleaved by two virus-encoded 

proteases (Lim et al. 1998, Lim et al. 1998) into 15 non-structural proteins (nsps) 

(Ziebuhr et al. 2000). The 3′-end of the genome encodes the structural and 

accessory proteins. Four structural mRNAs are expressed from the genome in 

the order spike (S) – envelope (E) – membrane (M) – nucleocapsid (N) along with 

two mRNAs that express four known accessory proteins, 3a, 3b, 5a, and 5b. 

Structural protein E is expressed from the same mRNA as 3a and 3b and is 

regulated by an internal ribosome entry site (IRES) (Liu et al. 1992). A recently 

identified transcript, known as mRNA 4b, is expressed from the intergenic region 

(IR) between M and 5a (Bentley et al. 2013). It is not known whether mRNA 4b is 

translated during infection. Untranslated regions (UTRs) are present at both the 

5′- and 3′-end of the genome and have been shown to be involved in RNA 

replication and viral translation (Dalton et al. 2001). The viral genome is 

encapsulated by protein N to form a ribonucleoprotein (RNP). This RNP is in turn 

encased by a lipid envelope containing the three other structural proteins, S, E 

and M. A single virion is pleomorphic and approximately 120 nm in diameter 

(Figure 1.1B,C) (Masters 2006). There are many different strains of IBV, amongst 
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the most studied strains are Beaudette-CK (Beau-CK) and Massachusetts 41-CK 

(M41-CK). Beau-CK is an apathogenic lab strain that was obtained by serial 

passage in eggs, while M41-CK is a pathogenic lab strain (Beaudette 1937, Van 

Roekel 1950, Casais et al. 2003). 

 

Table 1.1 Viruses within the coronavirinae subfamily 

Prototype viruses in the respective genera are labelled in bold 

 

 

 

Coronavirinae 

Alphacoronavirus Betacoronavirus Gammacoronavirus 

Transmissible 
gastroenteritis 

coronavirus (TGEV) 

Murine Hepatitis Virus 
(MHV) Infectious bronchitis virus (IBV) 

Canine coronavirus 

(CCoV) 
Bovine coronavirus (BCoV) 

Beluga whale coronavirus SW1 

(BeCoV) 

Feline coronavirus 

(FCov) 

Human coronavirus HKU1 

(HCoV-HKU1) 
Turkey coronavirus (TCoV) 

Human coronavirus 229E 

(HCoV-229E) 

Human coronavirus OC43 

(HCoV-OC43) 
Deltacoronavirus 

Human coronavirus NL63 

(HCoV-NL63) 

Middle-East Respiratory 

coronavirus (MERS-CoV) 

Porcine deltacoronavirus 
(PDCoV) 

Porcine epidemic 

diarrhoea virus (PEDV) 

Severe acute respiratory 

syndrome coronavirus 

(SARS-CoV) 

Bulbul coronavirus HKU11 (BuCoV) 

  
Munia coronavirus HKU13 

(MunCoV) 
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Figure 1.1 Schematic diagram of the IBV genome/ virion, and an electron micrograph 
of IBV.  
(A) IBV genome expresses six mRNAs and one putative mRNA known as 4b and is flanked 

by untranslated regions at the 5′- and 3'-end. A pseudoknot and slippery sequence are 

responsible for mediating the -1 frameshift during pp1ab translation, while an IRES mediates 

translation of E. (B) The IBV lipid envelope contains three structural proteins, spike (S), 

envelope (E) and membrane (M) and encapsulates the positive-sense single-stranded RNA 

(+ssRNA) genome bound to nucleocapsid (N) protein. (C) Transmission electron micrograph 

of IBV virions (Dr Fred Murphy; Sylvia Whitfield, Centers for Disease Control). 
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1.3 Coronavirus Replication 

1.3.1 Attachment and Entry 

Coronavirus cell entry is mediated by the S protein, a large type I transmembrane 

protein. The IBV S protein is around 1,160 amino acids and is cleaved by furin, a 

cellular protease, into two functional domains, S1 and S2 (Yamada et al. 2009). 

The gammacoronavirus spike protein is cleaved between domains S1 and S2 

during assembly but is rarely cleaved in alpha- and beta- coronaviruses 

(Belouzard et al. 2012). The S1 domain contains the receptor binding domain 

(RBD) and mediates cell attachment (Promkuntod et al. 2014). IBV attachment 

and entry into cells is dependent on α-2,3-linked sialic acid, a cell surface 

molecule (Winter et al. 2006). Due to the ubiquitous nature of sialic acid, it is 

believed that another unknown cell receptor is required for cell entry, as IBV has 

restricted cellular tropism (Schultze et al. 1992, Winter et al. 2006). IBV may enter 

the cell by clathrin-mediated endocytosis, although alternative mechanisms have 

not been disproved (Yamada et al. 2009) (Figure 1.2A). The mechanism of 

coronavirus cell entry and fusion differs between coronaviruses and strains 

(Belouzard et al. 2012). In the case of IBV, fusion is pH dependent. After 

endocytosis, IBV-cellular fusion is initiated by an acidic environment, which 

causes a conformational change in the S protein, exposing the class I viral fusion 

peptide residing in the S2 domain. The coronavirus fusion peptide is inserted into 

vesicle membranes and mediates fusion with the viral lipid envelope (Bosch et al. 

2003). Fusion releases the ribonucleoprotein (RNP) and thus the viral genome 

into the cytoplasm (Figure 1.2B). 
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1.3.2 Replication, Transcription and Translation 

After entry of the RNP into the cell cytoplasm, ORF1a and ORF1ab are translated 

by host-cellular machinery into pp1a and pp1ab. Translation of pp1ab occurs after 

a -1 frameshift (Brierley et al. 1989). The -1 ribosomal frameshift occurs when the 

ribosome encounters a slippery site sequence in the coronavirus RNA. This site 

induces ribosomal and mRNA unpairing and then repairing but in the -1 reading 

frame. A downstream pseudoknot called the stimulatory element is responsible 

for the pause in translation allowing the frameshift to occur. After the frameshift, 

the pseudoknot is unwound by the ribosome allowing translation to continue, 

resulting in a protein with an extended C-terminus, known as pp1ab (Brierley et 

al. 1987, Inglis et al. 1990). These polyproteins are cleaved by the virally encoded 

proteases; nsp3 and nsp5, into individual nsps, of which some assemble into the 

replication-transcription complex (RTC) (Figure 1.2C) (Ziebuhr et al. 2001). The 

RTC produces negative-sense sub-genomic (sg)RNAs by discontinuous 

transcription, and negative-sense full-length genome templates by continuous 

transcription (Sawicki et al. 2007) (Sawicki et al. 1995) (Figure 1.3). The 

mechanism of transcription is not fully understood but is dependent on a 

conserved transcription regulatory sequence (TRS) (Hiscox et al. 1995). There is 

a TRS-leader (TRS-L) present at the 5′-end of the genome, and a TRS-body 

(TRS-B) found upstream of each gene block to regulate the transcription of 

negative-sense sgRNA. The sequence of the TRSs are conserved in both IBV 

and the closely related Turkey Coronavirus (TCoV) (CUUAACAA), except IBV 
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mRNA 3 and S, which are regulated by a slightly altered TRS (CUGAACAA). The 

recently discovered 4b transcript is regulated by a non-canonical TRS (CAA) 

(Bentley et al. 2013). Transcription is initiated by the RTC at the 3′-end of the full-

length genome and continues upstream until a TRS-B is encountered, at which 

point transcription pauses (Pasternak et al. 2001). Transcription can either 

continue until the next TRS-B or can jump to the 5′-end due to complementary 

base pairing between TRS-B and TRS-L. Transcription continues resulting in an 

anti-leader sequence at the 3′-end of the negative-sense sgRNA (van Marle et al. 

1999) (Zuniga et al. 2004). This discontinuous transcription creates a collection 

of negative-sense sgRNAs of varying length. The abundance of these sgRNAs is 

in part dependent on proximity to the 3′-end of the genome, with shorter sgRNA 

more abundant than longer sgRNA (van der Most et al. 1995). The negative-sense 

sgRNA and full-length transcripts are used as templates for synthesis of positive-

sense viral sgRNA and full-length genomes. Each viral sgRNA is capped at the 

5′-end and polyadenylated at the 3′-end (Figure 1.2D) (Masters 2006). Viral 

sgRNA are translated into the structural proteins, S, E, M, and N, and the 

accessory proteins 3a, 3b, 5a, and 5b. ORFs at the 5′-end are translated by host-

cell machinery. Translation is believed to occur in a cap-dependent manner due 

to the presence of a 5′-end M7G cap (Nakagawa et al. 2016). The translation of 

downstream ORFs; 3b in mRNA 3 and 5b in mRNA 5, are translated by leaky 

ribosomal scanning (Liu et al. 1992). Expression of E; the third ORF in mRNA 3, 

is regulated by an IRES present upstream in the 3a/3b RNA secondary structure 

(Figure 1.2E) (Liu et al. 1992, Le et al. 1994). A feature of coronavirus replication 
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is the production of double-stranded RNA (dsRNA), which occurs at around 3-5 

hours post infection (h.p.i) (Hagemeijer et al. 2012, Maier et al. 2016). While 

historically dsRNA was believed to be an intermediate of ssRNA synthesis, this 

has recently been questioned as dsRNA does not colocalise with the RNA-

dependent RNA polymerase or nascent RNA (Maier et al. 2013) (Hagemeijer et 

al. 2012) (Knoops et al. 2008). The role of this dsRNA is unknown.  
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Figure 1.2 Schematic diagram of the lifecycle of IBV. 
 (A) IBV S protein attaches to an unknown cell surface receptor and enters the cell by 

endocytosis. (B) Virions fuse with the cell membrane and release the RNP into the cytoplasm. 

(C) Replicase proteins pp1a and pp1ab are translated by host-cell machinery and once cleaved 

assemble to form the viral RTC. (D) The RTC transcribes sgRNA and full-length genomes. (E) 

SgRNAs are translated into structural proteins and accessory proteins. (F) Structural proteins 

are translated at the ER and translocate to the Golgi or ER-GIC. Protein N binds to newly 

synthesised full-length genomic RNA. (G) New virions bud into the ER-GIC lumen. (H) The cell 

secretory pathway releases viral progeny by exocytosis at around 6-8 h.p.i. 

A 

B 

C 
D 

E

F
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1.3.3 Coronavirus-induced membrane rearrangement 

Positive-sense RNA viruses induce membrane rearrangement during infection; 

this provides a platform for viral replication and/or assembly, while also allowing 

compartmentation of viral PAMPs (Denison 2008, van Hemert et al. 2008). 

Coronaviruses have been extensively studied for their ability to induce membrane 

rearrangement. Betacoronaviruses; SARS-CoV and MHV, generate double-

membrane vesicles (DMVs) as well as complex membranous structures known 

as convoluted membranes (CM) during infection (Gosert et al. 2002, Goldsmith 

et al. 2004, Knoops et al. 2008). IBV has also been shown to induce DMVs 

(Figure 1.4A), as well as a novel structure known as zippered ER which has 

attached vesicles (Figure 1.4D). These vesicles are termed spherules and are 

dispersed along the zippered ER structure with a small channel connecting the 

interior of the spherule to the cytoplasm (Figure 1.4C) (Maier et al. 2013). The 

exact site of IBV or coronavirus RNA synthesis is unknown, although a possible 

site are these spherules. The observed pores would allow the transfer of viral 

Figure 1.3 Schematic diagram of IBV transcription.  
RNA transcripts are transcribed by continuous and discontinuous transcription of the 

genomic RNA. Continuous and discontinuous transcription is initiated at the 3′-end of the 

genome by the viral RTC and moves upstream until a TRS-body (TRS-B) is encountered, 

at which point transcription can either continue or jump to the TRS-leader (TRS-L). 

Discontinuous transcription creates a nested set of 3′-co-terminal negative-sense sgRNA 

of varying length each with a common sequence at the 5′- and 3′-end. These sgRNA act 

as templates for the synthesis of positive-sense sgRNA, which are later translated into 

viral proteins. Continuous transcription occurs when transcription is not halted at a TRS-

B, creating a negative-sense full-length genome, which is used as a template for 

synthesis of new +ssRNA genomes. 
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RNA and proteins to and from the cytoplasm, while also providing protection from 

cellular detection. Historically, dsRNA produced during +ssRNA infection was 

thought to be an intermediate component of ssRNA synthesis. However, the role 

of dsRNA during IBV and indeed coronavirus infection is unclear and does not 

necessarily suggest the site of RNA synthesis. Early during MHV infection, dsRNA 

has been shown to colocalise with newly synthesised RNA but at later time points 

this colocalisation declines (Hagemeijer et al. 2012). In addition, during SARS-

CoV infection, dsRNA has been shown to localise to the interior of DMVs. Unlike 

IBV induced spherules, DMVs lack pores or any connection to the cytoplasm, 

further questioning if these are the site of RNA synthesis (Knoops et al. 2008). In 

the case of IBV, only 1.5% of dsRNA colocalises with Nsp12; the RNA-dependent-

RNA polymerase, suggesting that the location of dsRNA is not the primary site of 

RNA synthesis (Maier et al. 2013). IBV-induced membrane rearrangement 

appears not to be a determinant of pathogenicity, as M41, a pathogenic lab strain 

produces fewer spherules than the apathogenic strain, Beau-R (Maier et al. 2016), 

although it is possible that other virus-induced double membrane structures 

compensate, and it is structure, rather than shape that is an important determinant 

of viral pathogenicity. IBV and other coronaviruses further manipulate 

membranous structures to compartmentalise and release progeny virions by 

exocytosis, utilising the host-cell secretory pathway (Ruch et al. 2011) (Figure 

1.4B). 
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1.3.4 Assembly and Budding 

Structural proteins S, E, and M are translated and inserted into the ER (Figure 

1.2F) (Krijnselocker et al. 1994) and are shuttled to the ER-GIC via the cell 

secretory pathway. Full-length genomic RNA, produced during replication, 

associates with newly synthesised N protein into a helical RNP structure (Zhou et 

al. 2000). RNPs bud into the ER-GIC lumen to form new virions by binding to M 

(Figure 1.2G) (Tooze et al. 1987) (Klumperman et al. 1994) (Narayanan et al. 

Figure 1.4 Schematic diagram of IBV-induced membrane rearrangement.  
During infection, IBV induces four types of membrane rearrangement, (A) double-

membrane vesicles (DMVs), (B) vesicles for the export of progeny viruses and (C) 

zippered-ER structures with (D) spherules.  

B 

A 

D 

C 



Chapter 1: Introduction  The role of IBV accessory proteins 3a, 3b and 4b 

 

 

39 

2000). The S protein is first glycosylated at the ER and is then incorporated into 

virions at the ER-GIC by interacting with M (Hurst et al. 2005, Youn et al. 2005). 

Nascent virions are transported in vesicles to the cell surface and released by 

exocytosis (Emmott et al. 2013). IBV begins to release progeny virions by 6-8 

hours post infection in a non-lytic manner (Maier et al. 2013) (Figure 1.2H). IBV 

E has been shown to be essential for virion egress by altering the host-cell 

secretory pathway, as well as inducing viral membrane curvature and viral particle 

scission (Ruch et al. 2011). IBV E protein is post-translationally modified with the 

addition of palmitic acid onto cysteine residues. In MHV this modification has been 

shown to increase VLP yield and production of infectious virions (Boscarino et al. 

2008) (Corse et al. 2002). Expression of M and E is sufficient for coronavirus VLP 

assembly, but when co-expressed with N, VLP yield is significantly higher (Corse 

et al. 2000) (Vennema et al. 1996).  

 

1.4 Structural Proteins 

Coronaviruses express four structural proteins, S, E, M, and N. These proteins 

form part of the virus particle and are essential for the synthesis of infectious 

virions (Sturman et al. 1980, Delmas et al. 1990, Vennema et al. 1996). Most of 

the research on structural proteins are collated from other coronaviruses, and 

although some differences do occur, the primary role of these proteins is 

conserved within the coronavirinae family.  
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1.4.1 Membrane (M) 

The M protein is 25 kDa and the most abundant viral protein (Stern et al. 1982). 

M protein is a type III transmembrane protein that transverses the lipid envelope 

three times and interacts with N through its C-terminal cytoplasmic domain 

(Rottier et al. 1984). The IBV M protein accumulates at the cis-Golgi membrane 

when expressed alone, but accumulates at the ER-GIC during infection due to its 

interaction with N (Klumperman et al. 1994, Narayanan et al. 2000). The M protein 

has also been shown to interact with the S protein during SARS-CoV infection, 

which results in spike retention at the ER-GIC (McBride et al. 2007). Expression 

of IBV M and E alone is enough for the synthesis of VLPs (Corse et al. 2000, 

Corse et al. 2003) 

 

1.4.2 Envelope (E) 

The smallest coronavirus structural protein, E, is 12 kDa and the least abundant 

component of the viral envelope. Most of the protein remains within the cell (Liu 

et al. 1992). The protein transverses the IBV lipid envelope once and has a single 

hydrophobic membrane domain flanked by two hydrophilic domains (Corse et al. 

2000, Ruch et al. 2011). Protein E is a viroporin and forms a cation-selective ion 

channel in lipid bilayers, thought to aid membrane permeability and curvature 

(Wilson et al. 2004, Wilson et al. 2006). During IBV infection, E localises to the 

Golgi membrane due to a signalling motif in the cytoplasmic tail (Corse et al. 2000). 

The coronavirus E protein is thought to play a role in membrane curvature or virion 
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scission as well as virus assembly and egress (Fischer et al. 1997, Fischer et al. 

1998, Raamsman et al. 2000). 

 

1.4.3 Nucleocapsid (N) 

The IBV N protein has a molecular weight of 45 kDa. The N protein contains a 

high ratio of serine residues, which are phosphorylated during infection, and a 

high basic residue content (Lomniczi et al. 1981). The N-terminal domain of N 

binds to and packages nascent full-length genomes into new virions as a helical 

RNP structure and interacts with M through its C-terminal domain (Calvo et al. 

2005, Yu et al. 2006, McBride et al. 2014) (Fan et al. 2005). The N protein also 

interacts with genomic RNA through the leader sequence at the 5′-end and the 

UTR at the 3′-end. As these regions have a role in transcription, N is believed to 

play a role in sgRNA production (Zhou et al. 1996). During infection, IBV N protein 

localises to both the cytoplasm and nucleolus. Due to this distribution, it has been 

suggested that N may play a role in regulating host-cellular translation by 

interfering with ribosome assembly and rRNA synthesis (Tahara et al. 1994, Wurm 

et al. 2001). Furthermore, mass spectrometry analysis of IBV N pull-downs have 

identified a high number of cellular proteins involved in translation and RNA 

modification/processing (Emmott et al. 2013). Lastly, N protein has been shown 

to have a role in viral budding, and immune suppression (Denison et al. 1999, Siu 

et al. 2008, Zhou et al. 2008) (Lu et al. 2011).  
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1.4.4 Spike (S)   

The IBV spike protein is a 180 kDa glycoprotein and protrudes from the virus 

envelope as a homotrimer (Delmas et al. 1990). The coronavirus S protein is a 

type I glycoprotein and the largest viral protein composed of two main domains, 

S1 and S2. The S1 subunit binds to host-cell receptors, including α-2,3-linked 

sialic acid, through its RBD. The spike protein from Beaudette also contains a 

putative heparan sulfate binding domain, and it has been suggested that heparan 

sulfate may be an attachment factor (Madu et al. 2007). The S2 subunit is 

responsible for viral–cell fusion resulting in entry of the RNP (Degroot et al. 1987). 

During infection, the S protein is translated as a single polypeptide and due to a 

signal motif localises to the ER, where it oligomerises (Delmas et al. 1990). The 

IBV S protein is cleaved into two subunits by furin proteases which target a rich 

basic sequence present in between the two domains (Abraham et al. 1990) 

(Luytjes et al. 1987). The protein is further processed at the Golgi where 

oligosaccharides are added (Cavanagh 1983). The coronavirus S protein is the 

primary target for neutralising antibodies and plays a role in cell tropism (Kubo et 

al. 1994, Casais et al. 2003). The Beaudette strain of IBV has broad cell tropism 

and can infect primary and secondary cell lines, while M41-CK can only infect 

primary chicken cells. Replacement of the Beaudette S gene with the S gene from 

M41 restricts cell tropism to primary chicken cells, suggesting the S protein is a 

major determinant of cell tropism (Casais et al. 2003). The extended cell tropism 

of IBV Beaudette has been linked to the presence of the heparan sulfate binding 

site. Vaccination against IBV relies on the induction of neutralising antibodies 
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against the S1 domain, but due to frequent mutations and recombination events 

in this domain, which generates a large number of serotypes, vaccines are rarely 

cross-protective (Britton 2007).   

 

1.5 Non-structural Proteins 

The 5′-end of the IBV genome encodes two large polyproteins pp1a and pp1ab. 

Expression of pp1ab occurs after a -1 frameshift, which occurs in roughly 30% of 

translation events (Brierley et al. 1989). These polyproteins are proteolytically 

cleaved by the virally encoded proteases, nsp3 and nsp5, into 15 nsps. Alpha-, 

beta- and delta- coronaviruses encode 16 nsps, while gammacoronaviruses only 

encode 15 nsps (Ziebuhr et al. 2000, Ma et al. 2015). Gammacoronaviruses do 

not encode nsp1, instead expressing a larger nsp2 due to the lack of a cleavage 

site (Lim et al. 1998). IBV ORF1a encodes nsp 2-11 while ORF1b encodes nsp 

12-16. The function of some IBV nsps have not been confirmed but can be 

inferred by their similarity to other coronaviruses. Their function is summarised in 

Table 2. 
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Table 1.2 Summary of non-structural protein (nsp) functions 

 

 

  

Nsp Activity 

1 
Host mRNA degradation, translation inhibition, cell cycle arrest, inhibition of IFN 

signalling (Kamitani et al. 2006) 

2 
Unknown, dispensable for replication in MHV and SARS-CoV (Graham et al. 

2005) 

3 
Papain-like proteases, polyprotein processing, IFN antagonist, DMV formation 

(Putics et al. 2005) (Lim et al. 1998, Oostra et al. 2008) 

4 DMV formation (Oostra et al. 2007) 

5 Cysteine-like protease, polyprotein processing (Lu et al. 1996) 

6 DMV formation, induce autophagy (Oostra et al. 2008) (Maier et al. 2013) 

7 Single stranded RNA binding, forms a complex with nsp8 (Velthuis et al. 2012) 

8 Primase (RNA polymerase) (Imbert et al. 2006) (Velthuis et al. 2012) 

9 Replicase complex protein (Egloff et al. 2004, Sutton et al. 2004) 

10 Replicase complex protein (Decroly et al. 2008) (Chen et al. 2011) 

11 Unknown 

12 RNA-dependent RNA polymerase (RdRp) (Imbert et al. 2006)  

13 Helicase, nucleoside triphosphate activity (Ivanov et al. 2004, Ivanov et al. 2004) 

14 3′ – 5′ exonuclease, RNA cap formation, methyltransferase (Chen et al. 2009) 

15 Endonuclease (Bhardwaj et al. 2012) 

16 RNA cap formation (2 'O-methyltransferase) (Decroly et al. 2008) 
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1.6 Accessory proteins from other Coronaviruses 

All coronaviruses encode accessory proteins. These accessory proteins are 

considered non-essential for replication in vitro but may play a role in virulence or 

pathogenicity (Hodgson et al. 2006, Narayanan et al. 2008). Even though 

accessory proteins are present in all coronaviruses, they share little or no 

sequence homology, and no functional information can be derived from their 

genome location or name (Hodgson et al. 2006, Cavanagh et al. 2007, McBride 

et al. 2012, Liu et al. 2014, Fang et al. 2016). Nonetheless, IBV as with other 

coronaviruses will be subject to similar host-cell pressures. For example, several 

coronavirus accessory proteins function as interferon (IFN) antagonists (Liu et al. 

2014). The role of coronavirus accessory proteins is summarised in Table 1.3, 

highlighting the range of roles these proteins have. 

 

1.6.1 Alphacoronaviruses 

The alphacoronavirus genus in the coronavirinae subfamily includes 

transmissible gastroenteritis virus (TGEV), feline and porcine viruses and human 

coronaviruses, NL63 (HCoV-NL63) and 229E (HCoV-229E). Viruses within this 

genus encode two or three accessory proteins between the structural genes, S 

and M. Some viruses within this genus also encode an extra ORF downstream of 

N, known as ORF7. TGEV expresses three known accessory proteins, 3a and 3b, 

encoded between gene S and E, and protein 7 encoded downstream of gene N. 

Deletion of 3a and 3b had a limited effect on replication and cell tropism in vitro 

(Hodgson et al. 2006), while deletion of protein 7 from TGEV resulted in increased 
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cytopathic effect (CPE) and cell death compared to wild-type. Furthermore, 

recombinant viruses lacking ORF7 were more pathogenic and caused earlier 

death in piglets (Cruz et al. 2011). This result suggested that protein 7 is involved 

in host-cell antiviral responses essential to prevent extensive tissue damage. 

Feline infectious peritonitis virus (FIPV) expresses five accessory proteins, 3a, 3b, 

3c, 7a, and 7b. Deletion of ORF3, which encodes 3abc, did not affect viral titres 

in vitro, although it severely restricted pathogenicity and cell tropism in vivo 

(Dedeurwaerder et al. 2013), while ORF7 has been shown to be essential for 

efficient replication in vitro and important for virulence in vivo (Dedeurwaerder et 

al. 2013). Studies have shown that recombinant FIPV lacking ORF7a rendered 

the virus more susceptible to IFN-a treatment. Complementing the virus with 

ORF7a only restored resistance to IFN-a, in the presence of ORF3, suggesting 

ORF7a is dependent on ORF3 for functionality (Annelike Dedeurwaerder 2014). 

Porcine Respiratory coronavirus (PRCoV) ORF3 and ORF7 both play a role in 

virulence (Tung et al. 1992, Paul et al. 1997). HCoV-229E clinical isolates contain 

a single ORF in gene 4, resulting in a single polypeptide. Conversely, lab-adapted 

strains of HCoV-229E contain either a truncation, resulting in a smaller ORF4, or 

two ORFs corresponding to ORF4a and ORF4b. Transcription of ORF4b in these 

lab-adapted strains has not been shown, and no mechanism of ribosome entry 

for ORF4b has been postulated. Protein 4 from clinical isolates is highly 

conserved and has been identified as a viroporin, with deletions of this protein 

causing a reduction in viral titres (Zhang et al. 2014). 
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1.6.2 Betacoronaviruses 

Betacoronaviruses are an important coronavirus genus regarding human health 

and include human coronavirus HKU1 (HCoV-HKU1), severe acute respiratory 

syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome 

coronavirus (MERS-CoV) along with the mouse hepatitis coronavirus (MHV) 

(Table 1.1) (To et al. 2013). These viruses can encode numerous accessory 

proteins with a variety of functions. SARS-CoV encodes eight known accessory 

proteins, 3a, 3b, 6, 7a, 7b, 8a, 8b, and 9 (Narayanan et al. 2008), while MERS-

CoV expresses four accessory proteins, 3, 4a, 4b, and 5, encoded between gene 

S and gene E. SARS-CoV accessory proteins have been studied extensively and 

have been implicated in a wide variety of functions. SARS-CoV 3a is a minor 

structural protein and has been detected in VLPs by electron microscopy (Ito et 

al. 2005). Deletion of ORF3a caused a log reduction in viral titres compared to 

wild-type suggesting that although 3a is non-essential for replication, it may be 

beneficial (Yount et al. 2005). SARS-CoV 3b is also expressed from mRNA3 and 

localises to both the nucleus and mitochondria where it inhibits MAVS signalling 

and IRF3 activation, respectively (Spiegel et al. 2005, Freundt et al. 2009). Protein 

3b has an apoptotic phenotype when expressed alone and further modulates the 

immune response by binding to the transcription factor, Runt Related 

Transcription Factor 1b (RUNX1b) (Khan et al. 2006, Kopecky-Bromberg et al. 

2007). SARS-CoV protein 6 is not required for replication but does play a role in 

virulence (Zhao et al. 2009). GFP-tagged protein 6 was shown to localise to the 

ER and Golgi apparatus (Geng et al. 2005, Pewe et al. 2005). Overexpression of 
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protein 6 inhibits interferon-beta (IFNβ) expression and prevents signal 

transducer and activator of transcription 1 (STAT1) nuclear translocation in IFN 

treated cells by sequestering the STAT1 nuclear import factor karyopherin alpha 

1 (KPNA1) (Zhao et al. 2009). Deletion of SARS-CoV 7a did not effect in vitro and 

in vivo replication (Pekosz et al. 2006). Overexpression of protein 7a was also 

shown to induce cell-cycle arrest and induce caspase-dependent apoptosis as 

well as inhibit cellular translation (Tan et al. 2004, Kopecky-Bromberg et al. 2006, 

Tan et al. 2007). Protein 7b is also dispensable for viral replication in vitro (Yount 

et al. 2005, Schaecher et al. 2007). Conversely, recombinant virus lacking ORF7b 

resulted in higher titres in vivo suggesting this protein may play a role in 

attenuation (Pfefferle et al. 2009). MERS-CoV encodes four accessory proteins, 

3, 4a, 4b, and 5 encoded between gene S and gene E. Proteins 3 and 5 localise 

to the ER-GIC while proteins 4a and 4b have a diffuse cytoplasmic distribution as 

well as a nuclear localisation. Proteins 4a, 4b, and 5 are all IFN antagonists (Liu 

et al. 2014). Protein 4a binds to dsRNA to prevent detection by MDA-5 and RIG-

I (Niemeyer et al. 2013) and has been shown to inhibit the stress granule pathway, 

increasing cellular translation (Rabouw et al. 2016). MERS-CoV also contains an 

ORF known as 8b in gene N that has not been characterised (van Boheemen et 

al. 2012, Raj et al. 2014). 

 

1.6.3 Gammacoronaviruses 

IBV is the prototype coronavirus within this genus, with TCoV considered a close 

relative (Guy 2000). IBV is known to express four accessory proteins during 
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infection, 3a, 3b, 5a, and 5b (Liu et al. 1991, Casais et al. 2005, Hodgson et al. 

2006). TCoV also expresses these four accessory proteins which all have a high 

sequence identity with IBV (Britton 2007).  

 

1.6.4 Deltacoronaviruses 

Deltacoronaviruses are the most recently described genus within the 

coronavirinae subfamily and as such little is known about this genus of 

coronaviruses, including the function of the accessory proteins. These viruses 

mainly infect wild birds and pigs (Woo et al. 2012). The prototype virus, porcine 

deltacoronavirus (PDCoV), is predicted to express four accessory proteins, ORF6 

located between gene M and gene N, and ORF7, encoding 7a, 7b, and 7c, located 

downstream of N (Woo et al. 2012, Fang et al. 2016). Currently, only accessory 

proteins 6 and 7a have been shown to be translated during infection. Production 

of sgRNA7a is regulated by a non-canonical TRS (Fang et al. 2017).  

 

 

 

 

 

 

 



Chapter 1: Introduction  The role of IBV accessory proteins 3a, 3b and 4b 

 

 

50 

Table 1.3 The role of coronavirinae accessory proteins 

Coronavirus Name Role 

FIPV 
3a, b, c Restricts cell tropism to the intestine (Adam Balint 2014) 

7a, 7b 
IFN antagonist (dependent on ORF3) (Annelike Dedeurwaerder 

2014) 

TGEV 

3a Limited role in virulence and cell tropism (Kim et al. 2000) 

3b Limited role in virulence and cell tropism (Galan et al. 2009) 

7 

Deletion decreases cell death and cytopathic effect.  

Interacts with phosphatase protein 1c (Ortego et al. 2003, Cruz 

et al. 2011) 

HCoV 229E 4a Viroporin (Zhang et al. 2014) 

PRCoV 3a, 3b Unknown 

MERS-CoV 

3 Unknown 

4a 
IFN antagonist(Siu et al. 2014) 

Stress granule inhibitor (Rabouw et al. 2016) 

4b IFN antagonist (Yang et al. 2015) 

5 IFN antagonist (Yang et al. 2013) 

8b Unknown 

MHV 

HE 
Sialate-O-acetylesterase (Siddell et al. 1983) 

Non-essential structural protein (Lissenberg et al. 2005) 

2a Cleaves 2'-5′-oligoadenylate synthase (OAS) (Zhao et al. 2012) 

4a 

Role in pathogenicity  (de Haan et al. 2002) 

IFN antagonist  

Stress granule inhibitor (Raaben et al. 2007) 

5a IFN antagonist (Koetzner et al. 2010) 

SARS-CoV 

3a 
Induces cellular membrane rearrangement (Ito et al. 2005) 

Activates the PERK pathway (Minakshi et al. 2009) 

3b 

IFN antagonist by inhibiting IRF3 activity 

Interacts with activator protein 1 (AP-1)  

Interacts with runt-related transcription factor 1b (RUX1b) 

(McBride et al. 2012) 

6 

IFN antagonist  

Interacts with N-Myc and karyopherin α2  

Essential for replication and present in virions 

Induces cellular DNA synthesis(McBride et al. 2012) 

7a 

Induces apoptosis in a caspase-3 and p38 MAPK dependent 

manner  Interacts with virions (McBride et al. 2012) (Tan et al. 

2007)  

7b 
Non-essential for replication 

Role in apoptosis (Schaecher et al. 2007)  
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1.7 IBV Accessory Proteins 

The 3′-end of the coronavirus genome encodes accessory proteins as well as the 

structural proteins. IBV expresses four known accessory proteins during infection, 

3a, 3b, 5a, and 5b. These accessory proteins are dispensable for replication in 

vitro (Britton et al. 2006). Along with these four proteins, IBV also expresses an 

additional transcript referred to as 4b, although the translation of this transcript 

has not yet been demonstrated (Bentley et al. 2013). Coronavirus accessory 

proteins are non-essential for in vitro replication but are usually highly conserved 

and often play a role in regulating IFN expression, cellular translation and 

apoptosis (Table 1.3) (Liu et al. 2014). While coronavirus accessory proteins may 

share similar functions, they have limited sequence homology to one another.  

8a Forms an ion-channel in lipid bilayers (Chen et al. 2011) 

8b Inhibits expression of the E viral protein (McBride et al. 2012) 

9b 

Apoptosis inducer 

Interacts with chromosomal maintenance (CRM1) 

Associated with virions (McBride et al. 2012)  

IBV 

3a,3b 

No role in replication in vitro (Kint et al. 2015) 

Regulates expression of IFNβ (Casais et al. 2005, Hodgson et 

al. 2006) 

5a 
No role in replication in vitro (Casais et al. 2005, Hodgson et al. 

2006) 

5b Host-cell translational shut-off (Kint et al. 2016) 

PDCoV 

6 Detected during infection (Fang et al. 2016) 

ORF7 
Potentially encodes three accessory proteins, only 7a has been 

detected (Woo et al. 2012, Fang et al. 2017) 

Alphacoronavirinae (red), Betacoronavirinae (blue), Gammacoronavirinae (green), Deltacoronavirinae (yellow), 

FIPV (feline infectious peritonitis virus), FCoV (feline coronavirus), TGEV (transmissible gastroenteritis 

coronaviruses), MERS-CoV (Middle East respiratory syndrome coronavirus), MHV (mouse hepatitis virus), 

SARS-CoV (serve acute respiratory syndrome coronavirus), IBV (infectious bronchitis virus), PRCoV (porcine 

respiratory coronavirus), PDCoV (Porcine deltacoronavirus) 
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1.7.1 Gene 3 accessory proteins 

Messenger RNA 3 is polycistronic and encodes three proteins, accessory proteins 

3a and 3b and structural protein E. IBV 3a and 3b have been detected during IBV 

infection in chicken kidney (CK) cells utilising antibodies raised against the 

predicted peptide sequence (Liu et al. 1991). Recombinant IBVs that do not 

express 3a and 3b due to a scrambled start codon grew to similar titres in vitro, 

in ovo, and in ex vivo organ culture, suggesting these proteins are not required 

for in vitro replication (Hodgson et al. 2006).  

 

IBV 3a is a 6 kDa protein and the first protein expressed from mRNA 3. IBV 3a is 

highly conserved among the many different IBV strains, with an 81 – 86.2% 

similarity in polypeptide sequences (Jia et al. 1997). The relatively high degree of 

sequence preservation suggests an important role for this protein. IBV 3a 

contains a signal peptide which directs 3a to the ER membrane, but due to the 

small size of 3a, this signal peptide sequence is not effectively recognised by 

signal recognition particles (Pendleton et al. 2005). This explains the dual 

localisation pattern seen for 3a during infection and transfection in Vero cells, 

which is either membrane-bound at the smooth ER or diffuse in the cytoplasm 

(Pendleton et al. 2005).  This theory is further supported as the extension of 3a 

with a GFP-tag resulted in more membrane-bound 3a, compared to 3a expression 

alone. During infection in Vero cells, membrane-bound 3a has been shown to 

span the membrane once, with the C-terminus exposed to the cytoplasm and the 

N-terminus to the lumen of the smooth ER (Pendleton et al. 2005). IBV 3a has 
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also been shown to closely localise with MxA, which is a small GTPase that has 

antiviral activity (Pendleton et al. 2005, Haller et al. 2011). Protein 3a has also 

been shown to inhibit IFNb mRNA transcription at 24 h.p.i, while also inducing 

IFNb protein expression at 36 h.p.i (Kint et al. 2015). The mode of action of IBV 

3a on IFN expression is unknown.  

 

IBV 3b is a 7.4 kDa protein and the second protein translated from sgRNA 3 via 

leaky ribosomal scanning (Liu et al. 1992). IBV 3b predominantly localises to the 

nucleus in mammalian cells while in avian cells appears predominantly in the 

cytoplasm (Pendleton et al. 2006). Furthermore, IBV 3b turnover is proteasome-

dependent in mammalian cells and proteasome-independent in avian cells. The 

differences seen in avian and mammalian cells highlight the importance of using 

an appropriate cell line for experiments. In addition, the half-life of 3b is short, 

making it very difficult to detect this protein during infection and transient 

expression (Pendleton et al. 2006). A truncated form of 3b has been detected in 

a strain of Beau-CK serially passaged in Vero cells. This truncation was an 

advantageous mutation that conferred higher growth kinetics in vitro and higher 

virulence in ovo (Shen et al. 2003). Interestingly, this truncation changed the 

localisation of 3b from the nucleus to a diffuse cytoplasmic pattern in Vero cells, 

suggesting the C-terminal proportion is responsible for nuclear localisation in 

mammalian cells (Pendleton et al. 2006). There is little understanding of the 

function and mechanism of this small protein, although previous work has shown 
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that 3b plays a role in conferring IBV resistance to IFN expression (Kint et al. 

2015). 

 

1.7.2 Transcript 4b 

Positioned between the gene M and gene 5 is the intergenic region (IR), which 

contains a putative ORF known as 4b. Due to the lack of an upstream TRS, this 

ORF was previously thought to be a pseudogene (Stern et al. 1980). However, 

Bentley et al. (2013) showed by northern blot that a sgRNA is expressed from the 

intergenic region during Beau-R infection, referred to as sgRNA 4b (Bentley et al. 

2013). The presence of sgRNA 4b was also identified in RNA extracted from M41 

infected avian trachea. While other proteins have an upstream canonical TRS 

(CUUAACAA), gene 4b is regulated by a non-canonical TRS (CAA). This non-

canonical TRS resulted in transcription of mRNA 4b at a lower level than expected 

for its genome location. Furthermore, the related coronavirus, TCoV, also 

expresses this previously unidentified 4b transcript. The 4b transcript is not 

required for in vitro replication, suggesting if a protein is translated, it is most likely 

an accessory protein (Bentley et al. 2013). Replacement of ORF4b with GFP did 

result in GFP expression, suggesting that the transcript can act as a mRNA. The 

gene is also present in the Beau-R strain of IBV, although the potential protein is 

truncated to 5 kDa due to a stop codon present in the middle of the ORF (Bentley 

et al. 2013). Whether this transcript is translated during IBV infection is not known, 

nor is the function of this putative protein.  
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1.7.3 Gene 5 accessory proteins 

Messenger RNA 5 is dicistronic and encodes two accessory proteins, 5a and 5b, 

8 kDa and 9 kDa respectively (Liu et al. 1992). These proteins have been detected 

during IBV infection in CK cells using antibodies raised against the predicted 

amino acid sequences (Liu et al. 1992). Recombinant IBV lacking 5a or 5b grew 

to similar titres to wild-type virus in vitro, in ovo and ex vivo organ culture 

suggesting they are non-essential for replication (Casais et al. 2005). Protein 5a 

displays a diffuse pattern throughout the whole cell while 5b displays a more 

perinuclear granular pattern (Davies 2009). Kint et al. (2014) showed that protein 

5b is involved in host translational shut-off. Wild-type Beau-R inhibited cellular 

translation while recombinant IBV lacking 5b expression did not. Translation of 

IBV proteins was not affected, suggesting 5b may target host-cell translation 

specifically. This reduction in host-cell translation can explain, in part, why there 

are high levels of IFNβ mRNA but low levels of IFNβ protein during IBV infection 

(Kint et al. 2016).  

 

1.8 Coronavirus–Host Interaction 

1.8.1 Interferon response to viral infection 

The IFN signalling cascade is a cellular response to infection and is one of the 

first lines of defence against invading pathogens. The innate immune response 

detects ‘non-self’ signals known as pathogen-associated molecular patterns 

(PAMPs). These PAMPs include dsRNA, 5′-C-phosphate-G-3′ (CpG), 

lipopolysaccharides and dsDNA, among others, and are recognised by specific 
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pathogen recognition receptors (PRRs) (Thompson et al. 2011). Detection of 

PAMPs by the cell activates the IFN signalling cascade to induce the expression 

of IFNs, cytokines, and chemokines (Wu et al. 2014). IFN induces the expression 

of IFN stimulated genes (ISGs), which induces an antiviral state in the cell and 

neighbouring cells to prevent further viral replication (Stark et al. 2012).  PRRs 

responsible for the detection of viral PAMPs such as dsRNA include RIG-I-like 

receptors (RLRs), and TOLL-like receptors (TLRs). So far 10 TLRs and 2 RLRs 

have been identified in domestic fowl compared to 11 and 3 in humans, 

respectively (Kannaki et al. 2010). While chickens express the membrane-bound 

PPRs, TLR3 and TLR7, used to detect dsRNA and ssRNA, respectively, chickens 

do not express the cytosolic dsRNA sensing PRR, RIG-I (Zou et al. 2009). 

However, the other dsRNA sensing RLRs in humans, MDA-5 and Laboratory of 

Genetics and Physiology 2 (LGP2) are expressed (Barber et al. 2013). MDA-5 

detects and binds to dsRNA, and subsequently interacts with and activates the 

mitochondrial antiviral signalling protein (MAVS) (Figure 1.5A). MAVS is a 

membrane-bound protein that localises to the mitochondria, mitochondrial-

associated membrane (MAM) structures and peroxisomes (Seth et al. 2005). 

MDA-5 activation induces MAVS aggregation, which then recruits downstream 

signalling proteins including TANK-binding kinase 1 (TBK1), NF-kappa-B 

essential modulator (NEMO) and TNF receptor-associated factor 3 (TRAF3) 

(Figure 1.5B) (Kawai et al. 2005). Mitochondria remodelling results in mitofusion 

and aggregation of signalling proteins, enhancing antiviral signalling (Figure 

1.5C) (Castanier et al. 2010). Phosphorylation of TBK1 leads to the 
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phosphorylation of interferon regulatory factor 3 (IRF3) and 7 (IRF7) (Figure 1.5D, 

E). Phosphorylated IRF3/7 dimerises and translocates to the nucleus where it 

transcribes IFNβ mRNA (Figure 1.5F, G). Chickens express an IRF that closely 

resembles IRF7 but appear to have selectively lost IRF3 (Grant et al. 1995, 

Cormican et al. 2009). After translation, IFNβ is secreted from the cell and binds 

to IFN receptors (IFNAR) on the same cell and neighbouring cells, activating the 

JAK-STAT pathway (Stark et al. 2012). This pathway leads to the dimerisation of 

STAT3 and STAT7 which mediates expression of ISGs. ISGs include a wide 

variety of proteins involved in creating an antiviral state within the cell leading to 

viral suppression along with immunomodulation. Overexpression of IFN can 

induce a hyperimmune state which can be deleterious to the body. For this reason, 

the IFN signalling cascade is highly regulated after activation by controlling levels 

of IFN signalling proteins including MAVS and RIG-I (Lin et al. 2006, Castanier et 

al. 2012, Fuchs 2012, Hu et al. 2016). MAVS, as the gateway protein of the IFN 

signalling cascade, is targeted for degradation in a negative-feedback loop by the 

E3-ligases, Tripartite motif-containing protein 25 (TRIM25), glycoprotein 78 

(gp78), and RING finger protein 5 (RNF5) to prevent further downstream 

signalling. This helps to turn off the IFN signalling cascade after infection (Zhong 

et al. 2010, Castanier et al. 2012, Jacobs et al. 2013). 
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1.8.2 Viruses and the interferon response 

The innate immune response represents a significant barrier to viral replication. 

The selective pressure of the IFN response has created an evolutionary arms 

race, with viruses that inhibit this pathway having an advantage. Many viruses 

Figure 1.5 Schematic diagram of the interferon signalling cascade in chickens.  
(A) Viral dsRNA is detected by MDA-5. (B) MDA-5 is then recruited to MAVS at the 

mitochondria, peroxisome or mitochondrial-associated membrane (MAM) structures. (C) 

Mitochondrial remodelling concentrates IFN signalling proteins. (D) MAVS activation 

leads to aggregation and recruitment of downstream signalling proteins including TBK1, 

NEMO and TRAF3. (E) Phosphorylated TBK1 leads to the dimerisation and 

phosphorylation of IRF7. (F) Activated IRF7 translocates to the nucleus where it 

mediates transcription of IFNβ. (G) Once translated, IFNβ is released from the cell and 

induces antiviral states in the same and neighbouring cells.  

A B 

C 

D 
E F 

G 
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express proteins that antagonise IFN expression, with the aim to prevent the cell 

inducing an antiviral state. These proteins can target the signalling cascade at 

any point, from the detection of PAMPs to nuclear translocation of IRFs, to the 

expression of IFN. A classic example of this is the multi-functional NS1 protein of 

Influenza A virus (IAV), which shields dsRNA from RLR detection, preventing 

MAVS activation and thus IFN expression (Hatada et al. 1992). Coronavirus 

accessory proteins, nsps and structural proteins have been shown to inhibit IFN 

expression. For example, SARS-CoV N is a potent IFN antagonist and inhibits 

IFN expression by interfering with TRIM25-mediated RIG-I ubiquitination (Hu et 

al. 2017). MERS-CoV proteins M and 4b inhibit IFN expression by inhibiting TBK1 

phosphorylation and MDA-5 dsRNA sensing, respectively (Niemeyer et al. 2013, 

Lui et al. 2016). Nsp3 from SARS-CoV and HCoV-NL63 have been shown to 

antagonise IFN expression independent of its normal protease activity (Clementz 

et al. 2010, Sun et al. 2012). Alpha- and betacoronaviruses nsp1 have been 

shown to induce host translation shut-off, limiting translation of IFN (Kamitani et 

al. 2006) (Tohya et al. 2009) (Huang et al. 2011) (Wang et al. 2010). IBV lacks 

nsp1, but most likely expresses multiple proteins that target the IFN signalling 

cascade. The innate immune response to IBV is important for the pathogenicity 

and outcome of the disease in domestic fowl, with resistant and susceptible 

chicken lines showing a different initial innate immune response (Smith et al. 

2015). Type I interferon response are upregulated in the trachea during IBV 

infection at around 3 days post infection. Increased levels of pro-inflammatory 

cytokines are associated with viral lesions and high viral load (Kameka et al. 2014, 
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Okino et al. 2014). IL-6 is considered a marker for poor outcome, with susceptible 

lines expressing 20 times more IL-6 compared to resistant line (Asif et al. 2007, 

Chhabra et al. 2015). Immunopathology is an important factor in disease progress 

and outcome, with strong innate responses associated with serve symptoms 

(Smith et al. 2015, Okino et al. 2017). The arming of the adaptive immune 

response is crucial for clearance of the virus, with local cell-mediated immune 

(CMI) response mediated by an influx of CD3+, CD8+ and CD4+ cells to the 

trachea at 3 to 7 days post infection (Okino et al. 2014). The IFN response to IBV 

infection has been investigated extensively (Kint 2015). MDA-5 is an essential 

PPR for the recognition of IBV-induced dsRNA and is required for the initiation of 

the IFN signalling cascade (Kint et al. 2015). IFNβ expression is the main IFN 

subtype produced during IBV infection, with interferon-α (IFNα) undetectable (Kint 

2015). IBV fails to induce IFNβ expression until 24 h.p.i, suggesting IBV actively 

inhibits the IFN cascade during early infection. Interestingly, treatment of IBV 

infected cells with poly(I:C) during early infection resulted in a higher IFN 

response, compared to poly(I:C) treatment alone, suggesting that IBV can 

agonise IFN expression once stimulated upstream. IBV accessory proteins 3b 

have been shown to inhibit IFNβ mRNA expression during infection at 24 and 36 

h.p.i. IBV 3a has also been shown to inhibit IFN mRNA transcription but only 

significantly at 24 h.p.i compared to the wild-type. Recombinant IBV lacking 3a 

was also shown to induce higher levels of IFN expression at 36 h.p.i, suggesting 

that 3a can also induce IFN expression and appears to have a dual effect on the 
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IFN cascade. The mechanism of action for 3a and 3b is not known (Kint et al. 

2015).  

 

1.8.3 Stress Granule pathway 

The stress granule (SG) pathway is a cellular response to external and internal 

stimuli that induce cellular stress. The SG pathway is induced to preserve 

resources and energy until a return to cellular homeostasis is achieved (Buchan 

et al. 2009). A range of stimuli can activate the SG pathway including ER stress, 

through the protein kinase R (PKR)-like ER kinase (PERK) pathway, nutrient 

starvation through the General control non-derepressible 2 (GNC2) pathway, and 

heme deficiency and oxidative stress through the Heme-regulated eIF2α kinase 

(HRI) pathway (Beckham et al. 2008, Lian et al. 2009, Narayanaswamy et al. 

2009, Moutaoufik et al. 2014). The SG pathway can also be activated during 

infection to inhibit viral protein translation. During infection, viral dsRNA can be 

detected by protein kinase R (PKR) (Figure 1.6A), which in turn phosphorylates 

the serine residue in eukaryotic inhibition factor 2a (eIF2a) at position 51 (Figure 

1.6B) (Nanduri et al. 2000, Dauber et al. 2009). Compared to the 

unphosphorylated form, the phosphorylated form of eIF2a has a higher affinity for 

the eukaryotic initiation factor 2B (eIF2B). This higher affinity binding to eIF2B 

prevents eIF2a from exchanging GDP for GTP, which is essential for recruitment 

of the initiator methionine transfer RNA (tRNA) (Figure 1.6C). Protein 

phosphatase 1 (PP1) is the primary regulatory protein of eIF2α-induced 

translational arrest and can directly bind to and dephosphorylate eIF2α to return 
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the protein to its active state (Figure 1.6G). Stalled initiation complexes aggregate 

forming large granular structures within the cytoplasm referred to as SGs 

(Kedersha et al. 1999). SGs contain stalled mRNAs, translation initiation factors 

and small ribosomal subunits along with SG regulatory proteins, such as T cell 

intracellular antigen-1 (TIA-1) and TIA-1 related protein (TIAR) (Figure 1.6D). SG 

regulatory proteins play an integral role in SG formation and the shuttling of mRNA 

in and out of SGs (Kedersha et al. 2000). The Ras-GTPase activating protein-

binding protein-1 (G3BP1) is essential for SG formation and is activated during 

cellular stress (Tourriere et al. 2003). SGs are highly dynamic structures that can 

respond quickly to changes in the cellular environment. The precise composition 

of SGs varies depending on the stress stimulus (Kedersha et al. 2005). Viruses 

lack their own translational system and are thus dependent on the host-cell 

machinery for production of viral proteins (Beckham et al. 2008). Stress-induced 

translational shut-off by the host, in theory, prevents translation of both cellular 

and viral proteins, preventing further viral replication. If the infection is not 

resolved mRNA within SGs can be shuttled to processing-bodies (p-bodies) 

where they can be targeted for degradation (Figure 1.6E) (Balagopal et al. 2009).  

If the infection is cleared, SGs can disassemble and translation can be reinitiated 

(Figure 1.6F) (Mollet et al. 2008).  

 

1.8.4 Viruses and the stress granule pathway 

Host triggered translational-shutoff and SGs are a significant barrier to viral 

infection, preventing synthesis of viral proteins required for replication and 
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assembly. For this reason, several viruses express proteins that modulate SG 

formation and eIF2a phosphorylation. Sendai virus inhibits SG formation by 

interacting with TIA-1/TIAR through an AU-rich domain in viral RNA transcripts 

(Iseni et al. 2002). While poliovirus (PV) 3c protease cleaves G3BP1 disrupting 

SG formation (White et al. 2007). Semliki Forest virus (SFV) and Mammalian 

orthoreovirus (MRV) inhibit SG formation in a time-dependent manner, with SGs 

only detectable early in infection (Qin et al. 2009, Qin et al. 2011). Other viruses 

have been shown to target PKR and eIF2α. Indeed, the African swine fever virus 

(ASFV) DP71L protein can bind to and recruit PP1c to eIF2α to induce 

dephosphorylation, while IAV NS1 can bind to dsRNA preventing detection by 

PKR (Bergmann et al. 2000, Zhang et al. 2010). Alternatively, viruses can also 

induce SGs to inhibit cellular protein translation and to facilitate viral replication. 

Respiratory syncytial virus (RSV) replication benefits from the presence of SGs, 

while Newcastle disease virus (NDV) induces SGs to reduce global host-

translation while maintaining viral protein translation by a yet unknown 

mechanism (Sun et al. 2017). 

