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Abstract

Renormalization was popularised in the 1940s following the appearance of non-

sensical infinities in the calculation of the self-energy of the electron. Notably

this led to Quantum Electrodynamics becoming a fully renormalizable quantum

field theory. One useful tool that emerges from the technical aspects of renormal-

ization is the Renormalization Group. In particular, the β-function defines the

variation of the coupling constants with energy. The vanishing of the β-function

at a particular value of the coupling is known as a fixed point, the location of

which can be found using perturbation theory. Properties of quantum field the-

ories such as ultraviolet behaviour can be studied using these fixed points. The

calculation of two different types of fixed points forms the spine of this thesis.

In Part I the d-dimensional Wilson-Fisher fixed point is used to connect scalar

quantum field theories in different space-time dimensions. Specifically we look at

dimensions greater than four and explore the property of universality through the

Vasil’ev large N expansion. Different universality classes are examined, the first

contains φ4 theory with O(N) symmetry while another incorporates O(N)×O(m)

Landau-Ginzburg-Wilson theory. In the latter we perform a full fixed point sta-

bility analysis and conformal window search which determines where conformal

symmetry is present. Part I develops techniques that may later be applicable to

calculations involving beyond the Standard Model physics including asymptotic

safety, quantum gravity and emergent symmetries.

Part II focuses on the non-trivial Banks-Zaks fixed point of four dimensional

Quantum Chromodynamics. Using a variety of colour groups and representations

we calculate the location of the fixed point and corresponding critical exponents to

pinpoint exactly where the true value of the conformal window lies. Additionally

a number of different renormalization schemes are used, including the momentum

subtraction (MOM) and interpolating momentum subtraction (iMOM) schemes.

This allows us to study where in the conformal window scheme dependence is

most apparent. Both the Landau gauge and maximal abelian gauge are utilized to

extend the analysis. Throughout this thesis we compare and contrast perturbative

results with non-perturbative calculations such as those performed in lattice.
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Chapter 1

Introduction

The Standard Model of particle physics was developed in the latter half of the

20th century with contributions from many of the greatest physicists through-

out history. The Standard Model describes all non-gravitational fundamental

forces and classifies all observed elementary particles. The first breakthrough

in its evolution came in 1961 with Sheldon Glashow’s discovery of a way to

combine electromagnetic and weak interactions, [5]. Several years later in 1967,

Steven Weinberg and Abdus Salam, [6, 7], incorporated the Higgs mechanism

into Glashow’s electroweak interaction resulting in its modern form. In the Stan-

dard Model the Higgs mechanism refers specifically to the generation of masses

for the electroweak gauge bosons through electroweak symmetry breaking. The

Higgs mechanism was first proposed in 1964 simultaneously by three indepen-

dent groups: by Robert Brout and François Englert, [8]; by Peter Higgs, [9, 10];

and by Gerald Guralnik, Carl Richard Hagen and Tom Kibble, [11]. Follow-

ing experimental results produced at CERN, [12–14], electroweak theory became

widely accepted with Glashow, Salam and Weinberg sharing the Nobel prize for

physics in 1979. In 1964 Murray Gell-Mann and George Zweig came up with the

idea that hadrons, sub-atomic particles which take part in the strong interaction,

were composed of quarks, [15, 16]. The name ‘quark’ was an invention credited

to Gell-Mann and initially only three were proposed; up, down and strange. The

discovery of more particles led to the introduction of three additional quarks;

top, bottom and charm. Colour degrees of freedom would later emerge from

hadrons in the work of Oscar Wallace Greenberg, Moo-Young Han and Yoichiro

Nambu, [17,18].

In total there are six quarks in the Standard Model, all experimentally verified

and found to have fractional charge, [19,20]. The theory of the strong interaction
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Chapter 1

acquired its current form in 1973 when asymptotic freedom was proposed, [21,22].

This gave theorists a model to understand why quarks interact weakly at high

energies. While at low energies the interactions become strong, leading to the

confinement of quarks and gluons within composite hadrons and mesons. The

term ‘Standard Model’ was first coined by Abraham Pais and Sam Treiman in

1975, with reference to electroweak theory and only four quarks, [23]. The Stan-

dard Model is believed to be theoretically self-consistent and has proven to be

hugely successful in providing experimental predictions. However many elements

of real world physics remain unexplained. Most significantly, incorporating grav-

ity into the Standard Model remains a mystery. As does the existence of dark

matter in the Universe and where it fits into the Standard Model. There are also

philosophical questions which remain such as why three generations of quarks

exist and not, for example, four. Nevertheless the Standard Model remains to

this day the most robust tool available for modelling the world around us. The

framework for calculations involving the Standard Model is provided by quantum

field theory (QFT) and necessarily involves a Lagrangian to control the dynamics

and kinematics of the theory. Quantum field theory is an unavoidable conse-

quence of the reconciliation of quantum mechanics with special relativity, [24].

It emerged through the quantization of the electromagnetic field by Paul Dirac

in the 1920s in a QFT known now as Quantum Electrodynamics (QED), [25].

Later Dirac’s procedure became a model for the quantization of other fields, with

Werner Heisenberg and Wolfgang Pauli establishing the basic structure of mod-

ern QFT, [26,27].

Quantum field theory was previously believed to be fundamental. However

because of the failure to quantize general relativity, it is now thought to be a very

good low energy approximation; an effective field theory to a more fundamental

theory. Additionally despite its early success quantum field theory was found to

be plagued with theoretical difficulties. Perturbation techniques used to calculate

the self-energy of the electron in the 1930s discovered nonsensical infinities in the

answer. From the 1930s to the beginning of the Second World War physicists

tried different tricks such as truncation to avoid the problematic infinities. The

‘divergence’ problem was finally solved in the case of QED through a procedure

known as renormalization in 1947-1949 by a combination of physicists including

Richard Feynman, [28–37]. Renormalization theory suggests that divergences are

more than failures of specific calculations. Furthermore infinities may be system-

atically removed via a redefinition of the parameters of the theory and using a

measured finite value instead of infinite ‘bare’ values. A consequence for QED is

that the physical charge and mass of the electron must be measured and cannot

2
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be derived from first principles. Nevertheless quantum field theory has been a

resounding success story. Perturbation theory in particular yields well-defined

predictions in renormalizable QFT’s in better agreement with experiment than

anything physics has encountered before. In the following decades QFT was ex-

tended to describe not only the electromagnetic force but also the weak and strong

(nuclear) forces, the latter now recognised as Quantum Chromodynamics (QCD).

Notably quantum field theory has helped develop mathematical tools which

can be utilized for a wide array of problems not just in the Standard Model but

also for physics outside of it. For example, Feynman’s visualisation of space-time

diagrams via ‘Feynman diagrams’ gives a simple graphical set of rules to calcu-

late scattering processes. Another important tool is the Renormalization Group

(RG) which comes from a technical aspect in the renormalization procedure and

forms the theoretical backbone of this thesis. The Renormalization Group is a

mathematical apparatus which allows a systematic investigation of the changes

in a physical system as viewed at different scales. The key results that emerge

are the Renormalization Group equations introduced by Curtis Callan and Kurt

Symanzik in 1970, [38, 39]. One important RG equation is the β-function, cal-

culations of which give a perturbative estimate of the variation of the coupling

constant with scale. The vanishing of the β-function at specific values of the

coupling constants are known as fixed points and are thought to be associated

with conformal symmetry as they are necessarily scale invariant. Fixed points

will occur naturally if the coupling is attracted to or running towards a point. In

some quantum field theories the running coupling appears to become infinite at a

finite momentum scale. Most notably this occurs in the isolated theory of QED

not embedded in the Standard Model. This is known as the Landau pole problem

and may be considered to be a mathematical inconsistency in a theory purport-

ing to be complete. It may also be a sign that the perturbative approximation

of the coupling breaks down at a strong coupling. The Landau problem can be

avoided if an ultraviolet (UV) fixed point appears in the theory. A quantum field

theory has a UV fixed point if its Renormalization Group flow approaches a fixed

point in the ultraviolet limit. It has been suggested that a theory with a UV fixed

point may not be an effective field theory at all as it is well-defined at high energy.

Parallel breakthroughs in the understanding of phase transitions in condensed

matter physics by Leo Kadanoff, [40], Kenneth G. Wilson and Michael Fisher, [41],

led to novel insights based on the Renormalization Group. A deeper understand-

ing of the physical meaning behind the Renormalization Group and scale came

in the form of the block spin Renormalization Group, [40]. The blocking idea is
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a way to define the components of the theory at large distances as aggregates of

components at shorter distances. This led to a reformulation of quantum field

theory by Wilson which provided insight into the evolution of effective field the-

ories with scale, [42–44]. A remarkable conclusion was reached, in general most

observables are ‘irrelevant’ which means that macroscopic physics is dominated

by only a few observables in most systems. This helped to understand universal

properties of a wide class of systems with a large number of degrees of freedom.

Applications of Wilson’s work led to developments in the theory of second-order

phase transitions and critical phenomena, [42–44], for which he was awarded the

Nobel prize for physics in 1982. The term universal is used in this context to em-

phasize the curious property that systems, which may seem physically unrelated,

unexpectedly share some non-trivial large scale properties. Universality of the

large distance behaviour is related to fixed points of the Renormalization Group

flow. Wilson and Fisher in 1972 succeeded in determining a set of fixed points in

d-dimensions, known as the Wilson-Fisher fixed points, relevant for a large class

of phase transitions. Quantum field theories in the same universality class will,

among other things, share a d-dimensional Wilson-Fisher fixed point.

The application of the Renormalization Group to particle physics exploded

in the 1970s with the establishment of the Standard Model. The Renormaliza-

tion Group was initially devised in particle physics, but nowadays its applications

extend to solid-state physics, fluid mechanics, physical cosmology and even nan-

otechnology. It is also the modern key idea underlying critical phenomena in

condensed matter physics, [45]. The flexibility of the Renormalization Group to

different problems has led to this thesis being split into two parts. Part I will fo-

cus on the application of universality to connect theories in different dimensions.

Specifically we focus on scalar quantum field theories in dimensions greater than

four. The motivation behind this lies in the apparent connection of ultraviolet

stable fixed points in higher dimensional theories with lower dimensional infrared

(IR) fixed points, [46]. Although this statement was initially applied to QCD,

with knowledge of the non-trivial IR fixed point in four dimensions thought to

be obtainable through a higher dimensions, the same idea can also be applied to

other quantum field theories. Part I will contain scalar theories only with the

reason for this being twofold. First we wish to use scalar theories as a testing

ground, or as toy models, to develop ideas about universality before applying

them to more Standard Model-like theories. It is in these future calculations that

beyond the Standard Model (BSM) physics may be discovered. In particular we

develop the large N technique introduced by A.N. Vasil’ev et al., [47–50], to com-

pute d-dimensional critical exponents at criticality. Additionally scalar theories
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will still provide an interesting fixed point structure which can be analysed for

any potential conformal windows and for ultraviolet stability behaviour.

In Chapter 3 we introduce a set of connected scalar theories possessing the

O(N) symmetry group. These theories have received significant interest in re-

cent years with the Renormalization Group functions calculated in six and eight

space-time dimensions, [51–54]. As well as acting as a laboratory for universal-

ity ideas, the main motivation for looking at this class of O(N) theories stems

from the potential relation to beyond the Standard Model physics in the form

of the AdS/CFT correspondence of AdS critical O(N) vector models, [55, 56].

The six dimensional theory has also been of particular interest for comparison

with recent five dimensional bootstrap results, [57–62]. Other non-perturbative

techniques have been applied to O(N) scalar theories, notably the Functional

Renormalization Group (FRG) has been used to study the theory in five dimen-

sions, [63–65]. In Chapter 3 we build the ten dimensional Lagrangian with O(N)

symmetry which shares some universal properties with these scalar theories. The

methodology of calculating in a dimension greater than four is discussed and

the Renormalization Group functions are constructed in ten dimensions. Critical

exponents which describe the behaviour of physical quantities at criticality are

also found and hence universality through the large N expansion is established.

The analysis into higher dimensional scalar field theories is continued in Chapter

4. A Lagrangian for the six dimensional O(N)×O(m) Landau-Ginzburg-Wilson

theory is created, connected at the d-dimensional Wilson-Fisher fixed point to

the four dimensional model of the same name. This theory has applications rel-

evant to physics in frustrated magnets. As an O(N) × O(m) symmetry group

is present we obtain a more exotic fixed point structure including complex fixed

points. Therefore, although a key motivation is to establish a tangible connec-

tion between the four and six dimensional theories, our analysis will mainly focus

on the qualitative meaning of this richer fixed point structure. It is hoped that

data obtained will be comparable with non-perturbative bootstrap results in five

dimensions similar to those performed in three dimensions, [66, 67].

Chapters 3 and 4 focus on the universality of theories in differing dimensions

at a single d-dimensional fixed point. However we speculate that, in fact, these

theories may be part of a single d-dimensional universal theory. In d-dimensions

the univeral theory contains all possible interactions between fields with only a

finite number becoming relevant in fixed dimensions. Consequently operators

in a higher dimension may stay relevant for lower dimensions and influence the

physics. In Chapter 5 we look at the connection of fixed points in a slightly
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different way. Using the perturbative large N expansion we build a new tower of

connected scalar theories across dimensions containing higher derivative kinetic

terms. The main motivation here is to establish new results for the Vasil’ev et al.

large N expansion. It is hoped that these original results will prove invaluable

for future calculations involving higher derivative models which have connections

with physics via elasticity, [68]. Research has already begun into higher dimen-

sional fermionic theories, with six and eight dimensional extensions of QED and

QCD considered, [54,69,70]. Another possible extension of the research presented

here is to the idea of asymptotically safe quantum field theories. A well known

property of QCD is asymptotic freedom, where the coupling flows to the trivial

fixed point in the ultraviolet regime. Quarks therefore act as ‘quasi-free’ particles

at high energy. Asymptotic safety is similar, however in the ultraviolet the theory

instead flows to a stable non-trivial fixed point, [71]. Therefore at high energy

the theory is well-defined at that fixed point. Six dimensional O(2) and O(3)

scalar models have been studied in the context of asymptotically safe quantum

field theories, [72]. Moreover the Functional Renormalization Group has been

utilized to establish a line of asymptotically safe UV couplings for scalar theories

in [73]. Gauge and gauge-Yukawa theories have also been analysed in the context

of asymptotic safety, [74–77].

One important question that arises is if asymptotic safety can be applied to

the theory of quantum gravity. The Functional Renormalization Group has pro-

vided evidence for the possible existence of asymptotic safety in quantum gravity

models, [78–80]. One significant result is that it has been shown that an asymp-

totically safe quantum gravity model can predict the quark mass, [81,82], and give

an upper bound on the abelian gauge coupling, [83]. Furthermore an asymptot-

ically safe Standard Model via vector like fermions has also been analysed, [84].

For beyond the Standard Model physics, dark matter, [85], and supersymmetric

(SUSY) models, [86], have also been investigated for possible asymptotically safe

fixed points. There has also been research into asymptotic safety on the lattice

in the form of the O(N) non-linear σ model, [87]. The bulk of current research

in this area has been performed using non-perturbative methods, particularly for

quantum gravity models. One hopes in future research the techniques developed

in this thesis for scalar theories may be transferable to perturbative quantum

gravity models in four and higher dimensions.

Part II will focus on the computation of another non-trivial fixed point, the

Banks-Zaks fixed point of QCD, along with its associated critical exponents. The

Banks-Zaks fixed point is the first non-trivial fixed point of the QCD β-function.
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It is an infrared stable fixed point as is expected from confinement. QCD is a

high energy field theory, however if the value of the coupling at the fixed point is

very small, more specifically if it is less than one, perturbation theory can be per-

formed in the weak coupling. The existence of the fixed point was first discovered

by William E. Caswell in 1974, and later used by Thomas Banks and Alexander

Zaks in their analysis of the phase structure of vector-like gauge theories with

massless fermions, [88]. The conformal window of QCD is the range of quark

flavours for which the Banks-Zaks fixed point exists and is of significant interest

as it can be an indication of whether conformal symmetry is present. The location

of the fixed point along with the conformal window can be perturbatively calcu-

lated. However as perturbation theory is a truncated series one can only obtain

estimates which are improved by calculating to a high loop order. Moreover as

the Renormalization Group functions of QCD are in general only renormalization

scheme independent at leading order, different schemes may be employed to ob-

tain better convergence. Critical exponents of QCD are computed by evaluating

the Renormalization Group functions at the non-trivial fixed point. In particular

the quark mass anomalous dimension exponent is of interest due to its relation

to chiral symmetry breaking. As critical exponents are physical quantities, their

value should be independent of the renormalization scheme used. In other words

critical exponents are RG invariants. In practice however this does not work out

as perturbation theory is being used.

In Part II the Banks-Zaks fixed point and critical exponents are calculated

in various schemes to discover where scheme dependence is most apparent in the

conformal window and which scheme, if any, has the best convergence. This

analysis was inspired by and extends the work of Thomas Ryttov and Robert

Shrock, [89–97], which looked at the modified minimal subtraction (MS), mini-

mal momentum subtraction (mMOM) and modified regularisation invariant (RI′)

renormalization schemes, among other issues. In Chapter 7 the momentum sub-

traction schemes (MOM) are used to calculate the location of the Banks-Zaks

fixed point and value of the associated critical exponents. The MOM renormal-

ization schemes are kinematic and were introduced by William Celmaster and

Richard J. Gonsalves in 1979, [98, 99]. The renormalization in these schemes

takes place at the symmetric subtraction point and for QCD it leads to three

separate renormalization schemes based on the 3-point QCD vertices: quark-

gluon, triple gluon and ghost-gluon. As the MOM schemes are a different class

to the previous schemes investigated, [89–97], one hopes to obtain a more non-

trivial insight into scheme dependence. In Chapter 8 the analysis is repeated for

the interpolating momentum subtraction schemes (iMOM), [100–103]. Originally

7



Chapter 1

introduced for the specific case of the quark mass operator renormalization only,

they are a more general set of kinemetic renormalization schemes. The iMOM

schemes will depend on a parameter which tags the external momentum of one

of the legs in the 3-point vertex functions. This parameter ω is the origin of the

interpolation and setting its value to unity one retains the MOM schemes. Once

again three separate iMOM schemes are available based on the different 3-point

vertices.

The analysis of Chapters 7 and 8 will be in the Landau gauge for comparison

with [97]. Although the β-function is gauge independent in a mass independent

renormalization scheme like MS, in general it will be gauge dependent, [98,99,104].

Therefore it is beneficial to extend the analysis to a second gauge fixing other

than the standard linear covariant gauge. The main motivation for repeating

the analysis in the maximal abelian gauge (MAG) is the availability of the three

loop Renormalization Group functions in different schemes. Therefore our analy-

sis can be extended to compare data in two different gauges without performing

any new renormalization. For comparison with the results of [97] the location

of the Banks-Zaks fixed point and corresponding critical exponents are analysed

in the conformal window of three different colour groups; SU(2), SU(3) and

SU(4). The investigation also extends to representations besides the fundamen-

tal to include the adjoint representation along with the two-index symmetric and

anti-symmetric representations. This is in part to understand where the con-

formal window lies and the true range for which it exists in perturbation theory.

Alternative representations may also be applied to problems beyond the Standard

Model and be relevant to several problems such as those underlying technicolor

theories. Data obtained in Chapters 7 and 8 can also be compared with recent

lattice research.

Since publication of our original results, [1,4], scheme dependence of the quark

mass anomalous dimension has been further analysed to five loops in [105], ex-

tending the four loop results of [97]. Furthermore in recent years strong evidence

for scheme independence of this exponent along with others has been provided

using a finite order perturbative expansion, [106–111]. This approach, introduced

by [88], uses a scheme independent expansion parameter dependent only on the

number of quark flavours. For example, a scheme independent expansion for the

quark mass anomalous dimension has been computed in QCD and supersymmet-

ric QCD (SQCD) to four loops, [106, 107]. Additionally scheme independent ex-

pansions for the quark mass anomalous dimension to four loops and the exponent

associated with the first derivative of the β-function to five loops were found for
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general asymptotically free gauge theories with general gauge groups, [108, 110],

with SU(Nc), [109], and with SO(Nc) and Sp(Nc), [111]. Similar expansions have

also been found for several asymptotically free chiral gauge theories, [112], and

N = 1 SQCD, [113]. Most recently a scheme independent calculation of the

anomalous dimension of several baryon operators in an SU(3) asymptotically

free gauge theory was computed in [114]. Furthermore, to support earlier work

in [94,97,106–111], scheme independent expansions for exponents were calculated

using RI′ and different MOM schemes which yielded identical results, [114].

9



Part I

Fixed Points of Scalar Quantum

Field Theories

10



Chapter 2

Background

In advance of presenting original research some essential background knowledge

and computational methods are discussed. For this I am indebted to the following

literature; [115–120].

2.1 Renormalizing Quantum Field Theory

The development of the Standard Model is driven by theoretical and experimen-

tal physics. For theorists, the Standard Model is a paradigm of a quantum field

theory (QFT) and can be studied using both perturbative and non-perturbative

methods. To improve the reliability of perturbative results calculating to a high

loop order is required. However calculations involving loops are generically infi-

nite. Consider an integral commonly encountered in one loop computations with

loop momenta k. When mass m is small and negligible, then

∫
d4k

(k2 −m2)2
−→

∫ Λ

ε

d4k

(k2)2
= ln Λ − ln ε (2.1)

where ε and Λ are cut-offs and which tends to infinity when ε → 0 or Λ → ∞,

where the integral is considered in four dimensional Minkowski space. At large

momenta as Λ→∞ the integral will therefore diverge. This is known as an ultra-

violet (UV) divergence as opposed to an infrared (IR) divergence which occurs at

low energy when ε→ 0. Ultraviolet divergences appear in almost every attempt

to calculate beyond leading order (LO). This presents a problem as it is impossible

to obtain meaningful physical results if infinities appear within a computation.

Remarkably in the late 1930s Dirac, Bohr and others were ready to give up on

Quantum Electrodynamics (QED) altogether because of divergence issues. The
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problem was solved in the case of Quantum Electrodynamics through a procedure

known as renormalization in 1947-49 by Hans Kramers, Hans Bethe [28], Julian

Schwinger [29–32], Richard Feynman [33–35] and Shin’ichiro Tomonaga [36]; the

procedure was then systematised by Freeman Dyson in 1949, [37]. Renormaliza-

tion theory is based on UV divergences as these can be handled systematically.

We shall ignore IR divergences for now as they are absent in massive theories.

The theory of renormalization states that divergences arise from the assumption

that the variables of the classical theory are valid and equivalent to the variables

which describe the quantum theory. Renormalization is a systematic and math-

ematically consistent method of redefining the variables in a way that removes

the infinities. Therefore the integrals will be finite but will also depend on some

regulating parameter. It turns out that values for observables will be independent

of the regulator which can then be removed. There are two key components to

renormalization, the regularisation used to identify potential divergences and the

way in which we choose to remove these divergences from the theory.

2.1.1 Dimensional Regularisation

In four dimensional Minkowski space many Feynman integrals are divergent and

moreover the nature of the divergences are not quantified. To avoid integrals

diverging we choose a regulator to transform an ill-defined integral into a math-

ematically well-defined one. There are three main regularisations used in quan-

tum field theory. The first is a cut-off procedure, such as Pauli-Villars which

introduces a parameter Λ to restrict the large momenta. However one problem

which arises is the loss of gauge symmetry. The second method is lattice regu-

larisation which replaces the continuum space-time by a lattice. This technique

is very good for probing non-perturbative dynamics and low energy Quantum

Chromodynamics (QCD). It is particularly useful for studying infrared physics

numerically where perturbation theory is not applicable. This technique how-

ever requires supercomputers which can be costly to implement. It also breaks

Lorentz symmetry. The most popular regularisation used in perturbation theory

is dimensional regularisation, first introduced by Carlos Guido Bollini and Juan

José Giambiagi in 1972, [121], and developed extensively in gauge theories by

Gerard ’t Hooft and Martinus Veltman, [122]. This regularisation analytically

continues the space-time to d-dimensions where d is a complex variable and can

be written as d = 4−2ε. The regularising parameter is given by ε and is assumed

to be very small, |ε| << 1.

In practice dimensional regularisation involves replacing the integration mea-
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sure in the integral as follows,

∫
d4k

(2π)4
−→

∫
ddk

(2π)d
.

The Feynman integrals will therefore be evaluated as functions of d and singular-

ities will appear as poles in ε. Dimensional regularisation does not break gauge or

Lorentz symmetry, although it does break supersymmetry (SUSY). Dimensional

reduction is a variant of the regularisation which does preserve supersymme-

try, [123–125]. Notably ultraviolet and infrared divergences are indistinguishable

using this type of dimensional regulator which one must take into account dur-

ing calculations. Every regularisation will introduce an arbitrary mass scale. In

cut-off this scale is Λ, while for lattice it is the length of the lattice square a.

For dimensional regularisation the arbitrary mass scale arises from the change in

the dimensionality of the integral measure. As we still require the action to be

dimensionless, the coupling constant must be rescaled in such a way that it is

dimensionless in d-dimensions. Hence

g −→ gµ+ε (2.2)

where µ is the arbitrary scale associated with the regulator. Note that these scales

are arbitrary and cannot appear in observables leading to the Renormalization

Group (RG) formalism, more on which later.

2.1.2 Renormalizing φ4 Theory in Four Dimensions

Once divergences have been quantified one must find a way to remove them. To

illustrate how renormalization works we take φ4 theory as an example to develop

the procedure which will be applicable to every renormalizable quantum field

theory. The Lagrangian for φ4 theory in four dimensions is given by

L =
1

2
(∂µφ)2 − 1

2
m2φ2 − 1

4!
gφ4 (2.3)

where g is the coupling constant and m is the mass. The Feynman rules can be

found from the Lagrangian and are illustrated in figure 2.1.

= i
p2−m2+iε

= ig
p

Figure 2.1: The Feynman rules for φ4 theory in four dimensions.
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It is important to note at this point that jaxodraw, [188, 189], has been used

to visually present all Feynman diagrams in this thesis. Divergences emerge at

the one loop level which can be seen in the Feynman diagram of figure 2.2. The

incoming momenta is given by pi, while the internal loop momenta is denoted by

k.

p p = i2(ig)2

2

∫
d4k

(2π)4
1

(k2−m2)((k−p)2−m2)

k − p

k

p1

p2

p3

p4

Figure 2.2: A one loop Feynman diagram of φ4 theory, Ia, which will contain UV
divergences.

An important point to note is that a subtraction point must be chosen for the

renormalization, this is an external momentum set-up where the renormalization

takes place. Here we choose the completely symmetric momentum configuration

which has the conditions

p2
i = − µ2 where i = 1, . . . , 4 and

pipj = +
µ2

3
where i 6= j . (2.4)

Momentum is also conserved, p1 + p2 + p3 + p4 = 0. There is a huge amount

of arbitrariness in the momentum configuration. However one should ultimately

obtain the same physical predictions irrespective of which set-up is chosen.

We require the Feynman integral to be evaluated to the finite part in order to

obtain a function of p2 and m2, which contains the physics. To identify the di-

vergences one uses dimensional regularisation which necessarily involves rescaling

the coupling,

Ia =
−ig2(µ2)ε

2

∫
ddk

(2π)d
1

(k2 +m2)((k − p)2 +m2)
. (2.5)

A Wick rotation has been applied to the integral which moves the calculation

from Minkowski into Euclidean space. The integral can then be evaluated using

Feynman (or Schwinger) parameters,

Ia =
−ig2(µ2)ε

2

∫ 1

0

dx

∫
ddk

(2π)d
1

[k2 + x(1− x)p2 +m2]2
.

To evaluate the integral over the loop momentum k one can use the following
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identity which is derived using the Euler β-function,

IE(α, β) =

∫
ddk

(2π)d
(k2)α

(k2 +m2)β
=

(m2)d/2+α−β

(4π)d/2
Γ(α + d

2
)Γ(β − α− d

2
)

Γ(d
2
)Γ(β)

. (2.6)

This simplifies the one loop integral to the following form

Ia =
−ig2µ2ε

2

Γ(2− d/2)

(4π)d/2

∫ 1

0

(x(1− x)p2 +m2)d/2−2dx ,

which is a one dimensional parameter integral and can be written exactly as a

function of p2 and m2. However for practical purposes we expand in powers of ε

where d = 4− 2ε,

Ia =
−ig2

32π2

[
1

ε
+ ln(4πe−γ) −

∫ 1

0

dx ln

(
x(1− x)p2 +m2

µ2

)
+ O(ε)

]
. (2.7)

The Euler-Mascheroni constant is given by γ and utilizing the Mandelstam vari-

ables, [116], s = (p1 + p2)2, t = (p1 + p3)2 and u = (p1 + p4)2, one finds

Ia =
−ig2

32π2

[
1

ε
+ ln(4πe−γ) − F (s) + O(ε2)

]
(2.8)

where the finite integral in (2.7) has been denoted by the function F (s). As long

as ε 9 0 the integral is well defined. However as we ultimately want to lift the

regularisation by setting ε to zero, divergences will be produced. We therefore

need to find a way to systematically remove these divergences. To begin the

renormalization start at the one loop level and look at the 4-point scattering

amplitude, Γ4(pi). The 4-point scattering amplitude is illustrated in figure 2.3

with only the tree and one loop diagrams included thus far.

p1

p2

p3

p4

= +

+ + + . . .

Figure 2.3: The 4-point scattering amplitude for φ4 theory, Γ4(pi), expanded out
to one loop level.
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This is calculated to be

Γ4(pi) = ig − ig2

32π2

[
3

ε
+ 3 ln(4πe−γ) − F (s) − F (t) − F (u) + O(ε)

]
+ O(g4) .

The reason divergences emerge in this theory originates from the initial assump-

tion that the variables of the classical theory are equivalent to the variables which

describe the quantum theory. We therefore start the computation again, but this

time begin with a Lagrangian which is structurally the same as Lagrangian (3.2)

but is written in terms of the ‘bare’ variables φ0, m0 and g0,

L =
1

2
(∂µφ0)2 − 1

2
m2

0φ
2
0 −

g0

4!
(φ0)4 . (2.9)

Renormalized variables φ, m and g can then be introduced which are related to

the bare variables via a rescaling,

φ0 =
√
Zφφ , m0 = Zmm , g0 = µεgZg . (2.10)

The renormalization constants for the field, mass and coupling are given by Zφ,

Zm and Zg respectively. After inserting the rescaled variables the Lagrangian

becomes

L =
1

2
Zφ(∂µφ)2 − 1

2
m2ZφZmφ

2 − g

4!
µεZgZ

2
φφ

4 . (2.11)

New Feynman rules illustrated in figure 2.4 can be read from Lagrangian (2.11)

which involve the renormalization constants.

=
1

Zφp2−ZφZmm2
= igZgµ

εZ2
φ

p

Figure 2.4: The Feynman rules for φ4 theory including renormalization constants.

This is one way to develop a renormalized quantum field theory. However

in perturbation theory the free and interacting parts of the Lagrangian can be

defined differently by introducing counterterms,

Zφ = 1 + A ,

ZmZφ = 1 + B ,

ZgZ
2
φ = 1 + C . (2.12)
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The counterterms A, B and C are expansions in the power of the coupling,

A =
∞∑

n=1

ang
n , B =

∞∑

n=1

bng
n , C =

∞∑

n=1

cng
n .

Inserting the counterterms into the Lagrangian we find

L =
1

2
(∂µφ)2 − 1

2
m2φ2 +

1

2
A(∂µφ)2 − 1

2
m2Bφ2 − g

4!
µεφ4 − g

4!
Cµεφ4 .

The Lagrangian can then be separated into free and interacting parts as follows

LF =
1

2
(∂µφ)2 − 1

2
m2φ2 +

1

2
A(∂µφ)2 − 1

2
m2Bφ2 ,

LI = − g

4!
µεφ4 − g

4!
Cµεφ4

where L = LF + LI . If we try to read the Feynman rules from this Lagrangian

one finds two additional rules which are the counterterms. They are denoted by

a square inserted onto the propagator and are illustrated in figure 2.5.

=
i

p2−m2 = igµε

p

= i(Ap2 −Bm2) = igCµε

Figure 2.5: The Feynman rules for φ4 theory including the counterterms.

The value for the 4-point Green’s function Γ4(pi) to one loop including countert-

erms becomes

Γ4(pi)

∣∣∣∣
s,t,u=− 4

3
µ2

= ig − 3ig2

32π2

[
1

ε
+ ln(4πe−γ) − F

(
− 4

3
µ2

)
+ O(ε)

]

+ ig2c1 + O(g4) (2.13)

where the counterterm C has been expanded out to c1 which is sufficient to absorb

the divergence present at one loop. For now the counterterms A, B and C are

completely arbitrary. Note that as we intend to set ε→ 0 one can ignore the µε

piece of the counterterm. To lift the regularisation one uses the freedom of the

choice of variable c1 to ensure that Γ4(pi) is finite as ε → 0. Therefore we set
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c1 = 3/(32π2ε) and the Green’s function becomes

Γ4(pi)

∣∣∣∣
s,t,u=− 4

3
µ2

= ig +
3ig2

32π2

[
ln(4πe−γ) + F

(
−4

3
µ2

)
+ O(ε)

]
+ O(g4) (2.14)

as ε → 0. The choice of c1 is called the renormalization scheme. If only the

divergent part of the function is included in the counterterm this is the minimal

subtraction (MS) scheme, [104, 122]. Equally one could select a different scheme

and obtain the same result for observables. Any choice for the value of the

counterterm should render the 4-point Green’s function finite.

2.1.3 Renormalization Schemes

The way in which the renormalization constants are determined can be broken

down into two stages. First, one has to specify the point where the renormaliza-

tion constants are to be defined. By this we mean the momentum configuration

of the external legs of the divergent n-point functions. In other words the values

of the square of each external momentum have to be specified. As previously

stated, for φ4 theory the momentum configuration chosen was at the completely

symmetric point

Γ4(p2
1, p

2
2, p

2
3, p

2
4) = Γ4(−µ2,−µ2,−µ2,−µ2) .

Clearly there are infinitely many possibilities for such momenta values but there

are a subset which have be to avoided. These are where the sum of a strict subset

of the external momenta is zero. Termed an exceptional momentum configuration

such momenta values can lead to infrared problems in the evaluation of the final

value of the Green’s function. The second general feature of renormalization is

the prescription for defining the renormalization constants associated with each

Green’s function. This is known as the renormalization scheme. There are again

infinitely many ways of doing this and all schemes should ultimately give the

same physical results. For φ4 theory above we implemented the minimal sub-

traction scheme of [104, 122], which is the simplest scheme to work with. In the

MS scheme the renormalization constants are determined by removing only the

divergence with respect to the regulator.

The most commonly used scheme is the modified minimal subtraction (MS)

scheme, [126]. It is a variation on the MS scheme where not only is the pole

removed but also a specific finite part which is ln(4πe−γ). It is speculated that

the removal of this extra piece improves the convergence of the series for the
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Green’s function, [126]. Renormalization schemes can be either kinematic or

non-kinematic, with the latter meaning that it carries no information within the

renormalization constants with respect to the location of the subtraction point.

By contrast renormalization constants of a kinematic scheme contain data corre-

sponding to that point. Additionally schemes can also be physical or non-physical,

with MS being an example of a non-physical scheme. A physical scheme, an ex-

ample being the on-shell scheme, is one where the external legs are on their mass

shell at the subtraction point which makes it harder to calculate to a high loop

order in. In contrast the MS does not require the finite pieces of the integral which

simplifies the calculation. The schemes can also have renormalization constants

which are mass independent or mass dependent. Mass independent schemes are

easier to calculate in as there are nice simplifying features within the Renormal-

ization Group formalism.

To complete the one loop renormalization of φ4 theory we also have to com-

pute the 2-point Green’s function which is the mass renormalization. The 2-point

Green’s function, Γ2(p), at one loop including the relevant counterterm is illus-

trated in figure 2.6.

p
= + +

Figure 2.6: The 2-point scattering amplitude for φ4 theory Γ2(p), with countert-
erms expanded out to one loop.

The 2-point function evaluated at one loop is

Γ2(p) =
i

p2 −m2
− im2g

32π2ε
+ ig(a1p

2 − b1m
2) + O(g2) . (2.15)

In the MS renormalization scheme the counterterms are chosen to be a1 = 0 and

b1 = −1/(32π2ε) which renders the 2-point Green’s function finite. This com-

pletes the one loop renormalization. Therefore to one loop the renormalization

constants for φ4 theory in the MS renormalization scheme are

Zφ = 1 + O(g2) ,

Zm = 1 − g

32π2ε
+ O(g2) ,

Zg = 1 +
3g

32π2ε
+ O(g2) . (2.16)
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Note that along with the coupling and mass renormalization computed by cal-

culating the 2 and 4-point Green’s functions, there is also the wave-function

renormalization. However in φ4 theory the one loop Green’s function to calcu-

late the wave-function renormalization is not present as it is a 3-point function.

Therefore the wave-function renormalization begins at two loops, as is clear from

the above renormalization constant Zφ which does not have a one loop term. In

a standard renormalization procedure for any quantum field theory we first set

the counterterms of the 2-point Green’s function to one loop before then finding

the counterterms for the higher point functions at one loop. The renormalization

process then iterates to higher loops. For example for Γ2(p) the two loop Green’s

function will also include the diagrams presented in figure 2.7.

Figure 2.7: The 2-point Feynman diagrams included in the Green’s function at
two loops including counterterms.

The first two diagrams of figure 2.7 will contain the two loop divergences as-

sociated with the mass and wave-function renormalization. The third diagram

involves the term c1 which has already been fixed by the one loop coupling renor-

malization. Moreover the fourth diagram contains a1 and b1 which have also

been fixed in the previous one loop mass renormalization. Finally the last dia-

gram was included in the one loop renormalization, it has now been expanded to

two loops to introduce the terms a2 and b2 which are used to absorb the two loop

divergences which are present after summing all contributions.

2.1.4 Weinberg’s Theorem

It is useful to establish where divergences may occur in a theory before any

calculation is performed. From the renormalization of φ4 theory we know that

the two graphs displayed in figure 2.8 are divergent. Written in integral form

diagram (b) of figure 2.8 is

Ib = gµε
∫

ddk

(2π)d
1

k2 +m2
. (2.17)

There are four powers of the loop momentum k in the numerator and two in the

denominator, the integral would therefore diverge quadratically at large k if a
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cut-off was used. Likewise for diagram (a) of figure 2.8, there are four powers

of the loop momentum k in both the numerator and denominator which leads

to divergence in the form of a pole. It is useful to find a way of obtaining the

degree of divergence of any graph for an arbitrary theory without performing any

computation.

(a) (b)

Figure 2.8: Two of the one loop divergent diagrams contained in φ4 theory in
four dimensions.

Consider a diagram containing n vertices, E external lines, I internal lines and L

loops in d space-time dimensions. The superficial degree of divergence D of this

diagram is given by, [116],

D = dL − 2I . (2.18)

The diagrams in figure 2.8 have superficial degree of divergence D = 2 and D = 0

respectively, reflecting quadratic and logarithmic divergences. We can write D in

a different way by noting that there are I internal momenta and the momentum

is conserved at each vertex n. Also as we have overall momentum conservation

there are n−1 relations between the momenta. Hence the number of independent

momenta is I − n + 1 which is equal to the number of loops in the diagram.

In φ4 theory each vertex has four legs, so there are 4n legs overall. However

the internal ones are counted twice because they are connected to two vertices,

therefore 4n = E + 2I. Putting all of this together one can rewrite the degree of

divergences as, [116],

D = d −
(
d

2
− 1

)
E + n(d− 4) . (2.19)

In four dimensions one has D = 4−E which shows that the degree of divergence

depends on the number of external lines only not on the order in perturbation

theory. Therefore a diagram with a greater number of external legs will be more

likely to converge. The analogous formula for φr theory is given by, [116],

D = d −
(
d

2
− 1

)
E + n

[
r

2
(d− 2)− d

]
, (2.20)

and in four dimensions we have D = 4− E + n(r − 4). According to Weinberg’s

theorem, [127], a Feynman diagram converges if its degree of divergence D, to-
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gether with the degree of divergence of all its sub-graphs, is negative. We shall

not prove this here, however a full proof is given in [116].

The degree of divergence can also be looked at from the point of view of the

dimensionality of the fields. For the action of a theory to remain dimensionless we

require the dimension of the Lagrangian to be equal to the dimension the theory

exists in. More specifically, [L] = +d, which means each term in the Lagrangian

must have mass dimension d. Examining the dimensionality of a general kinetic

term, ∂µφ∂µφ, determines the dimension of the field,

[φ] =
d

2
− 1 .

Similarly if we have an interaction term gφr, then the dimension of the coupling

must be

[g] = d + r − rd

2
.

These are the canonical, engineering or classical dimensions. In φ4 theory for

example the coupling will have the canonical dimension [g] = 4− d. In quantum

field theory the dimensions of the field and other parameters will not be the

canonical values, they will also develop anomalous dimensions through quantum

corrections. We will return to this in depth later. Inserting the dimensions of the

field and coupling into equation (2.20) we can eliminate r,

D = d −
(
d

2
− 1

)
E − nδ (2.21)

where δ = [g]. Consequently a renormalizable theory must be one whose coupling

constant g has a mass dimension greater than or equal to zero. More specifically

if

[g] = 0 ⇒ The theory is renormalizable,

[g] < 0 ⇒ The theory is non-renormalizable,

[g] > 0 ⇒ The theory is super-renormalizable.

If a theory is super-renormalizable that means not all available counterterms are

required to ensure the theory is finite and within these there may only be a

finite number of terms in the perturbative expansion. However IR issues may

still emerge. Note that in gauge and supersymmetric theories these internal

symmetries may reduce the overall degree of divergence. For φ4 theory one can

look at the nature of the divergences more explicitly. That is, if we define ∆ =
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d− 4, then

∆ = 0 ⇒ Logarithmic divergences in the theory,

∆ > 0 ⇒ Quadratic divergences in the theory,

∆ < 0 ⇒ Finite theory.

2.2 The Renormalization Group

A regularised and renormalized quantum field theory will be finite provided the

theory is renormalizable. Notably an arbitrary fictitious scale µ has been intro-

duced as a consequence of the need to regularise divergences. Ultimately physi-

cal predictions cannot depend on this scale. The theory of the Renormalization

Group postulates that one can change the arbitrary scale µ of the theory in such

a way that the physics on energy scales below µ remains unchanged. In other

words a theory must be RG invariant. In order for that to be possible the cou-

pling must change with µ. The action at a particular energy scale is known as the

Wilsonian effective action S[φ;µ, gi], and a key Renormalization Group equation

which illustrates this point is given by, [117],

S[Z(µ)1/2φ;µ, gi(µ)] = S[Z(µ′)1/2φ;µ′, gi(µ
′)] . (2.22)

If one assumes the n-point Green’s function has been renormalized, that is,

Γ(n)(pi) = 〈φ(p1) . . . φ(pn)〉 .

Then the bare Green’s function is denoted by

Γ0(n)(pi) = 〈φ0(p1) . . . φ0(pn)〉 .

As the bare Green’s function is independent of the arbitrary energy scale µ it

must be the case that

µ
d

dµ
Γ0(n)(pi) = 0 . (2.23)

The renormalized and bare Green’s functions are not unconnected as the bare

parameters can be rescaled to the renormalized versions via the renormaliza-

tion constants. Specifically for the n-point Green’s function we have Γ0(n)(pi) =

Z
n/2
φ Γ(n)(pi), which after differentiating with respect to µ becomes

0 = µ
d

dµ

(
Z

n
2
φ Γ(n)

)
. (2.24)
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The renormalization constant Zφ and the renormalized Green’s function Γ(n)(pi)

both depend on µ implicitly and explicitly. The reason being that the coupling

constant depends on µ as it is rescaled from the bare coupling. The renormalized

or running coupling g(µ) is not the physical coupling but can be related to it.

Additionally the renormalized mass becomes a running mass, m(µ) which is also

not a physical mass. Therefore as Γ(n) = Γ(n)(pi, µ, g(µ),m(µ)) the chain rule can

be applied to equation (2.24),

0 =

[
µ
∂

∂µ
+ µ

∂g

∂µ

∂

∂g
+

n

2
Z−1
φ µ

∂Zφ
∂µ

+ µ
∂m

∂µ

∂

∂m

]
Γ(n)(pi) . (2.25)

This is known as the Callan-Symanzik equation which can be used to define the

Renormalization Group functions.

More specifically one can define the β-function, mass anomalous dimension

and wave-function anomalous dimension,

β(g) = µ
∂g

∂µ
,

γm(g) =
µ

m

∂m

∂µ
,

γφ(g) = µ
∂(lnZφ)

∂µ
. (2.26)

The β-function is a fundamental object that is well defined but is derived from the

renormalization constant Zg which is divergent. The anomalous dimensions are a

measure of the quantum corrections to the dimension of an object. Usually they

are small numerically but in certain instances they can be large enough to shift

the overall dimension to an integer different from the canonical one. Hence a new

theory is obtained. Equally an operator can gain a large anomalous dimension and

become relevant in a different dimension. This is related to effective field theories

where, for example, a six dimensional operator is relevant in four dimensions.

Inserting these RG functions into equation (2.25) one finds

0 =

[
µ
∂

∂µ
+ β(g)

∂

∂g
+ γm(g)m

∂

∂m
+

n

2
γφ(g)

]
Γ(n)(pi) . (2.27)

The Renormalization Group functions are scheme dependent as they are derived

from the renormalization constants which undoubtedly depend on the scheme.

Note that in a gauge theory the RG functions will also be gauge dependent in the

sense that they depend on a gauge parameter. The explicit form of the running

24



Chapter 2

coupling g(µ) can be found using the one loop β-function

β(g) = µ
∂g(µ)

∂µ
= (d− 4)g + Ag2 (2.28)

where A is some constant. In four dimensions the first term vanishes and the

differential equation can be solved,

g(µ) = − 1

A ln( µ
Λ

)
. (2.29)

This is the explicit form of the running coupling at one loop where Λ is the

constant of integration known as the Λ-parameter. This presents a problem at

µ = Λ which is known as the Landau pole. Important properties can be deduced

from the one loop value of the running coupling. For example, if A < 0 then at

high energy (µ→∞) the coupling will tend to zero. This is known as asymptotic

freedom and implies that at sufficiently high energy the theory is effectively free.

Asymptotic freedom is an important characteristic of Quantum Chromodynamics.

Alternatively if A > 0 then at low energy (µ→ 0) the coupling will decrease. This

property is present in Quantum Chromodynamics and is known as confinement.