 

Within the coronavirinae subfamily MERS-CoV, TGEV and MHV have been 

investigated for their ability to manipulate the SG pathway. MERS-CoV accessory 

protein 4a inhibits dsRNA-mediated PKR-dependent SG formation by binding to 

dsRNA directly. Conversely, MHV has been shown to induce eIF2α 

phosphorylation and SG formation (Raaben et al. 2007, Rabouw et al. 2016). SGs 

also appear during TGEV infection with the occurrence of SGs linked to 
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decreased viral replication (Sola et al. 2011). IBV accessory protein 5b has been 

shown to inhibit host-cell translation (Kint et al. 2016). Furthermore, previous work 

has shown that Beau-R infection can induce assembly of SGs, although this was 

independent of 5b (Kint 2015). Simultaneously, Beau-R infected cells could 

strongly inhibit sodium arsenite-induced SG formation, suggesting that while IBV 

infection can induce SGs, the virus also expresses an as yet unknown protein or 

proteins that can also inhibit their formation (Kint 2015). Collectively, this 

highlights the dynamic and responsive nature of mRNA movement between active 

ribosomes, SGs and P-bodies during the IBV life-cycle (Decker et al. 2012).  
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Figure 1.6 Schematic diagram of the stress granule pathway.  
(A) Viral dsRNA is detected by the cytosolic sensor, protein kinase R (PKR). (B) PKR 

mediates phosphorylation of eIF2α (p-eIF2α). (C) When p-eIF2α is recruited to the translation 

initiation complex, translation is inhibited. (D) Multiple stalled initiation complexes aggregate 

with stress granule (SG) regulatory proteins such as G3BP1/TIA-1/TIAR to form an SG. (E) 

If viral infection is cleared, translation can be reinitiated. (F) Alternatively, mRNA can be 

shuttled to processing bodies (p-bodies) where they can be further stored or degraded. (G) 

Phosphatase protein 1c (PP1c) dephosphorylates eIF2α, inhibiting translational arrest.  
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1.8.5 Apoptosis 

Apoptosis or programmed cell death (PCD) is a cellular response to extreme 

stress, wherein cellular homeostasis is no longer viable, and cell death is 

preferable. During viral infection, the cell can induce apoptosis to reduce viral 

progeny release, reducing disease outcome in the host. Apoptosis is regarded as 

the last resort for infected cells, although can be favourable to prevent viral spread 

and to activate other parts of the immune system (Campisi et al. 2014). Apoptosis 

is a highly-regulated system that can be triggered by two main pathways; the 

extrinsic and intrinsic pathways, which are triggered by the activation of the death 

receptor and through mitochondrial damage, respectively (Thorburn 2004). Each 

cascade leads to the cleavage of caspase-3, which results in DNA and protein 

degradation and irreversible apoptosis (Figure 1.7) (Cohen 1997). Although both 

pathways have a role in the immune response to infection, the intrinsic pathway 

is the primary cellular response to viral infection, for which mitochondria play an 

important role (Benedict et al. 2002). Mitochondria are the powerhouse of the cell 

and contain a matrix surrounded by an inner membrane (IM), and an 

intermembrane space surrounded by an outer membrane (OM). Under normal 

conditions, these membranes help to protect the cell from catabolic enzymes 

while also creating an electrical imbalance for adenosine triphosphate (ATP) 

production (Bertram et al. 2006, Kroemer et al. 2007). The integrity of the 

mitochondrial membrane is maintained by a balance of anti-apoptotic and pro-

apoptotic regulatory factors, including members of the B-cell lymphoma 2 (Bcl-2) 

protein family. Viral infection can cause a shift in balance from anti- to pro-
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apoptotic factors through a range of cellular pathways, including Ca2+ release 

from ER stress and dsRNA detection, while production of reactive oxygen species 

(ROS) can directly affect mitochondrial membrane integrity (Figure 1.7A). ROS 

and pro-apoptotic factors lead to mitochondrial membrane permeabilisation 

(MMP) (Figure 1.7B), which causes the release of intermembrane proteins 

including cytochrome C. These factors are released through mitochondrial pores 

composed of Bcl-2-associated X (Bax) and Bcl-2 homologous antagonist killer 

(Bak) proteins, as well as mitochondrial channels such as the Voltage-dependent 

anion channel (VDAC) (Figure 1.7C). Once released into the cytoplasm, 

cytochrome C can recruit apoptosis protease-activating factor 1 (apaf-1) and pro-

caspase 9 to form the apoptosome (Figure 1.7D). This multiprotein complex 

leads to stimulation of the apoptosis cascade resulting in activation of cysteine 

proteases such as caspase 3 and 7.  These proteases induce a range of cellular 

modifications, including membrane blebbing, DNA fragmentation, cellular 

shrinkage and finally cell death. Mitochondria can also release endonuclease G 

(EndoG) and apoptosis-inducing factor (AIF) to induce caspase-independent 

apoptosis (Li et al. 2001, Cande et al. 2004). 

 

1.8.6 Viruses and Apoptosis 

Viruses can express both anti-apoptotic proteins and/or pro-apoptotic proteins. 

Anti-apoptotic proteins increase the length of time that the cell is viable for viral 

replication, while pro-apoptotic proteins can aid viral release and pathogenicity 

(Barber 2001, McLean et al. 2008). Indeed, many oncogenic viruses encode anti-
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apoptotic proteins to establish persistent infections aiding disease progression 

and the formation of tumours (Fuentes-Gonzalez et al. 2013).  Epstein-Barr virus 

(EBV) expresses a viral Bcl-2 homologue, BHRF1, which localises to 

mitochondrial membranes and stabilises membrane integrity by binding to and 

thus inhibiting pro-apoptotic factors (Kvansakul et al. 2010). While apoptosis is a 

cellular response to infection and stress, viruses do not necessarily solely inhibit 

this pathway. Influenza A virus (IAV), protein PB1-F2 and infectious bursal disease 

virus (IBDV) protein VP5 bind to the outer mitochondrial membrane-bound 

proteins VDAC1 and VDAC2, respectively. This induces MMP resulting in 

cytochrome C release and caspase-3 activation (Zamarin et al. 2005, Li et al. 

2012). SARS-CoV accessory protein 7a induces caspase-dependent apoptosis 

by binding to the anti-apoptotic protein B-cell lymphoma extra-large (BcL-XL). 

However, the role of SARS-CoV protein 7a during infection is unknown as deletion 

of 7a does not affect replication or pathogenicity (Tan et al. 2004) (Tan et al. 2007). 

No anti-apoptotic proteins have been identified for coronaviruses to date, 

although SARS-CoV has been shown to activate the anti-apoptotic AKT pathway 

(Mizutani et al. 2004). Caspase-dependent apoptosis has been observed during 

IBV infection in Vero cells. However, inhibition of apoptosis had no significant 

effect on IBV titres suggesting that apoptosis is not required for replication in vitro 

(Liu et al. 2001). Furthermore, IBV-induced apoptosis is, in part, inhibited and 

modulated by the pro-survival IRE1α-XBP1 ER stress pathway, suggesting IBV 

actively induces apoptosis during infection (Fung et al. 2014).  
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Figure 1.7 Schematic diagram of the intrinsic apoptosis pathway.  
(A) Internal stimuli including ER stress, DNA damage or viral pro-apoptotic proteins can 

increase levels of cytosolic Ca2+ and ROS levels or inactivate anti-apoptotic proteins. (B) 

ROS and Ca2+ can permeabilise the mitochondrial membrane directly, while pro-apoptotic 

proteins can form pores. (C) Permeabilisation releases apoptosis effector proteins 

including cytochrome C, AIF and EndoG. (D) Cytochrome C assembles with pro-caspase 

9 and APAF-1 leading to the formation of the apoptosome. (E)  The apoptosome leads to 

activation of pro-caspase 3/7. (F) Caspase 3/7 along with caspase-independent effectors 

(AIF, EndoG) mediate a range of cellular changes including DNA fragmentation and 

membrane blebbing resulting in cellular apoptosis.  
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1.9 Aims 

The aim of this project is to identify any host-cell interaction partners for IBV 

accessory proteins 3a and 3b that may allude to their function and to determine 

the role of ORF4b. A series of objectives were established to accomplish this aim. 

 

Objective 1 

The first objective is to utilise mass spectrometry to determine any cellular 

proteins that interact with IBV 3a and 3b that may allude to function. 

 

Objective 2 

The second objective is to characterise the role of 3a on the IFN response 

utilising IFN assays and mass spectrometry data. 

 

Objective 3 

To determine if ORF4b is translated into a protein during infection by 

optimising an antibody raised against the predicted peptide sequence or 

by using mass spectrometry. 

 

Objective 4 

To determine the role of ORF4b or the putative 4b protein using reverse 

genetics and/or mass spectrometry. 

 



Chapter 2: Materials and Methods 

71 

 

2. Materials and Methods 

2.1 Cells and Media 

All cell stocks were maintained by the Central Services Unit (Pirbright) or 

Microbiology Services department (Compton) at The Pirbright Institute and grown 

at 37 °C and 5% CO2.  

 

2.1.1 Baby Hamster Kidney 21 (BHK-21) cells 

Continuous fibroblast cell line derived from the kidneys of five 1-day-old hamsters 

(Meager et al. 1977). BHKs were maintained in Glasgow Minimum Essential 

Media (GMEM) (Table 2.1). 

 

2.1.2 Chicken Kidney (CK) cells 

Primary CK cells were prepared using a combination of manual and trypsin 

disaggregation of kidneys collected from 2-3-week-old specific pathogen free 

(SPF) Rhode Island Red chicks (Oct 14 - Feb 16) or clean VALO chickens (March 

16 – March 17) (Maier et al. 2015). CK cells were grown in CK growth media, and 

experiments performed using 1x N,N-bis[2-hydroxethyl]-2-Aminoethanesulfonic 

acid (BES) (Table 2.2). 

  

2.1.3 DF-1 Cells  

DF-1 cells are a continuous cell line of chicken embryo fibroblasts derived from 

10-day old East Lansing strain eggs (Himly et al. 1998). DF-1 cells were 
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maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% foetal calf 

serum (FCS).  

2.1.4 Human embryonic kidney 293T (HEK-293T) Cells  

A continuous cell line of human embryonic kidney cells stably expressing the 

SV40 large T-antigen (Shaw et al. 2002). HEK-293Ts were grown and maintained 

in DMEM with 10% FCS.  

 

2.1.5 Vero cells  

A continuous kidney epithelial cell line derived from the African Green monkey 

(Chlorocebus spp.) (Yasumura 1963). Vero cells were maintained in Eagle's 

Minimum Essential Medium (EMEM) with 10% FCS.  

 

2.1.6 Cell Media 

Table 2.1 GMEM for BHK-21 cell culture 

Reagent Final Concentration 

GMEM 1x 

FCS (Sigma) 1% v/v 

Tryptose Phosphate Broth (TPB) 0.29% v/v 

Nystatin (Sigma) 250,000 U/L 

Penicillin/Streptomycin (Sigma) 100,000 U/L 

 



Chapter 2: Materials and Methods   The role of IBV accessory protein 3a, 3b and 4b 

73 

 

Table 2.2 1x CK cell maintenance media (1x BES) 

Reagent Final Concentration 

10X EMEM (Sigma) 1x 

TPB 10% v/v 

Bovine serum albumen (BSA) (Sigma) 1% v/v 

N,N-bis[2-hydroxethyl]-2-

Aminoethanesulfonic acid (BES) 

(Sigma) 

20 mM 

Sodium bicarbonate  0.2% w/v 

L-glutamine (Gibco) 2 mM 

Nystatin (Sigma) 250,000 U/L 

Penicillin and streptomycin (Sigma) 100,000 U/L 

 

Table 2.3 CK cell maintenance media (2x BES) for IBV plaque assays 

Reagent Final Concentration 

10x EMEM 2x 

TPB 20% v/v 

BSA (Sigma) 2% v/v 

BES 40 mM 

Sodium bicarbonate 0.4% w/v 

L-glutamine (Gibco) 4 mM 

Penicillin/Streptomycin (Sigma) 200,000 U/L  

Nystatin (Sigma) 500,000 U/L 
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2.2 Virological methods 

2.2.1 Viruses 

IBV Beau-R: A molecular clone of the IBV strain, Beaudette-CK (Beau-CK). 

Beau-CK has been serially passaged in embryonated eggs to adapt the virus to 

grow in CK, BHK-21, DF-1 and Vero cells. Beau-R is apathogenic in domestic 

fowl (Casais et al. 2001).  

 

M41-CK: A pathogenic strain of IBV that has been adapted to grow in CK cells. 

M41-CK is unable to grow in BHK-21, DF-1 or Vero cells.  

 

M41-K/M41-R: Molecular clones of M41-CK. M41-K is pathogenic, while M41-R 

is non-pathogenic.  

 

BeauR-Sc3aAUG: Beau-R with the 3a AUG start codon scrambled (ATG>AAC) 

(Hodgson et al. 2006).This virus is unable to express IBV 3a.  

 

BeauR-Sc3bAUG: Beau-R with the 3b AUG start codon scrambled (ATG>AAC). 

This virus is unable to express IBV 3b.  

 

M41K-del4b: M41-K with ORF4b deleted. The non-canonical TRS is still present, 

so a shorter sgRNA is expressed that does not contain ORF4b. This virus was 

designed and generated by Sarah Keep.  
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M41K-BeauR(S): M41-K virus containing the S gene from Beau-R instead of 

M41-K. This virus can grow in Vero cells, unlike M41-K due to extended host 

range of Beau-R spike.  

 

BeauR (M41R-IR): Recombinant IBV based on Beau-R with the intergenic region 

(IR) from the M41-K strain of IBV. The IR is the region in-between gene M and 

gene 5 and contains ORF4b. 

 

2.2.2 IBV titration 

Plaque assays were performed in CK cells in a 12-well plate (70-80% confluence). 

Virus samples were serially diluted in 1x BES by a factor of 10, up to 10-7. Three 

wells were inoculated for each dilution. Cells were washed twice with Phosphate 

Buffered Saline a (PBSa) and 250 µl of inoculum added to the cells. Cells were 

incubated at 37 °C and 5% CO₂ for 1 hour. Viral inoculum was then removed and 

2 ml of 1% agar,1x BES was added to each well. Cells were incubated for three 

days at 37 °C and 5% CO₂. To fix the cells, 10% paraformaldehyde (PFA) in PBSa 

was overlaid onto to the agar and incubated for 15 minutes. Agar was removed 

from each well and cells stained with 0.1% crystal violet (w/v) for 10 minutes. 

Single defined plaques were counted for the lowest serial dilution and averaged 

from three wells. The number of plaques is expressed as viral plaque forming 

units (PFU) per ml of viral inoculum. 
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2.2.3 Growth curves 

The M41K-del4b growth curve virus was completed by Sarah Keep, as part of the 

quality control for synthesis of recombinant IBV. CK cells were seeded in a 12-

well plate (70-80% confluency) and infected at an MOI of 0.1, diluted in 1x BES. 

After 1 hour at 37 °C, the inoculum was removed and fresh 1x BES added. The 

cell media was harvested at 1, 24, 48, 72 and 96 h.p.i. Viral titre was calculated 

by CK plaque assay (2.2.2). Growth titres were averaged from three biological 

replicates.  
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2.3 Reagents 

2.3.1 Expression vectors 

Expression vectors were either cloned or a gift and were used in western blotting 

and/or immunofluorescence experiments (Table 2.4). Construction of vectors is 

described in 2.4 below and confirmed by Sanger sequencing (Source Bioscience) 

(Table 2.17). 

 

Table 2.4 List of plasmids used for immunofluorescence, western blot and mass 
spectrometry. 

Plasmid Expression Tag/ reporter Source 

pEGFPC2-3aB Beau 3a  GFP N-terminal Cloned 

pEGFPN1-3aB Beau 3a GFP C-terminal Cloned 

pEGFPC2-3aM M41 3a  GFP N-terminal Cloned 

pEGFPN1-3aM M41 3a GFP C-terminal Cloned 

pEGFPC2-3bB Beau 3b GFP N-terminal Cloned 

pEGFPN1-3bB Beau 3b GFP C-terminal Cloned 

pEGFPC2-3bM M41 3b GFP N-terminal Cloned 

pEGFPN1-3bM M41 3b GFP C-terminal Cloned 

pEGFPC2-4bB Beau 4b GFP N-terminal Cloned 

pEGFPC2-4bM M41 4b GFP N-terminal Cloned 

pEGFPN1-4bM M41 4b GFP C-terminal Cloned 

pFLAG-CMV2-

3aB 
Beau 3a FLAG N-terminal  

Mark Davis 

(Davies 2009) 
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Plasmid Expression Tag/ reporter Source 

pCAGGS-NS1 IAV NS1 N/A 
Gift from Joe 

James 

peIF-V5-chIRF7 chIRF7-V5 V5 N-terminal 
Gift from Steve 

Goodbourne 

pRL-CMV vector Renilla N/A 

Promega, gift 

from Jess 

Purcell 

pEF1a-FLAG-

chMAVS 
chMAVS-FLAG FLAG  

Gift from Steve 

Goodbourne 

pLUC-chIFNβ-

promoter 

chIFNβ promoter - 

luciferase 

Luciferase C-

terminal 

Gift from Steve 

Goodbourne 

 

2.3.2 Antibodies 

Antibodies were used for labelling of cellular or viral targets for western blotting 

and/or immunofluorescence (Table 2.5). Antibodies were diluted in blocking 

buffer at the specified concentration. 

 

Table 2.5 Primary antibodies used for immunofluorescence and western blot.  

Antibody Target Application Dilution Source 

Anti-dsRNA (J2) dsRNA IF 1:1000 Scicons 

Anti-3a (JH3480) IBV 3a IF/WB 1:1000/1:5,000 

Gift from 

Carolyn 

Machamer 

(Pendleton et 

al. 2005) 
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Antibody Target Application Dilution Source 

Anti-N (48.8) IBV N IF/WB 1:500/1:1000 
Acris 

Antibodies 

Anti-4b 4b (M41) IF/WB 1:50/1:100 

Cambridge 

Research 

Biochemicals 

Anti-GFP GFP   Santa Cruz 

Anti-V5 V5 Tag IF/WB 1:200/1:500 Santa Cruz 

Anti-FLAG (M2) FLAG tag IF/WB 1:500/1:1000 Sigma 

Anti-MDA5 huMDA5 WB 1:200 Sigma 

Anti-MAVS (E-3) huMAVS IF/WB 1:200 Santa Cruz 

Anti-IRF3 (C-20) huIRF3 IF/WB 1:500 Santa Cruz 

Anti-IRF7 (C-20) huIRF7 IF/WB 1:500 Santa Cruz  

Anti-CANDI (48) CANDI IF/WB 1:1000 Santa Cruz 

Anti-RNF5 (G-15) RNF5 IF 1:100 Santa Cruz 

Anti-RPS25 (C-

16) 
RPS25 IF/WB 1:250 Santa Cruz 

Anti-G3BP1 

(611126) 
G3BP1 IF 1:500 Invitrogen 

Anti-G3BP1 G3BP1 IF 1:200 Abcam 

Anti-eIF2a P-eIF2a WB 1:500 GeneTex 

Anti-LAP2 (Y-20)  LAP2 IF 1:200 Santa Cruz  

Anti-β-Actin β-Actin IF/WB 1:10,000 
Cell Signalling 

technology 

Anti-FNDC3a FNDC3a IF 1:200 Santa Cruz 

Anti-SUCGL2 SUCGL2 IF 1:200 Santa Cruz 
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IBV specific antibodies (blue), epitope tag antibodies (red), interferon-related antibodies (green), 

translation-related antibodies (purple), miscellaneous (grey). Clone number for monoclonal 

antibodies are noted in parentheses. 
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2.4 Cloning  

2.4.1 Primers and DNA fragments 

Primers (Sigma) were designed to amplify specific IBV cDNA sequences (Table 

2.6). DNA fragments were designed and ordered from GeneArt (Invitrogen).  

 

Table 2.6 Primers and DNA fragments for accessory protein expression plasmids.  

Primers/DNA 
fragments Direction Sequence (5′ – 3′) Restriction 

Site (Bold) 

GFP-3aB 

FWD 
CATGAAGCTTGATGATCCAAAGTCCCA
CGTCC HindIII 

REV 
GTACCCGCGGTTAGTCTAGACTGTGCC
AAAGGG  SacII 

GFP-3aM 

FWD 
CATGAAGCTTGATGATTCAAAGTCCCA
CGTCC 

HindIII 

REV 
GTACCCGCGGTTAGTCTAGACTGTGAC
AAAGGGTCAG 

SacII 

GFP-3bB 

FWD 
CATGAAGCTTGATGTTAAACTTAGAAG
TAATTATTGAAACTGG 

HindIII 

REV 
GTACCCGCGGTTATTCAATAAATTCAT
CATCACCTG  

SacII 

GFP-3bM 

FWD 
CATGAAGCTTGATGTTAAACTTAGAAG
CAATTATTGAAACTGG 

HindIII 

REV 
GTACCCGCGGTTATTCAATAAATTCAT
CATCACCTG 

SacII 

GFP-4bM 

FWD 
CATGAAGCTTGATGTGTGTGTGTAGAG
AGTATTTAAAATTATTC 

HindIII 

REV 
GTACCCGCGGTTAATCTTTTTTATAAC
TCAACCACAACC SacII 
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Primers/DNA 
fragments Direction Sequence (5′ – 3′) Restriction 

Site (Bold) 

4bB-C2 Fragment 

CATGAAGCTTATGTGTGTGTGTAGAGA
GTATTTAAAATTATTCTTTAATAGCGC
CTCTGTTTTAAGAGCGCATAAGAGTAT
TTATTTTGAGGATACTAATATAAATCC
TCTTTGTTTTATACTCTCCTTTCAAGA
GCTATTAACGGTGTTACCTTTCAAGTA
AGGATCCCATG 

HindIII / 

BamHI 

3aB-GFP 

FWD 
CATGAAGCTTACCATGATCCAAAGTCC
CACGTCC HindIII 

REV 
GTACCCGCGGGTCTAGACTGTGCCAAA
GGG  SacII 

3aM-GFP 

FWD 
CATGAAGCTTACCATGATTCAAAGTCC
CACGTCC 

HindIII 

REV 
GTACCCGCGGGTCTAGACTGTGACAAA
GGGTCAG 

SacII 

3bB-GFP 

FWD 
CATGAAGCTTACCATGTTAAACTTAGA
AGTAATTATTGAAACTGG 

HindIII 

REV 
GTACCCGCGGTTCAATAAATTCATCAT
CACCTG 

SacII 

3bM-GFP 

FWD 
CATGAAGCTTACCATGTTAAACTTAGA
AGCAATTATTGAAACTGG 

HindIII 

REV 
GTACCCGCGGTTCAATAAATTCATCAT
CACCTG 

SacII 

4bM-GFP 

FWD 
CATGAAGCTTACCATGTGTGTGTGTAG
AGAGTATTTAAAATTATTC 

HindIII 

REV 
GTACCCGCGGATCTTTTTTATAACTCA
ACCACAACC SacII 

Start codon (green), Stop codon (red), Kozak sequence (purple). 
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2.4.2 Reverse transcription 

Cellular and viral RNA was isolated from the supernatant of infected cells using 

RNA clean-up protocol from the RNeasy Mini Kit (Qiagen). RNA was first 

incubated with random primer for 5 minutes at 65 °C (Table 2.7). Superscript III 

reverse transcriptase (Life Technologies) was then added to the reaction mix 

(Table 2.8) to reverse transcribe total RNA into cDNA as per the manufacturer’s 

instructions (Table 2.9). 

 

Table 2.7 Reagent mix for first strand cDNA synthesis (I) 

Reagent Volume (μl) 

Random Primer (10 μm) 1 

dNTPs (10 μm) 1 

RNA 5 

Water 6 

 

Table 2.8 Reagent mix for first strand cDNA synthesis (II) 

Reagent Volume (μl) 

First Strand Buffer (Invitrogen) 4 

Dithiothreitol (DTT) (0.1 M) 1 

RNase Out (Life Technologies) 1 

Superscript III reverse transcriptase 

(Life Technologies) 
1 

Water 10 
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Table 2.9 Reverse transcription thermal cycle 

Temperature Time 

25 °C 10 minutes 

50 °C  1 hour 

70 °C  

 
15 minutes 

2.4.3 Polymerase chain reaction 

Polymerase chain reaction (PCR) was used to amplify specific DNA sequences 

in IBV or vaccinia virus (VV) cDNA. PCR was performed using Q5 (NEB) high-

fidelity DNA polymerase (Table 2.10), using a thermal cycler (Applied Biosciences 

2720) and cycle program per the manufacturer’s instructions (Table 2.11). 

 

Table 2.10 Reagent concentrations for PCR 

Reagent Final concentration (50 μl Reaction 
volume) 

Q5 Buffer (5x) (NEB) 1x 

dNTPs (10 mM) 200 μM 

Primers (Forward and back) 25 μM 

Q5 Taq (NEB) 0.02 U/μl 

cDNA 5 μl 
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Table 2.11 PCR thermal cycle 

Cycles Temperature Time 

1 95 °C 2 minutes 

25 

95 °C 30 seconds 

Highest primer Tm -5 °C 30 seconds 

72 °C 
1 minute/kb of template 

length 

1 72 °C 10 minutes 

 

2.4.4 Site-directed mutagenesis 

Site-directed mutagenesis (SDM) was performed using the QuikChange II Site-

Directed Mutagenesis Kit (Agilent) as per the manufacturer’s instructions. Primers 

for SDM were 25-40 nucleotides in length and designed to have a high GC content 

(>40%) and melting temperature (Tm) (>78 °C).  

 

Table 2.12 Reagent concentrations for SDM 

Reagent Final Concentration (Reaction 
volume 50 μl) 

SDM reaction buffer (Aligent) 1x 

dNTPs (Aligent) 10 mM 

Primers (Forward and Reverse) 25 μM 

Pfu Turbo (Agilent) 2.5 units 

Vector  10 ng 
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Table 2.13 SDM thermal cycle 

Cycles Temperature Time 

1 95 °C 1 minute 

16 

95 °C 50 seconds 

60 °C 50 seconds 

68 °C 
1 minute/kb of 

template length 

1 68 °C 7 minutes 

 

The sizes of the PCR products were confirmed by gel electrophoresis (0.6% 

agarose gel). Once confirmed the PCR products were digested with 2 μl of DpnI 

(10 U) to digest methyl groups that will only be present on parent plasmid. 

 

2.4.5 Agarose gel electrophoresis 

DNA was separated and visualised using gel electrophoresis. Each gel contained 

0.8-1% agarose dissolved in 1x Tris-borate EDTA (TBE) buffer (Invitrogen) or 1x 

Tris-acetic acid EDTA (TAE) buffer (Invitrogen) with 1x SYBR Safe 

(ThermoFisher). DNA loading buffer (Table 2.14) was added to each sample and 

loaded into a well. A 1 kb+ DNA ladder (Invitrogen) was added to a separate well 

to determine DNA size. The gel was submerged in TBE or TAE buffer, respectively, 

and a 150V current applied for 1 hour or until effective separation was seen. DNA 

was visualised by exposing the gel to 260 nm UV light.   
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Table 2.14 Recipe for DNA loading buffer 

Reagent Final concentration 

Glycerol 60% v/v 

Ficoll 400 25 µM 

Bromophenol blue 15 mM 

 

2.4.6 Restriction digest 

Restriction digests were performed at 37 °C for 1 hour in the appropriate digestion 

buffer as per NEB instructions (NEB Double Digest Finder). For incompatible 

restriction enzymes, reactions were purified using the Nucleotide Removal Kit 

(Qiagen) and protocol in-between digests. Enzymes were deactivated by heating 

to 50 °C for 10 minutes before ligation and transformation. 

 

2.4.7 Gel extraction/ PCR purification 

PCR products and digested DNA fragments were purified and cleaned using the 

QIAquick PCR Purification Kit (Qiagen). PCR products were diluted in 30 μl of 

water and quantity calculated using the Nanodrop 1000. For purification of DNA 

fragments from digested plasmids, DNA was first separated by gel 

electrophoresis in a 0.8% TAE gel with 4 μl of SYBR Safe (ThermoFisher). DNA 

was extracted from exercised gel segments using the QIAquick Gel Extraction Kit 

(Qiagen) and protocol. DNA was reconstituted in 20 μl of RNase-free water and 

quantified using the Nanodrop 1000.  
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2.4.8 PCR purification 

Plasmid DNA was purified using the PCR purification kit and protocol (QIAGEN) 

as per the manufacturer’s instructions and eluted in 30 µl of RNase-free water.  

 

2.4.9 DNA dephosphorylation 

Digested plasmid was dephosphorylated before ligation to prevent self-ligation 

using shrimp alkaline phosphatase (Promega), per the manufacturer’s 

instructions.  

 

2.4.10 Ligation 

T4 ligase (NEB) was used for ligation per the manufacturer’s instructions (Table 

2.15). An insert: vector molar ratio of 3:1 was used, and the reaction was 

performed at either room temperature for 3 hours or overnight at 4 °C.  

 

Table 2.15 Reagent mix for ligation 

Reagent Volume 

T4 DNA ligase (NEB) 1 µl 

10x DNA ligase buffer (NEB) 2 µl 

Vector DNA 50 ng 

Insert DNA 3:1 Vector: insert ratio 

Nuclease-free water  To final 20 µl volume 
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2.4.11 Transformation 

Plasmids were transformed into DH5α-T1R library competent E. coli (NEB). After 

ligation, 5 μl of the sample was added to 50 μl of competent cells and incubated 

on ice for 30 minutes. The cells were then heat-shocked at 42 °C for 30 seconds 

before incubating on ice for 2 minutes. SOC media (Invitrogen) (350 μl) was 

added to the competent cells and incubated at 37 °C for 1 hour in a shaking 

incubator. After 1 hour, 350 μl of the transformation mix was plated onto Lysogeny 

broth-agar (LB-agar) plates containing ampicillin (100 µg/ml) or kanamycin (50 

µg/ml). The plates were incubated for 16 hours at 37 °C. 

 

Table 2.16 Reagent concentrations for Lysogeny broth 

Component Final concentration 

Bacto tryptone 1% w/v 

Yeast extract 0.5% w/v 

NaCl 170 mM 

 

2.4.12 DNA miniprep 

Colonies were picked from LB-agar plates and placed in 5 ml of LB containing 

either ampicillin (100 µg/ml) or kanamycin (50 µg/ml). Cultures were incubated at 

37 °C on a shaker overnight. Bacterial cultures were placed in a 15 ml falcon and 

centrifuged at 1,000 × g for 5 minutes to pellet the bacteria. Plasmids were then 

purified using the Plasmid Miniprep Kit (Qiagen) and protocol. Plasmids were 
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eluted in 50 μl of sterile RNase-free water. Plasmids were then sequenced by 

Sanger sequencing.  

 

2.4.13 DNA maxiprep 

Colonies were picked and grown in 2 ml of LB containing ampicillin (100 µg/ml) 

or kanamycin (50 µg/ml) for 8 hours. After which, 1 ml was then transferred to 100 

ml of LB containing either ampicillin (100 µg/ml) or kanamycin (50 µg/ml) and 

incubated overnight on a shaker at 37 °C. Plasmids were then extracted and 

purified using the Plasmid DNA Maxiprep Kit (Qiagen) and protocol. Plasmids 

were reconstituted in 50 μl of RNase-free water. DNA concentration was 

determined using the NanoDrop 1000. 

 

2.4.14 Sequencing 

Plasmids were sent to Source Bioscience for sequencing by Sanger sequencing. 

Primers for sequencing of plasmids were provided by Source Bioscience. For 

sequencing of IBV specific sequences, primers were designed and ordered from 

Sigma. The sequences of primers are below (Table 2.17).  
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Table 2.17 Primers used for sequencing of expression vectors and IBV cDNA 

Primer Sequence (5ʹ- 3ʹ) Sequencing 
Region  Direction 

EGFP_C_FWD CATGGTCCTGCTGGAGTTCGTG pEGFPC2 MCS  FWD 

EGFP_C_REV GTTCAGGGGGAGGTGTG pEGFPC2 MCS  REV 

EGFP_N_REV CGTCGCCGTCCAGCTCGACCAG pEGFPN1 MCS  REV 

pEF1a_FWD ATTTGCCCTTTTTGAGTTTGG pEF1a MCS FWD 

CMVF_pCDNA3 CAACGGGACTTTCCAAAATG pcDNA6.1 MCS  FWD 

M42 CACCAACAACAACACCTAG M41 ORF3ab  FWD 

M43 CTTCCATTTTCCTCTAGCG M41 ORF3ab REV 

M46 GCATCCAAGTTATGAGGATTG M41 ORF4b FWD 

M47 GTTAGCGGGCTGGTCCTGTTCC M41 ORF4b REV 

BG-69 CGAAAACGGTGATAATAGAAG Beau-R ORF3ab FWD 

BG-142 AGGGATCAAATACTTCTGTG Beau-R ORF3ab REV 

BG-56 GTTGTCGGCGGGTTTCTTC IBV 3′-end FWD FWD 

93/100 GCTCTAACTCTATACTAGCCT IBV 3′-end FWD REV 

FWD – Forward primer, REV – Reverse primer, MCS – multiple cloning site, Source Bioscience 

primers (blue), in-house designed primers (red) 
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2.5 Transfection 

DF-1 or Vero cells were seeded on coverslips in a 24-well plate, 12-well plate or 

6- well plate (70-80% confluence). Cells were washed once with PBSa and fresh 

growth media added to each well. Cells were transfected with expression vectors 

(Table 2.4), using Lipofectamine 2000 (Invitrogen) at a ratio of 1:3 DNA (μg) to 

lipofectamine (μl) and per the manufacturer’s instructions. After 16-24 hours at 

37 °C, the cells were washed twice with cold PBSa before processing.  
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2.6 Western blotting 

2.6.1 Proteasome inhibitor 

To inhibit the cellular proteasome during infection, 5 – 20 μm of MG132 (Sigma) 

dissolved in DMSO was added to cell media, 6 – 12 hours before harvesting. 

DMSO alone was added in equal volumes as a control. To inhibit the proteasome 

during transfection, media was removed and fresh media containing 5 – 20 μm 

MG132 was added to each well 4 – 8 hours before lysing cells. Mock transfected 

cells were replenished with fresh media containing DMSO. 

 

2.6.2 Cell lysis 

Cells were washed once with cold PBSa before being lysed with cold RIPA lysis 

buffer (Table 2.18) with 1x protease inhibitor cocktail (PIC) (ThermoFisher) added 

immediately before use. Lysis buffer containing phosphatase inhibitor cocktail 

(Sigma) was added for analysis of anti-eIF2a(P) levels. Cells were either 

harvested by adding 100 μl lysis buffer directly to the well or cell were scraped 

into cold PBSa and pelleted at 10,000 x g for 2 minutes before lysis. Cells were 

incubated in lysis buffer on ice for 20 minutes with regular agitation, centrifuged 

at 14,000 x g to pellet debris and lysates stored at -20 °C. 
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Table 2.18 Reagent composition of RIPA lysis buffer 

Reagent Final concentration  

Sodium chloride (NaCl) 5 M 

Trisaminomethane hydrochloric acid 

(Tris-HCl) buffer (pH 7.4) 
1 M 

Igepal 5% v/v 

Sodium deoxycholate (C24H39NaO4) 5% w/v 

Sodium orthovanadate (Na3VO4) 1 M 

Sodium fluoride (NaF) 1 M 

PIC (added immediately before use) 1x 

 

2.6.3 SDS-PAGE 

Cell lysates were denatured using 1x Laemmli Sample Buffer (BIO-RAD) 

containing 5% Beta-mercaptoethanol and heating at 80 °C for 10 minutes. 

Samples were then loaded onto a Mini-PROTEAN TGX 4% - 20% gradient 

Precast gel (BIO-RAD) with Tris/Glycine SDS running buffer (Table 2.19). The gel 

was electrophoresed at 150V for 50 minutes. 

 
Table 2.19 SDS Running Buffer 

Reagent Final Concentration 

Glycine 1.92 M 

Tris-HCl buffer (pH 7.4) 
247 mM 

 

SDS 34 mM 
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2.6.4 Western Blotting 

Protein samples were transferred onto a 0.2 µm nitrocellulose membrane (BIO-

RAD) using the Trans-Blot Turbo System (BIO-RAD) and 1x Trans-Blot turbo 

transfer buffer (BIO-RAD). Membranes were blocked for 1 hour at room 

temperature or overnight at 4 °C in either 5% milk powder (w/v) (Marvel) or 2% 

fish gelatine (w/v) (Sigma), both diluted in 0.1% Tween in PBSa (PBS-T). 

Membranes were labelled with primary antibodies (Table 2.5) diluted in either 5% 

milk powder or 2% fish gelatine blocking solution for 1 hour and then washed 

three times for 15 minutes in PBS-T. Secondary fluorescent IRDye antibodies (LI-

COR) were added at a concentration of 1:10,000, diluted in PBS-T for 1 hour in 

the dark. Membranes were washed three times with PBS-T for 15 minutes and 

then washed once with sterile water. Membranes were visualised and quantified 

using the Odyssey Clx Imaging System and Image Studio software (LI-COR). The 

fluorescence of the protein of interest was normalised against actin or a viral 

protein, giving semi-quantification of protein levels. 
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2.7 Indirect Immunofluorescence 

2.7.1 Fixation 

DF-1 or Vero cells were seeded on glass coverslips in a 24-well plate (70-80% 

confluency). Cells were inoculated with 125 µl of IBV or transfected with 0.5 - 2 

µg of an expression vector. Cells were washed once with PBSa and then fixed for 

20 minutes with 0.5 ml of 4% paraformaldehyde (PFA) in PBSa. For staining 

mitochondria, cells were incubated with MitoTracker Red CMXRos 

(ThermoFisher) at a final concentration of 400 nM in media for 30 minutes before 

fixing.  

 

2.7.2 Labelling 

For intracellular labelling, cells were permeabilised with 0.1% Triton X-100 

(Sigma) in PBSa for 10 minutes. After permeabilisation, cells were washed twice 

with PBSa and blocked for 1 hour using 0.5% BSA in PBSa on a shaker at 4 °C. 

Subsequently, cells were incubated with primary antibody (Table 2.5) for 1 hour, 

diluted to a working concentration in 0.5% BSA in PBSa. For labelling of IBV 4b, 

cells were incubated with anti-4b overnight at 4 °C. Cells were then washed three 

times for 5 minutes with PBSa. Alexa Fluor secondary antibodies (Invitrogen) 

were diluted in 0.5% BSA in PBSa to 1:500 and cells incubated in the dark for 1 

hour on a shaker. Cells were washed three times for 5 minutes with PBSa. The 

nuclei of the cells were labelled with DAPI (4',6-diamidino-2-phenylindole) 

(1:20,000) or TO-PRO-3 iodide (1:10,000) (ThermoFisher) diluted in sterile water 

or PBSa respectively. Cells were washed once with sterile water for 5 minutes 
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then mounted upside down onto glass microscope slides with Vectashield 

Antifade Mounting Media (Vector Laboratories) and sealed with nail varnish. Cells 

were visualised and imaged using a Leica SP5 confocal microscope. 

 

2.7.3 Image Analysis 

Fluorescence signal was measured using the ImageJ software and Coloc2 plug-

in. A region of interest was selected and levels of each fluorescence signal 

quantified. Colocalisation of the signal was also calculated using the Coloc2 plug-

in. A region of interest was selected and percentage of the fluorescent signal that 

colocalises with a secondary signal calculated. In total, colocalisation was 

measured in 20 randomly selected cells, and average percentage determined.  
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2.8 Immunoprecipitation 

2.8.1 Cell lysis 

Cells were infected or transfected as described in 2.5 above. Cells were washed 

once with cold PBSa and then harvested in 1 ml of cold PBSa and centrifuged at 

2,500 x g for 2 minutes. Pierce lysis buffer (25 μl/cm2) (Table 2.20) with 1x 

Protease Inhibitor Cocktail (PIC) was added directly to the cells and placed on ice 

on a shaker for 20 minutes with extensive pipetting every 5 minutes. For lysis of 

cells for dsRNA immunoprecipitation, RIP RNA lysis buffer (25 μl /cm3) (Table 

2.21) was used with fresh 1x PIC and RNase (Invitrogen) added. 

 

Table 2.20 Reagent composition of Pierce lysis buffer 

Reagent Final concentration 

Tris-HCL buffer (pH 7.4) 25 mM 

NaCl 150 mM 

EDTA 1 mM 

Igepal 1% v/v 

Glycerol 5% v/v 

PIC (added immediately prior to use) 1x 
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Table 2.21 Reagent composition of RNA RIPA buffer 

Reagent Final concentration  

NaCl 100 mM 

Tris-HCl (pH 7.4) 10 mM 

EDTA 1 mM 

Igepal 0.5% v/v 

PIC (added immediately prior to use) 1x 

RNaseI (added immediately prior to 

use) 
100 units/ml 

 

2.8.2 Immunoprecipitation (IBV 4b) 

Cell lysates were incubated with 10 µl of anti-4b overnight at 4 °C with regular 

agitation. Samples were incubated for 4 hours with 50 µl of Protein G Dynabeads 

(ThermoFisher). Dynabeads were separated using a magnetic separator and 

supernatant discarded. Beads were washed three times with IP wash buffer 

(Table 2.22). Protein-antibody complexes were eluted using 50 µl of 200 mM 

glycine (pH 2.5).   

 

Table 2.22 Reagent composition of IP wash buffer 

Reagent Final Concentration 

Tris-HCl (pH 7.4) 10 mM 

NaCl 150 mM 

EDTA 0.5 mM 
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2.9 Reverse genetics system 

2.9.1 pGPT vectors 

Plasmids (pGPT) containing the desired IBV mutation with a xanthine-guanine 

phosphoribosyltransferase (gpt) gene from E. coli were constructed. The pGPT 

vector is used to insert the mutation into a recombinant vaccinia virus (rVV) 

containing the full-length IBV cDNA genome. The pGPT-FullTRS4b was 

constructed by ligating a DNA fragment containing a full TRS (CTGAACAA) 

sequence (GeneArt, Invitrogen) into a SalI digested pGPT vector. For the 

synthesis of pGPT-Sc3aM, primers were designed to amplify a 678bp fragment 

from M41 cDNA. The 3a start codon was situated in the middle of the DNA 

fragment. This fragment was then cloned into a pGPT vector using SalI restriction 

sites. Site-directed mutagenesis was then used to mutate the 3a start codon from 

ATG to AAC in the pGPT vector (Table 2.23). 

 

Table 2.23 DNA fragments and primers for the synthesis of pGPT expression 
vectors.  

Primer/ DNA 
fragments Sequence (5′ – 3′) Mutation 

M41 3a 

Primers 

GTACGTCGACCCCAAAAATTACCTCCTCTG 
CATGGTCGACGCTACCAGACTTTGACAAATTC  

Sc3aAUG 

SDM Primers 

CAGACCTAAAAAGTCTGTTTAAACATTCAAAGTCC
CACGTCC 
GTCTGGATTTTTCAGACAAATTTGTAAGTTTCAGG
GTGCAGG 
 

ATG > AAC 

SalI restriction sites (purple), mutated sequences (red), non-canonical TRS (green).  
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2.9.2 Transfection and infection 

Recombinant vaccinia virus (VV) containing the M41 cDNA was sonicated for 2 

minutes and diluted in 500 μl of EMEM to an MOI of 0.2. Vero cells seeded in a 

6-well plate (70% confluence) were infected with rVV-M41-K in duplicate and left 

for 2 hours at 37 °C and 5% CO2. Vero cells were washed twice with OPTI-MEM 

(Invitrogen) and transfected with 10 μg of pGPT vector using Lipofectin (Life 

Technologies) at a ratio of 1:2.4 DNA (μg): lipofectamine (μl) per the 

manufacturer’s instructions (Figure 2.1A). Vaccinia replicates in the cytoplasm of 

the cell. The cells were incubated at 37 °C for 90 minutes then washed with and 

5 ml of fresh 1x EMEM added. After overnight incubation at 37 °C, MXH selection 

reagents (75 μM mycophenolic acid (MPA), 165 μM Xanthine, 184 μM 

Hypoxanthine) were added to each well and incubated for a further two days at 

37 °C to allow the first homologous recombination event to occur (Figure 2.1B). 

After incubation, the cells were carefully scraped off the wells and pipetted into a 

screw cap vial. Samples were stored at -20 °C.  

 

2.9.3 Transient dominant selection 

Vero cells were inoculated with serial dilutions of the recombinant VV generated 

above (10-1, 10-2, 10-3) in 500 μl of 1x EMEM. The inoculum was removed after 2 

hours at 37 °C. Cells were then overlaid with 1% agar, 1x EMEM and MXH 

selection media (Table 2.24) and incubated for three days. Cells were stained 

with 0.01% neutral red in 1x EMEM and 1% agar and placed back in the incubator 

for 24 hours. Single isolated plaques were picked using a cut 1 ml pipette tip and 
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stored in 400 μl of 1x EMEM at -20 °C. Further two rounds of plaque purification 

in the presence of MXH was performed using isolated plaques from the previous 

round (Figure 2.1C). The plaques were then grown in the absence of selection 

reagents, to induce the second homologous recombination event, this is 

performed three times using plaques from the previous round (Figure 2.1D). 

 

Table 2.24 MXH selection media for TDS 

Reagent Final Concentration 

2x E-MEM 1x 

2% Agar 1% w/v 

MPA (Mycophenolic Acid) 75 μM 

Xanthine 165 μM 

Hypoxanthine 184 μM 

 

 

2.9.4 BHK stocks 

Two recombinant VV isolates with the desired mutation in the IBV cDNA were 

selected for further processing. BHKs were seeded into 11x T150s flasks (70-80% 

confluency). Each flask was inoculated with 2 ml of rVV at an MOI of 0.1 diluted 

in 1x GMEM. The cells were incubated at 37 °C with the inoculum for 2 hours with 

regular rocking. After incubation, 25 ml of GMEM was added, and flasks were 

incubated until extensive CPE was visible. BHK cells were agitated to release any 

attached cells. The supernatant was pooled and transferred to 50 ml falcons. Cells 

were pelleted by centrifugation at 500 x g for 20 minutes at 4 °C. The supernatant 
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was removed and the cell pellet resuspended in 11 ml of TE buffer (pH 9.0) (Table 

2.25). A stock of 1ml of rVV was stored at -80 °C. 

 

2.9.5 Ministocks 

After plaque purification, ministocks of the recombinant VV were grown for GPT 

screening and mutation sequencing. Recombinant VV with the most diverse 

lineage possible were screened to increase the chance of a identifying a 

successful recombination event. Vero cells were infected with 150 μl of rVV in 500 

μl 1x BES for 2 hours at 37 °C. Afterwards, 1x BES was added and cells incubated 

for four days or until cytopathic effect (CPE) was visible. The cells were then 

carefully scraped off the well into the media and placed in a screw-capped vial. 

Viral stocks were deactivated and DNA extracted using the QIAmp DNA mini kit 

(Qiagen) and protocol. Extracted DNA was then screened by PCR for the absence 

or presence of the GPT gene and the presence of the IBV region containing the 

desired mutation (Figure 2.1E). Any samples lacking GPT and containing the 

region of interest were sequenced to confirm the mutation in the recombinant VV.  
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2.9.6 Purification and DNA extraction 

Cells were freeze-thawed three times and sonicated for 2 minutes to extensively 

lyse the cells. Lysates were centrifuged at 1,200 × g at 4 °C for 10 minutes to 

remove the cell nuclei. The supernatant was removed, and 13 ml of TE (pH 9.0) 

buffer added. The rVV was then partially purified through a sucrose gradient. The 

supernatant was layered onto 16 ml of 30% sucrose diluted in TE (pH 9.0) buffer 

(Table 2.25) and ultracentrifuged at 36,000 x g for 1 hour at 4 °C. The pellet was 

resuspended in 10 ml TE (pH 9.0) buffer. Proteinase K buffer (Table 2.26) 

containing 0.2 mg/ml of Proteinase K was added in equal volume to the partially 

purified rVV in TE buffer and was incubated at 50 °C for 2.5 hours. After digestion, 

rVV DNA was extracted from the samples using phenol/chloroform 

(ThermoFisher).  The samples were divided into two 10 ml aliquots, and 10 ml of 

phenol-chloroform containing 8-hydroxyquinoline was added. The samples were 

Figure 2.1 Schematic diagram of the M41-K reverse genetics system. 
(A) A vector containing the GPT gene along with the desired mutation was transfected 

into Vero cells along with recombinant VV containing the IBV M41-K cDNA genome. (B) 

The first homologous recombination event occurs between the pGPT vector and IBV 

cDNA due to identical flanking regions. (C) Successful recombination is selected for by 

treating cells with MXH selection media. (D) After three rounds of plaque purification, the 

cells are treated in media in the absence of MXH, and the highly unstable intermediate 

undergoes a second recombination event. (E) Recombinant VV are sequenced for the 

presence of the desired mutation and screened for the absence of the GPT gene. (F) CK 

cells are transfected and infected with extracted DNA from successful rVV, Fowl-pox 

virus and pCI-Neo to induce expression of IBV cDNA under the control of a T7 promoter. 

Rescued recombinant IBV are passaged and then sequenced. 
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extensively mixed and then centrifuged at 1,200 × g for 15 minutes at 4 °C. The 

upper aqueous phase was removed, being careful not to remove the interphase, 

into a new 50 ml falcon. The phenol-chloroform extraction was repeated to purify 

the DNA. After the second extraction, a chloroform extraction was used to purify 

the DNA further and remove salts and sugars. The DNA was then precipitated by 

adding 0.1 volume of 3 M sodium acetate and 2.5 volumes of 100% ethanol (-

20 °C). Samples were centrifuged for 30 minutes at 2,300 × g at 4 °C. The 

supernatant was discarded, and the pellet washed for 5 minutes with 10 ml of 

70% ethanol (v/v) at 4 °C. Samples were centrifuged for 30 minutes at 2,300 × g. 

The ethanol supernatant was discarded, and any remaining ethanol carefully 

removed using blue roll. The pellet was air dried for 30 minutes before re-

suspending in 100 µl sterile water. The pellet was left overnight at 4 °C to dissolve 

the DNA completely. DNA was quantified using the NanoDrop 1000.  
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Table 2.25 Recipe for TE buffer 

Reagent Final Concentration  

Tris-HCl (pH 9.0) 10 mM 

EDTA 1 mM 

  

Table 2.26 Recipe for proteinase K buffer (2x) 

Reagent Final Concentration  

NaCl 400 mM 

Tris-HCl (pH 7.4) 200 mM 

EDTA 10 mM 

SDS 0.4 mM 

 

 

2.9.7 Recombinant IBV rescue 

CK cells were plated in a 6-well plate (50-60% confluence). Cells were infected 

with 1 ml of recombinant Fowlpox virus that expresses the bacteriophage T7 RNA 

polymerase (rFPV-T7) (Britton et al. 1996) at an MOI of 10. Cells were incubated 

for one hour at 37 °C and then washed once with OPTIMEM (Invitrogen). Cells 

were transfected with 10 μg of rVV DNA and 5 μg of a plasmid expressing the IBV 

N protein (pCi-Nuc). Protein N is expressed in complement as it required for the 

synthesis and egress of new virions (Siu et al. 2008). Plasmids were diluted in 1.5 

ml of OPTI-MEM (Invitrogen) and then added dropwise to 50 μl of Lipofectin in 

1.5 ml of OPTI-MEM. The transfection solution was added to the cells and then 

incubated overnight at 37 °C (Figure 2.1F). Transfection media was removed, 
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and 3 ml of 1x BES added. The cells were then incubated at 37 °C until extensive 

rFPV CPE was visible. The supernatant was harvested and rFPV removed by 

filtering through a 0.22 μm filter. The resulting solution was stored at -80 °C. To 

determine whether rIBV was successfully rescued, samples were serially 

passaged three times to increase viral titre. CK cells (6-well plate, 70-80 

confluence) were inoculated with 1 ml of supernatant and incubated for 1 hour at 

37 °C followed by addition of 2 ml of 1x BES. Cells were incubated for 2-3 days 

at 37 °C until CPE was visible. The supernatant was removed and passaged a 

further two times. After the third passage, RNA was extracted from the viral 

samples and screened to confirm rescue of rIBV and to identify the presence of 

the desired mutation.   
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2.10 Liquid Chromatography-Mass Spectrometry/Mass 

Spectrometry 

2.10.1 Transfection 

HEK293T cells were grown to 40 - 50% confluency in 10 cm2 culture plates. Cells 

were transfected with plasmids expressing either GFP or GFP-tagged accessory 

proteins. Plasmids were chemically transfected using calcium phosphate. 

Plasmids were diluted in 2 M CaCl2 (w/v) and then added dropwise to 2x Hank's 

Balanced Salt Solution (HBBS) recipe. The transfection solution was incubated at 

room temperature for 25 minutes and then added dropwise to the cells. Cells were 

incubated for 16 hours and were then washed once with cold PBSa and lysed 

with co-IP lysis buffer (Table 2.27). 

 

Table 2.27 Co-IP lysis buffer 

Reagent Final Concentration 

Tris-HCl buffer (pH 7.4) 10 mM 

NaCl 150 mM 

EDTA 0.5 mM 

Igepal 0.5% v/v 

 

 

2.10.2 GFP capture 

GFP was immunoprecipitated using the GFP-Trap (ChromoTek) Kit and protocol. 

Each sample was incubated overnight at 4 °C with GFP beads. Beads were 
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centrifuged at 500 x g for 5 minutes and then washed three times with 1x Dilution 

Buffer (Table 2.28). Proteins were eluted from the beads in 50 μl glycine (50 mM, 

pH 2.7) for 5 minutes with 1 minute of vortexing. To concentrate the samples, the 

elution step was repeated in an additional 50 μl of glycine. Samples were stored 

at -20 °C until processing at the University of Liverpool.  

 

Table 2.28 1x Dilution buffer  

Reagent Final Concentration 

Tris-HCl (pH 7.5) 10 mM 

NaCl 150 mM 

EDTA 0.5 Mm 

Sodium Azide 0.018% w/v 

 

 

2.10.3 LC-MS/MS 

Eluted samples were processed for liquid chromatography-mass 

spectrometry/mass spectrometry by Dr Stuart Armstrong or Dr Weining Wu. 

Samples were diluted 1:1 volume with 25 mM ammonium bicarbonate (NH4HCO3). 

Rapigest SF surfactant (Waters) was added to increase protein digestion at a final 

concentration of 0.05% (w/v) and boiled for 10 minutes at 80 °C. Proteins were 

reduced with 3 mM dithiothreitol (Sigma) and heated at 60 °C for 10 minutes. The 

samples were returned to room temperature, and 9mM iodoacetamide (Sigma) 

added for 30 minutes in the dark to alkylate the proteins. Proteins were trypsinised 

with 0.2 μg of proteomic grade trypsin (Sigma) and left to incubate at 37 °C 
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overnight. The resulting peptide samples were then treated with 1% (v/v) 

Trifluoroacetic acid (TFA) and heated to 37 °C for 2 hours to precipitate the 

Rapigest. Samples were centrifuged at 12,000 x g for 60 minutes at 4 °C to 

remove the Rapigest precipitate. Peptides were concentrated and desalted using 

C18 Stage tips (ThermoFisher Scientific) and then samples dried using a 

centrifugal vacuum concentrator (Jouan). Resulting precipitates were 

resuspended in solution containing 0.1% (v/v) trifluoroacetic acid and 3% (v/v) 

acetonitrile. For high-performance liquid chromatography (HPLC), the on-line 

nanoACQUITY-nLC system (Waters) was used. The Nano ACQUITY UPLCTM 

BEH130 (C18, 15 cm x 75 μm, 1.7 μm) (Waters) analytical column was used at a 

flow rate of 300 nl/minute to separate 2 μl of the peptide sample against a 3−40% 

acetonitrile in 0.1% formic acid gradient for 50 minutes ramping up to a gradient 

of 40−85% acetonitrile in 0.1% formic acid for 3 minutes. The mass spectrometer, 

LTQ-Orbitrap Velos (ThermoFisher Scientific) was used to acquire the full-scan 

MS spectra (MS1) at a resolution of 30,000. The 20 most intense ions were 

selected for a tandem in space mass analysis and were fragmented by collision-

induced dissociation (CID) before spectra detection by the LTQ ion trap.  

 

2.10.4 Analysis 

MS spectra data was analysed by label-free quantification using the MaxQuant 

software (MQ) and searched against a human protein database (Uniprot release-

2013_03) using the Andromeda search engine. The false discovery rate (FDR) 

was set to 0.01, and a decoy database was included in the search to remove 
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false-positives. LFQ results were further processed by the Perseus software (MQ) 

to determine significance between GFP alone compared to GFP tagged 

accessory proteins. Statistical T-test analysis was used to analyse intensity 

values. Proteins with a p-value <0.05 and a fold change >2 (Log2) were 

considered statistically significant. Identification and statistical analysis of the 

mass spectrometry data were performed by either Stuart Armstrong or Weining 

Wu. 

 

Downstream analysis of mass spectrometry data was performed by me. Proteins 

were analysed using both String DB (v10.0) to identify interacting proteins and 

Panther DB to group similar proteins based on GO (v1.2) and PANTHER (v11.1) 

annotations.     
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2.11 Interferon methods 

2.11.1 Interferon luciferase reporter assay 

DF-1 cells seeded in a 24-well format (80-90% confluence) were washed once 

with PBSa, and 500 μl of 1x DMEM (10% FCS) added to each well. OPTI-MEM I 

reduced serum media (Invitrogen) was added to 500 ng of pFLAG-CMV2-3aB, 

pEGFPC2-3aB, pEGFPC2-3aM, pCAGGS-NS1-IAVPR8 or pEGFPC2, 80 ng of 

chIFNβ-luciferase reporter and 40 ng of Renilla luciferase plasmid pRL-CMV. The 

reporter construct consists of a chicken IFN-β promoter sequence upstream of a 

chemiluminescent Firefly luciferase gene. In a separate tube, 50 μl of OPTI-MEM 

was added to 7.5 μl of lipofectamine 2000 (Invitrogen). The samples were 

incubated at room temperature for 5 minutes, after which the DNA mixture was 

added to the lipofectamine in a drop-wise manner and incubated for a further 25 

minutes. During incubation, the cell media was replaced with 400 μl of fresh 1x 

DMEM (10% FCS). The transfection mixture was added to the well, drop-wise 

and incubated for 16 hours at 37 °C. Poly(I:C) (dsRNA analogue) at a final 

concentration of 5 μg/ ml was transfected into each well 8 hours before lysis. In 

one tube 100 μl of OPTI-MEM was added to the poly(I:C) (Invivogen), and in a 

separate tube, 100 μl of OPTI-MEM added to 7.5 μl of lipofectamine 2000. The 

DNA and lipofectamine mixtures were incubated at room temperature for 5 

minutes, the lipofectamine mixture was added dropwise to the poly(I:C) and 

incubated for a further 25 minutes. The transfection mixture was added directly to 

the well in a drop-wise manner and incubated at 37 °C for 2 hours to induce the 

interferon response. Afterwards, the media was removed and replaced with fresh 
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1x DMEM (10% FCS) and incubated at 37 °C for a further 16 hours. After 16 hours, 

the media was removed, and the cells washed once with PBSa. The Dual-Glo 

Luciferase Reporter Assay System (Promega) was used for lysis and to measure 

luminescence activity. Passive lysis buffer (100 μl) was added to each well. The 

plates were subsequently frozen for 30 minutes at -80 °C. The plates were thawed 

at room temperature on a shaker. Afterwards, 10 μl of lysate was added to a well 

of an opaque white 96-well plate. Firefly and Renilla luciferase were activated with 

the Dual-luciferase kit by adding 50 μl of LAR II and then Stop-and-Glo buffer 

sequentially. Luminescence was measured using the Glo-Max plate reader. 

Luminescence data was normalised using Renilla luminescence levels. Lysates 

(26 μl) were separated by SDS-PAGE and immunoblotted with anti-3a, as 

described in 2.6, to confirm successful expression of pEGFPC2-3aB and pFLAG-

CMV2-3a.  

 
2.11.2 Chicken interferon MxA reporter assay 

Chicken type I interferon (chIFNβ) levels were quantified using a quail reporter 

cell line, CEC-32, expressing luciferase under the control of the MxA promoter 

(Peter Staeheli) (Schwarz et al. 2004). CK cells were seeded in a 24-well plate 

(70-80% confluent). Cells were washed twice with PBSa and infected with IBV at 

an MOI of 0.1 for 1 hour. The inoculum was removed and replaced with 1x BES 

media. Cells were incubated and supernatant harvested at the specified time. 

Samples were heat treated for 30 minutes hour at 56 °C to inactivate IBV before 

sampling. Samples were serially diluted and incubated with CEC-32 cells (96-well 

plate, 70-80% confluence) for 6 hours. Luciferase activity was then measured 
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using the Stop-and-Glo Luciferase Kit and protocol (Promega). Interferon levels 

were measured against a standard curve using two-fold dilutions of recombinant 

chIFNb starting at 25 U/ml (Abbexa).  
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2.12 Apoptosis methods 

2.12.1 Caspase 3/7 activity assay 

DF-1 cells seeded in a 24-well plate (70-80% confluence) were transfected or 

infected. Cells were either mock infected or infected with IBV at an MOI of 4 for 1 

hour. The inoculum was replaced with 1x DMEM (10% FCS). Transfected cells 

were either transfected with an empty plasmid or a plasmid expressing a tagged 

accessory protein as described in 2.5. As a positive control, staurosporine was 

added at a concentration of 10 µM in DMEM for 6 hours. Caspase 3/7 activity was 

measured using the Caspase-Glo 3/7 assay (Promega) and protocol. At the 

allocated time post infection/transfection, 900 µl of media was removed, and an 

equal volume of caspase substrate added directly to the cells. Cells were shaken 

for 1 minute and then incubated for 30 minutes in the dark. Cleavage of caspase-

Glo substrate by caspase 3/7 results in aminoluciferin release and subsequent 

luciferase activity. Samples were added to an opaque 96-well plate, and caspase 

luminescence measured using the GloMAX luminometer (Promega).   

 

2.12.2 Annexin-V-FITC FACS assay 

DF-1 cells seeded in a 12-well plate (70-80% confluence) were transfected or 

infected. Cells were either mock infected or infected with IBV. As a positive control, 

staurosporine was added at a concentration of 10 µM in DMEM for 6 hours. After 

infection, cell media was harvested and cells detached using Accutase Cell 

Detachment solution (BD Bioscience) in PBS. The cell media and detached cells 

were pooled and centrifuged at 1,200 × g and then washed once with cold PBSa 
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and re-centrifuged at the same speed for 5 minutes to pellet the cells. Apoptosis 

was measured using the Annexin V Apoptosis Detection kit II (BD Bioscience) 

and protocol. The cell pellet was resuspended in 1ml 1x binding buffer and 100 µl 

of the sample transferred to a FACS tube. Five µl of Annexin V antibody was 

added to the sample and vortexed. Samples were incubated for 25 minutes at 

4 °C on a rotator in the dark. Afterwards, 5 µl of Propidium iodide was added and 

samples incubated for 5 minutes. An additional 400 µl of 1x Binding Buffer was 

added to each sample. Cells were sorted, and fluorescence was measured and 

analysed using the MACS QUANT flow cytometry. Data analysis was completed 

using FCS Express (v5.0).  
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2.13 Stress granule methods 

2.13.1 SG induction 

Vero cells were seeded in a 24-well plate (70-80% confluence) and then 

transfected or infected. During infection experiments, cells were either mock 

infected or infected with IBV. Transfected cells were transfected with either an 

empty control plasmid or a plasmid expressing a tagged accessory protein. As an 

SG positive control, sodium arsenite was added 45 minutes before fixation at a 

final concentration of 0.5 mM. Stress granules were labelled with anti-G3BP1, a 

stress granule marker, and visualised by confocal microscopy. For each sample, 

20 GFP positive cells were randomly selected and the number of stress granule 

positive cells counted. Any cells containing a single SG were considered SG 

positive. 

 

2.13.2 Gene expression and translation efficiency 

DF-1 or Vero cells seeded in a 24-well plate (70-80% confluence) were 

transfected with pRL-CMV, a Renilla luciferase expressing plasmid under control 

of a CMV promoter, along with either pEGFP-C2 or pEGFPC2-4b. After 16 hours, 

cells were washed once with PBSa, cells lysed and Renilla activated using the 

Stop and Glo (Promega) kit and protocol. Luminescence was measured using the 

GloMax 96-microplate luminometer (Promega). Background luminesce was 

determined by adding Renilla to media alone and subtracted from all samples.  
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2.14 Bioinformatics analysis 

2.14.1 Sequence Alignment 

Complete IBV sequences were downloaded from the VIPR Coronavirus database 

(http://www.viprbrc.org) (Jan 2017) and aligned using the BioEdit (Staden) 

program. Sequences were analysed using the unsorted six-frame translation tool 

to locate ORF4b. ORF4b sequences were then compiled into a new database for 

each IBV strain. ORF4b sequence identity and similarity were calculated by 

comparing all sequences against each other using the SIAS tool 

(imed.med.ucm.es/). 

 

2.14.2 Eukaryotic Linear Motif Search 

The complete M41 4b peptide sequence was entered into an ELM search, and 

results organised by the probability of the motif sequence occurring randomly 

(elm.eu.org/search/).  
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3. The role of accessory protein 3a 

3.1. Introduction 

IBV 3a is a 6 kDa accessory protein expressed from the first ORF in mRNA 3 (Liu 

et al. 1991). Previous work has shown that 3a is not required for replication in 

vitro, in ovo and ex vivo organ culture (Hodgson et al. 2006). Due to the high 

peptide sequence conservation between IBV strains, 3a is believed to be 

important and may be involved in pathogenicity (Jia et al. 1997). In vitro studies 

in Vero cells have shown that during infection, 3a localises to two main cellular 

compartments, the cytoplasm where it is diffuse and the smooth ER where it is 

membrane-bound, due to a transmembrane domain at the N-terminus (Pendleton 

et al. 2005). IBV 3a has also been shown to closely localise with the small GTPase, 

MxA (Pendleton et al. 2005). Kint et al. showed that 3a plays a role in both 

inhibiting and stimulating interferon-beta (IFNb) expression in a time-dependent 

manner, with recombinant IBV lacking ORF3a expressing higher levels of IFNβ 

transcript 24 h.p.i, while at 36 h.p.i IFNβ translation was inhibited (Kint et al. 2015). 

The mechanism of action of how IBV 3a modulates IFNb expression is not known. 

In this chapter, the mechanism of action of 3a on IFNβ expression is investigated. 

Utilising a chicken(ch)IFNβ luciferase assay, IBV 3a is shown to have a dose-

dependent effect on IFNβ expression, and can both stimulate and inhibit 

expression by targeting two IFN signalling proteins, MAVS and IRF7. IBV 3a can 

both increase levels of MAVS while simultaneously decreasing levels of IRF7 in 

a dose-dependent proteasome-dependent manner. Furthermore, mass 

spectrometry has identified two interacting cellular partners for 3a which play a 
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role in regulating MAVS and IRF7 turnover, RNF5, and CAND1, respectively. 

RNF5 targets MAVS for proteasomal degradation while CAND1 is an E3-SCF 

ligase regulatory protein, a ligase complex that targets IRF3/7 for degradation 

(Zheng et al. 2002, Prakash et al. 2006, Zhong et al. 2010).  

 

Results 

3.2. Generation of GFP-tagged 3a expression vectors 

Vectors for expression of GFP-tagged 3a from Beau-R (3aB) and M41-CK (3aM) 

were generated for in vitro IFN assays, immunofluorescence visualisation and for 

mass spectrometry protein purification. The expression vector, pFLAG-3aB was 

previously generated by Mark Davies (Davies 2009). Expression vectors with 

GFP-tagged at either the N- or C- terminus of 3a for both Beau-R and M41-CK 

were generated. For the generation of these vectors, RNA from Beau-R and M41-

CK was isolated and reverse transcribed into cDNA using random primers. 

Complementary primers with flanking restriction sites were designed to amplify 

ORF3a by PCR. Resulting PCR products were purified and digested with the 

relevant restriction enzymes. Expression plasmids, pEGFPC2 (Clontech) and 

pEGFPN1 (Clontech), were digested with the same enzymes and purified by gel 

extraction. Digested expression plasmids and PCR products were ligated and 

transformed into competent cells. Vectors were purified and sequenced using 

Sanger sequencing. Four expression vectors, pEGFPC2-3aB, pEGFPC2-3aM, 

pEGFPN1-3aB, and pEGFPN1-3aM were generated (Figure 3.1). To confirm the 

generation of GFP-tagged 3a expression vectors, the molecular weight of GFP-
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3aM, 3aM-GFP, GFP-3aB, and 3aB-were compared to GFP. Vero cells were 

transfected with each vector, and after 16 hours, cells were lysed, separated by 

SDS-PAGE, transferred to a membrane and labelled with anti-GFP. The molecular 

weight of GFP-tagged 3aB and 3aM were identified as expected (34 kDa) (Figure 

3.1E).  
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Figure 3.1 Plasmid map and confirmation of expression of the GFP-tagged 3a 
expression vectors. 
(A) pEGFPC2-3aB (B) pEGFPN1-3aB (C) pEGFPC2-3aM (D) pEGFPN1-3aM (E) Vero 

cells were transfected with pEGFPC2, pEGFPC2-3aB/3aM, pEGFPN1-3aB/3aM 

expression vectors. After 16 hours, cells were lysed, proteins separated by SDS-PAGE 

and transferred to a membrane. Membranes were incubated with anti-GFP. 

A 
B 

C D 

E 
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3.3. Testing anti-3a (JH3480) 

Anti-3a (JH3480) was a gift from Carolyn Machamer. The antibody was tested 

against 3a expression to confirm this antibody can label both M41 and Beaudette 

isoforms of 3a. DF-1 cells were transfected with 3aB-FLAG or GFP-3aM 

expression vectors. After 16 hours, cells were lysed, proteins separated by SDS-

PAGE, transferred to a membrane and labelled with anti-3a, anti-FLAG or anti-

GFP. Blots were labelled with anti-GFP or anti-FLAG to confirm expression of 

GFP-3aM or 3aB-FLAG, with a band appearing at approximately ~35 kDa and 8 

kDa, respectively. Anti-3a was also able to label both GFP-3aM and 3aB-FLAG, 

confirming that anti-3a can label both 3aB and 3aM by western blot (Figure 

3.2A,B). Anti-3a failed to label a band in the pFLAG control, suggesting anti-3a 

was labelling 3a expression only (Figure 3.2C). Anti-3a was then tested against 

3aB-FLAG expression. DF-1 cells were transfected with the 3aB-FLAG 

expression vector, and after 16 hours, cells were fixed, permeabilised and labelled 

with anti-3a. The antibody could label 3a in DF-1 cells (Figure 3.2D), confirming 

that anti-3a can label both 3a by indirect immunofluorescence. 
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Figure 3.2 Anti-3a can label both 3aB and 3aM.  
DF-1 cells were transfected with either (A) GFP-3aM, (B) 3aB-FLAG, (C) pFLAG or 3aB-

FLAG expression vectors. After 16 hours, cells were lysed, proteins separated by SDS-

PAGE, transferred to a membrane and labelled with anti-3a, anti-GFP or anti-FLAG. (C) 

DF-1 cells were transfected with 3aB-FLAG expression vectors. After 16 hours, cells were 

fixed, permeabilised and labelled with anti-3a. The nucleus was stained with DAPI. 
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3.4. Characterisation of IBV 3a effect on IFNβ expression 

3.4.1. IBV 3a both inhibits and stimulates IFNβ expression 

Previous work has shown that 3a can modulate IFNβ expression, with rIBV 

lacking 3a expression inducing less IFNβ expression 36 h.p.i compared to wild-

type IBV (Kint et al. 2015). To further characterise this effect, a chicken(Ch)-IFNβ 

luciferase reporter assay was used, utilising a reporter plasmid expressing a 

luciferase gene under the control of a chicken IFNβ promoter (Liniger, 2012). This 

assay allows Firefly luciferase activity to be measured as a proxy for IFNβ 

promoter activity. The IFN signalling cascade can be simplistically split into five 

sections, detection of dsRNA by MDA-5, activation and aggregation of MAVS, 

phosphorylation of TBK1, phosphorylation of IRF7 and finally IFNβ transcription 

(Wu et al. 2014). To determine at which point in the IFN cascade IBV 3a affects 

IFNβ expression, cells were stimulated with either dsRNA, MDA-5, MAVS or IRF7. 

DF-1 cells were transfected with increasing levels of the pFLAG-3aB expression 

vector, made up to 1 µg with pFLAG. Increasing levels of pFLAG-3aB were 

transfected to determine if any effect observed was dose-dependent. The amount 

of transfected vector remained the same for each transfection. Cells were 

simultaneously transfected with a ch-IFNβ reporter plasmid and a Renilla 

luciferase plasmid as a transfection control. An influenza NS1 (IAV-PR8) 

expression vector was used as a positive control, as IAV NS1 is a potent IFNβ 

antagonist (Hatada et al. 1992, Gack et al. 2009, Rajsbaum et al. 2012). The IFN 

cascade was then stimulated by transfecting cells with either poly(I:C) or with 

plasmids expressing chicken MDA-5, MAVS or IRF7. After 16 hours, cells were 
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lysed, and luciferase activity measured. Firefly luciferase activity was normalised 

against Renilla luciferase expression. Firefly luciferase activity was shown as fold-

change compared to the empty vector control. An aliquot of each sample was 

separated by SDS-PAGE, transferred to a membrane and labelled with anti-FLAG 

to confirm successful transfection for one replicate, and is shown as a 

representative of the three biological replicates performed subsequently. When 

cells were transfected with poly(I:C) and low levels of 3aB-FLAG (250 ng), Firefly 

luciferase activity was higher compared to the empty vector control meaning the 

IFNβ promoter is activated. Increasing levels of 3aB-FLAG did not increase this 

effect, with 1 µg of 3aB-FLAG inducing less luciferase activity compared to the 

empty vector control (Figure 3.3A). The positive control, IAV NS1, significantly 

inhibited poly(I:C) induced IFNβ expression. The same effect for poly(I:C) was 

observed when cells were transfected with the chMDA-5 vector. At low levels of 

3aB-FLAG expression, Firefly luciferase activity was higher compared to the 

empty vector control (Figure 3.3B). Increasing levels of 3aB-FLAG had an overall 

inhibitory effect on luciferase activity. Conversely, when cells were transfected 

with chMAVS; 3aB-FLAG only had an inhibitory effect on luciferase activity 

(Figure 3.3C). The effect was not dose-dependent, with higher doses of 3aB-

FLAG vector not significantly inhibiting Firefly luciferase activity compared to 

lower doses. When cells were overexpressing chIRF7, increasing levels of 3aB-

FLAG also had an inhibitory effect on luciferase activity, but in comparison to 

MAVS overexpression, the effect was dose-dependent (Figure 3.3D). Expression 

of 3aB-FLAG alone without poly(I:C) treatment did not induce luciferase activity, 
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suggesting 3a alone does not induce IFN expression. As IRF7 is the last protein 

involved in IFN cascade, 3a most likely affects IRF7 activity in some manner. A 

different effect was observed upstream suggesting 3a also affects the cascade at 

either poly(I:C) detection, MDA-5 activity or possibly even MAVS activity. IBV 3a 

alone was unable to induce IFN expression when induced with poly(I:C), MDA-5, 

MAVS or IRF7. Overall this suggests that 3a has a dual mechanism of action on 

chIFNβ expression.  
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3.4.2. IBV 3a from Beau-R and M41 have the same effect on IFNβ expression 

IBV 3a is a highly conserved accessory protein and is expressed by both the 

apathogenic lab strain, Beau-R, and the pathogenic lab strain, M41-CK. Beau-R 

and M41-CK 3a have a high sequence identity of 96.48% with only two amino 

acids different at the C-terminal end (Figure 3.4A). To determine if this difference 

in peptide sequence affects the observed function of 3a on IFN expression, 3a 

from M41 and BeauR were compared. DF-1 cells were transfected with a chIFNβ 

luciferase reporter plasmid along with either GFP-3aB, GFP-3aM or GFP 

expression vectors. A Renilla luciferase plasmid was co-transfected as a 

transfection control. Cells were then transfected with either poly(I:C) or with 

vectors expressing chMDA-5, chMAVS or chIRF7. After 16 hours, cells were lysed, 

and luciferase activity measured. Results were normalised to Renilla luciferase 

expression and are represented as fold-change compared to the empty vector 

control. As seen previously, GFP-3aB had a stimulatory effect on IFNβ promoter 

Figure 3.3 IBV 3a protein induces and inhibits IFNβ expression in a dose-
dependent manner.  
DF-1 cells were transfected with vectors expressing 3aB-FLAG/FLAG at varying ratios 

and with a chIFNβ Firefly luciferase reporter plasmid. Cells were also transfected with 

(A) poly(I:C) for 12 hours or with plasmids expressing (B) chMDA5-V5, (C) chMAVS-V5, 

(D) IRF7-FLAG. After 16 hours, cells were lysed, and luciferase activity measured. 

Results were normalised using a Renilla luciferase transfection control. Firefly luciferase 

activity is measured as fold-change in luminescence over the empty vector control. 

Successful transfection and expression of 3aB-FLAG vectors was confirmed by western 

blot and includes data from three biological replicates. Unpaired t-test * significant at p < 

0.05, **significant at p < 0.01, *** significant p < 0.005, **** significant p < 0.0005, non-

significant (ns) p > 0.05. Error bars represent one standard derivation from the mean.  
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activity when induced with poly(I:C) or MDA-5, the same effect is seen with GFP-

3aM (Figure 3.4B). Furthermore, GFP-3aM expression also inhibited IFNβ 

promoter activity when induced with MAVS or IRF7 to similar levels as GFP-3aB. 

Expression of 3aB or 3aM alone did not increase IFNβ Firefly luciferase activity 

compared to the GFP control, suggesting that 3a only has a stimulatory effect on 

IFN expression when induced with either poly(I:C) or MDA-5. Overall, this 

suggests that 3a from M41 and BeauR have a similar effect on IFNβ expression.  
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A 

B 

Figure 3.4 IBV 3a from M41-CK and Beau-R have the same effect on IFNβ signalling. 
(A) Protein sequence alignment of Beau-R 3a (blue) and M41-CK 3a (red). (B) DF-1 cells 

were transfected with GFP, GFP-3aB or GFP-3aM expression vectors and a chIFNβ-

luciferase reporter plasmid. Cells were then either transfected with poly(I:C) for 12 hours or 

transfected with plasmids expressing chMDA-5, chMAVS, chIRF7 or mock transfected. A 

renilla luciferase plasmid was used as a transfection control. Firefly luciferase activity is 

shown as fold-change compared to the GFP control. Results are representative of three 

biological replicates. * significant p < 0.05, # non-significant p > 0.05.  
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3.5. Mass spectrometry analysis of GFP-3aM IPs 

Mass spectrometry was utilised to identify any interacting partners for 3aM, that 

may help to determine IBV 3a mechanism of action on IFNβ expression and any 

additional functions. HEK-293T cells were transfected with pEGFPC2-3aM or 

pEGFPC2 expression vectors. After 16 hours, cells were lysed and GFP-3aM or 

GFP immunoprecipitated using GFP ‘capture’ beads (Chromotek). This assay 

was completed in triplicate for each plasmid, performed on different days. Input 

and eluate samples were analysed by western blot to confirm successful 

transfection of pEGFPC2-3aM and immunoprecipitation of GFP-3aM (Figure 3.5). 

GFP immunoprecipitation could be confirmed by directly visualising the GFP 

Figure 3.5 Confirmation of GFP-3aM transfection and IP.  
HEK-293T cells were transfected with pEGFPC2-3aM or pEGFPC2. After 16 

hours, cells were lysed, and GFP-3aM immunoprecipitated using GFP ‘capture’ 

beads. Input and eluate samples were separated by SDS-PAGE, transferred to 

a membrane and labelled with anti-GFP. 

 

3aM-GFP 
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fluorescence when attached to the GFP capture beads. After confirmation, 

samples were analysed by LC-MS/MS (for method see 2.10.3) by Weining Wu.  

 

In total 554 proteins were identified in higher levels in the GFP-3aM eluate 

compared to the GFP control (Appendix, Table 7.1). Proteins were identified by 

comparing unique peptides to a database of human proteins. Proteins where only 

a single unique peptide was identified, were removed to reduce the chance of 

identifying the wrong protein. For each protein identified, the fold-change (Log2) 

in relative abundance was calculated by comparing GFP-3aM to the GFP control. 

From the three replicates the p-value, as determined by two-way ANOVA, was 

calculated. A p-value above one (-Log10) along with a fold-change (Log2) above 

two were considered significant interactions and had the highest chance of 

interacting with 3aM. For each protein, the confidence score (-Log2) was 

calculated, which is the cumulative value of p; the probability of the identified 

peptide sequence occurring randomly, for each unique peptide identified. In total 

135 proteins were identified as significant (Table 3.1, Figure 3.6).  
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Table 3.1 Cellular proteins identified my LC-MS/MS that significantly interact with GFP-3aM. 

Name Unique 
Peptides Confidence 

Relative Protein Abundance 
p Value  
(-Log10) 

Fold-change 
GFP-3aM/GFP 

(Log2) 
pEGFPC2-3aM pEGFPC2 

1 2 3 1 2 3 

SUCB2 2 51.8 34391.31213 56821.77764 41196.20091 0 0 0 6.777403376 15.42968233 
FND3A 2 34.79 74980.93704 24630.06568 33157.9421 0 0 0 5.344140575 15.43359571 
GCP2 2 197.65 235809.9946 105676.1593 110856.7974 0 345.0779654 89.30009403 1.897724605 10.02425004 
PLCD 2 67.93 84058.48747 29179.2505 55446.0788 337.888514 0 0 1.888070933 8.963558546 
RNF5 3 65.41 40010.10628 41698.36451 40304.88571 23.67064605 0.851848723 533.6542995 1.847905735 7.772101223 
SYIM 2 166.85 5264.343093 38673.28811 35924.49767 272.9815635 348.4995779 0 1.313803241 7.005657106 

DAAF5 6 260.95 185725.9629 107943.9298 164079.893 1605.611852 2255.546652 1306.758243 4.399280401 6.468832572 
CAND1 3 99.7 26745.14688 119865.8145 61450.09147 1327.312472 803.21403 283.1585313 2.681942232 6.429625692 
DRS7B 2 69.99 73008.75546 24830.37773 40296.64166 0 2227.736805 0 1.410611949 5.954364395 
ODR4 2 83.56 94227.5916 30091.39846 43740.62521 0 3355.46799 20.37944099 1.332618828 5.637579572 
SAAL1 2 59.11 224746.8404 137702.9975 147900.2826 3261.366937 7876.208585 2769.976351 3.298068207 5.197546941 
STX18 2 108.09 107680.8457 55375.96374 76556.75843 763.3016918 4024.461995 2021.70543 2.704016395 5.137023465 
REEP5 5 390.12 749915.828 305879.2859 410196.8144 18877.25139 19977.9151 8195.371688 3.037728514 4.961522125 
AL9A1 2 67.04 4154.176253 40434.74772 21783.00598 708.3351856 1021.334608 754.4832324 1.885859908 4.739747273 
F134C 4 272.76 1141784.237 364034.8883 527764.8573 11166.44445 44095.2193 28322.67335 2.442071003 4.604648142 
CLCC1 5 219 168918.3877 94932.29125 125618.1712 4675.755832 7539.017183 4068.684829 3.658382062 4.580028948 
WLS 3 121.35 299226.2514 122157.0627 191376.7091 3018.354566 14975.83988 9071.20919 2.417495595 4.500800369 

TRABD 3 258.46 356891.6626 151716.4333 245364.0152 13656.55863 13034.83679 9349.082979 3.395254749 4.386821094 
MA1A2 2 66.59 215645.5795 96319.35766 62781.13751 1646.540633 14837.10708 1696.101165 1.879797504 4.36550919 
COQ9 2 60.35 110354.4636 76056.90201 122233.2208 7079.981262 2429.067748 5573.197655 3.020661266 4.355023232 
ERGI1 3 88.57 184876.8847 77101.71274 100338.6505 8938.181852 4635.605864 4641.070818 3.029781331 4.314065791 
IPO8 2 119.01 127020.6783 69452.4371 88508.53162 3149.79612 8148.584352 3345.938955 2.995663854 4.282455959 

CHCH9 2 160.86 67572.62096 360826.731 302878.3555 15159.59511 20122.69634 5962.35567 1.893115032 4.148140585 
ABHGA 4 127.54 189095.1787 78592.56183 128659.5804 9674.639923 9766.763034 4021.874744 2.729636927 4.078288755 
ALG1 4 151.32 170129.9637 82346.94547 107946.4187 8060.06312 15773.06095 58.78622242 1.07826702 3.915098275 
EMD 6 265.85 354469.7995 237282.4663 259536.9101 42448.24268 5526.157523 9727.697304 2.103879379 3.882953619 
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PSMD9 2 85.09 97466.21523 109471.8329 93926.33154 8888.832258 4863.059305 6760.611141 3.944032605 3.874537882 
TOIP2 3 84.63 77623.31948 39297.2789 53983.44755 4152.550815 3693.52834 3819.042182 3.727616163 3.872913332 
NU205 3 209.73 165607.2579 73567.56396 88393.00183 12717.15794 3246.093207 7151.734314 2.375776447 3.824893291 
UBQL2 2 205.45 156916.6578 90090.28071 134626.7302 2436.664802 12446.06126 12506.86639 2.122942277 3.800488751 
HSBP1 3 258.09 1069888.163 432952.447 680367.7133 55457.68021 64433.27794 39498.43168 2.999605956 3.775822299 
ETFB 4 185.54 41798.71172 207835.8111 108182.2776 7522.672393 17400.36104 2073.603152 1.607173674 3.728369544 
COG6 2 71.11 180632.3455 78810.92161 115020.1304 16867.94446 9927.445399 2235.819871 1.89616613 3.689148112 
RAB18 2 117.45 243256.9894 169447.9014 189251.4121 21479.72484 6982.005359 18221.40531 2.713937351 3.688685394 
ADCK4 2 85.8 94351.38794 124276.4933 169895.0733 9743.372986 5945.63161 14697.11473 2.93702803 3.676515496 
NU188 2 84.14 95331.89597 53360.69943 64829.48226 13794.7404 3787.279944 72.7493266 1.123306796 3.596255344 
ERGI3 2 53.68 219301.3449 102332.5309 127577.4655 6756.005925 21309.44446 9099.654538 2.468726847 3.595373766 
BAG6 15 916.5 1063956.239 530962.658 711738.9269 42002.06133 91895.37871 63409.09066 2.908753429 3.547293393 
TMX3 3 184.24 177673.0447 90569.12216 113261.9522 17618.31514 12170.97451 3153.771662 2.034140564 3.533652102 
UB2V1 2 100.47 27592.55046 130924.2247 72665.3887 12104.53234 6519.486272 1478.853929 1.538065097 3.523556524 
MPU1 2 108.56 206718.9505 115636.736 154836.9192 11968.55877 16688.87392 13403.17914 3.617445411 3.504029947 
UCHL5 2 38.07 92429.56 63525.80973 72599.37128 7537.009138 7284.613162 5715.556648 4.170116506 3.476229818 
TNPO3 2 71.37 144621.9199 89592.6772 120392.315 338.2526679 21920.99861 10189.34018 1.206894959 3.449992898 
HSDL1 3 128.07 238412.8931 138049.5039 165886.3749 9517.300629 9194.526284 34139.25141 2.255200215 3.359216101 
DHC24 7 401.81 1051291.496 339981.1588 610383.6646 68147.61699 62371.05979 66381.60123 2.60705999 3.345657234 
ASNS 4 218.18 27236.7698 171430.9769 107043.9983 14413.26977 13620.8357 3076.178357 1.39532784 3.296708518 
CY1 2 175.68 390624.129 223018.99 286975.9681 28300.7047 61543.82476 3119.625862 1.4398207 3.276170592 

FACD2 10 514.36 595535.0484 319918.416 363208.044 28414.5887 51827.93688 54517.52588 2.873840686 3.24616961 
OLA1 3 84.02 6739.60173 96279.51464 45580.26839 1905.775694 11890.49948 2289.52478 1.010022552 3.207568554 

AFG32 2 87.66 266218.8291 69763.81298 129982.134 29522.17136 10236.30475 12436.5197 1.884998623 3.1582375 
NCLN 3 110.84 151810.5306 118798.335 51161.51211 4026.983579 5593.222541 27600.09858 1.635810305 3.111869746 
TM109 3 193.95 2128557.196 741617.905 1571766.115 116270.3236 309108.138 91861.27652 1.979519337 3.102285278 
ABCE1 2 100.28 180280.4528 228714.1151 176016.8733 5853.351265 15469.80009 47476.7658 1.812994348 3.087986108 

APT 2 69.2 81678.52251 294963.2647 132224.1422 10003.55635 31941.67625 18455.73939 1.85368189 3.074641929 
TMX2 2 106.81 371290.2604 164004.6936 155805.9568 30719.98496 41544.65033 9831.420076 1.87689274 3.073511572 
PIGS 2 107.23 138516.2391 42629.73737 87801.7788 4391.904365 26815.13072 1538.305236 1.372564613 3.037964418 



Chapter 3: The role of accessory protein 3a   The role of IBV accessory proteins 3a, 3b and 4b 
 

137 
 

OPA1 4 134.56 130650.4255 74911.63272 80284.10455 3403.949867 28348.88231 3080.573341 1.614628993 3.036695492 
VAPB 4 268.94 416506.9089 248489.2161 232945.3183 7744.79615 68440.53099 34218.44871 1.637538183 3.023831853 
RN126 3 251.08 525994.1889 280502.4686 334225.2035 67045.77592 49805.14736 23678.40168 2.392041083 3.021003945 
RAC2 2 102.54 80460.41231 167604.9329 103378.7411 12685.50953 15828.63451 14877.31877 3.091374769 3.017812051 

THEM6 3 179.98 302460.6286 180902.6637 221584.6424 21322.33488 46595.37978 20573.93694 2.650100687 2.993903447 
DCAKD 3 114 153464.2264 83490.88646 117275.0733 15636.9141 17987.39211 11058.22892 3.081243797 2.986904211 
SRPRB 13 1168.22 2356606.499 1252445.881 1772697.713 158027.6169 300604.9945 235622.8531 2.842057521 2.954536867 
MPRD 2 63.4 403758.5618 189455.7616 276185.7067 69385.26371 22423.46862 22296.68755 2.094753638 2.929652826 
VDAC2 2 165.53 185298.4981 63587.4718 71200.78036 12150.61983 26309.77203 3554.436452 1.509309944 2.929492465 
XPOT 5 315.05 192152.0222 87834.0223 111134.1342 18165.44461 22238.0125 11344.55236 2.552757573 2.918036695 
CB047 2 115.34 284719.5493 130033.8812 190940.3121 8955.553702 55631.74442 15759.10915 1.746291063 2.914283087 
LAT1 3 283.6 534554.2065 250774.0012 333575.6027 27904.31074 80223.30157 42965.13305 2.250548912 2.88857972 
EI24 3 79.84 198309.5484 94782.3236 94516.17662 7846.197007 26812.32063 19324.82657 1.992223219 2.84401227 

UCK2 4 351.21 631346.4811 332289.1155 395077.2849 65389.18535 73917.666 50587.2553 3.02699373 2.838973586 
VATH 2 90.98 456719.8086 188749.7682 292946.563 46618.49369 49388.45914 38127.75768 2.675757196 2.80654521 
AAAS 5 212.77 362041.0814 157400.2565 256438.8803 25003.63463 43440.29387 42638.97024 2.502024053 2.804197213 

FUND2 3 170.07 155872.4144 66284.67575 81778.76974 789.0479602 2925.884841 40106.34656 1.207379135 2.794063392 
SC61B 3 258.61 869805.8076 438596.665 524439.0833 17462.80943 148948.4918 98268.19402 1.495266895 2.791763736 
PSD13 5 257.79 277050.6305 256645.2022 295326.395 32953.82472 64093.08353 22728.28042 2.569841114 2.791081698 
RDH11 7 463.66 850810.1228 437694.0325 614862.5361 85815.05262 120185.5841 69154.65644 2.811724745 2.790235542 
PSD11 5 162 444330.9905 280377.2573 290097.3742 31561.4464 94631.09858 21669.9923 1.972596832 2.778874937 
AMFR 7 463.85 533332.3635 261206.8513 292356.2496 23102.56658 85447.40766 50282.16974 1.985911313 2.774638376 

DDRGK 3 267.52 191321.119 126482.1814 121025.2369 24844.11805 34792.27865 5121.311773 1.626837608 2.760533508 
NTPCR 4 209.44 224270.7179 168624.377 238995.4131 14326.87493 46072.97841 33918.06515 2.264501734 2.74407081 
DJB12 2 137.64 357081.3372 141342.3714 266288.1612 77299.67567 20968.1364 18545.99923 1.726837144 2.710705409 
CERS2 4 176.44 588705.7071 301052.9363 440293.7639 51635.83294 96843.20871 54830.06952 2.600350873 2.709736317 
HM13 2 130.39 383225.6361 102529.1486 156671.5571 23272.99079 59221.12809 19069.04482 1.59629211 2.661153809 
SAE1 2 72.69 3890.241389 36693.09155 21523.55023 2610.669668 4297.940906 3084.428027 1.013332855 2.635757835 
CND1 6 200.77 257381.7777 128069.9417 154547.4966 20634.99669 47027.58195 19621.23527 2.214347347 2.629171265 
PTN1 4 183.41 264518.1559 108556.2263 131336.4813 11256.64812 52480.40639 18327.22862 1.677121747 2.619772988 
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PLCA 2 193.64 441886.5586 180590.0349 272120.6475 54541.70239 41216.35918 50904.62574 2.521353275 2.60873643 
DHRS7 4 237.89 401883.9402 226211.3298 335157.6891 49773.69627 69167.30762 39677.61297 2.815173693 2.602352605 
AT2B4 3 154.72 257229.1241 140766.591 216913.1939 27902.04311 46870.77667 26887.84526 2.683630362 2.596611135 
DPM3 2 151.82 578373.8828 313474.5882 356597.4686 35643.24243 63884.25145 107629.4208 2.133913771 2.591337469 
FANCI 7 434.1 395294.5467 231748.3048 266809.9435 23677.31952 100412.6155 24300.87146 1.794114836 2.590635546 
RTN4 6 613.34 2121249.96 1560747.279 2014244.737 159811.5296 493862.9157 303631.4221 2.277626803 2.572958576 

RBM4B 2 98.18 61416.63114 33119.93986 38152.43033 4916.94302 8950.836281 8663.772401 2.556655045 2.558030212 
PSMD3 2 245.18 114804.9216 146011.2766 98208.84142 10785.86589 37228.27732 13231.40081 2.055153907 2.551407678 
PEX19 3 111.31 256611.5387 124402.0876 204015.0439 36221.04114 34849.66186 29990.88899 2.826869318 2.533272516 
PIGT 2 48.14 39631.64016 16687.27352 21902.80234 3557.777583 6985.109388 2970.958715 2.071575356 2.5331309 
MTX1 2 107.82 199779.0345 56382.52488 205912.0841 29400.98041 29975.51966 21267.56121 1.658718923 2.5184826 
ARF4 2 414.66 83496.06429 106467.4647 86529.65113 5987.003745 24529.6364 17948.45289 1.917368162 2.51222597 
ETFD 2 146.39 254740.0909 81643.01257 124750.6509 20051.33662 39664.18429 22563.43741 1.869501809 2.486589839 
STX12 4 147.51 307407.5334 145356.9347 210470.3903 61214.81117 28791.95736 31703.75157 2.223126199 2.446065961 
RAB21 4 383.93 430263.783 217757.6447 316930.8193 83941.37533 71040.20029 23516.33662 1.795960819 2.434550349 
STX7 3 183.19 149866.5358 72172.90691 81657.27117 11483.51137 31535.27042 13658.48211 1.961911663 2.421789279 
LCLT1 3 168.03 200207.5912 111411.7384 119419.2734 5447.028811 55163.06776 21584.71025 1.34525365 2.39069793 
UBAC2 5 251.41 668492.4328 174492.2968 234308.6343 93470.15552 68910.54127 44404.09217 1.521798462 2.381209202 
PCH2 7 370.58 274138.1814 148990.0612 178754.7844 87842.22272 8037.414571 27574.76832 1.297333141 2.285504812 

SURF4 3 450.51 2326733.372 836510.7474 1029086.667 144164.5799 454369.4798 265216.8944 1.593777903 2.279065249 
COPB 4 332.27 296998.3826 236737.9807 266841.8865 35332.90626 98141.41381 31800.93454 2.02700218 2.276171684 
FACR1 9 593.27 1131804.623 441702.1667 696066.4254 213096.4901 103756.5821 154503.4005 1.966736971 2.267530585 
STX5 2 93.65 326547.1604 161188.8443 221641.6748 44161.93164 35794.55173 67578.96681 2.316270349 2.265492286 

RAB14 3 338.45 524554.0248 288185.7662 361188.4104 50150.38516 130743.0036 65390.84296 2.071224371 2.252948007 
MET7A 2 139.31 229386.7968 112371.5828 151099.6361 13528.88939 27408.65651 62597.17065 1.601637099 2.251057486 
SMN 4 207.52 262084.9768 233184.8888 193074.1244 48302.97518 76662.02219 24690.24407 2.048564816 2.201486903 
RFT1 2 140.05 324282.9051 121907.1591 149878.7574 45844.43004 46461.21891 37649.44843 2.029915184 2.197465689 
CHIP 2 65.87 28242.34548 61483.79093 58918.28396 6133.876898 12710.07019 13884.49323 1.860971788 2.183248553 
F10A1 10 779.1 3605670.176 2452277.739 3487307.46 679652.1486 888615.1282 546578.9523 2.896366525 2.174231028 
ABCD3 2 88.1 222127.9399 164279.1518 123607.2643 5461.72324 48391.36376 59235.48518 1.135779148 2.173084707 



Chapter 3: The role of accessory protein 3a   The role of IBV accessory proteins 3a, 3b and 4b 
 

139 
 

RDH10 3 163.73 658740.3396 289840.3984 429233.7152 90977.6557 181422.7298 33755.62092 1.426778706 2.170042724 
DIC 3 191.4 355047.2263 153114.2225 218580.3995 62962.51284 45317.41289 55214.31943 2.274592668 2.152203129 

PO210 7 264.46 224424.012 183069.182 169095.6943 34828.00755 54028.21941 44162.32255 3.19640142 2.11591559 
P5CR2 2 362.2 165490.5299 197684.6675 178764.2287 25452.9813 54442.29878 46460.18873 2.497937846 2.1006435 
PRRC1 2 121.83 191405.489 114688.5823 129522.4701 15714.16825 35294.36761 51502.05182 1.794921878 2.087285813 
S23IP 4 265.91 333884.4498 232062.4698 223640.2458 29033.73614 102326.7892 54677.72385 1.806077084 2.085499271 
T161A 2 63.17 108825.4657 61651.22554 68263.3478 15846.4006 18637.01003 22077.70179 2.683946144 2.077558141 
TMED9 5 363.38 1253653.149 578157.0519 672913.3144 183378.6419 264903.5635 149474.1244 2.074456562 2.067021953 
AR6P1 3 131.23 489285.9693 288949.3972 338721.8629 92220.09666 40426.1019 138925.167 1.726018494 2.040170668 
RAB5B 2 287.25 209507.8602 128353.7983 178747.3835 41129.10539 41887.6554 43006.70038 3.181315249 2.035380556 
ATD3A 6 832.07 2174020.325 732954.0369 1057578.753 370243.8775 219969.4182 378111.5939 1.663259947 2.033595172 
SUCB1 2 224.49 125568.8631 179226.2471 151200.0127 25714.07654 69586.44793 16196.27991 1.639898078 2.032016032 
TMM33 7 354.95 1913965.496 630100.331 842094.0235 229505.3295 316503.1442 283805.0703 1.702447933 2.02879097 
RCN1 4 328.55 114844.7278 393001.1036 246926.7618 47442.28536 74828.6619 63206.94519 1.565444115 2.024794799 
MPCP 11 551.93 1519012.27 599678.7053 776219.856 211155.7967 436821.1525 65996.64336 1.208816589 2.019576291 
SCO1 3 135.25 267182.7672 158740.3064 192179.9676 39971.35238 73570.49852 38950.57203 2.279390498 2.019109804 
HAT1 2 70.98 176300.8231 231910.0048 138430.4227 15584.79959 56372.4518 63386.10531 1.504908034 2.013970258 

MARC1 3 233.52 285533.5531 147277.7749 223659.877 82800.02608 21974.86641 58031.0013 1.561397873 2.011578803 
SRP68 3 193.7 247354.2736 223401.8082 249725.8688 58556.49659 51674.64419 69666.83771 3.925192934 2.001783313 

Shown are cellular proteins identified by label-free mass spectrometry/mass spectrometry that interact with GFP-3aM. Protein identifier (ID) and the number of 

unique peptides used to identify proteins are indicated. Relative abundance score for each protein is shown. Confidence score (-Log2) is the score of the 

probability of the peptide sequence occurring randomly, added together for each unique peptide. The higher the confidence score, the higher the confidence in 

protein identification. The p-value (-Log10) is a comparison of the cellular protein abundance between GFP-3aM and GFP. The higher the p-value, the higher 

the probability the protein interacts with 3aM. The fold-change (Log2) is the change in the relative abundance of the cellular protein detected between GFP-

3aM and GFP. 
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Figure 3.6 Scatter plot representing results from the GFP-3aM co-IP.  
Proteins were identified in the GFP-3aM eluate by LC-MS/MS. Proteins were plotted by 

fold-change in abundance (Log2) compared to the GFP control and p-value (-Log10) of 

the t-test. Proteins with a p-value (-Log10) above one and a fold change (Log2) above 

two have the highest chance of interacting with 3aM and are considered significant 

(green). Proteins with a fold-change (Log2) in relative abundance above 5 over the GFP 

control are labelled. Results are from three biological replicates.  
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A panther over-representation test (pantherdb.org) was performed to categorise 

the cellular localisation of the significant proteins identified in the GFP-3aM eluate 

by LC-MS/MS. This test grouped cellular proteins by their Gene Ontology (GO) 

cellular compartment annotation and helped to determine if these cellular 

compartments are over-represented in the dataset. The test compared the 

number of proteins you would expect to find in the data set for each GO cellular 

compartment, to the actual number of proteins identified. A higher actual number 

of proteins would suggest that the interacting partners identified for 3aM localise 

to a specific cellular component (Appendix, Table 7.2). Cellular compartments 

with a p-value below 0.05 were considered significant. The number of proteins 

that localise to these significant GO cellular components were represented as a 

Venn diagram (Figure 3.7). Of the 135 proteins identified, 78 of the proteins can 

localise to membrane structures of the cell with a significant proportion of proteins 

localising to the nuclear envelope, ER, ER-GIC, mitochondria and Golgi 

membrane. Other cellular components that these interacting partners localise to 

also include the proteasome and peroxisome. The remaining 58 proteins, did not 

localise to a GO cellular component that was over-represented in the data set.  
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Figure 3.7 GO cellular component annotations of cellular proteins that interact with 
GFP-3aM.  
Significant proteins identified by LC-MS/MS were analysed by a panther over-

representation test (pantherDB.org). Proteins which localise to cellular components that 

are over-represented (p < 0.05) were collated and represented as a Venn diagram. 
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3.6. IBV 3a interaction with RNF5 and CAND1 

Due to the role of 3a in IFNβ expression, proteins identified by LC-MS/MS that 

play a role in the IFN cascade were investigated. Three proteins were identified 

that play a regulatory role in IFN expression, RING Finger 5 (RNF5), Cullin-

Associated NEDD8-Dissociated protein 1 (CAND1) and Autocrine Motility 

Factor Receptor (AMFR). RNF5 and AMFR both target MAVS for degradation 

by the addition of ubiquitin, while CAND1 is a regulatory protein of the E3-

Skp1-Cul1-Fbox (SCF) ligase complex, which plays a role in IRF3/IRF7 

degradation (Zheng et al. 2002, Zhong et al. 2010, Jacobs et al. 2014). RNF5 

and CAND1 were the fifth and eighth highest confidence interacting partners 

for 3aM (Table 3.1). The interaction was first verified by looking at GFP-3aM 

and RNF5/CAND1 colocalisation. Vero cells were transfected with GFP-3aM 

or GFP expression vectors. After 16 hours, cells were fixed, permeabilised and 

labelled with anti-GFP and anti-CAND1 or anti-RNF5. To determine what 

percentage of 3a signal colocalised with RNF5 and CAND1, twenty cells 

expressing 3aB-FLAG were analysed using ImageJ. For each region of 

interest, the amount of anti-GFP signal that colocalised with anti-RNF5 or anti-

CAND1 signal was calculated and averaged. This demonstrated that 9.63% 

and 27.4% of 3a-GFP signal colocalised with RNF5 and CAND1, respectively. 

Overexpressed GFP-3aM therefore partially colocalises with both CAND1 and 

RNF5 (Figure 3.8A,B), while 3a also partially colocalised with RNF5 during 

infection (Figure 3.8C). The result suggests that 3a does interact with RNF5 

and CAND1 as the mass spectrometry data suggested.  
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Figure 3.8 IBV 3a partially colocalises with RNF5 and CAND1.  
Vero cells were transfected with GFP-3aM expression vectors. After 16 hours, cells were 

fixed, permeabilised, and labelled with (A) anti-RNF5 or (B) anti-CAND1. (C) Vero cells were 

mock infected or infected with M41-CK at an MOI above 4 for 24 hours. Cells were fixed and 

labelled with anti-RNF5. The nucleus was stained with DAPI.  

A 

B 

C 
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3.7. Characterisation of IBV 3a interaction with MAVS  

Mass spectrometry data identified two E3 ligases which regulate IFN 

expression through interaction with MAVS, RNF5 and AMFR (Zheng et al. 

2002, Prakash et al. 2006, Zhong et al. 2010, Jacobs et al. 2014). RNF5 and 

AMFR poly-ubiquitinate MAVS, targeting MAVS for proteasomal degradation. 

The levels of MAVS was measured in the presence of 3aM, to determine the 

effect of these interactions. 

 

3.7.1. IBV 3a increases levels of MAVS 

The effect of 3a on MAVS was first investigated by quantifying levels of MAVS 

by western blot. Vero cells were transfected with pFLAG-3aB or pFLAG 

expression vector. Cells were then transfected with poly(I:C) to stimulate the 

IFN signalling cascade. After 12 hours, cells were lysed, samples separated 

by SDS-PAGE, transferred to a membrane and labelled with anti-MAVS 

(human), anti-3a and anti-actin. MAVS can be expressed as multiple isoforms, 

full-length MAVS (flMAVS) at around ~75 kDa and short MAVS (sMAVS) which 

is between 30 – 50 kDa. These MAVS isoforms play different roles in IFN 

signalling, with the flMAVS the primary signalling protein for the IFN cascade 

(Seth et al. 2005, Jacobs et al. 2013). Anti-MAVS can label both isoforms. 