µ

g(µ)

µ

g(µ)

0 0

ΛΛIR UV

A < 0 A > 0

Figure 2.9: Renormalization flow for the one loop running coupling g(µ) for A < 0
(left) and A > 0 (right).

For the graph of A < 0 in figure 2.9 it is clear to see that for large energy

perturbation theory is valid but as µ decreases the coupling increases to a value

before µ = Λ where perturbation theory is no longer credible. The scale Λ is a

fundamental scale and in QCD is denoted by ΛQCD. The value of ΛQCD quantifies

where perturbation theory breaks down and is dependent on quark and colour

numbers. It also distinguishes between IR and UV parts of the theory and is

a non-perturbative quantity. As the running coupling is scheme dependent this

means that Λ is also scheme dependent, however the values of Λ in different

schemes are related exactly by a one loop calculation. If we take a higher order
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of the β-function there will be corrections to the value of the running coupling.

Consider now the scheme dependence of the β-function. Assume we have two

β-functions defined in different renormalization schemes and given by

β(g) = µ
∂g

∂µ
, β̄(ḡ) = µ

∂ḡ

∂µ

where β(g) = Ag2 + Bg3 and β̄(ḡ) = Āḡ2 + B̄ḡ3, to two loops. Assume that the

couplings are related by constants, ḡ(g) = g + Xg2. Using some simple algebra

one can obtain β̄(ḡ) as a function of A and B,

β̄(ḡ) = µ
∂ḡ

∂µ
= β(g)

∂ḡ

∂g

= (Ag2 +Bg3)(1 + 2Xg) = Ag2 + g3(B + 2XA) .

As we know that g = ḡ −Xḡ2, then

β̄(ḡ) = A(ḡ2 − 2Xḡ3) + (B + 2XA)ḡ3 + O(ḡ4)

= Aḡ2 + Bḡ3 + O(ḡ4) ,

therefore A = Ā and B = B̄. This proves to two loops the coefficients of the

β-function are scheme independent in a single coupling theory. In multi-coupling

theories the β-function will only be scheme independent at leading order. In

general the leading order term of any RG function will be scheme independent.

Note that this does not always mean the one loop term. For example, the wave-

function anomalous dimension γφ of φ4 theory has a leading order term at two

loops. Additionally in gauge theories the β-function is independent of the gauge

in a mass independent renormalization scheme such as MS. However in general

the β-function is gauge dependent and hence the running coupling is gauge de-

pendent in principle.

An important property of the β-function is the existence of fixed points. That

is, values of the coupling g∗ for which the β-function vanishes

β(g∗) = 0 . (2.30)

Fixed points underlie phase transitions. The trivial fixed point g∗ = 0 is known

as the Gaussian fixed point and describes the free field theory. Non-trivial fixed

point may also exists. The d-dimensional non-trivial fixed point closest to the

origin is known as the Wilson-Fisher fixed point, [41], the location of which is

refined by calculating to a higher loop order. In practice adding more loops will
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move g∗ 6= 0 closer and closer to the origin. Theories at fixed points are special

because as well as only having massless state particles they have no dimension-

full parameters at all. In other words they are scale invariant. The existence of a

non-trivial fixed point requires conditions on the perturbative β-function. If the

β-function has the form β(g) = Ag2 + Bg3, then the constants A and B must

have opposite signs for the non-trivial fixed point to exist. Moreover the fixed

point must have a positive value, g∗ = −A/B > 0. In QCD the values of A and

B have opposite signs for 9 ≤ Nf ≤ 16. This range is known as the two loop

conformal window and is defined as the number of quark flavours Nf where the

non-trivial fixed point exists. The non-trivial fixed point of QCD is known as the

Banks-Zaks fixed point, [88]. The range of the conformal window can be studied

perturbatively with a high loop order used to pinpoint the exact location of the

boundaries.

The Renormalization Group flow is a significant aspect of any renormalizable

theory, the value of the coupling in the UV and IR limits are of great interest as

theorists strive to understand how theories behave at very high and low energies.

A toy model containing a non-trivial fixed point is illustrated in figure 2.10. Ar-

rows indicate the UV Renormalization Group flow as µ→∞ which is known as

the UV flow. Reversing the direction of the arrows produces an IR Renormal-

ization Group flow. From the diagram one can conclude that for g < g∗ 6= 0 the

flow is away from the non-trivial fixed point towards the Gaussian fixed point.

Hence the trivial fixed point is UV stable. Consequently the non-trivial fixed

point is UV unstable and hence IR stable. The stability of a fixed point can also

be established by examining the eigenvalues of the associated stability matrix S
evaluated at the fixed point

S =
∂βi(gj)

∂gj

∣∣∣∣
g=g∗

. (2.31)

Here βi(gj) are a set of β-functions where 1 ≤ i, j ≤ Ncc where Ncc is the number

of coupling constants present in the theory. Positive eigenvalues signify an un-

stable fixed point while stability is indicated by negative values of the stability

matrix. A mixed signal suggests that we have a saddle point.
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0 g∗ = 0

UV Stable

g∗ 6= 0

β(g)

g

Figure 2.10: The ultraviolet Renormalization Group flow for a toy β-function
with a non-trivial fixed point.

2.2.1 Critical Exponents and Universality

To understand what critical exponents mean for quantum field theory, we first

look at how they are derived in statistical physics. Critical exponents describe

the behaviour of physical quantities near continuous phase transitions. A con-

tinuous, or second order, phase transition is a change of phase in a macroscopic

system in equilibrium not accompanied by latent heat. By latent heat we mean

the heat required to convert a solid into a liquid or vapour, or a liquid into a

vapour, without a change of temperature. Phase transitions that do involve la-

tent heat, like the freezing of water, will be called first order or discontinuous. An

example of a second-order phase transition is the ferromagnetic transition known

as the ‘Ising model’, [119]. Analogous to fixed points in QFT, a critical point is

a position in the phase diagram where a continuous phase transition takes place.

Two immediate questions arise. Why study continuous phase transitions when

most changes in Nature are discontinuous? Moreover, if the critical point is a

continuous phase transition, why is this a point of interest?

The answer to both of these questions lies in the phenomenon of universality

which states that properties of a system near the critical point appear to be the

same for completely different physical systems. This implies, for example, that

the specific heat near the liquid-gas critical point may behave the same way as

the specific heat near the paramagnet-ferromagnet phase transition in an other-

wise entirely different magnetic system. In other words macroscopic properties

of a system near a continuous phase transition thus appear to be rather inde-
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pendent of the microscopic interactions between particles. They depend only on

some broad characteristics of the system, like its dimensionality, symmetry and

presence or absence of sufficiently long-ranged interactions. The universality hy-

pothesis is not only intuitive, it has been confirmed in the context of statistical

physics by experiment. Moreover this phenomenon of different systems exhibiting

the same critical behaviour can be successfully explained by the Renormalization

Group, [118,119].

As an example we consider a ferromagnet which has two external parameters

of interest, the temperature T and the applied magnetic field H, [118]. In a

ferromagnet there are domains in which the magnetic fields of the individual

atoms align, but the orientation of the magnetic fields of the domains is random.

When an external magnetic field is applied to a ferromagnet, the magnetic fields

of the individual domains tend to line up in the direction of the external field.

Local magnetisation is constrained to lie parallel or anti-parallel to a particular

axis. Below the Curie temperature Tc, neighbouring magnetic spins align in

a ferromagnet in the absence of an applied magnetic field. Above the Curie

temperature the magnetic spins are randomly aligned in a paramagnet unless a

magnetic field is applied. The values H = 0 and T = Tc together give a critical

point at which the first order transition becomes continuous, [119]. Quantities of

interest exhibit power law behaviour sufficiently close to the critical point from

which critical exponents can be found. Power laws near the critical point can

be derived from the assumption of scaling. If we define the reduced temperature

t = (T −Tc)/Tc, and the reduced external magnetic field h = H/(kBTc) where kB

is the Boltzmann constant, the critical exponents can be defined as follows. The

critical exponent α is derived from the power law involving specific heat C in a

zero field, [118],

C ∼ A|t|−α

where A is the amplitude. Additionally more exponents can be derived from

power laws involving the zero field susceptibility χ, magnetisation M and the

correlation length ξ, respectively. They are, [118],

χ ≡ ∂M

∂H

∣∣∣∣
H=0

∝ |t|−γ ,

M ∝ |h|1/δ ,
ξ ∝ |t|−ν .

There are of course more exponents and some can be related via hyper-scaling

relations. The values of α, γ, δ and ν are non-trivial and are not completely
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independent numbers, they are however universal. Known as the ‘Ising’ expo-

nents, they are the same for a whole class of various phase transitions not just

the ferromagnet transition.

In quantum field theory the critical exponents have the same universal proper-

ties but are instead calculated using the RG functions. For example, the exponent

η is found by evaluating the anomalous dimension of the field at the non-trivial

fixed point

γφ(g∗) = η . (2.32)

At different non-trivial fixed points the anomalous dimension takes different val-

ues. Additionally the first derivative of the β-function evaluated at the non-trivial

fixed point gives a measure of corrections to scaling via the exponent ω,

β′(g∗) = ω . (2.33)

Critical exponents can also be obtained using hyper-scaling relations. In gauge

theories critical exponents can be used to understand properties of the theory.

For example, the quark mass anomalous dimension in QCD evaluated at the

non-trivial fixed point is a measure of chiral symmetry breaking. Note that the

underlying phase transition propagator in coordinate space behaves as

〈φ(x)φ(y)〉 ∼ 1

((x− y)2)d/2−1+η
(2.34)

with the exponent clearly present. Critical exponents are Renormalization Group

invariants as they are physical quantities. In other words the value of critical

exponent will be scheme independent. Two quantum field theories are said to

be in the same universality class if they share a common non-trivial fixed point,

which gives identical values when used to evaluate the critical exponents of each

theory.

2.2.2 Relation Between RG Functions and Renormalization Constants

Once all Green’s functions have been computed and renormalized we want to find

a way of perturbatively calculating the Renormalization Group functions. The

β-function can then be used, for example, to analyse the fixed point properties

and UV or IR behaviour of a theory. As it turns out, the RG functions can be

deduced using relations that involve the renormalization constants. We detail

the derivation of these relations here. To begin we take a massless single cou-

pling theory with coupling constant g and field φ. Once all Feynman diagrams

30



Chapter 2

have been computed the n-point Green’s functions are summed together. IR

divergences that may arise are only a problem if one considers diagrams on an in-

dividual level. By summing together graphs the IR singularities naturally cancel.

We can therefore focus on potential UV divergences which can be renormalized.

In essence each Feynman diagram has been computed as a function of the bare

parameters. The Green’s functions can be rescaled using the renormalization

constants for the field and coupling given in (2.10). Associated counterterms ab-

sorb the UV divergences at a particular loop order. By summing together graphs

before introducing counterterms we bypass the need to carry out subtractions on

each individual diagram which can be tedious.

Once the values of the counterterms are known they can be inserted into rela-

tions involving the RG functions. The relation for the β-function can be derived

by taking the equation of the bare coupling constant in (2.10) and differentiating

with respect to µ. The left-hand side will be zero as g0 is a bare parameter. The

right-hand side is slightly more complicated as each parameter must be differen-

tiated in turn,

0 =
ε

2
g(µ) + β(g) + β(g)

∂

∂g
lnZg(g) . (2.35)

As the renormalization constants have been defined in the renormalization process

their values can be inserted order by order into the above equation to establish

the β-function. Deriving the relation for the γ-function is as straightforward, with

the definition of the γ-function in equation (2.26) differentiated with respect to

µ,

γφ(g) = β(g)
∂

∂g
lnZφ . (2.36)

Again this can be solved order by order for the anomalous dimension of the field

by substituting in values for the renormalization constant of the field φ. Note

that this relation has been derived with the assumption that no gauge or mass

parameter is present.

Multi-coupling theories are more complicated and we derive the relations for a

two coupling theory here as it will be needed later. Assume we have a theory with

two couplings, g1 and g2, and two scalar fields, φ1 and φ2. Once again the theory

will be massless and will not contain a gauge parameter. The bare parameters

are rescaled as follows,

φ10 =
√
Zφ1φ1 ,

φ20 =
√
Zφ2φ2 ,
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gi0 = Zgi(g1, g2)gi(µ)µε . (2.37)

It is easy to see where the main difficulty in working with a multi-coupling theory

arises. As the renormalization constant Zg can depend on both couplings, the

relations for the β-functions will be more involved. To make things simpler the

renormalization constant for the coupling can be redefined,

Zgidef = Zgi(g1, g2)gi(µ) (2.38)

where i = 1, 2 so that the third definition in (2.37) becomes

gi0 = Zgidef(g1, g2)µε . (2.39)

We take the same path as in the single coupling theory and differentiate both

sides of equation (2.39) with respect to µ. Initially we take i = 1,

0 =
ε

2
Zg1def + βj(gj)

∂

∂gj
Zg1def(g1, g2) (2.40)

where there is a summation over j = 1, 2. Differentiating (2.39) again this time

with i = 2 produces a similar second relation. Therefore we are left with two

equations that can be solved simultaneously order by order to find the β-functions

β1(g1, g2) and β2(g1, g2),

0 =
ε

2
Zg1def + β1

∂

∂g1

Zg1def + β2
∂

∂g2

Zg1def ,

0 =
ε

2
Zg2def + β1

∂

∂g1

Zg2def + β2
∂

∂g2

Zg2def . (2.41)

The derivation for the anomalous dimensions of the fields follows a similar method

producing a pair of equations which can be solved order by order using known

renormalization constants to find γφ1(g1, g2) and γφ2(g1, g2),

γφ1(g1, g2) = β1
∂

∂g1

lnZφ1 + β2
∂

∂g2

lnZφ1 ,

γφ2(g1, g2) = β1
∂

∂g1

lnZφ2 + β2
∂

∂g2

lnZφ2 . (2.42)

2.3 Computational Methods

The calculation of Feynman diagrams is an intrinsic element of quantum field the-

ory and a process that has been refined and improved over many years. Through-
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out this thesis we calculate Feynman graphs and related Renormalization Group

functions using many perturbative and other methods. Before discussing original

calculations some important computational techniques are introduced. First we

discuss conformal integration which can be used in the computation of Feynman

diagrams at many loop orders. Importantly the large N expansion is then intro-

duced which is an alternative perturbative expansion to the traditional coupling

constant or ε-expansion. The large N expansion is one of the most prominent

tools used in our calculation of critical exponents.

2.3.1 Conformal Integration

In renormalizing φ4 theory we considered massless Feynman diagrams to be in

momentum space with integration variables corresponding to the momentum cir-

culating around a loop. However it is also possible to describe diagrams in a

coordinate space representation. This means that when a Feynman integral is

drawn the integration variables are represented as the vertices. Propagators are

denoted by lines between two coordinates in coordinate space and the power on

the propagator is given by a number or symbol beside the line as is illustrated in

figure 2.11.

α

0 x
≡ 1

((x)2)α

α

x y
≡ 1

((x − y)2)α

Figure 2.11: Coordinate space propagators.

One can map between coordinate and momentum space representations using a

Fourier transformation. Notation and conventions used here were first introduced

by Vasil’ev et al. in [47–50] and we follow a similar approach to that summarised

in [128]. In Vasil’ev et al. notation the Fourier transform is given by

1

(x2)α
=

a(α)

22απµ

∫
ddk

eikx

(k2)µ−α
, (2.43)

where x is in coordinate space and k is the conjugate momenta. We use the

notation d = 2µ for presentation purposes, this symbol should not be confused

with the mass scale appearing in dimensional regularisation. Additionally we

introduce the function

a(α) =
Γ(µ− α)

Γ(α)
(2.44)
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which is singular when α = µ+n and n is zero or any positive integer. Properties

of the function a(α) can be derived such as

a(α)a(µ− α) = 1 ,

a(α) =
a(α− 1)

(α− 1)(µ− α)
,

a(α) = α(µ− α− 1)a(α + 1) , (2.45)

which will prove invaluable when conformally integrating. The proof of the third

identity is established by first multiplying the numerator and denominator of the

function a(α) by α and µ− α− 1,

a(α) =
Γ(µ− α)

Γ(α)
=

αΓ(µ− α)(µ− α− 1)

αΓ(α)(µ− α− 1)
.

The Γ-function identity Γ(z+1) = zΓ(z) can then be used to complete the proof,

a(α) =
αΓ(µ− α− 1)(µ− α− 1)

Γ(α + 1)
= α(µ− α− 1)a(α + 1) .

Using Vasil’ev et al. conformal notation the elementary one loop self-energy

diagram in momentum space can be replaced by a graph in coordinate space. See

figure 2.12.

(a)

x x

y

y − x

α

β

α β

0 y x

(b)

Figure 2.12: One loop self-energy diagram in (a) momentum space representation
and (b) coordinate space representation.

The power on each propagator has also been labelled in the momentum space

diagram as they are assumed to be arbitrary. This diagram can be evaluated in

coordinate space using the relation in figure 2.13.

α β

0 y x
= ν(α, β, 2µ− α− β)

α + β − µ
0 x

Figure 2.13: Conformal integration applied to the one loop self-energy Feynman
diagram.
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The large boldfaced dot indicates the point at which one performs the conformal

integration. In this case we are integrating over the y variable. The notation

ν(α, β, γ) = πµa(α)a(β)a(γ) has also been implemented. For the proof of figure

2.13 one first notes that the Feynman diagram can be written as the following

integral,

Ic =

∫
ddy

(2π)d
1

(y2)α((x− y)2)β
, (2.46)

which can be rewritten using Feynman parameters

Ic =

∫ 1

0

∫

y

uβ−1(1− u)α−1du

[u(y − x)2 + (1− u)y2]α+β

Γ(α + β)

Γ(α)Γ(β)
.

The expression has been simplified using the notation

∫

y

=

∫
ddy

(2π)d
.

The integral can be rearranged by expanding out the denominator and completing

the square,

Ic =

∫ 1

0

∫

y

uβ−1(1− u)α−1du

[(y − ux)2 + u(1− u)x2]α+β

Γ(α + β)

Γ(α)Γ(β)
.

The Lorentz transformation, y → y − ux, can then be taken as ddy is Lorentz

invariant,

Ic =
Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

∫

y

uβ−1(1− u)α−1du

[y2 + u(1− u)x2]α+β
.

Applying identity (2.6) the integration over the y variable can be completed

Ic =
Γ(α + β)Γ(α + β − d

2
)

Γ(α)Γ(β)Γ(α + β)(4π)d/2

∫ 1

0

(u(1− u)x2)
d
2
−α−βuβ−1(1− u)α−1du .

The integral can then be simplified by collecting terms and integrating with re-

spect to u using the Euler β-function. We obtain

Ic =
Γ(α + β − µ)

Γ(α)Γ(β)

Γ(µ− α)Γ(µ− β)

Γ(2µ− α− β)

1

(x2)α+β−µ

= ν(α, β, 2µ− α− β)
1

(x2)α+β−µ ,

as represented in figure 2.13. In practice Feynman diagrams have more compli-

cated integration points as the coordinate space representation will have more

than two lines intersecting at a point. Therefore more involved integration tech-

niques are needed to evaluate these Feynman graphs.
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A useful tool in conformal integration is the property of uniqueness. This

approach was first introduced in three dimensions, [129], and later developed for

d-dimensions, [134]. Uniqueness allows conformal integration at an integration

point with three intersecting lines, see figure 2.14. Note that the point of inte-

gration has again been indicated by a boldfaced dot. For clarity, the one loop

Feynman diagram is illustrated in coordinate space on the left-hand side of figure

2.14 and has been represented in momentum space in figure 2.15.

z

0

x y

α

β γ

= ν(α, β, γ)

0

x y

µ− γ µ− β

µ− α

Figure 2.14: Coordinate representation of conformal integration using the unique-
ness condition where z is the integration variable.

x

x− y

z
y

z − x z − y

α

β γ

Figure 2.15: Momentum representation of the one loop Feynman diagram, Id,
that is conformally integrated in coordinate space in figure 2.14.

The derivation of figure 2.14 is given by [48–50] and we briefly cover the main

points here. The Feynman diagram on the left-hand side of figure 2.14 can be

written as a one loop Feynman integral

Id =

∫
ddz

(z2)α((z − x)2)β((z − y)2)γ
. (2.47)

The first step is to apply conformal transformations which change the integration
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coordinates as well as the external points through

xµ →
xµ
x2

, yµ →
yµ
y2

, zµ →
zµ
z2

. (2.48)

The integration measure via the Jacobian also produces contributions to the lines

joining the origin since

ddz → ddz

(z2)d
.

From the conformal transformations we also note the following relations

(z − x)2 → (z − x)2

x2z2
,

(z − y)2 → (z − y)2

y2z2
.

Applying the conformal transformation to the one loop Feynman integral one

finds

Id =

∫
(x2z2)β

(z − x)2β

(y2z2)γ

(z − y)2γ
z2α ddz

(z2)d
.

The integral can be rearranged by grouping terms together

Id = (x2)β(y2)γ
∫

(z2)α+β+γ−d

((z − x)2)β((z − y)2)γ
ddz . (2.49)

If α+ β + γ = d or d+ n where n is some positive integer, then the integral can

be computed. For n = 0 this condition is called uniqueness and so many steps

from uniqueness if n > 0.

z

0

x y

α

γ β

α+ β + γ = d

= (x2)β(y2)γ
∫

ddz
((z−x)2)β((z−y)2)γ

Figure 2.16: The uniqueness condition, α + β + γ = d, applied to the Feynman
integral (2.49).

The simplified integral on the right-hand side of figure 2.16 can be conformally

integrated using the identity given in figure 2.13 with z as the integration variable,

Id =
(x2)β(y2)γν(β, γ, 2µ− β − γ)

((x− y)2)β+γ−µ .
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Using the uniqueness rule we have β + γ − µ = µ− α. Hence

Id =
(x2)β(y2)γν(β, γ, α)

((x− y)2)µ−α
. (2.50)

The original conformal transformation can be undone and the variables rear-

ranged into the same form as figure 2.14,

Id =
ν(α, β, γ)

(x2)µ−γ(y2)µ−β(z2)µ−α
. (2.51)

Here we have rearranged ν(α, β, γ) as it is completely symmetric. The natural

extension to this rule with α + β + γ = d+ 1 has been proven in [130–134].

2.3.2 The Large N Expansion

The large N expansion is a perturbative expansion in 1/N analagous to the tra-

ditional coupling or ε-expansion. In a scalar theory the parameter N is given

by the number of scalar fields and is always assumed to be large. Although its

roots can be traced back earlier, we introduce here the fixed point large N ex-

pansion developed in the 1980s by Vasil’ev et al. in a series of papers, [47–50].

The large N expansion was first used to calculate critical exponents of the non-

linear sigma model (NLσM) to several orders. In later years it was applied to

the Gross-Neveu model, [135–142] and has become an important tool for pertur-

bative quantum field theory ever since. The main difference between the large

N and ε-expansion is that critical exponents expanded in 1/N will be calculated

at criticality in an arbitrary dimension of space. Whereas in the ε-expansion the

exponents will necessarily depend on the dimension via ε, as 2ε = Dc − d where

Dc is the critical dimension in which the theory exists.

An important application of the large N expansion is its ability to verify

if theories lie in a universality class or not. As early as 1976 theorists began

studying universality classes that spanned several dimensions. That is, looking

at several theories that lie in the same universality class but individually exist in

different dimensions. The theories will share a d-dimensional Wilson-Fisher fixed

point and their critical exponents will be identical at this fixed point. The critical

exponents of a theory that may or may not lie in the universality class can be

computed using the ε-expansion. Knowledge of the exponents in d-dimensions

via the large N expansion enables us to compare values of the ε-expansion expo-

nents with these d-dimensional exponents set in that specific critical dimension

order by order. Complete agreement of the two expansions confirms that the
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theory does exist in the universality class. The explanation behind this lies in

the fact that critical exponents corresponding to RG functions are calculated at

non-trivial fixed points where there is scale invariance. Therefore information on

RG functions is encoded in the critical exponents.

To illustrate how the large N expansion works in practice we calculate the

critical exponents η and χ of the O(N) universality class at leading order. The

O(N) universality class is well studied and contains not only the NLσM which

is renormalizable in two dimensions but also four dimensional φ4 theory with

an O(N) symmetry. This calculation was first published in work by Vasil’ev et

al., [47–50], which we follow here closely. More detail and background information

is provided for the benefit of the reader and to clarify certain techniques used.

The NLσM is important as it gives a 2-dimensional expansion with which one

can study the Wilson-Fisher fixed point of the O(N) universality class. The

Lagrangian for the NLσM is

LNLσM =
1

2
gab(φ)∂µφ

a∂µφb , (2.52)

where 1 ≤ a ≤ (N−1) and gab(φ) is a metric of the sphere in the chosen coordinate

system. The Lagrangian is invariant under the O(N) symmetry group and can

be rewritten by introducing a Lagrange multiplier

LNLσM =
1

2
(∂φi)2 +

σ

2
φiφi − σ

2λ
(2.53)

where 1 ≤ i ≤ N . The Lagrangian is perturbatively renormalizable in two

dimensions and the Lagrange multiplier gives the constraint φiφi = 1/λ. The

parameter λ can be rescaled as follows

LNLσM =
1

2
∂µφ

i∂µφi +
1

2
gσφiφi − 1

2
σ . (2.54)

The Lagrange multiplier is necessary in order to restrict the O(N) scalar fields

to lie on the N -sphere. Choosing a coordinate system for the constraint that the

length of φi is fixed to be the coupling constant would produce the non-linear

version of (2.54) which is (2.52). The canonical or classical dimensions of fields

in the NLσM can be deduced from (2.54) using the dimensionless action which

implies [L] = +d. Hence

[φi] =
d

2
− 1 , [σ] = 2 . (2.55)

The final term of equation (2.54) is unusual as ordinarily one would not have a
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linear term in the Lagrangian. Linear terms do not couple to any other field and

therefore play no part in the drawing of Feynman diagrams for the theory, this

creates a problem as we do want the σ field to propagate. Within large N it will

be possible to see this. The diagrammatic technique of the 1/N expansion can be

readily obtained by inserting kinetic terms for the σ field and rewriting equation

(2.54) in the form, [143,144],

LNLσM =
1

2
∂µφ

i∂µφi +
1

2
σφiφi +

1

2
σKσ − 1

2
σKσ , (2.56)

where K−1 is the bare propagator of the field σ. The addition of (1/2)σKσ is

included in the free part of the Lagrangian while the subtraction of the same term

is included as an interaction. Therefore the Lagrangian (2.56) can be broken in

to two parts,

LNLσM
F =

1

2
∂µφ

i∂µφi +
1

2
σKσ ,

LNLσM
I =

1

2
σφiφi − 1

2
σKσ

where LNLσM = LNLσM
F +LNLσM

I . Note that the Lagrangian has not been changed

in any meaningful way as the last two terms of (2.56) will always cancel. The

Lagrangian has simply been manipulated to generate a propagating σ field which

is produced because the potential of the σ field experiences dynamical symmetry

breaking. Hence a dynamical mass for σ is generated through a nonzero vacuum

expectation value (VeV) for σ. This mass does not show up in traditional pertur-

bation theory because the new dynamically produced minimum of the effective

potential σc is non-perturbative. However it can be accessed via the large N

expansion. The mass will not impact calculations as it becomes zero at critical-

ity. Dynamical symmetry breaking in the NLσM is explained in greater detail

in [135,143].

The large N technique works at the Wilson-Fisher fixed point where there

exists a universal theory whose critical properties are defined by the interaction

σφiφi. At a fixed point the theory is scale invariant and if a QFT is scale invariant

then the scaling dimension of the operators are fixed numbers, otherwise they are

functions depending on the distance scale. Therefore at criticality all Green’s

functions have scaling behaviour in the asymptotic limit. This means one can

write down critical point propagators of the two fields σ and φi for the NLσM in

coordinate space as follows

φ(x− y) ∼ A

((x− y)2)α
, σ(x− y) ∼ B

((x− y)2)β
. (2.57)
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The φi propagator is isotopic in the O(N) indices, the unit matrix has been omit-

ted above for simplicity. The propagating σ field is now consistent and accom-

modated with the non-perturbative dynamical σ field observed in the traditional

large N approach. In other words in the true vacuum of the NLσM quantum

theory there is a bound state of two φi fields which cannot be observed in per-

turbative calculations. That bound state has a non-fundamental propagator and

can be accessed through the large N expansion. The values A and B are x and

y independent amplitudes. There are corrections to scaling which we will ignore

for now, instead focusing on the leading order terms. The values of α and β

represent the full dimension of the fields and including both the canonical and

anomalous part they are

[φi] = α =
d

2
− 1 +

η

2
,

[σ] = β = 2 − η − χ . (2.58)

The term η gives the anomalous dimension of the φi field while χ represents the

anomalous dimensions of the vertex σφiφi. When evaluated at a fixed point they

are known as critical exponents,

η = γφi(g
∗) , χ = γσφiφi(g

∗) . (2.59)

As the critical exponents are functions of two variables, η = η(ε,N) and χ =

χ(ε,N), they can be expanded in powers of ε as in traditional perturbation theory,

or in the parameter 1/N where N is assumed to be large. When calculating

critical exponents in the large N expansion one performs the second type of

expansion. Hence

η =
∞∑

n=1

ηn(ε)

Nn
=

η1

N
+

η2

N2
+

η3

N3
+

η4

N4
+ . . . (2.60)

where the values ηn(ε) are computed in an arbitrary space-time dimension d.

Similarly,

χ =
∞∑

n=1

χn(ε)

Nn
=

χ1

N
+
χ2

N2
+
χ3

N3
+
χ4

N4
+ . . . . (2.61)

While canonical dimensions can be determined using dimensionality arguments,

coefficients ηn and χn of the expansions (2.60) and (2.61) are deduced by solving

the skeleton Dyson-Schwinger equations at criticality. This exploits the critical

RG equations and scaling behaviour of the propagators.

For clarity we summarise the essence of the large N expansion as follows. We
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want to calculate the critical exponents of the NLσM. Instead of perturbatively

expanding the RG functions in ε where d = 2−2ε, we can expand in the parame-

ter 1/N at criticality. The large N computation of the critical exponents will give

values in an arbitrary space-time dimension d. The large N expansion is in effect

a way of reordering the Feynman diagrams so that the graphs contributing to the

RG functions are treated in an order different from conventional perturbation

theory. Before calculating η and χ in the NLσM we briefly discuss the reordering

of a simple toy model. This illustrates more clearly how the large N expansion

works in practice.

Assume we have a toy model which has the following β-function

β(g) = − εg + [A + N ]g2 + [BN + C]g3

+ [DN2 + EN + F ]g4 + O(g5) (2.62)

where A, B, C, D, E and F are some constants. The β-function is an expansion

in the coupling g, however it can be rewritten in a different order. Requiring the

theory to be at criticality, β(g∗) = 0, then at leading order one can solve for the

critical coupling

g∗ =
ε

N + A
.

This fixed point is of order O(1/N) and inserting this into equation (2.62) one

can reorder the expansion of the β-function in terms of 1/N , 1/N2, 1/N3 and so

on. This reordering is illustrated in figure 2.17.

β(g) = − εg + [N + A]g2

+ [BN + C]g3

+ [DN 2 + EN] + F ]g4

Figure 2.17: The β-function of a toy model which can be reordered by inserting
g∗ = O(1/N). The red highlighted text indicates the new leading order (O(1/N))
term and the yellow signifies the new NLO (O(1/N2)) terms. The blue and green
highlighted text indicates the new NNLO (O(1/N3)) and NNNLO (O(1/N4))
terms, respectively.

Reordering the β-function in the 1/N expansion gives

β(g) = − εg + Ng2 +

(
Ag2 + BNg3 + DN2g4

)

+

(
Cg3 + ENg4

)
+ O(1/N4) . (2.63)
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Note that the first term −εg is also technically a leading order term in 1/N ,

however as it is only used to define the leading order critical coupling it can be

ignored. Importantly the large N method relies on the two-loop term of equation

(2.62) being linear in N in order to solve the leading order term for the coupling.

This presents a problem in certain theories such as QCD with symmetry group

SU(Nc), for example, which has an infinite number of graphs at leading order

in 1/Nc. Instead QCD is accessible via the large Nf expansion where Nf is the

number of massless quarks.

Having illustrated the rearranging of the β-function we return to the computa-

tion of the leading order exponents for the NLσM. The skeleton Dyson-Schwinger

equations for the NLσM in the large N expansion are given in figure 2.18. At crit-

icality they can be used to find η and χ. Taking only skeleton Dyson-Schwinger

equations means no self-energy corrections are included.

0 = φ−1(x) +

0 = σ−1(x) + 1
2

+ +

+ +

Figure 2.18: Skeleton Dyson-Schwinger equations of the NLσM in the large N
expansion. Solid lines indicate φi field propagators while dotted lines are σ field
propagators.

Note that all terms in figure 2.18 are in coordinate space. The first two terms

in each equation are leading order in 1/N and can be used to calculate η1. The

terms φ−1(x) and σ−1(x) are simply the 2-point functions of each field. The final

two graphs in each equation are next to leading order (NLO) diagrams in 1/N .

The ordering of each diagram is simplified by noting the following; each closed

φi loop has a factor of N and every σ propagator counts 1/N . The factor 1/2

included in the second equation is a symmetry factor. Computing leading order

diagrams uses Fourier transforms. It is therefore essential to introduce some new

notation. Recall that the general Fourier transformation used to map between

momentum and coordinate space is

f(x) =

∫
ddk

(2π)d
f̃(k)eikx , (2.64)
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with inverse

f̃(k) =

∫
ddxf(x)e−ikx . (2.65)

The Vasil’ev et al. Fourier transformations were first described in [47], and were

stated in equation (2.43). For the computation of σ−1(x), the critical point prop-

agator is given in equation (2.57) in coordinate space and can be rewritten as

σ(x) =
B

(x2)β
. (2.66)

The general Fourier transformation is used to map this propagator into momen-

tum space

σ̃(k) =

∫
B

(x2)β
e−ikxddk .

Applying the transformation of (2.43) and setting B̃ = 22(µ−β)B/a(µ − β) the

integral can be completed. As a reminder, we use the notation d = 2µ. Taking

the inverse we find

σ̃−1(k) =
1

B̃(k2)β−µ
.

The integral however is in momentum space. Applying the inverse of the general

Fourier transformation given by equation (2.65) maps it back into coordinate

space,

σ−1(x) =
1

B̃

∫
ddk

(2π)d
eikx

(k2)β−µ
.

Finally to solve the integral the inverse transformation of (2.43) can be applied,

which leaves

σ−1(x) =
1

B̃

22(2µ−β)

a(2µ− β)

1

(x2)2µ−β
1

(2π)d
.

This expression can be simplified by first inserting the value for B̃ and noting

that a(µ− β)/a(2µ− β) = a(β − µ)/a(β),

σ−1(x) =
a(β − µ)

Ba(β)

1

(x2)2µ − β
=

p(β)

B(x2)2µ−β (2.67)

where the notation p(β) = a(β − µ)/a(β) has been introduced, [47–50]. For the

leading order φ−1(x) term a similar derivation is used to find

φ−1(x) =
p(α)

A(x2)2µ−α . (2.68)

The final two leading order diagrams present in the skeleton Dyson-Schwinger

equations can be obtained by counting internal propagators and are given in

figure 2.19. Note that the factor of N appears in the second diagram due to the
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closed φi loop.

= AB
(x2)α+β

= NA2

(x2)2α

Figure 2.19: Leading order diagrams in the skeleton Dyson-Schwinger equations
of the large N expansion.

Certain Feynman graphs that are leading order in 1/N , such as those given

in figure 2.20, are excluded from the skeleton Dyson-Schwinger equations. This

is because the large N fixed point propagators include these contributions and

similar excluded diagrams via the exponents in the propagators. These and other

similar graphs would over-count and hence are not included.

Figure 2.20: Leading order Feynman diagrams in 1/N of the NLσM. These are
excluded from the skeleton Dyson-Schwinger equations as they would lead to
over-counting.

Incorporating leading order terms only the skeleton Dyson-Schwinger equations

are

p(α)

A(x2)2µ−α +
AB

(x2)α + β
= 0 , (2.69a)

p(β)

B(x2)2µ−β +
NA2

2(x2)2α
= 0 . (2.69b)

Multiplying equation (2.69a) by A, equation (2.69b) by B and setting z = A2B

one finds

p(α) +
z

(x2)2α+β−2µ
= 0 ,

2

N
p(β) +

z

(x2)2α+β−2µ
= 0 .

45



Chapter 2

The exponent on the x2 term can be simplified, 2α + β − 2µ = −χ, by inserting

the values of α and β. The equations then become

p(α) + z(x2)χ = 0 ,
2

N
p(β) + z(x2)χ = 0 .

This can be further simplified as χ can be neglected at leading order. Note that

by leading order here we mean of the order O(1). Therefore we have

p(α) + z + O(1/N) = 0 , (2.70a)
2

N
p(β) + z + O(1/N) = 0 . (2.70b)

This set of equations can be solved simultaneously to find

p(α) =
2p(β)

N
, (2.71)

which can be used to obtain the leading order term of the critical exponent η. To

do this we substitute in the values for α and β and begin by solving the left-hand

side of equation (2.71),

p(α) = p

(
µ− 1 +

η

2

)
=

a(µ− 1 + η
2
− µ)

a(µ− 1 + η
2
)

=
Γ(µ− η

2
+ 1)

Γ(η
2
− 1)

Γ(µ− 1 + η
2
)

Γ(1− η
2
)

.

We neglect all terms of order O(1/N), however one term in the denominator

cannot be simplified as a pole would be produced by Γ(−1). Hence we are left

with

p(α) = p

(
µ− 1 +

η

2

)
=

Γ(µ+ 1)Γ(µ− 1)

Γ(η
2
− 1)Γ(1)

+ . . . .

There is however a way around this problem. Implementing identity zΓ(z) =

Γ(z + 1) twice to the term Γ(η/2− 1) removes the pole,

p(α) = p

(
µ− 1 +

η

2

)
= Γ(µ+ 1)Γ(µ− 1)

(
η

2
− 1

)(
η

2

)
+ . . . .

Expanding η in terms of 1/N and limiting to only leading order we obtain

p(α) = p

(
µ− 1 +

η

2

)
= Γ(µ+ 1)Γ(µ− 1)

(
− η1

2N

)
+ O

(
1

N2

)
.
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The right-hand side of equation (2.71) is much simpler to solve as no poles appear,

2p(β)

N
=

2

N

Γ(2µ− 2)

Γ(2− µ)Γ(µ− 2)
.

We have neglected to include η and χ in the β term as we only included terms

at leading order. Putting both sides of the equation together and solving for the

leading order term of η gives

η1 = − 4Γ(2µ− 2)

Γ(2− µ)Γ(µ− 2)Γ(µ+ 1)Γ(µ− 1)
. (2.72)

Note that factors of 1/N have cancelled in the above expression. As z is also an

expansion of 1/N , that is z = z1/N + z2/N
2 + . . . , equation (2.70a) can be used

to find its leading order term,

z1 =
η1Γ(µ+ 1)Γ(µ− 1)

2
. (2.73)

We also want to find the leading order term of χ. To do this consider only the

first skeleton Dyson-Schwinger equation. However now the next to leading order

Feynman diagrams have to be included. Expressions for the next to leading order

diagrams are given in figure 2.21.

= A3B2Σ1

(x2)3α+2β−2µ

= NB3A5Σ2

(x2)5α+3β−4µ

Figure 2.21: The next to leading order diagrams in the first skeleton Dyson-
Schwinger equation for the φi field.

Here Σ1 and Σ2 are the values of the dimensionless integrals for each next to

leading order diagram, respectively. The first diagram of figure 2.21 can be writ-

ten as an integral in coordinate space over two integration parameters, see figure

2.22.
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0

y

x

z

α β

β α

α
=

∫

y,z

(y2)−α((y − x)2)−β(z2)−β((y − z)2)−α((x− z)2)−α

Figure 2.22: Coordinate space representation of the first NLO Feynman diagram
in figure 2.21.

From the conformal representation of figure 2.22 it is clear to see that the power

3α + 2β in the first diagram of figure 2.21 comes from the power on the propa-

gators. The factor 2µ meanwhile is due to the two integration variables y and z.

The factors of A and B in figure 2.21 count the number of internal φi and σ prop-

agators. This leaves the value of Σ1 dimensionless. Similarly the second diagram

of figure 2.21 can be written as an integral over four integration parameters. As

with the first diagram, 5α + 3β gives the powers on the propagators while the

term 4µ is due to the four integration variables. The N factor is due to the φi

loop present in the diagram. Removing these factors from the integral leaves the

value of Σ2 dimensionless. The second diagram of figure 2.21 is illustrated in

coordinate space in figure 2.23 where

f(x, y, z, v, w) = (w2)α((w−x)2)α((z−x)2)β((v−z)2)α(v2)β((y−z)2)α((v−y)2)α .

0

v z

y x

w

β

α

β

α αβ

α α
=

∫

w,y,z,v

f(x, y, z, v, w)−1

Figure 2.23: Conformal representation of the second NLO Feynman diagram in
figure 2.21.

Both NLO diagrams will be calculated explicitly in Chapter 5. Inserting the

NLO diagrams, along with LO terms already computed, into the first skeleton

Dyson-Schwinger equation we find

0 = p(α) +
A2B

(x2)α+β
(x2)2µ−α +

A4B2Σ1

(x2)3α+2β−2µ
(x2)2µ−α

+
NA6B3Σ2

(x2)5α+3β−4µ
(x2)2µ−α .
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Each term is multiplied by A and (x2)2µ−α. As before we also set z = A2B,

0 = p(α) +
z

(x2)2α+β−2µ
+

z2Σ1

(x2)4α+2β−4µ
+

Nz3Σ2

(x2)6α+3β−6µ
. (2.74)

Naively if one tries to explicitly compute the next to leading order diagrams us-

ing conformal integration one would encounter divergence in the form of poles

from terms such as ν(µ, µ, 0), as well as logarithmic divergences. Therefore the

theory needs to be regularised before renormalizing. For 2 < d < 4 the NLσM is

renormalizable in accordance with Bogolyubov’s classification, [145], since there

are only a finite number of types of divergent diagrams. In contrast to ordinary

perturbation theory with a d = Dc−2ε expansion, the transition to non-integer di-

mensions in our case does not in itself regularise the theory. The vertex σφiφi will

remain logarithmic for any d = 2µ when the fields have the dimension α = µ− 1

and β = 2.

The analogue of dimensional regularisation for the large N expansion is an-

alytic regularisation, which violates the dimensionless nature of the vertex by a

small shift in the dimension of the field σ. We can introduce the regularisation

by the shift β = β − ∆ in the dimension of the field σ without changing the

dimension of the field φi. Equivalently we could also use χ → χ + ∆. As a

result of the shift the vertex σφiφi acquires the dimension −∆ and therefore we

must place in front of it some coefficient gc of dimension ∆, the ‘bare coupling

constant’, to keep the vertex dimensionless. The letter ∆ plays the part of ε in

dimensional regularisation and divergences will appear in the form of poles with

respect to ∆. The next to leading order diagrams can therefore be separated into

divergent and convergent, or finite, pieces.

= K1

∆
+ Σ′1

= K2

∆
+ Σ′2

Figure 2.24: The next to leading order diagrams in the skeleton Dyson-Schwinger
equation for the φ field split into divergent and finite parts.

In figure 2.24, K1 and K2 are the coefficients of the divergent parts of both

diagrams, while Σ′1 and Σ′2 are the finite pieces. Note that ∆ will be taken to zero
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after renormalization as ε is during dimensional regularisation. By introducing a

regularisation equation (2.74) is modified,

0 = p(α) +

[(
z1

N
+

z2

N2

)
1

(x2)2α+β−∆−2µ

]

+

[
z2

1

N2

1

(x2)4α+2β−2∆−4µ

(
K1

∆
+ Σ′1

)]

+

[
z3

1

N2

1

(x2)6α+3β−3∆−6µ

(
K2

∆
+ Σ′2

)]
+ O

(
1

N3

)
. (2.75)

Note that the term z has been expanded out to include terms up to orderO(1/N2).

It is clear to see that logarithmic divergences will appear when Taylor expanding

the x2 terms. This is in addition to the poles associated with the divergent next

to leading order diagrams.

Having identified where the divergences occur in the theory we must now

renormalize. To do this recall the Lagrangian of the NLσM,

LNLσM =
1

2
(∂φi0)2 +

1

2
σ0φ

i
0φ

i
0 −

1

2λ
σ0 . (2.76)

As in conventional renormalization we have assumed the parameters of the theory

are bare. Note that the bare coupling constant g0 introduced in front of the

interaction term to ensure the vertex is dimensionless has been rescaled into the

parameter λ. Every operator will have an associated renormalization constant,

i.e. O0 = ZOO, where O is some operator. We can therefore introduce the

following renormalization constants, [47–50],

φ0 =
√
Zφφ , σ0 =

√
Zσσ , σ0φ0φ0 = Zvσφφ . (2.77)

The vertex renormalization constant is given by Zv. The Lagrangian becomes,

[47–50],

LNLσM =
1

2
Zφ(∂φi)2 +

1

2
Zvσφ

iφi + . . . . (2.78)

The final term of Lagrangian (2.76) is linear and does not couple to any other field.

It does not affect the renormalization and therefore we have neglected to include

it here. It is important to clarify at this point that leading order diagrams are not

divergent, as is obvious from their computation; next to leading order diagrams

are divergent and along with divergences in the form of poles we will also have

logarithmic divergences. In other words introducing ∆ will produce ln(x2) terms

which could spoil the scaling behaviour. When the 2-point counterterm is fixed

explicitly to remove the simple poles in ∆, the ln(x2) terms should also cancel.
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Therefore as 2-point counterterms remove simple and logarithmic poles, we do

not need to introduce 1-point counterterms. Thus the renormalization constants

can be set as

Zφ = Zσ = 1 ,

Zv = 1 + m , (2.79)

where m gives the counterterms in an expansion of N and ∆ given by

m =
m1

N∆
+

m22

N2∆2
+

m21

N∆2
+ . . . . (2.80)

Note that the next to leading order counterterms will also not be required as they

are of the order O(1/N3) and we are only including terms up to order O(1/N2).

Inserting the counterterms in the Lagrangian we find

LNLσM =
1

2
(∂φi)2 − (1 +m)

1

2
σφiφi

=
1

2
(∂φi)2 − 1

2
σφiφi − m1

N∆
σφiφi + . . . .

Diagrammatically the first skeleton Dyson-Schwinger equation with counterterms

is illustrated in figure 2.25.