Signal fluorescence was measured for flMAVS and sMAVS and then 

normalised against actin signal. Levels of flMAVS was visibly higher when 

expressed with 3aB-FLAG compared to the empty vector control (Figure 3.9A), 

while levels of sMAVS was unaffected (Figure 3.9B). This result suggests that 

3a can stabilise or increase MAVS expression.  
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3.7.2. IBV 3a localises with MAVS 

To further characterise the effect of 3a on MAVS, immunofluorescence was 

used to establish if MAVS and 3a colocalise. DF-1 cells were transfected with 

plasmids expressing 3aB-FLAG and chMAVS-V5. After 16 hours, cells were 

fixed, permeabilised and labelled with anti-V5, anti-FLAG and the nucleus 

stained with DAPI. Colocalisation of chMAVS and 3aB-FLAG was observed, 

as indicated by the yellow signal, although there was not perfect colocalisation 

B A 

Figure 3.9 IBV 3a increases levels of MAVS. 
(A) Vero cells were transfected with vectors expressing FLAG or 3aB-FLAG. After 16 

hours cells were lysed, proteins separated by SDS-PAGE, transferred to a membrane 

and incubated with anti-3a, anti-MAVS and anti-actin. (B) Levels of full-length MAVS 

(75 kDa) and small MAVS (30-50 kDa) were semi-quantified by normalising 

fluorescence signal against actin using the Image Studio software (Li-Cor).  
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(Figure 3.10A). To determine what percentage of 3a signal colocalises with 

MAVS, twenty cells expressing 3aB-FLAG were analysed using ImageJ. For 

each region of interest, the amount of anti-FLAG signal that colocalises with 

anti-MAVS signal was calculated and averaged. Only 4.6% of 3aB-FLAG 

signal colocalised with MAVS. Nonetheless, 3aB-FLAG signal does visually 

localise closely with MAVS suggesting they localise to a similar domain 

(Figure 3.10A). 

 

Vero cells were then infected with Beau-R, to determine if 3a also localises 

with MAVS during infection. At 24 or 48 h.p.i cells were fixed, permeabilised 

and labelled with anti-3a or anti-MAVS. During infection, 3a localised with 

MAVS signal at 24 hours. At 48 h.p.i 3a and MAVS signal did localise again, 

and colocalisation was visible. Anti-MAVS signal was visibly lower compared 

to non-infected cells at 48 h.p.i (Figure 3.10B). This result further suggests 

that 3a localises with MAVS although they may not interact directly. 

Furthermore, it appears MAVS levels decline at least 48 h.p.i.  
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Figure 3.10 IBV 3a localises with MAVS. 
(A) DF-1 cells were transfected with pFLAG-3aB and chMAVS-V5. After 16 hours, cells were 

fixed, permeabilised and labelled with anti-FLAG and anti-V5. The yellow box indicates the 

enlarged area. The model was generated using the Imaris software (Bitplane) 3D tool. (B) Vero 

cells were infected with Beau-R at a MOI above 4. After 24 or 48 h.p.i cells were fixed, 

permeabilised and labelled with anti-MAVS or anti-3a. The yellow outline indicates infected cells. 

A 

B 
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3.7.3. IBV 3a agonises IFNβ expression by interfering with MAVS 

IBV 3a had a stimulatory effect on IFN expression when induced with poly(I:C) 

or chMDA-5 (Figure 3.3A,B). Conversely, it was shown that 3a had an 

inhibitory effect on IFN expression when induced with MAVS overexpression. 

The effect was not dose-dependent suggesting that the inhibitory effect is most 

likely because of the effect of 3a on IRF7 downstream (Figure 3.3C,D). For 

this reason, the chIFNβ-luciferase assay was repeated, and the effect of 

poly(I:C) stimulation along with MAVS overexpression on IFNβ expression was 

evaluated. DF-1 cells were transfected with increasing levels of 3aB-FLAG 

vector, made up to 1 µg with pFLAG. Cells were simultaneously transfected 

with the chMAVS-V5 vector. A Renilla luciferase expression vector was used 

as a transfection control. After 8 hours, cells were either mock transfected or 

transfected with poly(I:C). After 12 hours, cells were lysed, and luciferase 

activity measured. As seen before, 3aB-FLAG had an inhibitory effect on 

Firefly luciferase activity when induced with MAVS overexpression. When the 

cells were treated with poly(I:C) as well as 3aB-FLAG, there was a dose-

dependent increase in Firefly luciferase activity (Figure 3.11A). This result 

could suggest that while 3aB-FLAG increases MAVS levels, this does not 

induce IFNβ expression unless stimulated upstream with poly(I:C) or even 

MDA-5. To further confirm this effect, the chIFNβ luciferase assay was 

repeated using four conditions. DF-1 cells were transfected with a combination 

of poly(I:C), MAVS and/or 3aB-FLAG expression vector as indicated and 

luciferase activity measured after 16 hours. As expected, transfection of MAVS 

and poly(I:C) induced significantly higher levels of Firefly luciferase activity 

compared to the poly(I:C) control. Low levels of 3a (250 ng), with poly(I:C) 
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treatment, induced higher levels of luciferase activity compared to poly(I:C) 

alone, as seen previously. Expression of MAVS, 3a, and treatment with 

poly(I:C) induced the highest level of Firefly luciferase activity (Figure 3.11B), 

suggesting that IBV 3a agonises IFNβ expression at the point of MAVS only 

after stimulation with poly(I:C). When the IFN cascade is not stimulated, 3a still 

increases MAVS levels, but no increase in IFNβ expression is observed. This 

effect could be due to the inhibitory effect of 3a on IRF7 activity downstream. 

When stimulated with poly(I:C) or MDA-5 upstream, signalling is exacerbated 

by increased MAVS levels; this is enough to overcome the inhibitory effect of 

3a on IRF7 activity and thus an increase in IFN expression is observed.  
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Figure 3.11 IBV 3a agonises IFNβ expression by interfering with MAVS, only after 
stimulation with poly(I:C).  
(A) DF-1 cells were transfected with FLAG/ 3aB-FLAG and chMAVS-V5 expression vector 

along with a chIFNb-luciferase reporter plasmid. After 8 hours, cells were either mock 

transfected or transfected with poly(I:C). After 12 hours cells were lysed and luciferase 

activity measured. A renilla luciferase plasmid was used as a transfection control. (B) DF-1 

cells were transfected with plasmids expressing chMAVS-V5, 3aB-FLAG or/and transfected 

with poly(I:C) as indicated along with a chIFNb-luciferase reporter plasmid. Empty V5/FLAG 

expression vectors were transfected to maintain levels of total plasmid transfected. Cells 

were lysed after 16 hours and luciferase activity measured. A renilla luciferase plasmid was 

used as a transfection control. Results are representative of three biological replicates. * 

significance p < 0.05, ** significance p < 0.01, *** significance p < 0.001. 
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3.8. Characterisation of IBV 3a interaction with IRF3/IRF7 

3.8.1. IBV 3a degrades IRF3/7  

Mass spectrometry data and immunofluorescence suggested that IBV 3a 

interacts with the IRF3/7 regulatory protein CAND1. CAND1 binds to Cullin-1 

(CUL1) to inhibit the formation of the E3-SCF ligase complex, a complex that 

mediates the degradation of IRF3/7 (Zheng et al. 2002). To determine whether 

this interaction leads to a decrease in IRF3/7 levels, levels of IRF3 were measured 

in the presence of 3aB-FLAG. Endogenous levels of human IRF3 (huIRF3) were 

first measured in Vero cells as there is no antibody against chicken IRF7. Vero 

cells were transfected with pFLAG-3aB or pFLAG expression vectors. After 16 

hours, cells were lysed, separated by SDS-PAGE and transferred to a membrane. 

The membrane was labelled with anti-huIRF3 and anti-3a. Compared to cells 

transfected with pFLAG, cells expressing 3a expressed lower levels of IRF3 

(Figure 3.12A). 

 

There is no antibody against chicken IRF7, so to determine if 3a has the same 

effect on the chicken isoform a V5-tagged chicken IRF7 expression vector was 

used. DF-1 cells were transfected with increasing levels of pFLAG-3aB and made 

up to 1 µg with pFLAG, along with 500 ng of pEF1a-chIRF7-V5. After 16 hours, 

cells were lysed, separated by SDS-PAGE and transferred to a membrane. 

Membranes were incubated with anti-V5, anti-FLAG, and anti-actin. Levels of 

chIRF7 decreased as levels of 3aB-FLAG increased (Figure 3.12B). This result 
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suggests that 3aB-FLAG can decrease levels of chIRF7 in a dose-dependent 

manner. 

 

To determine if this effect is due to proteasomal degradation, a proteasomal 

inhibitor, MG132, was used. DF-1 cells were transfected with GFP-3aM 

expression vector along with chIRF7-V5 for 12 hours. Cells were then treated with 

either MG132 or DMSO for 8 hours. Cells were lysed, proteins separated by SDS-

PAGE, transferred to a membrane and incubated with anti-V5 and anti-GFP. 

Compared to DMSO treatment, cells transfected with GFP-3aM treated with 

MG132 expressed higher levels of IRF7-FLAG (Figure 3.12C). This result 

suggests that 3a initiates IRF7 degradation in a dose-dependent manner, 

proteasome-dependent manner.  
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Figure 3.12 IBV 3a induces degradation of IRF7 in a dose-dependent, proteasome-
dependent manner.  
(A) Vero cells were transfected with either 3aB-FLAG or FLAG expression vectors. After 

16 hours, cells were lysed, separated by SDS-PAGE and transferred to a membrane. The 

membrane was labelled with anti-huIRF3 and anti-3a. (B) DF-1 cells were transfected with 

increasing levels of 3aB-FLAG expression vector made up to 1µg with pFLAG along with 

an IRF7-V5 expression vector. After 16 hours, cells were lysed, proteins separated by 

SDS-PAGE and transferred to a membrane. Membranes were labelled with anti-V5 and 

anti-FLAG. (C) DF-1 cells were transfected with either GFP or GFP-3aM expression 

vectors along with the chIRF7-V5 vector. After 12 hours, cells were treated with either 

DMSO or MG132 for 8 hours. Cells were then lysed, separated by SDS-PAGE, transferred 

to a membrane and labelled with anti-GFP and anti-FLAG.  

A B 

C 
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3.8.2. IBV 3a colocalises with IRF7 

IBV 3a affects the activity of IRF7, to further characterise this effect, colocalisation 

of 3aM and IRF7 was investigated. DF-1 cells were transfected with plasmids 

expressing chIRF7-V5 and GFP-3aM or GFP. Cells were fixed, permeabilised and 

labelled with anti-V5. Cells were visualised, and images taken using a Leica SP5 

confocal microscope. GFP-3aM signal colocalised with the IRF7-V5 signal 

(yellow), while GFP signal alone did not (Figure 3.13). This result shows that 

GFP-3aM colocalises with IRF7 and they may interact. 
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Figure 3.13 IBV 3a colocalises with IRF7.  
DF-1 cells were co-transfected with vectors expressing chIRF7-V5 or GFP-

3aM /GFP. After 16 hours, cells were fixed, permeabilised and labelled with 

anti-V5.  
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3.9. Effect of 3a levels on IFNβ during infection 

The effect of IBV 3a on poly(I:C)-induced IFNβ expression was dose-dependent 

with low levels of 3a having a stimulatory effect on IFNβ expression and higher 

levels of 3a having an overall inhibitory effect on IFNβ expression (Figure 3.3). 

Levels of 3a were semi-quantified with IFNβ expression to determine the effect of 

changes in expression on the action of 3a. CK cells were infected with Beau-R or 

BeauR-Sc3aAUG at an MOI of 0.1. The supernatant was harvested at 24, 36, 48 

and 60 h.p.i. The supernatant was heat inactivated for 1 hour at 65 °C to inactivate 

IBV. Levels of IFNb was then quantified using a quail reporter cell line (CEC-32) 

with a MxA promoter upstream of a Firefly luciferase reporter gene (Schwarz et 

al. 2004). A standard curve was generated to calculate IFNβ levels relative to 

Firefly luciferase activity using serial dilutions of recombinant chIFNβ. As seen in 

previous studies, there was no difference in IFNb levels 24 h.p.i between Beau-R 

and BeauR-Sc3aAUG (Figure 3.14A). While at and after 36 h.p.i, BeauR-

Sc3AUG induced less IFNβ expression compared to wild-type Beau-R, 

suggesting 3a induces IFNβ expression late in infection.  

 

Levels of 3a can affect the role of this protein in inducing or inhibiting IFN 

expression. To determine if induction of IFNβ by 3a during infection is coupled 

with lower levels of 3a, a time course was performed. CK cells were infected with 

Beau-R at an MOI of 0.1 for 4, 8, 12, 16, 24, 36 and 48 hours. Cells were then 

lysed, proteins separated by SDS-PAGE, transferred to a membrane and labelled 

with anti-3a and anti-actin. Peak levels of 3a occurred at 24 h.p.i and declined at 
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36 h.p.i (Figure 3.14C). The decline in 3a levels coincided with increased IFNβ 

levels, possibly suggesting low levels of 3a are, in part, responsible for the 

induction of IFNβ expression seen during infection, although the role of other IBV 

viral proteins has not been discounted.    

 

An MG132 proteasome inhibitor was then used to determine if this decrease in 

3a levels is due to proteasomal degradation. DF-1 cells were infected with Beau-

R and after 28 hours, cells were either treated with DMSO or 5/10 µM of MG132. 

After 8 hours, cells were lysed, proteins separated by SDS-PAGE, transferred to 

a membrane. Membranes were labelled with anti-3a. Higher levels of 3a were 

detected for infected cells treated with 10 µM of MG132 (Figure 3.14C). This 

result suggests that proteasome degradation of 3a is, in part, responsible for the 

decrease in 3a levels 36 h.p.i. 
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Figure 3.14 IBV 3a induces IFNβ expression during infection, coinciding with a 
decrease in 3a levels.  
(A) CK cells were infected with Beau-R or BeauR-Sc3aAUG at an MOI of 0.1. At each 

indicated time-point the supernatant was removed and IFNβ levels quantified using a MxA-

luciferase reporter cell line. Recombinant chIFNb was used to generate a standard curve. 

Results are from three biological replicates. (B) CK cells were infected with Beau-R at an MOI 

of 0.1. At 4, 8, 12, 24, 36 and 48 h.p.i, cells were lysed, proteins separated by SDS-PAGE 

and transferred to a membrane. Membranes were incubated with anti-3a and anti-actin. (C) 

CK cells were infected with Beau-R at an MOI of 0.1. Cells were treated with DMSO or 5/10 

µM of MG132. After 8 hours, cells were lysed, proteins separated by SDS-PAGE, transferred 

to a blot and labelled with anti-3a. Results are representative of three biological replicates. * 

significance p < 0.05. 
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3.10. Discussion 

Previous work has shown that IBV 3a localises to two compartments during 

infection and transfection in Vero cells, the cytoplasm; where it is diffuse, and the 

smooth ER, where it is membrane-bound (Pendleton et al. 2005). Analysis of the 

GFP-3aM mass spectrometry data predominantly identified membrane-bound ER 

proteins but did also identify proteins that localise to the Golgi, mitochondria, and 

ER-GIC membrane as well as the nuclear envelope and proteasome regulatory 

units (Figure 3.7). Previous work has shown that adding a GFP-tag to 3a 

increased ER membrane localisation while decreasing cytoplasmic localisation 

(Pendleton et al. 2005). It was suggested that extension of the 3a peptide 

sequence increased the efficiency of the signal peptide sequence in 3a, 

increasing ER translocation by signal recognition particles. (Pendleton et al. 2005). 

This observation could explain why a significant proportion of proteins detected 

in the GFP-3aM co-IP eluate were ER membrane proteins (Figure 3.7). A GFP-

tag was used in the co-IP as GFP ‘capture’ beads are highly efficient in pulling 

down GFP and are thus suited for LC-MS/MS. Nonetheless, as the GFP-tag may 

have skewed the localisation of 3a to the ER, a different, smaller tag should be 

used in any future repeats. A smaller epitope tag would better replicate the pattern 

of 3a localisation seen during infection and would give more representative mass 

spectrometry results, potentially allowing other 3a functions to be identified. The 

GFP co-IP was used with 3a from M41-CK as opposed to Beau-R. Beau-R and 

M41-CK 3a have a high sequence similarity (Figure 3.4A) and are unlikely to 

have different roles or functions when overexpressed alone. Furthermore, 3aB 
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and 3aM have a similar effect on IFNβ promoter activity suggesting they are 

functionally comparable (Figure 3.4B). The mass spectrometry data identified a 

range of proteins that interact with GFP-3aM, and while many were membrane-

bound, there was no consensus regarding their cellular role (data not shown). The 

identification of membrane proteins in a range of cellular components suggests 

that 3a can localise to a range of cellular structures when expressed alone 

(Figure 3.7). These cellular membrane proteins can often localise to multiple 

cellular organelles and highlight the dynamic nature that exists between the ER, 

ER-GIC and Golgi, and the ER, mitochondria, and peroxisomes, through 

membrane-associated membrane (MAM) structures (Prinz 2014). The mass 

spectrometry was not repeated with a vector expressing 3aM-GFP, which may 

have identified proteins that interact with the N-terminus or additional proteins. 

Instead, the decision was made to save time and cost by focusing on proteins 

identified in the LC-MS/MS that play a role in the IFN cascade (Figure 3.3). Future 

work should focus on the other proteins identified by mass spectrometry as they 

may allude to additional functions for 3a. Furthermore, expression vectors with 3a 

tagged at the N- and C- terminus should also be used to identify the full repertoire 

of 3a interacting partners. 

 

Previous work has shown that 3a plays a role in regulating the IFNβ response 

during IBV infection (Kint et al. 2015). Recombinant viruses lacking 3a showed 

increased IFNβ transcription but only at 24 h.p.i. No effect on IFNβ protein 

expression was observed at this time. Conversely, deletion of 3a caused a 
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decrease in IFNβ protein expression at 48 h.p.i. The reason for this discrepancy 

is unknown but does show a possible complicated relationship between 3a and 

the IFN cascade  (Kint et al. 2015). This result was confirmed here in CK cells 

(Figure 3.14). The reason for this seemingly contradictory effect is not fully 

understood, as is the mechanism of action of 3a on the IFN cascade (Kint 2015). 

To determine the mechanism of action, a chIFNβ-luciferase assay was used to 

measure IFNβ promoter activity in DF-1 cells. By stimulating the IFN cascade at 

different points, the effect of 3a activity on each section of the cascade could be 

investigated. When the cascade was induced with poly(I:C), low levels of 3a 

exacerbated IFNβ expression, while at higher levels IFNβ expression dropped 

until it was not significantly different to the poly(I:C) control (Figure 3.3A). This 

observation was also seen with MDA-5 overexpression (Figure 3.3B). This result 

correlates with previous work which has shown that IBV infected cells, once 

stimulated with poly(I:C), leads to higher levels of IFN expression compared to 

either poly(I:C) transfection or IBV infection alone and suggests 3a is responsible 

for this previously observed feature (Kint et al. 2015). Conversely, 3a only had an 

inhibitory effect on MAVS and IRF7 induced IFNβ expression, with the effect on 

IRF7 being dose-dependent (Figure 3.3C,D). Therefore, IBV 3a interacts with the 

IFN cascade in two ways, by i) exacerbating MDA-5 and poly(I:C) signalling and 

ii) inhibiting IRF7 activity. These two interactions affect the overall action of 3a on 

IFNβ expression. Higher levels of 3a favour the inhibitory role of 3a, while lower 

levels favour the stimulatory role on IFNβ expression. This result suggests that 

3a is more efficient at stimulating IFNβ expression but is less responsive to 
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increases in 3a, most likely suggesting there is a cap on how much 3a can 

stimulate IFNβ expression. Conversely, the 3a inhibitory effect is not efficient 

enough at low levels to overcome the stimulatory effect upstream but is more 

responsive to increases in dose. This implies there is a tipping point between 

when the stimulatory effect and the inhibitory effect is observed, dependent on 

levels of 3a. A similar effect was seen during infection, where the decline in 3a 

levels coincided with increased levels of IFNβ expression (Figure 3.14A). During 

infection, 3a was detectable at 4 h.p.i and reached peak levels at 24 h.p.i (Figure 

3.14B), after which levels started to decline due to both a reduction in viral 

expression and proteasome-dependent degradation (Figure 3.14C). These 

changes in 3a levels could have a significant effect on the role of this protein 

during infection. The decline in 3a levels at 36 h.p.i could mark the tipping point 

between the inhibitory effect and stimulatory effect of 3a. At 24 h.p.i the inhibitory 

effect of 3a counteracts the stimulatory effect, but after 36 h.p.i, the decline in 3a 

levels causes a shift, and the stimulatory effect is observed, resulting in an 

increase in IFNβ expression. As seen in previous studies there was no difference 

in IFNβ expression pre-24 h.p.i between the BeauR-Sc3aAUG and wild-type 

Beau-R (Kint et al. 2015). While this could imply that 3a does not have an 

inhibitory effect on IFNβ expression early on in infection, this most likely reflects 

the role of other viral proteins in inhibiting IFNβ expression. Indeed, IBV accessory 

protein 5b has been shown to inhibit cellular translation to prevent IFN expression 

(Kint et al. 2016). Future work should aim to qualify the role of 3a in the context 

of infection and relate it to the other IBV IFN antagonists.  
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The mechanism of action of 3a on IFN signalling can be explained by the 

interacting partners identified by mass spectrometry. Three proteins were 

identified that play a role in regulating the IFN cascade, RNF5, AMFR and CAND1 

(Table 3.1, Figure 3.6). RNF5 and AMFR regulate the turnover of MAVS, while 

CAND1 is a protein that regulates the formation of the SCF-E3 ligase, a multi-

protein complex that degrades IRF3/7 (Zheng et al. 2002, Prakash et al. 2006, 

Zhong et al. 2010). RNF5 and CAND1 were identified as significant 3aM 

interacting partners and colocalise with 3a during transfection and infection for 

RNF5 (Figure 3.8). RNF5 is an E3 ubiquitin ligase that controls IFN expression 

in a negative feedback loop (Zhong et al. 2010). During infection, IFN increases 

RNF5 expression and causes it to translocate from the ER to MAM structures 

where it interacts with MAVS (Zhong et al. 2010). These MAM structures are an 

important structure for IFN signalling cascade as a site for MAVS aggregation and 

activation (Jacobs et al. 2014). RNF5 polyubiquitinates MAVS to target it for 

proteasomal-degradation and thus inhibits IFN signalling. The IFN cascade is a 

highly controlled cellular pathway as over-expression of IFN can have a 

deleterious effect on the cell and the organism as a whole (Hu et al. 2016). Post-

translational conjugation of ubiquitin and degradation of IFN signalling proteins is 

a major mechanism used to regulate the IFN signalling cascade, both positively 

and negatively (Lin et al. 2006, Castanier et al. 2012, Fuchs 2012, Hu et al. 2016). 

The interaction between RNF5 and 3a could explain the increase in MAVS levels 

observed during 3a expression (Figure 3.9). Expression of 3a increased or 
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stabilised levels of MAVS (Figure 3.9), this increase was responsible for the 

agnostic effect of 3a on IFN signalling (Figure 3.11), that is, 3a increased MAVS 

levels which exacerbated RLR signalling. This effect could be due to 3a inhibiting 

RNF5 activity and thus preventing turnover of MAVS (Figure 3.15A). Future work 

should aim to determine if these proteins interact during infection and determine 

if overexpression of RNF5 can abrogate the agonistic effect of 3a on IFNβ 

expression. While a small proportion of 3a did colocalise with MAVS during 

transfection in DF-1 cells, most of the signal was juxtaposed (Figure 3.10A). 

Immunoprecipitation of 3a failed to identify MAVS as a 3aM binding partner by co-

transfection (data not shown) and was not identified in the GFP-3aM mass 

spectrometry data. This result implies that MAVS and 3a do not interact directly 

but may localise to similar cellular compartments, possibly even MAM structures.    

 

The other IFN regulatory protein identified by mass spectrometry was CAND1. 

This protein inhibits the recruitment of CUL1 to the SCF-E3 ligase complex, a 

complex which is involved in the degradation of IRF3/IRF7 (Zheng et al. 2002, 

Prakash et al. 2006). Expression of 3a decreased levels of IRF7 in a dose-

dependent, proteasome-dependent manner (Figure 3.12). This effect coincides 

with the dose-dependent effect of 3a on IRF7 induced IFNβ expression (Figure 

3.3D). A proposed mechanism of action was that 3a interacts with CAND1, 

increasing CUL1 recruitment to the SCF-E3 ligase, thus increasing degradation 

of IRF7 (Figure 3.15B). Future work should aim to confirm this mechanism of 

action and determine if CAND1 overexpression can abrogate the decrease in 
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IRF7 levels by 3a. While CAND1 and 3aM do colocalise; as determined by 

immunofluorescence (Figure 3.8), future work should also aim to confirm this 

interaction during infection by IP.  

 

Manipulating the cellular ubiquitin degradation pathway is an attractive option for 

viruses, as it allows viruses to modulate the host-cell environment by targeting 

cellular proteins for degradation. IAV NS1 targets RNF135, a protein essential for 

the ubiquitination and activation of RIG-I, while SARS-CoV N has been shown to 

interact with the RLR and MAVS regulatory protein TRIM25 (Rajsbaum et al. 2012, 

Hu et al. 2017). Hepatitis B virus (HBV) protein HBx directly interacts with MAVS 

and targets it for degradation through the addition of ubiquitin residues, while 

KSHV RTA protein has been shown to amplify the activity of RAUL, an E2 ligase 

involved in the ubiquitination of IRF3 and IRF7 (Wei et al. 2010, Yu et al. 2010). 

The main aim of these viral proteins is to inhibit IFN signalling by modulating levels 

of IFN signalling proteins. This appears to be how IBV 3a effects IFNβ expression, 

by interacting with RNF5 and CAND1, 3a can modulate levels of both MAVS and 

IRF7. This interaction appears to be dynamic, allowing 3a to both inhibit and 

stimulate IFN expression depending on dose and thus time. While it is more 

common for viral proteins to inhibit IFN expression, it is not unheard of for viral 

proteins to stimulate IFN expression too. Mopeia Virus L protein has been shown 

to induce IFN expression by activating the RLR/MAVS pathway (Zhang et al. 

2016), while HCV RdRp has been shown to actively produce dsRNA based on 

cellular RNA that can induce IFN expression (Yu et al. 2012). This function may 
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seem counterproductive for the virus, but it can help to prevent excessive host 

damage or disease that can be detrimental for viral replication. For example, 

piglets infected with a recombinant TGEV that does not express accessory protein 

7, showed increased pathogenicity, suggesting protein 7 plays a role in inhibiting 

excessive host damage (Cruz et al. 2011).  

 

The interesting dynamic between 3a and the host could have serious implications 

for pathogenicity. While it may seem counterproductive to induce IFN expression, 

it may be beneficial in a disease which is associated with immunopathology 

(Zhong et al. 2012, Kameka et al. 2014). IBV pathogenesis has been linked to an 

exacerbated immune response with serve symptoms like nephrotoxicity 

associated with a high influx of effector cells and interleukins (Okino et al. 2014). 

The full link between host-interaction and pathogenicity has yet to fully elucidated 

but these interactions, shown here, could explain the unique and complex 

relationship between host immune system and IBV. 

 

The IFN response is the primary battleground for the evolutionary arms race 

between virus and host (Randall et al. 2008). Coronaviruses have been shown to 

use a range of mechanisms to combat the IFN response with IBV being no 

exception (Fung et al. 2014). Here accessory protein 3a has been shown to have 

a dynamic relationship with two parts of the IFN cascade, MAVS and IRF7. While 

this has offered a glimpse into the relationship between IBV and host, much more 
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work is required to determine how IBV manipulates the IFN response and the 

impact this has on pathogenicity.  
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Figure 3.15 Proposed model for the mechanism of action of IBV 3a on IFNβ 
expression.  
During infection, IBV produces dsRNA which is detected by MDA-5 which initiates the IFN 

signalling cascade. IBV 3a modulates the IFN cascade by two proposed mechanism, (A) 

IBV 3a interacts with and inhibits RNF5 degradation of MAVS, leading to increased RLR 

signalling and thus increased IFNβ expression. (B) IBV 3a interacts with and inhibits 

CAND1, increasing the recruitment of CUL1 to the E3 SCF-ligase complex. These 

complexes target IRF3/7 for degradation leading to a reduction in IFNβ expression.  
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4. The role of Accessory Protein 3b 

4.1. Introduction 

Accessory protein 3b is a 7.4 kDa protein encoded by the second ORF of sgRNA3, 

which is translated by leaky ribosomal scanning (Le et al. 1994). Protein 3b is 

highly conserved among strains of IBV and TCoV suggesting an important role 

for this protein (Cavanagh et al. 2002, Britton et al. 2006). Little is known about 

the function of 3b, although it is known that this protein does not play a role in in 

vitro replication as recombinant IBV lacking 3b expression grew to similar titres 

as wild-type IBV (Hodgson et al. 2006). Furthermore, recombinant viruses with a 

scrambled 3b start codon expressed higher levels of IFNβ at 24 h.p.i suggesting 

3b can inhibit the IFN cascade in some, as yet unknown, manner (Kint et al. 2015). 

Protein 3b displays different localisation in mammalian and avian cells, with a 

nuclear localisation in Vero cells and a diffuse cytoplasmic pattern in DF-1 cells 

(Pendleton et al. 2006). A truncated variant of 3b has been detected in a serially 

passaged strain of Beau-R, resulting in higher viral titres in vitro suggesting an 

advantageous mutation (Shen et al. 2003). This truncation resulted in a different 

cellular localisation in mammalian COS-7 cells, from the nucleus to the cytoplasm, 

suggesting that the cytoplasmic localisation is important for the function of 3b. 

Protein 3b is degraded quickly by the proteasome in mammalian cells and is 

degraded independently of the proteasome in avian cells. This leads to a short 

half-life for 3b making it difficult to detect during transient expression and infection 

(Pendleton et al. 2006). In this chapter, interacting partners for 3b were identified 

which play a role in regulating IFN expression and apoptosis. Furthermore, a 
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recombinant virus lacking 3b expression was shown to induce less caspase-

dependent apoptosis during infection, suggesting 3b has a role in inducing 

apoptosis. 

 

Results 

4.2. Bioinformatic analysis of 3b 

IBV 3b is a highly conserved accessory protein present in IBV and TCoV strains 

with a sequence identity of 60.4% - 100% (Britton et al. 2006). To investigate the 

role of 3b, four isoforms of 3b were aligned, and a eukaryotic linear motif (ELM) 

search was performed to identify motifs which may suggest a function. Protein 3b 

is dispensable for in vitro replication and therefore has been suggested that 3b is 

a pathogenicity factor (Hodgson et al. 2006). For this reason, 3b from Beau-R 

(3bB), M41-CK (3bM), Qx (3bQ) and from a serially passaged strain of Beau-R 

which expresses a truncated form of 3b (3bT) were investigated. Beau-R and 

M41-CK are lab strains, which are apathogenic and pathogenic, respectively, 

while Qx is a highly pathogenic field strain. Protein 3bT is expressed from a 

serially passaged strain of Beau-R and has a C-terminal truncation resulting in a 

34 amino acid long protein (Shen et al. 2003). This truncated variant localises to 

the cytoplasm in COS-7 cells as opposed 3bB which localises to the nucleus. 

Peptide sequences of 3bM, 3bQ, and 3bT were aligned against 3bB and 

sequence identity determined (Figure 4.1). Sequence alignment of 3bB and 3bM 

showed that 3b is highly conserved between these two strains, with a sequence 

identity of 98.43% and only one amino acid difference (V > A). Interestingly the 
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high pathogenic strain, Qx, was more diverse with a sequence identity of 67.2% 

compared to 3bB. The truncated variant 3bT had a lower sequence identity of 

52.94%, although the N-terminus of 3bT was highly conserved with the N-

terminus of 3bB.  

 

The Eukaryotic Linear Motif (ELM) tool was used to identify any motifs that may 

help to determine function. This tool aims to identify motifs which have previously 

been shown to mediate protein-protein interactions. Due to the high incidence of 

false positives when using this tool, little can be inferred from these results alone. 

ELM analysis of 3bB and 3bM identified 11 motifs with LIG_DCNL_PONY_1 and 

DOC_AGCK_PIF_2 being the most significant and are described in Table 4.1. 

Interestingly the ELM search for 3bQ did not identify these two motifs. The third 

most significant interaction, AP2alpha_2, which did appear in Qx, is a motif which 

mediates binding to AP2, an adaptor protein of clathrin-coated vesicles (Edeling 

64 

63 

64 

64 

IBV3bB  1 MLNLEVIIETGEQVIQKISFNLQHISSVLNTEVFDPFDYCYYRGGNFWEIESAEDCSGDDEFIE 64 
IBV3bT  1 MLNLEVIIETGEQVIQKNQFQFTAYFKCIKHRSI 34 

    ******************  * 

Figure 4.1 Sequence alignment and sequence identity of 3b isoforms. 
Peptide sequences of 3b from M41-CK (red), Qx (green) and a truncated isoform 

identified in a serially passaged strain of Beau-R were aligned to 3b from Beau-R (yellow). 

The asterisk marks conserved amino acids.  

52.94% 

67.2% 

98.43%

Sequence Identity 
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et al. 2006). The 3bT variant, when expressed in mammalian cells, shows a 

diffuse cytoplasmic distribution compared to 3bB which localises to the nucleus. 

The ELM search only identified one nuclear retention domain, RVxF, which 

appears in 3bB/3bM but does not appear in 3bT (Lesage et al. 2004). Only one 

motif identified, DEG_Nend_Nbox_1, was conserved between all isoforms of 3b. 

This motif is a destabilising motif that is recognised by N-recognins and may in 

part be responsible for the short half-life of this protein (Varshavsky 2011). 
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Table 4.1 Eukaryotic linear motifs (ELM) identified in the 3b peptide sequence. 

ELM ID 
Matched 

Sequence 
in 3aB 

Pattern Position Elm Description Cell 
Compartment Probability 3b

B 

3b
M

 

3b
Q

 

3b
T 

LIG_DCNL
_PONY_1 MLNL ^M[MIL].[MIL] 1-4 DCNL PONY domain binding motif variant based 

on the UBE2M and UBE2F interactions. 
ubiquitin ligase 
complex, nucleus 4.87E-07 X X  X 

DOC_AGC
K_PIF_2 FDPFDY F..[FWY][DE][

FY] 34-39  

In the DOC_AGCK_PIF_2 motif the 
phosphorylatable serine/threonine residue is 
replaced by an acidic aspartate or glutamate 
residue. 

cytosol, internal 
side of plasma 
membrane 

3.27E-06 X X   

LIG_AP2alp
ha_2 DPF DP[FW] 35-37  DPF/W motif binds alpha and beta subunits of 

AP2 adaptor complex. 

clathrin-coated 
endocytic vesicle, 
cytosol 

0.00012 X X X  

DEG_Nend
_Nbox_1 MLN ^M{0,1}[FYLI

W][^P] 1-3 N-terminal motif that initiates protein degradation 
by binding to N-recognins.  cytosol 0.00023 X X X X 

LIG_Pex14
_2 FTAYF F...[WF] 22-26 

Fxxx[WF] motifs are present in Pex19 and S. 
cerevisiae Pex5 cytosolic receptors that bind to 
peroxisomal membrane docking member, Pex14 

cytosol, 
peroxisome, 
glycosome 

0.00046    X 

DOC_PP1_
RVXF_1 IQKISFN ..[RK].{0,1}[VI

L][^P][FW]. 15-21  
Protein phosphatase 1 catalytic subunit (PP1c) 
interacting motif binds targeting proteins that 
dock to the substrate for dephosphorylation. 

nucleus, protein 
phosphatase type 
1 complex, 
cytosol 

0.00083 X X   

DOC_PP2A
_B56_1 LEAIIE 

([LMFYWIC]..
I.E)|(L..[IVLW

C].E). 
4-9 Docking site required for the regulatory subunit 

B56 of PP2A for protein dephosphorylation. 

nucleus, 
kinetochore, 
chromosome, 
centromeric 
region, cytosol 

0.00146 X X  X 

LIG_TRAF6 FDPFECCY
Y 

..P.E..[FYWH
DE] 34-42 

TRAF6 binding site. Members of the tumor 
necrosis factor receptor (TNFR) superfamily 
initiate intracellular signaling by recruiting the C-
domain of the TNFR-associated factors (TRAFs) 
through their cytoplasmatic tails. 

cytosol 0.001715    X 

LIG_SH2_S
TAT5 YCYY (Y)[VLTFIC].. 

25-28 
STAT5 Src Homology 2 (SH2) domain binding 
motif. cytosol 0.00330 

   X 

39-42 X X   

3bB – 3b Beau-R, 3bM – 3b M41-CK, 3bQ – 3b Qx, 3bT – 3b truncated (Beau-R). Results are ordered by p, the probability of the sequence occurring 
randomly
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4.3. Generation of 3b-GFP expression vectors 

To investigate the role of accessory protein 3b, vectors were generated for 

expression of 3b from Beau-R (3bB) and M41 (3bM) fused with a GFP tag at 

either the N- or C- terminus. These expression vectors were used for mass 

spectrometry protein purification. Previous work has shown that 3b fused with a 

FLAG tag was not detectable during transient expression, possibly due to the 

short half-life of this protein (Davies 2009). A GFP-tag was used to increase the 

stability of 3b during transient expression, due to its large size and biological 

stability (Chalfie 2001). For the generation of the 3bB and 3bM expression vectors, 

M41 and Beau-R viral RNA was isolated and reverse transcribed into cDNA using 

random primers. ORF3b was amplified by PCR using complementary primers 

with flanking restriction sites. The PCR product was purified and digested with the 

relevant restriction enzymes. Plasmids pEGFPC2 (Clontech) and pEGFPN1 

(Clontech) were also digested with the same restriction enzymes. Digested 

plasmids and PCR products were ligated and transformed. Vectors were 

sequenced by Sanger sequencing. The vectors generated were pEGFPC2-3bB, 

pEGFPN1-3bB, pEGFPC2-3bM and pEGFPN1-3bM (Figure 4.2A,B,C,D). To 

confirm expression of GFP-tagged 3b from these vectors, DF-1 cells were 

transfected with GFP-3bB, GFP-3bM, 3bB-GFP, 3bM-GFP vectors. After 16 hours, 

cells were lysed, proteins separated by SDS-PAGE, transferred to a membrane 

and labelled with anti-GFP. Bands with the predicted molecular weight of GFP-

tagged 3bB and 3bM were identified as expected, confirming the successful 

generation of these vectors (Figure 4.2E).  
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Figure 4.2 Expression maps and confirmation of expression of GFP-tagged 3b 

vectors. 

(A) pEGFPC2-3bB (B) pEGFPN1-3bB (C) pEGFPC2-3bM (D) pEGFPN1-3bM. (E) DF-

1 cells were transfected with pEGFPC2, pEGFPC2-3bB/3bM, pEGFPN1-3bB/3bM 

expression vectors. After 16 hours, cells were lysed, proteins separated by SDS-PAGE 

and transferred to a membrane. Membranes were labelled with anti-GFP. 

E 

A B 

C D 
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4.4. Mass spectrometry analysis of 3b-GFP pull-downs 

Mass spectrometry was utilised to identify any cellular interacting partners for 

GFP-3bM and 3bM-GFP that may allude to function. As 3bB and 3bM have a high 

sequence identity of 98.43% and are unlikely to function differently when 

expressed alone, the decision was made to save time and cost by investigating 

3bM only. HEK-293T cells were transfected with pEGFPC2-3bM or pEGFPN1-

3bM expression vectors or with a GFP control plasmid. After 16 hours, cells were 

lysed and GFP-3bM, 3bM-GFP or GFP immunoprecipitated using GFP ‘capture’ 

beads (Chromotek). Three biological replicates were performed for each plasmid. 

Before samples were processed, input and eluate samples were separated by 

SDS-PAGE and blots labelled with anti-GFP to confirm successful transfection 

and immunoprecipitation (Figure 4.3). GFP immunoprecipitation could be 

confirmed by directly visualising the GFP fluorescence when attached to the GFP 

capture beads. After confirmation, eluate samples were analysed by LC-MS/MS 

by Stuart Armstrong to identify cellular proteins in the eluates. 
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In total 69 and 54 cellular proteins were detected in higher amounts in the GFP-

3bM and 3bM-GFP eluates, respectively, compared to the GFP control. Of these, 

47 appeared in both samples, with 22 unique to GFP-3bM and 7 for 3bM-GFP 

(Appendix Table 7.3, 7.4). Proteins were identified by comparing unique peptides 

to a database of human proteins. Proteins, where only a single unique peptide 

was identified, were removed to reduce the chance of identifying the wrong 

protein. Cellular proteins deemed significant interactions have a p-value (-Log10) 

Figure 4.3 Western blot analysis of 3bM-GFP, GFP-3bM expression and 

immunoprecipitation.  

HEK-293T cells were transfected with (A) pEGFPC2-3bM and (B) pEGFPN1-3bM 

expression vectors. After 16 hours, cells were lysed and GFP immunoprecipitated using 

GFP ‘capture’ beads (Chromotek). Samples were eluted in the elution buffer. Input and 

eluate samples were separated by SDS-PAGE, transferred to a membrane and labelled with 

anti-GFP.  

A B 
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above one and a fold-change (Log2) above two. The p-value was determined by 

two-tailed unpaired ANOVA on the three replicates. The fold-change is the change 

in average relative protein abundance of each protein between GFP-tagged 3bM 

and the GFP control. For each identified protein, the confidence score (Log2) was 

calculated as the cumulative score of p, the chance of the unique peptide 

sequence occurring randomly. The higher the score, the higher the confidence in 

the correct protein identification. Of the 76 proteins identified, six were considered 

significant for GFP-3bM (Figure 4.4, Table 4.2). None of the proteins for 3bM-

GFP were considered significant, although the proteins that appeared significantly 

in GFP-3bM also appeared in the 3bM-GFP data, as labelled on the scatter plot 

(Figure 4.5). 
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Protein 
ID Protein Unique 

peptides 
Confidence 

Score 

Relative Protein Abundance 

P-value 
(-log10) 

Fold Change 
GFP-3bM/GFP 

(Log2) 

pEGFPC2-3bM pEGFPC2 

1 2 3 1 2 3 

BAG6* 
Large proline-rich 
protein BAG6 

7 43.529 16470945.06 28858040.37 24418986.71 9586813.925 6962480.736 3957176.544 2.906321357 2.487846495 

VDAC2* 

Voltage-
dependent anion-
selective channel 
protein 2 

3 20.668 25898945.09 14765020.26 15152998.83 7499120.63 17683984.02 17660954.73 2.576106121 2.131061799 

COX5B* 
Cytochrome c 
oxidase subunit 
5B, mitochondrial 

4 23.644 30800063.72 19350935.8 16642052.05 29899955.47 5815533.034 17579004.05 2.136701975 2.009682233 

HSPB1* 
Heat shock protein 
beta-1 

2 14.253 10848031.97 39054893.75 27991976.06 3245524.014 6800974.256 4806149.184 1.786641052 3.158306491 

CLTB* 
Clathrin light chain 
B 

5 34.721 82785226.63 18960977.42 18320048.67 31371039.53 12264031.74 3230799.969 1.726453339 3.287103251 

RPS24* 
40S ribosomal 
protein S24 

3 22.269 30267999.7 24865980.78 17672955.62 28521964.15 29375905.76 4223711.897 1.327963149 2.103594221 

Shown are cellular proteins identified by label-free mass spectrometry/mass spectrometry that interact with GFP-3bM. Protein identifier (ID), protein name and number of 

unique peptides used to identify proteins are indicated. Relative abundance score for each protein is indicated. Confidence score (-Log2) is the score of the probability of the 

unique peptide sequence occurring randomly, added together for each unique peptide. The higher the confidence score, the higher the confidence in protein identification. 

The p-value (-Log10) is a comparison of the cellular protein abundance between 3bM and GFP. The higher the p-value, the higher the probability the protein interacts with 

3b. The fold-change is the change in the abundance of the cellular protein between GFP-3bM and GFP. Cellular proteins which appear in both GFP-3bM and 3bM-GFP data 

are labelled with an asterisk (*).  

Table 4.2 Cellular proteins that significantly interact with GFP-3bM 
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Figure 4.4 Scatter plot representing results from the GFP-3bM co-IP.  
Proteins were identified in the GFP-3bM eluate by LC-MS/MS. Proteins are plotted by 

fold-change in relative abundance compared to the GFP control and p-value (Log10) of 

the t-test. Proteins with a p-value (-Log10) above 1 and a fold change above 2 have the 

highest chance of interacting with 3bM and are considered significant (blue). Results are 

from three biological replicates. 
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Figure 4.5 Scatter plot representing results from the 3bM-GFP co-IP.  
Proteins identified in the 3bM-GFP eluate by LC-MS/MS. Proteins are plotted by fold-

change in abundance over the GFP alone and p-value (-log10) of the t-test. Proteins with 

a p-value (-log10) above 1 and a fold change above 2 have the highest chance of 

interacting with 3bM and are considered significant (blue). Results are from three 

biological replicates. Proteins labelled were identified as significant interactions for GFP-

3bM. 
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LC-MS/MS identified six proteins that are significant interacting partners for 3bM 

(Table 4.3). Gene ontology (GO) analysis of the proteins failed to group the 

proteins based on function or location (data not shown). Nonetheless, three 

proteins were identified that play a role in regulating apoptosis. Voltage-

dependent anion channel 2 (VDAC2) inhibits apoptosis by interacting with and 

inhibiting the pro-apoptotic Bcl-2 homologous antagonist killer (BAK) protein 

(Cheng et al. 2003). BCL2 associated athanogene 6 (BAG6) is a multi-functional 

protein that has been shown to stabilise Apoptosis-inducing factor (AIF), a pro-

apoptotic protein as well as conferring resistance to ER-stress related apoptosis 

(Desmots et al. 2008). Cytochrome c oxidase subunit 5B (COX5B) is a protein 

mainly involved in the electron transport chain, but also interacts with and 

negatively regulates MAVS aggregation by repressing reactive oxygen species 

(ROS) production. COX5B is also a negative regulator of apoptosis as over-

expression of MAVS, or ROS can lead to intrinsic apoptosis (Zhao et al. 2012). 

Furthermore, mass spectrometry data also identified a ribosomal protein, 

ribosomal small protein 24 (RPS24), clathrin light chain B (CTLB) and heat shock 

protein B1. RPS24 is part of the 40S ribosomal complex, while HSPB1 is a 

molecular chaperone that is multi-functional (Bryantsev et al. 2007, Choesmel et 

al. 2008). It has also been reported that HSPB1 inhibits apoptosis by binding to 

both cytochrome C and the pro-apoptotic Bcl-2-associated X protein (BAX) 

protein as well as inhibiting activation of both procaspase-3 and 9 (Bruey et al. 

2000, Concannon et al. 2001, Havasi et al. 2008). CLTB is a structural protein 

that coats the cytoplasmic face of vesicles (Saffarian et al. 2009). Ribosomal 
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proteins and heat-shock proteins are common in mass spectrometry data and 

may represent ‘sticky’ proteins (Mellacheruvu et al. 2013). 

 

Table 4.3 Function and localisation of proteins classified as significant interacting 
partners for GFP-3bM 

Protein ID Protein Function Go Cellular 
Component 

BAG6* BCL2 Associated 
Athanogene 6 

Multi-functional protein, 
regulates AIF expression 
preventing ER-stress related 
apoptosis 

Cytoplasm/ 
Nucleus 

VDAC2* Voltage-Dependent 
Anion Channel 2 

Membrane channel, involved 
in intrinsic apoptosis 

Mitochondrial outer 
membrane 

COX5* 
Cytochrome C 
Oxidase Subunit 
5B 

Role in electron transport and 
negative MAVS regulatory 
protein 

Mitochondrial inner 
membrane 

HSPB1* Heat Shock Protein 
B-1 

Molecular chaperon, multi-
functional protein 

Nucleus/ 
Cytoplasm/ 
Cytoskeleton 

CLTB* Clathrin Light Chain 
B 

Clathrin regulatory protein 
essential for endocytosis 

Plasma membrane/ 
Cytoplasm 

RPS24* Ribosomal Protein 
S24 Small ribosomal protein Cytoplasm/ 

Nucleus 

An asterisk (*) indicates proteins that also appeared in the 3bM-GFP eluate but were not statistically 

significant. 
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4.5. Effect of protein 3b on apoptosis 

4.5.1. IBV induces apoptosis 

Mass spectrometry data for GFP-3bM identified three proteins involved in 

apoptosis, VDAC2, BAG6 and COX5B (Cheng et al. 2004, Desmots et al. 2008, 

Zhao et al. 2012). Previous studies have shown that IBV infection can induce 

caspase-dependent apoptosis in Vero cells (Liu et al. 2001, Li et al. 2007). To 

determine if IBV can also induce apoptosis in DF-1 cells a fluorescence-activated 

cell sorting (FACS) assay was used to measure levels of phosphatidylserine (PS) 

expression on the cell surface. In viable cells, PS is expressed on the interior of 

the plasma membrane, while during apoptosis PS is expressed on the exterior of 

the plasma membrane. Annexin V is used to label apoptotic cells due to its ability 

to bind to PS. As it cannot transverse the cellular membrane, it can only label 

externally expressed PS. DF-1 cells were mock infected, infected with Beau-R or 

BeauR-Sc3bAUG at an MOI of 4. After 24 hours, cells were gently trypsinised and 

labelled with Annexin V to detect apoptotic cells. Dead apoptotic cells were 

labelled with propidium iodide (PI). PI is a chromatin stain that cannot pass 

through the membrane of viable cells and so can only label dead cells which have 

a permeabilised membrane (Steinkamp et al. 1999). Cells were treated with the 

caspase-dependent apoptosis inducer staurosporine for 6 hours at a 

concentration of 1 µM as a positive control (Belmokhtar et al. 2001). Cells were 

sorted, and fluorescence measured using the MACSQuant FACS machine and 

software (Miltenyibiotec). Cells were first sorted by the side scatter area (SSC-A) 

and the forward scatter area (FSC-A) to sort cells by their cellular granularity and 
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size, respectively. DF-1 cells were then selected for and gated (Appendix 7.1). 

Gated DF-1 cells were sorted by forward scatter height (FSC-H) and FSC-A, to 

select for single cell populations. FCS-H and FCS-A have the same value when 

a single cell is detected. Cells were then plotted by Annexin V (FITC) fluorescence 

and PI fluorescence and represented as a density plot. Cells were separated into 

three gates, representing cells that are viable (dark green), viable cells 

undergoing apoptosis (light green) and cells which are dead from apoptosis (red) 

(Figure 4.6). The percentage of viable cells, viable cells undergoing apoptosis, 

and dead cells were calculated for mock, Beau-R and BeauR-Sc3bAUG infected 

cells. The percentage of mock infected cells that were viable was 82.60%, with 

26.80% of those cells undergoing apoptosis (Figure 4.6A). The remaining cells, 

17.57%, were dead as they stained for propidium iodide as well as annexin. Beau-

R infected cells saw 52.68% of cells viable, with 21.00% of those cells undergoing 

apoptosis. The remaining cells, 47.28%, were dead (Figure 4.6B). BeauR-

Sc3bAUG infected cells had 79.09% viability with 16.56% of those cells 

undergoing apoptosis. The remaining, 30.53%, were dead (Figure 4.6C). The 

staurosporine positive control actively induced apoptosis with 47.77% of cells 

viable, of which 20.52% were undergoing apoptosis, the remaining cells, 52.39%, 

were dead (Figure 4.6D). Compared to mock infected cells, Beau-R infected cells 

saw higher levels of dead cells but saw lower levels of actively apoptotic cells. 

This result suggests that at 24 h.p.i Beau-R causes a ~30% increase in apoptotic 

cell death compared to mock. This confirms that IBV infection induces apoptosis 

in DF-1 cells as seen previously for Vero cells (Liu et al. 2001). A similar pattern 
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was observed for BeauR-Sc3bAUG with saw an increase of 13% in apoptotic cells 

compared to the mock. This increase was smaller compared to Beau-R infected 

cells and suggests that 3b expression causes an increase in the rate of apoptosis. 

Scrambling of the 3b AUG codon does not abrogate apoptosis completely and 

suggests 3b is not solely responsible for IBV-induced apoptosis.  
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Figure 4.6 IBV 3b induces apoptosis. 
DF-1 cells were (A) mock infected or infected with (B) Beau-R or (C) BeauR-Sc3bAUG at 

an MOI of 4 for 24 hours. As a positive control, cells were treated with (D) staurosporine 

for 6 hours. Cells were harvested, washed with PBS and labelled with anti-PS and 

propidium iodide. Cells were sorted by forward scatter area (FSC-A), and side scatter area 

(SSC-A) to gate DF-1 cells. DF-1 cells were then sorted by forward scatter area (FSC-A) 

and forward scatter height (FSC-H) to gate single cell populations. Single DF-1 cells were 

then sorted by annexin V (FITC) and propidium iodide (PI) fluorescence and shown as a 

density plot. Cells were separated into three gates, representing cells that are viable (dark 

green), viable cells undergoing apoptosis (light green) and cells which are dead from 

apoptosis (red). 
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4.5.2. IBV 3b induces caspase-dependent apoptosis 

To further confirm that 3b can induce apoptosis during infection, a caspase assay 

was used. This assay also helped to determine whether 3b induces caspase-

dependent or caspase-independent apoptosis. To measure caspase activity, a 

caspase-Glo 3/7 kit (Promega) was used. Caspase 3/7 are the primary cysteine 

proteases which initiate the apoptotic signalling cascade leading to irreversible 

apoptosis (Taylor et al. 2008). DF-1 cells were either mock infected or infected 

with Beau-R or BeauR-Sc3bAUG at an MOI of 4. Cells were harvested at 12, 24 

and 36 h.p.i. Firefly luciferase activity was measured as a proxy for caspase 3/7 

enzymatic activity using the Caspase-Glo 3/7 assay (Promega). Results are 

shown as fold-change compared to the mock control and are from three biological 

replicates. At 12 h.p.i there was no significant difference between mock and IBV. 