0 = φ−1 + + +

+ +

Figure 2.25: The skeleton Dyson-Schwinger equation for the φ field with 2-point
renormalization counterterms included. NLO counterterms are not included as
they are not necessary to remove all divergences at order O(1/N2).

Substituting Renormalization Group constants and subsequent counterterms into

the first skeleton Dyson-Schwinger equation one finds,

0 = p(α) +

[(
z1

N
+

z2

N2

)
1

(x2)2α+β−∆−2µ

(
1 +

2m1

N∆

)]

+

[
z2

1

N2

1

(x2)4α+2β−2∆−4µ

(
K1

∆
+ Σ′1

)]

+

[
z3

1

N2

1

(x2)6α+3β−3∆−6µ

(
K2

∆
+ Σ′2

)]
+ O

(
1

N3

)
.

51



Chapter 2

The factor of two in front of the counterterm m1 is included as two counterterms

are present. Note that the above equation has two expansions, one in the pa-

rameter z with respect to 1/N and the other in m which is an expansion in both

1/N and 1/∆. Only terms of order O(1/N2) have been incorporated. Inserting

α = µ− 1 + η/2 and β = 2− η − χ the equation becomes,

0 = p

(
µ− 1 +

η

2

)
+

[(
z1

N
+

z2

N2
+

2m1z1

N2∆

)
1

(x2)−χ−∆

]

+

[
z2

1

N2

1

(x2)−2χ−2∆

(
K1

∆
+ Σ′1

)]

+

[
z3

1

N2

1

(x2)−3χ−3∆

(
K2

∆
+ Σ′2

)]
+ O

(
1

N3

)
.

Recall that η and χ can also be expanded in 1/N , see equations (2.60) and (2.61).

Therefore we can Taylor expand the x2 term in both χ and ∆,

0 = p

(
µ − 1 +

η1

2N

)

+

[(
z1

N
+

z2

N2
+

2m1z1

N2∆

)(
1 +

χ1

N
ln(x2)

)(
1 + ∆ ln(x2)

)]

+

[
z2

1

N2

(
K1

∆
+ Σ′1

)(
1 + 2∆ ln(x2)

)(
1 + 2

χ1

N
ln(x2)

)]

+

[
z3

1

N2

(
K2

∆
+ Σ′2

)(
1 + 3∆ ln(x2)

)(
1 + 3

χ1

N
ln(x2)

)]

+ O

(
1

N3

)
.

We must fix the counterterm to remove simple poles in ∆. Additionally we still

have to take x2 → 0 limit to approach the critical point asymptotically. Hence the

ln(x2) terms have to be absent after renormalization. This defines χ1. In other

words two constraints are obtained to establish a value for the χ1 term. Matching

terms with factors (1/N2) ln(x2) gives the first constraint, while matching terms

with factor 1/(N2∆) gives the second

z1χ1 + 2m1z1 + 2z2
1K1 + 3z3

1K2 = 0 , (2.81a)

2m1z1 + z2
1K1 + z3

1K2 = 0 . (2.81b)

Rearranging the second constraint and substituting into the first gives an equation

for χ1,

χ1 = − z1K1 − 2z2
1K2 . (2.82)

The value of z1 has already been calculated in equation (2.73). Expressions for

K1 and K2 have been determined in [49]. The computation of K1 and K2 relies
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on conformal integration and in particular the uniqueness condition which allows

3-point vertices to be integrated over in coordinate space.

We perform this calculation in Chapter 5 for a slightly different theory, ex-

plaining the details of this method is therefore left until then. However a partic-

ular quirk should be noted here regarding the computation of the next to leading

order diagrams. As we shall see in Chapter 5, the uniqueness condition is not

exactly satisfied as 2α + β = d − χ at each 3-point vertex. However the χ term

can be neglected at leading order. The uniqueness condition is therefore satisfied

and the diagrams can be calculated. This point will be revisited in Chapter 5,

for the moment we simply state the values for K1 and K2 which were found to

be, [49],

K1 =
2π2µa2(α)a(β)

Γ(µ)
,

K2 =
π4µa3(α)a3(β)a(µ+ α− β)

Γ(µ)
. (2.83)

Finally, using leading order values of α and β, the value of the critical exponent

χ1 can be found

χ1 = η1

(
µ(−5 + 4µ)

2− µ

)
. (2.84)

We have calculated the leading order terms of the critical exponents η and χ.

Higher order corrections to these results have been calculated, [48–50]. These are

the d-dimensional values of the critical exponents for the entire O(N) universality

class.

Therefore to confirm whether a theory lies in this O(N) universality class

or not, the exponents of the theory can be computed in an ε-expansion around

it’s critical dimension and compared with large N results order by order. For

example, if one were to compute the critical exponents of φ4 theory with an

O(N) symmetry using a coupling or ε-expansion, they would perfectly match the

large N results with d = 2µ = 4− 2ε to every available order. Hence confirming

that φ4 theory is in the O(N) universality class.

2.3.3 Summary

In this Chapter we have introduced and discussed background techniques that

will be used throughout this thesis. Renormalization ideas, in particular the

Renormalization Group, will be referenced throughout our original work. Using
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the β-functions we will analyse the fixed point properties and stability of many

theories that have not until now been fully investigated. Universality has also

been discussed here which will be a central thread through each Chapter of Part

I. The computational method of conformal integration has been explored here

for the benefit of the reader as it will be used extensively throughout. Much

of the background has focused on the large N expansion for two main reasons.

Firstly, the large N expansion will be used in every Chapter of Part I for different

universality classes. The second reason is that the critical point large N formalism

is a non-standard QFT technique, which is rarely fully derived or explained in

modern literature. It is therefore important to explain the set-up before discussing

any original work.
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Ten Dimensional O(N) Scalar

Field Theory

3.1 Introduction

Conformal invariance is a fundamental concept in statistical mechanics, con-

densed matter and high energy physics. A conformal field theory (CFT) is one

which is invariant under the conformal group. In two dimensions the conformal

group is infinite dimensional and hence conformal symmetry becomes a very pow-

erful constraint on a quantum field theory (QFT). For this reason two dimensional

CFT’s have been studied extensively. It is in two dimensions that conformal field

theories can sometimes be exactly solved. It is therefore more interesting to look

at conformal field theories beyond two dimensions where the conformal group is

finite. One question that arises is whether theories above two dimensions keep

conformal invariance. The relationship between scale and conformal invariance

has been a topic of interest for many years. One question in particular is whether

scale invariant field theories enjoy the full conformal symmetry under the assump-

tion of locality and unitarity. Can a quantum field theory above two dimensions

flow to a nearby scale invariant theory without conformal invariance? While it is

possible for a QFT to be scale invariant but not conformally invariant, examples

are rare. For this reason the terms are often used interchangeably in the context

of QFT, even though the scale symmetry group is smaller.

The equivalence of scale and conformal invariance in two dimensions was

proved in the 1980s, [146, 147], the second of which uses the strict assumption

of unitarity. However as neither generalised their proof to higher dimensions, it
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is not known in dimensions above two if this statement is still correct. In four

dimensions perturbative checks were performed, [146,148], and general perturba-

tive arguments given, [149,150], all of which provided no conclusive proof for the

equivalence but equally found no counterexamples. Beyond perturbation theory

the conditions for the equivalence have been analysed in four dimensions, [151].

There have also been attempts to prove this equivalence in higher dimensions,

particular in six dimensions with important results obtained in [152–154]. A strict

proof is not given in any of the above literature without restrictive assumptions;

moreover there is no known reason why the equivalence should be true for d ≥ 2.

However, no evidence has been found to contradict the possibility of scale and

conformal invariance being equivalent. Furthermore, if scale invariant but not

conformal unitary theories exist this would have not only theoretical but also

phenomenological consequences.

Supposing that the equivalence between scale and conformal invariance is not

correct, scale invariant theories in higher dimensions are still interesting to study

for a number of reasons. Predominantly this is due to the apparent connection of

ultraviolet (UV) stable fixed points in a higher dimensional theory with infrared

(IR) stable fixed points in a lower dimensional theory, [46]. This is known as

UV/IR duality and for this reason a universality class is sometimes referred to

as UV completion. The connectivity of QTF’s in differing dimensions containing

the same underlying symmetry is of particular interest. This connectivity derives

from the critical point Renormalization Group (RG) equation and Wilson-Fisher

fixed point, [41, 43, 44, 155, 156], which is a core property in d-dimensions. The

most widely known example is the use of the Wilson-Fisher fixed point under-

lying the Ising model as well as the super-fluid phase transition, dilute polymer

solutions and Heisenberg ferromagnet. Information about the properties of their

phase transitions can be accessed by the continuum scalar quantum field theory

with a φ4 interaction. When endowed with an O(N) symmetry the N = 1 case

corresponds to the Ising model whereas the ferromagnet is described by the value

of N = 3. Equally dilute polymer solutions and super-fluidity correspond to the

cases of N = 0, known as the replica limit, and N = 2 respectively. We briefly

discussed the connection of scalar φ4 theory containing O(N) symmetry with the

two dimensional non-linear sigma model (NLσM) in the previous Chapter. This

group of theories is termed the ‘O(N) universality class’.

Remarkably information on phase transition of the Heisenberg magnet in three

dimensions can be obtained by renormalizing the O(N) scalar φ4 theory in four

dimensions. In other words, in the approach to three dimensions through the
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ε-expansion, where the spacetime dimension is d = 4 − 2ε, only the quartic

operator present in the O(N) scalar theory is relevant. In practical terms to

obtain accurate information on the phase transition properties, one would have

to know the Renormalization Group functions of O(N) φ4 theory to a large loop

order. This has been achieved in recent years to five, [157–161], six, [162–165],

and seven loops, [165], in the modified minimal subtraction (MS) scheme. From a

bigger perspective our understanding of the universality of this particular Wilson-

Fisher fixed point has been extended above and beyond four dimensions in recent

years. This will be the focus of the current Chapter. We will begin by first

recapping the work of [51–54] in four, six and eight dimensions on the O(N)

universality class. We then construct a ten dimensional Lagrangian in section

3.3 with all the conditions necessary to extend the universality class to a higher

dimension. The RG functions of the ten dimensional theory will be perturbatively

calculated and the resulting ε-expanded critical exponents compared order by

order with known large N results. Hence providing conclusive evidence of ten

dimensional Lagrangian existing in this universality class along with the NLσM,

φ4 theory and the six and eight dimensional theories discussed. Finally in section

3.5 we attempt to examine the fixed point behaviour of the ten dimensional theory.

Note that this calculation in ten dimensions is original with results published

in [3].

3.2 O(N) Symmetric Scalar Field Theories

The Euclidean field theory of N real massless scalar fields with an O(N) invariant

quartic interaction is given by the Lagrangian

L(4) =
1

2
∂µφ

i∂µφi +
1

8
g2

1

(
φiφi

)2
, (3.1)

where 1 ≤ i ≤ N . This Lagrangian is perturbatively renormalizable in four

space-time dimensions. It is super-renormalizable in three space-time dimensions.

While this version of the Lagrangian is the one widely used to construct the

Renormalization Group functions, the interaction can be rewritten in terms of

a Hubbard-Stratonovich auxiliary field σ to produce an equivalent Lagrangian

which will be renormalizable in the 1/N expansion,

L(4) =
1

2
∂µφ

i∂µφi +
g1

2
σφiφi − 1

2
σ2 . (3.2)

One can integrate out σ via its equation of motion, σ = g1φ
iφi, to obtain the

original Lagrangian. In 2 < d < 4 dimensions the quartic interaction of La-
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grangian (3.1) generates a flow from a free UV fixed point to an interacting IR

fixed point near four dimensions, [51]. This can be seen from dimensional analysis

where the interaction term becomes relevant for d < 4 dimensions. In d = 4− 2ε

dimensions this fixed point can be studied perturbatively in the framework of

the Wilson-Fisher ε-expansion, [41, 166]. The behaviour of the fixed point has

been analysed and subsequent critical exponents computed in [51–53]. To de-

velop a picture of the fixed point structure we state the one-loop results with the

β-function calculated to be, , [51],

β(g1) = − εg1 + (N + 8)
g2

1

6
(3.3)

and the weakly coupled IR fixed point at leading order located at

g∗1 =
6ε

N + 8
+ O(ε2) . (3.4)

Higher order corrections in ε will change the value of g∗1 but not its existence,

[52, 53]. The IR stability of the fixed point can be verified by computing the

value of ∂β(g1)/∂g1 at the fixed point g∗1. There also exists a trivial Gaussian

fixed point at g∗1 = 0 which is IR unstable and hence UV stable. The anomalous

dimensions of the fundamental field φi and its composite at the fixed point have

been calculated to leading order (LO), [51],

γφ(g∗1) =
N + 2

4(N + 8)2
ε2 + O(ε3) ,

γφ2(g
∗
1) =

N + 2

N + 8
ε + O(ε2) . (3.5)

Along with the corresponding scaling dimensions,

∆φ =
d

2
− 1 + γφ(g∗1)

= 1 − ε

2
+

N + 2

4(N + 8)2
ε2 + O(ε3) ,

∆φ2 = d − 2 + γφ2(g
∗
1)

= 2 − 6

N + 8
ε + O(ε2) .

Above four dimensions the interaction term becomes irrelevant and the free the-

ory, g∗1 = 0, becomes IR stable. The non-trivial fixed point still exists above four

dimensions in the form of a UV stable fixed point in d = 4 + 2ε, [51],

g∗1 = − 6ε

N + 8
+ O(ε2) . (3.6)
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Anomalous dimensions at this fixed point are given by equations (3.5) with

ε→ − ε. As the anomlous dimension γφ(g∗1) begins with an ε2 term, the dimension

of φi is still positive and therefore stays above the unitary bound, ∆ ≥ d/2− 1,

for sufficiently small ε. However as the fixed point (3.6) is negative, questions

can be raised about its stability with [51] suggesting it should be referred to

as ‘metastable’. It is well known from the literature that this four dimensional

theory lies in the same universality class as the two dimensional NLσM. This

connectivity of Lagrangian (3.2) with the underlying two dimensional CFT was

outlined in [52]. The Lagrangian for the NLσM was given in equation (2.52) and

rewritten in the large N formalism in equation (2.54) by introducing a Lagrange

multiplier. The NLσM shares the same O(N) symmetry as the four dimensional

φ4 theory.

There are early indications in the form of the Lagrangian’s that both the

NLσM and φ4 theory lie in the same universality class. Firstly they both contain

the interaction term, σφiφi, and the dimensionality of the two fields φi and σ in

both theories are given by equation (2.55). Note that the dimension of the φi

field will be the same in d-dimensions for both theories but will be different in

the individual dimensions. As the interaction term alone defines the dynamics

and the quadratic term defines the dimensionalities for the propagators, the two

theories can be thought of as being equivalent at the Wilson-Fisher fixed point

in the dimension range 2 < d < 4. A more concrete proof of this universality is

available through the large N expansion of the critical exponents, [47–50]. The

leading order terms for the exponents η and χ were calculated in the previous

Chapter, see equations (2.72) and (2.84). For the benefit of the reader we recall

how these exponents are connected to the Renormalization Group functions,

γφ(g∗i ) = η , γσ(g∗i ) = − η + χ (3.7)

where 1 ≤ i ≤ Ncc and Ncc is the number of coupling constants in the theory. As

well as providing evidence of the universality between the NLσM and φ4 theory

the combination of the large N and ε-expansions provides a good approximation

for the critical behaviour in 2 < d < 4 dimensions.

As there is no apparent physical reason for the O(N) universality class to

end at four dimensions, we can look at extending the connectivity to higher

dimensions. One possible candidate is six dimensional φ3 theory. This theory

contains a non-trivial interacting fixed point and has recently been considered

in [51–53, 168, 169, 182]. The Lagrangian which is perturbatively renormalizable

59



Chapter 3

in six space-time dimensions is given by

L(4,6) =
1

2

(
∂µφ

i
)2

+
1

2
(∂µσ)2 +

g1

2
σφiφi +

g2

6
σ3 . (3.8)

Our notation of L(d1,d2) is to indicate the dimension of the base quartic four-

dimensional theory, which is d1, and the particular critical dimension, d2, where

the theory is renormalizable. This is an O(N) symmetric theory of N + 1 scalar

fields where there exists an O(N) multiplet of fields φi and a single scalar field σ.

As with the Lagrangian’s in two and four dimensions we have i = 1, . . . , N and

the σ field has been introduced. One difference that Lagrangian (3.8) has with

lower dimensional theories is that σ cannot be eliminated either as a Lagrange

multiplier or as an auxiliary field. The additional interaction present in (3.8) en-

sures renormalizability in six space-time dimensions. The idea of studying a cubic

theory in d = 6 − 2ε dimensions is not a new one. Michael Fisher has explored

such an ε-expansion in the theory of a single scalar field as a possible description

of the Lee-Yang singularity in the Ising model, [170]. This case corresponds to the

N = 0 version of (3.8). Renormalization Group functions for similar cubic theo-

ries have been calculated in d = 6− 2ε for the O(N) and O(1) cases in [171–173].

The fixed point structure of Lagrangian (3.8) has been thoroughly studied using

an ε and large N expansion, [51–53]. We note some of the key results here. The

one loop β-functions are, [51,53],

β1(g1, g2) = − ε

2
g1 +

(8−N)g3
1 + 12g2

1g2 − g1g
2
2

24
, (3.9a)

β2(g1, g2) = − ε

2
g2 +

4Ng3
1 −Ng2

1g2 + 3g3
2

8
. (3.9b)

The anomalous dimensions to one loop are given by, [53],

γφ(g1, g2) = − g2
1

6
,

γσ(g1, g2) =
−[Ng2

1 + g2
2]

12
.

The β-functions and anomalous dimensions have been extended to three and

fours loops in [52, 53]. It was noted that for large N the β-functions can be

simplified, [51],

β1(g1, g2) = − ε

2
g1 +

Ng3
1

12(4π)3
, (3.10a)

β2(g1, g2) = − ε

2
g2 +

−4Ng3
1 +Ng2

1g2

4(4π)3
. (3.10b)
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An IR stable interacting fixed point emerges from this large N approximation,

[51], at leading order which is located at

g∗1 = i

√
12ε

N
, g∗2 = 6g∗1 . (3.11)

It is straightforward to compute corrections at large N by solving (3.9a) and

(3.9b) in powers of 1/N , [51–53]. It was noted in [51] that the coefficients in

this expansion appear to increase quite rapidly. This suggests that the large N

expansion may break down at some finite N . This proves to be the case when

examining finite N solutions as the IR interacting fixed point disappears below a

critical value of N . Note that along with the leading order solution (3.11) there

are three additional solutions that are symmetric to this fixed point with respect

to the origin. At large N the IR stability of the fixed point can be seen from the

fact that the matrix ∂βi(gj)/∂gj evaluated at the interacting fixed point has two

positive eigenvalues. This suggests UV instability and hence IR stability. The

critical exponents η and χ calculated for the cubic theory at this fixed point are

in precise agreement with the large N solutions, (2.72) and (2.84), analytically

continued to d = 6 − 2ε dimensions, [52, 53]. The equivalence of the coefficients

for the two expansions provides conclusive evidence that φ3 theory exists in the

O(N) universality class. Hence the O(N) symmetric universality class exists not

only for 2 < d < 4 dimensions but also extends to 4 < d < 6. Moreover it shows

that the IR stable fixed point of the cubic theory describes the same physics as

the UV fixed point found in the 4 + 2ε expansion of φ4 theory.

An analysis of fixed points for the six dimensional theory at finite N was

also carried out, [51–53, 174], which enabled an approximation of the conformal

window to be calculated. In [51] it was noted that there are various critical val-

ues of N for which the fixed point strcutre has different properties. Treating

N as a continuous parameter the critical value of N where the interacting IR

fixed point becomes stable was found to be Ncrit ≈ 1038 at leading order, [174].

Using resummation methods the value Ncrit ≈ 400 was found on a four loop

level, [53]. At N < Ncrit the non-trivial fixed point disappears into the complex

plane. As discussed in [175] this is a rather generic behaviour at the lower end of

the conformal window; the conformality is lost through the annihilation of a UV

fixed point and an IR fixed point. This was also argued to happen at the lower

(strongly coupled) edge of the conformal window for a four dimensional SU(Nc)

gauge theory with Nf flavours of quarks, [175]. It is interesting to observe that

the same type of behaviour occurs at the lower edge of the conformal window of

φ3 theory in d = 6 − 2ε dimensions which exists from Ncrit to infinity. For all
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N the β-functions (3.9a) and (3.9b) have nine solutions, the trivial fixed point

located at (g∗1, g
∗
2) = (0, 0), two pure imaginary solutions and two saddle points

located at N = 500 and N = 2000 at leading order, [52]. These saddle points are

not IR stable but are always real. The remaining four solutions change behaviour

depending on the value of N . For N ≤ 1038 all four fixed point are complex,

while for N > 1038 they are all real.

It is of interest to look at simpler cubic models where there is no or different

symmetries present due to the connection of these models to condensed matter

and statistical physics problems. For example, the N = 0 case of one scalar

field relates to the Lee-Yang edge singularity problem, [170], where the coupling

is imaginary. The single scalar cubic field theory has no fixed points at real

couplings due to the negative sign of the β-function for the second coupling,

which can be seen by setting N = 0 in equations (3.9a) and (3.9b). However it

does have a fixed point at imaginary couplings. The main critical exponent of

interest for this problem is ς which is related to the anomalous dimension of φi

through a hyper-scaling law

ς =
[d− 2 + η]

[d+ 2− η]
.

Note that as the Lee-Yang problem stretches across dimensions to d = 1 one has

to be careful using perturbation theory. To gain estimates Padé and Padé-Borel

resummation methods for η can be used before evaluting ς, [53]. Results can

then be compared with figures obtained using other methods such as the strong

coupling expansion, [176], Monte Carlo methods and conformal bootstrap analy-

sis, [177].

Utilizing non-perturbative methods along with traditional perturbative tech-

niques is important for the integrity of results. Therefore it is highly desirable to

provide further analysis from the non-perturbative point of view. We summarise

current non-perturbative work done on the O(N) universality class as well as

issues surrounding this as it will be relevant for later Chapters where new work

is presented. There have been attempts to obtain a more rigorous approach to

O(N) symmetric CFTs using conformal bootstrap ideas. The Conformal boot-

strap has been applied to the dimension range 2 < d < 4 for φ4 theory, [61, 178],

and for the cubic O(N) theory in 4 < d < 6 dimensions, [51,52,58,59,62,168,169].

The second case was seen as a potential route to accessing the five dimensional

quantum field theory with a conformal symmetry. Theories in five dimensions are

of particular physics interest due to the AdS6/CFT5 correspondence where dual
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theories in the AdS6 bulk include higher spin fields in the large N limit, [56]. As

higher order corrections for the critical value of N were found to have large nega-

tive coefficients, [52,53], the critical value of N must be lower in five dimensions.

To three loops the five dimensional critical value of N was calculated as, [52],

Ncrit

∣∣∣∣
d=5

= 64.253 ,

by simply setting ε = 1/2 in the expansion. The reduction from Ncrit ≈ 1038 in

six dimensions to Ncrit ≈ 64 is not unexpected. An analogous phenomenon oc-

curs in the Abelian Higgs models containing Nf complex scalars which has a fixed

point in d = 4 − 2ε dimensions for Nf ≥ 183, [179, 180], while non-perturbative

studies show in three dimensions that Nf is much lower.

Conformal bootstrap results for the fixed point structure and critical value of

N in five dimensions have given a wide array of results. The existence of an O(N)

invariant CFT in five dimensions was proven by the discovery of a non-trivial fixed

point that exists for lower values of N all the way down to N = 1, [58]. This

suggests that an interacting unitary CFT exists in five dimensions for all non-

zero N . Similarly using conformal bootstrap in d = 5 and d = 5.95 dimensions

evidence was provided by [62] for the interacting fixed point found perturbatively

and it was conjectured that in five dimensions there is no interacting O(N) CFT

for N < 15. This value is close to the estimate Ncrit ≈ 14 obtained from ex-

trapolating the 4 + 2ε expansion to ε = 1/2, [52]. However a similar conformal

bootstrap calculation did not find any evidence of this five dimensional confor-

mal window, [59]. Contradicting conformal bootstrap results are not unusual as

varying conditions are used for different bootstrap programs. In the case of [59]

it is possible that the lower bound of the current central charge may not have

captured the conformal window. However another possibility for these conflict-

ing results is the poor asymptotic behaviour of the large N expansion. It was

observed that the asymptotic behaviour of the 1/N expansion in five dimensions

is significantly worse than in three dimensions, [51].

Other non-perturbative techniques besides conformal bootstrap have been ap-

plied to the O(N) cubic theory in the dimension range 2 < d < 6. The Functional

Renormalization Group (FRG) was used as an approach to the critical O(N)

model above four dimensions by [181] and later in [63,65]. The first worked with

a local potential approximation of the original pure O(N) model with quartic self

interaction and found no physically admissible fixed point solution with a stable

potential in the dimension range 4 < d < 6. However this formalism may have
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missed important non-perturbative information that is encoded in the Hubbard-

Stratonovich parametrization. The later publications compared FRG results with

the ε-expansion, favourably for d→ 6 although for d→ 5 the differences between

the two approaches became sizeable. Additionally [65] produced proof of the exis-

tence of the universality class up to six dimensions. As a further application, the

symmetry group of the cubic theory can be modified from O(N) to the symplectic

group, Sp(N). The 1/N expansion for the Sp(N) case was computed and found

to be related to the corresponding O(N) symmetric theory by a change of sign,

N → −N , [182]. Therefore the results point to the existence of an interacting

non-unitary five dimensional CFT with Sp(N) symmetry, [182]. This theory of

anti-commuting scalar fields may be of interest in statistical mechanics and in

the higher spin dS/CFT correspondence.

The O(N) universality class was extended to eight dimensions in [54], and

later reviewed in [156]. The Lagrangian is given by

L(4,8) =
1

2
∂µφ

i∂µφi +
1

2
(2σ)2 +

1

2
g1σφ

iφi +
1

6
g2σ

22σ

+
1

24
g2

3σ
4 , (3.12)

which is perturbatively renormalizable in eight dimensions. All possible relevant

interactions are included to ensure renormalizability which is the reason for an

interaction with a derivative coupling. On dimensional grounds there are more

possible interactions with derivatives but only one is independent. They are all

related by integration by parts (IBP) where the total derivative operators can

be dropped from the Lagrangian as they can be integrated out of the action.

Additionally (3.12) has a double pole σ propagator which is due to the fact that

the canonical dimension of σ at the Wilson-Fisher fixed point is always two.

This is also the reason why σ has a momentum dependent propagator in (3.8)

but not in lower dimensions. The ε-expansion was used to calculate η and χ

for the eight dimensional theory and then compared with the large N exponents

where d = 8− 2ε, [54]. This ensured (3.12) exists in the same O(N) universality

class as the NLσM, four dimensional φ4 theory and the six dimensional cubic

theory. An attempt to analyse the fixed point structure and conformal window

of (3.12) found an interesting property. In eight dimensions several values of Ncrit

at leading order were found, [54],

NA
crit = 0.006773 ,

NB
crit = 0.043641 ,
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NC
crit = 0.109780 .

This suggests in effect that there is no conformal window, unlike the six dimen-

sional case, as stable fixed points emerge for all N ≥ 1. To illustrate this point

the fixed point structure at leading order was computed for N = 500. Several

fixed points emerged with one being stable. The fixed point structure of the eight

dimensional theory is not as rich as the six dimensional case. However there is

a related theory which does share similarities with Lagrangian (3.8), namely the

eight dimensional theory (3.12) with an Sp(N) symmetry. Varying scalar theo-

ries by altering the symmetry group was first considered for the six dimensional

case, [182,183]. The first of which provided evidence that the Sp(N) model con-

tained a non-unitary UV fixed point in d = 6 + 2ε dimensions and suggested

that the fixed points survive in seven dimensions. The absence of unitarity is due

to the presence of anti-commuting scalars incorporated by the Sp(N) symmetry.

The RG functions for the Sp(N) model can be derived from those of the O(N)

model by mapping N → −N . The critical values of N for the eight dimensional

Sp(N) model which form the bounds of the conformal window were calculated

to leading order, [54],

NA
crit = 13563.468614 + O(ε) ,

NB
crit = 6720.118606 + O(ε) ,

NC
crit = 6145.191926 + O(ε) ,

ND
crit = 2.894045 + O(ε) .

Above NA
crit all fixed points were found to be real while for NB

crit < N < NA
crit the

fixed points are complex. In the interval between NB
crit and NC

crit all fixed points

become real again while forND
crit < N < NC

crit only complex fixed point were found.

We have briefly reviewed the relevant published literature on the O(N) uni-

versality class in the dimension range 2 < d < 8 for motivation as to why this

universality class is so important. Perturbative and non-perturbative work en-

dowed with O(N) and related symmetries has been examined. Although much of

the literature has focused on calculations performed in even dimensions, physics

in the fixed dimensions d = 3, 5 and 7 can be accessed through non-perturbative

methods or by the perturbative ε and large N expansions. Most importantly we

discussed calculations of the critical exponents in four, six and eight dimensions

which matched with large N results, providing strong evidence for this universal-

ity class. An illustration of how these theories are linked is provided in figure 3.1.

This diagram shows, for example, that the Wilson-Fisher fixed point obtained
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using the 2 + 2ε expansion in the NLσM is equivalent to the fixed point of the

4 − 2ε expansion in φ4 theory. The former non-trivial fixed point will be UV

stable while the latter is IR stable.

2 4 6 83 5 7
d

2 + 2ε expansion

in NLσM

4− 2ε expansion

in φ4 theory

4 + 2ε expansion

in φ4 theory

6− 2ε expansion

in φ3 theory

6 + 2ε expansion

in L(4,6)

8− 2ε expansion

in L(4,8)

Figure 3.1: Summary of the O(N) universality class of interacting symmetric
scalar theories thus far. The interacting theory may be described in 2 + 2ε and
4 + 2ε dimensions by a UV stable Wilson-Fisher fixed point of the NLσM and φ4

theory respectively. In 4− 2ε and 6− 2ε dimensions it may be described as an IR
stable fixed point of φ4 and the cubic theory respectively. While for 6 + 2ε and
8− 2ε dimensions the interacting theory may be described by a UV stable fixed
point of the cubic and 8-dimensional theories respectively.

3.3 Ten Dimensions

There also exists a ten dimensional extension of the O(N) symmetric universality

class of scalar theories. The calculation of the RG functions in ten dimensions has

been published in [3] and adds original results to the development of the tower

of theories. As well as extending the universality class to a higher dimension,

the main motivation for looking at the ten dimensional case is to analyse the

fixed point structure for comparison with lower dimensions. The first step in the

calculation is to construct the ten dimensional Lagrangian. The key here is the

use of the canonical dimensions of the two basic fields given by (2.55). Recall

that at the Wilson-Fisher fixed point the universal interaction alone defines the

dynamics; quadratic terms define the dimensionality of the fields.

Using the canonical dimensions of the basic fields we ensure all relevant inter-

actions at ten dimensions are included in the Lagrangian which ensures renormal-

izability. Note that the auxiliary field σ will have the same canonical dimension

throughout the universality class, while φi has a canonical dimension of 1, 2, 3

and 4 in four, six, eight and ten dimensions, respectively. One consequence is

that in each of these dimensions the σφiφi operator is preserved and moreover

no new φi − σ interactions can be included. In order to ensure renormalizability

in ten dimensions, extra pure σ (spectator) interactions have to be added which

can include derivative interactions. The ten dimensional scalar Lagrangian is
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therefore given by

L(4,10) =
1

2
∂µφ

i∂µφi +
1

2
(2∂µσ) (2∂µσ) +

1

2
g1σφ

iφi +
1

6
g2σ

222σ

+
1

2
g3σ (2σ)2 +

1

24
g2

4σ
32σ +

1

120
g3

5σ
5 . (3.13)

This Lagrangian will contain an O(N) symmetry and to provide conclusive ev-

idence it lies in the same universality class as the previous O(N) theories, we

compute the critical exponents perturbatively using the ε-expansion. These ex-

ponents can then be compared order by order with known large N results. The

Feynman rules for the ten dimensional theory can be found from Lagrangian

(3.13). In essence the free Lagrangian determines the propagator while the inter-

action terms define the vertex rules. Note that solid lines indicate φi fields while

the σ fields are illustrated using dotted lines.

φ φ
= 1

p2 σ σ
= 1

(p2)3

i j

= g1δij

= 1
3
g3(p2

1p
2
2 + p2

1p
2
3 + p2

2p
2
3)

+1
3
g2((p2

1)2 + (p2
2)2 + (p2

3)2)

= 1
4
g2

4(−p2
1 − p2

2

−p2
3 − p2

4)
= g3

5

Figure 3.2: Feynman rules for the Green’s functions of O(N) symmetric scalar
theory with Lagrangian L(4,10). Note all momenta are directed inwards in the
vertices.

3.4 Calculation Techniques

The computational methods and techniques used for this calculation are discussed

here. A similar set-up will be implemented for computations in the following

Chapters with subtle differences noted when appropriate. Given the vast number

of Feynman diagrams considered throughout this thesis we utilize several com-

puter programs which simplify the calculation process, [184–187]. To begin all
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Feynman diagrams corresponding to each of the Green’s functions are electroni-

cally generated using the qgraf package, [184]. Specifying the incoming particles

and allowed interactions, the loop momenta and the number of loops, qgraf will

define the graphical structure of all possible diagrams. In our set-up we choose

to have all particles incoming, as is consistent with our momentum routing in

the Feynman rules. The qgraf input model file used for the ten dimensional

calculation is shown in figure 3.3.

[phi, phi,+]

[sigma, sigma,+]

[sigma, phi, phi]

[sigma, sigma, sigma]

[sigma, sigma, sigma, sigma]

[sigma, sigma, sigma, sigma, sigma]

Figure 3.3: qgraf input model file for the ten dimensional calculation.

We forbid all tadpole and snail diagrams from the output and include only one-

particle irreducible (1PI) graphs. A diagram is irreducible if it cannot be split

into two disconnected graphs by cutting only one internal line. Tadpole diagrams

cannot be considered irreducible as they contain one external leg and are therefore

excluded. Since we are in a massless regime we also have no need to consider snail

diagrams due to them vanishing when using dimensional regularisation. Both

tadpole and snail graphs are illustrated in figure 3.4.

(a) (b)

Figure 3.4: (a) Snail Feynman diagram, (b) Tadpole Feynman diagram.

The total number of Feynman diagrams generated for the ten dimensional theory

is given in table 3.1. Two-point functions will be calculated to two loops while

all higher point interactions will be calculated to one loop only. Therefore the

β-function for each coupling and the anomalous dimensions will be computed
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to one and two loops respectively. Although computational limitations would

eventually hinder our progress, we could in theory calculate the β-functions to a

higher loop order. However for the purpose of a qualitative fixed point analysis

calculating to one loop is sufficient.

φφ σσ σφφ σ222σ and σ(2σ)2 σ32σ σ5

Tree Level - - 1 1 1 1

One Loop 1 2 2 5 19 89

Two Loop 5 11 - - - -

Table 3.1: Number of Feynman Diagrams computed for each 2, 3, 4 and 5- point
function. Total number of Feynman diagrams is 138.

As an example we have displayed the qgraf output data for a 3-point Feynman

diagram in figure 3.5 along with its graphical representation in figure 3.6. The

3-point diagram contains both φi and σ fields, the ordering of each vertex and in-

ternal line structure which connects them is encoded in the qgraf output. Once

all Feynman diagrams have been generated we identify and order the graphs into

their basic topologies and apply O(N) indices automatically using form, [185].

The computer package form and its threaded version tform, [186], have been

used extensively throughout this calculation. The Feynman rules for the propa-

gators and vertices are then substituted in. This ensures the graphs are picked

up at the appropriate place in the subsequent program.

Finally reduze [187, 190], is used to simplify the Feynman diagrams into

a final set of master integrals which can be computed by hand. Throughout

this thesis the first version of reduze is implemented, [187], which is written

in GiNaC [191], and works by using a C++ implementation of the Laporta

algorithm. The Laporta algorithm systematically reduces scalar integrals to a

set of basic master integrals using a technique known as integration by parts,

[192,193].

∗vx(sigma(2), phi(−1), phi(1))

∗vx(sigma(3), phi(−3), phi(1))

∗vx(sigma(−5), sigma(2), sigma(3))

Figure 3.5: qgraf output file for a 3-point Feynman diagram.
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Figure 3.6: 3-point Feynman diagram at one loop with σ and φi fields.

In the reduze implementation of the Laporta algorithm the package starts with

an auxiliary topology and uses integration by parts (IBP) and Lorentz invariant

(LI) relations to generate connections involving this topology and lower topologies

which can be obtained by removing an internal propagator. Any integrals that

cannot be ultimately simplified this way are called master integrals. Consider a

diagram with l loops and m independent external momenta. An auxiliary topol-

ogy (or integral family) is an ordered set of all propagators An = {P1, . . . , Pn}
where all scalar products containing at least one loop momenta ki can be ex-

pressed as a linear combination of propagators from this set An. An auxiliary

topology for any diagram must contain exactly l[1
2
(l + 1) + m] propagators or

a reduction cannot happen. A database containing relations between integrals

is constructed which can be used to simplify Feynman integrals. The Laporta

algorithm creates all possible relations between the scalar integrals thus resulting

in a large degree of redundancy in reducing graphs. With the Laporta algorithm

it is possible to compute any l-loop and n-point function provided one has a big

enough computer and disk capacity. It is important to understand what reduze

is doing internally when performing integral reduction before any master inte-

grals are calculated. We will illustrate the procedure by applying the Laporta

algorithm to the scalar 3-point function at one loop.

3.4.1 Integral Reduction

A 3-point Feynman diagram at one loop that can be reduced is displayed in figure

3.7. There are two independent external momenta p and q, while k describes the

internal loop momenta.
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p q

p+ q

k

k − p k + q

α

β γ

Figure 3.7: A one loop 3-point Feynman diagram.

The general definition of the one loop diagram containing three propagators is

I31(α, β, γ) =

∫
ddk

(2π)d
1

(k2)α((k − p)2)β((k + q)2)γ
. (3.14)

The notation is explained here as it will be used throughout this Chapter. For Iij
the first index i of the subscript will denotes the number of external propagators

while j signifies the loop order. The integral will be assumed to be at the com-

pletely symmetric point unless a superscript O label is present. This integrand

is of the form 1/(abc) where a, b and c are products of the propagators. We will

reduce this integral at the fully symmetric point where each external leg has the

same value of squared momenta and the following conditions are satisfied

p2 = q2 = (p+ q)2 = − µ2 ,

pq = pr = qr =
µ2

2
. (3.15)

This gives a symmetric identity on the 3-point integral

I31(α, β, γ) = I31(α, γ, β) = I31(β, γ, α) = . . . . (3.16)

As an example, if we take the integral I31(2, 1, 1) given by

I31(2, 1, 1) =

∫
ddk

(2π)d
1

(k2)2(k − p)2(k + q)2
(3.17)

one can derive the relation I31(2, 1, 1) = I31(1, 2, 1) = I31(1, 1, 2). Written out

completely in integral form this is

I31(2, 1, 1) =

∫
ddk

(2π)d
1

(k2)2(k − p)2(k + q)2
(3.18a)
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=

∫
ddk

(2π)d
1

k2((k − p)2)2(k + q)2
(3.18b)

=

∫
ddk

(2π)d
1

k2(k − p)2((k + q)2)2
. (3.18c)

To prove this relation more explicitly, one can take integral (3.17) and perform

a change of variable k → k + p. Using the symmetric point conditions of (3.16)

this retrieves the third relation (3.18c). Similarly by using the change of variable

k → k − q one can find the second relation (3.18b).

Using the method of integration by parts we want to reduce the integral given

by equation (3.14) down to a set of master integrals which can be solved by hand,

or by other methods. Using dimensional regularisation properties we know that

an integral over a total derivative is zero

∫
ddk

∂

∂kµ
f(k2) = 0 . (3.19)

This is also zero on Lorentz grounds if f(k2) is a scalar. Applying (3.19) to

equation (3.14) the following relation can be found

∫
ddk

(2π)d
∂

∂kµ
[kµI31(α, β, γ)] =

∫
ddk

(2π)d

[
dI31(α, β, γ) + kµ

∂

∂kµ
I31(α, β, γ)

]
= 0

where we have used the notation I31(α, β, γ) =
∫
k
I31(α, β, γ) to simplify the

equation. The second term can be moved to the right-hand side to obtain

d

∫
ddk

(2π)d
I31(α, β, γ) = −

∫
ddk

(2π)d
kµ

∂

∂kµ
I31(α, β, γ) . (3.20)

Explicitly differentiating each term in the denominator of I31(α, β, γ) in turn one

finds

∫

k

d

(k2)α((k − p)2)β((k + q)2)γ
= 2α

∫

k

k2

(k2)α+1((k − p)2)β((k + q)2)γ

+ 2β

∫

k

k(k − p)
(k2)α((k − p)2)β+1((k + q)2)γ

+ 2γ

∫

k

k(k + q)

(k2)α((k − p)2)β((k + q)2)γ+1
.

The numerator of each individual integral can be rearranged using basic algebra

∫

k

d

(k2)α((k − p)2)β((k + q)2)γ
= 2α

∫

k

1

(k2)α((k − p)2)β((k + q)2)γ
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+ β

∫

k

k2 + (k − p)2 − p2

(k2)α((k − p)2)β+1((k + q)2)γ

+ γ

∫

k

k2 + (k + q)2 − q2

(k2)α((k − p)2)β((k + q)2)γ+1
.

These integrals can then be rewritten using the notation I31(α, β, γ). Imple-

menting this convention and factorising terms on both sides of the equation the

following relation is obtained

(d− 2α− β − γ)I31(α, β, γ) = β[I31(α− 1, β + 1, γ) − p2I31(α, β + 1, γ)]

+ γ[I31(α− 1, β, γ + 1) − q2I31(α, β, γ + 1)] . (3.21)

Taking the most general case by setting α = β = γ = 1,

I31(1, 2, 1) =
1

µ2

[
1

2
(d− 4)I31(1, 1, 1) − I31(0, 2, 1)

]
. (3.22)

The identity given by equation (3.16) has been used to simplify the above relation

which is illustrated in figure 3.8. Integrals I31(0, 2, 1) and I31(1, 1, 1) are master

integrals which can be calculated by hand. Additionally the integral I31(0, 2, 1)

is proportional to I31(0, 1, 1) as

I31(0, 2, 1) = ν(2, 1, d− 3) =
πd/2Γ(d

2
− 2)Γ(d

2
− 1)Γ(3− d

2
)

Γ(d− 3)
,

then, due to the property Γ(z + 1) = zΓ(z),

I31(0, 2, 1) =
πd/2Γ(d

2
− 1)2Γ(2− d

2
)(d− 3)

Γ(d− 2)
= (3− d)ν(1, 1, d− 2) .

Therefore

I31(0, 2, 1) = (3− d)I31(0, 1, 1) .

A comprehensive derivation of the solution to the 3-point integral I31(1, 1, 1) in

d = 4− 2ε dimensions is given by [194,197] with the latter notation used here,

I31(1, 1, 1) =
1

µ2

(
2π2

9
− 2

3
ψ′
(

1

3

)
+

[
12s3

(
π

6

)
− 35

108

π3

√
3
− log2(3)π

4
√

3

]
ε

+ O(ε2)

)
(3.23)

where

sn(z) =
1√
3
=
[
Lin

(
eiz√

3

)]
(3.24)

and Lin(z) is the polylogarithm function for n ≥ 2. The digamma function is
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given by ψ(z) = Γ′(z)/Γ(z) where the prime denotes the derivative of the Γ-

function. We have used the notation of [194] but it is worth noting that they are

related to cyclotomic polynomials, [198]. To assist the evaluation of the integral

numerically we note

ζ3 = 1.20205690 , ψ′(1
3) = 10.09559713 , ψ′′′(1

3) = 488.1838167

s2(π2 ) = 0.32225882 , s2(π6 ) = 0.22459602 , s3(π2 ) = 0.32948320

s3(π6 ) = 0.19259341 .

In this thesis the Laporta algorithm will always reduce Feynman diagrams

down to a set of master integrals containing simple propagators of the form 1/k2.

This means that even graphs containing tensor structure in the numerator are

reduced down to simple scalar diagrams. Note that in general master integrals

can contain double propagators of the form 1/(k2)2, however we do not encounter

these in any of our calculations.

1

2 1 = 1
µ2

1
2

(d− 4)

1

1 1 − 2 1

Figure 3.8: Reduction of a 3-point integral at one loop with higher power propa-
gators to a set of master integrals.

Inserting the value of the master integral I31(0, 2, 1) for completeness,

I31(1, 2, 1) =
1

2µ2

[
(d− 4)I1(1, 1, 1) − 2Γ(3− d

2
)Γ(d

2
− 2)Γ(d

2
− 1)(−µ2)

d
2
−3

(4π)
d
2 Γ(d− 3)

]
.

(3.25)

This gives a basic understanding of how the Laporta algorithm works using inte-

gration by parts. The Laporta algorithm can be applied to diagrams with more

complex structures and a higher numbers of loops in principle. In subsequent cal-

culations we will derive the reduction of the 3-point function at the completely

off-shell point which is more involved and requires a different external momen-

tum set-up. The 2-point and 4-point functions at the fully symmetric point will

also be reduced. For now we have enough understanding of how reduze works

internally to move on and begin calculating the master integrals themselves.
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3.4.2 2-point Master Integrals

At one and two loops qgraf produces nineteen 2-point Feynman diagrams con-

taining φi and σ fields. The three one loop graphs are illustrated in figure 3.9,

while the two loop diagrams are given in figures 3.10 and 3.11. At two loops we

have five diagrams with incoming φi fields and eleven graphs containing incoming

σ fields.

Figure 3.9: One loop 2-point Feynman diagrams.

Figure 3.10: Two loop 2-point Feynman diagrams with incoming φi fields.

Figure 3.11: Two loop 2-point Feynman diagrams with incoming σ fields.
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All nineteen Feynman diagrams can be reduced using the Laporta algorithm to

a set of master integrals. The one loop master integral is illustrated in figure

3.12 and is labelled I21(1, 1) where the second subscript indicates one loop. The

two loop master integrals are given in figure 3.13 and are labelled (I21(1, 1))2 and

I22(1, 1, 0, 0, 1). The notation for the second two loop master integral becomes

more clear when looking at the 2-point auxiliary topology or integral family at

two loops which is illustrated in figure 3.14. The values α, β, γ, ρ and δ signify the

power on each of the five propagators and by contracting two of these propagators

we obtain the second 2-point master integral. The internal loop momenta are

denoted as k and q and all master integrals are constructed using propagators of

the form 1/k2, irrespective of what fields the original diagrams which have been

reduced contain.

p p

k

k − p

Figure 3.12: The 2-point master Feynman diagram at one loop, I21(1, 1).