At 24 h.p.i and 36 h.p.i, there was significantly more Firefly luciferase activity from 

cells infected with Beau-R compared to mock infected cells. BeauR-Sc3bAUG 

also showed significantly more Firefly luciferase activity compared to the mock 

control, although this was significantly less than Beau-R at 24 h.p.i. This result 

correlates with the FACS data and suggests that IBV does induce apoptosis 

during infection in DF-1 cells as in Vero cells, and that protein 3b is responsible, 

in part, for IBV-induced apoptosis.  
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Figure 4.7 Protein 3b induces caspase-dependent apoptosis.  
DF-1 cells were either mock infected or infected with Beau-R or BeauR-Sc3b at 

an MOI of 4. After 12, 24 or 36 hours, cells were lysed and caspase 3/7 activity 

measured. ** significance p < 0.01, *** significance p < 0.001 

*** 
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4.6. Discussion 

IBV accessory protein 3b is a small accessory protein at 7.4 kDa, expressed from 

sgRNA3 along with 3a and E (Le et al. 1994). Protein 3b is highly conserved 

between Beau-R and M41-CK but is less conserved with the highly pathogenic 

Qx strain with a 67.2% sequence identity (Figure 4.1). Furthermore, a truncated 

variant of Beau-R 3b, 3bT, which shows different localisation patterns in Vero cells 

compared to 3bB, only has a sequence identity of 52.49%, although the N-

terminal end was highly conserved. An ELM search only identified one motif 

(DEG_Nend_Nbox_1), a destabilising motif, that is conserved between all four 

isoforms of 3b (Table 4.1). IBV 3bT localises to the cytoplasm in COS-7 cells 

during transient expression while 3bB and 3bM both localise to the nucleus, this 

suggests that a nuclear localisation signal is present in the C-terminus of 3b (Shen 

et al. 2003). Only one nuclear retention motif was identified, RVxF, that is present 

in 3bB/3bM and not present in 3bT. This motif allows interaction with the catalytic 

domain of PP1c and is present and functionally important in IBV accessory protein 

4b (Chapter 5) and TGEV accessory protein 7 (Cruz et al. 2011). PP1 is a 

phosphatase protein which plays a role in a range of cellular pathways (Szyszka 

et al. 1989, Hartshorne et al. 2004). This motif was not present in the Qx isoform 

of 3b. Knockout of RVxF may help to determine the role of this motif in 3B/3bM 

nuclear localisation in mammalian cells, although why this motif would act 

differently in avian cells is not known (Lesage et al. 2004). None of these motifs 

are obviously important for the interacting partners identified by LC-MS/MS for 

3bM (Appendix 7.3, 7.4), which could suggest none of these motifs are important.  
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Mass spectrometry analysis of 3b identified six significant interacting partners for 

GFP-3bM and failed to identify any significant proteins for 3bM-GFP (Table 4.2). 

Compared to 3a and 4b, the number of interacting partners was lower for 3b. IBV 

3b has a very short half-life of 7.5 minutes in Vero cells (Pendleton et al. 2006) 

and could explain the low expression levels of GFP-tagged 3bM in the eluate 

samples and thus the low number of cellular interacting partners identified (Figure 

4.3). HEK-293T cells were used for the co-IP due to the high transfection rates 

and the ability to characterise mammalian proteins by mass spectrometry. 

Nonetheless, there are differences in 3b cellular localisation between mammalian 

and avian cells which could skew the accuracy of the mass spectrometry data. 

The M41 isoform of 3b was used for the co-IP; future work would be encouraged 

to repeat this assay with both 3bQ and 3bT to detect different interacting partners 

that could suggest reasons for the highly pathogenic nature of Qx or the different 

cellular compartmentalisation of 3bT.  

 

Three proteins that have a role in regulating apoptosis were identified by mass 

spectrometry. The first was BAG6 a molecular chaperone which interacts with and 

stabilises the pro-apoptotic protein AIF (Desmots et al. 2008). The second, 

VDAC2, is a pore-forming protein that localises to the outer membrane of the 

mitochondria where it is involved in the mitochondrial apoptotic pathway (Cheng 

et al. 2003). The third protein identified, COX5b, also localises to the mitochondria 

where it plays a role in ATP production (Galati et al. 2009) and has been shown 
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to inhibit ROS levels and thus has a role in regulating intrinsic apoptosis (Zhao et 

al. 2012). Viruses have been shown to express proteins that both inhibit and 

induce apoptosis (Koyama et al. 1998). Accessory proteins PB1-F2 from IAV and 

VP5 from IBDV have been shown to induce apoptosis through the interaction with 

VDAC1 and VDAC2, respectively (Zamarin et al. 2005, Li et al. 2012), while HIV-

1 Tat accessory protein has been shown to interact with COX5b to induce 

mitochondrial membrane permeabilisation, leading to apoptosis (Lecoeur et al. 

2012). Cellular apoptosis is a common feature of coronavirus infection, with 

alpha- beta- and gammacoronaviruses all able to induce apoptosis in some 

manner (Fung et al. 2014). No anti-apoptotic proteins have been identified for 

coronaviruses with viral proteins primarily inducing apoptosis (Liu et al. 2014). For 

example, SARS-CoV accessory proteins 3a and 3b have been shown to induce 

caspase-dependent apoptosis when overexpressed in Vero cells (Law et al. 2005, 

Khan et al. 2006) (Tan et al. 2004), while SARS-CoV 7a has also been shown to 

induce apoptosis by interacting with the pro-survival protein, Bcl-XL (Tan et al. 

2007). Previous work has shown that caspase-dependent apoptosis is actively 

induced during IBV infection (Li et al. 2007, Liao et al. 2013). Furthermore, IBV-

induced apoptosis has been shown to involve the Blc-2 family of proteins including 

Bak, a VDAC2 interacting protein (Zhong et al. 2012). The pro-apoptotic PERK 

and eIF2α pathways are also active during IBV infection, although it is not known 

if this is directed by the virus or is activated as a host response to infection (Liao 

et al. 2013). Inhibiting apoptosis during IBV infection does not affect viral titres, 

suggesting apoptosis is not required for IBV replication (Liu et al. 2001). Here, 
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IBV-induced apoptosis has been further confirmed in an avian cell line using 

FACS (Figure 4.6B) and has been shown to be caspase-dependent (Figure 4.7).  

Although BeauR-Sc3bAUG did also induce apoptosis and cell death in higher 

amounts compared to the mock control (Figure 4.6C), levels were significantly 

lower compared to wild-type Beau-R. The same effect was seen for the caspase 

3/7 assay which showed higher caspase activity when cells were infected with 

Beau-R compared to BeauR-Sc3bAUG (Figure 4.7). This result suggests that 3b 

expression, during Beau-R infection, increases cellular apoptosis. Scrambling of 

3b did not completely abrogate apoptosis as seen by FACS and caspase activity, 

suggesting that IBV either expresses additional pro-apoptotic protein/s or 

apoptosis is a cellular response to viral replication. Levels of caspase 3/7 at 36 

h.p.i were not significantly different between wild-type and BeauR-Sc3bAUG, 

most likely representing host-induced apoptosis, as the cell responds to depleted 

resources after peak replication. Both the FACS and caspase assay should be 

repeated measuring apoptosis during transient expression of 3b. These assays 

could also be used to measure and compare the apoptotic activity of 3bB, 3bM, 

3bQ, and 3bT and further include the use of Vero and DF-1 cells to determine the 

functionality of 3bB against 3bT in different cell lines. 

 

The apoptotic and innate immune signalling pathways are linked, with many 

coronavirus accessory proteins including SARS 3a and 7 shown to modulate both 

pathways (Alcami et al. 2000, Liu et al. 2014). Indeed, previous work has shown 

that recombinant IBV that lacks 3b expresses more IFNβ, suggesting 3b inhibits 
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IFNβ expression in some unknown manner (Kint et al. 2015). A potential 

mechanism, as alluded to in the mass spectrometry data, could be an interaction 

between 3b and COX5b, a protein that negatively regulates IFN expression by 

controlling MAVS aggregation at the mitochondria (Zhao et al. 2012). Future work 

should aim to confirm this interaction and determine if 3b can inhibit IFNβ 

expression using the chIFNβ luciferase assay. This assay will help to determine 

whether the effect of 3b on IFNβ expression occurs at the point of MAVS signalling 

as seen for accessory protein 3a.  

 

More work is required to determine the function of 3b during infection and has 

been hampered by the difficulties in transiently expressing 3b and detecting 3b 

during infection. Due to time constraints and a lack of an anti-3b antibody, none 

of the interacting partners for 3bM were confirmed by immunofluorescence or IP. 

Any future work should first focus on confirming these interactions during infection, 

either by raising an antibody against 3b or using the reverse genetic system to 

introduce an epitope tag onto 3b. Future work should also focus on comparing 

3bB/3bM with 3bT and 3bQ to determine any functional changes in apoptosis 

using the assays established here, and interferon signalling, using the chIFNβ 

assay previously used for 3a. Accessory protein 3b is non-essential for in vitro 

replication and thus could play a role as a pathogenicity factor. Determining 

differences between the function of 3b between low and highly pathogenic strains 

may help to establish the importance of this small accessory protein. 
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5. The role of Accessory Protein 4b 

5.1. Introduction 

IBV expresses four known accessory proteins during infection, 3a and 3b from 

gene 3, and 5a and 5b from gene 5 (Casais et al. 2005, Britton et al. 2006, 

Hodgson et al. 2006). They were shown to be accessory proteins, as scrambling 

of the AUG start codon (ATG>ACC) had no effect on viral replication in vitro. 

Nonetheless, these proteins are highly conserved, and it is assumed they play a 

role in pathogenicity and/or viral-host interaction. IBV and the closely related 

TCoV contain an ORF known as ORF4b within the intergenic region (IR), a region 

in-between gene M and gene 5 (Bentley et al. 2013). This ORF from M41-CK has 

the potential to encode a 94 amino acid protein with a molecular weight of around 

11 kDa, while Beau-R ORF4b is smaller and could encode a protein with a 

molecular weight of 6 kDa. Due to a lack of a canonical TRS (CUUAACAA) it was 

assumed that there was no corresponding mRNA for expression of ORF4b 

(Bentley et al. 2013). For this reason, ORF4b was, until recently, believed to be a 

pseudogene. Bentley et al (2013) showed that IBV expressed a sgRNA that is 

regulated by a non-canonical TRS (CAA) (Bentley et al. 2013). This non-canonical 

TRS regulates the transcription of sgRNA 4b at lower levels than is expected for 

its genome location. Previous work has shown that deleting the intergenic region 

containing ORF4b from Beau-R has no effect on viral replication and if expressed 

is most likely an accessory protein (Bentley et al. 2013). Northern blot analysis 

has shown that sgRNA 4b is expressed by IBV strains M41-CK and Beau-R, and 

some strains of TCoV. It is not known whether this sgRNA is translated into a 



Chapter 5: The role of accessory protein 4b   The role of IBV accessory proteins 3a, 3b and 4b 

200 
 

protein. In this chapter, expression of 4b during M41-CK infection has been 

confirmed. Furthermore, the role of 4b is investigated and has been shown to play 

a role in regulating cellular translation and stress granule formation. 

 

Results 

5.2. Bioinformatic analysis of IBV and TCoV 4b 

Previous work has shown that M41-CK and Beau-R encode an ORF in the 

intergenic region known as ORF4b (Bentley et al. 2013). Beau-R ORF4b is 

predicted to encode a 50 amino acid protein while M41-CK is predicted to encode 

a 94 amino acid isoform. TCoV strains also contain an ORF in the intergenic 

region (Bentley et al. 2013). Frequency and sequence similarity of 3a, 3b, 5a, and 

5b has previously been determined by analysing and comparing the ORFs 

encoded by different strains of IBV (Britton 2007). The full-genome sequences of 

IBV and TCoV strains were downloaded from the viper database (viprdb.org) to 

determine the frequency and sequence similarity of ORF4b. In all, 178 sequences 

(Jan 2017) were downloaded and contained a mix of lab, vaccine, and field strains. 

ORF4b and the non-canonical TRS were identified in each strain using the 

unsorted six-frame translation tool in BioEdit. In the 178 strains studied, 78% of 

strains had both ORF4b and the non-canonical TRS (Table 5.1). ORF4b varied 

in size between the strains, the smallest length was 40 amino acids and the 

largest was 100 amino acids. The most common form of ORF4b was 94 amino 

acids with 69% of strains encoding this length. Due to the frequency of this length, 

this was considered the full-length version of ORF4b. The other IBV accessory 
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proteins have a high level of percentage similarity (Britton et al. 2006). To 

determine sequence similarity/identity of 4b, the sequence alignment for 4b was 

entered into the sequence identity and similarity (SIAS) tool (imed.med.ucm.es). 

Each sequence was aligned to each other sequence, and percentage similarity 

or identity was calculated. The average percentage similarity or identity was then 

calculated. Sequence identity for 4b was 86% while similarity was 81%.  

 

The M41-CK 4b peptide sequence was further characterised to determine any 

domains, motifs, or conserved regions. The Eukaryotic Linear Motif (ELM) tool 

was used to identify any motifs that may help to determine function. This tool aims 

to identify motifs which have previously been shown to mediate protein-protein 

interactions. In total 21 motifs were identified, ranked by the probability of the motif 

occurring randomly in a 94 amino acid protein (Table 5.2). Due to the high 

incidence of false positives when using this tool, little can be inferred from these 

results alone. Nonetheless, two motifs were of interest from the search, 

Phosphoprotein 1c (PP1c) SILK (.[GS]IL[KR][^DE]) and RVxF 

(..[RK].{0,1}[VIL][^P][FW].) Individually these motifs have a low probability of 

occurring randomly in a 94 amino acid protein. Furthermore, their presence 

together in the same peptide sequence is even more unlikely. Both motifs are 

involved in PP1c binding and cooperate to increase PP1c affinity. For this to occur 

these motifs should be near as they are in 4b (Hendrickx et al. 2009). PP1c_RVxF 

is at position 7-13 while PP1c_SILK is at position 15-20. PP1c is a multi-functional 

protein involved in the dephosphorylation of phosphorylated proteins (Szyszka et 
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al. 1989, Mochida et al. 2012). Due to the promiscuous nature of this protein, the 

exact cellular pathway being controlled cannot be determined. Sequence 

alignment of 4b isoforms showed that the N-terminal end of 4b is more conserved 

than the C-terminal end, due in part to the presence of C-terminal truncations in 

many 4b isoforms. RVxF and SILK motifs, as identified by the EML search, are 

present in 93.75% and 93% of 4b sequences, respectively (Figure 5.1).  

 

Table 5.1 Bioinformatic analysis of the ORF4b predicted peptide sequence in 
IBV/TCoV strains 

IBV/TCoV 
Strains 

Strains 
with 4b + 

TRS 
4b Isoforms Count IBV 

Strain 
Sequence 
Similarity 

Sequence 
Identity 

183 144 (78%) 

Elongated 3 (2%)  

81% 86% 

Full-length94 100 (69%) M41, 
QX 

Truncated92 1 (0.7%)  

Truncated80 31 
(21.5%) 

 

Truncated50 7 (4.8%) Beau-R 

Truncated40 2 (1.4%)  



Chapter 5: The role of accessory protein 4b   The role of IBV accessory proteins 3a, 3b and 4b 

203 
 

 

ELM ID Matched 
sequence Pattern Position Description Cell 

Compartment Probability 

DEG_Nend_UBRb
ox_4 MCV ^M{0,1}(C). 1-3  

N-terminal motif that initiates protein degradation by 
binding to the UBR-box of N-recognins. This N-degron 
variant comprises N-terminal Cys as destabilizing residue. 

cytosol 1.77E-05 

DOC_PP1_SILK_1 ASILRA .[GS]IL[KR][^
DE] 15-20 

Protein phosphatase 1 catalytic subunit (PP1c) interacting 
motif that often cooperates with and is located N-terminal 
to the RVXF motif to dock proteins to PP1c. 

cytosol, 
nucleus, 
protein 
phosphatase 
type 1 complex 

3.78E-05 

DOC_PP1_RVXF_
1 YLKLFFN ..[RK].{0,1}[V

IL][^P][FW]. 7-13 
Protein phosphatase 1 catalytic subunit (PP1c) interacting 
motif binds targeting proteins that dock to the substrate for 
dephosphorylation.  

nucleus, 
protein 
phosphatase 
type 1 complex, 
cytosol 

8.30E-04 

DOC_MAPK_NFA
T4_5 

REYLKLFF
N 

[RK][^P][^P][
LIM].L.[LIVM

F]. 
5-13 An extended D site specifically recognized by the JNK 

kinases 

cytosol, neuron 
projection 
nucleus, protein 
complex, 

1.64E-04 

LIG_Pex14_2 
FILSF 

F...[WF] 

36-40 Fxxx[WF] motifs are present in Pex19 and S. cerevisiae 
Pex5 cytosolic receptors that bind to peroxisomal 
membrane docking member, Pex14 

cytosol, 
peroxisome, 
glycosome 

4.63E-04 FKKQF 45-49 
FFHSF 49-53 

LIG_SH3_4 KPIFQKGC KP..[QK]... 77-84 This is the motif recognized by those SH3 domains with a 
non-canonical class II recognition specificity 

focal adhesion, 
cytosol 6.78E-04 

LIG_BRCT_BRCA
1_1 NSIIF .(S)..F 22-26 

Phosphopeptide motif which directly interacts with the 
BRCT (carboxy-terminal) domain of the Breast Cancer 
Gene BRCA1 with low affinity 

nucleus, 
BRCA1-BARD1 
complex 

1.91E-03 

DOC_MAPK_MEF
2A_6 REYLKLFF 

[RK].{2,4}[LI
VMP].[LIV].[L

IVMF] 
5-12 A kinase docking motif that mediates interaction towards 

the ERK1/2 and p38 subfamilies of MAP kinases. 

cytosol, 
Transcription 
factor complex, 
nucleus 

2.58E-03 

TRG_ENDOCYTIC
_2 YLKL Y..[LMVIF] 7-10 

Tyrosine-based sorting signal responsible for the 
interaction with mu subunit of AP (Adaptor Protein) 
complex 

plasma 
membrane, 
clathrin-coated 
endocytic 
vesicle, cytosol 

2.59E-03 

Table 5.2 Eukaryotic linear motifs identified in 4b (M41) peptide sequence.  
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LIG_SH2_STAT5 YLKL (Y)[VLTFIC].. 7-10 STAT5 Src Homology 2 (SH2) domain binding motif. cytosol 3.30E-03 

LIG_TRAF2_1 SFQE [PSAT].[QE]
E 39-42 

Major TRAF2-binding consensus motif. Members of the 
tumour necrosis factor receptor (TNFR) superfamily initiate 
intracellular signalling by recruiting the C-domain of the 
TNFR-associated factors (TRAFs) through their 
cytoplasmic tails. 

cytosol 4.30E-03 

LIG_14-3-
3_CanoR_1 RLWLSYK 

R[^DE]{0,2}[^
DEPG]([ST])(
([FWYLMV].)
|([^PRIKGN]
P)|([^PRIKG
N].{2,4}[VILM

FWYP])) 

86-92  Canonical Arg-containing phospho-motif mediating a 
strong interaction with 14-3-3 proteins. 

cytosol, 
internal side of 
plasma 
membrane, 
nucleus 

4.48E-03 

Results are ordered by the probability of the sequence occurring randomly (p). 
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Figure 5.1 Peptide sequence alignment of 4b.  
ORF4b was identified in IBV strains (viperdb.com) and aligned and translated using Clustalw. Amino acids with a (*) are conserved 

throughout, (:) indicates amino acids that are conserved within similar property groups. RVxF (red) and SILK (black) motifs identified by the 

ELM tool are labelled. 

Sequence Conservation 
0 

100 
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5.3. Generation of GFP-tagged 4b expression vectors 

Vectors for expression of GFP-tagged 4b from M41-CK (4bM) were generated for 

mass spectrometry protein purification and for protein visualisation by 

immunofluorescence. GFP was fused to the N- or C- terminus of 4bM and both 

constructs were used in conjunction to reduce the effect of the GFP tag on co-IPs. 

The 4b from Beau-R (4bB) was tagged at the N-terminus and was used for 

comparison to GFP-4bM in in vitro assays. For the construction of the 4bM 

expression vectors, M41 viral RNA was isolated and reverse transcribed into 

cDNA. The 4b ORF was amplified from the cDNA using complementary primers 

with flanking restriction sites by PCR. The resulting PCR product was purified and; 

along with the pEGFPC2 (Clontech) and pEGFPN1 (Clontech) plasmids, were 

digested with the relevant restriction enzymes. Digested vectors were purified by 

gel extraction. Digested vectors and PCR products were then ligated together. 

Vector sequences were confirmed by Sanger sequencing. The 4bB cDNA was 

ordered as a genestring from Invitrogen and contained flanking restriction sites. 

The GeneArt String (ThermoFisher) was digested with relevant restriction 

enzymes and ligated into a digested pEGFPC2 vector. The final vectors 

generated were pEGFPC2-4bM, pEGFPN1-4bM and pEGFPC2-4bB (Figure 

5.2A,B,C,). To confirm expression of GFP-tagged 4b from these vectors, DF-1 

cells were transfected with GFP-4bM, 4bM-GFP, GFP-4bB, or GFP vectors. After 

24 hours, cells were lysed, proteins separated by SDS-PAGE, transferred to a 

membrane and labelled with anti-GFP. Bands with the molecular weight of GFP-
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4bM, 4bM-GFP and GFP-4bB were identified as expected (Figure 5.2D,E,F), 

confirming expression from these vectors was successful. 

 

  

Figure 5.2 Plasmid map and confirmation of expression of the GFP-tagged 4b 
expression vector.  
(A) pEGFPC2-4bB, (B) pEGFPN1-4bM, (C) pEGFPC2-4bM.  DF-1 cells were transfected 

with GFP-4bM (D), 4bM-GFP (E) GFP-4bM (F) GFP-4bB and a GFP control. After 16 hours, 

cells were lysed, separated by SDS-PAGE, transferred to a membrane, and labelled with 

anti-GFP or anti-actin.  

A B 

C 

GFP-4bM
GFP

37

20

D 

E F 
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5.4. Detection of 4b during infection 

5.4.1. Validation of anti-4b 

Polyclonal anti-4b was raised against the DNGKVYYEGKSI peptide sequence 

present in the C-terminus of 4bM. Previous work with this antibody failed to detect 

4b during M41-CK infection (Bentley et al. 2013). To confirm whether anti-4b can 

indeed detect 4b, the antibody was first used to detect expression of GFP-tagged 

4b. DF-1 cells were transfected with GFP-4bM, 4bM-GFP or GFP expression 

vectors. After 16 hours, DF-1 cells were fixed, permeabilised and labelled with 

anti-4b at a concentration of 1:50 and visualised by confocal microscopy. GFP-4b 

signal colocalised with the anti-4b signal, while GFP signal did not (Figure 5.3). 

This result indicates that anti-4b specifically binds to the 4b peptide. In 

untransfected cells, a weak signal was detected predominantly in the nucleus, 

possibly suggesting anti-4b may also bind to a cellular nuclear protein. 

 

To further confirm that anti-4b can label 4b, the antibody was used to detect GFP-

4bM overexpression by western blot. DF-1 cells were transfected with the GFP-

4bM expression vector at varying doses, and after 16 hours cells were lysed. 

Samples were separated by SDS-PAGE, transferred to a membrane and labelled 

with anti-4b at a range of concentrations. The antibody failed to detect 4b 

expression when transfected with 250 ng and 500 ng of pEGFPC2-4bM but was 

able to detect GFP-4bM when transfected with a higher dose at 1000 ng (Figure 

5.4). The size of the band was around 35 kDa, the expected size of GFP-4bM. 
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This result demonstrates that anti-4b can detect GFP-tagged 4b by western blot 

and possibly by immunofluorescence.  
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Figure 5.3 Anti-4b can detect the presence of GFP-tagged 4bM.  
DF-1 cells were transfected with plasmids encoding N- and C-terminally GFP-tagged 

4b protein. After 24 hours, cells were fixed and stained with anti-4b and DAPI. 
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5.4.2. Detection of 4b during M41 infection 

After validating that anti-4b specifically binds to 4bM, the antibody was used to 

determine whether 4b is expressed during M41 infection. The antibody was raised 

against a C-terminal peptide sequence not present in ORF4b from Beau-R. 

Therefore, anti-4b can only be used to label the M41 4b isoform. The antibody 

was initially used to label 4b by western blot analysis. CK cells were mock infected 

or infected with M41 at an MOI above 4 and lysed 24 hours later. The samples 

were separated by SDS-PAGE and transferred to a nitrocellulose membrane. 

Membranes were labelled with anti-4b at a concentration of 1:50 and anti-actin 

Figure 5.4 Anti-4b can label GFP-4bM.  
DF-1 cells were transfected with the GFP-4bM 

expression vector. After 16 hours, cells were lysed 

and separated by SDS-PAGE. Blots were incubated 

with anti-4b. 
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for 16 hours. An actin band was detected at 40 kDa in both the mock and infected 

lanes; a band was also detected in the M41-CK lane at approximately 10 kDa 

(Figure 5.5A). This result provided preliminary evidence that 4b was expressed 

during M41 replication.  

 

To further confirm expression of 4b, a range of recombinant viruses were used as 

controls. These viruses, M41K-del4b and BeauR-IR(M41) were previously 

generated by Sarah Keep and Kirsten Bentley, respectively. M41K-del4b has a 

deletion of ORF4b in the M41-K backbone. BeauR-IR(M41) contains the 

intergenic region; the region between M and ORF5ab, from M41, inserted into 

Beau-R and therefore contains ORF4bM. Anti-4b was also tested against Beau-

R. As the antibody was raised against a peptide sequence at the C-terminus of 

4b, not present in Beau-R ORF4b, the antibody should be able to label Beau-R 

4b. Furthermore, anti-4b should also fail to label M41K-del4b due to deletion of 

ORF4b. Conversely, anti-4b should be able to label BeauR-IR(M41) as this 

recombinant IBV will express the full-length 4b. CK cells were infected with M41K-

del4b, BeauR-IR(M41), Beau-R and M41-CK for 24 hours. Cells were then lysed, 

proteins separated by SDS-PAGE, transferred to a membrane and labelled with 

anti-actin and anti-4b. Actin was present in all samples. Anti-4b was unable to 

detect a protein band in the M41K-del4b or Beau-R lane but did detect a protein 

band in the M41-CK and the BeauR-IR(M41) lane (Figure 5.5A, B). This confirms 

the 10 kDa band is indeed the predicted 4b protein.  
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After confirming 4b is expressed, IBV 4b levels were characterised during 

infection. CK cells were infected with M41-CK at an MOI of 4 or mock infected. 

Cells were harvested at 4, 8, 12, 16, 24 and 48 h.p.i. The samples were separated 

by SDS-PAGE, transferred to a membrane and labelled with anti-actin and anti-

4b. Western blot analysis showed that anti-4b could detect 4b expression from 16 

h.p.i and that peak 4b expression occurred at 24 hours (Figure 5.5C).  

 

IBV 4b was further characterised by immunofluorescence to study cellular 

localisation of 4b. CK cells were infected with M41-CK, and after 24 hours, cells 

were fixed, permeabilised and labelled with anti-4b. As a control for infection, cells 

were labelled with anti-dsRNA. The anti-4b signal appeared stronger in cells 

positive for dsRNA (Figure 5.6A). The anti-4b signal is predominantly cytoplasmic 

with a granular-like pattern and appeared to aggregate in large structures during 

infection. However, there was a high level of the anti-4b signal in non-infected 

cells. Furthermore, labelling of 4b did not occur in all infected cells. To confirm 

that the use of a primary CK cell line, which can have a high proportion of cell 

debris and stressed cells was not responsible for this observation, the experiment 

was repeated in DF-1 cells. M41 cannot infect DF-1 cells; therefore, a 

recombinant M41 virus with the spike protein from Beau-R (M41R-BeauR(S)) was 

used. The Beaudette spike permits M41-K entry into DF-1 cells. DF-1 cells were 

infected with M41R-BeauR(S) for 24 hours, then fixed, permeabilised and labelled 

with anti-4b and anti-dsRNA. The background 4b signal was lower in DF-1 cells 

but, as seen previously, not all infected cells contained 4b signal (Figure 5.6B). 
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Altogether, the western blot and immunofluorescence data confirms that the M41-

CK 4b transcript, previously identified by Bentley et al, is translated during 

infection and confirms 4b as the fifth IBV accessory protein. 

 

Figure 5.5 M41-K expresses an 11 kDa protein known as 4b during infection. 
CK cells were (A) Mock infected or infected with M41-K, (B) infected with Beau-R, 

M41-CK, BeauR-M41R(IR) or M41K-del4b at an MOI of 4. At 24 h.p.i cells were lysed, 

proteins separated by SDS-PAGE and transferred to a membrane and labelled with 

anti-4b and anti-actin. (C) CK cells were mock infected or infected with M41 at an MOI 

of 4. Cells were lysed at indicated time-points, proteins separated by SDS-PAGE, 

transferred to a membrane and labelled with anti-actin and anti-4b.   

A B 

C 
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A 

B 

Figure 5.6 Anti-4b can detect 4b during infection. 
CK cells were infected with either (A) M41-CK or (B) M41R-BeauR(S) at a MOI above 4. 

After 24 hours, cells were fixed and labelled with anti-dsRNA and anti-4b. The nuclei were 

stained with DAPI.  
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5.5. Effect of 4b on viral replication 

It is assumed that 4b is an accessory protein as 22% of IBV/TCoV strains lack 

ORF4b (Table 5.1). To confirm this, recombinant IBVs were generated with 

ORF4b deletions. Two viral isolates, M41K-del4b-2 and 16 were designed and 

generated using the M41-K reverse genetics system (Keep et al. unpublished). 

The generation of these IBVs and subsequent growth curves were completed by 

Sarah Keep, as part of another project. CK cells were infected with M41-CK, M41-

K, and M41K-del4b-2/16 at an MOI of 0.01. Two recombinant clones (clone 2 and 

T im e  (H o u rs )

lo
g

1
0

 (
p

fu
/m

l)

0 2 0 4 0 6 0 8 0
0

2

4

6

8

M 41 -C K

M 41 -K -6

M 4 1 -K -d e l-4 b -1 6

M 4 1 -K -d e l-4 b -2

Figure 5.7 Protein 4b is not required for in vitro viral replication. 
CK cells were infected with M41-CK, M41-K, or M41-K-del-4b at an MOI of 0.01. 

The supernatant was harvested at the indicated time-point and titration calculated 

using the CK plaque assay. Data was from three experimental repeats. Growth 

curve completed by Sarah Keep. Results are from three biological replicates. 

Unpaired t-test *significant at p < 0.05. Error bars represent one standard 

derivation from the mean.   

* 
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clone 16) were generated to take into account IBV genome mutations that can 

arise during the reverse genetics system. The supernatant was removed at 0, 24, 

48, 72 and 96 h.p.i and virus titre determined by CK cell plaque assay. Results 

are from three biological repeats. The full-length molecular clone, M41-K, grew to 

similar titres as M41K-del4b, with both peaking at 48 h.p.i at 2-5x105 pfu/ml 

(Figure 5.7). M41-CK grew to higher titres at hour 48 compared to the molecular 

clone, M41-K, while the reason for this discrepancy is unknown, it is possibly due 

to the mixed population of viruses within the M41-CK inoculum. Despite this 

discrepancy, this result indicates that 4b has no effect on viral in vitro replication 

and is therefore an accessory protein. 

 

5.6. Mass spectrometry analysis of GFP-tagged 4b Co-IPs 

To determine the role of accessory protein 4b, mass spectrometry was utilised to 

identify proteins that interact with GFP-4bM or 4bM-GFP. HEK-293T cells were 

transfected with the pEGFPC2-4bM or pEGFPN1-4bM expression vectors or a 

GFP control plasmid. After 16 hours, cells were lysed and GFP-4bM/4bM-

GFP/GFP immunoprecipitated using GFP ‘capture’ beads (Chromotek). Three 

biological replicates were completed for each plasmid. Input and eluate GFP-4bM 

and 4bM-GFP samples were analysed by western blot to confirm successful 

transfection and immunoprecipitation (Figure 5.8). Samples were analysed by 

LC-MS/MS by Stuart Armstrong. 
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In total 87 and 137 cellular proteins were detected in higher amounts in the GFP-

4bM or 4bM-GFP samples, respectively, compared to the GFP control, of which 

24 appeared in both (Appendix Table 7.4, 7.5). Due to an unknown reason, 

replicate three did not align with the previous two replicates for either plasmid and 

was removed from the analysis (Appendix Table 7.4, 7.5). Proteins where 

identified by comparing unique peptides to a database of human proteins. 

Proteins where only a single unique peptide was identified, were removed to 

reduce the chance of identifying the wrong protein. The significance (p-value) of 

the mass spectrometry data was determined by two-tailed unpaired ANOVA on 

two biological replicates, as well as the fold-change in relative protein abundance 

Figure 5.8 Confirmation of GFP-4bM/4bM-GFP transfection and IP. 
HEK-293T cells were transfected with (A) GFP-4bM or 4bM-GFP expression vectors. 

After 16 hours, cells were lysed, and GFP-tagged 4bM immunoprecipitated using GFP 

‘capture’ beads (Chromotek). Input and eluate samples were separated by SDS-PAGE, 

transferred to a membrane and labelled with anti-GFP. 

A B 
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over the GFP control. Interacting proteins were then ranked by significance (p-

value). Proteins that had a p-value (-Log10) above one and a fold-change (Log2) 

above two were considered significant (Figure 5.9, Figure 5.10). For each protein, 

the confidence score was calculated, which is the cumulative value of p; the 

probability of the identified peptide sequence occurring randomly, for each unique 

peptide identified. The higher the confidence score, the higher the confidence in 

protein identification. Mass spectrometry data identified 15 cellular proteins for 

GFP-4bM that were significant, and 17 proteins for 4bM-GFP, eight proteins 

appeared in both datasets (Table 5.5).  

 

A panther over-representation test (pantherdb.org) was performed to categorise 

the cellular localisation of the significant proteins identified in the GFP-tagged 

4bM eluate. This test grouped cellular proteins by their Gene Ontology (GO) 

cellular compartment annotation and helped to determine if these cellular 

compartments are over-represented in the dataset. The test compared expected 

number of proteins to actual number of proteins. Cellular compartments with a p-

value below 0.05 were considered significant. The number of proteins that localise 

to these significant GO cellular components were represented as a Venn diagram. 

Of the 21 unique proteins identified, 13 proteins localise to the ribosomal 

translational machinery, while three proteins localise to and regulate stress 

granule or p-body assembly (Figure 5.11).
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Table 5.3 Cellular proteins identified by LC-MS/MS that significantly interact with GFP-4bM.  

Protein ID Protein 
Unique 

peptides 
Confidence 

Relative Protein Abundance 
p Value 
(-Log10) 

Fold Change 
GFP-4bM/GFP 

(Log2) 

pEGFPC2-4bM pEGFPN1 

1 2 1 2 

RRBP1* Ribosome-binding protein 1  4 255.74 1889.294019 3590.533721 100.8331958 80.90184734 1.99823936 4.914222002 

EF1D Elongation factor 1-delta  4 391.08 15495.05071 13726.6983 239.4231988 504.5743565 1.997433404 5.29560084 

RT18A* 28S ribosomal protein S18a, mitochondrial  2 140.61 745.3216979 6387.487721 0 0 1.795023111 10 

RL40* Ubiquitin-60S ribosomal protein L40  4 1272.81 192391.0279 309618.5155 36265.8443 28315.76306 1.769525206 2.958519537 
POP7* Ribonuclease P protein subunit p20  2 134.3 2829.72501 359.3812335 0 0 1.747300551 10 
RRS1* Ribosome biogenesis regulatory protein homolog  2 77.67 1556.740123 20216.67469 0 0 1.735695533 10 
RL14 60S ribosomal protein L14  8 582.74 41072.21332 106616.499 4213.913143 5345.27756 1.480392825 3.949527274 

CHCH1 Coiled-coil-helix-coiled-coil-helix domain-containing 
protein 1  

3 189.97 399.1320538 32.41494431 0 0 1.304962603 10 

PRDX2* Peroxiredoxin-2  3 263.01 5215.96236 16505.10114 1287.62327 855.4837881 1.152184348 3.341318915 

LS14A* Protein LSM14 homolog A  3 206.55 69195.71256 265077.3598 10689.58084 15915.39419 1.101850069 3.651259188 
RM43* 39S ribosomal protein L43, mitochondrial  3 236.52 13414.7761 10110.47499 987.1212169 3179.171192 1.052064956 2.497374119 
ATX2L* Ataxin-2-like protein  6 366.47 56290.80765 23285.8282 10275.79864 5527.036502 0.997400796 2.332161498 
LAP2B* Lamina-associated polypeptide 2, isoforms beta/gamma  3 367.06 136685.3054 216452.7164 80902.72867 92397.04123 0.98850445 1.026962423 
CHTOP* Chromatin target of PRMT1 protein  11 1048.35 203225.8432 356271.6694 128674.1111 105193.5423 0.972053732 1.258439383 

Shown are cellular proteins identified by label-free mass spectrometry/mass spectrometry that interact with GFP-4bM. Protein identifier (ID), protein name and number 

of unique peptides used to identify proteins are indicated. Relative abundance score for each protein is indicated. Confidence score (-Log2) is the score of the probability 

of the unique peptide sequence occurring randomly, added together for each unique peptide. The higher the confidence score, the higher the confidence in protein 

identification. The p-value (-Log10) is a comparison of the cellular protein abundance between 4b and GFP. The higher the p-value, the higher the probability the 

protein interacts with 4b. The fold-change (Log2) is the change in the relative abundance of the cellular protein between GFP-4bM and GFP. Cellular proteins which 

appear in both GFP-4bM and 4bM-GFP data are labelled with an asterisk (*). Proteins which appeared in the third replicate are labelled with (*). 
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Table 5.4 Cellular proteins detected by LC-MS/MS that significantly interact with 4bM-GFP. 

Protein ID Protein 
Unique 

peptides Confidence 

Relative Protein Abundance 
p Value 
(-Log2) 

Fold Change 
(Log10) 

4bM-
GFP/GFP 

pEGFPN1-4bM pEGFPN1 

1 2 1 2 

POP7* Ribonuclease P protein subunit p20  2 134.3 911.8707526 1588.670511 0 0 2.896713159 10 

UBC1* NEDD8-conjugating enzyme Ubc12  2 44.93 1367.008451 2926.933855 0 0 2.67783124 10 

LAP2B* 
Lamina-associated polypeptide 2, isoforms 
beta/gamma  

3 367.06 308301.4581 308630.484 80902.72867 92397.04123 2.566031474 1.831841606 

EF1D Elongation factor 1-delta  4 391.08 22074.23517 26765.49226 239.4231988 504.5743565 2.09068515 6.036613458 

CHCH1* 
Coiled-coil-helix-coiled-coil-helix domain-containing 
protein 1  

3 189.97 127168.0035 7353.350223 0 0 1.787452827 10 

CALM Calmodulin  7 841 159297.0479 235917.7982 36906.94512 42441.29678 1.775356602 2.316366979 
SRP14 Signal recognition particle 14 kDa protein  11 1902.3 470648.7836 588968.9287 205603.9915 238126.7524 1.636728076 1.255787446 

PDIP3 Polymerase delta-interacting protein 3  18 1732.04 111313.3434 167835.0644 46234.96748 37622.19365 1.450047289 1.735026432 

PABP4* Polyadenylate-binding protein 4  9 2074.35 51414.76432 57641.95842 16367.35231 9263.514578 1.442636493 2.089124527 

RPS25* 40S ribosomal protein S25  8 820.46 737016.6507 450290.2693 96942.49295 143057.6572 1.43241781 2.306585708 
ASHWN Ashwin  6 690.7 93116.90466 51436.06016 9247.174195 14188.57335 1.409175412 2.62481548 
RS3A 40S ribosomal protein S3a  14 1663.2 541864.1072 766618.8533 284098.6775 228316.5036 1.342278931 1.352510014 
HTRA2 Serine protease HTRA2, mitochondrial  3 391.28 3378.013648 6081.843557 1168.164744 746.6740556 1.295892979 2.304595462 
RRBP1* Serine protease HTRA2, mitochondrial  4 255.74 13264.28431 1920.542701 100.8331958 80.90184734 1.269542034 6.384650028 
RS30* 40S ribosomal protein S30  5 469.49 1550201.705 792446.3427 258417.5316 307780.9791 1.23218978 2.048760365 
NUP50* Nuclear pore complex protein Nup50  2 130.82 3210.501069 5226.965795 836.9350926 311.755658 1.198085759 2.876819482 
ATX2L* Ataxin-2-like protein  6 366.47 41675.76547 23737.19591 10275.79864 5527.036502 1.117991455 2.049393118 
IF2G* Eukaryotic translation initiation factor 2 subunit 3  10 1075.97 139134.0286 140818.5171 28920.04337 59192.69474 1.115893157 1.667759795 
TCPH* T-complex protein 1 subunit eta  2 214.33 3341.124075 8993.922182 921.0552625 1101.108238 1.107961795 2.60879157 

RUSD3* 
RNA pseudouridylate synthase domain-containing 
protein 3  

3 326.92 4693.749633 18760.2069 812.4205472 1109.279448 1.075139497 3.609376283 

KNOP1* Lysine-rich nucleolar protein 1  3 344.24 7699.489829 10379.41236 1375.459289 3321.386324 1.038569946 1.944542998 
TAF9B Transcription initiation factor TFIID subunit 9B  3 208.71 21205.1945 22073.88677 1634.801506 5817.237841 1.036993965 2.537962677 
IF2B1 Insulin-like growth factor 2 mRNA-binding protein 1  13 1681.43 240192.9464 148950.8683 86125.40777 94522.56675 1.030356349 1.107122347 
RL26L* 60S ribosomal protein L26-like 1  2 1535.13 7910.635426 5054.666181 0 52.82109283 1.029975496 7.939325902 
NHRF2* Na(+)/H(+) exchange regulatory cofactor NHE-RF2  6 658.58 123937.8009 87441.99072 42755.90333 19697.35678 1.021638929 1.758988669 
ATPO* ATP synthase subunit O, mitochondrial  4 454.17 47430.7275 98114.17914 23943.06679 14640.81302 1.006701625 1.915394227 
CHTOP Chromatin target of PRMT1 protein  11 1048.35 494204.2965 229409.3663 128674.1111 105193.5423 0.93673901 1.629527314 
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Shown are cellular proteins identified by label-free mass spectrometry/mass spectrometry that interact with 4bM-GFP. Protein identifier (ID), protein name and number 

of unique peptides used to identify proteins are indicated. Relative abundance score for each protein is indicated.  Confidence score (-Log2) is the score of the probability 

of the unique peptide sequence occurring randomly, added together for each unique peptide. The higher the confidence score, the higher the confidence in protein 

identification. The p-value (-Log10) is a comparison of the cellular protein abundance between 4b and GFP. The higher the p-value, the higher the probability the protein 

interacts with 4b. The fold-change (Log2) is the change in the relative abundance of the cellular protein between GFP-4bM and GFP. Cellular proteins which appear in 

both GFP-4bM and 4bM-GFP data are labelled with an asterisk (*). Proteins which appeared in the third replicate are labelled with (*). 
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Figure 5.9 Scatter plot representing results from the GFP-4bM co-IP. 
Proteins were identified in the GFP-4bM IP eluate by LC-MS/MS. Proteins are plotted by 

fold-change in abundance (Log2) compared to GFP alone and p-value (-Log10) of the t-

test. Proteins with a p-value (-Log10) > 1 and a fold change (Log2) > 2 have the highest 

chance of interacting with 4b and are considered significant and are labelled (yellow). 

Results are representative of two biological replicates. 
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Figure 5.10 Scatter plot representing results from the 4bM-GFP co-IP. 
Proteins were identified in the 4bM-GFP IP eluate by LC-MS/MS. Proteins are plotted by 

fold-change in abundance (Log10) compared to GFP alone and p-value (-Log10) of the t-

test. Proteins with a p-value (-Log10) > 1 and a fold change (Log2) > 2 have the highest 

chance of interacting with 4b and are considered significant and are labelled (yellow). 

Results are representative of two biological replicates. 
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Table 5.5 Function and localisation of proteins classified as significant that interact 
with GFP-4bM and/or 4bM-GFP. 

Protein ID Protein GFP-4bM 4bM-GFP Function Location 

RRBP1* Ribosome-binding 
protein 1 X X Protein processing in 

endoplasmic reticulum 
Ribosome, 
Nucleus, Cytosol 

EF1D* Elongation factor 1-
delta X X 

Responsible for the 
enzymatic delivery of 
aminoacyl tRNAs to the 
ribosome, interacts with 
HIV Tat 

Ribosome, 
Nucleus, Cytosol 

RT18A 28S ribosomal 
protein S18a X  Part of the 40S 

ribosome 
Ribosome, 
Cytosol, Nucleus 

RL40 
Ubiquitin-60S 
ribosomal protein 
L40 

X  Part of the 60S 
ribosome 

Ribosome, 
Cytosol, Nucleus 

POP7* Ribonuclease P 
protein subunit p20 X X 

Component of 
ribonuclease P, 
component of RNase 
MRP complex 

Ribosome, 
Nucleus 

RRS1 
Ribosome 
biogenesis 
regulatory protein 

X  Ribosome regulatory 
protein 

Ribosome, 
Cytosol, Nucleus 

RL14 60S ribosomal 
protein L14 X  Part of the 60S 

ribosome 
Ribosome, 
Cytosol, Nucleus 

RPS25 40S ribosomal 
protein S25  X Structural constituent of 

40S ribosome Nucleus, Cytosol 

CHCH1* 

Coiled-coil-helix-
coiled-coil-helix 
domain-containing 
protein 

X X Mitochondrial 
translation 

Mitochondria, 
cytoplasm 

RS30 40S ribosomal 
protein S30 X X Structural part of the 

60S ribosome 
Ribosome, 
Cytosol, Nucleus 

RL26L 60S ribosomal 
protein L26-like 1  X Component of the 60S 

ribosome 
Ribosome, 
Cytosol, Nucleus 

RM43 39S ribosomal 
protein L43 X  Part of the 40S 

ribosome 
Ribosome, 
Cytosol, Nucleus 

ATX2L* Ataxin-2-like protein X X 

Involved in the 
regulation of stress 
granule and P-body 
formation 

Nucleus, Cytosol 

LS14A Protein LSM14 X  Stress granule and P-
Body regulation Cytosol, Nucleus 
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The function and localisation of significant proteins (FC Log2 > 2, p-value Log10 > 1) that interact with GFP-

4bM and/or 4bM-GFP.  

 

PABP4 Polyadenylate-
binding protein 4  X 

Binds the poly(A) tail of 
mRNA. Involved in 
stress granule 
regulation and mRNA 
processing 

Ribosome, 
Nucleus, Cytosol 

CALM Calmodulin  X 

Mediates the control of 
a large number of 
enzymes, ion channels, 
aquapobrins and other 
proteins by Ca(2+) 

Plasma 
membrane, 
Cytoskeleton, 
Nucleus, Cytosol 

UBC12 NEDD8-conjugating 
enzyme Ubc1  X 

Accepts the ubiquitin-
like protein NEDD8 
from the UBA3-NAE1 
E1 complex 

Cytosol 

ASHWN Ashwin  X tRNA processing and 
Gene Expression Nucleus, Cytosol 

HTRA2 Serine protease 
HTRA2  X Promotes or induces 

cell death 

Mitochondria, 
Nucleus, 
Cytosol, ER 

TCPH T-complex protein 1 
subunit eta X X 

Molecular chaperone; 
assists the folding of 
proteins upon ATP 
hydrolysis 

Cytosol. 
Cytoskeleton 

RUSD3 

RNA 
pseudouridylate 
synthase domain-
containing protein 3 

 X 
poly(A) RNA binding 
and pseudouridine 
synthase activity 

Nucleus 

TAF9B 
Transcription 
initiation factor 
TFIID subunit 9B 

 X 
Involved in 
transcriptional 
activation 

Nucleus 

NUP50 
Nuclear pore 
complex protein 
Nup50 

X X 

Component of the 
nuclear pore complex 
that has a direct role in 
nuclear protein import 

Nucleus, 
Nuclear 
Envelope 

PRDX2 Peroxiredoxin-2 X  Involved in redox 
regulation of the cell Cytosol 
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Figure 5.11 IBV 4b interacts with a higher proportion of ribonucleoproteins. 
Significant interacting partners identified for GFP-tagged 4bM by LC-MS/MS 

were analysed by a panther over-representation test (pantherdb.org). Proteins 

which localise to cellular components that are over-represented in the data set 

(p < 0.05) were collated and shown as a Venn diagram. 

RPS25
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5.7. IBV 4b interaction with RPS25 and LAP2 

Localisation of 4b and cellular proteins were visualised to validate the 4b mass 

spectrometry data. RPS25 was a significant interaction for 4bM-GFP and was 

chosen as the candidate ribosomal protein as it is highly conserved, increasing 

the chance of labelling RPS25 in avian cells. Lamina polypeptide 2 (LAP2) is a 

nuclear envelope protein and was chosen as the candidate nuclear protein from 

the mass spectrometry data. DF-1 cells were first transfected with 4bM-GFP and 

GFP expression vectors, and after 24 hours, cells were fixed, permeabilised and 

labelled with anti-RPS25 and anti-LAP2. Both LAP2 and RPS25 were shown to 

partially colocalise with 4bM-GFP (Figure 5.12, Figure 5.13). Colocalisation 

studies allude to an interaction between 4b and RPS25 and LAP2, to further 

validate this observation a co-IP was performed. CK cells were infected with M41-

CK at an MOI above 4 or mock infected. After 24 hours cells were lysed. Cell 

lysates were incubated with anti-4b overnight and then incubated with magnetic 

protein G beads for 4 hours. Beads were separated and washed three times with 

co-IP wash buffer, and protein-antibody complexes eluted from the beads using 

acidic glycine.  A mock antibody sample was used to confirm specific pull-down 

of 4b. The input and eluate samples were separated by SDS-PAGE, transferred 

to a membrane and labelled with anti-RPS25 and anti-4b. The analysis confirmed 

successful immunoprecipitation of 4b from M41-CK infected cells (Figure 5.14A). 

Furthermore, RPS25 was also detectable in the 4b eluate but not detectable in 

the mock infected cells (Figure 5.14B). This result confirms that 4b could  interact 

with the small ribosomal protein S25 during M41 infection.   
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Figure 5.12 RPS25 partially colocalises with GFP-tagged 4b. 
DF-1 cells were transfected with GFP-tagged 4b expression vectors for 16 hours. Cells were fixed, 

permeabilised and labelled with anti-RPS25. Yellow boxes indicate enlarged areas. Cells were 

visualised by confocal microscopy. 
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A 
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Figure 5.13 LAP2 partially colocalises with GFP-tagged 4b. 
DF-1 cells were transfected with GFP-tagged 4b expression vectors for 16 hours. Cells were 

fixed, permeabilised, and labelled with anti-LAP2. Yellow boxes indicate enlarged areas. Cells 

were visualised by confocal microscopy. 

 

LAP2 
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Figure 5.14 RPS25 interacts with 4b during M41-CK infection. 
CK cells were (A) infected with M41-CK or (B) mock infected. After 24 hours, cells 

were lysed and incubated with anti-4b or mock incubated as indicated. Samples 

were then incubated with antibody capture beads. Beads were removed, washed 

and protein-antibody complexes eluted. Input and eluate samples were analysed 

by western blot and labelled with anti-4b or anti-RPS25.  

A 

B 
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5.8. Effect of 4b on stress granule assembly 

Mass spectrometry data identified that GFP-tagged 4bM interacts with a high 

proportion of ribosomal and stress granule/p-body proteins (Figure 5.11). IBV has 

previously been shown to induce stress granule formation in a proportion of 

infected cells (Kint 2015). To confirm this, Vero cells were infected with Beau-R, 

M41K-BeauR(S) or mock infected. After 24 hours, cells were fixed, permeabilised 

and labelled with anti-G3BP1 and anti-dsRNA. Cells were labelled with anti-

G3BP1, a stress granule regulatory protein that localises to stress granules during 

stress (Matsuki et al. 2013). Mock infected cells were not positive for stress 

granules as opposed to dsRNA positive cells, which contained noticeable more 

G3BP1 puncta (Figure 5.15). This result confirms that Beau-R induces stress 

granule assembly during infection and that M41-K in Vero cells can also induce 

stress granule assembly.  

 

To determine if 4b can alone induce stress granule formation, Vero cells were 

transfected with either GFP-4bM or GFP expression vectors, and after 16 hours 

were fixed, permeabilised and labelled with anti-G3BP1. Sodium arsenite 

treatment induce oxidative stress and stress granule formation and was used as 

a positive control for induction and labelling stress granules. For each sample, 20 

GFP positive cells were randomly selected and the number of stress granule 

positive cells counted. The results are representative of three biological repeats. 

Significantly more GFP-4bM expressing cells contained stress granules 

compared to GFP expressing cells (Figure 5.16B,D). This result suggests 4b 
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expression alone induces stress granule formation. Furthermore, GFP-4bM signal 

colocalised with G3BP1 signal (Figure 5.16A,C), suggesting 4b is targeted to 

these stress granules.  

 

Beau-R 4b is truncated and lacks the C-terminal end present in 4bM. To determine 

if 4b from Beau-R can also induce stress granule formation, Vero cells were 

transfected with either GFP-4bB or GFP expression vectors for 16 hours. Cells 

were then fixed, permeabilised and labelled with anti-G3BP1. For each sample, 

20 GFP positive cells were randomly selected and the number of stress granule 

positive cells counted. The results are representative of three biological replicates. 

Significantly more GFP-4bB expressing cells contained stress granules compared 

to GFP expressing cells (Figure 5.16A,C), indicating that both M41-CK and Beau-

R 4b induce stress granule assembly.  

 

Previous work has shown that IBV can inhibit sodium arsenite-induced stress 

granule assembly (Kint 2015). To determine if 4b is responsible for this effect, 

Vero cells were transfected with GFP-4bM or GFP expression vector, for 18 hours. 

Cells were treated with sodium arsenite for one hour before fixing. Cells were 

fixed, permeabilised and labelled with anti-G3BP1. Expression of GFP-4bM failed 

to inhibit sodium arsenite-induced stress granule assembly, indicating 4bM is not 

responsible for this previously observed effect (Figure 5.17). Interestingly, GFP-

4bM did not localise with sodium arsenite-induced stress granules, as seen with 

GFP-4bM-induced stress granules. Collectively, these results demonstrate that 
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4b expression alone can induce and colocalise with stress granule but cannot 

inhibit or colocalise with sodium arsenite-induced stress granules. 

 

 
Figure 5.15 IBV induces stress granule assembly. 
Vero cells were infected with Beau-R, M41K-BeauR(S) or mock infected. After 24 hours, 

cells were fixed, permeabilised and labelled with anti-dsRNA, anti-G3BP1. The nucleus 

was stained with DAPI. 
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 A 

C 

Figure 5.16 IBV 4b induces and colocalises with stress granules.  
Vero cells were transfected with GFP-4bM (A), GFP-4bB (C) or GFP expression vectors. 

After 24 hours, cells were fixed, permeabilised and labelled with anti-G3BP1. For each 

transfection, 20 GFP-4bM (B), GFP-4bB (D) or GFP expressing cells were counted for the 

presence of stress granules as labelled with anti-G3BP1. The results are representative of 

three biological replicates. White arrows indicate stress granules that colocalise with GFP-

tagged 4b expression. ** significant p < 0.01. 

B 

D 

** 

** 
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Figure 5.17 GFP-4bM does not colocalise or inhibit sodium arsenite-induced stress 
granules. 
Vero cells were transfected with pEGFPC2-4b or pEGFPC2. Vero cells were treated with sodium 

arsenite for 1 hour before fixing. After 18 hours, cells were fixed and labelled with anti-G3BP1. The 

nucleus was stained with DAPI.  
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5.9. Effect of 4b on cellular translation 

IBV 4b induces stress granule formation when overexpressed in Vero cells. Stress 

granules are formed by aggregation of stalled translation initiation complexes 

(Beckham et al. 2008). For this reason, the effect of GFP-4bM/GFP-4bB 

expression on cellular translation was measured. DF-1 cells were transfected with 

increasing levels of GFP-4bM or GFP-4bB expression vector, made up to 2 μg 

with pEGFPC2, along with a Renilla luciferase expression vector. A plasmid 

expressing NS1 (IAV-PR8) was transfected as a positive control, NS1 has been 

shown to enhance cellular translation, through eIF2a phosphorylation (Lu et al. 

1995, Salvatore et al. 2002). After 16 hours, cells were lysed, and Renilla 

luciferase activity measured as a proxy for the cellular translational rate. 

Expression of GFP-4bM or GFP-4bB had a dose-dependent effect on Renilla 

luciferase expression with increasing levels of 4b resulting in higher levels of 

Renilla luciferase expression. This result suggests that 4b expression increased 

cellular translation (Figure 5.18).    
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5.10. Role of RVxF and SILK on 4b function 

Bioinformatic analysis of the 4b peptide sequence identified two domains; RVxF 

and SILK, in the highly conserved N-terminal end (Table 5.2). Individually these 

domains mediate PP1c binding but together provide higher affinity binding to 

PP1c (Hendrickx et al. 2009). PP1c is a multi-functional protein involved in 

dephosphorylation of a range of signalling proteins including the translational 

** **** 

Figure 5.18 IBV 4b increases cellular translation. 
DF-1 cells were transfected with increasing levels of GFP-4bM expression, made up with 

the GFP-4bB expression vector to 2 µg. Cells were also transfected with a Renilla luciferase 

expression vector. After 16 hours cells were lysed and Renilla luciferase activity measured. 

Results are shown as fold-change compared to the GFP control. ** significant p < 0.01, **** 

significant p < 0.0005. 

A B 

4bM-GFP 4bB-GFP 
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regulatory protein, eIF2α and PKR (Garcia-Bonilla et al. 2007). The cell can 

respond to infection by phosphorylating eIF2α and PKR, to limit cellular translation 

and thus inhibit viral replication (Dauber et al. 2009). To determine the significance 

of these motifs on the function of 4bB, the RVxF and SILK motifs were deleted 

both individually and together in the 4b expression vectors by site-directed 

mutagenesis. Mutagenesis only succeeded for the 4bB vector and due to time 

constraints was not repeated with the 4bM vector. Vero cells were transfected with 

either GFP, 4bB-GFP, 4bBGFP-delSILK, 4bBGFP-delRVxF or 4bBGFP-

delSILK/RVxF expression vectors along with a Renilla luciferase expression 

vector. After 16 hours, cells were lysed, Renilla luciferase expression measured 

and plotted as fold-change compared to the GFP control (Figure 5.19A). 

Expression levels of each protein were quantified by western blot to ensure 

consistent levels of expression. Lysed cells were separated by SDS-PAGE, 

transferred to a membrane and labelled with anti-GFP (Figure 5.19B). Deletion 

of SILK, RVxF or both abrogated the effect of 4bB on increased Renilla luciferase 

expression. This preliminary result suggests that these motifs, are in part, 

responsible for the effect of 4bB on increased rates of cellular translation.  
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Figure 5.19 Protein 4b effect on cellular translation is dependent on SILK and/or 
RVxF. 
(A) Vero cells were transfected with GFP-4bB, GFP4bB-delRVxF, GFP4bB-delSILK, 

GFP4bB-delRVxF/SILK or GFP expression vectors. After 16 hours, cells were lysed, 

and Renilla luciferase activity measured. (B) Lysed cells were separated by SDS-

PAGE, transferred to a membrane and labelled with anti-GFP. *significance p < 0.05. 
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5.11. Discussion 

Bioinformatic analysis of the IBV and TCoV strain database showed that 78% of 

strains contain ORF4b as well as the upstream non-canonical TRS (Table 5.1). 

Sequence conservation is lower compared to the other accessory proteins 

(Britton 2007). However, the strains with ORF4b have a sequence similarity of 

81%, which is as high as the most conserved accessory protein, 3a (Britton et al. 

2006, Britton 2007). RNA viruses tend not to express unessential sgRNA/ proteins, 

so although not all strains have ORF4b and because it is highly conserved when 

present, this suggests an essential role for this protein. The TRS for ORF4b (CAA) 

is also highly conserved, possibly suggesting an important role for the non-

canonical TRS and the low expression levels of 4b. Sequence alignment identified 

a range of 4b isoforms, with truncations at the C-terminal end (Figure 5.1). The 

most common 4b isoform was 94 amino acids long, with 69% of IBV/TCoV strains 

encoding this length, including M41-CK and QX. The apathogenic lab strain, 

Beau-R, encodes a truncated form of 4b which is only 50 amino acids. Beau-R 

was the only strain with the truncated50 4b isoform, although two field strains 

encode a smaller 4b isoform at 40 amino acids.  

 

ORF4b was previously thought to be a pseudogene. Bentley et al. (2013) showed; 

through northern blotting, that ORF4b is transcribed during infection and further 

concluded that the non-canonical TRS upstream of ORF4b is responsible for 

regulating transcription (Bentley et al. 2013). Furthermore, they showed that 

insertion of a GFP gene in place of ORF4b resulted in transcription and translation 
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of GFP (Bentley et al. 2013), suggesting the sgRNA produced by IBV can lead to 

the expression of a protein. Nonetheless, it was not known if transcript 4b was 

translated during infection. Utilising an antibody raised against the predicted 4b 

peptide sequence, 4b transcript translation has been confirmed and 4b protein is 

detectable during infection (Figure 5.5). Anti-4b can only be used to detect 4b 

during M41-CK infection, as the antibody was raised against a C-terminal epitope 

not present in Beau-R 4b. Therefore, it has not been possible to verify that Beau-

R 4b is also translated. Although truncated, Beau-R 4b is only 50 amino acids, 

IBV accessory protein 3a, which is similar in size is translated, suggesting Beau-

R could express the smaller isoform of 4b too (Britton et al. 2006). Nonetheless, 

confirmation of Beau-R 4b expression is still required to say that Beau-R also 

expresses 4b definitively. It has been confirmed with viral growth curves 

comparing M41-CK, M41-K, and two rIBV-M41-K lacking ORF4b that 4b is an 

accessory protein (Figure 5.7). M41-K and both M41K-del4b viral isolates grew 

to similar titres suggesting this protein is dispensable for in vitro replication and is 

thus the fifth accessory protein to be identified for IBV. 

 

Mass spectrometry was utilised to identify any cellular proteins that may interact 

with 4b. For this assay, HEK-293T cells were transfected with GFP-4bM or 4b-

GFPM expression vectors along with a GFP control. LC-MS/MS was used to 

identify cellular proteins that were co-immunoprecipitated in the GFP and 4b-

GFP/GFP-4b eluate. Due to the incomplete characterisation of the chicken 

genome, this assay was performed in HEK-293T cells; a human cell line as 
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opposed to a more relevant chicken cell line. Performing the assay in a human 

cell line increased the chance of characterising the cellular proteins by mass 

spectrometry but due to the differences in chicken and human cell biology may 

affect the interacting partners identified for 4b. Furthermore, these IPs were 

performed using transfected cells overexpressing 4b as opposed to M41-CK 

infected cells, further impacting interpretation of these results. To minimise the 

effect of the GFP-tag on 4b cellular interactions, 4b was tagged at either the N- 

or C- terminus, this increased the likelihood of detecting cellular proteins that 

interact with the C- or N- terminus of 4b, respectively. Furthermore, a GFP control 

was used to remove proteins that interact with the GFP-tag rather than 4b from 

the mass spectrometry data.  M41-CK 4b was used for the GFP co-IPs, as M41-

CK is a pathogenic strain and contains the full-length 4b sequence, as opposed 

to Beau-R. In the future, it would be interesting to perform GFP-tagged 4bB co-

IPs to determine if Beau-R 4b interacts with similar cellular proteins. Furthermore, 

it may also be used to identify cellular proteins that specifically interact with the 

C- terminus of 4bM. As Beau-R is apathogenic and M41-CK is pathogenic, this 

could have implications for the role of the full-length 4b in pathogenicity.  

 

In total 154 unique proteins were identified in higher amounts in GFP-tagged 4b 

IPs compared to the GFP control, with 72 appearing in both GFP-4bM and 4bM-

GFP eluates (Appendix Table 7.4, 7.5). In total 23 proteins were identified as 

significant for either GFP-4b and/or 4b-GFP, with eight of these detected in both 

GFP-4b and 4b-GFP eluates (Table 5.5). The IP was repeated three times to 
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determine the significance of the data. For an unknown reason, the third replicate 

failed to align with the first and second replicate (Appendix Table 7.4, 7.5), with 

a higher proportion of cellular proteins detected, 197 for GFP-4bM and 180 for 

4bM-GFP, with only 65 and 73 of these proteins appearing in the first two 

replicates, respectively. A higher yield of proteins could have occurred due to a 

more efficient transfection rate or a less stringent wash step during the co-IP, 

although there was no discernible difference in 4b volume in the third eluate 

compared to the first two (Figure 5.8). Nonetheless, 90% and 82% of proteins 

identified in the first two GFP-4bM and 4bM-GFP replicates did appear in the third, 

suggesting the data is reliable if not comparable. While repeats are an essential 

tool to determine the significance of the mass spectrometry data, the decision was 

made to validate the data from replicate one and two by co-IP and 

immunofluorescence to save time and cost. A high proportion of proteins identified 

were ribosomal and are involved in both translation and stress granule assembly 

(Table 5.5). Cellular translation machinery is highly conserved among eukaryotes 

(Sonenberg et al. 2009), reducing the risk that proteins identified as interacting 

partners are artefacts for 4bM. Ribosomal proteins regularly appear in mass 

spectrometry data and can be considered a background contaminant, therefore 

to validate 4b interacts with the ribosome, RPS25 was studied first (Mellacheruvu 

et al. 2013). RPS25 was a highly significant protein in the mass spectrometry data 

and has a high sequence similarity between the chicken and human isoforms. 

RPS25 is a ribosomal protein which has been shown to mediate cellular IRES 

expression and has previously been shown to play a role in viral translation during 
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Hepatitis C virus, poliovirus and adenovirus replication (Hertz et al. 2013). 

Furthermore, knockout of this protein had minimal effect on global cellular 

translation during homeostasis leading to the suggestion that RPS25 plays a role 

in viral translation (Landry et al. 2009).  Immunofluorescence confirmed that GFP-

4bM colocalises with RPS25 in DF-1 cells (Figure 5.12). Furthermore, co-IP of 

4b from M41-CK infected CK cells also confirms that 4bM interacts with RPS25 

during infection (Figure 5.14). Detection of RPS25 in the 4b co-IP further 

validates the mass spectrometry data and suggests a role for 4b in translation. 

RPS25 is a ribosomal protein but can also be present in stress granules as part 

of the stalled 40S ribosome complex (Kedersha et al. 2016). Three stress granule 

regulatory proteins were also identified by mass spectrometry including, LS14A, 

ATXL2, and PABP4. LS14A is present in p-bodies and stress granules and may 

have a role in shuttling mRNAs between the two structures (Yang et al. 2006). 

ATXL2 is a regulator of both p-bodies and stress granules while PABP4 relocates 

from the cytoplasm to stress granules during cellular stress (Kaehler et al. 2012) 

(Burgess et al. 2011). Expression of GFP-4bM alone induced stress granules in 

Vero cells; this was not seen with GFP expression (Figure 5.16A,C). Furthermore, 

GFP-4bM colocalised with these stress granules. The same effect was seen with 

GFP-4bB (Figure 5.16B,D). Stress granules are present during Beau-R and M41-

K infection (Figure 5.15), and it has been previously shown that IBV also 

expresses a protein that can inhibit sodium arsenite-induced stress granule 

formation (Kint 2015). Overexpression of 4b failed to inhibit sodium arsenite-

induced stress granules, suggesting 4b is not responsible for this previously 
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observed phenotype (Figure 5.17). As 4b can induce stress granules, it was 

assumed that 4b would also inhibit cellular translation, as stress granules are 

translationally silent (Buchan et al. 2009). Renilla luciferase expression, a proxy 

for gene expression and cellular translation, was measured in the presence of 

GFP-4bM or GFP-4bB. Interestingly, IBV 4b increased Renilla luciferase 

expression in a dose-dependent manner, suggesting 4b increased gene 

expression (Figure 5.18). This result implies that 4b-induced stress granules may 

not be canonical and may not have a role in arresting cellular translation. 

Alternatively, these stress granules may be a cellular response as the cell aims to 

curtail increased translation to preserve resources and energy (Kedersha et al. 

2005). This theory is further supported by the fact that not all GFP-4b expressing 

cells were positive for stress granules, suggesting a possible dose-dependent 

effect on stress granule assembly (Figure 5.16). Stress granules are separated 

into sub-families representing their structural and functional diversity. While stress 

granules play a role in the silencing and storing of mRNAs, they are not required 

by themselves for global translational repression (Mokas et al. 2009). Thus, the 

role of stress granules cannot be simplistically categorised. Indeed, stress 

granules can represent focal points for a range of signalling pathways, including 

interferon and apoptosis signalling (Kedersha et al. 2013). While many viruses 

encode proteins to inhibit stress granule assembly, other viruses have been 

shown to modulate stress granules for their benefit. Indeed, stress granules are 

present throughout the life-cycle of respiratory syncytial virus (RSV) infection and 

appear beneficial for the virus, with knockdown of G3BP1 and stress granule 
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assembly causing a reduction in RSV translation (Lindquist et al. 2010). Vaccinia 

virus has been shown to co-opt canonical stress granule assembly into novel 

aggregates that lack silenced cellular mRNAs (Simpson-Holley et al. 2011). 

Furthermore, HCV recruits stress granule proteins such as G3BP1 and ataxin-2 

to replication factories, which resemble stress granules but are indeed replication 

sites (Ariumi et al. 2011). Thus, the assembly of stress granules during infection 

cannot be suggested as solely negative for the virus. Future work should aim to 

categorise stress granule composition during IBV infection, and to determine if 

they have a beneficial or detrimental effect on viral replication.  

 

The observation that both 4b from M41-CK and Beau-R can induce and colocalise 

with stress granules and can increase cellular translation suggests that the 

domains required for this effect are in the N-terminal end of 4b (Figure 5.16B, D). 

Beau-R and M41-CK are lab strains which have been passaged extensively and 

are thus highly cell culture adapted viruses. Beau-CK was first isolated in 1937 

and has been passaged considerably more compared to M41-CK (Beaudette 

1937, Cunningham et al. 1947). A high passage number could explain the 

acquisition of a C-terminal truncation in Beau-R 4b. This observation has been 

suggested before as the reason why lab strains of HCoV-229E have a truncated 

isoform of protein 4, while clinical strains do not, and could suggest that the C-

terminal end of IBV 4b is not required for in vitro function (Farsani et al. 2012). 

This is further supported by the sequence identity of 89% between the 

truncated50 and FL 4b isoforms. Indeed, sequence similarity is much higher at 
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the N-terminal end and more divergent at the C-terminal end between the 4b 

isoforms suggesting the N-terminal end performs an important function (Figure 

5.1). This result could be further validated by deleting the C-terminal end of M41 

4b, to determine if function remains. Further functional analysis could look at the 

truncated40 4b identified in 2 field strains or even delete C-terminal or N-terminal 

amino acids until a stress granule phenotype is no longer detectable.  

 

Bioinformatic analysis of 4b failed to identify any transmembrane domains or 

signal peptides (data not shown). Although an ELM search of 4bM did identify two 

motifs in the highly-conserved N-terminus, which potentially relates to cellular 

translation and stress granule assembly, PP1c_RVxK and PP1c_SILK (Table 5.2). 

PP1c is the catalytic subunit of PP1, a ubiquitous protein that has a role in many 

cellular pathways including glycogen metabolism, cell cycle and cellular 

translation (Hartshorne et al. 2004, Mochida et al. 2012, Walsh et al. 2013). PP1 

regulates these pathways by dephosphorylating cellular proteins and can 

reinitiate cellular translation by dephosphorylating eIF2α (Garcia-Bonilla et al. 

2007). RVxF and SILK motif are regularly found together in cellular proteins, and 

while individually they can mediate binding to phosphatase protein 1c (PP1c), 

their presence together is thought to enhance this interaction (Hendrickx et al. 

2009). They have no role in stimulation or inhibition of PP1c activity, and are 

thought to bind to PP1 to promote interaction with a secondary site (Wakula et al. 

2003). The SILK motif (SILR) appears in 93% of 4b sequences, while RVxF 

appears in 93.7% of 4b appearing as either KLxF or RLxF. Nonetheless, PP1c 



Chapter 5: The role of accessory protein 4b   The role of IBV accessory proteins 3a, 3b and 4b 

253 
 

was not identified in any of the mass spectrometry data. This fact alone does not 

confirm that 4b cannot interact with PP1c as the interaction may be weak and/or 

transient. Furthermore, the 4b/PP1c interaction may be dependent on a cellular 

antiviral state. As the co-IP was performed with cells overexpressing GFP-tagged 

4b, the PKR/eIF2α pathway would not be activated, and subsequent PP1 activity 

would be lower. If the mass spectrometry co-IP was repeated cells could be 

treated with the dsRNA analogue, poly(I:C), to induce an antiviral state and 

activate the PKR pathway. Alternatively, as anti-4b can immunoprecipitate 4b 

during infection (Figure 5.14A), infected cells could be used instead, although 

low levels of 4b may make this technically difficult. Interestingly, two PP1c 

interacting proteins were detected, eIF2α and PKR, although not significantly 

(Appendix Table 7.5, 7.6) (Szyszka et al. 1989, Garcia-Bonilla et al. 2007). 

During IBV infection, eIF2a phosphorylation is suppressed, which has been linked 

with increased GADD34 expression, a protein that interacts with PP1, through an 

RVxF domain, to dephosphorylate eIF2a (Wang et al. 2009). Furthermore, auto-

phosphorylation of PKR is also suppressed during IBV infection; this has been 

linked, in part, with the activity of IBV nsp2 (Wang et al. 2009). The RVxF motif 

has been identified and is functionally important in accessory protein 7 of TGEV, 

which has been shown to mediate dephosphorylation of eIF2a (Cruz et al. 2011). 

Although PP1c was not identified in the 4b mass spectrometry data, the presence 

of these two motifs along with the incidence of RVxF in another coronavirus 

accessory protein means these motifs warrants further investigation. To 

determine the importance of RVxF and SILK on 4b function, these motifs were 
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deleted individually and collectively from 4bB. Deletion of these motifs together 

and individually abrogated the effect of 4bB on cellular translation (Figure 5.19). 

Interestingly, deletion of a single motif had a similar effect as deletion together. 

This result could suggest that 4b function is dependent on the presence of both 

motifs, although these motifs have been shown to function independently of each 

other, especially RVxF which is shown to mediate strong PP1c binding alone 

(Wakula et al. 2003, Hendrickx et al. 2009). Deletion of these motifs, especially in 

a relatively small protein, may have had a deleterious effect on 4b structure or 

effect neighbouring motifs that could affect the 4b function independent of 

SILK/RVxF presence. Future work should aim to mutate these motifs instead of 

deleting them (SILK > SAAA, RVxF > RKAGA) to abrogate PP1c protein 

interaction while aiming to maintain 4b structure (Hendrickx et al. 2009). 

 

The non-canonical TRS is highly conserved for ORF4b (Table 5.1). The M41-K 

vaccinia reverse genetic system was used to mutate the ORF4b non-canonical 

TRS to a canonical TRS (canTRS4b-M41K) to investigate the importance of it. 

Due to time constraints, the rIBV was not generated. Nonetheless, the mutation 

has been successfully inserted into the M41-K genome within the vaccinia virus 

backbone (data not shown). Future work will aim to express M41K-canTRS4b 

from within the vaccinia virus backbone to generate this recombinant IBV. M41K-

canTRS4b is expected to express 4b at a higher level compared to the wild-type 

virus (Bentley et al. 2013). Comparing viral growth levels between M41K-

canTRS4b and wild-type M41-K will help to determine the effect of higher 4b 
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levels on viral replication. Deletion of 4b from M41-K did not affect viral replication 

(Figure 5.7), possibly suggesting that higher levels of 4b may not affect replication 

either. Nonetheless, the non-canonical TRS is highly conserved, possibly 

suggesting a requirement for lower levels of 4b expression (Table 5.1). TGEV 

accessory protein 7b, which also increases cellular translation during infection, 

has a deleterious effect on TGEV pathogenicity, possibly suggesting 4b may act 

similarly (Cruz et al. 2011). Therefore, there may be a requirement for lower levels 

of 4b, as higher levels may impact pathogenicity and negatively affect in vivo 

replication and/or transmission. 

 

Protein 4b is the fifth accessory protein to be identified for IBV. Mass spectrometry 

data suggests 4b can interact with multiple parts of the cellular translational 

machinery, including but not limited to, ribosomes, PKR, stress granule and p-

body regulatory proteins. The exact mechanism of how 4b increases cellular 

translation or induces stress granule assembly is not known but two motifs, which 

are highly conserved, SILK and RVxF, suggests this protein can interact with 

PP1c, a protein known to dephosphorylate PKR and eIF2α (Szyszka et al. 1989, 

Garcia-Bonilla et al. 2007). Future work should aim to confirm the effect of 4b on 

translation during infection and determine the exact mechanism of 4b interaction 

with stress granules, p-bodies, and translation.  
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6. Discussion 

The first aim of this project was to identify host-cell interaction partners for IBV 

accessory proteins 3a and 3b that may allude to function. The second aim was to 

determine if sgRNA 4b is translated and detectable during infection, and if so, 

determine the role of this protein. 

  

6.1. Accessory protein 3a 

The cellular antiviral response offers a considerable barrier for viral replication. 

The continuing evolutionary arms race between coronavirus and host has 

generated a set of accessory proteins which play an increasingly multi-functional 

role in controlling and modulating cell signalling pathways. These host-cell 

interactions often have significant impacts on disease progression and outcome 

(Knodler et al. 2001). The role of coronavirus accessory proteins is diverse and 

complex, with almost constant research finding new avenues for how these 

proteins function. This is best represented by the most researched area of virus 

host-cell interaction, the IFN signalling pathway. The type I IFN response is crucial 

for the control of coronaviruses and offers a significant challenge to infection 

(Ireland et al. 2008, Li et al. 2010). Previous work has shown that IBV accessory 

proteins 3a, 3b, and 5b all play a role in modulating the IFN response (Kint et al. 

2015, Kint et al. 2016). Here, using mass spectrometry and in vitro IFNβ assays, 

a mechanism of action for 3a is proposed, by which 3a modulates the levels of 

IFN signalling proteins, MAVS and IRF7, through interaction with the IFN 

regulatory proteins, RNF5 and CAND1. These interactions can, in part, explain 
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the dual effect of 3a on IFNβ signalling. Low levels of 3a has an agnostic effect 

on IFNβ expression while higher levels have an overall inhibitory effect. This is an 

interesting observation, and while cellular proteins such as LGP2 have been 

shown to have opposite effects on IFN expression depending on dose, this is the 

first instance of this phenotype in a viral protein (Rodriguez et al. 2014). This 

allows 3a to have a more dynamic relationship with IFNβ expression, wherein 3a 

can inhibit IFNβ expression during peak viral replication but can also stimulate 

IFNβ expression later in infection, possibly to prevent excessive host damage. It 

has been shown that the decrease in 3a levels 36 h.p.i coincides with increased 

IFNβ expression and that 3a is responsible for this. More work is still required to 

determine if this is due to the role of 3a in increasing levels of MAVS during 

infection. A proposed mechanism of action is that 3a can affect IFN signalling by 

interacting with the cellular proteins, RNF5 and CAND1. More work is required to 

link these interactions with increased or decreased IFN expression both in vitro 

and in vivo. Work here mainly focused on the IFN pathway, but 3a most likely has 

additional roles during infection, highlighted by the range of interacting partners 

identified in the mass spectrometry data. Future work would be encouraged to 

look at the other highly significant proteins identified, including FNDC3a, SUCGL2, 

and DAAF5, all which appear to play a role in pathways other than IFN expression. 

Alternatively, anti-3a; which can immunoprecipitate 3a from infected CK cells 

(data not shown), could be used to gather more relevant mass spectrometry data 

from virus infected cells. This would help to reduce false positives that may occur 
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in the current dataset. Future work should also focus on the effect of 3a in 

combination with 3b, which may also interact with a MAVS regulatory protein.   

 

6.2. Accessory protein 3b 

The role of IBV accessory protein 3b was a difficult protein to investigate. IBV 3b 

is quickly turned over in cells and can localise to two cellular compartments based 

on whether it is expressed in avian or mammalian cells (Pendleton et al. 2006). 

Mass spectrometry data suggested that 3b interacts with proteins that regulate 

mitochondrial membrane permeabilisation and thus may have a role in apoptosis. 

HEK-293T cells were used for the GFP co-IP to characterise and identify 

interacting partners for IBV accessory proteins. This cell line has limitations, as 

mammalian cell biology can differ from avian cells, potentially affecting the 

function of 3b. This limitation is most apparent for 3b, which when overexpressed 

in mammalian and chicken cells colocalises differently. Due to time constraints 

and the lack of a 3b antibody, these interactions were not confirmed by IP or 

immunofluorescence. Nonetheless, recombinant IBV that lack 3b induced less 

caspase-dependent apoptosis, suggesting 3b is involved in apoptosis in some 

manner, whether this response is a cellular or viral response is unknown. The 

apoptotic pathway is closely linked to the IFN pathway, with both cascades 

proceeding through the mitochondria (Barber 2001). Protein 3b has already been 

shown to antagonise IFN expression, which could lead to increased pro-apoptotic 

signalling (Kint et al. 2015) (Randall et al. 2008). Whether apoptosis is a 

consequence of inhibiting IFN expression or is actively induced by 3b is unknown 
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and warrants further investigation. The apoptosis assays established here should 

be used to qualify transient 3b apoptotic activity, this should include looking at 3b 

from different strains of IBV including a truncated form of 3b from a Beau-R strain. 

Future work should also investigate how 3b inhibits IFN expression and should 

utilise the chIFNβ-luciferase assay used for 3a to determine at which point 3b can 

affect the IFN cascade. 

 

6.3. Accessory protein 4b 

Sub-genomic RNA 4b was first identified by Bentley et al. and work completed 

here confirms that this sgRNA is translated into a detectable protein during 

infection and is referred to as 4b. Protein 4b is an 11 kDa protein and is the fifth 

accessory protein to be identified for IBV along with 3a, 3b, 5a, and 5b. Protein 

4b interacts with cellular proteins which are involved in translation, as well as 

stress granule (SG) and p-body assembly. Previous work has shown that IBV can 

both induce SG assembly and inhibit sodium arsenite-induced SG assembly (Kint 

2015). Whether these SGs inhibit viral replication and are indeed a cellular 

response to infection is unknown. IBV induced SGs do not disassemble when 

treated with cycloheximide, supporting the idea that these SGs are non-canonical 

(Kint 2015). Here we show that 4b can induce SG assembly when expressed 

alone, while simultaneously increasing rates of cellular translation. This result 

supports the idea that these SGs are non-canonical and may not be coupled with 

cellular translational arrest. Future work needs to determine the structural 

composition of these SGs and determine if they are indeed translationally silent. 



Chapter 6: Discussion  The role of IBV accessory proteins 3a, 3b and 4b 

260 
 

Neither antibody targeting G3BP1 nor TIA-1 worked in avian cells, so future work 

should look at different SG antibodies for use in avian cells or focus on Beau-R 

which can replicate in Vero cells. Interestingly, the two viral proteins that have 

been shown to play a role in regulating cellular translation, 5b and 4b, were unable 

to inhibit sodium arsenite-induced SG formation, even though IBV can (Kint 2015). 

This suggests that another IBV viral protein may be responsible for inhibiting 

these canonical SGs during infection. To confirm this is the case for 4b, cells 

should be infected with M41K-del4b or BeauR-delIR and then treated with sodium 

arsenite to determine if IBV can still inhibit SG assembly as seen with 5b (Kint 

2015). While IBV 5b has been shown to regulate cellular translation, there is no 

proposed mechanism of action. Furthermore, the interplay between how 4b and 

5b function together is unknown, especially considering they appear to have 

opposite roles in regulating cellular translation (Kint 2015, Kint et al. 2016). Future 

work should also investigate the role of 4b in the assembly of p-bodies, as proteins 

that play a role in SG assembly, LS14A and ATXL2, also regulate p-body 

assembly (Yang et al. 2006, Kaehler et al. 2012). Previous work has shown that 

p-body assembly is modulated during IBV infection and may be responsible for 

decreased cellular mRNA decay seen during infection (Kint 2015). 

 

Sub-genomic RNA 4b is expressed under the control of a non-canonical TRS 

(Bentley et al. 2013). This is the first sgRNA identified; which is regulated by a 

non-canonical TRS, that is translated into a detectable protein. This non-

canonical TRS results in lower levels of sgRNA 4b than is expected for its genome 
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location and raises questions as to the role of this non-canonical TRS (van der 

Most et al. 1995). As this non-canonical TRS is highly conserved, it suggests there 

is a reason why 4b is expressed at lower levels, and that higher levels may not 

be beneficial for the virus. Work here has started to examine these questions by 

synthesising a recombinant M41-K virus containing a canonical TRS upstream of 

ORF4b (data not shown). Work should continue to generate this rIBV and 

examine the effect of increased 4b expression levels on replication and 

pathogenicity. The effect of this non-canonical TRS should be investigated in IBV 

and highlights the range of mechanisms coronaviruses could employ to regulate 

levels of sgRNA and protein during infection. 

 

6.4. IBV accessory proteins 

Current knowledge as to the role of coronavirus accessory proteins varies 

between genera, with SARS-CoV and MHV accessory proteins amongst the best 

characterised, and IBV amongst the least (Liu et al. 2014). Regardless, more 

functional and structural work is required across the board to determine the 

pathogenic significance of these small proteins. While the function of some 

coronavirus accessory proteins has been determined, this most likely represents 

just the tip of the iceberg. While small, these proteins are usually multi-functional. 

The best example of this is SARS 7a which so far has been shown to inhibit 

cellular translation, activate the MAPK signalling pathway, suppress cell cycle 

progression and induce apoptosis (Liu et al. 2014). The function of this accessory 

protein is still only partially understood and continues to be investigated. This 
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feature is common for coronavirus accessory proteins and implies that IBV 

accessory proteins 3a, 3b, and 4b most likely play multiple roles during infection 

too. Future work should look at the other interacting partners identified by mass 

spectrometry. Due to time constraints, these interacting partners were not 

investigated, but they could be used to identify additional functions for these 

accessory proteins. The mechanism of action for 5a or 5b has yet to be 

determined; future work would be encouraged to use mass spectrometry to 

investigate these accessory proteins further. 

 

Results shown here have predominantly relied on using 3a, 3b, and 4b expression 

vectors. These vectors have helped to determine interacting partners for these 

proteins and potential mechanism of actions. Nonetheless, these observed 

results need to be validated in the context of viral infection to determine their 

clinical significance. This can be difficult as the roles of accessory proteins can 

often overlap. For example, 3a, 3b, and 5b all play a role in inhibiting IFN 

expression, with 3a also able to stimulate IFN expression (Kint et al. 2015, Kint et 

al. 2016), while 4b and 5b appear to have opposite effects on cellular translation. 

The function of these proteins needs to be compared in the context of other 

accessory proteins to gain a complete picture of the complex relationship between 

IBV and host. Deletion of TGEV, SARS-CoV, and MHV accessory proteins leads 

to attenuation of the virus in the host (Paul et al. 1997, de Haan et al. 2002, Zhao 

et al. 2009, Liu et al. 2014). Recombinant M41 viruses lacking 3a, 3b, or 4b should 

be used for in vivo experiments to determine their role in pathogenicity. This 



Chapter 6: Discussion  The role of IBV accessory proteins 3a, 3b and 4b 

263 
 

experiment should be complemented with recombinant viruses lacking accessory 

proteins in different combinations and include 5a and 5b. Discerning the role of 

these accessory proteins during infection is further complicated by the fact that 

IBV potentially expresses more, as yet unidentified, accessory proteins. ORF4b 

was first identified in 1980, and it was not confirmed as a sgRNA until recently 

(Stern et al. 1980, Bentley et al. 2013). Here we have shown that 4b is translated 

and detectable during IBV infection. This ORF was believed not to encode a 

sgRNA as it lacked a canonical TRS, highlighting the potential for IBV to express 

additional sgRNA under the control of a non-canonical TRS or indeed alternative 

expression systems. Considering coronaviruses have the largest positive-sense 

RNA genome, the potential to encode additional accessory proteins is highly 

probable if not certain (Hussain et al. 2005, Han Di et al. 2017). Indeed, an 

additional sgRNA has recently been detected during Beau-R infection expressed 

from the 3′-end of the genome and referred to as sgRNA 7 (Keep et al, 

Unpublished). Whether this sgRNA is translated into a protein during infection is 

unknown as is the function of this putative protein. The full repertoire of IBV 

accessory proteins needs to be identified, and their function determined to gain a 

better understanding of how IBV causes infectious bronchitis in domestic fowl. 

While northern blotting has helped to identify both sgRNA 4b and 7 (Keep et al. 

Unpublished) (Bentley et al. 2013), future work should use the development of 

next-generation sequencing and RNA-seq to identify the full range of novel 

sgRNAs (Bentley et al. 2013) (Han Di et al. 2017).  
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While 3a, 3b, and 4b are highly conserved between M41-CK and Beau-R strains, 

there is the potential for them; in the context of infection, to function differently. 

Functional differences between accessory proteins may explain the differences 

seen in pathogenicity between Beau-R and M41-CK. Furthermore, while M41-CK 

is a pathogenic strain of IBV, it is still a lab-adapted strain and therefore is not a 

reliable reflection of a field strain of IBV. Although accessory proteins 3a and 3b 

are highly conserved between Beau-R and M41-CK, they are less conserved with 

the clinically important field strain, Qx. Qx and Qx-like IBV strains are highly 

pathogenic and were first isolated in 1998 in China (ShuShuang 1998). These 

strains cause severe nephrotoxicity and are the biggest risk to the poultry industry 

(Beato et al. 2005, Valastro et al. 2010). It is not known why Qx is highly 

pathogenic but could be due to the differences in accessory protein peptide 

sequences, which are lower at 80.9% and 61.9% for 3a and 3b, respectively. 

Another field strain, recently identified in Australia, contained a single unrelated 

X1 gene in place of 3a and 3b, and deletion of 5a altogether, the significance of 

these deletions is not known but does show the potential for IBV to mutate these 

accessory proteins in the field (Mardani et al. 2008). Future work should aim to 

repeat assays, established here, with a panel of accessory proteins from a range 

of IBV strains to determine the significance of these proteins in disease outcome. 

Alternatively, determining the functional conservation of these accessory proteins 

between IBV strains could make them more attractive as cross-protective targets 

for vaccines and/or therapies. 
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6.5. Implications for vaccine design and novel therapies 

Currently, domestic fowl are vaccinated against IBV using inactivated and live 

attenuated viruses (Box et al. 1980). For the generation of attenuated vaccines, 

clinical field strains of IBV are isolated and attenuated by serially passaging them 

in embryonated eggs. This process aims to create a vaccine that strikes a balance 

between attenuation and immunogenicity. This requires a process of trial and 

error and therefore can be labour intensive, costly and will not necessarily confer 

protection against different IBV serotypes (Davelaar et al. 1984, Jordan 2017). 

Furthermore, there is a danger that these vaccines can revert to virulence when 

used in vivo, either through mutations or recombination with field strains (Hopkins 

et al. 1986). There is thus a growing need for vaccines which are rationally 

designed that are attenuated but maintain immunogenicity. This would require a 

better understanding of how to introduce attenuating mutations. This could 

include mutating or indeed deleting accessory protein ORFs, as has been 

adapted for the generation of feline infectious peritonitis virus (FIPV) attenuated 

vaccines (Haijema et al. 2004). Deletion of accessory proteins, compared to 

deletion of nsps or structural proteins, is better tolerated by coronaviruses as they 

are non-essential for replication and assembly (Cavanagh et al. 2007). 

Furthermore, these deletions are less likely to revert to a virulent state compared 

to mutations and are therefore considered a safer way to prevent viral reversions. 

Determining which accessory proteins or combination of accessory proteins could 

be targeted for vaccine design will require a better understanding of the role of 

these proteins and determine how essential they are in vivo. These deletions 
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could lead to the creation of safer, more stable vaccines that can be generated 

quickly in response to a range of current and emerging IBV strains. 
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Table 7.1 Cellular proteins identified my LC-MS/MS that significantly interact with GFP-3aM. 
Protein 
ID 

Unique 
peptides Confidence 

Relative Protein Abundance 
p Value 
(-Log10) 

Fold Change 
(Log2) 