(a) (b)

p p

k q

k + p q + p

p p

k

p− k − q

q

Figure 3.13: The 2-point master Feynman diagrams at two loops (a) (I21(1, 1))2,
(b) I22(1, 1, 0, 0, 1).
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α

β

δ

γ

ρp p
k − q

k q

q − pk − p

Figure 3.14: The integral family I22(α, β, γ, ρ, δ) for 2-point Feynman diagram at
two loops.

The 2-point master Feynman diagram at one loop can be defined as an integral

of the form

I21(1, 1) =

∫
ddk

(2π)d
1

k2(k − p)2
. (3.26)

Using identity (2.6) from the previous Chapter this integral can be easily solved

I21(1, 1) =
Γ(2− d

2
)Γ(d

2
− 1)2(p2)

d
2
−2

(4π)
d
2 Γ(d− 2)

. (3.27)

For the theory of interest the value of the master integral in d = 10−2ε dimensions

is

I(d=10−2ε)
21 (1, 1) =

[
− 1

840ε
− 44

11025
+

(
π2

10080
− 10973

10080

)
ε

+

(
11π2

33075
− 2449616

121550625
+

ζ3

360

)
ε2

+ O(ε3)

]
(p2)3

(4π)5
. (3.28)

Note that the factor of 2ε in the dimension is purely a convention choice on behalf

of the author to enable a more convenient matching with large N results later.

The symbol ζn is the Riemann zeta function. The full set of master integrals

for this diagram and other relevant master integrals in four, six, eight and ten

dimensions are listed in Appendix A. The first 2-point diagram at two loops

given in figure 3.13 (a) can be calculated using the same identity (2.6) used for

the one loop graph. The general d-dimensional result is

(I21(1, 1))2 =

∫
ddk

(2π)d
1

(k2)2((k + p)2)2

=
Γ(2− d

2
)2Γ(d

2
− 1)4(p2)d−4

(4π)dΓ(d− 2)2
, (3.29)
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and in d = 10− 2ε dimensions this becomes

(I(d=10−2ε)
21 (1, 1))2 =

[
1

705600ε2
+

11

1157625ε
− π2

4233600
+

6239

162067500

+

(
1578028

12762815625
− ζ3

151200
− 11π2

6945750

)
ε

+

(
− 22ζ3

496125
+

186958937

536038256250
− 6239π2

972405000

− π4

12096000

)
ε2 + O(ε3)

]
(p2)6

(4π)10
. (3.30)

Finally one can evaluate the diagram illustrated in figure 3.13 (b) by computing

the following integral

I22(1, 1, 0, 0, 1) =

∫
ddk

(2π)d
ddq

(2π)d
1

k2q2(p− k − q)2
. (3.31)

The conformal or chain integration technique introduced in the previous Chapter

is used to evaluate the integral. The solution is illustrated in figure 3.15.

1

1

1

= ν(1, 1, d− 2)

2− d
2

1

= ν(1, 1, d− 2)ν(1, 2− d
2
, 3

2
d− 3)

3− d

= ν(1, 1, d− 2)ν(1, 2− d
2
, 3

2
d− 3)(p2)d−3

Figure 3.15: Integration of the 2-point Feynman diagram I22(1, 1, 0, 0, 1) at two
loops.

Coordinate space integration has been implemented twice as is apparent from the

inclusion of two ν(α, β, γ) terms. This leaves us with a single propagator which

can be rewritten in terms of p2. The general solution in d-dimensions can then

be written as

I22(1, 1, 0, 0, 1) =
Γ(d

2
− 1)3Γ(3− d)πd

Γ(3
2
d− 3)(p2)3−d . (3.32)

For completeness we note the result in d = 10− 2ε dimensions,

I(d=10−2ε)
22 (1, 1, 0, 0, 1) =

[
− 1

1862784000ε
− 11129

4917749760000
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+

(
− 19π2

89413632000
− 3968371859

636160108953600000

)
ε

+

(
− 2742996689341

186606965293056000000
+

67ζ3

44706816000

− 211451π2

236051988480000

)
ε2 + O(ε3)

]
(p2)7 . (3.33)

The computed master Feynman integrals at one and two loops can then be sub-

stituted into the relations derived by reduze to solve for all nineteen 2-point

functions.

3.4.3 Tarasov Method

The 3 and 4-point master integrals require a new technique as unlike the 2-point

diagrams, they cannot be computed as easily in ten dimensions. Tarasov’s method

of relating d and (d + 2)-dimensional integrals was first developed in [195, 196]

and will be introduced here. Tarasov observed that the Schwinger parameter

representation of a d-dimensional topology could be simply rewritten as a sum of

(d+2)-dimensional integrals with the same topologies but higher power propaga-

tors. The latter can then be integrated to master integrals using an integration by

parts routine. The unknown master integrals can then be solved for. Therefore,

known results for the master integrals in four dimensions can be used to solve

for the same integrals or a parellel topology in six dimensions. Following that we

can use the obtained six dimensional results to find eight dimensional integrals

and so on until we derive results in ten dimensions. To understand the Tarasov

methodology it is sufficient work through an example using the 3-point function,

the 4-point function will follow a very similar derivation. Techniques introduced

in [47–50] will be followed closely here.

We begin by looking at the 3-point one loop graph illustrated in figure 3.7.

As a reminder this diagram is represented by the following integral

I31(α, β, γ) =

∫
ddk

(2π)d
1

(k2)α((k − p)2)β((k + q)2)γ
. (3.34)

All propagators can be put into parametric form using the identity

1

(k2)α
=

i−α

Γ(α)

∫ ∞

0

dλiλ
α−1
i exp(iλik

2) . (3.35)
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The integral then becomes

I31(α, β, γ) =

∫
ddk

(2π)d

(
i−α

Γ(α)

∫ ∞

0

dλ1λ
α−1
1 exp(iλ1k

2)

)

×
(
i−β

Γ(β)

∫ ∞

0

dλ2λ
β−1
2 exp(iλ2(k − p)2)

)

×
(
i−γ

Γ(γ)

∫ ∞

0

dλ3λ
γ−1
3 exp(iλ3(k + q)2)

)
.

This equation can be simplified by expanding out the brackets and introducing

the notation A = λ1 + λ2 + λ3 and B = λ3q − λ2p,

I31(α, β, γ) =

∫
ddk

(2π)d

∫ ∞

0

∫ ∞

0

∫ ∞

0

dλ1dλ2dλ3
i−αi−βi−γ

Γ(α)Γ(β)Γ(γ)
λα−1

1 λβ−1
2 λγ−1

3

× exp[ik2A+ 2kB + λ3q
2 − λ2p

2] .

The following d-dimensional Gaussian integral formula, [196],

∫
ddk exp[i(xk2 + 2pk)] = i

(
π

ix

)d/2
exp

(
i
ip2

x

)
,

can then be used to simplify the result further. The 3-point integral can now be

written as

I31(α, β, γ) =
i−(α+β+γ)

(2π)d

∫ ∞

0

∫ ∞

0

∫ ∞

0

dλ1dλ2dλ3
λα−1

1 λβ−1
2 λγ−1

3

Γ(α)Γ(β)Γ(γ)
i

(
π

i

)d/2

× exp

(−iB2

A

)
exp(λ3q

2 − λ2p
2)

1

Ad/2
.

The paramount step in this derivation is contained in the following algebraic

rearrangement. A factor of A is inserted into the numerator by reducing the

power of the same variable in the denominator. This has the effect of raising the

power on the propagator in the original Feynman integral by one, as will become

clear when looking at the graphical representation of this equation,

I31(α, β, γ) =
i−(α+β+γ)

(2π)d

∫ ∞

0

∫ ∞

0

∫ ∞

0

dλ1dλ2dλ3
λα−1

1 λβ−1
2 λγ−1

3

Γ(α)Γ(β)Γ(γ)

(
π

i

)d/2

× exp

(− iB2

A

)
exp(λ3q

2 − λ2p
2)

A

A
d+2
2

.

Taking the most general case by setting α = β = γ = 1 and translating into the

original integral form,

I(d)
31 (1, 1, 1) =

∫
dd+2k

(2π)d+2(k2)2(k − p)2(k + q)2
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+

∫
dd+2k

(2π)d+2k2((k − p)2)2(k + q)2

+

∫
dd+2k

(2π)d+2k2(k − p)2((k + q)2)2
. (3.36)

The integral I(d)
31 (1, 1, 1) is d-dimensional while the three integrals on the right-

hand side of the equation are (d + 2)-dimensional. This relation is illustrated in

figure 3.16 with the d-dimensional integrals moved to the right-hand side. The

power on each of the propagators is displayed rather than momentum flow and

the dimension of each diagram is explicitly labelled.

2

1 1 +

1

2 1 +

1

1 2 −

1

1 1 = 0

(d+ 2) d

Figure 3.16: Tarasov method of relating d and (d + 2)-dimensional Feynman
integrals.

The integration by parts routine introduced in figure 3.8 can be used to reduce

the (d+ 2)-dimensional diagrams,

1

µ2

[
3

2
(d− 4)I(d+2)

31 (1, 1, 1)− 3I(d+2)
31 (0, 2, 1)

]
− I(d)

31 (1, 1, 1) = 0 . (3.37)

This is illustrated in figure 3.17 for clarity.

3
2µ2(d− 4)

1

1 1

(d+ 2)

= 1 1

1

d

+ 3
µ2

1 1

(d+ 2)

Figure 3.17: The 3-point graph at one loop with both the Tarasov method and
an IBP routine applied at the fully symmetric point.

Figure 3.17 relates d and (d + 2)-dimensional one loop 3-point integrals at the

fully symmetric point. To summarise, if the d-dimensional 3-point graph at one

loop is known then only the simpler (d + 2)-dimensional diagrams containing
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two propagators need to be calculated before one can solve for the 3-point (d +

2)-dimensional result. Therefore the known four dimensional result for the 3-

point graph at one loop can be related to the diagram in ten dimensions by

iteration. Note that computing the simpler diagram with two propagators is

a trivial task in any dimension. Any higher loop 2-point integrals in (d + 2)-

dimensions that arise in can be simplified using reduze. The wide ranging

usability of the Tarasov method over a number of theories has made it a tool of

great importance throughout quantum field theory.

3.4.4 Master Integrals with Three Propagators

We now return to calculating the ten dimensional master integrals for the O(N)

scalar theory. When looking at the 3-point function in this theory one considers

the Green’s function at either the completely symmetric point or a completely off-

shell point. The former is appropriate to use when there is either non-derivative

3-point interactions or a single 3-point vertex, such as the σφiφi interaction. The

off-shell configuration is used when there is more than one 3-point interaction

and they involve derivative couplings. This is applicable for the two independent

σ self-interactions.

The tree and one loop diagrams for the σφiφi interaction are illustrated in

figure 3.18. For the interactions σ222σ and σ(2σ)2 the tree and one loop diagrams

are displayed in figure 3.19. Note that the two σ 3-point self-interactions will

produce the same diagrams.

Figure 3.18: Tree and one loop Feynman diagrams for the 3-point interaction
σφiφi.
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Figure 3.19: Tree and one loop Feynman diagrams for the 3-point self-interactions
σ222σ and σ(2σ)2.

Tree diagrams are trivial to calculate while all one loop Feynman graphs can be

reduced to a combination of 2-point integrals and the 3-point master integral

I31(1, 1, 1), illustrated in figure 3.7, using reduze. First we wish to evaluate the

master integral at the completely symmetric point in ten dimensions. The four

dimensional result has been calculated in [194] and is given by equation (3.23).

Using the Tarsov method iteratively the 3-point master integral in d = 10 − 2ε

dimensions can be found to be

I(d=10−2ε)
31 (1, 1, 1) =

[
− 1

56ε
+

(
− 2995

42336
− π2

243
+

1

162
ψ′
(

1

3

))

+

(
− 23539

125000
− 367π2

54432
− 1

9
s3(π/6) +

1

81
ψ′
(

1

3

)

+
35
√

3π3

34992
+

√
3 ln(3)2π

1296

)
ε + O(ε2)

]
(µ2)4 . (3.38)

This ten dimensional master integral can be inserted into relations derived from

the Laporta algorithm to find all 3-point one loop diagrams at the completely

symmetric point.

Finding integration by parts relations for 3-point diagrams at the completely

off-shell point is more complicated. As previously stated the off-shell computation

is needed as more than one 3-point interaction involving derivative couplings is

present. These interactions will become a problem when renormalizing the theory

as the two independent operators, σ222σ and σ(2σ)2, have different Feynman

rules and therefore their associated coupling constants have separate renormaliza-

tion constants. Evaluating the master integral at the completely off-shell point

allows us to distinguish between the renormalization constants. The one loop
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3-point Feynman diagram at the completely off-shell point is illustrated in figure

3.20 where all external momenta are different.

α

β γ

p q

r

Figure 3.20: 3-point master Feynman diagram at one loop IO1 (α, β, γ).

The completely off-shell momentum configuration is given by

r2 = − µ2 ,

p2 = − µ2x ,

q2 = − µ2y (3.39)

where x and y are some parameters and p + q = −r. The completely off-shell

result for the 3-point diagram at one loop in four dimensions has been calculated

in [197]. We can therefore implement the Tarasov method to find the off-shell

master integral in higher dimensions. However when deriving the Tarasov rela-

tion of equation (3.37) we assumed all Feynman diagrams were fully symmetric.

As we are now looking at the completely off-shell case the symmetric integration

by parts routine used is no longer applicable.

Therefore we need to apply the Laporta algorithm again to the one loop 3-

point function, this time at the completely off-shell point. To do this we pick up

the reduction at the point of equation (3.21), restated here for the benefit of the

reader,

(d− 2α− β − γ)IO31(α, β, γ) = β(IO31(α− 1, β + 1, γ) − p2IO31(α, β + 1, γ))

+ γ(IO31(α− 1, β, γ + 1) − q2IO31(α, β, γ + 1)) .

The O denoted the fact that we are now considering the integrals in the com-

pletely off-shell momentum configuration. Once again we take the general case
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α = β = γ = 1,

(d− 4)IO31(1, 1, 1) = IO31(0, 2, 1) − p2IO31(1, 2, 1) + IO31(0, 1, 2) − q2IO31(1, 1, 2) .

(3.40)

The main difference in the off-shell case is that instead of relating diagrams via

symmetry relations we instead make the replacement

p → q , q → r , r → p . (3.41)

This alters equation (3.40) to become

(d− 4)IO31(1, 1, 1) = IO31(2, 1, 0) − q2IO31(2, 1, 1) + IO31(1, 2, 0) − r2IO31(1, 2, 1) .

(3.42)

Repeating the same replacement by applying (3.41) to (3.42) a third equation is

obtained,

(d− 4)IO31(1, 1, 1) = IO31(1, 0, 2) − r2IO31(1, 1, 2) + IO31(2, 0, 1) − p2IO31(2, 1, 1) .

(3.43)

We are left with a system of three equations; (3.40), (3.42) and (3.43), which can

be rearranged into a more useful form by moving diagrams with higher power

propagators to the left hand-side.

p2IO31(1, 2, 1) + q2IO31(1, 1, 2) = (4− d)IO31(1, 1, 1) + IO31(1, 0, 2) + IO31(2, 0, 1) ,

q2IO31(1, 1, 2) + r2IO31(1, 2, 1) = (4− d)IO31(1, 1, 1) + IO31(1, 2, 0) + IO31(2, 1, 0) ,

r2IO31(1, 1, 2) + p2IO31(2, 1, 1) = (4− d)IO31(1, 1, 1) + IO31(1, 0, 2) + IO31(2, 0, 1) .

The system of equations can be solved using matrix form,



p2 q2 0

r2 0 q2

0 r2 p2




︸ ︷︷ ︸
A



IO31(1, 2, 1)

IO31(1, 1, 2)

IO31(2, 1, 1)


 =




(4− d)IO31(1, 1, 1) + IO31(0, 2, 1) + IO31(0, 1, 2)

(4− d)IO31(1, 1, 1) + IO31(2, 1, 0) + IO31(1, 2, 0)

(4− d)IO31(1, 1, 1) + IO31(1, 0, 2) + IO31(2, 0, 1)


 .

Multiplying both sides by the matrix A−1, the integration by parts relations for

the 3-point function at the completely off-shell point can be obtained



IO31(1, 2, 1)

IO31(1, 1, 2)

IO31(2, 1, 1)


 = +

1

2p2q2r2



r2q2 q2p2 − q4

r2p2 − p4 p2q2

− r4 p2r2 r2q2
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×




(4− d)IO31(1, 1, 1) + IO31(0, 2, 1) + IO31(0, 1, 2)

(4− d)IO31(1, 1, 1) + IO31(2, 1, 0) + IO31(1, 2, 0)

(4− d)IO31(1, 1, 1) + IO31(1, 0, 2) + IO31(2, 0, 1)


 .

As an example,

IO31(1, 2, 1) =
1

2p2q2r2

[
(d− 4)IO31(1, 1, 1)(q4 − q2p2 − r2q2)

+ r2q2

(
IO31(0, 2, 1) + IO31(0, 1, 2)

)

+ q2p2

(
IO31(2, 1, 0) + IO31(1, 2, 0))− q4(IO31(1, 0, 2) + IO31(2, 0, 1)

)]
.

From the off-shell configuration we know IO31(1, 2, 1) 6= IO31(1, 1, 2) 6= IO31(2, 1, 1),

unlike the symmetric case. The relations for IO31(1, 1, 2) and IO31(2, 1, 1) need to

be obtained separately using the same method as for IO31(1, 2, 1). These IBP

relations can then be substituted into figure 3.16 to give the Tarasov relation for

the 3-point function in an off-shell momentum configuration,

0 =
1

2p2q2r2

[
(r4 − 2r2p2 − 2r2q2)IO (d+2)

31 (0, 1, 2)

+ (p4 − 2p2q2 − 2p2r2)IO (d+2)
31 (1, 2, 0)

+ (q2 − 2p2q2 − 2r2q2)IO (d+2)
31 (2, 0, 1)

+ (d− 4)(2r2q2 + 2q2p2 + 2r2p2 − p4 − q4 − r4)IO (d+2)
31 (1, 1, 1)

]

− IO (d)
31 (1, 1, 1) . (3.44)

Note that the symmetric point case can be used as a check for equation (3.44).

The (d+ 2)-dimensional 3-point master integral in the off-shell configuration can

be found from the relation (3.44). As the four dimensional off-shell result is

known, [197], one can iteratively derive the ten dimensional result with only the

2-point integrals needing to be directly calculated.

These 2-point diagrams were computed previously in subsection 3.4.2 at the

completely symmetric point. The only difference in the off-shell configuration

is the incoming momenta. Note that as integrals IO31(0, 1, 2), IO31(1, 2, 0) and

IO31(2, 0, 1) are proportional to IO31(0, 1, 1), IO31(1, 1, 0) and IO31(1, 0, 1) respectively,

they can be calculated instead. The first 2-point integral in d-dimensions is given

by

IO31(0, 1, 1) =

∫
ddk

(2π)dk2(k − r)2
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=
Γ(2− d

2
)Γ(d

2
− 1)2(−µ2)

d
2
−2

Γ(d− 2)(4π)
d
2

. (3.45a)

In d = 10− 2ε dimensions as r2 = −µ2 we have

IO (d=10−2ε)
31 (0, 1, 1) =

[
− 1

840ε
− 44

11025
+

(
π2

10080
− 10973

1157625

)
ε

+

(
1

360
ζ3 +

11

33075
π2 − 2449616

121550625

)
ε2 + O(ε3)

]

×
[
− 1 + ε− 1

2
ε2 +O(ε3)

]
µ6 .

The second integral computed in d-dimensions is

IO31(1, 1, 0) =

∫
ddk

(2π)dk2(k − p)2

=
Γ(2− d

2
)Γ(d

2
− 1)2(−µ2x)

d
2
−2

Γ(d− 2)(4π)
d
2

. (3.45b)

In d = 10− 2ε dimensions as p2 = −µ2x this is

IO (d=10−2ε)
31 (1, 1, 0) =

[
− 1

840ε
− 44

11025
+

(
π2

10080
− 10973

1157625

)
ε

+

(
1

360
ζ3 +

11

33075
π2 − 2449616

121550625

)
ε2 + O(ε3)

]

×
[
− 1 + ln(x)ε − 1

2
ln(x)2ε2 + O(ε3)

]
(µ6x3) .

The final 2-point integral is calculated to be

IO31(1, 0, 1) =

∫
ddk

(2π)dk2(k − q)2

=
Γ(2− d

2
)Γ(d

2
− 1)2(−µ2y)

d
2
−2

Γ(d− 2)(4π)
d
2

(3.45c)

in d-dimensions and in d = 10− 2ε dimensions as q2 = −µ2y we have

IO (d=10−2ε)
31 (1, 0, 1) =

[
− 1

840ε
− 44

11025
+

(
π2

10080
− 10973

1157625

)
ε

+

(
1

360
ζ3 +

11

33075
π2 − 2449616

121550625

)
ε2 + O(ε3)

]

×
[
− 1 + ln(y)ε − 1

2
ln(y)2ε2 + O(ε3)

]
(µ6y3) .

Note that all three integrals agree at x = y = 1, in other words at the completely
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symmetric point. Finally the d = 10− 2ε dimensional 3-point master integral at

the completely off-shell point can be derived

IO (d=10−2ε)
31 (1, 1, 1) =

[(y + 1 + x)x+ y2 + y + 1]µ4

360ε

+

[(51x2 − 25y − 51(y + 1)x)x2 + 51(y4 − y3 − y + 1)
− (51y2 − 26y + 51)(y + 1)x− 15(y − 1− x) ln(y)y3

+ 15(y + 1− x) ln(x)x3 + 15(y − 1 + x)]µ4

5400((y − 1)2 + x2 − 2(y + 1)x)

+ O(ε) . (3.46)

The full list of master integrals for the off-shell point in four, six, eight and ten

dimensions can be found in Appendix A. The ten dimensional master integral is

inserted along with calculated 2-point integrals into integration by parts relations

to acquire all 3-point diagrams at one loop for the σ222σ and σ(2σ)2 interactions

at the completely off-shell point.

3.4.5 Master Integrals with Four Propagators

The auxiliary topology for the 4-point function at one loop I41(α, β, γ, δ) where α,

β, γ and δ denote the power on each associated propagator is illustrated in figure

3.21. As the 4-point function contains only σ fields, σ32σ, the figure contains all

σ fields.

α

β

γ

δ

p q

r

Figure 3.21: The auxiliary topology or integral family for the 4-point function
I41(α, β, γ, δ) at one loop with all σ fields.

The three independent incoming momenta are given by p, q and r. We con-

sider the 4-point function at the completely symmetric point with momentum

configuration

p2 = q2 = r2 = (p+ q + r)2 = − µ2

pq = pr = qp =
µ2

3
(3.47)
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The 4-point function contains nineteen one loop Feynman diagrams along with

one tree level diagram. The four one loop master integrals are illustrated in

figure 3.22. The tree level diagram is trivial to compute and the nineteen one

loop diagrams will reduce down to one or a combination of the master integrals.

Figure 3.22: The four master integrals for the 4-point function at one loop, from
left to right; I41(1, 1, 1, 1), I41(1, 1, 1, 0), I41(1, 1, 0, 0) and I41(1, 0, 1, 0).

All propagators in the masters integrals will be of the form 1/(k2). Note that

only four master integrals are present as we are calculating at the completely

symmetric point, therefore

I41(1, 1, 0, 0) = I41(0, 0, 1, 1) = I41(0, 1, 1, 0) = I41(1, 0, 0, 1) (3.48)

and

I41(0, 1, 0, 1) = I41(1, 0, 1, 0) . (3.49)

This is clear to see from the incoming momentum set-up. To begin we calculate

the master integral I41(1, 1, 1, 1) given in figure 3.23. This master integral is

illustrated with all external momentum and internal loop momentum k labelled.

The result of I41(1, 1, 1, 1) can be obtained using the Tarasov method.

−p− q − r

k + p+ r

r

k + q

q

k

p

k − p

Figure 3.23: One loop 4-point master Feynman diagram I41(1, 1, 1, 1).

The derivation of the Tarasov relation for the 4-point function follows the

same steps as the 3-point case, we therefore simply state the relation,

I(d)
41 (1, 1, 1, 1) = I(d+2)

41 (2, 1, 1, 1) + I(d+2)
41 (1, 2, 1, 1)
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+ I(d+2)
41 (1, 1, 2, 1) + I(d+2)

41 (1, 1, 1, 2) . (3.50)

This is illustrated in figure 3.24, similarities with the 3-point result are clear to

see.

1

1 1

1

=

2

1 1

1

+

1

2 1

1

+

1

1

2

1 +

1

1

1

2

(d+ 2)

d

Figure 3.24: Tarasov method applied to the 4-point Feynman diagram
I41(1, 1, 1, 1) at one loop.

The four dimensional 4-point function at one loop has been calculated at the

completely symmetric point in [199, 200]. Additionally the (d + 2)-dimensional

diagrams in figure 3.24 can be reduced using the integration by parts routine

of the Laporta algorithm. To begin the reduction first note that the general

definition of a one loop diagram containing four propagators is

I41(α, β, γ, δ) =

∫
ddk

(2π)d
1

(k2)α((k + q)2)β((k + q + r)2)γ((k − p)2)δ
. (3.51)

As we are reducing this integral at the fully symmetric point the following sym-

metry relations will apply

I41(2, 1, 1, 1) = I41(1, 2, 1, 1) = I41(1, 1, 2, 1) = I41(1, 1, 1, 2) . (3.52)

As with the 3-point example we apply identity (3.19) to the 4-point function and

differentiate each term of the propagator in turn to obtain

∫

k

d

(k2)α((k + q)2)β((k + q + r)2)γ((k − p)2)δ

= 2α

∫

k

k2

((k2)α+1((k + q)2)β((k + q + r)2)γ((k − p)2)δ
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+ 2β

∫

k

k(k + q)

((k2)α((k + q)2)β+1((k + q + r)2)γ((k − p)2)δ

+ 2γ

∫

k

k(k + q + r)

((k2)α((k + q)2)β((k + q + r)2)γ+1((k − p)2)δ

+ 2δ

∫

k

k(k − p)
((k2)α((k + q)2)β((k + q + r)2)γ((k − p)2)δ+1

.

Algebraically rearranging terms in the numerator of each integral and factorising

terms on both sides of the equation the following relation is obtained, given in

I41(α, β, γ, δ) notation,

I41(α, β, γ, δ) =
1

d− 2α− β − γ − δ

(
β[I41(α− 1, β + 1, γ, δ)

−q2I41(α, β + 1, γ, δ)] + γ[I41(α− 1, β, γ + 1, δ)

−(q + r)2I41(α, β, γ + 1, δ)] + δ[I41(α− 1, β, γ, δ + 1)

−p2I41(α, β, γ, δ + 1)]

)
.

Taking the most general case by setting α = β = γ = δ = 1,

(d− 5)I41(1, 1, 1, 1) = I41(0, 2, 1, 1) − q2I41(1, 2, 1, 1) + I41(0, 1, 2, 1)

− (q + r)2I41(1, 1, 2, 1) + I41(0, 1, 1, 2)

− p2I41(1, 1, 1, 2) .

A reduction relation for the 4-point integral at the symmetric point can then be

found with I41(1, 1, 1, 1) as the master integral,

I41(1, 2, 1, 1) =
1

10µ2

[
(d− 5)I41(1, 1, 1, 1) − I41(0, 2, 1, 1) − I41(0, 1, 2, 1)

− I41(0, 1, 1, 2)

]
.

Substituting this reduction into the 4-point Tarasov relation we find an equa-

tion from which the ten dimensional master integral can be deduced. Symmetry

relations given by equation (3.52) have been applied to simplify the result,

I(d)
41 (1, 1, 1, 1) =

4

10µ2

[
(d− 5)I(d+2)

41 (1, 1, 1, 1) − I(d+2)
41 (0, 2, 1, 1)

− I(d+2)
41 (0, 1, 2, 1) − I(d+2)

41 (0, 1, 1, 2)

]
. (3.53)

Diagrammatically this relation is illustrated in figure 3.25. The three (d + 2)-

dimensional diagrams with a zero power on one of the propagators are not sym-
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metric which is obvious when looking at the incoming momenta. Therefore they

cannot be related to one another by symmetry relations and need to be evaluated

individually.

1

1

1

1
= 4

10µ2 (d− 5) 1

1

1

1 − 2

1

1

−
1 1

2

−
1

1

2

(d+ 2)

d

Figure 3.25: Tarasov method and IBP Laporta algorithm applied to the 4-point
function at one loop.

However the three non-symmetric diagrams which are given by I41(0, 2, 1, 1),

I41(0, 1, 2, 1) and I41(0, 1, 1, 2) can be reduced using an integration by parts rou-

tine at the off-shell point. The diagram I41(0, 2, 1, 1) is illustrated in figure 3.26.

It is clear that the external vertices no longer obey the symmetry conditions of a

3-point function as (p+ q)2 = −4
3
µ2, r2 = −µ2 and (−p− q − r)2 = −µ2.

p+ q

−p− q − r r

β

γ

δ

Figure 3.26: One loop 4-point function I41(0, β, γ, ρ) with the IBP routine of the
Laporta algorithm applied once.

A completely off-shell reduction of the 3-point function was derived in section

3.4.4; the same method is applied here with the addition of an external leg. We
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obtain a system of three independent equations which have been put into matrix

form



I41(0, 1, 1, 2)

I41(0, 2, 1, 1)

I41(0, 1, 2, 1)


 =

1

2p2q2r2



r2q2 q2p2 − q4

r2p2 − p2 p2q2

− r4 p2r2 r2q2




×




(4− d)I41(0, 1, 1, 1) + I41(0, 1, 0, 2) + I41(0, 2, 0, 1)

(4− d)I41(0, 1, 1, 1) + I41(0, 0, 2, 1) + I41(0, 0, 1, 2)

(4− d)I41(0, 1, 1, 1) + I41(0, 2, 1, 0) + I41(0, 1, 2, 0)


 .

This system of equations can be substituted into the Tarasov relation of equation

(3.53) with the following result then derived,

I(d)
41 (1, 1, 1, 1) =

4

10µ2

[
(d− 5)I(d+2)

41 (1, 1, 1, 1)

− 1

2p2q2r2

(
(d− 4)(r4 + p4 + q4 − 2p2q2 − 2r2p2

− 2r2q2)I41(0, 1, 1, 1) + r2q2[I(d+2)
41 (0, 1, 0, 2)

+ I(d+2)
41 (0, 2, 0, 1) + I(d+2)

41 (0, 2, 1, 0)

+ I(d+2)
41 (0, 1, 2, 0)] + q2p2[I(d+2)

41 (0, 0, 2, 1)

+ I(d+2)
41 (0, 0, 1, 2) + I(d+2)

41 (0, 2, 1, 0)

+ I(d+2)
41 (0, 1, 2, 0)] + I(d+2)

41 (0, 2, 1, 0)

+ p2r2[I(d+2)
41 (0, 0, 2, 1) + I(d+2)

41 (0, 0, 1, 2)

+ I(d+2)
41 (0, 1, 0, 2) + I(d+2)

41 (0, 2, 0, 1)]

− q4[I(d+2)
41 (0, 2, 1, 0) + I(d+2)

41 (0, 1, 2, 0)]

− p4[I(d+2)
41 (0, 0, 2, 1) + I(d+2)

41 (0, 0, 1, 2)]

− r4[I(d+2)
41 (0, 1, 0, 2) + I(d+2)

41 (0, 2, 0, 1)]

)]
.

Although this looks complicated, it turns out that only two integrals need to be

computed by hand. The first of these, the 3-point integral I41(0, 1, 1, 1) at the

completely off-shell point was computed in section 3.4.4 in ten dimensions albeit

with only three external legs.

The modification to four external legs is not difficult and involves only a

change in the momentum configuration at one of the vertices. Furthermore of

the six graphs containing only two non-zero values of α, β, γ and δ only two are

independent as

I41(0, 1, 0, 2) = I41(0, 2, 0, 1) = I41(0, 2, 1, 0) = I41(0, 1, 2, 0)
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and

I41(0, 0, 2, 1) = I41(0, 0, 1, 2) ,

which are obvious from the symmetry relations (3.48) and (3.49). The two in-

dependent Feynman diagrams with only two non-zero powers of propagators are

illustrated in figure 3.27 where for figure (a) we have (p + q)2 − 4
3
µ2 and for (b)

we have p2 = −µ2.

(a) (b)

p+ q

p+ q

p

p

Figure 3.27: The two independent 2-point Feynman diagrams with four external
legs. Integral representation as follows; (a) I41(0, 1, 0, 2), (b) I41(0, 0, 2, 1)

These integrals can be computed by hand and give the following results in d-

dimensions

I41(0, 1, 0, 2) =

(
− 4

3
µ2

) d
2
−2 Γ(2− d

2
)Γ(d

2
− 1)2

(4π)
d
2 Γ(d− 2)

,

I41(0, 0, 2, 1) = (−µ2)
d
2
−2 Γ(2− d

2
)Γ(d

2
− 1)2

(4π)
d
2 Γ(d− 2)

.

In d = 10− 2ε dimensions these integrals are

I(d=10−2ε)
41 (0, 1, 0, 2) =

[
− 1

840ε
− 44

11025
+

(
π2

10080
− 10973

1157625

)
ε

+ O(ε2)

]
×
[
−
(

4

3

)3

µ6 −
(

4

3

)3

µ6ε + O(ε2)

]
,

I(d=10−2ε)
41 (0, 0, 2, 1) =

[
− 1

840ε
− 44

11025
+

(
π2

10080
− 10973

1157625

)
ε

+ O(ε2)

]
×
[
− µ6 − µ6ε + O(ε2)

]
.

Putting all of these results together and using the Tarasov relation, the 4-point

master integral in first six, then eight and finally ten dimensions can be iteratively

94



Chapter 3

calculated. The result in d = 10− 2ε dimensions is

I(d=10−2ε)
41 (1, 1, 1, 1) =

1

18ε
µ2

+
µ2

69120

[
− 4209φ1

(
3

4
,
3

4

)
+ 1500φ1

(
9

16
,

9

16

)

+15088− 1992 ln(2) + 996 ln(3)− 3840

]

+ O(ε) . (3.54)

3.4.6 The Vacuum Bubble Expansion

Along with one tree level diagram displayed in figure 3.28, the 5-point function

produces 89 one loop Feynman diagrams with five different topologies which are

illustrated in figure 3.29. Each of the 89 one loop diagrams will have the same

form as one of the five topologies but may contain a different internal propagator

structure.

Figure 3.28: Tree level Feynman diagram for the 5-point function σ5.

Figure 3.29: The five topologies for the one loop 5-point function I51(α, β, γ, ρ, δ).

Integration by parts via the Laporta algorithm has been a useful tool in reduc-

ing the 3 and 4-point functions. However it is less efficient when looking at the
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5-point function for the theory of interest. The first diagram displayed in figure

3.29 has several 3-point σ self-interactions which gives the integral a complicated

numerator that is laborious to reduce for the O(N) scalar theory. When tak-

ing into account all 89 one loop diagrams, implementing an integration by parts

routine becomes time consuming. At this point it is important to note that in

calculating the Renormalization Group functions one only requires the divergent

piece of each diagram. Therefore we can introduce a new technique called the

vacuum bubble expansion, [201–203]. The vacuum bubble expansion is an ap-

proximation that can be applied to each 5-point diagram in turn to find only

the divergent piece of the graph. Consequently we will not require any master

integrals. One advantage of using the vacuum bubble expansion is that we work

directly in ten dimensions, bypassing the need for the Tarasov relation.

Before applying the vacuum bubble expansion to a specific one loop diagram,

we briefly look at what the process entails. A feature of every mass independent

renormalization scheme such as MS, is that the pole part of a dimensionally reg-

ularised Feynman diagram is a polynomial in both mass and external momenta.

This can be shown on the basis of given Feynman rules alone without any theo-

retical arguments. Consequently an expansion in external momenta and masses

can be performed before integrating over loop momenta which simplifies the in-

tegral, [201]. For our massless theory we will expand in the external momenta.

The main difficulty in doing this is the appearance of spurious IR divergences.

Within the framework of dimensional regularisation these IR divergences can ap-

pear indistinguishable from UV divergences and would not cancel when summing

together all of the Feynman diagrams. To combat these spurious divergences we

can use a form of IR rearrangement by adding an artificial mass to each Feyn-

man diagram before expansion. This auxiliary mass which will be the same in

all Feynman diagrams prevents the production of any IR divergence. Introduc-

ing an artificial mass and expanding in the external momenta will not alter the

values for the divergent pieces of the one loop diagrams. The integrals produced

after expanding in the external momenta will be simple completely massive tad-

poles. Therefore the problem of evaluating a one loop UV counterterm reduces to

the computation of the divergent part of a one loop completely massive tadpole,

which by definition will be independent of external momenta. The expansion of

each scalar propagator is given by the identity, [201],

1

(k + p)2
=

1

k2 +m2
+
−p2 − 2kp+m2

k2 +m2

1

(k + p)2
(3.55)

where p is a linear combination of external momenta, k is a linear combination
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of loop momenta and m is the introduced artificial mass. The second term on

the right-hand side of the expansion has the same form as the propagator, so can

be decomposed in the same way. Repeating this step several times, we expand

the original propagator into a sum of term with very simple denominators and

a more complicated term whose contribution to the overall degree of divergence

decreases with each iteration,

1

(q + p)2
=

1

q2 +m2
+
−p2 + 2qp

(q2 +m2)2
+

(−p2 − 2qp)2

(q2 +m2)3
− m2

(q2 +m2)2

+
m4 + 2m2(−p2 − 2qp)

(q2 +m2)3
+

(−p2 − 2qp+m2)3

(q2 +m2)3(q + p)2
.

The expansion in external momenta can be viewed as an exact splitting of prop-

agators into parts that are polynomial in external momenta and parts that con-

tribute to integrands with a lower degree of divergence. Performing such an

operation appropriately many times one can split the integral into a convergent

piece and a part that is a polynomial in external momenta.

Using Weinberg’s theorem, [127], only the first term on the right-hand side of

the expansion (3.55) is divergent, so only this integral is required to find the pole

for this specific theory in ten dimensions. All other terms are convergent so can

be ignored when only considering divergent parts. As we are only considering

one-loop diagrams here there is no need to consider sub-divergences of graphs.

When looking at higher loop orders one must ensure all sub-graphs have a nega-

tive degree of divergence as well as the diagram in its entirety to ensure it is finite.

Furthermore, when looking at higher loop diagrams terms in the expansion that

have an m2 in the numerator can be replaced by local counterterms proportional

to m2 which cancel the corresponding sub-divergences in integrals with no m2

in the numerator. These counterterms may not preserve symmetry conditions,

fortunately the number of counterterms will be small.

As there are no sub-divergences in the one loop 5-point diagrams we can

implement Weinberg’s theorem to simplify our calculation. Using the degree-of-

divergence arguments we drop all but the first term in the expansion, this single

Feynman integral will depend only on loop momenta and the introduced mass.

More formally they are referred to as tadpole diagrams. As a simple example

to illustrate the method, we take a single 5-point diagram at one loop with all

external φi fields and apply the vacuum bubble expansion. The Feynman diagram

is illustrated in figure 3.30 where the loop momenta is denoted k and the integral
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is defined by

I51a =

∫
ddk

(2π)d
1

k2(k + p)2(k + p+ q)2(k + p+ q + r)2(k + p+ q + r + s)2
.

(3.56)

p

q

rs

−p− q
−r − s k k + p

k + p+ q

k + p+ q + r

k + p+ q
+r + s

Figure 3.30: 5-point Feynman diagram at one loop I51a(1, 1, 1, 1, 1).

Each propagator in this integral is expanded using equation (3.55). Note that

the artificial mass introduced will remain the same for each expansion. The five

propagator integral becomes

I51a(1, 1, 1, 1, 1) =

∫
ddk

(2π)d

[
1

(k2 +m2)5
+

m2

(k2 +m2)5k2
+ . . .

]
.

Inserting the expansion again into the second term of this integral

I51a(1, 1, 1, 1, 1) =

∫
ddk

(2π)d

[
1

(k2 +m2)5
+

m2

(k2 +m2)6
+

m4

(k2 +m2)6k2
+ . . .

]
.

The final two terms along with all subsequent terms that have not been written

are finite in ten dimensions by degree-of-divergence arguments. Therefore only

the first term is required to find the divergent part of the Feynman diagram. Note

that p, q, r and s momenta are included only in the finite parts of the diagram.

This term is simply the massive tadpole Feynman diagram illustrated in figure

3.31, where the number five signifies the power on the propagator. This tadpole

graph can be easily calculated using basic field theory arguments,

I51a(1, 1, 1, 1, 1) =

∫
ddk

(2π)d
1

(k2 +m2)5
=

md−10Γ(5− d
2
)

(4π)d/2Γ(5)
. (3.57)
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For completeness the ε-expansion in d = 10− 2ε dimensions is

I51a(1, 1, 1, 1, 1) =
m−2ε

(4π)5

(
1

24ε
+

π2

288
ε − ζ3

72
ε2 + O(ε3)

)
. (3.58)

5

Figure 3.31: Massive tadpole Feynman diagram.

The divergent piece of all 89 one loop Feynman diagrams can be computed using

this method. A more involved example is illustrated by the 5-point graph in

figure 3.32 which has a more complicated numerator structure than the previous

diagram due to the presence of 3-point σ self-interactions.

p

q

rs

−p− q
−r − s k

Figure 3.32: A σ 5-point Feynman diagram at one loop, containing internal 3-
point σ self-interactions.

This is more complicated than the previous 5-point example as internal prop-

agators will be of the form 1/(k2)5 instead of 1/k2. Moreover at each 3-point

vertex in figure 3.32 there are 22 interactions present due to the coupling σ222σ

in Lagrangian (3.13). However as the integral will overall be dimensionless like

figure 3.31, the vacuum bubble expansion can be used. We will just encounter a

far more complicated numerator structure, the tedious reduction of which can be

handled using form.

To briefly summarise what has been achieved thus far; all 138 Feynman dia-

grams have been computed, or have at least had the divergent pieces extracted.

99



Chapter 3

For the 2, 3 and 4-point functions this involved using an integration by parts

routine encompassed in the Laporta algorithm to reduce all diagrams to master

integrals. These master integrals were either calculated by hand or found using

existing four dimensional results and the Tarasov method. The 5-point func-

tions were dealt with using the vacuum bubble expansion technique. Finally now

that the divergent part of all diagrams is known the Green’s functions can be

renormalized.

3.4.7 Renormalization

Once all Green’s functions have been computed we can sum all n-point graphs

together. Potential IR singularities that arise are only a problem if one consid-

ers diagrams on an individual level. By summing diagrams the IR singularities

naturally cancel and so do not pose a problem. In essence we have computed

each diagram as a function of the bare parameters. To determine the associated

counterterms we use form as a tool to rescale the Green’s functions via

φi0 = φi
√
Zφ ,

σ0 = σ
√
Zσ ,

g0j = Zgj(gj)gj(µ)µε/2 (3.59)

where j = 1, . . . , 5. In multi-coupling theories one defines the bare coupling

constant in a slightly different way which makes the renormalization easier,

g0j = Zgjdef(gj)µ
ε/2 (3.60)

where the notation Zgjdef(gj) = Zgj(gj)gj(µ) has been introduced. Once coun-

terterms have been implemented the divergences at a particular loop order are

absorbed into the renormalization constants of the associated Green’s function.

At one loop the 2-point renormalization constants are defined first, followed by the

3-point renormalization constant and so on. The two loop 2-point function coun-

terterms are defined last of all. The renormalization constants are constructed

as

Zφ = 1 +
zφ11

ε
+

(
zφ22

ε2
+
zφ21

ε

)
+ . . . ,

Zσ = 1 +
zσ11

ε
+

(
zσ22

ε2
+
zσ21

ε

)
+ . . . ,

Zg1def = g1 +
zg111

ε
+

(
zg122

ε2
+
zg121

ε

)
+ . . . ,
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Zg2def = g2 +
zg211

ε
+

(
zg222

ε2
+
zg221

ε

)
+ . . . ,

Zg3def = g3 +
zg311

ε
+

(
zg322

ε2
+
zg321

ε

)
+ . . . ,

Zg4def = g4 +
zg411

ε
+

(
zg422

ε2
+
zg421

ε

)
+ . . . ,

Zg5def = g5 +
zg511

ε
+

(
zg522

ε2
+
zg521

ε

)
+ . . . . (3.61)

The notation here needs some explanation. The index i in both zφij and zσij sig-

nifies the loop order, while the j denotes the power of the pole associated with the

counterterm. For the counterterms associated with the coupling renormalization

constant, zgjlk we have j = 1, . . . , 5 and i denotes the number of the coupling.

Furthermore, l is the loop order and k signifies the power of the pole in ε.

By summing together graphs before introducing counterterms we bypass the

need to carry out subtractions on each individual Feynman diagram which can

be tedious. Finally reduze can be used, alongside form to manipulate the

results into the desired output. The counterterms can then be inserted into the

definitions of the β and γ-functions,

0 =
1

4
(d− 10)Zg1def − β1

∂Zg1def

∂g1

− β2
∂Zg1def

∂g2

− β3
∂Zg1def

∂g3

− β4
∂Zg1def

∂g4

− β5
∂Zg1def

∂g5

,

0 =
1

4
(d− 10)Zg2def − β1

∂Zg2def

∂g1

− β2
∂Zg2def

∂g2

− β3
∂Zg2def

∂g3

− β4
∂Zg2def

∂g4

− β5
∂Zg2def

∂g5

,

0 =
1

4
(d− 10)Zg3def − β1

∂Zg3def

∂g1

− β2
∂Zg3def

∂g2

− β3
∂Zg3def

∂g3

− β4
∂Zg3def

∂g4

− β5
∂Zg3def

∂g5

,

0 =
1

4
(d− 10)Zg4def − β1

∂Zg4def

∂g1

− β2
∂Zg4def

∂g2

− β3
∂Zg4def

∂g3

− β4
∂Zg4def

∂g4

− β5
∂Zg4def

∂g5

,

0 =
1

4
(d− 10)Zg5def − β1

∂Zg5def

∂g1

− β2
∂Zg5def

∂g2

− β3
∂Zg5def

∂g3

− β4
∂Zg5def

∂g4

− β5
∂Zg5def

∂g5

,

γφ =
β1

Zφ

∂Zφ
∂g1

+
β2

Zφ

∂Zφ
∂g2

+
β3

Zφ

∂Zφ
∂g3

+
β4

Zφ

∂Zφ
∂g4

+
β5

Zφ

∂Zφ
∂g5

,
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γσ =
β1

Zσ

∂Zσ
∂g1

+
β2

Zσ

∂Zσ
∂g2

+
β3

Zσ

∂Zσ
∂g3

+
β4

Zσ

∂Zσ
∂g4

+
β5

Zσ

∂Zσ
∂g5

(3.62)

where the first five equations can be solved to find βi(gj) and the final two can be

used to determine the anomalous dimensions of the fields. All Renormalization

Group functions have been determined using dimensional regularisation with the

renormalization constants defined with respect to the MS scheme. Note that in

the critical dimension ten of the Lagrangian we assume the coupling constants

are dimensionless in that space-time dimension but the standard arbitrary scale is

introduced to preserve dimensionlessness of the coupling in the regularised theory.