GFP-3aM/GFP 
pEGFPC2-3aM pEGFPC2 

1 2 3 1 2 3 
SUCB2 2 51.8 34391.31213 56821.77764 41196.20091 0 0 0 15.42968233 6.777403376 
FND3A 2 34.79 74980.93704 24630.06568 33157.9421 0 0 0 15.43359571 5.344140575 
GCP2 2 197.65 235809.9946 105676.1593 110856.7974 0 345.0779654 89.30009403 10.02425004 1.897724605 
PLCD 2 67.93 84058.48747 29179.2505 55446.0788 337.888514 0 0 8.963558546 1.888070933 
RNF5 3 65.41 40010.10628 41698.36451 40304.88571 23.67064605 0.851848723 533.6542995 7.772101223 1.847905735 
SYIM 2 166.85 5264.343093 38673.28811 35924.49767 272.9815635 348.4995779 0 7.005657106 1.313803241 
DAAF5 6 260.95 185725.9629 107943.9298 164079.893 1605.611852 2255.546652 1306.758243 6.468832572 4.399280401 
CAND1 3 99.7 26745.14688 119865.8145 61450.09147 1327.312472 803.21403 283.1585313 6.429625692 2.681942232 
DRS7B 2 69.99 73008.75546 24830.37773 40296.64166 0 2227.736805 0 5.954364395 1.410611949 
ODR4 2 83.56 94227.5916 30091.39846 43740.62521 0 3355.46799 20.37944099 5.637579572 1.332618828 
SAAL1 2 59.11 224746.8404 137702.9975 147900.2826 3261.366937 7876.208585 2769.976351 5.197546941 3.298068207 
STX18 2 108.09 107680.8457 55375.96374 76556.75843 763.3016918 4024.461995 2021.70543 5.137023465 2.704016395 
NENF 2 40.87 32215.33579 110626.9175 56483.8135 2249.998017 0 3817.127125 5.037973511 0.943901617 
HEAT3 2 61.68 264681.0087 126284.1501 164801.5922 0 9178.051879 7830.600162 5.030138812 0.900741473 
REEP5 5 390.12 749915.828 305879.2859 410196.8144 18877.25139 19977.9151 8195.371688 4.961522125 3.037728514 
NTF2 2 121.86 29436.05641 315620.5138 198763.9562 11592.76449 0 5969.017607 4.95261945 0.826531151 
AL9A1 2 67.04 4154.176253 40434.74772 21783.00598 708.3351856 1021.334608 754.4832324 4.739747273 1.885859908 
F134C 4 272.76 1141784.237 364034.8883 527764.8573 11166.44445 44095.2193 28322.67335 4.604648142 2.442071003 
CLCC1 5 219 168918.3877 94932.29125 125618.1712 4675.755832 7539.017183 4068.684829 4.580028948 3.658382062 
WLS 3 121.35 299226.2514 122157.0627 191376.7091 3018.354566 14975.83988 9071.20919 4.500800369 2.417495595 
TRABD 3 258.46 356891.6626 151716.4333 245364.0152 13656.55863 13034.83679 9349.082979 4.386821094 3.395254749 
MA1A2 2 66.59 215645.5795 96319.35766 62781.13751 1646.540633 14837.10708 1696.101165 4.36550919 1.879797504 
COQ9 2 60.35 110354.4636 76056.90201 122233.2208 7079.981262 2429.067748 5573.197655 4.355023232 3.020661266 
ERGI1 3 88.57 184876.8847 77101.71274 100338.6505 8938.181852 4635.605864 4641.070818 4.314065791 3.029781331 
IPO8 2 119.01 127020.6783 69452.4371 88508.53162 3149.79612 8148.584352 3345.938955 4.282455959 2.995663854 
CHCH9 2 160.86 67572.62096 360826.731 302878.3555 15159.59511 20122.69634 5962.35567 4.148140585 1.893115032 
ABHGA 4 127.54 189095.1787 78592.56183 128659.5804 9674.639923 9766.763034 4021.874744 4.078288755 2.729636927 
PM34 2 87.79 57197.3547 34254.4407 10667.73784 0 5332.612201 983.0557967 4.015179705 0.850035226 
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UCHL1 3 186.42 25494.22872 252579.1275 157222.2642 884.5261098 27887.49564 0 3.919257 0.855370301 
ALG1 4 151.32 170129.9637 82346.94547 107946.4187 8060.06312 15773.06095 58.78622242 3.915098275 1.07826702 
EMD 6 265.85 354469.7995 237282.4663 259536.9101 42448.24268 5526.157523 9727.697304 3.882953619 2.103879379 
PSMD9 2 85.09 97466.21523 109471.8329 93926.33154 8888.832258 4863.059305 6760.611141 3.874537882 3.944032605 
TOIP2 3 84.63 77623.31948 39297.2789 53983.44755 4152.550815 3693.52834 3819.042182 3.872913332 3.727616163 
NU205 3 209.73 165607.2579 73567.56396 88393.00183 12717.15794 3246.093207 7151.734314 3.824893291 2.375776447 
UBQL2 2 205.45 156916.6578 90090.28071 134626.7302 2436.664802 12446.06126 12506.86639 3.800488751 2.122942277 
HSBP1 3 258.09 1069888.163 432952.447 680367.7133 55457.68021 64433.27794 39498.43168 3.775822299 2.999605956 
GPAT4 3 108.01 96599.88757 37275.85499 79000.39059 1881.336243 14054.51056 0 3.739666621 0.829059527 
ETFB 4 185.54 41798.71172 207835.8111 108182.2776 7522.672393 17400.36104 2073.603152 3.728369544 1.607173674 
COG6 2 71.11 180632.3455 78810.92161 115020.1304 16867.94446 9927.445399 2235.819871 3.689148112 1.89616613 
RAB18 2 117.45 243256.9894 169447.9014 189251.4121 21479.72484 6982.005359 18221.40531 3.688685394 2.713937351 
ADCK4 2 85.8 94351.38794 124276.4933 169895.0733 9743.372986 5945.63161 14697.11473 3.676515496 2.93702803 
NU188 2 84.14 95331.89597 53360.69943 64829.48226 13794.7404 3787.279944 72.7493266 3.596255344 1.123306796 
ERGI3 2 53.68 219301.3449 102332.5309 127577.4655 6756.005925 21309.44446 9099.654538 3.595373766 2.468726847 
BAG6 15 916.5 1063956.239 530962.658 711738.9269 42002.06133 91895.37871 63409.09066 3.547293393 2.908753429 
TMX3 3 184.24 177673.0447 90569.12216 113261.9522 17618.31514 12170.97451 3153.771662 3.533652102 2.034140564 
UB2V1 2 100.47 27592.55046 130924.2247 72665.3887 12104.53234 6519.486272 1478.853929 3.523556524 1.538065097 
MPU1 2 108.56 206718.9505 115636.736 154836.9192 11968.55877 16688.87392 13403.17914 3.504029947 3.617445411 
UCHL5 2 38.07 92429.56 63525.80973 72599.37128 7537.009138 7284.613162 5715.556648 3.476229818 4.170116506 
TNPO3 2 71.37 144621.9199 89592.6772 120392.315 338.2526679 21920.99861 10189.34018 3.449992898 1.206894959 
HSDL1 3 128.07 238412.8931 138049.5039 165886.3749 9517.300629 9194.526284 34139.25141 3.359216101 2.255200215 
DHC24 7 401.81 1051291.496 339981.1588 610383.6646 68147.61699 62371.05979 66381.60123 3.345657234 2.60705999 
ASNS 4 218.18 27236.7698 171430.9769 107043.9983 14413.26977 13620.8357 3076.178357 3.296708518 1.39532784 
CY1 2 175.68 390624.129 223018.99 286975.9681 28300.7047 61543.82476 3119.625862 3.276170592 1.4398207 
SODM 3 202.75 16683.22434 386429.2848 167136.3902 1116.735273 3051.20702 55062.56807 3.267179335 0.897462498 
FACD2 10 514.36 595535.0484 319918.416 363208.044 28414.5887 51827.93688 54517.52588 3.24616961 2.873840686 
NUP93 7 300.43 423476.3608 274439.1391 353048.6688 0 41416.03572 69362.66653 3.245961035 0.671846092 
MSH2 3 173.35 111077.8734 99696.44018 134385.7525 0 31144.80963 6206.07863 3.208051101 0.734164784 
OLA1 3 84.02 6739.60173 96279.51464 45580.26839 1905.775694 11890.49948 2289.52478 3.207568554 1.010022552 
AFG32 2 87.66 266218.8291 69763.81298 129982.134 29522.17136 10236.30475 12436.5197 3.1582375 1.884998623 
NCLN 3 110.84 151810.5306 118798.335 51161.51211 4026.983579 5593.222541 27600.09858 3.111869746 1.635810305 
TM109 3 193.95 2128557.196 741617.905 1571766.115 116270.3236 309108.138 91861.27652 3.102285278 1.979519337 
VATA 2 129.7 167583.1096 159772.5775 145135.6368 82.06007278 27494.21844 27481.07532 3.10128066 0.884954229 
ABCE1 2 100.28 180280.4528 228714.1151 176016.8733 5853.351265 15469.80009 47476.7658 3.087986108 1.812994348 
APT 2 69.2 81678.52251 294963.2647 132224.1422 10003.55635 31941.67625 18455.73939 3.074641929 1.85368189 
TMX2 2 106.81 371290.2604 164004.6936 155805.9568 30719.98496 41544.65033 9831.420076 3.073511572 1.87689274 
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PIGS 2 107.23 138516.2391 42629.73737 87801.7788 4391.904365 26815.13072 1538.305236 3.037964418 1.372564613 
OPA1 4 134.56 130650.4255 74911.63272 80284.10455 3403.949867 28348.88231 3080.573341 3.036695492 1.614628993 
VAPB 4 268.94 416506.9089 248489.2161 232945.3183 7744.79615 68440.53099 34218.44871 3.023831853 1.637538183 
RN126 3 251.08 525994.1889 280502.4686 334225.2035 67045.77592 49805.14736 23678.40168 3.021003945 2.392041083 
RAC2 2 102.54 80460.41231 167604.9329 103378.7411 12685.50953 15828.63451 14877.31877 3.017812051 3.091374769 
THEM6 3 179.98 302460.6286 180902.6637 221584.6424 21322.33488 46595.37978 20573.93694 2.993903447 2.650100687 
DCAKD 3 114 153464.2264 83490.88646 117275.0733 15636.9141 17987.39211 11058.22892 2.986904211 3.081243797 
SRPRB 13 1168.22 2356606.499 1252445.881 1772697.713 158027.6169 300604.9945 235622.8531 2.954536867 2.842057521 
MPRD 2 63.4 403758.5618 189455.7616 276185.7067 69385.26371 22423.46862 22296.68755 2.929652826 2.094753638 
VDAC2 2 165.53 185298.4981 63587.4718 71200.78036 12150.61983 26309.77203 3554.436452 2.929492465 1.509309944 
XPOT 5 315.05 192152.0222 87834.0223 111134.1342 18165.44461 22238.0125 11344.55236 2.918036695 2.552757573 
CB047 2 115.34 284719.5493 130033.8812 190940.3121 8955.553702 55631.74442 15759.10915 2.914283087 1.746291063 
LAT1 3 283.6 534554.2065 250774.0012 333575.6027 27904.31074 80223.30157 42965.13305 2.88857972 2.250548912 
EI24 3 79.84 198309.5484 94782.3236 94516.17662 7846.197007 26812.32063 19324.82657 2.84401227 1.992223219 
UCK2 4 351.21 631346.4811 332289.1155 395077.2849 65389.18535 73917.666 50587.2553 2.838973586 3.02699373 
VATH 2 90.98 456719.8086 188749.7682 292946.563 46618.49369 49388.45914 38127.75768 2.80654521 2.675757196 
AAAS 5 212.77 362041.0814 157400.2565 256438.8803 25003.63463 43440.29387 42638.97024 2.804197213 2.502024053 
FUND2 3 170.07 155872.4144 66284.67575 81778.76974 789.0479602 2925.884841 40106.34656 2.794063392 1.207379135 
SC61B 3 258.61 869805.8076 438596.665 524439.0833 17462.80943 148948.4918 98268.19402 2.791763736 1.495266895 
PSD13 5 257.79 277050.6305 256645.2022 295326.395 32953.82472 64093.08353 22728.28042 2.791081698 2.569841114 
RDH11 7 463.66 850810.1228 437694.0325 614862.5361 85815.05262 120185.5841 69154.65644 2.790235542 2.811724745 
PSD11 5 162 444330.9905 280377.2573 290097.3742 31561.4464 94631.09858 21669.9923 2.778874937 1.972596832 
AMFR 7 463.85 533332.3635 261206.8513 292356.2496 23102.56658 85447.40766 50282.16974 2.774638376 1.985911313 
DDRGK 3 267.52 191321.119 126482.1814 121025.2369 24844.11805 34792.27865 5121.311773 2.760533508 1.626837608 
NTPCR 4 209.44 224270.7179 168624.377 238995.4131 14326.87493 46072.97841 33918.06515 2.74407081 2.264501734 
DJB12 2 137.64 357081.3372 141342.3714 266288.1612 77299.67567 20968.1364 18545.99923 2.710705409 1.726837144 
CERS2 4 176.44 588705.7071 301052.9363 440293.7639 51635.83294 96843.20871 54830.06952 2.709736317 2.600350873 
HM13 2 130.39 383225.6361 102529.1486 156671.5571 23272.99079 59221.12809 19069.04482 2.661153809 1.59629211 
SAE1 2 72.69 3890.241389 36693.09155 21523.55023 2610.669668 4297.940906 3084.428027 2.635757835 1.013332855 
CND1 6 200.77 257381.7777 128069.9417 154547.4966 20634.99669 47027.58195 19621.23527 2.629171265 2.214347347 
PTN1 4 183.41 264518.1559 108556.2263 131336.4813 11256.64812 52480.40639 18327.22862 2.619772988 1.677121747 
PLCA 2 193.64 441886.5586 180590.0349 272120.6475 54541.70239 41216.35918 50904.62574 2.60873643 2.521353275 
DHRS7 4 237.89 401883.9402 226211.3298 335157.6891 49773.69627 69167.30762 39677.61297 2.602352605 2.815173693 
AT2B4 3 154.72 257229.1241 140766.591 216913.1939 27902.04311 46870.77667 26887.84526 2.596611135 2.683630362 
DPM3 2 151.82 578373.8828 313474.5882 356597.4686 35643.24243 63884.25145 107629.4208 2.591337469 2.133913771 
FANCI 7 434.1 395294.5467 231748.3048 266809.9435 23677.31952 100412.6155 24300.87146 2.590635546 1.794114836 
RTN4 6 613.34 2121249.96 1560747.279 2014244.737 159811.5296 493862.9157 303631.4221 2.572958576 2.277626803 
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RBM4B 2 98.18 61416.63114 33119.93986 38152.43033 4916.94302 8950.836281 8663.772401 2.558030212 2.556655045 
PSMD3 2 245.18 114804.9216 146011.2766 98208.84142 10785.86589 37228.27732 13231.40081 2.551407678 2.055153907 
PEX19 3 111.31 256611.5387 124402.0876 204015.0439 36221.04114 34849.66186 29990.88899 2.533272516 2.826869318 
PIGT 2 48.14 39631.64016 16687.27352 21902.80234 3557.777583 6985.109388 2970.958715 2.5331309 2.071575356 
MTX1 2 107.82 199779.0345 56382.52488 205912.0841 29400.98041 29975.51966 21267.56121 2.5184826 1.658718923 
ARF4 2 414.66 83496.06429 106467.4647 86529.65113 5987.003745 24529.6364 17948.45289 2.51222597 1.917368162 
ETFD 2 146.39 254740.0909 81643.01257 124750.6509 20051.33662 39664.18429 22563.43741 2.486589839 1.869501809 
STX12 4 147.51 307407.5334 145356.9347 210470.3903 61214.81117 28791.95736 31703.75157 2.446065961 2.223126199 
RAB21 4 383.93 430263.783 217757.6447 316930.8193 83941.37533 71040.20029 23516.33662 2.434550349 1.795960819 
6PGD 2 202.65 10499.64748 181438.9582 125112.9789 656.0449376 46718.1316 11398.14584 2.431508775 0.636587868 
STX7 3 183.19 149866.5358 72172.90691 81657.27117 11483.51137 31535.27042 13658.48211 2.421789279 1.961911663 
LCLT1 3 168.03 200207.5912 111411.7384 119419.2734 5447.028811 55163.06776 21584.71025 2.39069793 1.34525365 
UBAC2 5 251.41 668492.4328 174492.2968 234308.6343 93470.15552 68910.54127 44404.09217 2.381209202 1.521798462 
ECI1 2 152.4 44721.30075 325787.7461 203058.5391 91157.88129 15060.8219 4655.904244 2.371034499 0.907516206 
PCH2 7 370.58 274138.1814 148990.0612 178754.7844 87842.22272 8037.414571 27574.76832 2.285504812 1.297333141 
MPRI 2 67.67 61257.91371 35037.66052 57683.06477 5967.373519 0 25714.99018 2.280978345 0.630583361 
SURF4 3 450.51 2326733.372 836510.7474 1029086.667 144164.5799 454369.4798 265216.8944 2.279065249 1.593777903 
COPB 4 332.27 296998.3826 236737.9807 266841.8865 35332.90626 98141.41381 31800.93454 2.276171684 2.02700218 
FACR1 9 593.27 1131804.623 441702.1667 696066.4254 213096.4901 103756.5821 154503.4005 2.267530585 1.966736971 
STX5 2 93.65 326547.1604 161188.8443 221641.6748 44161.93164 35794.55173 67578.96681 2.265492286 2.316270349 
RAB14 3 338.45 524554.0248 288185.7662 361188.4104 50150.38516 130743.0036 65390.84296 2.252948007 2.071224371 
MET7A 2 139.31 229386.7968 112371.5828 151099.6361 13528.88939 27408.65651 62597.17065 2.251057486 1.601637099 
PA1B2 2 71.19 19435.50139 226748.5071 113624.075 32622.97839 30395.61155 14075.2522 2.222540064 0.697874191 
SMN 4 207.52 262084.9768 233184.8888 193074.1244 48302.97518 76662.02219 24690.24407 2.201486903 2.048564816 
RFT1 2 140.05 324282.9051 121907.1591 149878.7574 45844.43004 46461.21891 37649.44843 2.197465689 2.029915184 
CHIP 2 65.87 28242.34548 61483.79093 58918.28396 6133.876898 12710.07019 13884.49323 2.183248553 1.860971788 
F10A1 10 779.1 3605670.176 2452277.739 3487307.46 679652.1486 888615.1282 546578.9523 2.174231028 2.896366525 
ABCD3 2 88.1 222127.9399 164279.1518 123607.2643 5461.72324 48391.36376 59235.48518 2.173084707 1.135779148 
RDH10 3 163.73 658740.3396 289840.3984 429233.7152 90977.6557 181422.7298 33755.62092 2.170042724 1.426778706 
DIC 3 191.4 355047.2263 153114.2225 218580.3995 62962.51284 45317.41289 55214.31943 2.152203129 2.274592668 
PO210 7 264.46 224424.012 183069.182 169095.6943 34828.00755 54028.21941 44162.32255 2.11591559 3.19640142 
P5CR2 2 362.2 165490.5299 197684.6675 178764.2287 25452.9813 54442.29878 46460.18873 2.1006435 2.497937846 
PRRC1 2 121.83 191405.489 114688.5823 129522.4701 15714.16825 35294.36761 51502.05182 2.087285813 1.794921878 
S23IP 4 265.91 333884.4498 232062.4698 223640.2458 29033.73614 102326.7892 54677.72385 2.085499271 1.806077084 
T161A 2 63.17 108825.4657 61651.22554 68263.3478 15846.4006 18637.01003 22077.70179 2.077558141 2.683946144 
TMED9 5 363.38 1253653.149 578157.0519 672913.3144 183378.6419 264903.5635 149474.1244 2.067021953 2.074456562 
AR6P1 3 131.23 489285.9693 288949.3972 338721.8629 92220.09666 40426.1019 138925.167 2.040170668 1.726018494 
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RAB5B 2 287.25 209507.8602 128353.7983 178747.3835 41129.10539 41887.6554 43006.70038 2.035380556 3.181315249 
ATD3A 6 832.07 2174020.325 732954.0369 1057578.753 370243.8775 219969.4182 378111.5939 2.033595172 1.663259947 
SUCB1 2 224.49 125568.8631 179226.2471 151200.0127 25714.07654 69586.44793 16196.27991 2.032016032 1.639898078 
TMM33 7 354.95 1913965.496 630100.331 842094.0235 229505.3295 316503.1442 283805.0703 2.02879097 1.702447933 
RCN1 4 328.55 114844.7278 393001.1036 246926.7618 47442.28536 74828.6619 63206.94519 2.024794799 1.565444115 
MARE1 3 164.79 14586.43427 194809.063 93146.59853 0 45259.61522 29212.05129 2.022372346 0.491568553 
MPCP 11 551.93 1519012.27 599678.7053 776219.856 211155.7967 436821.1525 65996.64336 2.019576291 1.208816589 
SCO1 3 135.25 267182.7672 158740.3064 192179.9676 39971.35238 73570.49852 38950.57203 2.019109804 2.279390498 
HAT1 2 70.98 176300.8231 231910.0048 138430.4227 15584.79959 56372.4518 63386.10531 2.013970258 1.504908034 
Mar-01 3 233.52 285533.5531 147277.7749 223659.877 82800.02608 21974.86641 58031.0013 2.011578803 1.561397873 
SRP68 3 193.7 247354.2736 223401.8082 249725.8688 58556.49659 51674.64419 69666.83771 2.001783313 3.925192934 
C1TM 6 282.73 76445.7557 135918.569 77561.71409 7132.805171 51015.37847 14870.90373 1.989339368 1.293398868 
QSOX2 3 87.06 181515.4228 80955.29865 85893.66218 35056.65314 19863.34026 33935.7694 1.97105988 1.850552396 
CLIC1 3 147.11 159679.7802 313173.0779 171506.3469 48473.37817 85632.60667 31100.87375 1.963591577 1.739869388 
K1C16 6 896.75 634148.1226 13902.34101 24385.96719 111394.6317 47460.89166 14533.60633 1.955384434 0.091986338 
GLOD4 2 47.07 39042.4188 65764.11851 34278.01425 5813.640626 19941.26068 10213.71309 1.951151696 1.611385842 
MDHC 3 188.47 44062.47206 316729.3776 198180.2147 40452.67279 61326.46933 42895.40497 1.949965056 0.82642353 
S27A4 2 159.47 686536.1367 313250.2675 284714.1313 32305.10326 155840.4444 152453.3628 1.915061766 1.16176331 
TX264 4 283.77 353600.9702 188089.7761 286604.1717 71557.47008 69826.86624 79845.60829 1.904597862 2.607115396 
HACD3 5 192.05 2044158.665 889978.6587 1527204.912 345115.9435 453076.6049 397519.4028 1.89960794 2.109669028 
LMAN1 5 278.39 532350.6678 289643.012 380234.2629 223574.4598 61841.85617 37485.39674 1.896543459 1.317443261 
DOPD 2 43.58 78154.66967 346456.4452 193534.5437 66388.66515 90274.04708 11232.00161 1.880390024 0.864746575 
TADBP 7 362.24 677673.5068 438401.1665 484921.5147 55745.611 235724.2106 143394.4233 1.880332874 1.509162043 
TOIP1 5 362.25 724970.0886 346455.229 428759.7917 127589.2426 211457.7701 68716.24068 1.879336853 1.585176227 
PGRC1 8 544.74 7190611.276 2337724.334 4210640.402 964713.607 1820666.496 952562.9378 1.877957992 1.487841993 
CLPX 5 256.97 372370.7867 253158.8082 271319.9362 183007.2748 31220.11911 32347.98074 1.862837232 1.293285518 
CLP1L 6 462.89 1099057.754 496726.4984 854324.3089 188434.0715 292772.8666 192777.0209 1.862059514 1.99511794 
1433E 8 755.39 485224.7279 2058266.75 1723499.87 241864.9486 564152.1879 371147.5666 1.857902996 1.069537988 
MCM7 5 233.53 54755.89475 299819.6128 144540.0737 0 60105.84541 79376.93784 1.839286885 0.506607224 
ATLA3 4 177.86 607014.2984 208716.3727 461729.2732 81660.84858 135913.3665 143169.649 1.824231294 1.514220802 
NB5R3 11 1068.11 2942457.748 1437941.474 2413545.359 538991.948 891941.9006 498781.2555 1.815861581 1.950931001 
AL3A2 10 467.97 954358.9097 385144.8805 610034.3343 344528.1103 140600.6936 74382.36965 1.80089352 1.25249498 
LYRIC 3 186.64 204017.8462 144055.0502 165197.6785 45816.76736 54301.91846 49752.51657 1.775996358 3.391480078 
AIMP2 2 157.35 434221.3218 370577.2195 338611.3064 0 249441.5843 93244.44265 1.738383349 0.535017138 
AAAT 5 291.91 1035868.958 555266.2629 570492.1298 138892.6747 358594.5269 152214.7086 1.734267982 1.583465991 
COA3 3 90.72 152857.2877 79127.61545 81604.82339 14629.23177 41341.30971 38984.80021 1.72355723 1.447967598 
RABL3 2 62.67 362113.092 115814.1364 176064.3707 92861.54616 44960.15419 60477.42249 1.721593808 1.336400677 
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MLEC 2 69.02 473668.1593 191265.2603 198548.7865 33126.35612 172313.686 58781.39574 1.708418923 1.10090919 
MOT1 3 146.7 262953.6356 163721.5827 159043.8462 27194.3385 117157.2269 35338.33316 1.704699545 1.33936514 
TM9S3 3 99.86 338322.1774 177693.1647 189739.7425 67423.70282 94448.82684 55605.75846 1.698296241 1.969450349 
CISD2 3 225.16 891771.3081 370908.0438 536969.8582 179108.8401 263083.3578 116092.319 1.688643271 1.54087933 
BZW1 15 742.34 2082286.572 982767.3991 1540951.792 287899.0364 562926.9626 582413.5114 1.684236496 1.679138974 
PSB2 2 62.44 162932.3471 150762.5455 205339.2152 25772.3858 68556.80197 67306.81466 1.68308077 1.687266397 
NU155 3 89.74 153929.5525 105056.7851 84231.93582 6827.48093 88566.4508 12346.79293 1.671562692 1.025695612 
ABCB7 3 91.37 154525.1627 40750.40382 66118.21038 58378.47615 3143.301558 20851.2607 1.665980685 0.765280749 
COX41 5 230.12 876093.7553 465518.8491 528809.5859 211474.0377 243425.3455 136143.3299 1.662029652 1.92641881 
SYG 4 210.8 21967.63963 179390.3839 94800.49705 22808.47813 42736.53556 28556.81676 1.654074902 0.597483651 
ARL8B 4 134.79 440315.1427 229372.949 370445.8304 34708.77127 187437.9255 113579.0373 1.631414262 1.146229705 
RB11B 8 323.76 1530218.068 878446.6758 1058369.56 379861.7182 451136.2005 292623.2257 1.625546432 2.248657426 
VINC 2 84.65 3345.126868 212383.3075 114565.2532 69962.0515 33709.62884 3811.269505 1.619641576 0.178833765 
GBF1 5 121.6 185959.1285 82336.92752 118426.2366 78409.7636 35977.26594 11866.82963 1.614970444 1.048263066 
GNAI3 5 266.06 239421.2769 186974.3089 205171.6687 70119.78593 85618.8583 52542.95687 1.60040097 2.674630023 
U520 3 164.77 90113.60304 101838.5995 113086.1379 29203.21014 46442.22281 25084.23022 1.598501992 2.356230587 
DHE3 12 673.63 687612.2038 872286.9386 917710.729 133782.9743 246992.5144 457464.9272 1.563513048 1.513627344 
CLPB 6 314.67 210800.2161 131792.8405 151873.5535 96298.76651 45419.83482 25905.36126 1.5606447 1.388848329 
NDUF3 4 357.93 243018.7106 142320.9362 245046.3478 80827.66237 62144.55298 72883.65345 1.546167164 2.233636649 
GSTK1 2 55.05 16186.65559 49072.87397 35273.9776 20390.09965 9507.719796 4542.317582 1.545513634 0.994113742 
PNPH 3 138.47 9702.505813 145714.8472 97089.07334 38225.82388 25422.83534 23286.39825 1.538310124 0.282328629 
HYEP 12 547.03 1372311.943 901331.626 1305449.206 223539.6003 527736.482 481596.2703 1.537570505 1.674760666 
PSMD8 3 116.53 306319.4431 189560.0919 235292.1162 20733.99124 199433.1 32111.78966 1.535190697 1.02569642 
LETM1 13 911.56 1606282.621 886615.3141 1131003.296 399721.7827 543982.8929 310013.3385 1.531330742 1.953405366 
NDUS8 2 193.31 321679.1571 157515.6666 173571.1649 57596.6143 107197.6796 61069.88053 1.531110434 1.609709118 
SRP54 8 247.58 528591.6526 293390.7552 412996.565 123348.4084 167904.587 136242.0212 1.530506971 2.239598887 
ILVBL 8 656.25 1472221.812 720810.5337 1089549.18 368946.029 406868.9636 367779.1521 1.521255704 2.074617222 
NDUF4 3 119.91 124740.3488 78569.69299 93558.83118 12492.34591 46493.73947 44563.05895 1.519510201 1.236263746 
GCN1L 121 10375.8 5895202.577 2226907.642 3263971.792 1562425.343 1005354.823 1407304.586 1.518213871 1.465515292 
SYAC 2 173.36 34320.99991 366576.268 119129.6625 7341.458533 19895.2853 156422.2191 1.501557033 0.545026245 
CD2A1 3 286.37 87745.79875 246640.0294 177071.5025 20587.49041 95310.6342 65464.0572 1.495740233 0.958786916 
AT2A2 24 1467.59 1778927.097 859507.2756 1068048.307 468296.9351 472341.9496 377840.7699 1.491175461 1.916192624 
IPO7 12 965.9 1116931.437 521663.0254 1047887.537 302960.0548 465510.9681 187392.2424 1.490842009 1.363860225 
PSD10 4 180.62 79991.54839 93818.79211 83696.04723 20685.85927 38271.69437 32902.75394 1.487094701 2.288148413 
GDIR1 2 105.79 3170.350911 124517.907 83407.79658 30546.4226 15669.44096 29094.65572 1.486976316 0.086066969 
BAP31 10 577.54 2291410.52 1429632.517 1512410.174 596362.0988 653427.3093 619999.4871 1.484887805 2.579340767 
AL1B1 5 317.51 411460.3247 332036.5343 329549.836 133641.2194 154431.3339 96625.96352 1.479912686 2.572432775 
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EAA1 2 187.43 430500.2778 226703.2967 274984.9166 32915.84049 60470.77371 240986.4838 1.479162921 1.01742804 
FKBP8 4 232.19 590142.5363 275906.1035 368821.632 207003.9766 182722.709 54920.41138 1.473626817 1.104271982 
TM9S4 2 162.23 284882.0947 139804.7569 154051.7407 87930.54206 59928.40971 61043.46346 1.470082679 1.736446809 
TFR1 19 1190.91 2168178.845 1274930.322 1645592.346 774360.8119 683518.0254 403658.9368 1.450802679 1.810301541 
PSME3 4 235.53 521798.3829 367699.7702 342213.2525 122035.9927 217235.0521 114435.0454 1.440834336 1.876338062 
IDH3A 2 75.12 155516.7764 533529.2882 402876.1937 136485.4715 110449.1696 158821.62 1.428184882 1.065520622 
EFTU 24 2192.81 3905735.67 3965093.829 4506906.656 1147125.977 2124340.895 1338229.307 1.425003902 2.232183863 
SNAA 2 162.58 181120.8422 209308.6055 191973.7508 44424.16917 125066.045 49239.17666 1.412871189 1.521955328 
AT1B3 7 643.05 3139642.155 1242591.416 2138248.773 1252242.664 800640.4564 413953.8404 1.402316322 1.12233299 
GEMI4 4 294.07 274903.3574 130324.3349 184886.9627 99941.27524 47457.62964 76206.78278 1.400038401 1.468076706 
TBB6 4 1150.6 598193.7179 390685.6512 565640.8254 132904.5126 194456.1174 262699.4631 1.397535564 1.847623874 
MDHM 18 1482.55 910235.0751 7358641.984 6736036.133 1320686.564 2527258.562 1852802.016 1.396212056 0.395540615 
SPTC1 11 767.37 1421792.087 723673.5128 1322641.441 394584.7973 502548.9611 421266.5573 1.395359934 1.834235761 
AATM 14 970.45 200015.2001 952970.3618 635898.7173 185427.6634 211800.2424 284138.329 1.392557703 0.754192474 
RAB2A 4 881.65 1205941.943 651203.375 795920.1916 333761.2038 417720.6856 259842.0618 1.391415098 1.85439654 
TMED7 4 244.45 408779.0298 183217.7753 192591.0853 75490.9057 145432.819 79686.30824 1.384041908 1.310237668 
VAPA 6 250.1 1125602.634 554339.9794 757009.0141 410010.4702 310155.6507 215013.3216 1.381762493 1.57378653 
TBCA 4 220.12 19178.59606 370565.4222 197778.8563 66035.78554 77584.17745 83322.29339 1.37231976 0.165651983 
IF4G1 2 129.65 5677.800046 72204.19231 13643.12553 35290.74368 0 71.59678173 1.371953964 0.701952557 
KBL 3 120.93 193259.8619 126266.6932 148053.4603 36138.45205 59940.63531 84741.12397 1.370657325 1.638008385 
PFD3 2 47.14 45845.52154 120793.7861 82397.23112 30861.14486 14130.45438 51472.66174 1.368290988 1.00271753 
ACTN4 3 412.41 124455.7895 345418.42 186536.1784 29110.64029 170284.1771 55414.92167 1.36517765 0.879748629 
ASNA 7 439.65 439297.6567 299152.9703 357424.1467 156833.078 179470.0913 89566.05185 1.363600579 1.814683643 
PLAP 7 269.72 386204.0236 229618.6268 244659.0182 151708.0158 79882.3715 103523.2044 1.360494257 1.730256655 
ADCK3 10 707.53 608309.0884 342008.0546 404590.1944 212906.8425 169263.4487 146143.0012 1.358728575 1.982367263 
PDS5A 3 279.77 211896.9084 122719.6186 142935.8149 79206.78187 76878.55821 30723.28423 1.354097807 1.329087926 
CNBP 4 328.11 60248.64378 199398.3688 109177.2924 35269.88575 69965.31422 39385.09469 1.35066371 1.003518584 
HCDH 5 222.14 93217.39025 862927.2814 540448.2836 117342.1566 202441.3493 267722.3432 1.349006769 0.373186466 
PPIF 4 393.48 32946.19881 588177.2244 283495.5339 97298.85428 33885.87558 224461.3715 1.346867881 0.260041582 
CTR1 3 188.63 369793.9078 177136.6536 264975.6049 90610.02876 66829.98003 165065.8094 1.331987814 1.309561085 
S61A1 6 637.7 1677526.015 651454.3851 1495493.004 496845.6598 659248.7179 364916.649 1.330230503 1.193156719 
SRPR 6 475.78 600685.112 364426.8105 464079.7002 104557.5548 210653.875 255256.0686 1.324982764 1.457925283 
TELO2 9 677.19 416870.4428 224747.2763 361160.2477 82217.51598 159866.9753 158875.5917 1.322471679 1.487936823 
SFXN1 7 571 1193346.878 487650.6005 594971.9734 169943.8703 442910.0073 297234.8664 1.322402058 1.105747226 
PGRC2 2 224.32 1088122.379 443144.4146 583886.0527 220557.0256 352907.1811 274925.9823 1.317962077 1.346205823 
SYMC 13 896.62 896067.5845 683683.1103 800239.6508 231911.2753 432630.1125 291929.2315 1.315163163 2.043403994 
DHB12 17 1526.96 5888141.653 3277256.845 5619004.362 2064644.99 2098850.702 1790411.911 1.312167236 1.971053456 
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COMT 9 1240.17 2079569.651 1360594.402 2338929.715 759047.0294 958490.3313 614635.2221 1.309168725 1.899638107 
TBA1C 2 3750.23 15873295.3 9735732.725 12331964.27 4526137.186 6522285.72 4374908.495 1.298642994 2.034912601 
ATX10 4 309.47 305451.3559 180250.1068 268872.7557 122938.6814 83042.30817 101175.8589 1.296687258 1.981736603 
QCR2 8 586.67 631909.0204 440327.5588 522236.9523 314113.0692 171748.396 164241.3618 1.294340316 1.78885544 
ZW10 4 174.41 526511.8836 219559.8645 293437.3906 165493.3701 136582.542 127807.3155 1.273885713 1.422623542 
TXD17 3 223.52 77980.95667 237897.4885 169102.1787 56889.45266 105275.5897 39666.62939 1.264774527 0.921735123 
XPO7 6 349.47 368682.4445 192788.4607 238310.0207 194675.1855 73638.32886 67214.51703 1.253171574 1.151763913 
AT5F1 8 592.7 550607.7617 209850.3752 260201.7685 184077.6707 147662.8301 97323.64003 1.250236988 1.097885086 
PTH2 3 214.75 488315.3521 303695.2336 395715.167 135385.6454 283261.3479 82102.34076 1.246041252 1.190431754 
ACOD 5 379.7 1120723.771 450404.5745 680353.101 256986.3232 494685.9463 206854.0846 1.231984586 1.083395995 
DYLT1 2 103.27 321685.4535 163855.4819 178872.8872 74625.82382 120412.9159 89755.39212 1.222162668 1.496544208 
RS21 3 200.84 142635.8547 367550.1747 289800.5127 65903.07973 245484.4864 33324.02357 1.214585925 0.788550507 
UN45A 6 328.98 431416.4797 322853.6093 439257.5935 144138.2411 221955.307 153560.8365 1.199607699 2.130974659 
TMM43 5 458.38 759311.711 300612.1309 371029.3274 336798.3542 197340.6922 91071.28675 1.19456293 0.866878146 
TBA1B 2 4168.03 51143902.05 30010676.04 38189816.15 16270883.92 21366087.04 14553404.46 1.193275118 1.883943209 
CND2 4 215.78 174262.3347 95068.63389 128773.5422 27755.41836 96282.99122 50375.62827 1.190631057 1.083785898 
F213A 2 51.16 734908.1847 310550.6617 504888.5382 382450.5351 115614.4672 183237.9476 1.186223156 0.967488504 
SGMR1 2 244.26 1136693.475 239539.1218 1671511.053 61342.10757 907700.56 372922.3507 1.183394496 0.44677714 
NCDN 2 172.08 311948.9831 139614.3877 166608.7221 87686.50449 148167.0145 37535.10257 1.177055326 0.895713877 
MTDC 4 174.31 316615.889 500154.487 618222.5092 133262.4804 290656.2731 210730.4863 1.177012221 1.2926771 
DHB4 11 940.57 423752.8909 867612.4217 754285.9516 191437.1813 359746.913 355106.3457 1.174514849 1.256543478 
LPPRC 51 3205.68 2475215.978 1928022.939 2337486.028 953677.5506 1200347.849 842341.4045 1.169689513 2.503576655 
4F2 13 1114.62 2435845.108 1435589.575 1842864.303 578517.3379 1473616.897 500016.1943 1.162863157 1.146171888 
MOGS 8 448.54 468532.9264 290970.0936 381442.6553 116628.0577 222035.8677 171277.196 1.161827515 1.615985596 
UBL4A 9 402.5 630074.1917 308538.4966 477521.6944 175424.9339 385013.4299 82133.79237 1.140027802 0.889597858 
UBQL1 3 403.15 726627.1763 437932.0304 558872.3245 325991.4622 268941.3402 187273.8139 1.13966234 1.655668334 
COPA 8 331.5 446233.2552 362885.3051 354885.0857 133405.7633 218566.9576 176543.694 1.139075392 2.129037044 
DJB11 2 207.7 352007.8113 269196.5148 302200.0621 101231.9964 140626.2628 177721.3957 1.138017864 1.957124446 
RPN1 22 2078.12 4503030.428 1890188.829 3814516.142 1543207.726 2336413.762 764092.1443 1.136311926 0.911953879 
RENR 2 82.93 225864.8593 92722.14731 63745.20206 95613.79645 68226.02186 10850.76181 1.130024926 0.561931937 
RCN2 4 304.03 724176.9814 584155.2591 472636.9754 345129.7583 244036.2786 226114.3355 1.127294391 1.923360102 
FAM3C 4 213.32 202597.4044 86685.37756 118472.125 40297.59484 93243.33005 53421.12134 1.12495681 1.047547175 
PDIA3 23 1803.71 440808.0713 1931468.654 2248285.7 432829.4145 883580.6169 804387.2385 1.123461752 0.465846338 
BAG2 4 277.87 270105.668 84814.98164 337061.4924 86516.58315 187420.3529 44460.55165 1.119905854 0.592120142 
ETFA 8 426.2 649445.0457 619035.64 663214.0686 250379.8764 392632.1983 247856.0925 1.116583279 2.189343165 
UCRIL 2 113 216874.2228 107670.6205 163200.9986 120703.7548 37577.63311 68205.30124 1.106703309 0.997724783 
SC22B 6 909.07 913494.0006 396451.1644 566084.6783 291931.517 316460.1257 266635.3806 1.100283301 1.338573236 
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LMAN2 5 369.86 1565619.565 611088.4881 1250799.023 441646.7675 778882.7436 380758.8348 1.097926525 0.965185292 
PPT1 7 647.21 904416.326 627832.2952 960099.8642 234437.2806 444817.1925 486006.2537 1.096853009 1.392083565 
PREB 2 205.87 431340.9647 252090.6128 315427.04 184606.3898 121262.3915 164876.799 1.085332938 1.686573967 
GRPE1 4 147.53 145660.5861 329383.8949 360388.7218 122338.2641 194830.7625 77252.12258 1.08278757 0.885419493 
K2C6A 2 985.81 608473.8189 394028.1239 144317.0086 184679.6456 149182.1043 210770.1443 1.074284275 0.609456191 
KAD2 13 1026.54 407025.9826 1598078.699 1527803.65 402176.3687 690704.3235 586474.7896 1.072948668 0.56162922 
STML2 10 885.96 1797565.531 1036292.854 1362745.351 619718.5724 826773.0221 553369.4586 1.069322476 1.671064393 
TIM8B 2 97.62 95010.8299 172077.0448 158448.8148 65239.57565 82260.57253 55313.51051 1.06912871 1.525626449 
TIM50 8 616.52 1557407.42 608050.0514 979278.34 637061.9893 486899.524 384332.4861 1.060021153 1.041945307 
RIR1 2 93.72 23414.55646 94828.03362 65098.87237 45295.00333 22511.09439 20571.67618 1.052777589 0.590587142 
APMAP 15 1045.31 2663882.832 1631034.368 2323781.454 729200.1271 1413408.357 1061254.34 1.046735208 1.430037949 
RAB1A 4 966.58 2048671.831 1085437.392 1625079.977 622046.8375 1020849.914 667969.9537 1.042281764 1.379733089 
ATP5L 4 331.73 902899.9839 409387.5845 430215.6655 364007.0254 315908.3374 166951.7829 1.040953767 0.940241788 
TMED2 5 385.44 751831.2913 301720.019 752857.691 250055.6273 363646.9478 266041.2931 1.037969122 0.934673829 
ADT3 5 929.59 2075770.092 988898.2336 1396818.772 802549.9606 778297.2517 596089.7574 1.035225031 1.358218843 
PRS6A 11 676.03 1063031.4 625901.5297 996878.1399 337575.5328 575041.8302 405179.2891 1.027230057 1.444606987 
MBB1A 5 160.72 69671.89106 60143.14046 65892.52985 14638.63957 67257.27865 14710.03086 1.018515558 0.899961723 
RAB1B 4 1094.16 4765184.488 2552392.601 3700725.227 1382974.4 2060475.519 2008167.978 1.0151456 1.437282409 
TRAP1 19 1871.94 919438.2359 1027955.136 979284.9527 410036.2323 412575.3711 626546.484 1.0140492 2.130724274 
CH60 58 7652.33 86186971.87 35453853.17 75345308.91 33228319.12 28515924.18 35919788.95 1.012194832 1.051912965 
SCPDL 2 105.04 413639.6579 249191.7228 418034.4101 8233.232308 117318.2096 411872.7864 1.008054129 0.599524027 
SSRA 4 304.72 1231518.759 549688.0062 748274.9035 381673.201 537663.6516 338485.5245 1.007913577 1.141512342 
AN32A 2 189.77 25542.71163 312839.4815 137349.9582 81572.97965 102151.0951 53378.72572 1.004636827 0.147078067 

Shown are cellular proteins identified by label-free mass spectrometry/mass spectrometry that interact with GFP-3aM. Protein identifier (ID) and number of unique 

peptides used to identify proteins are indicated. Relative abundance score for each protein are shown.  Confidence score (-Log2) is the score of the probability of 

the peptide sequence occurring randomly, added together for each unique peptide. The higher the confidence score, the higher the confidence in protein identification. 

The p value (-Log10) is a comparison of the cellular protein abundance between GFP-3aM and GFP. The higher the p value, the higher the probability the protein 

interacts with 3aM. The fold-change (Log2) is the change in the relative abundance of the cellular protein detected between GFP-3aM and GFP 
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Table 7.2 Panther GO Cellular component of GFP-3aM interacting partner 

GO cellular component complete Expected Actual Fold 
Enrichment p value 

proteasome regulatory particle 0.14 4 27.67 2.07E-02 
cytoplasm 74.29 122 1.64 3.44E-15 
endoplasmic reticulum 11.68 53 4.54 7.13E-19 
nuclear pore 0.49 6 12.18 1.59E-02 
nuclear envelope 2.88 16 5.55 5.31E-05 
membrane 62.63 104 1.66 1.01E-09 
nuclear membrane 1.99 10 5.02 4.81E-02 
endoplasmic reticulum membrane 6.68 43 6.44 4.10E-20 
endoplasmic reticulum-Golgi intermediate compartment 0.76 7 9.18 1.80E-02 
mitochondrial membrane 4.63 17 3.68 5.71E-03 
mitochondrion 11.33 27 2.38 2.67E-02 
Golgi membrane 4.63 17 3.67 5.82E-03 
Golgi apparatus 9.79 26 2.66 5.88E-03 
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Table 7.3 Cellular proteins that have a higher chance of interacting with GFP-3bM 

Name Unique 
Peptides 

Confidence 
Score 

Relative Protein Abundance 
p Value 
(-Log10) 

Fold Change 
(Log2) 

GFP-3bM/GFP 
pEGFPC2-3bM pEGFPC2 

1 2 3 1 2 3 

BAG6 7 43.529 16470945.06 28858040.37 24418986.71 4865916.052 3169799.154 4398407.984 2.906321357 2.487846495 
VDAC2 3 20.668 25898945.09 14765020.26 15152998.83 3653834.859 3770985.049 5317622.748 2.576106121 2.131061799 
COX5B 4 23.644 30800063.72 19350935.8 16642052.05 7956320.71 4038701.248 4591550.556 2.136701975 2.009682233 
HSPB1 2 14.253 10848031.97 39054893.75 27991976.06 1997591.283 1360843.752 5366537.023 1.786641052 3.158306491 
CLTB 5 34.721 82785226.63 18960977.42 18320048.67 5815815.212 2910206.307 3573954.904 1.726453339 3.287103251 
RPS24 3 22.269 30267999.7 24865980.78 17672955.62 13033037.28 2198868.656 1708655.359 1.327963149 2.103594221 
RPL11 5 36.951 40493864.61 52234874.32 39416053.52 32932986.23 3020215.369 5380914.677 1.090897383 1.676714625 
ENO1 8 55.729 40518853.02 40645998.68 24602984.52 26007961.69 1135321.92 2932785.241 1.02136672 1.81421306 
ALDOA 9 76.912 35958013.86 21848032.05 31849116.13 26253928.86 4178778.909 2107629.723 0.951639751 1.462157437 
GAPDH 9 83.934 171130302.1 111709760.2 243190225 120099924.2 63961923.98 105049932.9 0.922894036 0.863518469 
PCBP1 5 44.212 37269961.68 57406071.72 42436137.1 24614071.79 3328406.014 25599991.58 0.851018945 1.356601052 
UBL4A 8 58.202 125140193.6 9007716.553 10411971.99 2914526.321 3665986.392 10919246.74 0.745663027 3.046260239 
RPL22 5 57.219 148430260.1 44116041.23 25634972.25 64839067.2 2492980.211 4298971.156 0.740122908 1.606870919 
GNB2L1 4 24.287 7630678.961 14685000.71 28960034.79 13102420.32 4413831.119 4327792.804 0.7371529 1.231035705 
HSPE1 6 46.846 75512911.11 14169052.98 6707482.71 6977796.051 6770307.827 4959385.7 0.720658975 2.36525923 
HSP90AA1 7 47.26 31104931.64 42325976 33364024.8 19387050.55 3033748.375 28180033.68 0.718304409 1.077610162 
PCBP2 4 32.484 50025141.25 61691996.49 58589954.75 80057875.75 2657816.369 7516918.858 0.713260623 0.91641768 
RPLP2 6 89.327 856572428.9 47936126.49 54482138.63 69639861.6 2412604.496 25154967.68 0.69553017 3.302378265 
HSPA8 29 323.31 2720604315 974468290.8 716921541 1732994584 43409877.03 160749610.4 0.663120241 1.187492174 
CCT3 15 144.17 259350875.7 15856049.11 64914165.49 64944769.35 3368278.502 6371051.196 0.656284213 2.18717545 
RPL24 5 33.803 34827896.37 21167976.07 33097983.79 45133020.58 2783599.07 4470795.11 0.64945998 0.76610568 
C1QBP 7 82.756 315369959 77766743.98 99174783.01 135999867 2543458.281 40128113.55 0.617040337 1.462262365 
SLC25A5 7 48.22 130199620.3 51523954.87 208150242.7 154280448.1 12145007.12 23440987.31 0.59610664 1.038022331 
TCP1 15 100.96 65977921.79 49299852.69 83975200.54 97941027.79 6493163.02 17490036.93 0.590161309 0.708616431 
HSP90AB1 17 198.43 288360836.8 152319984.9 424020860 290979041.1 66742852 121930178 0.588899506 0.850214209 
RPL7 8 99.725 53487928.66 35588061.13 32100000.86 81394050.01 2662167.655 5493522.175 0.552533088 0.436342731 
ATP5A1 18 323.31 693139262.2 71439071.8 445549351.3 286849746.1 2954515.22 95303112.76 0.533759295 1.651826627 
RPS2 7 44.332 33112899.3 32597093.56 50521004.9 43501143.82 3518770.521 23261003.48 0.519218588 0.725789937 
RPL37A 3 22.295 36240009.56 20856012.26 17812047.15 33788992.55 5132534.538 9967152.697 0.50528658 0.615620685 
RPS3 20 164.96 284450031.5 46227884.27 140190174.7 173550466.2 682509.6884 38619067.68 0.503678416 1.145472017 
CCT7 13 84.011 128840417.5 4089463.056 16403950.96 16184954.79 3191669.862 3780197.027 0.488085111 2.689031885 
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RAB10 3 24.12 17148986.73 3197560 7812917.773 6456585.584 2101925.347 4701892.095 0.466134277 1.086495275 
LDHA 4 24.612 25278017.77 18828960.26 152299926 13528044.74 2944456.644 61489212.74 0.443430598 1.333007928 
SLC25A6 7 138.16 512028899.9 36062098.11 211230072.1 342590522.5 2486887.819 30642910.57 0.441749443 1.015050895 
ATP5B 14 121.09 217340229.5 34229099.44 40732019.24 60009184.98 7295725.405 45613893.98 0.438886149 1.372170725 
DCD 4 40.945 210040166 422029907.7 720248744.7 178949838.4 327441059.7 338420096 0.399830386 0.678734802 
HSPA1B 21 323.31 4728088847 731209716.2 773888242.3 3594390480 94285984.75 269969278.1 0.380221451 0.654962983 
RPL28 9 63.733 107079717.7 12259017.3 30229001.71 59295118.36 1475773.618 15536950.15 0.377905449 0.97089577 
RPS4X 10 84.556 61880005.96 21130008.33 17233949.19 38562894.3 2434256.899 20082979.68 0.375717945 0.714740304 
EEF1D 7 52.266 54011002.85 17853950.56 10885014.55 27112973.36 2331844.25 15586028.24 0.375388394 0.877845176 
CCT4 17 122.27 285129090.9 10445006.11 15065967.64 94276835.63 1356568.06 4416003.852 0.37226896 1.634531289 
RPL7A 9 57.804 208160342.5 15482015.9 31323020.42 79352921.32 2270816.974 19874014.68 0.358651391 1.328853572 
HNRNPC 4 28.411 15176965.19 23045951.54 17630010.52 11213007.91 2217972.427 36528014.46 0.31845376 0.160888445 
ATP1A1 18 151.71 227709619.8 4445394.426 28149969.04 64693166.79 1751828.361 7058694.734 0.314572863 1.824314351 
RPS27 3 66.714 75105748.59 14693044.22 26253928.86 56846965.34 6235353.836 12682976.26 0.314427662 0.615171284 
RPS11 13 90.247 197819581.5 22030974.87 36710005.63 103519692.8 1659066.173 37976931.34 0.308383886 0.841714402 
LDHB 4 34.963 26433974.08 30655019.79 160180135 13110051.34 25753050.56 73397113.94 0.292202513 0.952636463 
PHB2 9 76.913 99024350.65 8556918.98 24550005.3 38402050.21 1210935.003 33513058 0.257541681 0.853514781 
RPL34 3 17.891 25620050.79 2019210.658 19790983.88 14628008.15 1270046.598 6872768.813 0.254392527 1.05862086 
RPL12 5 47.468 69413839.72 27741068.09 20321027.28 36089854.72 2951342.658 55366116.66 0.254088651 0.315394712 
RPS3A 12 79.644 167730522 19298026.73 33039991.96 100059991.9 2748017.955 37325027.82 0.246384444 0.651155799 
TUFM 9 84.826 74189927.77 4556738.028 34198032.74 74931032.75 1624517.664 7340871.919 0.242185378 0.428935359 
RPL26 6 39.845 56135885.92 4402556.231 13354012.87 29710921.17 3067389.623 6169875.725 0.232220766 0.923870906 
RPS16 6 38.53 168720495.9 5775041.967 67640781.85 88210679.81 1980522.966 31428933.91 0.211873354 0.99343738 
RPL4 6 47 13958978.16 3769338.685 26386926.82 30469025.02 2390780.085 3930196.46 0.211039364 0.261963516 
SLC25A3 9 65.634 113820091.2 3865195.617 22063066.71 47687902.73 5203424.58 5376366.286 0.209870788 1.262063175 
MIF 2 46.843 265320332.9 4183693452 56046851.72 274859670.8 2444004846 2544939.625 0.192490377 0.727192487 
KHSRP 11 88.777 118049770.8 5152210.118 15253954.86 73652951.3 4842162.28 4710895.83 0.165857618 0.734667272 
YBX1 6 77.296 114010384.8 6191896.819 42681868.53 65750111.26 3111567.257 31068085.38 0.154573755 0.704859875 
PARK7 9 77.879 234009198.5 16129965.31 6881205.985 72174206.23 24767072.25 4559012.708 0.104450203 1.340398837 
CCT5 7 54.548 10863984.57 9423816.391 12799019.88 16536951.84 7242016.334 8969710.551 0.089702967 0.014819975 
DSP 13 80.915 39931114.41 131689949.2 162899846.1 19591981.76 171760136.3 141300369.8 0.084795112 0.008080568 
PCNA 6 42.685 47957063.94 5940405.566 41911999.09 42224880.37 4393349.979 32751099.39 0.080844818 0.271586618 
DSG1 4 27.711 7532983.82 51825184.08 27228987.47 13790008.4 17466049.52 29728019.14 0.075830193 0.505720422 
PHGDH 10 63.859 62223232.11 1654128.634 81199077.43 46335994.48 892331.3494 76330166.37 0.059627628 0.23161906 
PHB 6 39.758 27628999.8 2891807.323 18688014.98 8769906.313 4528368.711 25139977.1 0.053963238 0.356374248 
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HSPD1 19 164.46 201929997 44284853.18 110039786.1 208719478 33247902.66 111249992.7 0.0394662 0.012352485 
TUBB 5 105.4 584359114.3 65052898.35 684459529.5 900380767.7 92133980 227720668.6 0.035846679 0.128460226 
RPS18 11 109.93 315179836.3 5330058.734 49098989.6 128080002.5 20083954.14 45776061.33 0.030857672 0.930388914 
RPL13 8 75.412 140759787.5 2346078.734 37921954.84 126529627.7 2236978.562 29139039.76 0.027698281 0.197148676 

 

 

Shown are cellular proteins identified by label-free mass spectrometry/mass spectrometry that interact with GFP-3bM. Protein identifier (ID), protein name and 

number of unique peptides used to identify proteins are indicated. Relative abundance score for each protein is indicated. Confidence score (-Log2) is the score of 

the probability of the unique peptide sequence occurring randomly, added together for each unique peptide. The higher the confidence score, the higher the 

confidence in protein identification. The p value (-Log10) is a comparison of the cellular protein abundance between GFP-3bM and GFP. The higher the p value, the 

higher the probability the protein interacts with 3b. The fold-change is the change in the abundance of the cellular protein between GFP-3bM and GFP. Cellular 

proteins which appear in both GFP-3bM and 3bM-GFP data are labelled with an asterisk (*).  
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Table 7.4 Cellular proteins that have a higher chance of interacting with 3bM-GFP 

Name Unique 
Peptides 

Confidence 
Score 

Relative Protein Abundance 
p Value 
(-Log10) 

Fold Change 
(Log2) 

3bM-GFP/GFP 
pEGFPN1-3bM pEGFPC2 

1 2 3 1 2 3 

VDAC2 3 20.668 7499120.63 17683984.02 17660954.73 3653834.859 3770985.049 5317622.748 1.690929301 1.749453318 
GNB2L1 4 24.287 13319993.11 28875047.82 16578038.7 13102420.32 4413831.119 4327792.804 1.173502982 1.427915511 
RAB10 3 24.12 7248896.703 7734089.345 10889995.33 6456585.584 2101925.347 4701892.095 0.988435436 0.964321683 
RPL34 3 17.891 33095001.49 21090939.12 19311006.17 14628008.15 1270046.598 6872768.813 0.981830341 1.690497848 
ENO1 8 55.729 43553037.39 23601905.43 30798996.29 26007961.69 1135321.92 2932785.241 0.976636643 1.703487501 
UBL4A 8 58.202 11586969.89 13873707.14 9620563.714 2914526.321 3665986.392 10919246.74 0.958133267 1.003364682 
RPL4 6 47 22745061.5 54760033.75 31838962.73 30469025.02 2390780.085 3930196.46 0.937528239 1.57148918 
COX5B 4 23.644 29899955.47 5815533.034 17579004.05 7956320.71 4038701.248 4591550.556 0.897123299 1.683970657 
CCT7 13 84.011 12852983.96 18792973.26 16677041.01 16184954.79 3191669.862 3780197.027 0.891818962 1.061272716 
PCBP1 5 44.212 39500018.69 62620860.61 40698999.68 24614071.79 3328406.014 25599991.58 0.870506088 1.415441218 
TXN 8 74.762 65599887.28 71818889.02 73566213.45 68024919.1 35628045.36 16483965.35 0.810331678 0.812460664 
RPL11 5 36.951 35840067.03 29110978.55 22231932.14 32932986.23 3020215.369 5380914.677 0.791499813 1.076713437 
RPS24 3 22.269 28521964.15 29375905.76 4223711.897 13033037.28 2198868.656 1708655.359 0.720477986 1.874612889 
BAG6 7 43.529 9586813.925 6962480.736 3957176.544 4865916.052 3169799.154 4398407.984 0.716080118 0.721774474 
RPS16 6 38.53 121419929.5 126850151.4 72148196.7 88210679.81 1980522.966 31428933.91 0.703601776 1.39757433 
HSP90AA1 7 47.26 18661996.48 54775977.91 46738885.59 19387050.55 3033748.375 28180033.68 0.662310619 1.247926103 
CLTB 5 34.721 31371039.53 12264031.74 3230799.969 5815815.212 2910206.307 3573954.904 0.660787232 1.929882152 
HSPB1 2 14.253 3245524.014 6800974.256 4806149.184 1997591.283 1360843.752 5366537.023 0.64804722 0.767497695 
RPL22 5 57.219 82947203.1 39254099.67 20849941.5 64839067.2 2492980.211 4298971.156 0.635298036 0.997875685 
RPS2 7 44.332 35329010.33 75877036.64 35783967.07 43501143.82 3518770.521 23261003.48 0.619112475 1.06451321 
RPL28 9 63.733 63371902.86 61155122.01 23688934.93 59295118.36 1475773.618 15536950.15 0.551876405 0.957797569 
RPL7A 9 57.804 101970033.4 53656886.23 34927983.06 79352921.32 2270816.974 19874014.68 0.542206142 0.908758939 
RPL26 6 39.845 43033892.35 13976017.65 13896998.65 29710921.17 3067389.623 6169875.725 0.512512157 0.864370044 
RPS3 20 164.96 210330087.5 146929617.8 45108000.46 173550466.2 682509.6884 38619067.68 0.482430135 0.918663577 
RPL37A 3 22.295 52213154.97 18019054.8 16098020.93 33788992.55 5132534.538 9967152.697 0.469591309 0.820365397 
DCD 4 40.945 315479276.9 289109344.7 547308871.1 178949838.4 327441059.7 338420096 0.462019381 0.447311822 
LDHA 4 24.612 12178980.21 78696710.67 73145207.21 13528044.74 2944456.644 61489212.74 0.45041621 1.073041926 
PHB 6 39.758 10957991.09 19369051.89 27157926.53 8769906.313 4528368.711 25139977.1 0.444406619 0.580642051 
RPS4X 10 84.556 35733898.95 62386044.31 14313964.79 38562894.3 2434256.899 20082979.68 0.430064416 0.880302133 
HSPE1 6 46.846 126960106.3 5443639.13 6455287.859 6977796.051 6770307.827 4959385.7 0.404933041 2.891933156 
PHB2 9 76.913 42219027.17 29566087.35 30126923.09 38402050.21 1210935.003 33513058 0.394505515 0.478867263 
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KHSRP 11 88.777 171449683.5 20313985.77 13315008.37 73652951.3 4842162.28 4710895.83 0.385739356 1.301417867 
ATP5A1 18 323.31 145590401.1 130969896.1 167809598.8 286849746.1 2954515.22 95303112.76 0.3720535 0.206500336 
PHGDH 10 63.859 29555022.85 65835847.18 70886128.38 46335994.48 892331.3494 76330166.37 0.366807771 0.428394439 
ATP1A1 18 151.71 30875945.92 13915987.96 30131935.28 64693166.79 1751828.361 7058694.734 0.35678092 0.027608729 
RPS11 13 90.247 168190385.9 57429155.06 18702010.05 103519692.8 1659066.173 37976931.34 0.325650392 0.771196109 
RPL13 8 75.412 252260660.9 33398963.61 25278017.77 126529627.7 2236978.562 29139039.76 0.321100985 0.977562524 
LDHB 4 34.963 16333039.97 110460092.5 83594228.29 13110051.34 25753050.56 73397113.94 0.316356266 0.906201298 
RPS18 11 109.93 299070423.2 72505143.13 36085102.08 128080002.5 20083954.14 45776061.33 0.314351283 1.071758248 
ALDOA 9 76.912 36116881.67 2661927.78 31965891.63 26253928.86 4178778.909 2107629.723 0.309970216 1.120392877 
EEF2 16 104.18 19693961.4 241520431.7 44248033.39 101549648.1 18015058.49 12268963.18 0.30937431 1.212276056 
TCP1 15 100.96 27152091.58 58804776.14 45061125.1 97941027.79 6493163.02 17490036.93 0.30767216 0.103780117 
HSP90AB1 17 198.43 85717711.65 290720990.7 366409076.3 290979041.1 66742852 121930178 0.293327236 0.631078323 
EEF1A1P5 17 173.88 762731477.9 540698832.4 87211194.7 1126000249 27094937.81 79071803.79 0.279504582 0.174552762 
RPL24 5 33.803 24584062.43 28537982.28 5507896.427 45133020.58 2783599.07 4470795.11 0.253060155 0.16241734 
YBX1 6 77.296 183950199.5 18471017.43 14940033.01 65750111.26 3111567.257 31068085.38 0.221402004 1.121108416 
RPL7 8 99.725 42467916.64 64667163.73 3869726.033 81394050.01 2662167.655 5493522.175 0.207443344 0.309860999 
HSPD1 19 164.46 103660426.9 141919737 123030434.2 208719478 33247902.66 111249992.7 0.200133559 0.061541246 
RPS3A 12 79.644 95219914.65 52581064 6527096.779 100059991.9 2748017.955 37325027.82 0.103238136 0.139203417 
PCBP2 4 32.484 45361971.26 61706964.88 1571052.542 80057875.75 2657816.369 7516918.858 0.076608235 0.267834397 
CCT8 9 75.209 19055973.81 37274095.28 26072037.56 45174021 17755959.66 18759005.37 0.067203462 0.012539646 
PKM 6 48.927 34480085.12 169249930.4 4917214.979 35247070.02 13881979.81 32662004.56 0.063649946 1.351050804 
PARK7 9 77.879 76991188.2 19776036.84 8359411.79 72174206.23 24767072.25 4559012.708 0.049432133 0.050644397 
DSG1 4 27.711 22170070.16 4975085.883 56796945.15 13790008.4 17466049.52 29728019.14 0.019923738 0.460961972 

Shown are cellular proteins identified by label-free mass spectrometry/mass spectrometry that interact with 3bM-GFP. Protein identifier (ID), protein name and number 

of unique peptides used to identify proteins are indicated. Relative abundance score for each protein is indicated. Confidence score (-Log2) is the score of the probability 

of the unique peptide sequence occurring randomly, added together for each unique peptide. The higher the confidence score, the higher the confidence in protein 

identification. The p value (-Log10) is a comparison of the cellular protein abundance between 3bM-GFP and GFP. The higher the p value, the higher the probability 

the protein interacts with 3b. The fold-change is the change in the abundance of the cellular protein between GFP-3bM and GFP. Cellular proteins which appear in both 

GFP-3bM and 3bM-GFP data are labelled with an asterisk (*).  
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Figure 7.1 IBV 3b induces apoptosis. 
DF-1 cells were mock infected or infected with Beau-R or BeauR-Sc3bAUG at an MOI of 4 for 24 hours. As a positive control, 

cells were treated with (D) staurosporine for 6 hours. Cells were harvested, washed with PBS and labelled with anti-PS and 

propidium iodide. (A) Cells were sorted by forward scatter area (FSC-A), and side scatter area (SSC-A) to gate DF-1 cells. 

(B) DF-1 cells were then sorted by forward scatter area (FSC-A) and forward scatter height (FSC-H) to gate single cell 

populations. (C) Single DF-1 cells were then sorted by annexin V (FITC) and propidium iodide (PI) fluorescence and shown 

as a density plot. Cells were separated into three gates, representing cells that are viable (dark green), viable cells 

undergoing apoptosis (light green) and cells which are dead from apoptosis (red). 