3.5 Large N Checks and Results

The Renormalization Group functions for L(4,10) which extend the O(N) univer-

sality class are given below to as high a loop order as is calculationally viable.

Practical limitations appear in the construction of the databases we use to apply

the Laporta and Tarasov algorithms when attempting to extend these results to

higher loop order. In particular the three loop 2-point master integrals in ten

dimensions require a significant amount of integration by parts due to the high

propagator power which is time consuming. However, we take the point of view

that it will be evident even with RG functions at one and two loops that the

connection between all theories is established. To be consistent with other work

on the O(N) universality class we will use the same convention and notation as

that of [54]. We have

γ
(d=10)
φ (gi) = − g2

1

40
+ [− 5301Ng2

1 + 16758g2
1 + 120540g1g2 + 302820g1g3

−14114g2
2 − 18032g2g3 − 15779g2

3]
g2

1

254016000
+ O(g4

i ) ,

γ(d=10)
σ (gi) = [− 9Ng2

1 − 86g2
2 + 112g2g3 − 71g2

3]
1

15120
+ [664524Ng4

1 + 6713280Ng3
1g2 + 1451520Ng3

1g3

− 1128852Ng2
1g

2
2 + 1202544Ng2

1g2g3 − 797022Ng2
1g

2
3

+ 4415512g4
2 + 6451480g3

2g3 − 14360000g2
2g

2
3

− 3621996g2
2g

2
4 − 10763088g2g

3
3 + 10666782g2g3g

2
4

+ 8993886g4
3 − 1885086g2

3g
2
4 − 496125g4

4]
1

96018048000
+ O(g4

i ) ,

β
(d=10)
1 (gi) = [− 9Ng2

1 + 504g2
1 + 840g1g2 + 420g1g3 − 86g2

2 + 112g2g3
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−71g2
3]

g1

30240
+ O(g5

i ) ,

β
(d=10)
2 (gi) = [756Ng3

1 − 81Ng2
1g2 + 1298g3

2 + 1764g2
2g3 − 1395g2g

2
3 − 1134g2g

2
4

−308g3
3 + 1134g3g

2
4]

1

90720
+ O(g5

i ) ,

β
(d=10)
3 (gi) = [756Ng3

1 − 81Ng2
1g3 − 448g3

2 − 1782g2
2g3 + 3024g2g

2
3 + 1134g2g

2
4

+565g3
3 − 1134g3g

2
4]

1

90720
+ O(g6

i ) ,

β
(d=10)
4 (gi) = [11340Ng4

1 − 81Ng2
1g

2
4 + 896g4

2 − 4256g3
2g3 − 7728g2

2g
2
3 + 234g2

2g
2
4

−4088g2g
3
3 + 8820g2g3g

2
4 + 2268g2g

3
5 − 700g4

3 + 3015g2
3g

2
4

−2268g3g
3
5 − 1134g4

4]
1

6804
+ O(g6

i ) ,

β
(d=10)
5 (gi) = [−27216Ng5

1 − 81Ng2
1g

3
5 − 3584g5

2 − 8960g4
2g3 − 8960g3

2g
2
3

+10080g3
2g

2
4 − 4480g2

2g
3
3 + 15120g2

2g3g
2
4 − 10854g2

2g
3
5 − 1120g2g

4
3

+7560g2g
2
3g

2
4 − 9072g2g3g

3
5 − 5670g2g

4
4 − 112g5

3 + 1260g3
3g

2
4

−3159g2
3g

3
5 − 2835g3g

4
4 + 5670g2

4g
3
5]

1

54432
+ O(g7

i ) . (3.63)

The main reason for constructing the Renormalization Group functions is to

verify that the critical exponents at the Wilson-Fisher fixed point are consistent

with large N critical exponents for the underlying theory. In order to carry out

the comparison we follow the process introduced in [51,52] and first define

g1 = f × x ,
g2 = f × y ,
g3 = f × z ,
g2

4 = f 2 × t ,
g3

5 = f 3 × w

where f is given by

f =
i
√

1680εN

N
. (3.64)

The values of the critical coupling constants g∗i can be found by solving

β
(d=10)
i (g∗j ) = 0 (3.65)

where g∗j is a power series in 1/N ,

x = x0 +
x1

N
+

x2

N2
+

x3

N3
+ O

(
1

N4

)
,

y = y0 +
y1

N
+

y2

N2
+

y3

N3
+ O

(
1

N4

)
,
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z = z0 +
z1

N
+

z2

N2
+

z3

N3
+ O

(
1

N4

)
,

t = t0 +
t1
N

+
t2
N2

+
t3
N3

+ O

(
1

N4

)
,

w = w0 +
w1

N
+

w2

N2
+

w3

N3
+ O

(
1

N4

)
.

Each coefficient is itself a power series in ε aside from the leading order 1/N term

which only involves ε due to the structure of the N dependence at two and higher

loops,

x0 = x00 + x01ε + x02ε
2 + x03ε

3 + O(ε4) ,

x1 = x10 + x11ε + x12ε
2 + x13ε

3 + O(ε4) ,

x2 = x20 + x21ε + x22ε
2 + x23ε

3 + O(ε4) ,

x3 = x30 + x31ε + x32ε
2 + x33ε

3 + O(ε4) ,

y0 = y00 + y01ε + y02ε
2 + y03ε

3 + O(ε4) ,
...

w3 = w30 + w31ε + w32ε
2 + w33ε

3 + O(ε4) .

Each of the five critical couplings are stated below for completeness. It is clear

to see that all terms of the ε expansion except at leading order are zero,

g∗1 = f
[
1 +

518

N
+

402486

N2
− 82820416420

9N3
+ O

(
1

N4

)]
,

g∗2 = f
[
14 +

207172

3N
+

2760690380

3N2
+

154150156688920

9N3
+ O

(
1

N4

)]
,

g∗3 = f
[
14 +

207172

3N
+

2760690380

3N2
+

154150156688920

9N3
+ O

(
1

N4

)]
,

g∗4 = f
[
280 − 900032

N
− 172076679040

N2
− 100301616147074048

9N3

+ O

(
1

N4

)]
,

g∗5 = f
[
− 840 +

142989840

N
− 13410729934000

N2
+

2522538684967218400

3N3

+ O

(
1

N4

)]
.

Once these critical couplings are determined the field anomalous dimensions

γ
(d=10)
φ (g∗i ) and γ

(d=10)
σ (g∗i ) are evaluated at criticality as a series in 1/N . The

coefficient of each term in ε of each successive power of 1/N should be in total

agreement with the critical exponents η and η+χ respectively, the leading order

104



Chapter 3

terms of which are given in equations (2.72) and (2.84). The large N critical

exponents are also given in [47–49]. The field anomalous dimensions evaluated

at the critical coupling are

γ
(d=10)
φ (gi) =

[
42ε− 589ε2

10
− 5741ε3

200
+

(
− 89689

4000
+ 84ζ3

)
ε4
)

1

N

+

[
43512ε− 1288917ε2

5
+

28725321ε3

100

]
1

N2
+ O

(
1

N3

)
,

γ(d=10)
σ (gi) =

[
2016ε− 15536ε2

5
− 72488ε3

75
+

(
− 1017964

1135
+ 4032ζ3

)
ε4
)

1

N

+

[
32223968ε

3
− 5296010132ε2

135
+

(
35923867327

2025

− 13641600ζ3

)
ε3
]

1

N2
+ O

(
1

N3

)
. (3.66)

We have checked the correspondence holds for the anomalous field dimensions

and the large N exponents. More precisely the 1/N term of γ
(d=10)
φ (gi) is in exact

agreement with the exponent (1/2)η1, while the 1/N2 term is in exact agree-

ment with exponent (1/2)η2. The factor of 1/2 is due to conventional differences

used in past papers on the large N expansion. Furthermore the 1/N term of

γ
(d=10)
σ (gi) matches the exponent −η1 − χ1 and the 1/N2 term is in exact agree-

ment with exponent −η2−χ2. Such agreement should be regarded as evidence for

the underlying universality of the core interaction across the dimensions and the

well-established universality of the Wilson-Fisher fixed point of O(N) φ4 theory.

Equally the agreement is a reassuring check that we have correctly performed

the renormalization to one and two loops which relied on the elevation of various

master integrals to higher dimensions. Having established the connection with

the underlying universal theory the next step would be analysing aspects of the

non-trivial fixed point structure and in particular the location, if it exists of the

conformal window. To access the conformal window one has to solve a set of

equations, [51,52], which for five couplings is

β1(g∗i ) = β2(g∗i ) = β3(g∗i ) = β4(g∗i ) = β5(g∗i ) = 0 ,

det

(
∂βi
∂gj

)
= 0 (3.67)

where i, j = 1, . . . , 5. The first five equations determine the critical couplings and

the final equation, which is the vanishing of the Hessian, provides the condition

where there is a change in the stability of a fixed point. Unfortunately as the

β-functions are dependent on three variables, βi(gj, ε, N), and five couplings are
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present, attempting to solve (3.67) is difficult and time consuming. As our main

goal was to verify the universality class up to ten dimensions, we therefore leave

this analysis for future work until computational limitations are overcome. We

will however analyse the fixed point structure for other theories in later Chapters.

3.6 Discussion

As part of an investigation into the O(N) scalar universality class we reviewed

the established connection between the NLσM in two dimensions and four dimen-

sional φ4 theory. This particular universality class has been extended in recent

years to include six dimensional φ3 theory and an eight dimensional scalar the-

ory with the O(N) symmetry group, [51–54]. The main motivation for studying

universality is due to the potential of extracting properties of one theory by ex-

amining another. More specifically it has been suggested that it may be possible

to access non-perturbative fixed points through perturbative fixed points in a

higher dimension. For example, the non-perturbative fixed point in four dimen-

sional Quantum Chromodynamics (QCD), the Banks-Zaks fixed point, [88], may

be studied by considering the six dimensional extension to QCD which contains

a non-trivial perturbative fixed point. The connectivity of these two theories en-

ables the Banks-Zaks fixed point to be accessed using a perturbative expansion

in six dimensions. It was hoped that the O(N) universality class discussed here

would not only contain similar features but would give a simple testing ground to

examine universal properties. Indeed the Heisenberg magnet in three space-time

dimensions can be examined by perturbatively renormalizing O(N) φ4 theory in

four dimensions. The resulting perturbative RG functions will be in d = 4 − 2ε

dimensions and the three dimensional results can be obtained by setting ε = 1/2.

Furthermore, the conformal field theory with O(N) symmetry existing in five di-

mensions is of great physical interest due to the AdS6/CFT5 correspondence and

can be accessed via six dimensional φ3 theory, [56].

In this Chapter we focused on extending the O(N) universality class to ten

dimensions. The main motivation being to add confidence to the overall univer-

sality class and provide results which may be compared with conformal boot-

strap and other non-perturbative research. Moreover the ten dimensional the-

ory can act as a laboratory where one could test ideas on not only universal-

ity, but also introduce tools used for calculating in higher dimensions. In this

Chapter we built a new Lagrangian which is perturbatively renormalizable in ten

dimensions using dimensionality arguments before computing associated Renor-
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malization Group functions to as high a loop order as was viable. The Tarasov

method, [195,196], was utilized which relates d and (d+ 2)-dimensional Feynman

master integrals. We also exploited the integration by parts reduction encoded in

reduze, [187,190,192,194], which was imperative to the computation. Note that

Tarasov method raised one question regarding whether there is a deeper connec-

tion in the Tarasov construction of relating d and (d + 2)-dimensional Feynman

integrals with the underlying field theories. In other words is there a way of

proceeding more fundamentally via a path integral construction without having

to make the connection at the Renormalization Group function level? This is a

topic of great interest and one which requires fundamental study.

After Renormalization Group functions were computed in ten dimensions the

associated critical exponents could be calculated and matched with known large

N results. Hence establishing the ten dimensional theory as an extension of the

O(N) universality class. An important observation is that there is more than

one way to look at this tower of theories. Instead of having separate theories in

different dimensions that are connected at the Wilson-Fisher d-dimensional fixed

point, one instead has a single d-dimensional universal theory. This universal

theory contains the Wilson-Fisher fixed point and the core universal interaction

σφiφi, as well as all possible interactions between the two fields, σ and φi. When

we try to write down a specific Lagrangian in a fixed dimension such as ten,

for example, the universal interaction will be relevant in that specific dimen-

sion. Moreover a finite number of additional ‘spectator’ interactions will also be

relevant in the specified dimension. Therefore a Lagrangian can be formulated

containing a finite number of terms with the physics being driven by the core

universal interaction. This gives an alternative way of thinking about how and

why the theories discussed in this Chapter may influence each other.

It also opens up a whole new landscape for model building and applications

to beyond the Standard Model (BSM) physics. If universality plays a role in how

the physics in scalar theories is driven then surely the same can be said for gauge

theories. In principle the construction of a similar tower of gauge theories should

be feasible based on what has been found in the scalar theory case. Moreover,

it should be relevant to possible directions beyond the Standard Model. For

instance, for certain gauge groups, such as SU(3)× SU(2)× U(1), there may be

a flow to a non-trivial fixed point which connects with a unified theory. Before

discussing model building in regards to gauge theories we first look at another

scalar universality class. This time the tower of theories will contain a more

complex symmetry group and hence an enriched fixed point structure to study.
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O(N)×O(m)

Landau-Ginzburg-Wilson Theory

in Six Dimensions

4.1 Introduction

We have looked at the universality class of a scalar theory endowed with O(N)

symmetry to ten space-time dimensions. Scalar field theories with more complex

symmetries have been the subject of interest in recent years in the context of

trying to develop our understanding of conformal field theories (CFTs) in dimen-

sions greater than two using established concepts, [204–210], in a modern appli-

cation, [61, 211–213]. The main aim being to find conformal windows of theories

where non-trivial fixed points of the β-function exist. In this window one in prin-

ciple has a theory where ideas for extending Zamolodchikov’s c-theorem, [214], to

higher dimensions can be explored as well as other properties of strictly two di-

mensional CFTs. Considerable work has been done in recent years to extend the

perturbative results of higher dimensional scalar theories. There has also been sig-

nificant interest utilizing non-perturbative methods to study scalar field theories

in higher dimensions. In particular, the non-perturbative conformal bootstrap

technique is used because of the potential application to non-scalar theories and

scalar theories with symmetry other than O(N), [61, 211–213].

The aim of this Chapter is to continue investigating higher dimensional scalar

field theories, but now look toward more complex symmetry groups. Specifi-

cally we now want to renormalize the six dimensional extension of the Landau-
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Ginzburg-Wilson (LGW) theory and provide three loop perturbative results to

complement recent [66] and future bootstrap studies. In effect this is a φ3 type

theory with an O(N) × O(m) symmetry. The Landau-Ginzburg-Wilson model

has applications to condensed matter problems such as randomly dilute spin

models, [215, 216]. The enhanced symmetry group also allows us to analyse a

more enriched fixed point structure and potential conformal window. Recent

conformal bootstrap analysis provided on the Landau-Ginzburg-Wilson model

in three dimensions, [66], gave a theoretical prediction of the phase diagram in

frustrated spin models with non-collinear order. Furthermore the work of [67]

provided a detailed conformal bootstrap analysis for O(N) × O(2), particularly

looking at the model O(4)× O(2) which describes the chiral phase transition in

two flavour Quantum Chromodynamics (QCD) in four dimensions. Along with

providing complementary results to bootstrap studies, a second motivation for

looking at the Landau-Ginzburg-Wilson model is to continue the exploration of

the tower of theories across dimensions which are in the same universality class

as the Wilson-Fisher fixed point, [41]. This is sometimes known as the ultraviolet

(UV) completion of a theory and was first recognised in [46, 217], but its power

has been exploited in recent years.

We will first review results in the four-dimensional Landau-Ginzburg-Wilson

theory including the known large N values for the critical exponents. We then

introduce the six dimensional Lagrangian in the same universality class. Renor-

malizing the Landau-Ginzburg-Wilson model perturbatively in six dimensions we

obtain new results for the Renormalization Group (RG) functions to three loops.

A notable difference in this Chapter compared to the last is that we will also

perform a mass renormalization in section 4.5. We will also provide a fresh fixed

point analysis and conformal window search for the model in six dimensions to

be compared with the four dimensional results, [218].

4.2 Landau-Ginzburg-Wilson Theory

The model we wish to consider is a six dimensional scalar theory with O(N) ×
O(m) symmetry which lies in the same universality class as the four dimensional

Landau-Ginzburg-Wilson theory with the same symmetry. We begin by recalling

the relevant aspects of the latter theory before constructing the six dimensional

Lagrangian. The four dimensional Lagrangian involves a quartic interaction for
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a scalar field φia where 1 ≤ i ≤ N and 1 ≤ a ≤ m, [218],

L(LGW4) =
1

2
∂µφia∂µφ

ia +
ḡ1

4!
(φiaφia)2 +

ḡ2

4!
[(φiaφib)2 − (φiaφia)2] .

The couplings of the respective interactions are given by ḡi. This version of

the Landau-Ginzburg-Wilson theory is not the most useful for developing the

large N expansion or indeed for seeing the connection with higher dimensional

theories. Instead it is better to reformulate L(LGW4) in terms of cubic interactions

by introducing a set of auxiliary fields σ̃ and T̃ ab. The latter is symmetric and

traceless in its O(m) indices. Then the Lagrangian becomes, [218],

L(LGW4) =
1

2
∂µφia∂µφ

ia +
1

2
σ̃φiaφia +

1

2
T̃ abφiaφib − 3σ̃2

2g̃1

− 3T̃ abT̃ ab

2g̃2

where we have rescaled the couplings, g̃1 = ḡ1+(m−1)g̃2/m and ḡ2 = g̃2, [215,216].

In this new formulation the coupling constants appear within the quadratic part

of the Lagrangian which is the first step in constructing the critical exponents

using the large N methods of [48,49]. However, for perturbative calculations it is

more appropriate for the couplings to appear with the actual interactions. Using

a simple rescaling,

L(LGW4) =
1

2
∂µφia∂µφ

ia +
1

2
σ2 +

1

2
T abT ab +

1

2
g1σφ

iaφia

+
1

2
g2T

abφiaφib . (4.1)

This is this formulation that one uses to build the six dimensional theory. The

Renormalization Group functions of (4.1) have been computed to several loop

orders, [218, 219]. The two loop results of the β-functions are stated below so

that one may examine some of the fixed point properties of the O(N) × O(m)

four dimensional theory. They are

β1(ḡ1, ḡ2) =
1

2
(d− 4)ḡ1 +

(mN + 8)

6
ḡ1

2 − 1

6
(3mN + 14)ḡ1

3

+ (m− 1)(N − 1)

(
11

9
ḡ1

2 − 13

12
ḡ1ḡ2 +

5

18
ḡ2

2

)
ḡ2

− 1

3
(m− 1)(N − 1)ḡ2

(
ḡ1 −

ḡ2

2

)
+ O(ḡi

4) (4.2)

and

β2(ḡ1, ḡ2) =
1

2
(d− 4)ḡ2 + 2ḡ1ḡ2 +

1

6
(m+N − 8)ḡ2

2 − 1

18
(5mN + 82)ḡ1

2ḡ2

+
1

9
[5mN − 11(m+N) + 53]ḡ1ḡ2

2 − 1

36
[13mN − 35(m+N)
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+ 99]ḡ2
3 +O

(
ḡi

4
)

(4.3)

where the order symbol is understood to mean any combination of the two cou-

pling constants. There are several fixed points which can be derived from these

β-functions. These are known as the free field Gaussian fixed point (ḡ1
∗, ḡ2

∗) =

(0, 0), the fixed point corresponding to the Heisenberg model (ḡ1
∗, ḡ2

∗) = (ḡ1, 0)

and two fixed points where both critical couplings are non-zero. In the fixed

point corresponding to the Heisenberg case we have ḡ1 6= 0 and ḡ2 = 0, irrespec-

tive of whether m is set to unity or not. In the case where m 6= 1 the parameter

m always appears as a multiplier of N . In the context of the (ḡ1, ḡ2)-plane the

Heisenberg fixed point is actually a saddle-point and so is unstable to perturba-

tions in the ḡ2 direction. Note that for the single coupling O(N) scalar theory

discussed in Chapter 3, the Heisenberg fixed point will be stable. For the two

fixed points where both critical couplings are non-zero, one is known as the chiral

stable (CS) fixed point and the other as the anti-chiral unstable (AU) fixed point.

To differentiate between these we look at the eigenvalues of the stability matrix,

∂βi(gj)/∂gj, with the former having two negative eigenvalues. In contrast the

stability matrix evaluated at the AU fixed point will give two positive eigenvalues.

To connect the different Landau-Ginzburg-Wilson theories in four and six

dimensions we will compare results of the critical exponents in each of these di-

mensions. Alternatively it is more convenient to compare exponents with the

large N results for this universality class which are given in [218, 220]. It is

therefore worthwhile recalling these large N results and giving a perspective on

the fixed point structure of the four dimensional theory. Recall in the large N

method of [48,49] the critical exponents are computed by analysing the skeleton

Dyson-Schwinger equations at criticality. At that point the propagators obey

scaling law type forms where the powers are in effect the critical exponents. The

critical exponents can be expanded as a power series in 1/N , where N is large.

Each coefficient of this power series can be deduced by evaluating the relevant

Feynman diagrams at each order of the 1/N expansion. The divergent diagrams

are analytically regularised which means they are determined as functions of the

space-time dimension d. Therefore the large N exponents correspond to the uni-

versal quantum field theory (QFT) which underlies the Wilson-Fisher fixed point

in d-dimensions. Thus when the ε-expanded Renormalization Group functions

are computed perturbatively in d = Dc− 2ε where Dc is the critical dimension of

a specific theory, they will agree with large N results set in that critical dimension

at the same fixed point. The four dimensional Landau-Ginzburg-Wilson theory

has exponents which match the large N critical exponents computed in [218,220]
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at the three non-trivial fixed points.

The different solutions for the Heisenberg (H), CS and AU fixed points emerge

from simple conditions which are best seen in the Lagrangian formulation involv-

ing the fields σ and T ab. These conditions can be summarised by the vector

(σ, T ab) so that the Heisenberg fixed point is (σ, 0), AU is (0, T ab) and the CS

fixed point is given by (σ, T ab), where a zero entry in the vector means the cor-

responding field is absent at that fixed point. In other words in the large N

construction the critical exponents for a particular fixed point are determined by

including only those non-zero fields in the vector in the skeleton Dyson-Schwinger

expansion. If we define the scaling dimensions of the fields φia, σ and T ab by α,

β and γ respectively then we can define the anomalous dimensions as follows

α = µ − 1 + 1
2η , β = 2 − η − χ , γ = 2 − η − χT

where d = 2µ. Here η corresponds to the anomalous dimension of φia. The

exponents χ and χT correspond to the respective vertex anomalous dimensions

of σ and T ab with the φia field. For completeness we will state the leading order

(LO) large N critical exponents for the universal theory, originally computed

in [48,49,218],

ηH
1 = − 4Γ(2µ− 2)

Γ(2− µ)Γ(µ− 1)Γ(µ− 2)Γ(µ+ 1)m
,

ηCS
1 = − 2(m+ 1)Γ(2µ− 2)

Γ(µ+ 1)Γ(µ− 1)Γ(µ− 2)Γ(2− µ)
,

ηAU
1 = − 2(m− 1)(m+ 2)Γ(2µ− 2)

mΓ(µ+ 1)Γ(µ− 1)Γ(µ− 2)Γ(2− µ)
,

χH
1 = − µ(4µ− 5)ηH

1

(µ− 2)
, χCS

1 = − µ(4µ− 5)ηCS
1

(µ− 2)
,

χCS
T,1 = − µ[(2µ− 3)m+ (4µ− 5)]ηCS

1

(µ− 2)(m+ 1)
,

χAU
T,1 = − µ(m− 2)[(m+ 4)(2µ− 3) + 1]ηAU

1

(m− 1)(m+ 2)(µ− 2)
. (4.4)

Note that χH
1 is the same as in the O(N) case given by (2.84) as is expected.

Higher order corrections are available in [48,49,218,220]. For the four dimensional

Landau-Ginzburg-Wilson theory the exponents corresponding to the critical slope

of the β-function has also been determined, [220]. Using

ω = (µ− 2) +
∞∑

i=1

ωi
N i

(4.5)
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then, [220],

ωH
+ 1 = − 4(2µ− 1)2Γ(2µ− 2)

Γ(2− µ)Γ(µ− 1)Γ(µ− 2)Γ(µ+ 1)mN
,

ωAU
+ 1 = −

[
2µ2 − 3µ− 1 +

µ(m− 2)[2µ− 5− 2(m+ 4)(2µ− 3)]

(m− 1)(m+ 2)

]
ηAU

1

N
,

ωCS
± 1 =

(2µ− 1)ηCS
1

2(m+ 1)(µ− 2)N

[
m(µ− 1)(µ− 4) + (2µ2 − 7µ+ 4)

± µ[(m2 − 1)(µ− 1)2 + 2(m− 1)(2µ− 3)(µ− 1)

+ (5µ− 8)2]
1
2

]
. (4.6)

Where ± corresponds to two solutions in the CS case due to the presence of two

fields σ and T ab. For the other fixed points only one solution is present since

there is in effect only one coupling constant relevant at these respectively points.

The additional critical exponent ω gives an insight into the stability of each fixed

point. The large N exponents provide a fundamental insight into the critical point

structure of the underlying universal theory in the large N expansion. Note that

although the large N results provided by (4.4) and (4.6) will be useful for checking

the explicit perturbative expressions, it will be the fixed point structure of the

O(N)×O(m) theory in six dimensions which is our main focus.

4.3 Six Dimensions

One can build a six dimensional Landau-Ginzburg-Wilson Lagrangian following

the same formulation of (4.1). This extension of the universality class is based on

the dimensionality of the fields and ensuring that the Lagrangian is renormalizable

in six dimensions. As the action must be dimensionless the dimension of the φia

field is restricted to [φia] = d/2−1 while the σ and T ab fields both have dimension

[σ] = [T ab] = 2. Clearly the Lagrangian (4.1) is renormalizable in four space-time

dimensions as all relevant interactions are present. The key to constructing the

six dimensional extension is the retention of the two basic interactions of φia

with the auxiliary fields, which are σφiaφia and T abφiaφib. This ensures that

the dimensionality of all three fields are preserved at the connecting Wilson-

Fisher fixed point in d-dimensions. To ensure the six dimensional Lagrangian

is perturbatively renormalizable all additional relevant interactions involving the

auxiliary fields are included. This leads to

L(LGW6) =
1

2
∂µφia∂µφ

ia +
1

2
∂µσ∂

µσ +
1

2
∂µT ab∂µT

ab +
1

2
g1σφ

iaφia
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+
1

6
g2σ

3 +
1

2
g3T

abφiaφia +
1

2
g4σT

abT ab

+
1

6
g5T

abT acT bc (4.7)

as the ultraviolet completion which should be equivalent to (4.1) at the Wilson-

Fisher fixed point. Note that the six dimensional Lagrangian includes more in-

teractions than the four dimensional case, as was the case for the ten dimensional

O(N) scalar theory. The additional interactions which depend solely on σ and

T ab are referred to as spectator interactions since they are only present in the crit-

ical dimension of six. Additionally the σ and T ab fields now cease being auxiliary

fields and become propagating with fundamental propagators. The interactions

associated with couplings g1 and g3 are core interactions and are present at the

Wilson-Fisher fixed point throughout all dimensions. They seed the universal

theory in the sense that they determine the canonical dimensions of the fields.

Thereby they induce the structure of the spectator interactions in each critical

dimension by requiring renormalizability.

We focus much of our attention on the critical theory, however we can also

include masses in the Lagrangian for the three basic fields,

L(LGW6)
m = L(LGW6) − 1

2
m2

1φ
iaφia − 1

2
m2

2σ
2 − 1

2
m2

3T
abT ab (4.8)

where mi are masses. Similar terms can be added to L(LGW4). Having established

the six dimensional Lagrangian for Landau-Ginzburg-Wilson theory, we wish to

determine the Renormalization Group functions for Lagrangian (4.7) to three

loops and analyse the fixed point structure and value of any possible conformal

window present. As in Chapter 3, we will also perform a large N analysis for

the critical exponents to ensure the six dimensional Lagrangian (4.7) lies in the

same universality class as (4.1). In addition to the wave function and coupling

constant renormalization we will consider the renormalization of the three masses

present in Lagrangian (4.8) and determine the mass mixing matrix of anomalous

dimensions to three loops. As this is the first calculation where we have considered

a massive Lagrangian we include relevant background on the different techniques

to deal with the inclusion of mass. All results for this calculation have been

published in [2].
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4.4 Calculation Techniques

We want to derive the Renormalization Group functions of the six dimensional

Landau-Ginzburg-Wilson model given by Lagrangian (4.7). In particular we wish

to compute the β-functions for each of the five couplings along with the three γ-

functions, all to three loops. The methodology to acquire these results builds on

the same techniques used in [53] and described in Chapter 3. The same procedure

is used of obtaining all Feynman diagrams using qgraf, [184], and inserting the

relevant group theory before reducing these graphs to a combination of master

integrals which can be solved by hand, [187]. The Feynman diagrams for each

interaction will then be combined and renormalized to obtain counterterms from

the Renormalization Group functions can be found. As in the ten dimensional

case discussed in the previous Chapter, we use the Tarasov method to lift four

dimensional master integrals to six dimensions. The main difference between the

O(N) calculation and the present theory is that the latter has a more complicated

symmetry group. This can be seen from the additional indices in Lagrangian

(4.7). The Feynman rules for six dimensional Landau-Ginzburg-Wilson theory

are illustrated in figure 4.1 where the group theory term are defined in equations

(4.9) to (4.13). Note that solid lines indicate φia fields and dotted lines signify σ

fields as before. The new T ab fields are denoted as wiggly lines.

=
δijδab
p2

= 1
p2 = P abcd

p2

= g1δijδab = g2

= g3δijP
abcd = g4P

abcd

= g5P
abcdef
3

φia φjb σ σ T ab T cd

σ

φia φjb

σ

σ σ

T ab

φia φjb

σ

T ab T cd

T ab

T cd T ef

Figure 4.1: Feynman rules for the Green’s functions of O(N) × O(m) Landau-
Ginzburg-Wilson theory in six dimensions.

To begin our computation we generate all Feyman diagram electronically us-

115



Chapter 4

ing the qgraf package, [184]. The input model file is given by figure 4.2, where

the notation AAA corresponds to the T abT acT bc vertex, for instance. Once again

we forbid all tadpole and snail diagrams from the output and include only one-

particle irreducible (1PI) graphs. The number of diagrams generated for the 2 and

3-point graphs to three loops are listed in table 4.1. Note that we do not actually

have to generate the Feynman diagrams for the 3-point interactions σ3, σφiaφjb,

and σT abT cd to any loop order. These will be discarded at the appropriate point

later. To avoid calculating these diagrams directly we can instead employ a trick

that involves nullifying a vertex to obtain the divergent piece of the diagrams

corresponding to these interactions. This will be explained in much greater de-

tail in section 4.4.3. For now briefly recall that to compute the Renormalization

Group functions only the divergent parts of Feynman diagrams is required. Un-

fortunately this short-cut can not be applied to all 3-point interactions. We do

therefore need to generate graphs for the interactions T abφiaφib and T abT cdT ef to

three loops.

[phi, phi,+]

[sigma, sigma,+]

[AA, AA,+]

[sigma, phi, phi]

[sigma, sigma, sigma]

[AA, phi, phi]

[sigma, AA, AA]

[AA, AA, AA]

Figure 4.2: The qgraf input model file for the six dimensional Landau-Ginzburg-
Wilson calculation.

Green’s function Tree Level One Loop Two Loops Three Loops

φiaφjb - 2 23 514

σσ - 3 19 343

T abT cd - 3 27 589

T abφiaφjb 1 5 137 4984

T abT acT bc 1 5 155 5857

Table 4.1: Number of Feynman diagrams computed to three loops for each of
the 2 and 3-point Green’s functions. Total number of diagrams is 12666. The
interactions σφiaφjb, σ3 and σT abT cd are not needed as they can be generated
from 2-point graphs.
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All one loop diagrams are illustrated in figures 4.3 to 4.8. For completeness the

diagrams for all 3-point interactions, including the interactions which we do not

generate, are illustrated. Additionally to display the types of interactions that

are possible all 2-point graphs to two loops are given in Appendix B.

Figure 4.3: All Feynman diagrams for the φia, σ and T ab 2-point functions to one
loop.

Figure 4.4: All Feynman diagrams for the 3-point σφiaφjb interaction to one loop.
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Figure 4.5: All Feynman diagrams for the 3-point φiaφjbT ab interaction to one
loop.

Figure 4.6: All Feynman diagrams for the 3-point σσσ interaction to one loop.

Figure 4.7: All Feynman diagrams for the 3-point σT abT cd interaction to one
loop.
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Figure 4.8: All Feynman diagrams for the 3-point T abT acT bc interaction to one
loop.

To show the form of qgraf one example of the output data for a 2-point Feynman

diagram at three loops is displayed along with a graphical representation in figure

4.9. The diagram contains two external T ab fields and a combination of φia and σ

internal fields. The ordering of each vertex and the internal line structure which

connects them is encoded in the qgraf output. The factor 1/2 is a symmetry

factor for the Feynman diagram.

1/2

∗vx(AA(−1), phi(1), phi(2))

∗vx(AA(−3), phi(3), phi(4))

∗vx(sigma(6), phi(1), phi(5))

∗vx(sigma(7), phi(2), phi(8))

∗vx(sigma(7), phi(3), phi(5))

∗vx(sigma(6), phi(4), phi(8))

Figure 4.9: qgraf output and the graphical representation of a 2-point Feynman
diagram with external T ab fields.

After every Feynman diagram has been generated we identify and order the graphs

into their basic topologies and apply the indices corresponding to the symmetry

group O(N) × O(m) automatically using form, [185]. The O(N) × O(m) sym-

metry gives the Feynman rules for the propagators and vertices involving T ab

an associated colour tensor. In other words the T ab propagator will involve the
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tensor, [218],

P abcd =
1

2
[δacδbd + δadδbc − 2

m
δabδcd] (4.9)

which satisfies the trace properties

P abcc = P aacd = 0 , P abcb =
(m− 1)(m+ 2)

2m
δac . (4.10)

It also satisfies the projection relations

P abpqP pqcd = P abcd , P abpqP cpdq =
(m− 2)

2m
P abcd . (4.11)

Equipped with this Feynman rule the triple T ab vertex involves the rank 6 colour

tensor

P abcdef
3 = P abpqP cdprP efqr . (4.12)

Consequently,

P abcdpq
3 P efpq = P abcdef

3 , P abcded
3 =

(m− 2)(m+ 4)

4m
P abce

P abpqrs
3 P cdpqrs

3 =
(m− 2)(m+ 4)

4m
P abcd (4.13)

for instance. Encoding these within the form module allows the group theory

evolution of the higher loop graphs to process more efficiently. The Feynman

rules for the propagators are then substituted in, which ensures the graphs are

picked up at the appropriate place in the subsequent program. Next the Feynman

diagrams are reduced to a combination of master integrals. It turns out that

only the 2-point master integrals to three loops are required, owing to the short-

cut which can be used in computing the σφiaφjb, σ3 and σT abT cd interactions.

Similarly other 3-point interactions, φiaφjbT cd and T abT cdT ef , can be reduced to

a combination of 2-point master integrals by setting one external momenta to

zero. A more detailed explanation on these subtleties will follow in sections 4.4.3

and 4.4.4.

4.4.1 Integral Reduction of the 2-point Function

All diagrams for the 2-point function to three loops have been generated with

the relevant Feynman rules subsituted in. Now reduze, [187, 190], can be used

to simplify the Feynman diagrams into a set of integrals which can be computed

by hand. reduze works using a C++ implementation of the Laporta algorithm

which uses integration by parts to systematically reduce scalar integrals to a set

of basic master integrals, [192]. The one loop reduction of the 2-point function is
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trivial to show. All one loop 2-point functions reduce down to one basic master

integral illustrated in 3.12. The two loop reduction is more complicated and

was used in Chapter 3 without derivation which we present here. The auxiliary

topology, or integral family, of the 2-point two loop function is displayed in figure

3.14. As a Feynman integral the auxiliary topology is

I22(α, β, γ, ρ, δ) =

∫
ddkddq

(2π)2d

1

(k2)α((k − p)2)β(q2)γ((q − p)2)ρ((k − q)2)δ
(4.14)

where the notation I22(α, β, γ, ρ, δ) =
∫
k,q
I22(α, β, γ, ρ, δ) can be implemented.

The integral is of the form 1/(abcde) where a, b, c, d and e are products of the

propagators and the loop momenta is denoted by k and q. The external legs

satisfy the condition p2 = −µ2. The reduction of the 2-point function at two loop

was discussed in [221] and briefly mentioned in [222]. The same initial steps as

the reduction of the 3-point one loop function in Chapter 3 are followed.

Using the dimensional regularisation property of equation (3.19) we obtain

the following identity,

d

∫
ddkddq

(2π)2d
I22(α, β, γ, ρ, δ) = −

∫
ddkddq

(2π)2d
kµ

∂

∂kµ
I22(α, β, γ, ρ, δ) . (4.15)

This is the same result as equation (3.20) except that we now have a two loop

integral. To obtain a reduction relation only one of the loops needs to be differ-

entiated, in this case the loop on the right-hand side of figure 4.10 which is just

the 3-point one loop diagram. We could as easily differentiate over the left-hand

loop, in which case we replace kµ with qµ in equation (4.15).

Figure 4.10: To obtain a reduction relation only one of the two loops needs to
be differentiated, in this case we choose the loop on the right-hand side of the
dashed line.

To begin the reduction each term in the denominator of I22(α, β, γ, ρ, δ) is ex-
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plicitly differentiated in turn with respect to k

dI22(α, β, γ, ρ, δ) = 2α

∫

k,q

k2

(k2)α+1((k − p)2)β(q2)γ((q − p)2)ρ((k − q)2)δ

+ 2β

∫

k,q

k(k − p)
(k2)α((k − p)2)β+1(q2)γ((q − p)2)ρ((k − q)2)δ

+ 2δ

∫

k,q

k(k − q)
(k2)α((k − p)2)β(q2)γ((q − p)2)ρ((k − q)2)δ+1

.

The numerator in each of these integrals can be rearranged,

dI22(α, β, γ, ρ, δ) = 2α

∫

k,q

k2

(k2)α+1((k − p)2)β(q2)γ((q − p)2)ρ((k − q)2)δ

+ β

∫

k,q

(k − p)2 + k2 − p2

(k2)α((k − p)2)β+1(q2)γ((q − p)2)ρ((k − q)2)δ

+ δ

∫

k,q

(k − q)2 + k2 − q2

(k2)α((k − p)2)β(q2)γ((q − p)2)ρ((k − q)2)δ+1
.

The integrals on the right-hand side can then be rewritten into the notation

I22(α, β, γ, ρ, δ). Additionally the equation can be simplified by factorising terms

on both sides of the equation. We remind the reader at this point that the

notation I22(α + 1, β, γ, ρ, δ) indicates that the power on the k2 propagator has

been increased by one,

(d− 2α− β − δ)I22(α, β, γ, ρ, δ) = βI22(α− 1, β + 1, γ, ρ, δ)

− p2βI22(α, β + 1, γ, ρ, δ)

+ δI22(α− 1, β, γ, ρ, δ + 1)

− δI2(α, β, γ − 1, ρ, δ + 1) . (4.16)

This equation is illustrated in figure 4.11 where the + indicates the power on that

particular propagator has been increased by one.

(d− 2α− β − δ) = β − βp2

+ δ − δ

+ +

+ +

Figure 4.11: The first relation derived from the reduction of the 2-point two loop
function, I22(α, β, γ, ρ, δ).
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Figure 4.11 illustrates how the basic topology of the 2-point two loop function

can be reduced into a combination of lower topology 2-point diagrams where an

internal propagator has been removed and the same topology with a higher power

propagator. Three additional reduction relations similar to equation (4.16) can

be obtained by utilizing two symmetries that are present in the 2-point function.

Namely,

k − p → q − p , k → q

and

k − p → k , q − p → q .

The first symmetry changes which way around the loops are positioned, while the

second reflects the Feynman diagram in the horizontal axis. Applying both of

these symmetries individually, as well as once together, three additional reduction

relations can be found

(d− 2β − α− δ)I22(α, β, γ, ρ, δ) = αI2(α + 1, β − 1, γ, ρ, δ)

− p2αI22(α + 1, β, γ, ρ, δ)

+ δI22(α, β − 1, γ, ρ, δ + 1)

− δI22(α, β, γ, ρ− 1, δ + 1) , (4.17a)

(d− 2γ − ρ− δ)I22(α, β, γ, ρ, δ) = ρI22(α, β, γ − 1, ρ+ 1, δ)

− p2ρI22(α, β, γ, ρ+ 1, δ)

+ δI22(α, β, γ − 1, ρ, δ + 1)

− δI22(α− 1, β, γ, ρ, δ + 1) ,(4.17b)

(d− 2ρ− γ − δ)I22(α, β, γ, ρ, δ) = γI22(α, β, γ + 1, ρ− 1, δ)

− p2γI22(α, β, γ + 1, ρ, δ)

+ δI22(α, β, γ, ρ− 1, δ + 1)

− δI22(α, β − 1, γ, ρ, δ + 1) . (4.17c)

A fifth relation can be obtained by modifying identity (4.15). Instead of differen-

tiating over the loop momenta k we instead choose to differentiate with respect to

the incoming/outgoing momenta p. More precisely, we will now use the following

identity

d

∫
ddkddq

(2π)2d
I22(α, β, γ, ρ, δ) = −

∫
ddkddq

(2π)2d
pµ

∂

∂pµ
I22(α, β, γ, ρ, δ) . (4.18)

Differentiating each term in the denominator of I22(α, β, γ, ρ, δ) in turn with
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respect to p we find,

dI22(α, β, γ, ρ, δ) = 2β

∫

k,q

p(p− k)

(k2)α((k − p)2)β+1(q2)γ((q − p)2)ρ((k − q)2)δ

+ 2ρ

∫

k,q

p(p− q)
(k2)α((k − p)2)β(q2)γ((q − p)2)ρ+1((k − q)2)δ

.

Once again the numerator in each integral can be rearranged,

dI22(α, β, γ, ρ, δ) = β

∫

k,q

(p− k)2 + p2 − k2

(k2)α((k − p)2)β+1(q2)γ((q − p)2)ρ((k − q)2)δ

+ ρ

∫

k,q

(p− q)2 + p2 − q2

(k2)α((k − p)2)β(q2)γ((q − p)2)ρ+1((k − q)2)δ
.

Rewriting all integrals in the notation I22(α, β, γ, ρ, δ) and simplifying, a fifth

reduction relation can be obtained

(d− β − ρ)I22(α, β, γ, ρ, δ) = p2βI22(α, β + 1, γ, ρ, δ)

− βI22(α− 1, β + 1, γ, ρ, δ)

+ p2ρI22(α, β, γ, ρ+ 1, δ)

− ρI22(α, β, γ − 1, ρ+ 1, δ) . (4.19)

The final relation can be derived by adjusting the identity (4.15) to differentiate

over the momenta p and multiply by a vector (p− q),

d

∫
ddkddq

(2π)2d
I22(α, β, γ, ρ, δ) = −

∫
ddkddq

(2π)2d

∂

∂pµ
(p−q)µI22(α, β, γ, ρ, δ) . (4.20)

Differentiating each term in the denominator of the two loop Feynman diagram

with respect to p and multiplying by a (p− q) vector we find

dI22(α, β, γ, ρ, δ) = 2β

∫

k,q

(p− q)µ(p− k)µ

(k2)α((k − p)2)β+1(q2)γ((q − p)2)ρ((k − q)2)δ

+ 2ρ

∫

k,q

(q − p)2

(k2)α((k − p)2)β(q2)γ((q − p)2)ρ+1((k − q)2)δ
.

Making use of identities such as, [221],

2(p− q)µ(p− k)µ = (p− q)2 + (p− k)2 − (q − k)2 , (4.21)

the relation becomes

dI22(α, β, γ, ρ, δ) = β

∫

k,q

(p− q)2 + (p− k)2 + (q − k)2

(k2)α((k − p)2)β+1(q2)γ((q − p)2)ρ((k − q)2)δ
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+ 2ρ

∫

k,q

(q − p)2

(k2)α((k − p)2)β(q2)γ((q − p)2)ρ+1((k − q)2)δ
.

Using the familiar I22(α, β, γ, ρ, δ) notation for the right-hand side of the equation

and simplifying, the sixth and final reduction relation is found

(d− β − 2ρ)I22(α, β, γ, ρ, δ) = β[I22(α, β + 1, γ, ρ− 1, δ)

− I22(α, β + 1, γ, ρ, δ − 1)] . (4.22)

This sixth relation has been illustrated in figure 4.12 as it is the only relation

which includes the second master integral, known as the ‘spectacle’ graph. All

other relations contain only the first master integral.

(d− β − 2ρ) = β −
+ +

k q k q k q

Figure 4.12: The sixth reduction relation of the 2-point two loop Feynman integral
I22(α, β, γ, ρ, δ). The loop momenta has been illustrated.

Taking the most general case by setting α = β = γ = ρ = δ = 1 and rear-

ranging the six integration by parts relations so that the higher order topologies

sit on the left-hand side, the final result given by the reduze program for the

2-point two loop graph can be found,

p2I22(1, 2, 1, 1, 1) = (4− d)I22(1, 1, 1, 1, 1) + I22(0, 2, 1, 1, 1)

+ I22(0, 1, 1, 1, 2) − I22(1, 1, 0, 1, 2) , (4.23a)

p2I22(2, 1, 1, 1, 1) = (4− d)I22(1, 1, 1, 1, 1) + I22(2, 0, 1, 1, 1)

+ I22(1, 0, 1, 1, 2) − I22(1, 1, 1, 0, 2) , (4.23b)

p2I22(1, 1, 1, 2, 1) = (4− d)I22(1, 1, 1, 1, 1) + I22(1, 1, 0, 2, 1)

+ I22(1, 1, 0, 1, 2) − I22(0, 1, 1, 1, 2) , (4.23c)

p2I22(1, 1, 2, 1, 1) = (4− d)I22(1, 1, 1, 1, 1) + I22(1, 1, 2, 0, 1)

+ I22(1, 1, 1, 0, 2) − I22(1, 0, 1, 1, 2) , (4.23d)

p2I22(1, 2, 1, 1, 1) + p2I22(1, 1, 1, 2, 1) = (d− 2)I22(1, 1, 1, 1, 1)

+ I22(0, 2, 1, 1, 1) + I22(1, 1, 0, 2, 1) , (4.23e)

(d− 3)I22(1, 1, 1, 1, 1) = I22(1, 2, 1, 0, 1) − I22(1, 2, 1, 1, 0) . (4.23f)

These six IBP relations can be used within reduze to reduce any 2-point two loop

integral to a combination of master integrals. As an example, the relation (4.23f)
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is displayed in figure 4.13. This can be substituted into relations (4.23a)-(4.23e)

to solve for two loop 2-point diagrams with higher power propagators.

(d− 3) = −
1

1

1

1

1

1 1

1

2

1 1

12

Figure 4.13: Reduction of the 2-point two loop Feynman diagram I22(1, 1, 1, 1, 1)
down to a combination of the two different master integrals.

It is important to note that while the second diagram on the right-hand side of

figure 4.13 is a master integral, the ‘spectacle’ graph. The first diagram is not,

however it is related to the other 2-point master integral known as the ‘sunset’

diagram.

∝

Figure 4.14: The first diagram of the right-hand side of figure 4.13 is related to
the ‘sunset’ 2-point master integral.

This can be shown via integration in coordinate space as the ‘sunset’ master

integral can be integrated down to the integral I22(0, 1, 2, 1, 1).

= ν(2,1,d−3)
ν(1,2,d−3)ν(1,3−d/2,((3d)/2)−4)

2

1

1
1 1

2

1

Figure 4.15: The ‘sunset’ master Feynman diagram integrates down to the inte-
gral I22(0, 1, 2, 1, 1).

We have derived the reduction relation for the 2-point Green’s function at two

loops to illustrate what reduze does internally. The reduction of the 2-point

three loop function is a much more involved process and hence the full derivation

is not included here. We do however discuss how the reduze program deals

with such an integral family in the following subsection. All that remains is to

compute the master integrals in six dimensions.
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4.4.2 2-point Master Integrals

The 2-point one loop master integral has been illustrated in figure 3.12 while the

two masters integrals derived for the two loop function were given in figure 3.13.

Note that for this theory all propagators in the master integrals are of the form

1/k2. The one and two loop master integrals were calculated in Chapter 3 using

conformal integration. The results in d = 6− 2ε dimensions are

I(d=6−2ε)
21 (1, 1) =

[
− 1

6ε
− 4

9
+

(
π2

72
− 26

27

)
ε+

(
− 160

81
+
π2

27
+

7ζ3

18

)
ε2

+

(
28ζ3

27
+

13π2

162
+

47π4

8640
− 968

243

)
ε3

+ O(ε4)

]
p2

(4π)3
, (4.24)

I(d=6−2ε)
22 (1, 1, 1, 1, 0) =

[
1

36ε2
+

4

27ε
− π2

216
+

14

27
+

(
368

243
− 2π2

81
− 7ζ3

54

)
ε

+

(
− 56ζ3

81
+

2924

729
− 7π2

81
− 7π4

4320

)
ε2

+ O(ε3)

]
(p2)2

(4π)6
, (4.25)

I(d=6−2ε)
22 (1, 1, 0, 0, 1) =

[
− 1

1440ε
− 451

86400
+

(
π2

8640
− 129811

5184000

)
ε

+

(
− 30725071

311040000
+

451π2

518400
+

ζ3

135

)
ε2

+

(
451ζ3

8100
+

129811π2

31104000
+

19π4

172800
− 6551286931

18662400000

)
ε3

+ O(ε4)

]
(p2)3π6 . (4.26)

The symbol ζn is the Riemann zeta function where ζ2 = π2/6 and ζ4 = π4/90.

The reduction of the 2-point Feynman diagrams at three loops also uses reduze,

[187, 190]. However the reduction at three loops is more complicated due to

the number of propagators present and the fact that three auxiliary topologies

exist. Previously for the one and two loop Green’s functions only one auxiliary

topology was present. The three auxiliary topologies of the 2-point function at

three loops are illustrated in figure 4.16. The first topology is non-planar, while

the second and third topologies are known as the ‘Benz’ and ‘Ladder’ diagrams

respectively. In our set-up the second and third topologies will each reduce down

to a combination of the other plus the non-planar topology. Therefore we only

need to perform a reduction on one of these auxiliary topologies as well as on

the non-planar diagram. The choice of base family in reduze is down to the

user. We have chosen to reduce the ‘Ladder’ topology here, however we could
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have easily chosen to reduce the ‘Benz’ diagram.

Figure 4.16: The three integral families, or auxiliary topologies, for the 2-point
function at three loops. From left to right; the ‘Non-planar’, the ‘Benz’ and the
‘Ladder’ diagram.

The reduction of the three loop topologies involves reduze and follows the same

process as the two loop case. We will discuss the main challenges involved at

three loops without going into detail on the internal integration by parts algo-

rithm. The biggest difference in the set up is that we need to perform two separate

reductions one for each integral family, each requiring a different specified internal

propagator structure. After both reductions have been performed we are left with

two databases containing relations between these topologies and master integrals

which can be usd to simplify three loop Feynman diagrams.

It turns out that only six master integrals exist for the 2-point function at three

loops. These are the non-planar diagram itself containing only 1/k2 propagators

and five additional master integrals which are illustrated in figure 4.18. These five

master integrals are all derived from the reduction of the ‘Ladder’ topology. The

labelling of the power on the propagators which is used to differentiate between

master integrals is displayed in figure 4.17.

α

β

γ

ρ

δ

θ

λ τ

Figure 4.17: The ‘Ladder’ auxiliary topology for the 2-point function
at three loops with the power on each of the propagators labelled and
I23l(α, β, γ, ρ, δ, θ, λ, τ).
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Figure 4.18: The five master integrals associated with the reduction of
the ‘Ladder’ topology of the 2-point function at three loop. Labelling
from left to right on top line; I23l(0, 1, 1, 0, 0, 0, 1, 1), I23l(0, 1, 1, 1, 1, 0, 1, 0)
and I23l(0, 1, 0, 1, 1, 0, 1, 1). Labelling from left to right on bottom line;
I23l(1, 1, 1, 1, 1, 1, 0, 0) and I23l(1, 1, 1, 1, 0, 0, 1, 1).

To illustrate what a reduze IBP output looks like a relation between a 2-point

diagram at three loops and its master integrals is given in Appendix C. Of the six

master integrals all but two can be directly computed in d = 6 − 2ε dimensions

using conformal integration techniques. The results are

I(d=6−2ε)
23l (0, 1, 1, 0, 0, 0, 1, 1) =

[
− 1

1814400ε
− 617

84672000

+

(
π2

7257600
− 18360367

320060160000

)
ε

+

(
− 3163717187

8961684480000
+

617π2

338688000

+
29ζ3

1814400

)
ε2 +O(ε3)

]
1

(p2)5
,

I(d=6−2ε)
23l (0, 1, 1, 1, 1, 0, 1, 0) =

[
1

8640ε2
+

611

518400ε
+

74257

10368000
− 34560π2

+

(
63435631

1866240000
− 611π2

2073600
− 13ζ3

8640

)
ε

+

(
15631687091

111974400000
− 74257π2

41472000
− 17π4

829440

− 7943ζ3

518400

)
ε2 +O(ε3)

]
(p2)4 ,

I(d=6−2ε)
23l (0, 1, 0, 1, 1, 0, 1, 1) =

[
+

1

19440ε2
+

167

291600ε
− π2

77760
+

8477

2187000

+

(
− 167π2

1166400
− 23ζ3

19440
+

114329

5467500

)
ε

+

(
1363033

13668750
− 8477π2

8748000
− 11π4

622080
− 3841ζ3

291600

)
ε2

+ O(ε3)

]
(p2)4 ,
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I(6−2ε)
23l (1, 1, 1, 1, 1, 1, 0, 0) =

[
− 1

216ε3
− 1

27ε2
+

(
+

π2

864
− 29

162

)
1

ε
+

π2

108

+
7ζ3

216
− 496

729
+

(
+

37π4

103680
+

29π2

648
+

7ζ3

27

−1636

729

)
ε+

(
− 7π2ζ3

864
+

203ζ3

162
+

31ζ5

360

+
124π2

729
+

37π4

12960
− 14752

2187

)
ε2 +O(ε3)

]
(p2)3 .

The other two graphs, I23l(1, 1, 1, 1, 0, 1, 1) and the non-planar diagram which

is labelled I23n(1, 1, 1, 1, 1, 1, 1, 1), can be calculated in six dimensions by using

known four dimensional results, [223]. The Tarasov method which relates d and

(d+2)-dimensional integrals, [195,196], is used to lift the four dimensional results

to six dimensions. The Tarasov method for the 3-point one loop function was

derived in Chapter 3, the 2-point relation is extremely similar. Therefore the

results of the remaining two master integrals in six dimensions can be calculated

as

I(d=6−2ε)
23l (1, 1, 1, 1, 0, 0, 1, 1) =

[
1

1296ε3
+

103

15552ε2
+

(
− π2

5184
+

30161

933120

)
1

ε

+
7ζ3

1296
− 103π2

62208
+

6057823

55987200

+

(
680542229

3359232000
− 30161π2

3732480
+

721ζ3

15552
+

25ζ4

2304

)
ε

+

(
− 94706404133

201553920000
− 7ζ3π

2

5184
− 6057823π2

223948800

+
296591ζ3

933120
+

2575ζ4

27648
+

599ζ5

2160

)
ε2

+ O(ε3)

]
(p2)3 ,

I(d=6−2ε)
23n (1, 1, 1, 1, 1, 1, 1, 1) =

[
− 1

36ε2
+

(
− 23

72
+
ζ3

18

)
1

ε
− 2683

1296
+
ζ4

12
+
ζ3

2

+
π2

144
+

(
− 2803

288
− 4ζ5

9
+

3ζ4

4
+

875ζ3

324
+

23π2

288

−π
2ζ3

72

)
ε+

(
− 1652863

46656
− 47ζ6

32
− 101ζ5

9

+
6829ζ4

1728
+

7163ζ3

648
+

7ζ2
3

18
+

2683π2

5184
− π2ζ3

8

)
ε2

+ O(ε3)

]
(p2) . (4.27)

As the values of all six dimensional master integrals are known they can be in-

serted into the database of reduction relations to solve for every 2-point Feynman
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diagram at three loops.

4.4.3 3-point Interactions and the Insertion of a Propagator

Having calculated all of the 2-point integrals we now turn our attention to the

3-point Green’s functions which are required for the computation of the five β-

functions. Fortunately there is a short-cut which can be used in the computation

of the 3-point graphs. They can be calculated purely from 2-point diagrams

by exploiting certain properties of the specific field theory. Consider the six

dimensional LGW Lagrangian and recall that the 2-point scalar propagators can

be formally expanded. To demonstrate how this works the φia propagator is used

as an example,
δijδab
k2

−→ δijδab
k2

+
δijδabg1

(k2)2
. (4.28)

This expansion is illustrated in figure 4.19.

φia φjb φia φjb
+

φia φjb

0
σ

Figure 4.19: Expansion of the φia propagator to include an insertion of a σ field.

The first term on the right-hand side of equation (4.28) corresponds to the mass-

less theory. The second term represents the zero momentum insertion of an

additional σ propagator, it is in effect a 3-point vertex insertion at zero momen-

tum. Diagrammatically for the self energy renormalization this corresponds to a

2-point function with a zero momentum insertion, but more importantly this term

would correspond to a 3-point graph where one of the external legs has a nulli-

fied momentum. In other words it is equivalent to a diagram contributing to the

coupling constant renormalization. As all calculations are performed using dimen-

sional regularisation in the modified minimal subtraction (MS) renormalization

scheme, the β-function renormalization constant can be correctly extracted from

this nullified external momentum configuration. Indeed in four dimensional gauge

theories this is the standard procedure for three loop renormalization, [224,225].

This technique is explained in great detail in [53].

In performing this expansion one truncates at the linear term in g1 to retain

only one insertion per propagator as this reproduces all the relevant graphs for the

respective vertex renormalization. This method can be applied to generate nearly
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all of the 3-point diagrams required to three loops. To see how this insertion works

in practice at a higher loop order we have illustrated the insertion on a one loop

diagram in figure 4.28.

+

0

Figure 4.20: Insertion of a σ propagator on a one loop 2-point graph.

It is clear to see from figure 4.20 that a 3-point graph has been generated. The

nullified vertex in the diagram means that 2-point master integrals can be used

to evaluate it after a reduction. In summary, to calculate the 3-point Feynman

diagrams we generate all 2-point graphs using qgraf. Modified Feynman rules

can then be inserted using expansions such as (4.28) which insert a third nullified

propagator. Nearly all 3-point diagrams can be generated in this way. The three

modified propagators used, excluding the one already given, are

1

k2
→ 1

k2
+

g2

(k2)2
,

P abcd

k2
→ P abcd

k2
+

g4P
abcd

(k2)2
. (4.29)

The first expansion in (4.29) describes a σ field insertion onto a σ 2-point prop-

agator which recreates the 3-point interaction σ3. The final expansion gives a σ

insertion to produce the σT abT cd interaction. Note that the first expansion given

by equation (4.28) describes the interaction σφiaφjb. Therefore all graphs for the

σφiaφjb, σ3, and σT abT cd 3-point functions to three loops can be generated using

this technique.

One concern is that nullifying an external momenta could introduce unwanted

infrared (IR) divergences which would be indistinguishable from UV divergences

in dimensional regularisation. Indeed in four dimensions if a nullified leg was

present in a massless graph then it would be IR singular. Fortunately it is not

an issue here as in a six dimensional scalar theory such a propagator is by con-

trast IR safe. To explain this further, if we have a scalar 3-point function at

one loop this can be shown to be finite using power counting in four dimensions.

However if we nullify one external leg, IR divergences will appear and will be

indistinguishable from any potential UV divergences. This becomes a problem

when renormalizing. Importantly, in six dimensions the 3-point graph at one loop
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is UV divergent. Additionally if we nullify one external leg, no IR divergences

appear as 1/(k2)2 is not divergent in six dimensions unlike in four. Hence all

divergences that appear in the 3-point diagram with one nullified external leg

will be ultraviolet. Therefore in a six dimensional theory the UV divergences can

be safely extracted using this method. Further explanations on this concern are

given in [3, 226]. Alternatively if we look at equation (2.6) of Chapter 2 and set

α = 0 then we can see that a zero mass, or this this case propagator, insertion

(m2 → 0) is possible if and only if d − 2β > 0. For β < 3 this occurs for d > 4,

therefore the insertion is IR safe in six dimensions but not in four.

Another concern that arises in using this technique is the possible miscal-

culation of symmetry factors. In particular whether the 3-point graph we wish

to evaluate will have the same symmetry factor as the 2-point function with an

insertion. This will prove not to be a problem, as we shall illustrate using an ex-

ample at one loop. If we take the 3-point function with three external σ fields and

internal φia fields we calculate the symmetry factor to be 1. However, the 2-point

graph with an insertion has a symmetry factor of 1/2. This could prove to be a

stumbling block in the graph generation, if not for the fact that the insertion of

the σ propagator can be placed in two different ways. This is illustrated in figure

4.21. As there are two graphs with symmetry factor 1/2, this gives an overall

symmetry factor of 1 which is needed to keep consistency in the calculation. This

will be the case for all diagrams up to the three loops.

0

0

Figure 4.21: The 3-point one loop Feynman diagram and the two 2-point graphs
with a nullified σ field insertion. The symmetry factor of the first diagram is
1, while each of the original 2-point graphs before appearing in figure 4.20 have
symmetry factor 1/2.

We have exploited this procedure as it can be used to minimize the amount of

computations required. There are limitations however as it misses out certain

graphs which involve the φiaφibT ab and T abT acT bc vertices. While we have used

this short-cut for the coupling constant renormalization to find β1, β2 and β4 the

expansions do not generate all the graphs needed for β3 and β5. This is clear

from the lack of g3 and g5 terms in equation (4.29). A solution to the problem of
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generating these rogue diagrams involves a different technique.

4.4.4 T abT acT bc and φiaφibT ab Interactions

The 3-point Feynman diagrams associated with the σφiaφjb, σσT ab and σ3 inter-

actions can be computed by inserting a nullified propagator on 2-point graphs.

Hence the 2-point master integrals can be used for the calculation of the 3-point

diagrams. As no 3-point master integrals are needed a considerable amount of

time is saved. Unfortunately not all 3-point interactions can be generated in this

way. The φiaφjbT ab and T abT cdT ef functions can not be computed using this

method. If they could be then the propagators (4.28) and (4.29) would instead

read

δijδab
k2

→ δijδab
k2

+
δijδabg1

(k2)2
+

δijP
abcdg3

(k2)2

1

k2
→ 1

k2
+

g2

(k2)2
,

P abcd

k2
→ P abcd

k2
+

P abcdg4

(k2)2
+

P abcdef
3 g5

(k2)2
. (4.30)

However these replacements will not generate all 3-point graphs for φiaφjbT ab and

T abT abT ab simply from the 2-point diagrams. The problem here lies principally

with four graphs, displayed in figure 4.22, and the way in which qgraf sets up

their generation.

Figure 4.22: The four ‘problem’ diagrams that are not generated using the inser-
tion of a propagator on a 2-point function at one loop.

It is obvious why the first two graphs will not be generated as the three internal

fields are different. There is no possible 2-point function to which a propagator

can be added to that will generate these 3-point diagrams. The problem with the

final two diagrams of figure 4.22 is more subtle and involves the qgraf internal

set-up. When a 2-point one loop diagram is generated by qgraf, the two external

fields are given fixed labels, see figure 4.23 for an example. It would therefore only

be possible to generate one of the 3-point diagrams. If we were to rearrange the

labels to produce the second graph one would run into over-counting problems.
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−1 −3

Figure 4.23: qgraf generation of a 2-point Feynman diagram at one loop. The
external σ fields are given fixed labels, rearranging these labels manually may
result in over counting problems.

Therefore the coupling constant renormalization associated with the φiaφjbT ab

and T abT acT bc interactions can not be calculated simply by using the expansions

(4.30). There is however another trick that can be employed which also eliminates

the need to calculate 3-point master integrals. To begin all 3-point diagrams for

φiaφjbT ab and T abT abT ab are generated up to three loops using qgraf. It can be

seen from table (4.1) that this is a considerable number of diagrams. Fortunately

the calculation is hugely simplified as the momentum of one external propagator

can be set to zero on each of the 3-point diagrams. By nullifying a single leg a

2-point function has essentially been created. This is illustrate below in figure

4.24.

0

Figure 4.24: Nullifying an external propagator on a 3-point diagram produces a
2-point function at one loop.

Although this proved tedious for the number of diagrams there were no major dif-

ficulties. With one nullified external leg the 3-point diagrams can now be treated

as 2-point and hence the 2-point master integrals can be used in their evaluation.

To clarify any divergence issues, the 3-point graph with a nullified propagator will

have the same divergence structure in six dimensions as the 2-point diagram. The

3-point graph with one nullified external momenta will produce UV divergence

in six dimensions but no IR divergences. Therefore the UV divergences of the 3-

point diagram will match those produced by the 2-point graph. Furthermore only

the divergent parts of each diagram are required to solve for the Renormalization

Group functions in the MS scheme. Once all 2 and 3-point Green’s functions have

been computed, or at the very least have had their divergent piece extracted, the

theory can be renormalized.
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4.4.5 Renormalization

The renormalization of the six dimensional Landau-Ginzburg-Wilson theory fol-

lows the same methodology as the renormalization in the previous Chapter. Once

all Green’s functions to three loops have been calculated form is used to sum

all 2 and 3-point diagrams together. Potential IR singularities that may arise are

only a problem if one considers diagrams on an individual level. By summing

graphs these IR singularities naturally cancel and so do not pose a problem. We

can therefore focus on UV divergences which emerge. In essence we have up to

now computed each graph as a function of the bare parameters. To determine the

counterterms which will be used to absorb UV divergences, form is implemented

to rescale all Green’s functions,

φia0 =
√
Zφφ

ia ,

σ0 =
√
Zσσ ,

T ab0 =
√
ZTT

ab ,

g0j = Zgj(gj)gj(µ)µε/2 (4.31)

where j = 1, . . . , 5. As this is a multi-coupling renormalization the redefinition

Zgjdef = Zgj(gj)gj(µ) is introduced. The fourth rescaling of (4.31) then becomes

g0j = Zgjdef(gj)µ
ε/2 . (4.32)

The renormalization constants are defined the same as in equation (3.61). In

addition to these definitions we now also have a renormalization constant for the

T ab field

ZT = 1 +
zT11

ε
+

(
zT22

ε2
+
zT21

ε

)
+ . . . ,

which has the same conventions as (3.61). The UV divergences are absorbed

into these counterterms order by order. To manipulate the results into a suitable

output reduze alongside form are used. The counterterms are inserted into the

definitions of the Renormalization Group functions to solve for the β-functions

and anomalous dimension of the fields. The idea behind this for a two coupling

theory was discussed in Chapter 2. The relations used to find the Renormalization

Group functions for a five coupling theory in six dimensions are

0 =
1

4
(d− 6)Zg1def − β1

∂Zg1def

∂g1

− β2
∂Zg1def

∂g2

− β3
∂Zg1def

∂g3

− β4
∂Zg1def

∂g4

− β5
∂Zg1def

∂g5

,
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0 =
1

4
(d− 6)Zg2def − β1

∂Zg2def

∂g1

− β2
∂Zg2def

∂g2

− β3
∂Zg2def

∂g3

− β4
∂Zg2def

∂g4

− β5
∂Zg2def

∂g5

,

0 =
1

4
(d− 6)Zg3def − β1

∂Zg3def

∂g1

− β2
∂Zg3def

∂g2

− β3
∂Zg3def

∂g3

− β4
∂Zg3def

∂g4

− β5
∂Zg3def

∂g5

,

0 =
1

4
(d− 6)Zg4def − β1

∂Zg4def

∂g1

− β2
∂Zg4def

∂g2

− β3
∂Zg4def

∂g3

− β4
∂Zg4def

∂g4

− β5
∂Zg4def

∂g5

,

0 =
1

4
(d− 6)Zg5def − β1

∂Zg5def

∂g1

− β2
∂Zg5def

∂g2

− β3
∂Zg5def

∂g3

− β4
∂Zg5def

∂g4

− β5
∂Zg5def

∂g5

(4.33)

for the β-functions and for the three anomalous dimensions of the fields the

following relations are used

γφ =
β1

Zφ

∂Zφ
∂g1

+
β2

Zφ

∂Zφ
∂g2

+
β3

Zφ

∂Zφ
∂g3

+
β4

Zφ

∂Zφ
∂g4

+
β5

Zφ

∂Zφ
∂g5

,

γσ =
β1

Zσ

∂Zσ
∂g1

+
β2

Zσ

∂Zσ
∂g2

+
β3

Zσ

∂Zσ
∂g3

+
β4

Zσ

∂Zσ
∂g4

+
β5

Zσ

∂Zσ
∂g5

,

γT =
β1

ZT

∂ZT
∂g1

+
β2

ZT

∂ZT
∂g2

+
β3

ZT

∂ZT
∂g3

+
β4

ZT

∂ZT
∂g4

+
β5

ZT

∂ZT
∂g5

. (4.34)

These relations can be solved order by order by substituting in counterterms to

find the three loop results for the RG functions. All Renormalization Group

functions have been determined using dimensional regularisation with the renor-

malization constants defined with respect to the MS scheme. Note that in the

critical dimension of six of the Landau-Ginzburg-Wilson Lagrangian we assume

the coupling constants are dimensionless in that dimension. The standard arbi-

trary scale µ is introduced to preserved dimensionlessness of the coupling in the

regularised theory.

137



Chapter 4

4.5 Mass Mixing Matrix

Although the main focus so far has been on critical theories, the six dimensional

Landau-Ginzburg-Wilson Lagrangian can be modified to include mass for the

three basic fields. This was shown in Lagrangian (4.8) and is repeated here for

the benefit of the reader,

L(LGW6)
m = L(LGW6) − 1

2
m2

1φ
iaφia − 1

2
m2

2σ
2 − 1

2
m2

3T
abT ab (4.35)

where mi are the three masses. Using dimensionality arguments we can show that

in six dimensions the three fields have identical canonical dimensions, [φia] = [σ] =

[T ab] = 2. It therefore follows that the mass terms for the three fields will also

have the same canonical dimension, [m2
1] = [m2

2] = [m2
3] = 2. We want to consider

the renormalization of the massive theory to three loops. The way in which we

approach the renormalization of the mass operators does not follow traditional

methods. Instead we use a technique similar to that used in obtaining the 3-

point functions for the coupling constant renormalization. Exploiting certain

properties of the specific field theory we can formally expand all 2-point scalar

propagators. This has the effect of inserting a zero momentum propagator to

all 2-point functions. However it will now necessarily be a mass insertion. The

2-point master integrals can then be utilized to compute all diagrams required

for the mass renormalization. The propagators for the three fields φia, σ and T ab

can be expanded respectively, as

δabδij
k2

→ δabδij
k2

+
δabδijm

2
1

(k2)2
,

1

k2
→ 1

k2
+

m2
2

(k2)2
,

P abcd

k2
→ P abcd

k2
+

P abcdm2
3

(k2)2
. (4.36)

The first term on the right-hand side corresponds to the massless theory. The

second term represents the zero momentum insertion of the mass operator on

the propagator. A mass will be inserted in turn on to every propagator of each

graph up to three loops. The expansions are truncated at this point to reproduce

all relevant graphs and diagrams of order O(m4
i ) are dropped. Note that no IR

problems will arise in six dimensions as the mass insertion is IR safe in six di-

mensions, unlike in four.

As the three mass operators have the same canonical dimension in six dimen-

sions they will mix. The mass mixing is also apparent when looking at certain
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Feynman diagrams, for example the two loop graph illustrated in figure 4.25.

Figure 4.25: A two loop Feynman diagram with external T ab fields that will
produce mass mixing.

As there are two different types of internal propagators present both of the masses

m1 and m3 can be inserted into this diagram producing mass mixing. We want

to determine the mass mixing matrix of anomalous dimensions to three loops.

Following that the results for the mass mixing matrix can be compared with

large N results. This is not as straightforward as for the wave-function and

coupling constant renormalization. To establish where the large N results come

from we look back to the four dimensional Landau-Ginzburg-Wilson Lagrangian

which is used in perturbation theory,

L(LGW4) =
1

2
∂µφia∂µφ

ia +
1

2
σ2 +

1

2
T abT ab +

1

2
g1σφ

iaφia

+
1

2
g2T

abφiaφia .

Quadratic terms are present to implement the auxiliary field formulation of the

quartic interaction and the fields σ and T ab are massless. In contrast, for six

dimensional perturbation theory the fields σ and T ab are no longer auxiliary

fields and have associated mass operators. More precisely in six dimensions the

fields σ and T ab have no auxiliary interpretation and so the quadratic parts have

to appear with a mass in order to have consistent dimensionality. If the fields σ

and T ab are massless in four dimensions, where do large N results come from?

The answer is found by looking at the large N formalism of four dimensional

LGW theory,

L(LGW4) =
1

2
∂µφia∂µφ

ia +
1

2
σ̃φiaφia +

1

2
T̃ abφiaφib − 3σ̃2

2g̃1

− 3T̃ abT̃ ab

2g̃2

.

This version of the Lagrangian is most useful for developing the large N expan-

sion and seeing the connection with higher dimensional theories. The coupling

constants appear within the quadratic part of the Lagrangian which is the first

step in constructing the critical exponents using the large N methods of [47–50].

Using dimensionality arguments we find the canonical dimensions of the three

fields in this large N formalism to be [φia] = 1 and [σ] = [T ab] = 2 in four dimen-
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sions. Moreover in four dimensions the coupling constants are dimensionless as

expected, [g̃1] = [g̃2] = 0. However away from four dimensions g̃1 and g̃2 do not

remain dimensionless. For example in six dimensions [g̃1] = [g̃2] = 4 − d = −2.

Therefore in higher dimensions they can be interpreted as mass scales. In other

words at criticality the critical exponent of the coupling, that is ω, evaluated at

each of the three fixed points will be related to the field mass anomalous dimen-

sions of σ and T ab computed in six dimensional perturbation theory and then

evaluated at criticality. Recall that the exponent ω is given by ω = β′(g∗). In

reality this is not a direct relation since we have a mass mixing matrix. Instead

we compare the appropriate exponent ω with the eigen-anomalous dimension of

the mass mixing matrix at criticality.

The situation for φia is different. In six dimensional perturbation theory, the

three masses have the same canonical dimension and hence we obtain a 3 × 3

mass mixing matrix. However in the four dimensional large N formalism of

the Lagrangian the canonical dimension of the field φia differs from the other

two as [φia] = 1 and [σ] = [T ab] = 2. Hence the field mass anomalous dimension

associated with the mass operator 1
2
φiaφia is not related to an ω exponent. Instead

the φia mass anomalous dimension is given by the anomalous dimension of the σ

field. In other words it is proportional to the sum of η and χ,

γφm(g∗i ) ∝ η + χ .

To summarise, we can perturbatively calculate the 3 × 3 mass mixing matrix in

six dimensions by introducing a mass insertion on each propagator of the 2-point

graphs using expansions (4.36). The eigenvalues of the mass mixing matrix eval-

uated at criticality are compared with the exponent ω evaluated at the three

different fixed points. Additionally the mass anomalous dimension of φia at crit-

icality in six dimensions can be compared with an exponent proportional to the

sum of η and χ which completes the large N checks.

To calculate the mass mixing matrix in six dimensions we not only have to

compute all 2-point graphs with a mass insertion but also renormalize the theory.

All Green’s functions are summed together and we note that the parameters

such as the mass operators used thus far are bare quantities. To determine the

renormalization constants and associated counterterms form is used as a tool to

rescale the mass operators

m2
i0 = Zijmm

2
j (4.37)
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where i, j = 1, 2, 3 and

Zijm =



Z11m Z12m Z13m

Z21m Z22m Z23m

Z31m Z32m Z33m


 .

More specifically the following renormalization constants are introduced

m2
10 = Z11mm

2
1 + Z12mm

2
2 + Z13mm

2
3 ,

m2
20 = Z21mm

2
1 + Z22mm

2
2 + Z23mm

2
3 ,

m2
30 = Z31mm

2
1 + Z32mm

2
2 + Z33mm

2
3

which are defined as

Z11m = 1 +
z11m11

ε
+

(
z11m22

ε2
+
z11m21

ε

)
+

(
z11m33

ε3
+
z11m32

ε2
+
z11m31

ε

)

+ . . . ,

Z12m =
z12m11

ε
+

(
z12m22

ε2
+
z12m21

ε

)
+

(
z12m33

ε3
+
z12m32

ε2
+
z12m31

ε

)

+ . . . ,

Z13m =
z13m11

ε
+

(
z13m22

ε2
+
z13m21

ε

)
+

(
z13m33

ε3
+
z13m32

ε2
+
z13m31

ε

)

+ . . . ,

Z21m =
z21m11

ε
+

(
z21m22

ε2
+
z21m21

ε

)
+

(
z21m33

ε3
+
z21m32

ε2
+
z21m31

ε

)

+ . . . ,
...

and so on. Note that the diagonal elements of Zijm start at one as the mass mixing

matrix begins with the unit matrix, that is Zijm = Iij when gi ≡ 0. To explain the

notation, for the counterterms zijmkl the values of i and j are numbers associated

with the renormalization constant. Additionally k denotes the loop order of the

counterterm and l gives the power of the associated pole. Once counterterms have

been implemented the divergences at particular loop orders are absorbed into the

renormalization constant of the mass operators. By summing together all graphs

before introducing counterterms we bypass the need to carry out subtractions

on each individual Feynman diagram which can be tedious. Note that the mass

renormalization here was performed in the MS scheme. Finally reduze and

form are used to manipulate results into a desired output. The renormalization

constants can then be inserted into

0 = βk
∂Zijm
∂gk

+ Zijmγij (4.38)
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to calculate the mass mixing matrix γij(gk). To derive equation (4.38) we recall

the definition of the bare mass operator in equation (4.37), differentiate with

respect to µ and then multiply by µ,

µ
∂

∂µ
m2
i0 = µ

∂

∂µ
(Zijmm

2
j) . (4.39)

The left-hand side of this definition will simply be zero. While the right-hand

side will produce two separate terms

0 = µ
∂Zijm
∂µ

m2
j + Zijmµ

∂m2
j

∂µ
.

Note that µ(∂m2
j/∂µ) = γijm

2
j which transforms the equation to become

0 = µ
∂gk
∂µ

∂Zijm
∂gk

m2
j + Zijmγijm

2
j

which can be simplified using the definition of the β-function to obtain (4.38). The

β-functions for the theory have already been computed and the renormalization

constants have been obtained. Therefore the mass mixing matrix γij(gk) can be

found by solving the relation (4.38) order by order. The results for the entries

of the mass mixing matrix as well as other Renormalization Group functions are

stated in the following subsection.

4.6 Results

The results of our computations are the Renormalization Group functions. All

results listed here have been published in [2]. As we will mainly focus our analysis

on the O(N) × O(2) theory we record these, partly because of that but also due to

space consideration, but note that the full O(N) × O(m) expressions are provided

in the data file of [2]. First, the anomalous dimensions for the three fields are

γφ(gi)|m=2 = − 1

6

[
g2

1 + g2
3

]

+
1

432

[
−22Ng4

1 + 26g4
1 + 48g3

1g2 − 11g2
1g

2
2 + 52g2

1g
2
3 − 22g2

1g
2
4

+ 144g1g
2
3g4 − 11Ng4

3 − 22g4
3 − 22g2

3g
2
4

]

+
1

31104

[
52N2g6

1 − 464Ng6
1 + 5184ζ3g

6
1 − 9064g6

1 + 5292Ng5
1g2

− 3264g5
1g2 − 772Ng4

1g
2
2 + 5184ζ3g

4
1g

2
2 − 11762g4

1g
2
2

+ 40Ng4
1g

2
3 + 15552ζ3g

4
1g

2
3 − 27192g4

1g
2
3 + 104Ng4

1g
2
4

+ 236g4
1g

2
4 + 942g3

1g
3
2 − 3264g3

1g2g
2
3 + 2388g3

1g2g
2
4
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+ 5292Ng3
1g

2
3g4 − 9792g3

1g
2
3g4 − 504g3

1g
3
4 + 327g2

1g
4
2

+ 118g2
1g

2
2g

2
3 − 772g2

1g
2
2g

2
4 + 10368ζ3g

2
1g2g

2
3g4

− 23760g2
1g2g

2
3g4 + 2904g2

1g2g
3
4 − 736Ng2

1g
4
3 + 2304g2

1g
4
3

− 1648Ng2
1g

2
3g

2
4 + 20736ζ3g

2
1g

2
3g

2
4 − 47048g2

1g
2
3g

2
4

− 144g2
1g

4
4 + 1194g1g

2
2g

2
3g4 − 756g1g2g

2
3g

2
4

+ 5292Ng1g
4
3g4 + 1944g1g

4
3g4 + 6408g1g

2
3g

3
4

− 412g2
2g

2
3g

2
4 + 1452g2g

2
3g

3
4 + 13N2g6

3 − 1282Ng6
3

+ 5184ζ3g
6
3 − 9844g6

3 − 360Ng4
3g

2
4 − 3724g4

3g
2
4

− 144g2
3g

4
4

]
+ O(g8

i ) ,

γσ(gi)|m=2 =
1

12

[
−2Ng2

1 − g2
2 − 2g2

4

]

+
1

432

[
4Ng4

1 + 96Ng3
1g2 − 22Ng2

1g
2
2 + 4Ng2

1g
2
3 + 96Ng1g

2
3g4

+ 13g4
2 − 22g2

2g
2
4 + 96g2g

3
4 − 22Ng2

3g
2
4 + 4g4

4

]

+
1

62208

[
−11048N2g6

1 + 10368ζ3Ng
6
1 − 17120Ng6

1

+ 4608N2g5
1g2 + 2112Ng5

1g2 + 12N2g4
1g

2
2

+ 25920ζ3Ng
4
1g

2
2 − 53292Ng4

1g
2
2 + 20736ζ3Ng

4
1g

2
3

− 34240Ng4
1g

2
3 − 824Ng4

1g
2
4 − 3120Ng3

1g
3
2

− 2688Ng3
1g2g

2
3 + 4608Ng3

1g2g
2
4 + 11712Ng3

1g
2
3g4

− 20448Ng3
1g

3
4 + 1904Ng2

1g
4
2 − 392Ng2

1g
2
2g

2
3

+ 24Ng2
1g

2
2g

2
4 + 31104ζ3Ng

2
1g2g

2
3g4 − 66672Ng2

1g2g
2
3g4

+ 4608Ng2
1g2g

3
4 − 5524N2g2

1g
4
3 − 3776Ng2

1g
4
3

+ 41472ζ3Ng
2
1g

2
3g

2
4 − 77824Ng2

1g
2
3g

2
4 − 824Ng2

1g
4
4

+ 5808Ng1g
2
2g

2
3g4 − 12240Ng1g2g

2
3g

2
4 + 2304N2g1g

4
3g4

− 672Ng1g
4
3g4 + 4992Ng1g

2
3g

3
4 + 2592ζ3g

6
2 − 5195g6

2

+ 1904g4
2g

2
4 − 3120g3

2g
3
4 − 1648Ng2

2g
2
3g

2
4 + 25920ζ3g

2
2g

4
4

− 53280g2
2g

4
4 + 4776Ng2g

2
3g

3
4 + 6720g2g

5
4 + 6N2g4

3g
2
4

− 8408Ng4
3g

2
4 + 680Ng2

3g
4
4 + 10368ζ3g

6
4 − 28168g6

4

]

+ O(g8
i ) ,

γT (gi)|m=2 =
1

12

[
−Ng2

3 − 2g2
4

]

+
1

432

[
2Ng2

1g
2
3 − 22Ng2

1g
2
4 + 96Ng1g

2
3g4 − 11g2

2g
2
4 + 48g2g

3
4

− 22Ng4
3 − 11Ng2

3g
2
4 + 4g4

4

]

+
1

31104

[
−206N2g4

1g
2
3 + 2592ζ3Ng

4
1g

2
3 − 4280Ng4

1g
2
3

+ 52N2g4
1g

2
4 − 196Ng4

1g
2
4 + 1200Ng3

1g2g
2
3
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+ 2904Ng3
1g2g

2
4 + 1152N2g3

1g
2
3g4 − 1344Ng3

1g
2
3g4

− 504Ng3
1g

3
4 − 103Ng2

1g
2
2g

2
3 − 772Ng2

1g
2
2g

2
4

+ 5184ζ3Ng
2
1g2g

2
3g4 − 9576Ng2

1g2g
2
3g4 + 2388Ng2

1g2g
3
4

− 2556N2g2
1g

4
3 + 2168Ng2

1g
4
3 − 46N2g2

1g
2
3g

2
4

+ 15552ζ3Ng
2
1g

2
3g

2
4 − 33836Ng2

1g
2
3g

2
4 + 340Ng2

1g
4
4

+ 576Ng1g
2
2g

2
3g4 − 5364Ng1g2g

2
3g

2
4 + 576N2g1g

4
3g4

+ 8376Ng1g
4
3g4 + 2496Ng1g

2
3g

3
4 + 327g4

2g
2
4 + 942g3

2g
3
4

− 23Ng2
2g

2
3g

2
4 + 5184ζ3g

2
2g

4
4 − 12534g2

2g
4
4 + 576Ng2g

2
3g

3
4

+ 2028g2g
5
4 − 412N2g6

3 + 2592ζ3Ng
6
3 − 5354Ng6

3

+ 13N2g4
3g

2
4 − 2152Ng4

3g
2
4 + 5184ζ3g

6
4 − 36Ng2

3g
4
4

− 9476g6
4

]
+ O(g8

i ) (4.40)

where the argument of the functions represents all five coupling constants. The

five β-functions are

β1(gi)|m=2 =
1

24

[
−2Ng3

1 + 8g3
1 + 12g2

1g2 − g1g
2
2 + 8g1g

2
3 − 2g1g

2
4 + 12g2

3g4

]

+
1

864

[
−172Ng5

1 − 536g5
1 + 264Ng4

1g2 − 360g4
1g2 − 22Ng3

1g
2
2

− 628g3
1g

2
2 + 4Ng3

1g
2
3 − 1072g3

1g
2
3 + 40g3

1g
2
4 − 24g2

1g
3
2

− 240g2
1g2g

2
3 + 168g2

1g2g
2
4 + 96Ng2

1g
2
3g4 − 600g2

1g
2
3g4

− 216g2
1g

3
4 + 13g1g

4
2 − 22g1g

2
2g

2
4 − 648g1g2g

2
3g4 + 96g1g2g

3
4

− 88Ng1g
4
3 + 16g1g

4
3 − 22Ng1g

2
3g

2
4 − 1256g1g

2
3g

2
4

+ 4g1g
4
4 − 108g2g

2
3g

2
4 + 84Ng4

3g4 − 24g4
3g4 + 60g2

3g
3
4

]

+
1

124416

[
14648N2g7

1 + 259200ζ3Ng
7
1 − 81376Ng7

1 + 20736ζ3g
7
1

+ 251360g7
1 − 144N2g6

1g2 − 311040ζ3Ng
6
1g2

+ 249408Ng6
1g2 + 186624ζ3g

6
1g2 + 18000g6

1g2

+ 12N2g5
1g

2
2 + 25920ζ3Ng

5
1g

2
2 − 107980Ng5

1g
2
2

− 41472ζ3g
5
1g

2
2 + 358480g5

1g
2
2 + 20736ζ3Ng

5
1g

2
3

− 106848Ng5
1g

2
3 + 62208ζ3g

5
1g

2
3 + 754080g5

1g
2
3

+ 23496Ng5
1g

2
4 − 15712g5

1g
2
4 − 9120Ng4

1g
3
2

+ 124416ζ3g
4
1g

3
2 + 97776g4

1g
3
2 + 7488Ng4

1g2g
2
3

+ 248832ζ3g
4
1g2g

2
3 + 59712g4

1g2g
2
3 − 4896Ng4

1g2g
2
4

− 20736g4
1g2g

2
4 − 186624ζ3Ng

4
1g

2
3g4 + 160704Ng4

1g
2
3g4

+ 435456ζ3g
4
1g

2
3g4 − 29424g4

1g
2
3g4 + 6624Ng4

1g
3
4

− 50688g4
1g

3
4 + 1904Ng3

1g
4
2 + 62208ζ3g

3
1g

4
2 + 9960g3

1g
4
2
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− 392Ng3
1g

2
2g

2
3 + 158032g3

1g
2
2g

2
3 + 24Ng3

1g
2
2g

2
4

− 44032g3
1g

2
2g

2
4 + 31104ζ3Ng

3
1g2g

2
3g4 + 142128g2

1g
2
2g

2
3g4

− 98352Ng3
1g2g

2
3g4 − 82944ζ3g

3
1g2g

2
3g4 − 31104ζ3g

2
1g

5
2

+ 4608Ng3
1g2g

3
4 − 124416ζ3g

3
1g2g

3
4 + 17664g3

1g2g
3
4

− 5524N2g3
1g

4
3 + 373248ζ3Ng

3
1g

4
3 − 27552Ng3

1g
4
3

− 124416ζ3g
3
1g

4
3 + 218016g3

1g
4
3 + 41472ζ3Ng

3
1g

2
3g

2
4

− 62336Ng3
1g

2
3g

2
4 − 165888ζ3g

3
1g

2
3g

2
4 + 924160g3

1g
2
3g

2
4

− 824Ng3
1g

4
4 + 248832ζ3g

3
1g

4
4 + 43968g3

1g
4
4

+ 33612g2
1g

5
2 − 8352g2

1g
3
2g

2
3 − 6000g2

1g
3
2g

2
4

+ 5808Ng2
1g

2
2g

2
3g4 + 124416ζ3g

2
1g

2
2g

2
3g4

− 10656g2
1g

2
2g

3
4 − 93312ζ3Ng

2
1g2g

4
3 + 100488Ng2

1g2g
4
3

− 36480g2
1g2g

4
3 − 20688Ng2

1g2g
2
3g

2
4 + 373248ζ3g
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4 + 300672Ng1g2g