 

A 

B 

C 
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Table 7.5 Cellular proteins identified by LC-MS/MS that interact with 4bM-GFP 

Name Unique 
Peptide 

Confidence 
Score 

Relative Protein Abundance 
p Value 
(-Log2) 

Fold Change 
(Log10) 

4bM-GFP/GFP 
pEGFPN1-4bM pEGFPN1 

1 2 3 1 2 3 

LAP2B 3 367.06 308301.4581 308630.484 721836.6619 80902.72867 92397.04123 24409.89257 1.748856032 2.759451338 

RL34 3 189.71 528427.6891 282680.832 1578712.974 164306.7962 75411.48874 42751.15199 1.480517467 3.08073618 

TCPH 2 214.33 3341.124075 8993.922182 41135.24955 921.0552625 1101.108238 2917.09935 1.163171647 3.436370007 

DESP 10 621.61 585581.0348 113195.1917 1417524.335 37282.9971 122572.7351 8009.798482 1.136799303 3.656166612 

DSG1 4 380.4 255888.2483 128315.5368 739277.6606 78286.60921 117522.5949 51076.30009 1.097646584 2.186062262 

PRDX6 2 389.29 3837.703586 12580.77905 59278.77169 2581.596323 1076.176879 3524.981782 1.023050489 3.397631763 

RS2 6 290.56 56730.16038 179024.2354 150958.2496 60416.24602 58061.0729 16145.7868 0.91312853 1.522335896 

POP7 2 134.3 911.8707526 1588.670511 647618.2754 0 0 3480.976415 0.892347224 7.545067562 

LRC59 3 385.18 5635.367448 926780.8934 180529.2952 2806.613199 3906.844135 12404.58578 0.873895322 5.86330435 

RL11 2 168.39 1168.419944 0 148438.3374 0 0 0 0.859694832 10 

K1C17 3 513.47 316032.344 16713.1404 284010.8027 19824.06716 34851.66881 4060.045856 0.83919468 3.392388951 

CASK_BOVIN 2 162.13 124675.5449 12799.90292 7020.604791 8038.580892 3360.13759 172.4779952 0.826040607 3.642420127 

TIM14 3 302.16 4537.983877 32298.5626 782860.5011 1437.734931 1329.487708 15095.84856 0.746353508 5.520038752 

RM43 3 236.52 47539.26502 2638.642934 149635.5899 987.1212169 3179.171192 10525.4074 0.697187968 3.765580815 

PRDX2 3 263.01 2194.851774 75765.74001 1463.378974 1287.62327 855.4837881 0 0.694090889 5.211798663 

HDGF 2 178.65 44.57430193 0 379734.0245 0 0 0 0.686747809 10 

NHRF2 6 658.58 123937.8009 87441.99072 780723.0634 42755.90333 19697.35678 165598.1996 0.674666623 2.121130294 

EIF2A 4 360.96 26191.1189 43491.86927 1841034.114 91.64032414 34015.52374 25612.43638 0.653694747 4.999765867 

RS28 12 1010.4 9335907.542 1561375.14 348358602.1 1327670.645 2829222.062 1312178.327 0.648898822 6.037572178 

K1C10;1::sp 31 5728.78 189782196.9 23099693.88 258417835 33932067.03 40516832.58 31209457.17 0.646420393 2.157237964 

HDGR3 2 164.41 1445.063931 10798.94118 820505.6078 3324.502837 2512.857452 310.4074153 0.634102218 7.081676315 

NDUS3 2 412.34 20629.71799 1999.259114 50514.42269 1347.559789 33.79957874 11929.76846 0.630852132 2.458094874 

K1C14;1::sp 6 1961.58 4821928.186 952135.7381 5343121.205 1102543.308 2382982.831 250710.1779 0.627316243 1.573133931 

ANXA2 3 192.23 2800.499492 2048.317129 510901.443 6.097818185 403.7181974 11178.20336 0.61532189 5.475966735 

UBL4A 2 109.74 4.670518648 0 11585.8507 0 0 0 0.602751727 10 

K2C1;1::sp 32 4927.35 340676833.2 30965711.8 340741933.4 49839413.71 95306169.77 16717900.51 0.600757635 2.137878529 

CKAP2 2 60.97 10499.23545 0 265646.9065 248.7785753 0 0 0.559263271 10.11635401 
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RS15A 2 128.47 20261.0697 2371.321675 1547851.233 291.7003083 6161.207923 10836.00181 0.549973469 6.50521817 

PSIP1 9 699.4 297264.6488 187054.7042 4652998.681 152311.7922 153462.2957 250435.4747 0.549866111 3.207314935 

LBR 3 264.33 60858.39061 50330.00959 276069.6311 33390.01468 85903.10905 26381.32755 0.549275387 1.410547283 

CRIPT 2 112.35 3088.452999 3208.453899 708960.0249 0 957.8799199 20052.40092 0.548269363 5.089294223 

K2C5 14 2081.41 13074916.38 726923.1183 12272841 1414399.585 2952717.418 496617.2506 0.548066484 2.422513265 

PLAK 3 327.34 4818.853753 8284.501143 1048185.416 1074.73093 3788.566625 11982.52712 0.537782351 5.977282393 

F207A 3 125.74 2665.674085 24716.52682 436914.6617 1544.690352 1371.284639 24661.12907 0.52864817 4.073504663 

K1C16 9 1889.28 9008377.583 741193.6442 4929766.083 1359080.113 2244486.942 443015.7484 0.524458609 1.859010818 

RRBP1 4 255.74 13264.28431 1920.542701 394072.296 100.8331958 80.90184734 74288.45556 0.522041875 2.458272572 

K22E 24 4408.38 48444035.36 5049567.12 69356896.11 10055459.69 13549305.94 5999830.284 0.519990389 2.053010646 

RT18C 2 58.65 2883.006852 555.2213157 77469.25066 127.0382721 0 15768.68076 0.515541976 2.34763479 

KNOP1 3 344.24 7699.489829 10379.41236 243852.3416 1375.459289 3321.386324 29970.67561 0.503323516 2.917531568 

ALBU 3 1068.08 125050.4352 16386.09102 241384.1391 75783.41164 32564.13499 477.5206335 0.498310502 1.814657799 

FETUA 2 117.82 901.5507811 0 209905.5078 272.9358479 0 0 0.475440062 9.593145566 

RS18 7 637.21 872335.419 95302.95698 4363039.16 58917.7636 444318.8968 254097.6107 0.455576846 2.815316792 

ECHB 3 237.82 5651.63785 1349.749736 103377.5059 0 4140.803886 9516.751654 0.446184338 3.014693133 

COA3 3 155.7 182997.7145 3890.780845 45583.77057 7180.032985 337.0304998 46960.17009 0.44311373 2.093333264 

DCD 4 554.6 7741768.006 915169.5098 7449578.338 2143771.519 2293672.703 1233108.336 0.419749597 1.506083217 

LS14A 3 206.55 11842.01799 177278.6436 323990.9499 10689.58084 15915.39419 112936.5305 0.402397647 1.87857837 

FRG1;1::sp 3 402.12 7309.775246 14467.08766 925237.035 6127.762579 15927.57922 13340.0076 0.3947007 4.741753876 

RS5 5 711.7 20612.23866 120821.6199 7483139.053 92099.47641 63118.72208 20555.59642 0.394149962 5.438864619 

TCPZ 2 179.73 1199.589166 1297.870216 201008.7171 29.93943986 1038.618996 12706.84516 0.383667311 3.884906088 

NOL7 2 63.6 98.80464168 35238.41465 85286.30717 0 7009.940392 3269.580222 0.382212751 3.552666427 

CYTA 2 72.13 35086.67208 13102.29212 633011.4202 43598.46219 29109.56956 6829.090441 0.380777752 3.098378981 

PTBP1;1::sp 17 2384.54 1359942.816 669208.1566 7918979.31 316431.2917 593615.2138 2734783.841 0.379470209 1.448573738 

ILF3 6 362.57 19295.6386 747.6190726 683302.3509 1383.82142 1.110636144 148921.5051 0.375319674 2.226326975 

SMD3 8 1276.85 3983972.397 823151.9969 19107583.45 672201.0136 356235.5355 7850347.088 0.374320526 1.429464215 

RM11 9 867.54 326613.254 207668.7433 3917107.051 90138.53586 182371.7422 813028.4955 0.372844298 2.035844339 

MZT2B;1::sp 2 174.18 120976.7424 2216.960967 128355.4955 1795.271526 6879.219477 38154.61604 0.372612496 2.425363161 

RT18A 2 140.61 0.708102515 1513.809318 191815.2413 0 0 4575.837512 0.370734063 5.400884091 

DNJC9 2 205.6 5799.140826 3132.524111 542057.7279 92003.45981 76080.78194 104154.1123 0.368786989 1.017154211 
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CH059 2 80.34 14425.65752 439.037194 507501.4148 0 20303.50923 8805.629401 0.368527127 4.165517245 

K1C9 35 4527.82 202871229 23664448.74 177687456.6 34449667.34 119938769.7 21831498.89 0.362688523 1.197774745 

MO4L2 5 426.83 178194.1 81147.25623 2345399.322 45786.37813 112930.1598 327320.9936 0.357437546 2.422000121 

RS3 11 665.84 1042603.38 397058.0176 9900319.723 103965.8704 1582205.053 973210.7352 0.354198918 2.092255494 

RLA0L 3 321.82 14062.81281 101583.8782 924632.1616 26880.82039 27883.76908 72081.77094 0.354120705 3.035816273 

RS25 8 820.46 737016.6507 450290.2693 114415617 96942.49295 143057.6572 9122771.33 0.343777923 3.626098432 

CALM 7 841 159297.0479 235917.7982 7479835.884 36906.94512 42441.29678 2164486.043 0.335778308 1.811323085 

RL40;1::sp 4 1272.81 55522.90208 273535.8095 1239132.52 36265.8443 28315.76306 676364.1166 0.334203973 1.081661728 

ATX2L 6 366.47 41675.76547 23737.19591 995318.3981 10275.79864 5527.036502 301483.3553 0.326191135 1.74120269 

RPAB4 2 53.62 5902.929403 11104.92896 1849652.16 0 43353.01395 156093.6491 0.325461146 3.226384297 

RM33 4 577.42 37947.07336 204204.1302 2648419.034 2369.810485 39473.18832 1278996.567 0.319695314 1.129898886 

CLCB 5 237 1421826.711 95529.78205 1743416.526 66432.62061 876560.7064 275393.0336 0.305347598 1.420242323 

HNRPU 2 354.96 1883.362992 4543.78438 294555.4664 2367.458807 6860.563168 4501.213468 0.302043876 4.45435696 

ETFB 6 621.65 537566.5881 39224.24334 84346.52153 36946.0763 13725.35752 276247.706 0.291320832 1.016016183 

YMEL1 2 243.81 0 4327.831587 227468.7478 7605.080226 5223.752685 55348.95324 0.288371908 1.765485618 

FA32A 3 147.74 32040.06876 5639.276833 2171594.494 191390.6031 36055.59699 164.0759761 0.283824066 3.278934654 

RT23 5 384.75 77119.10118 43852.63677 1400043.349 74024.30344 12153.41793 273335.9389 0.28342201 2.080915969 

RS11 20 1847.17 2266909.351 423529.4725 31007174.35 453840.1356 463438.894 6099591.553 0.277446056 2.263746749 

RS30 5 469.49 1550201.705 792446.3427 152466671.4 258417.5316 307780.9791 23915915.66 0.276968678 2.66069227 

RRS1 2 77.67 1500.306172 0 9446.452205 0 0 4917.172274 0.268245905 1.154602907 

CCD86 6 497.8 114831.6293 1812.880952 1430282.907 1216.727289 11919.17867 175319.1642 0.261830714 3.037112992 

FUS 14 1831.48 3685606.117 1901792.793 84521950.29 1774477.653 2654482.073 10201056.15 0.25969758 2.622745465 

HORN 7 600.98 451844.8349 16814.55612 753363.6645 120053.8168 154355.9794 22895.11619 0.258969095 2.039256298 

CHTOP 11 1048.35 494204.2965 229409.3663 52691335.7 128674.1111 105193.5423 7056342.969 0.250384887 2.873211168 

FBRL 9 591.73 149097.126 33877.92389 1191823.115 39266.9082 144545.3401 129949.4515 0.248774545 2.131478669 

MTDC 6 539.87 267619.8633 23832.71905 216758.5335 117326.4233 24942.54693 85693.52994 0.248578431 1.15663141 

RS16 7 465.83 90375.31989 155875.0319 7133250.092 186493.7407 112231.4964 343970.578 0.246060433 3.521315173 

RL24 11 735.49 186124.5488 1364066.5 3426832.923 339789.1816 411618.8524 1093529.538 0.245603837 1.431711336 

HMGB3 3 116.21 15275.19571 0 100871.2016 22324.78987 6399.830654 6646.368224 0.245597984 1.715305951 

MRP 2 234.67 539268.976 57135.97328 728363.9282 81540.9579 265998.1235 203925.6753 0.243048783 1.264400092 

BCL7C 2 133.69 2843.926801 13014.84444 448795.5628 27292.18599 6785.680799 4781.96392 0.242390916 3.579806344 
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MAZ 9 523.58 301425.3047 37373.40311 929345.6964 25748.2669 82879.28831 485751.5684 0.238895259 1.093263685 

PDIP3 18 1732.04 111313.3434 167835.0644 16015118.17 46234.96748 37622.19365 3447699.524 0.236334138 2.205988258 

RL37A 3 286.14 18872.78109 28081.80356 3542375.425 13141.21064 21390.57544 226225.8851 0.233428072 3.782932972 

RM53 7 576.9 215644.0538 70550.38238 9864277.45 40524.17816 70774.87065 1764249.682 0.233165503 2.436162146 

ERH 4 533.05 19087.59523 25014.06553 2091441.896 146133.4181 291599.2943 348179.9428 0.227869972 1.442162436 

RL23 8 549.21 416720.2986 267180.3389 13197825.93 148440.2075 358869.2129 2200608.289 0.22465744 2.357931214 

IF2B1 13 1681.43 240192.9464 148950.8683 11976948.72 86125.40777 94522.56675 2482918.57 0.223943585 2.214958477 

PABP2 3 335.01 490984.8964 113121.8831 3894622.923 127658.3143 529656.8577 471806.2036 0.221545811 1.99431711 

MAP4 13 1275.28 141843.7498 112704.6698 3787402.89 114820.4676 83991.45317 696461.5392 0.217255543 2.174651619 

RL12 11 1709.04 5890951.431 2630862.224 627869609.2 3988049.059 4123285.319 27927923 0.217132568 4.142273203 

RRP12 2 62.27 0 27.67559495 65632.78339 2531.035433 0 0 0.209627149 4.697225225 

RL7A 15 1180.14 230822.9384 144452.4731 34160736.52 69729.70612 170777.4276 3382447.501 0.204221562 3.25286285 

E5D0B6_9GAMC 3 117.1 130.2404694 11466.89289 146326.7442 39765.17175 14715.27896 10325.91359 0.204185828 1.285021914 

L10K 5 221.39 5819.620125 12646.90678 839885.9265 4182.273806 2801.669346 207490.8138 0.2011596 2.000762307 

1433Z 2 308.14 146755.8069 14913.4842 665318.761 30435.37785 171632.8661 40993.69135 0.200767745 1.766542508 

RL30 12 1719.29 7585014.161 5873825.376 989329524.8 2701626.283 4122333.545 149841185.3 0.200288293 2.678261011 

RL26 4 1766.26 62263.57059 177318.1504 7865708.783 31796.40626 70558.9224 1943503.322 0.198191512 1.986157423 

CWC15 7 434.62 7093.990711 100114.652 1299288.702 10788.52486 9493.688533 436629.6537 0.198110699 1.62211901 

RS21 5 485.38 269379.2183 191815.7883 13047394.55 451410.6962 404269.1472 468423.1361 0.195186247 3.350789815 

HNRDL 4 368.42 332247.258 150297.052 1911459.774 388242.0993 310276.938 250778.5932 0.193061221 1.334493226 

NUSAP 5 334.48 17574.56615 52926.25375 769067.4886 10487.81278 55465.93703 158336.4305 0.190649329 1.904281251 

CC124 16 1589.84 2302422.256 830571.7663 30171142.28 712281.6558 1188905.201 9389635.706 0.190440768 1.560550774 

RL37 4 142.19 125528.0227 7785.044418 1347916.311 6422.829873 48712.27439 272993.5739 0.189442607 2.174461474 

RL28 4 235.96 354718.8173 17717.60424 445788.0212 75476.4273 143707.9318 52440.66559 0.188121122 1.590880235 

RS24 2 151.09 0 1716.515544 1183436.443 2029.27008 942.1790308 527665.9861 0.187420484 1.159274905 

RL13 17 1569.04 991969.6281 380053.7402 34942005.32 729911.902 334565.6869 5157816.964 0.187083862 2.545008396 

SZRD1 3 175.07 211339.5013 0 168579.6382 6074.83052 9951.534515 167850.4229 0.183004466 1.046953024 

RT26 2 38.15 101.6085717 0 22612.51317 0 0 9691.778787 0.172034071 1.228756142 

RL35A 9 587.59 892990.314 154422.7912 4991964.88 1280536.245 618383.6547 180886.2548 0.171414474 1.537950899 

RL38 5 531.73 191737.0547 6346.397575 841612.6169 26002.27603 19062.068 223392.2068 0.170835678 1.953401337 

HMGN1 3 301.28 119367.8722 88466.94361 5043852.448 173670.2558 112414.645 480691.5641 0.158355656 2.775903045 
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CETN2 3 279.76 2596.234633 5508.59917 2694501.9 15542.4189 68017.29577 803870.9601 0.155355146 1.606645268 

SRP14 11 1902.3 470648.7836 588968.9287 120041637.9 205603.9915 238126.7524 32758311.32 0.153466867 1.866869943 

RS20 6 646.42 48568.27576 66534.66659 32962481.28 33027.11146 56765.547 2557110.729 0.152844397 3.643476431 

RPA34 6 937.12 65034.92821 9500.081215 2265385.055 95456.03659 25346.56721 76091.10377 0.152574401 3.570970335 

RS19 16 2106.63 6072377.988 1436218.848 124408594.8 2328065.063 1635694.791 39755743.05 0.147339645 1.593283689 

NOP2 2 121.91 715.5481332 1102.455414 193045.1975 17744.20132 23400.36736 3475.464117 0.147227409 2.126698192 

RM48 3 222.52 8647.711693 0 655025.9875 22513.51431 628.6164117 35253.1409 0.147205338 3.506550642 

PKRI1 2 223.75 0 0 223775.1307 687.1336117 0 0 0.144319273 8.34724334 

RM46 2 276.75 0 1419.281255 215864.1344 676.3158918 1491.544303 13891.12799 0.143825305 3.758125161 

RSMN 8 525.57 152110.2384 6862.185751 5264192.57 14275.12229 12569.84025 1746605.611 0.140607577 1.612575941 

RL31 18 1625.83 3475783.08 1423298.398 127244635.8 865097.856 1901116.778 47510818.7 0.139829391 1.394136405 

MK 3 268.4 1669.769088 451.0793763 1100645.657 22071.67427 8086.723512 78100.71386 0.139232058 3.348566994 

PAIRB 24 2871.75 7108699.273 1867869.803 101775713.7 2494203.573 3702862.006 30336214.87 0.137642792 1.600053226 

TIM8A 3 301.21 100457.1189 5091.888431 3566709.941 340422.874 102067.1445 458823.6708 0.136913153 2.026566586 

ZN593 3 330.28 22916.63454 143922.7836 2534149.793 77958.43994 58463.07347 368618.5152 0.132669822 2.419018234 

HNRPK 4 339.4 13995.07057 54228.85377 1007292.794 84895.48846 225235.1203 159391.5682 0.131007942 1.195764744 

NEP1 4 478.6 9534.470493 26897.47359 602157.3189 121230.6922 57320.30354 82806.68287 0.127151183 1.28886275 

RT11 5 484.85 16122.88633 13072.18186 6884427.525 9643.404158 9827.465578 1092768.889 0.12438029 2.635974036 

RPC4 4 104.04 29340.11681 1261.029451 195719.8984 48379.81885 16775.21623 38193.96134 0.117108167 1.130846362 

EIF3H 2 226.03 160210.0843 0 722802.4756 7819.19591 43733.59049 8868.019343 0.104902888 3.86931663 

HAP28 8 824.87 48086.67152 108091.3055 6431567.793 716774.141 587601.6983 288821.1269 0.10036107 2.047860243 

WIBG 13 1490.01 854812.0337 362479.1405 27446536.58 2741224.612 1434374.308 6889740.55 0.098992933 1.373183568 

RT28 10 960.77 572563.4129 341231.3667 51783055.87 357757.7044 437990.456 12646131.1 0.098921718 1.970981893 

YBOX3 12 2360.52 1308101.733 286131.5555 30274649.44 267691.4365 696462.0599 14016588.76 0.096220899 1.089039334 

RLA2 9 1508.17 719002.5153 142946.6191 34053119.28 343859.3744 366183.183 6278885.994 0.093935785 2.320706596 

EAF6 2 402.41 0 2193.109264 302222.4249 49.0997585 1772.162761 130588.2683 0.093347265 1.201035009 

NDUV2 4 169.89 5554.830323 0 357544.2354 285.4170822 1061.773122 82364.44795 0.08805109 2.116863103 

H3C 2 90.68 19007.83797 1999.537284 175388.5561 19841.47068 15686.18473 8083.351098 0.08743598 2.17100085 

RL29 11 1005.06 8280277.127 618713.1613 89179397.32 1663107.619 3195759.42 27629947.79 0.080055565 1.593992145 

HMGB1 4 285.97 62070.03667 606.4103879 980015.9015 170790.8233 21926.71075 42904.18307 0.077129849 2.145769123 

TCPQ 8 664.98 20087.20782 46872.97716 1022357.655 9917.601685 152123.0448 234553.0973 0.075588752 1.457691138 
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RL23A 17 1998.62 2046355.297 1578772.213 140167606.5 1486114.806 1741380.808 56082298.4 0.070780949 1.27764851 

CA131 4 362.08 459731.4611 15051.1954 16756665.08 99766.45913 892420.6533 384973.2718 0.066713788 3.645275427 

NUCL 52 6666.07 20655585 3969742.9 304259397.9 20190215.49 25811243.31 104216125.2 0.066270243 1.130528307 

DECR 4 267.39 3493.079249 2515.371366 861658.316 25400.05935 11591.77791 9504.368047 0.059985099 4.221956189 

ROA0 6 567.61 5310.197463 8049.069985 2775666.031 6305.350453 21785.60862 270761.9985 0.058067968 3.222253295 

HNRPD 12 1555.33 2288197.773 1117668.4 42471276.81 2053883.709 2351566.019 12031312.97 0.057727515 1.480849369 

THOC4 18 2330.74 3857522.939 3678987.063 285424879.5 4165126.592 3140828.475 125899034.7 0.055429719 1.137062413 

EWS 7 1114.34 1655726.492 189900.5331 18806231.84 493942.7959 991388.4464 5850920.347 0.054890393 1.493156623 

G3BP1 7 594.99 325165.4507 45272.80342 2414039.973 50080.29734 419927.0561 856727.9917 0.054597056 1.069526399 

RS14 11 1595.96 1586713.923 148163.0609 25844232.71 429167.9847 643343.6462 9801358.507 0.051916487 1.342710381 

RS12 6 452.39 234743.6266 89243.02432 5399182.6 245987.1872 600323.9956 450951.943 0.047788919 2.141343139 

CIRBP 7 1010.7 301462.8121 191576.3568 33565447.84 168205.6521 346443.8233 14018436.6 0.045904084 1.228673258 

CASB_BOVIN 2 179.48 1461.097548 0 0 182.9677614 0.936170805 0 0.04364592 2.990028268 

PRKRA 5 236.56 43453.73027 128.3210948 1293701.806 22012.38653 56772.79106 16137.75078 0.042986775 3.816405312 

NDUS6 5 651.41 32760.80297 74364.94617 4499347.454 125019.4178 175997.0266 912573.3627 0.041860702 1.924381747 

NONO 16 1722.95 317896.4586 279029.2546 15338559.43 1641369.257 816026.2927 1623510.44 0.03980941 1.96528156 

MIC19 7 558.58 3203945.583 598900.4602 56267.82814 263868.8608 1082840.91 579598.4311 0.039006405 1.002431067 

SNRPA 6 804.38 126445.7763 34111.81477 4360441.333 75577.47981 93475.17815 1466573.78 0.038896311 1.466798287 

RL9 7 795.67 189311.452 35896.22632 14064785.9 302323.3695 206117.4148 2805090.428 0.034783903 2.108563854 

NOP14 2 36.91 0 91.44264821 171179.8779 861.6157942 0 4371.227858 0.034637051 5.032544627 

RL8 10 1196.15 244364.6875 17929.41347 10229554.57 78889.61242 68729.43924 4627639.92 0.028220677 1.135618024 

NHP2 2 177.1 4794.475394 1888.813934 907653.4755 1001.516656 10545.74179 423773.2698 0.026058204 1.070647577 

RBMS1 3 108.49 33276.06663 271.1406131 1081505.053 7771.861959 6960.848232 104765.05 0.02363382 3.222055845 

NPM 21 2584.33 2138165.19 425655.7154 82239342.26 2301441.784 3118133.218 14234363.52 0.020867636 2.10929963 

CNBP 5 426.62 0 99701.70041 3436597.754 6406.292553 1599.38971 6987.023579 0.020216508 7.881835857 

RM49 2 346.44 10442.8254 4826.936918 615923.529 18549.26459 7197.301219 173381.0573 0.018324597 1.664388505 

RS10 19 1734.35 2316955.501 682417.5391 91912186.2 4433699.334 3217941.789 12732761.27 0.016115574 2.219118141 

HMGN2 4 665.01 113578.5992 73192.77361 4412319.132 287263.9221 290059.0693 515910.0116 0.01331153 2.07274767 

NDUA2 3 385.82 160660.238 31527.50832 5156504.787 52944.47059 174939.1792 2332862.53 0.011132515 1.062622013 

H1X 15 2059.49 203904.6256 320615.4861 34081282.06 411600.2731 625863.7488 10120116.11 0.008972496 1.63298978 

RM18 2 99.17 368498.06 209.0801653 50987.72505 9315.364779 4369.201246 105298.4192 0.003901826 1.818585533 
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CALL5 5 829.63 33304.24203 28017.56083 5130793.884 88099.63343 39461.05163 1282412.538 0.003872097 1.880654765 

SRP09 9 871.03 428266.3847 196934.1396 82898179.62 751013.074 1077451.01 8220552.917 0.002660748 3.055125715 

HNRPR 2 425.57 2568.370477 24264.21788 584576.6189 23793.93311 17731.20257 88379.63916 0.001531502 2.234683818 

Shown are cellular proteins identified by label-free mass spectrometry/mass spectrometry that interact with 4bM-GFP. Protein identifier (ID), protein name and number 

of unique peptides used to identify proteins are indicated. Confidence score is the score of the probability of the unique peptide sequence occurring randomly, added 

together for each unique peptide. The higher the confidence score, the higher the confidence in protein identification. The -Log2 p value is a comparison of the cellular 

protein abundance between 4bM-GFP and GFP. The higher the p value, the higher the probability the protein interacts with 4bM. The fold-change is the change in 

the abundance of the cellular protein between GFP-4bM and GFP. Cellular proteins which appear in both GFP-4bM and 4bM-GFP data are labelled with an asterisk 

(*). Proteins which appear in the third replicate are labelled (*). 
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Table 7.6 Cellular proteins identified by LC-MS/MS that interact with GFP-4bM. 

Name 
Unique 
Peptide 

Confidence 
Score 

Relative Protein Abundance 
p Value 
(-Log10) 

Fold Change 
(Log2) 

GFP-4bM/GFP 
pEGFPC2-4bM pEGFPN1 

1 2 3 1 2 3 

LAP2B 3 367.06 136685.3054 216452.7164 392330.6564 80902.72867 92397.04123 24409.89257 1.245425587 1.914764357 

RRS1 2 77.67 1556.740123 20216.67469 30394.43262 0 0 4917.172274 0.999504058 3.407260099 

PRDX2 3 263.01 5215.96236 16505.10114 227062.8667 1287.62327 855.4837881 0 0.974611688 6.859045568 

LS14A 3 206.55 69195.71256 265077.3598 172551.0425 10689.58084 15915.39419 112936.5305 0.960634287 1.860790867 

RLA0L 3 321.82 90613.70622 120295.2302 1395195.765 26880.82039 27883.76908 72081.77094 0.949946223 3.662411915 

RRP12 2 62.27 790.2868236 1826.565518 73865.67688 2531.035433 0 0 0.932141673 4.917330623 

RT18A 2 140.61 745.3216979 6387.487721 249956.4255 0 0 4575.837512 0.928848462 5.812089569 

HDGR3 2 164.41 3768.138364 14764.81383 6398.227269 3324.502837 2512.857452 310.4074153 0.903562663 2.019816578 

POP7 2 134.3 2829.72501 359.3812335 82829.75435 0 0 3480.976415 0.850293596 4.627089077 

PSIP1 9 699.4 228268.3059 315697.4688 1063818.038 152311.7922 153462.2957 250435.4747 0.797961412 1.531372977 

UBL4A 2 109.74 0 219.5166039 125234.708 0 0 0 0.79426677 12 

RM43 3 236.52 13414.7761 10110.47499 952572.9486 987.1212169 3179.171192 10525.4074 0.78451836 6.053953068 

RS2 6 290.56 79362.52455 81137.98086 1036934.237 60416.24602 58061.0729 16145.7868 0.764722498 3.152949084 

IF2B2 2 497.86 0 127.7464791 172821.5504 0 0 0 0.759702539 12 

PHB2 8 713.88 99289.62987 116778.3876 3589120.913 73490.16727 28103.76015 53308.46372 0.75561545 4.618536767 

TIM14 3 302.16 4293.606251 25456.40159 993963.807 1437.734931 1329.487708 15095.84856 0.698949446 5.840688503 

NHRF2 6 658.58 117581.3879 96626.84277 801436.7071 42755.90333 19697.35678 165598.1996 0.690956883 2.154964825 

ALBU 3 1068.08 140779.9275 48159.22437 149265.0735 75783.41164 32564.13499 477.5206335 0.629963575 1.635883773 

RT18C 2 58.65 7589.78398 874.8109784 163755.5698 127.0382721 0 15768.68076 0.620578817 3.437543891 

RL14 8 582.74 41072.21332 106616.499 2877863.98 4213.913143 5345.27756 278459.7082 0.607136322 3.392963325 

YMEL1 2 243.81 10916.3814 101042.6663 213454.43 7605.080226 5223.752685 55348.95324 0.604443908 2.254900346 

CL065 2 118.03 0 0 468076.6922 13299.32869 64294.07444 11433.41851 0.588077695 2.394432972 

CRIPT 2 112.35 7897.1543 3704.151862 190778.6196 0 957.8799199 20052.40092 0.584978943 3.267898843 

RL40 4 1272.81 192391.0279 309618.5155 980663.2205 36265.8443 28315.76306 676364.1166 0.584319447 1.000760449 
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RM39 5 426.25 41849.98436 51265.52214 1333620.066 20181.15531 14832.39725 78911.87357 0.577354535 3.646556302 

G3P 5 316.53 48448.80105 25205.89476 872362.8818 40284.75983 20077.36409 21757.11279 0.544102432 3.526074867 

P5CR2 2 150.76 14844.08324 5525.250762 225259.0594 3799.352065 11599.55541 6430.221355 0.53129773 3.492150878 

COA3 3 155.7 354180.8467 2338.813523 351670.5033 7180.032985 337.0304998 46960.17009 0.521099172 3.700411457 

HSPB1 2 186.59 70909.68319 117303.671 172438.5174 0 19071.62716 150223.0021 0.516249351 1.091070705 

CASB_BOVIN 2 179.48 0 2311.715856 108136.046 182.9677614 0.936170805 0 0.500474228 9.230196141 

RS15A 2 128.47 4213.299073 6073.555598 714339.7386 291.7003083 6161.207923 10836.00181 0.498461298 5.389318928 

ETFB 6 621.65 101866.9631 79344.66573 1105203.696 36946.0763 13725.35752 276247.706 0.496031274 1.97635075 

H4 3 190.69 2359.894419 67538.96573 174918.591 0 3631.896338 50381.02264 0.4930372 2.180329979 

RL38 5 531.73 263926.3563 26451.87981 1959954.348 26002.27603 19062.068 223392.2068 0.475453235 3.067377723 

RS15 4 605.86 28492.70436 40025.40123 702125.6639 5617.555967 12556.24725 126239.8159 0.470972528 2.415857324 

FRG1 3 402.12 3985.391534 142906.1815 103972.7796 6127.762579 15927.57922 13340.0076 0.46611044 2.825275759 

ILF3 6 362.57 16120.7154 3600.479751 687434.6158 1383.82142 1.110636144 148921.5051 0.459895443 2.234121329 

CKAP2 2 60.97 6911.654187 0 1803.961137 248.7785753 0 0 0.456293235 5.130668371 

FETUA 2 117.82 2208.743297 3476.771502 0 272.9358479 0 0 0.439040652 4.380657186 

F207A 3 125.74 1680.31623 23144.90107 330384.9932 1544.690352 1371.284639 24661.12907 0.438921911 3.687130183 

ANXA2 3 192.23 375.7952171 1829.758816 464823.7678 6.097818185 403.7181974 11178.20336 0.436321194 5.332807223 

RL11 2 168.39 0 0 84580.01029 0 0 0 0.427243412 12 

ECHB 3 237.82 1314.561067 3076.313885 170197.1485 0 4140.803886 9516.751654 0.426338798 3.6761834 

EIF2A 4 360.96 36264.45686 10181.8508 93962.19191 91.64032414 34015.52374 25612.43638 0.425624087 1.233353853 

CG050 10 711.38 794322.3343 372768.1185 11004238.87 209786.5088 188270.1 1863209.117 0.42516845 2.428284303 

SF3B2 3 284.5 25368.78841 2277.64473 275343.0038 0 5449.38623 66843.73706 0.420083879 2.067337172 

SF3A2 5 496.49 177611.4362 11138.48437 849549.523 2967.731071 105296.2257 43477.51588 0.410907832 2.774535224 

RRBP1 4 255.74 1889.294019 3590.533721 191498.4704 100.8331958 80.90184734 74288.45556 0.407230414 1.403301736 

UBP2L 2 197.76 4101.430355 4264.351672 204759.573 2740.664026 6.342555383 52407.68854 0.394260448 1.95014663 

EF2 3 213.09 0 851.485626 129169.6 3854.229012 11827.57435 18527.84178 0.368150971 1.92627056 

MTDC 6 539.87 516719.0503 13645.57736 1727321.669 117326.4233 24942.54693 85693.52994 0.351522593 3.307976613 

RL32 3 182.78 7649.564981 442.9076681 1811133.166 64373.88596 233600.9704 212847.3643 0.349840182 1.832431303 
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IF2G 10 1075.97 61705.9887 241988.4221 4755076.513 28920.04337 59192.69474 718805.9276 0.348247374 2.648291743 

TCPE 4 479.39 7624.936222 11029.49369 462145.2232 7913.166364 5119.823646 27894.47236 0.347914411 3.554294732 

CHCH1 3 189.97 399.1320538 32.41494431 481406.1776 0 0 98705.09468 0.345033146 2.287350894 

TCPG 3 344.99 0 4237.347796 419807.7582 7373.887538 51589.47409 55827.39829 0.342445785 1.885211217 

GSCR2 4 165.26 4304.367806 1442.353144 134910.3399 2792.694824 21.04425417 28039.63671 0.340324426 2.188681722 

RL24 11 735.49 322207.7208 870325.5528 4100636.399 339789.1816 411618.8524 1093529.538 0.337055123 1.520559901 

ATX2L 6 366.47 56290.80765 23285.8282 621618.7474 10275.79864 5527.036502 301483.3553 0.335570862 1.144031766 

DLDH 2 130.21 38606.73861 17238.20966 575061.6371 7456.063811 15038.39415 143364.5582 0.311381842 1.92746897 

CWC15 7 434.62 24204.19489 67123.52447 1271211.916 10788.52486 9493.688533 436629.6537 0.300368039 1.57631038 

NOP16 3 386.64 19371.29931 22854.07835 965287.9179 12177.78038 20450.8859 78377.44787 0.300342876 3.182087831 

HNRPU 2 354.96 649.47959 0 97546.96571 2367.458807 6860.563168 4501.213468 0.294807484 2.838419514 

ECI2 3 469.71 194.1740958 860.2587756 258254.6821 3655.253638 0 7198.008297 0.288019994 4.578472306 

RL23 8 549.21 600629.2195 280155.1907 13566230.99 148440.2075 358869.2129 2200608.289 0.278729798 2.415515675 

CH059 2 80.34 336.4611986 2965.761671 330159.8157 0 20303.50923 8805.629401 0.277260919 3.51797848 

H3C 2 90.68 21267.88252 4789.607341 337836.6671 19841.47068 15686.18473 8083.351098 0.274274978 3.060754694 

TCEA1 2 251.28 1204.013257 6864.717137 225171.9324 98016.39855 9892.807824 0 0.272811081 1.112001373 

CN166 4 198.09 40351.51631 822.3364252 473604.4353 93.58354826 4509.741244 133500.1636 0.268408505 1.898201444 

RS16 7 465.83 166659.8425 134988.7258 2104096.111 186493.7407 112231.4964 343970.578 0.266968404 1.904275554 

LDHB 3 177.52 1434.260544 19903.32299 252108.0739 1765.863782 12880.13092 12466.00142 0.263880376 3.33425091 

RAE1L 8 533.54 30294.66842 47083.29105 1111146.725 51069.9901 26732.04131 107661.6265 0.262668387 2.679963447 

BAG2 2 171.7 15301.32256 12834.40149 327885.901 583.2792941 38700.06828 77082.89526 0.258447345 1.613292273 

NUSAP 5 334.48 28289.23015 57971.48438 585885.6145 10487.81278 55465.93703 158336.4305 0.257229082 1.583408889 

RT26 2 38.15 35.39387216 2.945639484 211523.3691 0 0 9691.778787 0.256805061 4.448173246 

RS29 2 245.64 19791.90463 306784.1052 2814437.076 47131.58672 19786.94775 618071.5964 0.253818138 2.197074846 

PLRG1 3 328.31 0 13962.73989 381210.9995 9227.299327 38475.67275 18611.04607 0.252269433 2.575101299 

RUSD3 3 326.92 794.8369688 3441.612958 441008.9106 812.4205472 1109.279448 21806.29013 0.249577409 4.229938771 

MAZ 9 523.58 253968.0702 37526.16321 1297036.04 25748.2669 82879.28831 485751.5684 0.24491254 1.418237234 

RS18 7 637.21 351602.7786 63098.84191 3319981.788 58917.7636 444318.8968 254097.6107 0.244333109 2.30198383 
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RM18 2 99.17 292707.9472 1560.239305 414562.4967 9315.364779 4369.201246 105298.4192 0.243890301 2.574685775 

TCPZ 2 179.73 785.6225366 504.4722431 78017.5312 29.93943986 1038.618996 12706.84516 0.240406334 2.52536501 

TCPD 10 2004.09 73509.01231 121405.2856 7121766.719 26200.93356 207936.7472 534836.9716 0.237912575 3.250181415 

ILF2 7 1103.26 135824.0916 23319.32383 4189817.889 34286.65927 18589.86583 700783.9112 0.234754336 2.528684307 

PABP4 9 2074.35 24056.19916 75291.47456 1655879.319 16367.35231 9263.514578 733881.2503 0.230750875 1.208512731 

UBC12 2 44.93 0 832.2905385 146969.4232 0 0 27653.27328 0.230224934 2.418140832 

RM11 9 867.54 151125.3728 209190.2615 3127413.518 90138.53586 182371.7422 813028.4955 0.224984376 1.683876751 

H13 5 1500.85 29034.78708 47858.47094 996634.6588 12962.57495 15205.84947 476442.9093 0.216204222 1.089115193 

LRC59 3 385.18 2308.410025 1436.621264 2248647.759 2806.613199 3906.844135 12404.58578 0.214311399 6.880379768 

ANXA5 4 524.61 9319.635153 4423.553482 756678.2026 4425.706093 2934.680728 102253.474 0.208025046 2.81321752 

RL39 4 156.19 1182920.235 29542.99612 5443035.607 539746.1887 21356.66003 747627.7105 0.207916684 2.346378695 

TCPB 6 1005.82 6187.943111 123018.3045 1018627.197 3151.074685 171763.2511 69939.57323 0.203037301 2.228920242 

RS5 5 711.7 43686.74395 18559.91698 1241139.393 92099.47641 63118.72208 20555.59642 0.201451414 2.890472554 

NUP50 2 130.82 0 290.045336 125613.1616 836.9350926 311.755658 27784.65194 0.200177589 2.121510117 

PUR6 3 414.37 0 1379.463089 363458.0133 3917.621284 773.9031583 48035.2728 0.199423584 2.79064566 

RM16 2 130.3 1258.118524 0 385862.7039 20158.34559 524.1948198 11621.5325 0.194813116 3.582995932 

RT17 5 514.22 31384.02708 31368.68112 5675358.482 115014.6319 559427.7922 1438319.943 0.190255218 1.441445415 

FBRL 9 591.73 56038.10845 44233.65465 2114030.434 39266.9082 144545.3401 129949.4515 0.189567846 2.819110966 

WBP11 3 128.54 190.4402564 39436.97706 212852.958 27180.56644 21265.07384 66364.76136 0.189037215 1.136917901 

RL36 5 324.02 16893.69453 21957.30289 2159382.515 20107.06041 4595.047123 416151.9453 0.187903782 2.31797162 

RL6 12 1215.91 89194.67067 130598.4888 6744180.292 26359.6608 61646.17888 2701052.268 0.184910139 1.320132711 

RS6 5 577.24 21935.78239 19563.13094 1098232.569 2039.149188 65734.97938 225429.7413 0.18016579 1.958717919 

NDUS3 2 412.34 82.00785534 1308.376665 336075.4959 1347.559789 33.79957874 11929.76846 0.177919829 4.664036927 

PRC2A 8 601.51 54077.99927 49269.27377 2182502.024 43741.65679 29699.57999 532443.6898 0.174453324 1.915614573 

PRDX6 2 389.29 5824.340736 111.3381708 414853.7558 2581.596323 1076.176879 3524.981782 0.174310921 5.872417368 

RS25 8 820.46 288740.1475 318635.3012 19656627.9 96942.49295 143057.6572 9122771.33 0.166049349 1.113911669 

CCD86 6 497.8 82941.98936 813.8838954 907277.9591 1216.727289 11919.17867 175319.1642 0.158360819 2.3947137 

SLIRP 5 668.2 310784.3238 479724.4919 5915759.285 272630.6668 469694.333 1770659.321 0.158128141 1.41610849 
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RPC4 4 104.04 11139.45825 858.1228715 348395.3874 48379.81885 16775.21623 38193.96134 0.157458402 1.802046484 

RS27 3 274.5 991.927907 13671.51179 2260848.945 15463.82479 75866.09265 605444.2587 0.156517214 1.707428378 

RL19 4 433.41 62435.78477 45337.5899 807403.8942 13225.46156 102706.4427 334549.4187 0.153334319 1.022583926 

RS11 20 1847.17 1041608.405 287012.4994 32962019.51 453840.1356 463438.894 6099591.553 0.153094092 2.288915189 

HNRPR 2 425.57 15066.98252 27719.90786 328680.6884 23793.93311 17731.20257 88379.63916 0.152454428 1.51578184 

PPIB 6 454.8 2537.129537 1021660.158 1691987.663 239815.8839 458290.2208 521903.225 0.152171828 1.154689538 

NDUV2 4 169.89 1047.149669 0 299957.7591 285.4170822 1061.773122 82364.44795 0.149214841 1.846286899 

TPP1 2 250.38 251.9888728 12388.1215 665143.3869 36496.12138 7205.344898 143031.2791 0.147697288 1.85984957 

CNBP 5 426.62 0 78869.13605 20485.00854 6406.292553 1599.38971 6987.023579 0.145592045 2.728319371 

RL34 3 189.71 20753.54309 399229.7033 199775.3846 164306.7962 75411.48874 42751.15199 0.144733685 1.133611681 

TCPH 2 214.33 54.15194008 5736.654566 142023.8674 921.0552625 1101.108238 2917.09935 0.144590569 4.903349941 

DHB4 3 330.81 4432.67773 1416.267286 584326.227 21480.8691 17822.31852 85931.85094 0.141677606 2.23650497 

RM33 4 577.42 6716.397905 97896.38463 3042663.647 2369.810485 39473.18832 1278996.567 0.136544646 1.252648656 

ATPO 4 454.17 55259.28899 24711.84198 9426964.058 23943.06679 14640.81302 2377041.832 0.136457386 1.976583391 

TCPQ 8 664.98 14219.49543 85381.03168 1975596.814 9917.601685 152123.0448 234553.0973 0.13441194 2.387514712 

MZT2B 2 174.18 63937.87193 261.8027504 365858.108 1795.271526 6879.219477 38154.61604 0.133750456 3.19905308 

HSP7C 14 2842.54 2231284.922 1898931.789 36935884.08 1382029.798 2623007.2 12907186.78 0.125958971 1.279881599 

ODP2 8 954.55 21889.34142 42846.02153 4381255.937 9885.771108 136902.8334 389142.9612 0.125900378 3.052384429 

NOL7 2 63.6 0 15320.24048 252236.2454 0 7009.940392 3269.580222 0.124224849 4.701998611 

NEP1 4 478.6 6757.192113 38007.10654 591549.5441 121230.6922 57320.30354 82806.68287 0.122895923 1.283712961 

RT22 4 259.98 19373.56347 8107.176561 345618.2378 10297.82793 14053.97568 99163.7614 0.121008225 1.594865551 

TIM13 5 542.38 7314.087445 97593.34525 1583209.303 83956.37464 130971.5206 506560.136 0.117710769 1.226367305 

NOP2 2 121.91 645.1354719 4160.317795 113036.3068 17744.20132 23400.36736 3475.464117 0.116435222 1.401087404 

RM46 2 276.75 1542.36332 0 397124.6368 676.3158918 1491.544303 13891.12799 0.114346153 4.633731288 

RM12 5 506.56 21264.83129 99372.11731 27610590.42 4687.77731 176572.5054 4493041.101 0.112954707 2.568688808 

PRDX1 9 725.53 75631.01433 104877.3735 3393229.781 44546.75383 139521.1036 1041372.327 0.112843159 1.544133873 

RL26;1::sp 4 1766.26 65028.31624 63582.71303 6607550.977 31796.40626 70558.9224 1943503.322 0.11116462 1.719220364 

PSMD9 5 429.31 16907.85817 19955.68764 692347.5956 23889.02085 12581.65858 205283.1679 0.108646953 1.592797755 
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GAMC 3 117.1 49.74049152 6144.805299 1359371.841 39765.17175 14715.27896 10325.91359 0.108249959 4.397220143 

ATPA 5 585.69 22500.50375 85899.59422 1153686.376 36845.40491 150572.8055 132825.1752 0.107445195 1.978570084 

RS20 6 646.42 579.0077153 61612.4528 9176648.32 33027.11146 56765.547 2557110.729 0.103553661 1.803406151 

ALDOA_RABIT 8 942.64 79905.08116 234720.4892 3842447.884 613761.5173 464878.2043 612779.3888 0.090882038 1.297334056 

RRP1B 14 1122.6 84469.21361 45163.02797 6040654.025 24206.46652 69612.39399 2827096.248 0.088549589 1.078916995 

ODO2 2 222.64 255.2390504 5412.387 296529.0073 998.9872516 8353.036221 10118.87445 0.085880124 3.956096266 

RL29 11 1005.06 1678668.57 332188.2173 73744298.86 1663107.619 3195759.42 27629947.79 0.082831186 1.221400961 

L10K 5 221.39 619.5363638 29177.75714 754418.3965 4182.273806 2801.669346 207490.8138 0.082275413 1.87044265 

H2A1 3 263.47 61890.04989 183868.0189 7943892.775 120160.0035 91195.4997 2397912.99 0.080541121 1.650156541 

RM30 3 339.08 20136.18048 36137.62977 4936378.793 12693.45351 49342.48046 1260720.449 0.080497665 1.916259146 

RL10A 4 222.81 32340.1257 663.2119757 695842.5463 69347.15917 17371.20699 2766.563627 0.079456668 3.025897143 

RRP15 2 43.27 0 0 52726.49102 0 0 2270.837328 0.077392675 4.537231721 

RM53 7 576.9 48897.61312 68747.74905 5282086.136 40524.17816 70774.87065 1764249.682 0.07704076 1.525574923 

RM49 2 346.44 8400.430176 13178.89384 616933.3299 18549.26459 7197.301219 173381.0573 0.076539001 1.681021845 

K1M1_SHEEP 2 97.03 823322.0116 1884.450008 2466.076575 56985.25759 2087.991099 8080.454361 0.07330154 3.623521229 

RADI 3 292.8 1276.820321 2793.724434 344340.7173 11824.21741 3608.911776 9552.921937 0.072069053 3.801596442 

RL26L 2 1535.13 147.2170475 0 581751.2698 0 52.82109283 64025.16671 0.071104375 3.182866745 

CETN2 3 279.76 1488.701207 61705.01624 2249022 15542.4189 68017.29577 803870.9601 0.068420337 1.381569673 

CALL5 5 829.63 31663.57775 137455.319 2712466.561 88099.63343 39461.05163 1282412.538 0.067430128 1.031195042 

AIFM1 8 791.58 12785.04357 53534.93217 1619764.06 41086.60702 27209.24747 383046.1809 0.066844612 1.901383389 

RM50 4 308.15 22802.22121 9684.061411 2314162.59 106489.0868 32849.50774 53959.06661 0.066743098 3.601705903 

HSP71 13 4839.79 313937.9202 549129.7105 39993281.67 331431.4626 769334.5772 9476648.281 0.066488475 1.949573299 

RBM42 4 714.33 3431.925232 2611.17898 2383359.171 5091.92704 16166.33982 1135716.613 0.061696366 1.046292222 

SZRD1 3 175.07 46765.84424 1532.137108 357323.342 6074.83052 9951.534515 167850.4229 0.056155024 1.141394126 

NDUF3 2 168.47 3905.438277 2252.612087 232103.678 7094.32273 2380.497681 52372.59143 0.056003722 1.945762104 

PKRI1 2 223.75 4018.840649 0 0 687.1336117 0 0 0.052702406 2.548116814 

EAF6 2 402.41 0 6108.586332 463840.9979 49.0997585 1772.162761 130588.2683 0.051275839 1.827499023 

RUVB1 3 277.01 7454.966311 61580.10777 497283.4449 89259.21614 40186.13658 108876.1436 0.049103582 1.248704621 



Chapter 7: Appendix  The role of IBV accessory proteins 3a, 3b and 4b 

296 
 

RSMN 8 525.57 52909.06267 4783.536683 3587504.42 14275.12229 12569.84025 1746605.611 0.048103374 1.03943767 

SMD2 9 815.58 161202.6051 423803.4386 13700545.07 184768.7434 404060.9541 6118897.468 0.04773414 1.090660781 

RT23 5 384.75 18086.71816 26934.47996 959249.5559 74024.30344 12153.41793 273335.9389 0.047215049 1.482029782 

RS4X 12 1341.34 266787.3504 703801.3498 10555095.59 1237808.613 861814.4661 2931704.002 0.044819997 1.195841521 

RM40 11 1137.06 59202.59249 74669.1711 30088552.55 204598.2707 154716.5644 10926309.05 0.044214512 1.421133218 

MO4L2 5 426.83 70121.64595 39704.88898 879517.1858 45786.37813 112930.1598 327320.9936 0.037661068 1.025404111 

MAP4 13 1275.28 31002.13332 155975.338 2199883.516 114820.4676 83991.45317 696461.5392 0.036938333 1.414714221 

MIC25 5 232.22 17325.64742 28300.04572 585606.8654 51499.58727 83650.97443 46465.28194 0.036516693 1.797281556 

CN142 2 377.38 574.8183629 1769.320016 767076.025 898.6720897 7774.952562 241464.5037 0.031330256 1.621046654 

RS30 5 469.49 196217.0826 317834.8634 54553256.91 258417.5316 307780.9791 23915915.66 0.027913362 1.169467957 

ATPB 8 1084.52 32882.6668 88180.54767 2741527.691 185303.1278 118448.3316 261451.0331 0.026790133 2.340481776 

RM48 3 222.52 1013.053001 1892.257122 448590.4172 22513.51431 628.6164117 35253.1409 0.026255291 2.950788874 

RT11 5 484.85 19862.43716 3045.230341 3134389.963 9643.404158 9827.465578 1092768.889 0.025965265 1.505222451 

RL8 10 1196.15 156599.4109 24340.62926 11167457.57 78889.61242 68729.43924 4627639.92 0.02589878 1.248837724 

DECR 4 267.39 1095.17304 711.6874345 1986432.575 25400.05935 11591.77791 9504.368047 0.025484544 5.418234717 

RL18A 5 284.29 9569.732586 0 601877.4624 113761.2116 173063.6648 0 0.023227164 1.092057757 

NDUS6 5 651.41 45356.58798 94302.96016 3628291.079 125019.4178 175997.0266 912573.3627 0.01920719 1.634499187 

HMGB3 3 116.21 2764.822217 630.1648205 391238.2569 22324.78987 6399.830654 6646.368224 0.018486765 3.479874041 

RM27 8 804.78 53202.57721 30865.51652 4353742.211 104427.6979 92983.44477 973617.1645 0.017748165 1.92207205 

TFAM 8 619.58 33084.36566 109513.1919 3542728.364 334309.849 37371.65836 1353183.432 0.017443821 1.095308813 

CH60 16 2119.53 50512.22841 177118.5022 5617752.563 152843.9592 313216.8359 1329032.963 0.016878314 1.70323843 

RL7A 15 1180.14 46470.00832 68067.1145 16977133.87 69729.70612 170777.4276 3382447.501 0.014170616 2.238054805 

NDUA7 4 489.3 6003.177168 7257.224809 1348364.958 16934.16481 18553.40545 238632.5962 0.013622064 2.312449439 

FUBP2 3 281.69 1646.485024 0 271445.8257 0 14524.55348 58941.32457 0.013460215 1.894242457 

KNOP1 3 344.24 99.55676848 9264.101378 192975.5358 1375.459289 3321.386324 29970.67561 0.012118014 2.545119212 

CDC5L 6 394.93 257127.5667 2033.469535 894909.265 140662.539 199278.5544 20700.49781 0.011926849 1.678093418 

RS27A 2 1136.52 55.97676721 6643.764464 2996064.962 3483.214521 717.7935609 666214.0282 0.011739125 2.163165018 

C1QBP 12 2532.82 4663150.473 5149154.641 301925543.4 4611073.482 10128748.46 130502771.6 0.011188956 1.101868728 
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LBR 3 264.33 2865.734436 31862.5971 720113.4792 33390.01468 85903.10905 26381.32755 0.009399217 2.37342646 

RL31 18 1625.83 990674.5097 563983.9765 165393276.8 865097.856 1901116.778 47510818.7 0.008421317 1.731426822 

RS13 7 342.94 165566.696 108891.8948 13040581.44 338274.9795 258954.6147 2980815.153 0.00669407 1.895813431 

RPA34 6 937.12 158510.8674 537.1006512 2492325.787 95456.03659 25346.56721 76091.10377 0.006162489 3.751251146 

GRPE1 5 398.86 18479.01281 184233.9991 2632336.844 375444.5525 45112.63794 563577.9351 0.004216963 1.526445784 

PRDX3 4 412.73 8725.855792 329610.5264 5731049.364 65251.36328 144651.8569 1764526.44 0.000529848 1.620114544 

Shown are cellular proteins identified by label-free mass spectrometry/mass spectrometry that interact with GFP-4bM. Protein identifier (ID), protein name and number 

of unique peptides used to identify proteins are indicated. Confidence score is the score of the probability of the unique peptide sequence occurring randomly, added 

together for each unique peptide. The higher the confidence score, the higher the confidence in protein identification. The -Log2 p value is a comparison of the cellular 

protein abundance between GFP-4bM and GFP. The higher the p value, the higher the probability the protein interacts with 4bM. The fold-change is the change in the 

abundance of the cellular protein between GFP-4bM and GFP. Cellular proteins which appear in both GFP-4bM and 4bM-GFP data are labelled with an asterisk (*). 
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