3
3g

2
4

− 42912Ng1g2g
2
3g

2
4g5 − 220608N2g1g

5
3g4

− 248832ζ3Ng1g
5
3g4 − 45504Ng1g

5
3g4

+ 58752N2g1g
4
3g4g5 − 497664ζ3Ng1g

4
3g4g5

− 250944Ng1g
4
3g4g5 + 248832ζ3Ng1g

3
3g

3
4

+ 1087488Ng1g
3
3g

3
4 − 559872ζ3Ng1g

3
3g4g

2
5

− 909792Ng1g
3
3g4g

2
5 − 497664ζ3Ng1g

2
3g

3
4g5

− 14592Ng1g
2
3g

3
4g5 + 186624ζ3Ng1g

2
3g4g

3
5

− 4248g4
2g

2
4g5 − 82944ζ3g

3
2g

3
4g5 − 38544g3

2g
3
4g5

+ 13536Ng2
2g

3
3g

2
4 − 3352Ng2

2g
2
3g

2
4g5 + 290304ζ3g

2
2g

4
4g5

+ 549360g2
2g

4
4g5 + 37224g2

2g
2
4g

3
5 − 82944ζ3Ng2g

3
3g

3
4

− 76032Ng2g
3
3g

3
4 − 6336Ng2g

2
3g

3
4g5 + 497664ζ3g2g

5
4g5

+ 444768g2g
5
4g5 − 311040ζ3g2g

3
4g

3
5 − 387504g2g

3
4g

3
5

+ 6816N2g7
3 − 124416ζ3Ng

7
3 + 275712Ng7

3

+ 64528N2g6
3g5 + 207360ζ3Ng

6
3g5 + 15920Ng6

3g5

+ 27072N2g5
3g

2
4 − 248832ζ3Ng

5
3g

2
4 + 87936Ng5

3g
2
4

− 30456N2g5
3g

2
5 + 279936ζ3Ng

5
3g

2
5 − 5184Ng5

3g
2
5

− 4648N2g4
3g

2
4g5 − 62208ζ3Ng

4
3g

2
4g5 − 167936Ng4

3g
2
4g5

+ 2376N2g4
3g

3
5 + 139968ζ3Ng

4
3g

3
5 + 199728Ng4

3g
3
5

− 12096Ng3
3g

4
4 + 186624ζ3Ng

3
3g

2
4g

2
5 + 16848Ng3

3g
2
4g

2
5

− 77760ζ3Ng
3
3g

4
5 + 19116Ng3

3g
4
5 − 96864Ng2

3g
4
4g5

+ 90360Ng2
3g

2
4g

3
5 − 28026Ng2

3g
5
5 + 373248ζ3g

6
4g5

+ 1293344g6
4g5 − 933120ζ3g

4
4g

3
5 − 1361376g4

4g
3
5

+ 629856ζ3g
2
4g

5
5 + 760428g2

4g
5
5 − 104976ζ3g

7
5

− 137295g7
5

]
+ O(g9

i ) . (4.41)

One test of the expressions we have computed is that the double and triple poles

of all the underlying renormalization constants correctly emerge as predicted by

the Renormalization Group formalism. Equally we have checked the limit back to

the pure O(N) theory where the O(m) indices are completely passive and found

agreement with [52]. The final checks which we derive from the comparison with

the large N exponents we will leave to the following subsection. Note that the
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elements of the mass mixing matrix, again for O(N)×O(2), are

γ11(gi)|m=2 =
1

3
[g2

1 + g2
3]

+
1

216

[
−44Ng4

1 − 134g4
1 − 30g3

1g2 + 5g2
1g

2
2 − 268g2

1g
2
3 + 10g2

1g
2
4

− 90g1g
2
3g4 − 22Ng4

3 + 4g4
3 + 10g2

3g
2
4

]

+
1

15552

[
3212N2g6

1 + 31104ζ3Ng
6
1 − 8032Ng6

1 + 2592ζ3g
6
1

+ 31420g6
1 − 15552ζ3Ng

5
1g2 + 4518Ng5

1g2 + 15552ζ3g
5
1g2

− 2964g5
1g2 + 7852Ng4

1g
2
2 − 5184ζ3g

4
1g

2
2 + 18512g4

1g
2
2

− 9076Ng4
1g

2
3 + 7776ζ3g

4
1g

2
3 + 94260g4

1g
2
3 + 3040Ng4

1g
2
4

− 1964g4
1g

2
4 − 2859g3

1g
3
2 + 15552ζ3g

3
1g2g

2
3 − 2964g3

1g2g
2
3

− 1578g3
1g2g

2
4 − 15552ζ3Ng

3
1g

2
3g4 + 4518Ng3

1g
2
3g4

+ 46656ζ3g
3
1g

2
3g4 − 8892g3

1g
2
3g4 − 4140g3

1g
3
4 − 51g2

1g
4
2

− 982g2
1g

2
2g

2
3 + 328g2

1g
2
2g

2
4 − 10368ζ3g

2
1g2g

2
3g4

+ 38988g2
1g2g

2
3g4 − 1032g2

1g2g
3
4 + 46656ζ3Ng

2
1g

4
3

− 2972Ng2
1g

4
3 − 15552ζ3g

2
1g

4
3 + 27252g2

1g
4
3

+ 12664Ng2
1g

2
3g

2
4 − 20736ζ3g

2
1g

2
3g

2
4 + 74048g2

1g
2
3g

2
4

+ 312g2
1g

4
4 − 789g1g

2
2g

2
3g4 − 6210g1g2g

2
3g

2
4

− 15552ζ3Ng1g
4
3g4 + 4518Ng1g

4
3g4 + 15552ζ3g1g

4
3g4

− 17928g1g
4
3g4 − 10944g1g

2
3g

3
4 + 250g2

2g
2
3g

2
4 − 516g2g

2
3g

3
4

+ 803N2g6
3 + 4018Ng6

3 + 10368ζ3g
6
3 + 9052g6

3

+ 4686Ng4
3g

2
4 + 8854g4

3g
2
4 + 312g2

3g
4
4

]
+ O(g8

i ) ,

γ12(gi)|m=2 = Ng2
1 +

N

12

[
−2g4

1 − 18g3
1g2 − 3g2

1g
2
2 − 2g2

1g
2
3 − 18g1g

2
3g4 − 3g2

3g
2
4

]

+
N

864

[
2308Ng6

1 + 1426g6
1 − 1984Ng5

1g2 + 1822g5
1g2 + 282Ng4

1g
2
2

+ 864ζ3g
4
1g

2
2 + 1430g4

1g
2
2 + 2852g4

1g
2
3 + 40g4

1g
2
4

+ 864ζ3g
3
1g

3
2 + 1420g3

1g
3
2 + 2020g3

1g2g
2
3 − 904g3

1g2g
2
4

+ 1426g3
1g

2
3g4 + 1512g3

1g
3
4 − 21g2

1g
4
2 − 300g2

1g
2
2g

2
3

+ 282g2
1g

2
2g

2
4 + 1728ζ3g

2
1g2g

2
3g4 + 1260g2

1g2g
2
3g4

− 1080g2
1g2g

3
4 + 1154Ng2

1g
4
3 + 220g2

1g
4
3 + 4060g2

1g
2
3g

2
4

+ 756g2
1g

4
4 − 864ζ3g1g

2
2g

2
3g4 + 828g1g

2
2g

2
3g4

+ 3456ζ3g1g2g
2
3g

2
4 + 1332g1g2g

2
3g

2
4 − 992Ng1g

4
3g4

− 356g1g
4
3g4 + 1796g1g

2
3g

3
4 + 324g2

2g
2
3g

2
4 − 432g2g

2
3g

3
4

+ 141Ng4
3g

2
4 − 246g4

3g
2
4 + 66g2

3g
4
4

]
+ O(g8

i ) ,
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γ13(gi)|m=2 =
1

2
Ng2

3 +
N

24

[
−2g2

1g
2
3 − 6g2

1g
2
4 − 36g1g

2
3g4 + 4g4

3 − 3g2
3g

2
4

]

+
N

1728

[
796Ng4

1g
2
3 + 1426g4

1g
2
3 + 376Ng4

1g
2
4 − 600g4

1g
2
4

− 198g3
1g2g

2
3 − 1728ζ3g

3
1g2g

2
4 + 1656g3

1g2g
2
4

− 1984Ng3
1g

2
3g4 + 4040g3

1g
2
3g4 + 3456ζ3g

3
1g

3
4 + 576g3

1g
3
4

+ 20g2
1g

2
2g

2
3 + 836g2

1g
2
2g

2
4 + 2160g2

1g2g
2
3g4 − 864g2

1g2g
3
4

+ 1512Ng2
1g

4
3 + 120g2

1g
4
3 + 188Ng2

1g
2
3g

2
4 + 3456ζ3g

2
1g

2
3g

2
4

+ 1660g2
1g

2
3g

2
4 + 132g2

1g
4
4 − 452g1g

2
2g

2
3g4 + 1728ζ3g1g2g

2
3g

2
4

+ 1800g1g2g
2
3g

2
4 − 992Ng1g

4
3g4 − 226g1g

4
3g4 + 3592g1g

2
3g

3
4

+ 47g2
2g

2
3g

2
4 − 540g2g

2
3g

3
4 + 432Ng6

3 − 864ζ3g
6
3 + 2258g6

3

+ 94Ng4
3g

2
4 + 780g4

3g
2
4 + 822g2

3g
4
4

]
+ O(g8

i ) ,

γ21(gi)|m=2 =
g2

1

2

+
1

72

[
14Ng4

1 − 20g4
1 − 54g3

1g2 − 2g2
1g

2
2 − 20g2

1g
2
3 + 14g2

1g
2
4

− 54g1g
2
3g4 − 9g2

3g
2
4

]

+
1

10368

[
−396N2g6

1 − 15552ζ3Ng
6
1 + 17596Ng6

1 + 5184ζ3g
6
1

+ 3476g6
1 − 9792Ng5

1g2 + 17532g5
1g2 − 500Ng4

1g
2
2

+ 10368ζ3g
4
1g

2
2 + 10054g4

1g
2
2 + 848Ng4

1g
2
3 + 10368ζ3g

4
1g

2
3

+ 6952g4
1g

2
3 − 792Ng4

1g
2
4 − 676g4

1g
2
4 + 5184ζ3g

3
1g

3
2

+ 864g3
1g

3
2 + 13824g3

1g2g
2
3 − 3888g3

1g2g
2
4 − 2640Ng3

1g
2
3g4

+ 24948g3
1g

2
3g4 − 10368ζ3g

3
1g

3
4 + 7344g3

1g
3
4 − 2592ζ3g

2
1g

4
2

+ 2801g2
1g

4
2 − 696g2

1g
2
2g

2
3 − 500g2

1g
2
2g

2
4

+ 12744g2
1g2g

2
3g4 − 5904g2

1g2g
3
4 − 7776ζ3Ng

2
1g

4
3

+ 8374Ng2
1g

4
3 − 3040g2

1g
4
3 − 704Ng2

1g
2
3g

2
4

+ 20736ζ3g
2
1g

2
3g

2
4 + 17600g2

1g
2
3g

2
4 − 5184ζ3g

2
1g

4
4

+ 10532g2
1g

4
4 − 2256g1g

2
2g

2
3g4 + 15552ζ3g1g2g

2
3g

2
4

+ 7128g1g2g
2
3g

2
4 − 3576Ng1g

4
3g4 − 10368ζ3g1g

4
3g4

+ 3024g1g
4
3g4 + 5184ζ3g1g

2
3g

3
4 − 3672g1g

2
3g

3
4

+ 984g2
2g

2
3g

2
4 − 5184ζ3g2g

2
3g

3
4 + 4968g2g

2
3g

3
4 + 300Ng4

3g
2
4

− 5184ζ3g
4
3g

2
4 + 5856g4

3g
2
4 + 10368ζ3g

2
1g2g

2
3g4

− 672g2
3g

4
4

]
+ O(g8

i ) ,

γ22(gi)|m=2 =
1

12

[
−2Ng2

1 + 5g2
2 − 2g2

4

]

+
1

216

[
−160Ng4

1 − 60Ng3
1g2 + 52Ng2

1g
2
2 + 2Ng2

1g
2
3 + 48Ng1g

2
3g4
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− 97g4
2 + 52g2

2g
2
4 − 60g2g

3
4 − 11g2

3g
2
4N − 160g4

4

]

+
1

62208

[
−82472N2g6

1 + 10368ζ3Ng
6
1 + 55600Ng6

1

+ 45216N2g5
1g2 + 124416ζ3Ng

5
1g2 − 28128Ng5

1g2

− 4740N2g4
1g

2
2 + 57024ζ3Ng

4
1g

2
2 + 308076Ng4

1g
2
2

+ 20736ζ3Ng
4
1g

2
3 + 38480Ng4

1g
2
3 − 33368Ng4

1g
2
4

− 62208ζ3Ng
3
1g

3
2 − 22992Ng3

1g
3
2 − 45888Ng3

1g2g
2
3

+ 45216Ng3
1g2g

2
4 + 124416ζ3Ng

3
1g

2
3g4 + 24672Ng3

1g
2
3g4

− 98208Ng3
1g

3
4 − 19768Ng2

1g
4
2 + 6592Ng2

1g
2
2g

2
3

− 9480Ng2
1g

2
2g

2
4 − 155520ζ3Ng

2
1g2g

2
3g4

+ 174384Ng2
1g2g

2
3g4 + 45216Ng2

1g2g
3
4 − 5524N2g2

1g
4
3

− 3776Ng2
1g

4
3 + 259200ζ3Ng

2
1g

2
3g

2
4 + 51776Ng2

1g
2
3g

2
4

− 33368Ng2
1g

4
4 − 24000Ng1g

2
2g

2
3g4 + 3312Ng1g2g

2
3g

2
4

+ 2304N2g1g
4
3g4 − 672Ng1g

4
3g4 − 62208ζ3Ng1g

2
3g

3
4

+ 17952Ng1g
2
3g

3
4 + 18144ζ3g

6
2 + 52225g6

2 − 19768g4
2g

2
4

− 62208ζ3g
3
2g

3
4 − 22992g3

2g
3
4 + 9296Ng2

2g
2
3g

2
4

+ 57024ζ3g
2
2g

4
4 + 303336g2

2g
4
4 − 24600Ng2g

2
3g

3
4

+ 124416ζ3g2g
5
4 + 17088g2g

5
4 + 6N2g4

3g
2
4 − 8408Ng4

3g
2
4

− 1840Ng2
3g

4
4 + 10368ζ3g

6
4 − 26872g6

4

]
+ O(g8

i ) ,

γ23(gi)|m=2 =
g2

4

2

+
1

144

[
−54Ng2

1g
2
3 + 28Ng2

1g
2
4 − 36Ng1g

2
3g4 − 4g2

2g
2
4 − 108g2g

3
4

+ 7Ng2
3g

2
4 − 12g4

4

]

+
1

10368

[
−2712N2g4

1g
2
3 + 6060Ng4

1g
2
3 − 396N2g4

1g
2
4

− 5184ζ3Ng
4
1g

2
4 + 10928Ng4

1g
2
4 + 6480Ng3

1g2g
2
3

− 5904Ng3
1g2g

2
4 + 2256N2g3

1g
2
3g4 + 20736ζ3Ng

3
1g

2
3g4

− 14400Ng3
1g

2
3g4 − 10368ζ3Ng

3
1g

3
4 + 7344Ng3

1g
3
4

+ 912Ng2
1g

2
2g

2
3 − 500Ng2

1g
2
2g

2
4 + 15552ζ3Ng

2
1g2g

2
3g4

+ 8424Ng2
1g2g

2
3g4 − 3888Ng2

1g2g
3
4 − 1620N2g2

1g
4
3

− 5184ζ3Ng
2
1g

4
3 + 5196Ng2

1g
4
3 − 132N2g2

1g
2
3g

2
4

− 2592ζ3Ng
2
1g

2
3g

2
4 + 37030Ng2

1g
2
3g

2
4 − 1468Ng2

1g
4
4

− 2112Ng1g
2
2g

2
3g4 − 5184ζ3Ng1g2g

2
3g

2
4 + 5616Ng1g2g

2
3g

2
4

+ 564N2g1g
4
3g4 − 10368ζ3Ng1g

4
3g4 − 8064Ng1g

2
3g

3
4

+ 3744Ng1g
4
3g4 − 2592ζ3g

4
2g

2
4 + 2801g4

2g
2
4 + 5184ζ3g

3
2g

3
4
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+ 864g3
2g

3
4 + 216Ng2

2g
2
3g

2
4 + 10368ζ3g

2
2g

4
4 + 9554g2

2g
4
4

− 1188Ng2g
2
3g

3
4 + 7740g2g

5
4 − 33N2g4

3g
2
4 + 1256Ng4

3g
2
4

+ 632Ng2
3g

4
4 − 10368ζ3g

6
4 + 20676g6

4

]
+ O(g8

i ) ,

γ31(gi)|m=2 =
g2

3

2
+

1

72

[
−20g2

1g
2
3 − 18g2

1g
2
4 − 108g1g

2
3g4 + 7Ng4

3 − 2g4
3 + 5g2

3g
2
4

]

+
1

10368

[
−5184ζ3Ng

4
1g

2
3 + 9404Ng4

1g
2
3 + 5184ζ3g

4
1g

2
3 + 3476g4

1g
2
3

+ 2256Ng4
1g

2
4 − 1464g4

1g
2
4 + 3708g3

1g2g
2
3 − 5184g3

1g2g
2
4

− 7152Ng3
1g

2
3g4 + 27648g3

1g
2
3g4 + 20736ζ3g

3
1g

3
4

+ 3456g3
1g

3
4 − 374g2

1g
2
2g

2
3 + 5016g2

1g
2
2g

2
4

+ 10368ζ3g
2
1g2g

2
3g4 + 9504g2

1g2g
2
3g4 − 10368ζ3g

2
1g2g

3
4

+ 9936g2
1g2g

3
4 − 10368ζ3Ng

2
1g

4
3 + 7768Ng2

1g
4
3

+ 10368ζ3g
2
1g

4
3 − 4808g2

1g
4
3 − 1760Ng2

1g
2
3g

2
4

+ 20736ζ3g
2
1g

2
3g

2
4 + 22616g2

1g
2
3g

2
4 − 1344g2

1g
4
4

− 2280g1g
2
2g

2
3g4 + 9072g1g2g

2
3g

2
4 − 6216Ng1g

4
3g4

+ 11556g1g
4
3g4 + 10368ζ3g1g

2
3g

3
4 − 7344g1g

2
3g

3
4

+ 344g2
2g

2
3g

2
4 − 2952g2g

2
3g

3
4 − 99N2g6

3 + 2654Ng6
3

− 5184ζ3g
6
3 + 13820g6

3 − 184Ng4
3g

2
4 + 10368ζ3g

4
3g

2
4

+ 1928g4
3g

2
4 − 5184ζ3g

2
3g

4
4 + 9860g2

3g
4
4

]
+ O(g8

i ) ,

γ32(gi)|m=2 = g2
4 +

1

24

[
−18Ng2

1g
2
3 − 12Ng1g

2
3g4 − 6g2

2g
2
4 − 36g2g

3
4 + 7Ng2

3g
2
4

− 4g4
4

]

+
1

864

[
1010Ng4

1g
2
3 + 756Ng4

1g
2
4 + 1728ζ3Ng

3
1g2g

2
3 − 900Ng3

1g2g
2
3

− 1080Ng3
1g2g

2
4 + 1560Ng3

1g
2
3g4 + 1512Ng3

1g
3
4

− 432ζ3Ng
2
1g

2
2g

2
3 + 846Ng2

1g
2
2g

2
3 + 282Ng2

1g
2
2g

2
4

+ 2592ζ3Ng
2
1g2g

2
3g4 + 2268Ng2

1g2g
2
3g4 − 904Ng2

1g2g
3
4

− 496N2g2
1g

4
3 − 178Ng2

1g
4
3 + 3911Ng2

1g
2
3g

2
4 + 40Ng2

1g
4
4

− 216Ng1g
2
2g

2
3g4 − 1728ζ3Ng1g2g

2
3g

2
4 + 792Ng1g2g

2
3g

2
4

+ 282N2g1g
4
3g4 − 492Ng1g

4
3g4 − 1344Ng1g

2
3g

3
4

− 21g4
2g

2
4 + 864ζ3g

3
2g

3
4 + 1420g3

2g
3
4 − 204Ng2

2g
2
3g

2
4

+ 864ζ3g
2
2g

4
4 + 1712g2

2g
4
4 − 70Ng2g

2
3g

3
4 − 162g2g

5
4

− 33N2g4
3g

2
4 + 1276Ng4

3g
2
4 − 37Ng2

3g
4
4 + 3734g6

4

]

+ O(g8
i ) ,

γ33(gi)|m=2 =
1

12

[
−Ng2

3 + 4g2
4

]

+
1

432

[
2Ng2

1g
2
3 + 20Ng2

1g
2
4 − 12Ng1g

2
3g4 + 10g2

2g
2
4 − 60g2g

3
4
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− 76Ng4
3 + 31Ng2

3g
2
4 − 356g4

4

]

+
1

31104

[
−206N2g4

1g
2
3 + 2592ζ3Ng

4
1g

2
3 − 4280Ng4

1g
2
3

− 344N2g4
1g

2
4 + 968Ng4

1g
2
4 + 1200Ng3

1g2g
2
3

− 2064Ng3
1g2g

2
4 + 4536N2g3

1g
2
3g4 − 12144Ng3

1g
2
3g4

− 8280Ng3
1g

3
4 − 103Ng2

1g
2
2g

2
3 + 656Ng2

1g
2
2g

2
4

− 10368ζ3Ng
2
1g2g

2
3g4 + 5328Ng2

1g2g
2
3g4 − 3156Ng2

1g2g
3
4

− 7416N2g2
1g

4
3 + 13436Ng2

1g
4
3 − 442N2g2

1g
2
3g

2
4

+ 113644Ng2
1g

2
3g

2
4 + 2152Ng2

1g
4
4 + 2268Ng1g

2
2g

2
3g4

− 7308Ng1g2g
2
3g

2
4 + 3960N2g1g

4
3g4 + 31104ζ3Ng1g

4
3g4

− 16680Ng1g
4
3g4 − 31104ζ3Ng1g

2
3g

3
4 − 15216Ng1g

2
3g

3
4

− 102g4
2g

2
4 − 5718g3

2g
3
4 − 221Ng2

2g
2
3g

2
4 − 10368ζ3g

2
2g

4
4

+ 52728g2
2g

4
4 + 1080Ng2g

2
3g

3
4 + 3108g2g

5
4 − 3292N2g6

3

+ 18144ζ3Ng
6
3 − 1214Ng6

3 − 284N2g4
3g

2
4

+ 31104ζ3Ng
4
3g

2
4 + 24248Ng4

3g
2
4 − 10644Ng2

3g
4
4

+ 67392ζ3g
6
4 + 53200g6

4

]
+ O(g8

i ) . (4.42)

4.7 Large N Analysis

Equipped with the explicit forms of the Renormalization Group functions we are

in a position to check against the large N critical exponents for each of the three

fixed points. In order to do this we follow the method introduced in [52] and

described in the previous Chapter. To begin the scaled coupling constants are

defined as

g1 = ix

√
12ε

mN
, g2 = iy

√
12ε

mN
, g3 = iz

√
12ε

N
,

g4 = it

√
12ε

mN
, g5 = iw

√
12ε

N
. (4.43)

This redefinition is to keep consistency with the results and analysis of [52]. The

location of each of the three fixed points in the large N expansion can be deduced

by solving

βi(g
∗
j ) = 0 (4.44)

where each gj has been rescaled according to (4.43) and each coefficient of the

fixed point of the power 1/N is a function of ε having set d = 6 − 2ε. More
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precisely fixed points will have the form

x = x0 +
x1

N
+

x2

N2
+

x3

N3
+ O

(
1

N4

)
,

y = y0 +
y1

N
+

y2

N2
+

y3

N3
+ O

(
1

N4

)
,

z = x0 +
z1

N
+

z2

N2
+

z3

N3
+ O

(
1

N4

)
,

t = t0 +
t1
N

+
t2
N2

+
t3
N3

+ O

(
1

N4

)
,

w = w0 +
w1

N
+

w2

N2
+

w3

N3
+ O

(
1

N4

)

with each coefficient being a function of ε

x0 = x00 + x01ε + x02ε
2 + x03ε

3 + O(ε4) ,

x1 = x10 + x11ε + x12ε
2 + x13ε

3 + O(ε4) ,

x2 = x20 + x21ε + x22ε
2 + x23ε

3 + O(ε4) ,

x3 = x30 + x31ε + x32ε
2 + x33ε

3 + O(ε4) ,

y0 = y00 + y01ε + y02ε
2 + y03ε

3 + O(ε4) ,
...

w3 = w30 + w31ε + w32ε
2 + w33ε

3 + O(ε4) .

The three fixed points that emerge are labelled Heisenberg, anti-chiral unstable

and chiral stable fixed points. Each of these fixed points are defined by a different

field content and therefore for the Heisenberg and AU fixed points several of the

coupling constant are zero. Starting with the Heisenberg fixed point, from the

respective β-functions, we find

x = 1 +

(
22

m
− 155ε

3m
+

1777ε2

36m

)
1

N

+

(
726

m2
− 3410ε

m2
+

[
29093

9m2
− 4680ζ3

m2

]
ε2
)

1

N2
+ O

(
ε3,

1

N3

)
,

y = 6 +

(
972

m
− 1290ε

m
+

2781ε2

2m

)
1

N

+

(
412596

m2
− 1036020ε

m2
+

[
1083644

m2
− 628560ζ3

m2

]
ε2
)

1

N2

+ O

(
ε3,

1

N3

)
,

z = t = w = 0 . (4.45)
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As only the φia and σ interactions are present in the Heisenberg fixed point all

interactions with T ab fields are set to zero, we can therefore check this fixed point

against O(N) theory in six dimensions. We find consistency for the Heisenberg

fixed point results with that found in [52]. Note that the order symbol represents

the truncation point for the two independent expansions. The AU large N fixed

point is located at

x = y = t = 0 ,

z = 1 +

(
− 40

m
+

7m

2
+ 11 +

[
299

3m
− 155

6
− 25m

3

]
ε

+

[
− 3829

36m
+

1777

72
+

80m

9

]
ε2
)

1

N

+

(
2400

m2
− 1320

m
− 477

2
+

231m

2
+

147m2

8
+

[
− 14180

m2
+

6959

m
+ 1949

− 2555m

4
− 150m2

]
ε +

[
38755

18m2
− 20664ζ3

m2
− 136469

36m
− 19919

24

+ 1242ζ3 +
123919m

144
− 576mζ3 +

23695m2

72
+

102969ζ3

m

]
ε2
)

1

N2

+ O

(
ε3,

1

N3

)
,

w = 6 +

(
− 3240

m
+ 486 + 81m+

[
5178

m
− 645− 150m

]
ε

+

[
− 12105

2m
+

2781

4
+ 180m

]
ε2
)

1

N

+

(
4874400

m2
− 1417320

m
− 118071 + 32283m+

10161m2

4

+

[
− 14470680

m2
+

3945054

m
+ 464454− 186915m

2
− 10830m2

]
ε

+

[
16668989

m2
− 7556976ζ3

m2
+

8635273

2m
+

2238192ζ3

m
− 2355195

4

+ 236196ζ3 +
915527m

8
− 42120mζ3 +

76709m2

4

]
ε2
)

1

N2

+ O

(
ε3,

1

N3

)
. (4.46)

Finally for the CS type large N fixed point we find

x = 1 +

(
11 + 11m+

[
− 155

6
− 155m

6

]
ε+

[
1777

72
+

1777m

72

]
ε2
)

1

N

+

(
1563

2
+ 63m− 237m2

2
+

[
− 6855

2
− 835m

2
+ 435m2

]
ε

+

[
35345

9
− 2646ζ3 +

4085m

72
− 1602mζ3 −

54101m2

72
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− 432m2ζ3

]
ε2
)

1

N2
+ O

(
ε3,

1

N3

)
,

y = 6 +

(
486 + 486m+ [−645− 645m]ε+

[
2781

4
+

2781m

4

]
ε2
)

1

N

+

(
248949 + 133398m+ 30249m2 + [−660675− 317175m+ 58170m2]ε

+

[
1419565

2
− 354780ζ3 +

1289545m

4
− 215460mζ3 +

205901m2

4

− 58320m2ζ3

])
1

N2
+ O

(
ε3,

1

N3

)
,

z = 1 +

(
11 +

7m

2
+

[
− 155

6
− 25m

3

]
ε+

[
1777

72
+

80m

9

]
ε2
)

1

N

+

(
1563

2
+

231m

2
+

147m2

8
+

[
− 6855

2
− 2555m

4
− 150m2

]
ε

+

[
35345

9
− 2646ζ3 +

123919m

144
− 576mζ3 +

23695m2

72

]
ε2
)

1

N2

+ O

(
ε3,

1

N3

)
,

t = 6 +

(
486 + 216m+ [−645− 315m]ε+

[
2781

4
+

1407m

4

]
ε2
)

1

N

+

(
248949 + 65988m+ 7389m2 + [−660675− 168030m− 19545m2]ε

+

[
1419565

2
− 354780ζ3 + 183756m− 99900mζ3 + 25357m2

− 11664m2ζ3

]
ε2
)

1

N2
+ O

(
ε3,

1

N3

)
,

w = 6 +

(
− 3240

m
+ 486 + 81m+

[
5187

m
− 645− 150m

]
ε

+

(
− 12105

2m
+

2781

4
+ 180m

)
ε2
)

1

N

+

(
4874400

m2
− 1417320

m
− 118071 + 32283m+

10161m2

4

+

(
− 14470680

m2
+

3945054

m
+ 464454− 186915m

2
− 10830m2

)
ε

+

(
16668989

m2
− 7556976ζ3

m2
− 8635273

2m
+

2238192ζ3

m
− 2355195

4

+ 236196ζ3 +
915527m

8
− 42120mζ3 +

76709m2

4

]
ε2
)

1

N2

+ O

(
ε3,

1

N3

)
, (4.47)

where all five couplings are non-zero. With these particular fixed points the crit-

ical exponents can be determined by evaluating the field anomalous dimensions
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at criticality. The critical exponents examined are η, χ and χT which correspond

to the anomalous dimensions of φia and the vertex anomalous dimensions of σ

and T ab with φia respectively. The leading order large N terms for the universal

theory were stated in equations (4.4) and (4.6). The anomalous dimensions of

the three fields evaluated at the CS type fixed point are given below, these can be

matched order by order with the leading order large N results and higher order

corrections [48,49,218,220],

γCSφ (g∗i ) =

(
(m+ 1)ε +

[
− 11m

6
− 11

6

]
ε2 +

[
− 13m

36
− 13

36

]
ε3
)

1

N

+

(
[7m2 + 29m+ 52]ε+

[
− 146m2

3
− 1127m

6
− 1921

6

]
ε2

+

[
694m2

9
+

9641m

36
+

15043

36

]
ε3
)

1

N2
+ O(ε4) ,

γCSσ (g∗i ) =

(
[7m2 + 29m+ 52]ε +

[
− 146m2

3
− 1127m

6
− 1921

6

]
ε2

+

[
694m2

9
+

9641m

36
+

15043

36

]
ε3
)

1

N

+

(
[1180m2 − 1360m+ 25660]ε+ [−966832016

1000000
m2

− 7154681733

100000
+

8080666662

1000000
m]ε2

)
1

N2
+ O(ε4) ,

γCST (g∗i ) =

(
[16m+ 40]ε +

[
− 208

3
− 88m

3

]
ε2 +

[
− 88

9
− 16m

9

]
ε3
)

1

N

+ O(ε4) . (4.48)

We find agreement out to order O(ε3) with our results. More specifically, the 1/N

term of γCSφ (gi) matches the exponent 1
2
ηCS1 perfectly, while the 1/N2 coefficient

agrees with 1
2
ηCS2 . Note that the factor of 1/2 is a notational convention used in

certain literature. The 1/N term of γCSσ (g∗i ) matches the CS critical exponent

−(ηCS1 + χCS1 ) and the 1/N2 term is in complete agreement with −(ηCS2 + χCS2 ).

Finally the 1/N term of the anomalous dimension γCST (g∗i ) evaluated at the CS

fixed point matches the critical exponent −(ηCS1 + χCST,1) exactly. Inserting the

Heisenberg and AU fixed points into the anomalous dimensions we find that

these results will likewise match up with the relevant large N critical exponents.

We also find agreement with the mass mixing matrix. However, the com-

parison with the mass dimension exponents is not straightforward since one has

to compare the anomalous dimensions with the eigenvalues of the mass mixing

matrix γij(gk) evaluated at each critical point. For instance, at the AU fixed

point the exponent ωAU+1 is in precise agreement with the critical eigen-anomalous
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dimension as there is only one operator there. Equally at the CS fixed point

the exponents η + χ and the linear combination ωCS+1 + ωCS−1 are also in exact

correspondence with the O(ε3) terms of the eigen-anomalous dimensions. These

non-trivial large N checks at each of the three fixed points on the three loop

MS Renormalization Group functions provide confidence that our perturbative

computation is correct.

4.8 Conformal Window Search

The main aim of our calculation is to find the conformal window for the six

dimensional LGW theory. Recall that the conformal window is the range of

N , and in this case m, values for which non-trivial stable fixed points exists.

Given the nature of the Renormalization Group equations at three loops, finding

the exact location of the conformal window is not straightforward. A similar

observation was made in [66] for the four dimensional O(N) × O(3) Landau-

Ginzburg-Wilson theory using the conformal bootstrap method. The conformal

window can be found by solving the equations

β1(gi) = β2(gi) = β3(gi) = β4(gi) = β5(gi) = 0 (4.49)

together with the Hessian

det

(
∂βi
∂gj

)
= 0 . (4.50)

It turns out that our computer resources were not sufficient to solve the complete

system numerically in general. Instead we have resorted to an alternative strategy

which is based on an observation made with respect to the O(N) case, [52,53]. It

was noticed that the fixed point spectrum was significantly different above and

below the conformal window boundary. For O(N) theory in six dimensions the

conformal window boundary at leading order was found to be Ncrit ≈ 1038, [174].

Above this value of Ncrit there are fixed points with real stable couplings, while

below this point there are no real stable fixed points. Given this distinguishing

property we have solved the equations (4.49) and (4.50) for fixed values of N

and then analysed the stability properties of the real solutions to hone in on the

boundary. Recall that the stability of a fixed point is determined by finding the

eigenvalues of the stability matrix S at the fixed point where S is defined by

S =

(
∂βi
∂gj

)
. (4.51)
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Specifically if all eigenvalues are negative then this signifies ultraviolet stability,

while if all eigenvalues are positive then the fixed point would be ultraviolet un-

stable and consequently infrared stable. Obtaining a mixed signature indicates

that the fixed point is a saddle point. In the situation where the eigenvalues

are zero, we can only conclude that the fixed point is marginal and beyond the

linear approximation. We do not find any such cases for the values of N analysed

here. While this may appear to be a tedious process for finding the conformal

window it turns out to be relatively quick since one can narrow the search area

by a process of sectioning. Here we will search for the conformal boundary of the

O(N) × O(2) case, taking values of N and looking for a change in the number

and stability properties of a particular pattern of fixed points. We must however

note some important points before doing this.

First, given the fact that there are more couplings here than in the O(N) case

the criteria defining the window boundary differs slightly. In the four dimensional

Landau-Ginzburg-Wilson model there were three non-trivial fixed points desig-

nated Heisenberg, antichiral unstable and chiral stable. With fewer couplings in

four dimensions each type of fixed point had a definite stability which led to this

notation AU or CS aside from the Heisenberg solution which was necessarily a

saddle point. In the six dimensional theory we retain the Heisenberg, antichiral

unstable and chiral stable syntax but use it to represent the field content only.

These labels will not have any bearing on the stability of a fixed point. More

precisely the labels are associated with different combinations of the fields σ and

T ab that are active or not at a fixed point. So, for instance, indicating an AU fixed

point will mean that only interactions involving the T ab field are present while a

CS type of fixed point will correspond to all interactions of L(LGW6) being active.

To clarify, for the Heisenberg, AU and CS patterns the fixed point could be stable

or unstable and not be related to the U or S of the label type. Illustrating this

with the coupling vector (g1, g2, g3, g4, g5) their characteristic critical coupling con-

stant patterns respectively are (x, y, 0, 0, 0), (0, 0, z, 0, w) and (x, y, z, t, w), where

we mean that x, y, z, t and w are non-zero in these patterns. Therefore we will

refer to Heisenberg, antichiral unstable and chiral stable types of solutions. The

emergence of these patterns of fixed points within the perturbative context should

not be surprising as the fixed N analysis has to at least contain the Heisenberg,

AU and CS large N solutions. Finally as in the O(N) case various fixed point

solutions are connected to each other via symmetries, [52], and so we focus on

a representative fixed point of each such class in the analysis. We also find a

large number of fixed points with complex and purely imaginary values which

may indicate non-unitary solutions or even the existence of a limit cycle. For the
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conformal window search we will focus only on real solutions as they lead to clear

stability properties. Complex and imaginary solutions are included in a general

fixed point analysis.

We analysed the stability properties of a wide range of fixed points using a

sectioning algorithm. Results related to the conformal window will be discussed

here. We begin with m = 2 and N = 1106 for which we have three CS type fixed

points. One of these is UV stable which is located at

x = 1.024331 + 0.602917ε − 618.493720ε2 + O(ε3) ,

y = 10.027831 − 224.568795ε + 204744.131100ε2 + O(ε3) ,

z = 1.014679 + 0.242004ε − 259.254500ε2 + O(ε3) ,

t = 8.413935 − 122.062932ε + 110001.339800ε2 + O(ε3) ,

w = 7.750728 − 86.093662ε + 77109.596670ε2 + O(ε3) . (4.52)

The 5 × 5 stability matrix evaluated at this fixed point gives the following five

eigenvalues at leading order which are all negative.

e1 = −1 , e2 = − 0.809156 ,

e3 = −0.021933 , e4 = − 1.297560 ,

e5 = −1.153037 .

The corresponding critical exponents for the UV stable CS fixed point are

γ∗φ = 0.002810ε − 0.003531ε2 − 2.095198ε3 + O(ε4) ,

γ∗σ = 1.158724ε − 2.828644ε2 + 2307.673939ε3 + O(ε4) ,

γ∗T = 1.093583ε − 1.472805ε2 + 1165.028293ε3 + O(ε4) . (4.53)

The other two CS style fixed points are saddle points located at

x = 1.023546 − 0.790738ε + 618.557767ε2 + O(ε3) ,

y = 10.288220 + 238.034889ε − 204695.170900ε2 + O(ε3) ,

z = 1.014350 − 0.341297ε + 259.727356ε2 + O(ε3) ,

t = 8.553710 + 126.145941ε − 109987.441000ε2 + O(ε3) ,

w = 7.848666 + 87.779203ε − 77103.604170ε2 + O(ε3) (4.54)
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and

x = − 0.869900 − 0.200484ε − 0.868576ε2 + O(ε3) ,

y = 20.723963 + 8.470150ε − 14.322290ε2 + O(ε3) ,

z = 1.011451 − 0.019282ε + 0.058843ε2 + O(ε3) ,

t = − 4.381299 − 2.162646ε − 6.897939ε2 + O(ε3) ,

w = 5.927808 + 0.692949ε + 3.355853ε2 + O(ε3) . (4.55)

In addition there are three Heisenberg type fixed points, one of which is UV stable

at

x = 1.010040 − 0.023705ε + 0.020596ε2 + O(ε3) ,

y = 6.557735 − 0.940183ε + 0.810426ε2 + O(ε3) ,

z = 0 , t = 0 , w = 0 . (4.56)

The stability matrix for the Heisenberg fixed point is a non-zero 2 × 2 matrix.

Evaluated at the Heisenberg fixed point it produces two eigenvalues at leasing

order which are both negative, confirming UV stability,

e1 = − 0.766341 , e2 = − 1 .

The associated critical exponents for the UV stable Heisenberg fixed point are

γ∗φ = 0.000922ε − 0.001777ε2 − 0.000152ε3 + O(ε4) ,

γ∗σ = 1.039622ε − 0.075355ε2 − 0.008779ε3 + O(ε4) ,

γ∗T = 0 . (4.57)

The other two Heisenberg like fixed points are saddle points and are located at

x = 0.979414 − 0.003228ε + 0.071572ε2 + O(ε3) ,

y = 17.380571 + 10.947386ε + 21.645075ε2 + O(ε3) ,

z = 0 , t = 0 , w = 0 (4.58)

and

x = − 0.857078 − 0.208350ε − 0.632470ε2 + O(ε3) ,

y = 19.745752 + 9.661778ε − 2.588019ε2 + O(ε3) ,

z = 0 , t = 0 , w = 0 . (4.59)
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There is one AU fixed point which is UV stable situated at

x = 0 , y = 0 , t = 0 ,

z = 0.998197 + 0.006635ε − 0.008935ε2 + O(ε3) ,

w = 5.367450 + 0.851212ε − 1.446454ε2 + O(ε3) (4.60)

with critical exponents

γ∗φ = 0.001802ε − 0.003273ε2 − 0.000708ε3 + O(ε4) ,

γ∗σ = 0 ,

γ∗T = 0.996396ε + 0.006664ε2 + 0.002605ε3 + O(ε4) . (4.61)

Keeping m = 2 and moving to the lower value of N = 1105 a different style of

solution emerges. This is first seen in the CS type of fixed points in that there is

only one such fixed point which is located at

x = − 0.869887 − 0.200513ε − 0.868979ε2 + O(ε3) ,

y = 20.715552 + 8.465518ε − 14.330113ε2 + O(ε3) ,

z = 1.011461 − 0.019297ε + 0.058911ε2 + O(ε3) ,

t = − 4.380955 − 2.163247ε − 6.901395ε2 + O(ε3) ,

w = 5.927669 + 0.693620ε + 3.359563ε2 + O(ε3) . (4.62)

More crucially, it is a saddle point. In other words there is no CS stable fixed

point present at N = 1105. Given this change in pattern we regard N = 1105 as

the boundary for the conformal window in six dimensions. For completeness we

state the remaining fixed points at N = 1105. There are three Heisenberg fixed

points. One is UV stable and is placed at

x = 1.010049 − 0.023726ε + 0.020611ε2 + O(ε3) ,

y = 6.558394 − 0.941587ε + 0.811596ε2 + O(ε3) ,

z = 0 , t = 0 , w = 0 (4.63)

with critical exponents

γ∗φ = 0.000923ε − 0.001779ε2 − 0.000152ε3 + O(ε4) ,

γ∗σ = 1.039662ε − 0.075439ε2 − 0.008783ε3 + O(ε4) ,

γ∗T = 0 . (4.64)
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The other two fixed points are saddle points located at

x = − 0.857055 − 0.208383ε − 0.632604ε2 + O(ε3) ,

y = 19.736951 + 9.657499ε − 2.589415ε2 + O(ε3) ,

z = 0 , t = 0 , w = 0 (4.65)

and

x = 0.979447 − 0.003297ε + 0.071496ε2 + O(ε3) ,

y = 17.371128 + 10.944494ε + 21.644028ε2 + O(ε3) ,

z = 0 , t = 0 , w = 0 . (4.66)

The one AU fixed point is UV stable and is positioned at

x = 0 , y = 0 , t = 0 ,

z = 0.998195 + 0.006641ε − 0.008942ε2 + O(ε3) ,

w = 5.367025 + 0.851662ε − 1.447623ε2 + O(ε3) (4.67)

with critical exponents

γ∗φ = 0.001803ε − 0.003276ε2 − 0.000709ε3 + O(ε4) ,

γ∗σ = 0 ,

γ∗T = 0.996393ε + 0.006670ε2 + 0.002608ε3 + O(ε4) . (4.68)

For N > 1106 and N < 1105 the algorithm of section searching was applied

for changes in CS fixed point patterns but no further boundaries were found.

That is, all values of N > 1106 analysed possessed the same fixed point stabil-

ity structure for CS fixed points as that of N = 1106. Similarly all of values

of N < 1105 analysed contained the same fixed point stability structure for CS

fixed points as that of N = 1105. One observation of our conformal window

analysis is that the boundary at N = 1105 is not dissimilar to the leading order

value of Ncrit = 1038, [174], for the O(N) case. In [52, 53] the O(ε3) correc-

tions to Ncrit were computed and by using re-summation methods a value of Ncrit

around 400 was found for the five dimensional theory. Unfortunately the sec-

tion search method cannot be readily extended beyond the leading order which

is for the strictly six dimensional theory. Instead solving (4.49) simultaneously

with det(S) = 0 would be the way to extract such corrections but was beyond

the range of our computational tools. Along with looking at the full conformal

window where all interactions are present and all couplings active, we can look
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at an alternative version of the conformal window to gain more insight into the

properties of fixed points.

So far we have analysed the conformal window of the theory with symmetry

group O(N) × O(2), and found that the change in nature of the fixed points

indicates a boundary. Moreover different types of real solutions emerge. We now

lift the restriction on the value of m and look at the conformal window of the

O(N)×O(m) Landau-Ginzburg-Wilson theory. However this time we search for

the conformal window for the AU pattern of couplings only. In other words we

set x = y = t = 0 at the outset and for a selection of values of m solve

β3(gi) = β5(gi) = 0 ,

det

(
∂β3/∂g3 ∂β3/∂g5

∂β5/∂g3 ∂β5/∂g5

)
= 0 . (4.69)

Included in this is the equation for the Hessian which allows the determination

of the critical value of N defining the window boundary, which will be denoted

N
(m)
crit for this AU pattern. The advantage of looking at the AU fixed points only

is that we do not have to conduct a section search. To get a perspective on the

results the leading order values of N
(m)
crit are provided for various m in table 4.2.

As m→∞ we find that N
(m)
crit asymptotes to a straight line, see figure 4.26.

m 1 2 3 4 5 6 10 20 30

N
(m)
crit -2946.1 -1087.5 -410.2 0 216.8 421.7 992.3 1999.6 2887.9

m 40 50

N
(m)
crit 3746.3 4592.9

Table 4.2: Leading order value of N
(m)
crit for the AU conformal window for different

values of m.

While this is only a partial picture for the situation for m > 2 one thing is evident,

which is in six dimensions when m ≥ 5 there should be a change in pattern for

AU type fixed points for a fixed N search, akin to that illustrated in our section-

based search for m = 2. This proves to be true after analysis of the stability

matrix. For m = 3 the 2 × 2 stability matrix evaluated at the associated fixed

point has eigenvalues e1 = 1.118079 and e2 = −1. It is therefore a saddle point.

While for the AU type fixed point found at m = 5 the stability matrix produces

eigenvalues e1 = −1 and e2 = −5.839274, signifying a UV stable fixed point.

Furthermore fixed points at values of m > 5 were also found to have negative

166



Chapter 4

stability eigenvalues. This indicates that all AU type fixed points with m ≥ 5 are

UV stable. The solution given in table 4.2 for m = 4 reflects the fact that there

was no solution rather than an exact value of zero. Although we have recorded

zero in the table for the reason that it does appear to be consistent with the

monotonic increase in N
(m)
crit with m.

Since we are able to solve equations (4.69) the three loop corrections to the

leading order values in table 4.2 have been determined for a section of m along

with the respective critical couplings,

N
(1)
crit = − 2946.134605 + 3951.961993ε + 2676.699839ε2 + O(ε3) ,

z = 1.006955 − 0.008027ε + 0.012574ε2 + O(ε3) ,

w = 8.952176 − 0.933006ε + 1.840946ε2 + O(ε3) ,

N
(2)
crit = − 1087.488959 + 1415.172128ε + 261.248651ε2 + O(ε3) ,

z = 1.001844 − 0.004332ε + 0.005483ε2 + O(ε3) ,

w = 9.000046 − 1.261448ε − 1.365084ε2 + O(ε3) ,

N
(3)
crit = − 410.145045 + 439.505646ε + 1591.300276ε2 + O(ε3) ,

z = 0.988129 + 0.002686ε + 0.093273ε2 + O(ε3) ,

w = 9.206805 − 2.755615ε + 36.244925ε2 + O(ε3) ,

N
(5)
crit = 216.767170 − 419.773422ε + 25581.601520ε2 + O(ε3) ,

z = 1.094548 − 0.073610ε − 9.071267ε2 + O(ε3) ,

w = 8.708936 + 1.332420ε − 267.527508ε2 + O(ε3) ,

N
(6)
crit = 421.682453 − 774.149504ε + 8084.140233ε2 + O(ε3) ,

z = 1.053874 − 0.038490ε − 0.487837ε2 + O(ε3) ,

w = 8.724938 + 0.659976ε − 46.386543ε2 + O(ε3) ,

N
(10)
crit = 992.309977 − 1796.450905ε + 1605.099447ε2 + O(ε3) ,

z = 1.035563 − 0.025317ε + 0.018625ε2 + O(ε3) ,

w = 8.766117 + 0.281651ε + 0.445942ε2 + O(ε3) ,

N
(20)
crit = 1999.619696 − 3823.678958ε − 645.564678ε2 + O(ε3) ,

z = 1.032648 − 0.021711ε + 0.036581ε2 + O(ε3) ,

w = 8.770214 + 0.294322ε + 6.987749ε2 + O(ε3) ,

N
(30)
crit = 2887.855771 − 5724.541609ε − 1656.156005ε2 + O(ε3) ,

z = 1.032739 − 0.020634ε + 0.038671ε2 + O(ε3) ,

w = 8.766733 + 0.353761ε + 8.295335ε2 + O(ε3) ,

N
(40)
crit = 3746.323521 − 7599.677475ε − 2431.924312ε2 + O(ε3) ,
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z = 1.032998 − 0.020013ε + 0.039622ε2 + O(ε3) ,

w = 8.763914 + 0.398295ε + 8.889004ε2 + O(ε3) ,

N
(50)
crit = 4592.876982 − 9466.056881ε − 3115.903624ε2 + O(ε3) ,

z = 1.033232 − 0.019588ε + 0.040210ε2 + O(ε3) ,

w = 8.761832 + 0.430906ε + 9.233526ε2 + O(ε3) . (4.70)

An important point to note is that while we have provided values for N
(m)
crit and

the critical couplings, other solutions related by symmetries were found for each

m. This analysis is similar to that of [52,53] where three solutions are found but

the small N
(m)
crit solutions discarded as they were negative or had complex critical

couplings. We have followed the same reasoning here. Moreover, the negative

solutions for N
(m)
crit above are in keeping with similar negative solutions for the

eight dimensional UV completion of the O(N) sequence of theories, [182]. We

have also excluded from this AU analysis values of N
(m)
crit which have large critical

couplings as such values are clearly outside the perturbative approximation.

Finally we look at the three loop results for the AU conformal window in

five dimensions. This is achieved by setting ε = 1/2 in the perturbative results

(4.70) where d = 6 − 2ε. We hope in future they may be useful in comparison

with non-perturbative work looking at the Landau-Ginzburg-Wilson model in

five dimensions such as conformal bootstrap. Results for this five dimensional

analysis are plotted in figure 4.27. As is obvious from the graph, the value of N

peaks at m = 5 before dropping dramatically into negative values for m ≈ 12.5.

Figure 4.26: Plot of leading order N values in six dimensions against a range of
m values for the AU conformal window.
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Figure 4.27: Plot of N values to three loops set in five dimensions against a range
of m values for the AU conformal window.

4.9 Fixed Point Analysis

In this section we present a fixed point analysis for a variety of specific values of

N . The aim is to give a flavour of the fixed point spectrum away from N = 1105.

In addition we will indicate the potential for another conformal window boundary

for non-CS type fixed points. We begin by looking at N = 1500, a value above the

upper bound of the conformal window, before proceeding to lower values of N .

Note that we are looking at the fixed point spectrum for O(N)×O(2) throughout

this analysis. For N = 1500 there are three CS style fixed points, one of which is

UV stable located at

x = 1.021605 − 0.048356ε + 0.029508ε2 + O(ε3) ,

y = 7.526281 − 3.373254ε + 3.656128ε2 + O(ε3) ,

z = 1.012246 − 0.028825ε + 0.021639ε2 + O(ε3) ,

t = 6.956845 − 2.194001ε + 2.528779ε2 + O(ε3) ,

w = 6.695428 − 1.676882ε + 2.013956ε2 + O(ε3) (4.71)

with the critical exponents

γ∗φ = 0.002062ε − 0.004094ε2 − 0.000048ε3 + O(ε4) ,

γ∗σ = 1.094824ε − 0.199694ε2 + 0.004627ε3 + O(ε4) ,
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γ∗T = 1.056908ε − 0.124537ε2 + 0.015105ε3 + O(ε4) . (4.72)

The other two fixed points are saddle points at

x = − 0.873990 − 0.191329ε − 0.751979ε2 + O(ε3) ,

y = 23.798278 + 10.148911ε − 11.779856ε2 + O(ε3) ,

z = 1.008603 − 0.014934ε + 0.040425ε2 + O(ε3) ,

t = − 4.493123 − 1.975523ε − 5.895095ε2 + O(ε3) ,

w = 5.966576 + 0.493814ε + 2.313503ε2 + O(ε3) (4.73)

and

x = 0.992174 − 0.081030ε − 0.023454ε2 + O(ε3) ,

y = 17.442800 + 28.749545ε + 111.944490ε2 + O(ε3) ,

z = 1.003285 − 0.007810ε + 0.201587ε2 + O(ε3) ,

t = 11.000675 − 0.211700ε − 51.299412ε2 + O(ε3) ,

w = 9.199252 − 3.571347ε − 51.357767ε2 + O(ε3) . (4.74)

There are three Heisenberg fixed points, one of which is UV stable positioned at

x = 1.007396 − 0.017489ε + 0.0157898ε2 + O(ε3) ,

y = 6.381875 − 0.593859ε + 0.531412ε2 + O(ε3) ,

z = 0 , t = 0 , w = 0 (4.75)

with critical exponents

γφ = 0.000677ε − 0.001287ε2 − 0.000149ε3 + O(ε4) ,

γσ = 1.028423ε − 0.052457ε2 − 0.006877ε3 + O(ε4) ,

γT = 0 . (4.76)

The other two fixed points are saddle points

x = 0.969241 + 0.017669ε + 0.098504ε2 + O(ε3) ,

y = 20.750257 + 12.165199ε + 22.046485ε2 + O(ε3) ,

z = 0 , t = 0 , w = 0 (4.77)

and

x = − 0.864396 − 0.197825ε − 0.590313ε2 + O(ε3) ,
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y = 22.944330 + 11.220930ε − 2.024271ε2 + O(ε3) ,

z = 0 , t = 0 , w = 0 . (4.78)

We also have one AU fixed point, which is UV stable at

x = 0 , y = 0 , t = 0 ,

z = 0.998669 + 0.004891ε − 0.006734ε2 + O(ε3) ,

w = 5.499130 + 0.705073ε − 1.100501ε2 + O(ε3) . (4.79)

The critical exponents evaluated at this stable fixed point calculated to three

loops are

γφ = 0.001330ε − 0.002422ε2 − 0.000512ε3 + O(ε4) ,

γσ = 0 ,

γT = 0.997340ε + 0.004907ε2 + 0.001671ε3 + O(ε4) . (4.80)

These fixed points along with their stability properties are what we expect for a

value of N above the CS conformal window boundary. Next we move to a value

below the conformal boundary. For N = 1000 there is one CS style fixed point

which is a saddle point at

x = − 0.868555 − 0.203744ε − 0.915849ε2 + O(ε3) ,

y = 19.811433 + 7.966436ε − 15.205442ε2 + O(ε3) ,

z = 1.012581 − 0.020942ε + 0.066905ε2 + O(ε3) ,

t = − 4.342552 − 2.231269ε − 7.303390ε2 + O(ε3) ,

w = 5.911324 + 0.770705ε + 3.795188ε2 + O(ε3) . (4.81)

We also have three Heisenberg fixed points, one of which is UV stable located at

x = 1.011102 − 0.026162ε + 0.022238ε2 + O(ε3) ,

y = 6.637801 − 1.117476ε + 0.962982ε2 + O(ε3) ,

z = 0 , t = 0 , w = 0 (4.82)

with the critical exponents

γ∗φ = 0.001022ε − 0.001981ε2 − 0.000145ε3 + O(ε4) ,

γ∗σ = 1.044358ε − 0.085562ε2 − 0.009090ε3 + O(ε4) ,

γ∗T = 0 . (4.83)
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The other two Heisenberg style fixed points are saddle points situated at

x = − 0.854446 − 0.212078ε − 0.647751ε2 + O(ε3) ,

y = 18.789145 + 9.197094ε − 2.733818ε2 + O(ε3) ,

z = 0 , t = 0 , w = 0 (4.84)

and

x = 0.983210 − 0.011253ε + 0.063259ε2 + O(ε3) ,

y = 16.345805 + 10.658027ε + 21.524495ε2 + O(ε3) ,

z = 0 , t = 0 , w = 0 . (4.85)

There is also one AU fixed point which is UV stable at

x = 0 , y = 0 , t = 0 ,

z = 0.998006 + 0.007339ε − 0.009793ε2 + O(ε3) ,

w = 5.318846 + 0.901757ε − 1.582315ε2 + O(ε3) (4.86)

giving the critical exponents

γ∗φ = 0.001992ε − 0.003615ε2 − 0.000789ε3 + O(ε4) ,

γ∗σ = 0 ,

γ∗T = 0.996016ε + 0.007374ε2 + 0.003032ε3 + O(ε4) . (4.87)

To illustrate the full spectrum of fixed points for one particular value of N we

provide the remaining fixed points at N = 1000. In addition to other real so-

lutions which do not fit the CS, Heisenberg and AU pattern, we have complex

solutions. Note that we have so far excluded solutions related by symmetries and

will continue to do so here to reduce the overall number of solutions. Note that

by symmetric we mean gi ↔ −gi type reflections. First, we state the complex

fixed points of the CS type. There are five sets of these, the first is located at

x = (0.030988i− 0.117059) + (0.225504− 0.026447i)ε

+ (0.141512 + 0.0220556i)ε2 + O(ε3) ,

y = (10.616979i+ 7.410016) + (−0.306607 + 5.10124i)ε

+ (−3.30970 + 5.02141i)ε2 + O(ε3) ,

z = (0.041381i+ 0.950398) + (0.073839− 0.000086i)ε

+ (−0.076593 + 0.240769i)ε2 + O(ε3) ,
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t = (−3.598246i+ 9.770473) + (2.741560− 4.671500i)ε

+ (17.262953− 21.70028i)ε2 + O(ε3) ,

w ∈ {(12.52843i− 8.437892) + (−0.081315 + 6.488068i)ε

+ (79.099646 + 19.016683i)ε2 + O(ε3),

(−8.157796i+ 0.215249) + (10.458651 + 2.563357i)ε

+ (−13.448748 + 143.623375i)ε2 + O(ε3),

(−4.370634i+ 8.222643) + (−1.841641− 7.930799i)ε

+ (5.191836− 47.804171i)ε2 + O(ε3)} (4.88)

where we have grouped three solutions together given that the only difference is

the location of the w critical couplings. The remaining solutions are

x = (−0.003823i+ 1.005167) + (−0.054618 + 0.012486i)ε

+ (0.018976 + 0.143820i)ε2 + O(ε3)

y = (2.003185i+ 18.658117) + (5.392312 + 1.086468i)ε

+ (14.851433− 19.827819i)ε2 + O(ε3)

z = (0.008575i+ 1.025642) + (−0.085717− 0.009151i)ε

+ (−0.006651− 0.017253i)ε2 + O(ε3)

t = (−4.466842i+ 8.052554) + (4.210604 + 3.034436i)ε

+ (8.671652 + 12.119131i)ε2 + O(ε3)

w ∈ {(15.494072i− 6.618774) + (6.586489− 2.039527i)ε

+ (160.338535− 22.392846i)ε2 + O(ε3),

(−2.718385i+ 6.100016) + (3.357728 + 1.279947i)ε

+ (12.015204 + 7.083669i)ε2 + O(ε3),

(−12.775687i+ 0.518757) + (0.842674 + 1.030180i)ε

+ (56.581857 + 57.905307i)ε2 + O(ε3)} , (4.89)

x = (0.050822i− 0.763449) + (−0.342230− 0.090513i)ε

+ (−1.048864− 0.055624i)ε2 + O(ε3) ,

y = (7.435673i+ 12.90737) + (11.071087 + 3.990671i)ε

+ (10.916564 + 32.815621i)ε2 + O(ε3) ,

z = (0.0450638i+ 0.849646) + (0.197056− 0.055744i)ε

+ (0.452791 + 0.136376i)ε2 + O(ε3) ,

t = (−1.982473i+ 12.903491) + (6.044935− 1.720892i)ε
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+ (6.597369− 13.346172i)ε2 + O(ε3) ,

w ∈ {(6.421453i− 11.600963) + (−2.494744 + 2.659224i)ε

+ (12.554273 + 26.208510i)ε2 + O(ε3),

(−3.154923i+ 14.29153) + (7.238628− 2.639826i)ε

+ (4.840108− 21.122141i)ε2 + O(ε3),

(−3.266530i− 2.690567) + (1.337926 + 0.955634i)ε

+ (33.890419 + 26.868026i)ε2 + O(ε3)} (4.90)

x = (−0.555294i− 1.513381) + (−23.114452 + 24.950148i)ε

+ (3858.041480 + 2762.998578i)ε2 + O(ε3) ,

y = (34.90363i− 21.842603) + (890.252852 + 680.087930i)ε

+ (74550.859506− 131881.754919i)ε2 + O(ε3) ,

z = (0.549418i+ 1.214497) + (24.255203− 14.435870i)ε

+ (−2470.779282− 3096.675176i)ε2 + O(ε3) ,

t = (−29.55207i+ 15.18796) + (−850.256009− 539.584442i)ε

+ (−56438.610729 + 124039.167626i)ε2 + O(ε3) ,

w ∈ {(42.91263i− 23.15191) + (1127.488695 + 813.413116i)ε

+ (82884.915451− 172830.465074i)ε2 + O(ε3),

(0.409667i+ 1.270019) + (35.031670 + 22.655513i)ε

+ (1486.251233− 4603.586046i)ε2 + O(ε3),

(−43.32229i+ 21.88189) + (−1155.605341− 813.415117i)ε

+ (−84174.229119 + 179594.341857i)ε2 + O(ε3)} , (4.91)

and

x = (−0.006320i− 1.030086) + (0.107095 + 0.043240i)ε

+ (−0.036554 + 0.122859i)ε2 + O(ε3) ,

y = (2.138785i− 9.592803) + (−5.961631− 11.215238i)ε

+ (−22.616924− 62.894519i)ε2 + O(ε3) ,

z = (0.002767i+ 1.0176108) + (−0.059037− 0.021032i)ε

+ (0.043635− 0.043068i)ε2 + O(ε3) ,

t = (1.198860i− 8.255330) + (−2.187227− 7.108184i)ε

+ (−8.358400− 32.699994i)ε2 + O(ε3) ,

w ∈ {(13.36369i− 4.799020) + (10.845688− 1.270978i)ε
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+ (139.104337− 28.027224i)ε2 + O(ε3),

(−12.50645i− 2.865408) + (−1.424629− 4.030314i)ε

+ (67.742495 + 17.073470i)ε2 + O(ε3),

(−0.857238i+ 7.664428) + (1.116387 + 5.387238i)ε

+ (4.573636 + 22.217349i)ε2 + O(ε3)} . (4.92)

There are also several sets of solutions where some of the fixed points are either

real or imaginary in addition to one being fully complex

x = 0.114419i − 0.553587iε + 6.740110iε2 + O(ε3) ,

y = 22.486625i − 31.203475iε + 603.274688iε2 + O(ε3) ,

z = 1.070456 − 0.504440ε + 9.518801ε2 + O(ε3) ,

t = −11.601013i + 36.808088iε − 722.589642iε2 + O(ε3) ,

w ∈ {(22.427674i− 1.617314) + (1.687428− 38.335633i)ε

+ (255.539793 + 718.517860i)ε2 + O(ε3),

3.234627 + 8.891244ε − 144.067750ε2 + O(ε3)} (4.93)

and

x = − 0.868555 − 0.203744ε − 0.915849ε2 + O(ε3) ,

y = 19.811433 + 7.966436ε − 15.205442ε2 + O(ε3) ,

z = 1.012581 − 0.020942ε + 0.066905ε2 + O(ε3) ,

t = − 4.342552 − 2.231269ε − 7.303390ε2 + O(ε3) ,

w = (15.014668i− 2.955662) + (4.805741 + 1.917129i)ε

+ (111.835693− 52.975405i)ε2 + O(ε3) . (4.94)

This completes the set of all CS style solutions. For the remainder of the solutions

we found that at least one of the critical couplings were zero. First we group

solutions where the couplings were either real or imaginary and found

x = 0 , t = 0 ,

y = 14.907120i + 11.502407iε − 10.399304iε2 + O(ε3) ,

z = 0.998006 + 0.007339ε − 0.009793ε2 + O(ε3) ,

w ∈ {(15.559942i− 2.659423) + (4.519271 + 2.244641i)ε

+ (110.184708− 62.342815i)ε2 + O(ε3),

5.318846 + 0.901757ε − 1.582315ε2 + O(ε3)} (4.95)
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and

x = 0 , z = 0 , t = 0 ,

y = 14.907120i + 11.502407iε − 10.399304iε2 + O(ε3) ,

w ∈ {10.540926 + 8.344899ε − 16.563109ε2 + O(ε3), 0} . (4.96)

Included in the first set is a complex w coupling. However the remaining solutions

have an imaginary y coupling and real or no w critical coupling. This is an

example which is similar to pure φ3 theory when its coupling is purely imaginary.

That particular O(N) model describes the Lee-Yang edge singularity problem,

[170]. Additionally the solution (4.96) corresponds to the Lagrangian without a

φia field. In the case of the only non-zero coupling y this is the pure cubic theory

involving only the σ field. The remaining solutions with any complex roots all

have vanishing critical z couplings and are located at

x = (0.102517i− 1.069257) + (−0.187674− 0.485282i)ε ,

+ (6.388101 + 3.227418i)ε2 + O(ε3)

y = (8.388316i+ 4.182323) + (−31.690792− 0.719078i)ε ,

+ (394.496262− 256.273660i)ε2 + O(ε3) ,

z = 0 ,

t = (−12.684990i− 5.204227) + (23.207111 + 4.566306i)ε

+ (−270.175902 + 154.130691i)ε2 + O(ε3) ,

w ∈ {(13.394284i+ 8.214396) + (−30.663870− 17.742257i)ε

+ (479.083975− 270.124833i)ε2 + O(ε3), 0} (4.97)

and

x = 0 , z = 0 ,

y = (12.918644i+ 4.311494) + (2.006636 + 9.961474i)ε

+ (−0.372460− 5.181172i)ε2 + O(ε3) ,

t = (9.765251i− 1.446829) + (−0.575941 + 7.513693i)ε

+ (−1.501827− 7.061748i)ε2 + O(ε3) ,

w ∈ {(7.382858i− 3.189516) + (−1.150870 + 6.001629i)ε

+ (−0.334518− 6.569977i)ε2 + O(ε3), 0} . (4.98)

The remainder of the solutions are real but interesting patterns emerge in several

cases. First we record the fixed points where there is no pairing with another set.
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There were four such cases. Of all the real solutions we find only the first two

correspond to UV stable fixed points which are located at

x = 1.011102 − 0.026162ε + 0.022238ε2 + O(ε3) ,

y = 6.637801 − 1.117476ε + 0.962982ε2 + O(ε3) ,

z = 0 , t = 0 ,

w = 10.540926 + 8.344899ε − 16.563109ε2 + O(ε3) (4.99)

and

x = 0 , y = 0 , z = 0 , t = 0 ,

w = 10.540926 + 8.344899ε − 16.563109ε2 + O(ε3) . (4.100)

The second solution of (4.100) corresponds to the pure T ab theory when m = 2

but the (0, 0, 0, 0, w) structure could be analysed in isolation for arbitrary m. The

stability of these two fixed points appears to be driven by the vanishing of the

couplings g3 and g4. In this case there is no interaction whatsoever between the

pair of fields {φia, σ} and T ab which is apparent when looking at L(LGW6). In

other words, one is dealing with a partitioned Lagrangian and the coupling con-

stant space is also partitioned. So the stability here is a reflection of the stability

of the two separate Lagrangian’s. In the second of these two stable solutions

the situation is effectively trivial since it reflects that one of the two partitioned

Lagrangian’s is a free field theory which has a zero β-function. That such solu-

tions representing the sum of independent Lagrangian’s emerge ought not to be a

surprise and should be regarded as an internal consistency check in our analysis

of solutions.

The remaining unpaired solutions which are not stable are located at

x = − 0.854446 − 0.212078ε − 0.647751ε2 + O(ε3) ,

y = 18.789145 + 9.197094ε − 2.733818ε2 + O(ε3) ,

z = 0 , t = 0 ,

w = 10.540926 + 8.344899ε − 16.563109ε2 + O(ε3) (4.101)

and

x = 0.983210 − 0.011253ε + 0.063259ε2 + O(ε3) ,

y = 16.345805 + 10.658027ε + 21.524495ε2 + O(ε3) ,

z = 0 , t = 0 ,
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w = 10.540926 + 8.344899ε − 16.563109ε2 + O(ε3) . (4.102)

Analysing the stability matrix we find that these solutions are saddle points. For

the paired solutions we have

x = 0.986386 + 0.006824ε + 0.023890ε2 + O(ε3)

y = 3.882413 + 3.856888ε + 1.139387ε2 + O(ε3)

z = 0

t = − 6.810006 + 3.229867ε + 5.755896ε2 + O(ε3)

w ∈ {13.726061 + 3.729174ε − 29.707955ε2 + O(ε3), 0} (4.103)

and

x = 0 , z = 0 ,

y = 17.222217 + 37.874140ε + 404.846200ε2 + O(ε3) ,

t = − 13.657731 − 33.103835ε − 376.517213ε2 + O(ε3) ,

w ∈ {20.542650 + 42.608899ε + 533.442168ε2 + O(ε3), 0} (4.104)

which are also saddle points. The final three pairings exhibit a novel feature in

that in each set the critical x and t couplings are equal

x = − 0.854046 − 0.211934ε − 0.647273ε2 + O(ε3) ,

y = 18.789012 + 9.196991ε − 2.731101ε2 + O(ε3) ,

z = 0 ,

t = − 0.854046 − 0.211934ε − 0.647273ε2 + O(ε3) ,

w ∈ {− 10.598432 + 8.327096ε − 16.655991ε2 + O(ε3), 0} ,(4.105)

x = 0.982680 − 0.011165ε + 0.063307ε2 + O(ε3) ,

y = 16.347740 + 10.655223ε + 21.515017ε2 + O(ε3) ,

z = 0 ,

t = 0.982680 − 0.011165ε + 0.063307ε2 + O(ε3) ,

w ∈ {10.616993 + 8.279650ε − 16.867303ε2 + O(ε3), 0} (4.106)

and

x = 1.010586 − 0.0261234ε + 0.022211ε2 + O(ε3) ,

y = 6.633618 − 1.114926ε + 0.960725ε2 + O(ε3)
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z = 0 ,

t = 1.010586 − 0.026124ε + 0.022211ε2 + O(ε3) ,

w ∈ {10.621358 + 8.274362ε − 16.895995ε2 + O(ε3), 0} . (4.107)

While our focus here was on O(1000) × O(2) theory it represents a snapshot

of the spectrum of potential solutions for the general symmetry group. What

has emerged are both real and complex fixed point solutions in addition to the

Heisenberg, chiral stable and anti-chiral unstable types which were motivated by

the four dimensional theory.

Next we move on to analyse a lower value of N in order to illustrate a change

in the fixed point pattern. At N = 600 we have one CS style fixed point solution

which is a saddle point positioned at

x = − 0.862204 − 0.222460ε − 1.255729ε2 + O(ε3) ,

y = 15.871131 + 5.764114ε − 20.128689ε2 + O(ε3) ,

z = 1.020205 − 0.031243ε + 0.133767ε2 + O(ε3) ,

t = − 4.133094 − 2.641545ε − 10.197488ε2 + O(ε3) ,

w = 5.794456 + 1.264133ε + 7.071880ε2 + O(ε3) . (4.108)

In addition there are three Heisenberg style fixed points with the one located at

x = 1.018022 − 0.037843ε + 0.001985ε2 + O(ε3) ,

y = 7.507506 − 4.490389ε + 9.490485ε2 + O(ε3) ,

z = 0 , t = 0 , w = 0 (4.109)

being UV stable giving the following critical exponents

γ∗φ = 0.001727ε − 0.003465ε2 − 0.000010ε3 + O(ε4) ,

γ∗σ = 1.083337ε − 0.195953ε2 + 0.089727ε3 + O(ε4) ,

γ∗T = 0 . (4.110)

The other two fixed points are saddle points at

x = − 0.839313 − 0.232926ε − 0.736639ε2 + O(ε3) ,

y = 14.602366 + 7.174642ε − 3.193826ε2 + O(ε3) ,

z = 0 , t = 0 , w = 0 (4.111)
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and

x = 1.007039 − 0.068389ε + 0.063230ε2 + O(ε3) ,

y = 11.302398 + 11.995559ε + 13.765855ε2 + O(ε3) ,

z = 0 , t = 0 , w = 0 . (4.112)

There is also one AU fixed point which is UV stable located at

x = 0 , y = 0 , t = 0

z = 0.996683 + 0.012238ε − 0.015305ε2 + O(ε3) ,

w = 5.033838 + 1.165363ε − 2.476601ε2 + O(ε3) (4.113)

with critical exponents

γ∗φ = 0.003311ε − 0.005969ε2 − 0.001383ε3 + O(ε4) ,

γ∗σ = 0 ,

γ∗T = 0.993377ε + 0.012333ε2 + 0.006784ε3 + O(ε4) . (4.114)

The fixed point spectra at N = 600 for the Heisenberg and AU cases have been

illustrated in figures 4.28 and 4.29. Note that both plots include the trivial (0, 0)

Gaussian fixed point which appears unstable given the direction of the UV flow

arrows. The Heisenberg and AU graphs illustrate the UV stable fixed points well

with arrow flow direction towards this fixed point. Additional fixed points appear

on both plots which are generated by symmetry relations where gi ↔ −gi. We

have recorded the spectrum at N = 600 to contrast it with lower values of N .

For N = 519 we have one CS style fixed point which is a saddle point located at

x = − 0.860686 − 0.228611ε − 1.395472ε2 + O(ε3) ,

y = 14.937476 + 5.238428ε − 21.686769ε2 + O(ε3) ,

z = 1.023093 − 0.0347571ε + 0.165366ε2 + O(ε3) ,

t = − 4.069923 − 2.780163ε − 11.373918ε2 + O(ε3) ,

w = 5.750244 + 1.435664ε + 8.435080ε2 + O(ε3) . (4.115)

However we now have only one Heisenberg style fixed point which is a saddle

point at

x = − 0.834431 − 0.239444ε − 0.765623ε2 + O(ε3) ,

y = 13.591847 + 6.689873ε − 3.246649ε2 + O(ε3) ,
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z = 0 , t = 0 , w = 0 . (4.116)

In addition there is one UV stable AU type fixed point positioned at

x = 0 , y = 0 , t = 0 ,

z = 0.996169 + 0.014150ε − 0.017238ε2 + O(ε3) ,

w = 4.941667 + 1.239792ε − 2.803418ε2 + O(ε3) (4.117)

giving critical exponents

γ∗φ = 0.003824ε − 0.006875ε2 − 0.0016281ε3 + O(ε4) ,

γ∗σ = 0 ,

γ∗T = 0.992352ε + 0.014277ε2 + 0.008615ε3 + O(ε4) . (4.118)

Therefore between N = 600 and N = 519 the behaviour of the Heisenberg style

fixed point changes. This seems to indicate that a conformal window type region

exists with respect to the Heisenberg structure and thus there is a new conformal

window between N = 519 and N = 600. The actual location is not of major

significance in the context of the LGW theory as this in effect corresponds to the

original Heisenberg model with no T ab field. We have illustrated the Heisenberg

and AU fixed point stability structure for N = 519 in plots 4.30 and 4.31. The

AU plot is similar to that of N = 600. There is one UV stable fixed point along

with the trivial fixed point. However the Heisenberg plot is very different, we now

have one saddle point which is mirrored in both axes due to symmetry relations.

The final case we consider in detail is N = 2. It is of potential interest as for

this value in a variety of models a supersymmetric solution emerges, [52,170,227].

At N = 2 we have three CS style fixed points, all of which are saddle points

at

x = − 0.454392 − 1.128422ε − 10.883437ε2 + O(ε3) ,

y = 0.673205 + 1.783387ε + 15.854883ε2 + O(ε3) ,

z = 0.318954 + 0.395758ε + 3.102196ε2 + O(ε3) ,

t = 0.379850 + 0.510247ε + 4.361634ε2 + O(ε3) . (4.119)

The value for the coupling w has not been provided with the others as a novel

feature emerged for this set. It transpired that there were three fixed points with

the same x, y, z and t values but differing only in the w value. Therefore, we
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note these values separately as

w ∈ {0.717916 + 0.824313ε + 5.193907ε2 + O(ε3),

− 0.267715 − 0.020190ε + 0.685452ε2 + O(ε3),

− 0.450201 − 0.479646ε − 3.632751ε2 + O(ε3)} . (4.120)

There was one Heisenberg fixed point, which is a saddle point located at

x = − 0.470736 − 0.737444ε − 5.708527ε2 + O(ε3) ,

y = 0.762184 + 0.999917ε + 6.174478ε2 + O(ε3) ,

z = 0 , t = 0 , w = 0 . (4.121)

In addition there was one AU fixed point which is UV stable at

x = 0 , y = 0 , t = 0 ,

z = 0.577350 + 1.507526ε + 19.533564ε2 + O(ε3) ,

w = 0.800625 + 1.806817ε + 27.377665ε2 + O(ε3) (4.122)

with critical exponents

γ∗φ = γ∗T = 0.333333ε + 1.333333ε2 + 22.148148ε3 + O(ε4) ,

γ∗σ = 0 . (4.123)

One property of the emergent supersymmetric solutions found in earlier work

[52, 170, 227] was that the critical couplings were equivalent. For this AU style

solution a different feature is apparent which is that the exponents of φia and T ab

are equal.
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Figure 4.28: Fixed point UV sta-
bility flow of the Heisenberg fixed
points, (x, y, 0, 0, 0), for O(600) ×
O(2). Heisenberg fixed point located
at (x, y) = (1.02, 7.51)

Figure 4.29: Fixed point UV stability
flow of the Anti-chiral unstable fixed
points, (0, 0, z, 0, w), for O(600)×O(2).
AU fixed point located at (z, w) =
(1.00, 5.03)

Figure 4.30: Fixed point UV sta-
bility flow of the Heisenberg fixed
points, (x, y, 0, 0, 0), for O(519) ×
O(2). Heisenberg fixed point located
at (x, y) = (−0.83, 13.59)

Figure 4.31: Fixed point UV stability
flow of the Anti-chiral unstable fixed
points, (0, 0, z, 0, w), for O(519)×O(2).
AU fixed point located at (z, w) =
(1.00, 4.94)

4.10 Discussion

We have provided a comprehensive three loop analysis for the extension of the

four dimensional Landau-Ginzburg-Wilson O(N) × O(m) symmetric theory to

six dimensions. The universality between these two theories relies on a common
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interaction which seeds the theories in four and six space-time dimensions along

the thread of the Wilson-Fisher fixed point in d-dimensions. One reassuring as-

pect of our computation is the verification that the three loop Renormalization

Group functions are consistent with the large N critical exponents of [218]. This

gives confidence to the universality class as a whole as well as for the inclusion

of the six dimensional extension we constructed. One consequence of the large

number of coupling constants present in the six dimensional LGW theory is a

richer spectrum of fixed points for specific values of N and m. Our analysis con-

centrated on m = 2 due to interest in the O(N) × O(2) model, although we do

not expect the general picture of fixed points to differ conceptually for higher

values of m. The primary difference will be in the boundary values which will

be at different values of N for the AU conformal window. Our m = 2 analysis is

similar to the O(N) case of [52] with real and complex critical couplings present,

the latter corresponding to non-unitary theories. However for real solutions we

were able to isolate fixed points which had a structure in keeping with the phase

plane in the four dimensional model. Their stability was studied for certain val-

ues of N . One main area of interest in this calculation, as well as in the previous

O(N) analysis, is whether the fixed point in five dimensions exists and if so what

is its conformal window. In [59] a bootstrap study indicated that this was not an

easy exercise from the lower dimensional point of view unless one was examining

AU type coupling patterns. Our investigation left us with a similar conclusion.

Although we were able to narrow down the leading order value of the window for

CS type solutions for m = 2. By contrast we could solve the AU set of equations

and found that a window exists above m = 5.

The full set of data for the Renormalization Group functions has been provided

which can be mined for future studies for other values of m. As the O(N)×O(m)

symmetric theory has a richer structure than the initial computation of O(N) the-

ory, this calculation again provides a good testing ground for looking into ideas

on universality and conformal windows. Furthermore it opens up the gateway

to model building and beyond the Standard Model (BSM) physics. Akin to the

connections in both the O(N) and O(N)×O(m) universality classes, one question

which has been considered is what if any is the higher dimensional theory which is

in the same universality class as the Banks-Zaks fixed point in QCD. It is known

that QCD is in the same universality class as the non-abelian Thirring model

in the large Nf expansion, [228]. QCD is perturbatively renormalizable in four

space-time dimensions, while the Thirring model is perturbatively renormalizable

in two dimensions. Here Nf refers to the number of massless quark flavours and

not the numbers of colours Nc present in the theory. Large Nf critical exponents
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to varying orders in Nf have been calculated, [229–231], and matched with ex-

ponents computed in both the Thirring model and QCD. The RG functions for

the six dimensional extension to QCD were calculated in [54] to two loops. The

corresponding critical exponents were also matched with known large Nf expo-

nents, providing confidence in the universality. One important feature that was

found in six dimensional QCD was the conformal window which was found to be

located at Nf = 16 for the SU(3) colour group, [54]. Extra coupling constants

in the six dimensional Lagrangian produced a rich fixed point spectrum and if

analysed in d-dimensions several of these may be connected to the non-trivial and

non-perturbative fixed points in the companion lower dimensional model.

An interesting point to note is that six dimensional QCD was found to have

strong structural similarities to the eight dimensional scalar theory with O(N)

symmetry, [54]. The QCD universality class has since been extended to eight-

dimensions with RG functions calculated to one loop, [70]. QCD is not the only

gauge theory which has gained interest from the point of view of universality

classes. The six and eight dimensional extensions of Quantum Electrodynamics

(QED) have also recently been studied, [54,69]. Furthermore the renormalization

of the two dimensional Gross-Neveu model with O(N) and SU(N) symmetry has

been performed to four loops, [232]. This was looked at as it is a model which

is thought to have structural similarities with four dimensional QCD. Addition-

ally the six dimensional scalar φ3 theory with an F4 symmetry to four loops has

been looked at in the MS scheme, [233], with the primary aim being to compli-

ment recent bootstrap results. It also provided contrasting evidence to bootstrap

claims that only non-perturbative techniques could be used for this particular

model. Finally the renormalization of scalar field theories in rational space-time

dimensions has been computed, [226]. These are theories with φn self interac-

tions such as n = 5, 7 and 9 in their respective critical dimensions which are

non-integer. This provides a non-trivial O(N) symmetric extension. It is hoped

that analysing fixed points of higher dimensional gauge theories and their con-

formal windows could give an insight into physics beyond the Standard Model.

For example higher dimensional operators may continue to be relevant in four

dimensions and drive the infrared dynamics. Additionally modern observations

suggest there may be dualities with higher spin AdS/CFT theories which are re-

lated to six dimensional φ3 theory which also has applications to quantum gravity

through asymptotic safety, [56].
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Higher Derivative Higher

Dimensional Quantum Field

Theory

5.1 Introduction

The Wilson-Fisher fixed point has provided a remarkable basis for tackling a va-

riety of different problems in physics, [41, 44, 155]. In Chapter 3 we looked at

extending the φ4 universality class to ten dimensions, which is sometimes termed

an ultraviolet (UV) completion. In Chapter 4 we looked at a different universality

class with a more complex symmetry group. Central to these connections was the

Wilson-Fisher fixed point and underlying critical Renormalization Group (RG)

equation which is a core property in d-dimensions, [41, 44, 155]. The connection

between theories is constructed by explicit perturbative renormalization of the

respective higher dimensional O(N) symmetric scalar theories and, in addition,

knowledge of the critical exponents of the universal theory in arbitrary space-time

dimension. The latter is possible through a perturbative expansion in the param-

eter 1/N . As the O(N) φ4 tower of theories has been studied extensively, our

aim here is to establish a new universality class and provide the corresponding

perturbative and large N results to verify the underlying universality of this new

tower. Importantly this new universality class will contain theories incorporating

higher derivative kinetic terms.

In order to motivate the study of these higher derivative scalar theories we

review the basic φ4 Lagrangian endowed with O(N) symmetry which is pertur-
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batively renormalizable in four dimensions

L(4) =
1

2
∂µφ

i∂µφi +
g1

2
σφiφi − 1

2
σ2 . (5.1)

Recall that in Chapter 3 we discussed how σ was introduced as an auxiliary field

in equations (3.1) and (3.2). This version of the Lagrangian is the starting point

for the large N construction provided by [48–50]. Using dimensional analysis the

dimension of the fields φi and σ, defined as α and β, were found in (2.58) and are

restated here

[φi] = α =
d

2
− 1 +

η

2
,

[σ] = β = 2 − η − χ . (5.2)

The canonical dimensions of the fields are determined by a dimensional analysis

of the Lagrangian with the proviso that the action S is dimensionless. The space-

time dimension enters via the d-dimensional measure associated with the relation

between the Lagrangian and the action. The quantities η and χ correspond to

critical exponents and are a measure of quantum corrections. To establish the ul-

traviolet completion of higher derivative O(N) theories we first need to construct

the relevant Lagrangians which populate the tower along a common Wilson-Fisher

fixed point thread in d-dimensions. One way to proceed is to use the universal in-

teraction as a basis for defining the canonical dimensions of the fields for a specific

critical dimension, and then construct the spectator part of the Lagrangian which

ensures renormalizability. This will systematically build the tower which is the

UV completion of O(N) φ4 theory to six dimensions, [51,52], and higher, [3,53,54].

However we have chosen to begin at another point which is within the universal

theory itself but at the critical point. For the established O(N) tower containing

the four dimensional Lagrangian (5.1) we note that the canonical dimensions of

the fields were determined by dimensionally analysing the kinetic term for φi and

the universal interaction. They satisfy the relation

2α + β = d − χ . (5.3)

However the values of α and β given by equation (5.2) are not the only solutions

which satisfy relation (5.3). Moreover this is not the only way to consider the

dimensional analysis within the universal theory. Instead of using the kinetic

term for φi and the interaction to find α and β we can write down a sequence of

solutions to relation (5.3) which includes the values (5.2) as a specific case. This
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general solution is

α =
d

2
− n +

η

2
,

β = 2n − η − χ (5.4)

where n is any positive integer. The value n = 1 gives the result (5.2) which

produces the O(N) φ4 universality class. Viewed this way one opens up new

threads of towers since the kinetic term for φi will necessarily involve higher

derivatives. Although unlike the scalar field theories considered in [234–236] for

example, these will be interacting theories with a conformal symmetry at a fixed

point. More specifically the first few Lagrangian’s representing the universal

theories will be

L(8) =
1

2
(2φi)2 +

1

2
σφiφi − 1

2g2
1

σ2 (5.5)

for n = 2, where σ as been rescaled by a power of the coupling. For n = 3 we

find

L(12) =
1

2
(2∂µφ

i)2 +
1

2
σφiφi − 1

2g2
1

σ2 . (5.6)

These Lagrangian’s are in the formulation used for the large N expansion. Elim-

inating the auxiliary field σ produces

L(8) =
1

2
(2φi)2 +

g2
1

8
(φiφi)2 , (5.7)

L(12) =
1

2
(2∂µφ

i)2 +
g2

1

8
(φiφi)2 (5.8)

which are the higher derivative kinetic term extensions of scalar O(N) φ4 theory.

Our notation is that the Lagrangian L(Dc) is perturbatively renormalizable in Dc

dimensions with critical dimension Dc = 4n in terms of the solution (5.4). So the

critical dimension for the n = 2 thread is eight and for n = 3 it is twelve.

The focus for the remainer of the Chapter will be on the n = 2 thread, n = 3

is covered in [3]. Constructing the UV completion or tower of theories based on

L(8) follows the method of the conventional Wilson-Fisher universality class. The

key is the use of the canonical dimensions of the two basic fields and the space-

time dimension the Lagrangian is to be completed in. In the large N expansion

the canonical dimensions are necessarily dimension dependent as the universal

theory is space-time transcendent. For the theories which are renormalizable in

a fixed (even) dimension one has to use the canonical dimension for that specific

dimension. So when n = 2, σ has dimension four and φi has dimension two,

three, four, five and six in the even dimensions between eight and sixteen. One
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consequence is that in each of these dimensions the σφiφi operator dimension

is preserved and moreover no new φi − σ interactions can be included. Instead

in order to ensure renormalizability in each dimension extra pure σ spectator

interactions have be to added which can include derivative interactions similar

to Chapter 3. Given this reasoning we find the following higher dimensional

extensions of Lagrangian (5.7),

L(8,10) =
1

2

(
2φi

)2
+

1

2
∂µσ∂

µσ +
g1

2
σφiφi ,

L(8,12) =
1

2

(
2φi

)2
+

1

2
(2σ)2 +

g1

2
σφiφi +

g2

6
σ3 ,

L(8,14) =
1

2

(
2φi

)2
+

1

2
(2∂µσ)2 +

g1

2
σφiφi +

g2

6
σ22σ ,

L(8,16) =
1

2

(
2φi

)2
+

1

2

(
22σ

)2
+

g1

2
σφiφi +

g2

6
σ222σ

+
g3

2
σ (2σ)2 +

g2
4

24
σ4 (5.9)

where only independent derivative interactions have been included. As a re-

minder, our notation of L(d1,d2) is to indicate the dimension of the base quartic

theory, which is d1, and the particular critical dimension, d2, where it is renor-

malizable. One of the reasons why we have included a range of Lagrangians

built from the base Lagrangian is to compare and contrast structural similari-

ties. For instance the spectator Lagrangians of L(4,6) and L(8,12) are formally the

same although the canonical dimension of the σ field is not the same in each

case. This will generalise to the sequence L(4n,6n) but in the dimensions between

4n and 6n there are no spectator interactions only a change in the σ kinetic terms.

It is worth stressing at this stage that we have merely constructed a sequence of

higher dimensional renormalizable interacting Lagrangian’s founded on a quartic

scalar theory with a higher derivative kinetic term. We now need to make the

connection with large N exponents in order to extend the Wilson-Fisher thread

in this new context. In the next subsection we calculate new large N solutions

for the case n = 2. Following that we review perturbative exponents of the

Renormalization Group functions for the new Lagrangians, briefly detailing how

these calculations were performed. These perturbative RG functions can then

be used to compute ε-expansion critical exponents which can be compared with

large N results. Finally we will examine the fixed point picture for these theories

and compare with similar results obtained for the O(N) φ4 thread.
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5.2 Critical Exponents of Higher Derivative Higher
Dimensional Theories

We have introduced new sets of quartic scalar theories with critical dimension

Dc = 4n and O(N) symmetry. We particularly focused on the tower of theories

created in the n = 2 case which has critical dimension Dc = 8. It is possible to

determine the large N critical exponents of the n = 2 theory in the same way

that the n = 1 exponents are known [48–50]. The calculation of n = 1 critical

exponents was reviewed in Chapter 2. The main purpose of this calculation is

to provide new large N results for the critical exponents of the higher derivative

tower corresponding to n = 2. These critical exponents will be new results that

have not previously been studied. It also presents a new way of looking at the

large N expansion. It turns out that the leading order exponents for the fields, η1

and χ1, as well as that for η2 can be immediately deduced from [48, 49], for any

positive value of n. In the construction of the large N critical exponents, [48,49],

the O(1/N2) diagrams contributing to η2 were computed as functions of α and

β. The computation of these diagrams for n = 1 relied on conformal integration

and more precisely, on the uniqueness condition.

Briefly the uniqueness rule states that if the sum of the exponents of the lines

joining a 3-point vertex is equal to the space-time dimension then the integral

over the vertex location can be performed. In the large N context for n = 1

this was exploited in [48, 49]. Recall that at leading order (LO) the O(1/N2)

diagrams satisfied the uniqueness condition 2α + β = d at leading order. There-

fore LO terms of the O(1/N2) diagrams can be evaluated and were computed for

n = 1. However, since the canonical dimension for the higher n solutions also

satisfies the same uniqueness condition, 2α+β = d at leading order, independent

of n, then the use of uniqueness for general α and β in the derivation of the

O(1/N2) exponent η2 can be used for n = 2 and higher. We shall calculate the

O(1/N2) Feynman diagrams in the following subsection. For clarity, the main

point is summarised again here. The uniqueness condition is satisfied for the

values of α and β given in (5.4) for general n at LO in 1/N . This is why the

higher derivative tower is significant and why we can build new large N results

for this new tower of theories, analogous to the n = 1 case discussed in Chapter 2.

We therefore shall revisit the work of [48, 49] to determine η1, χ1 and η2

for n = 2 and hence obtain a new set of large N solutions. In Chapter 2 we

explicitly detailed the derivation of the critical exponents η1 and χ1 for n = 1.

The derivation for the n = 2 case is extremely similar, the only difference being
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the values of α and β. As the same basic fields and common interaction σφiφi

are present we also have the same skeleton Dyson-Schwinger equations for the

fields at criticality which we shall use to determine the critical exponents. We

shall therefore only review the main points here. The skeleton Dyson-Schwinger

equations to NLO are given in figure 5.1 where the solid lines are φi propagators

while the dotted lines illustrate σ fields.

0 = φ−1 +

0 = σ−1 +1
2

+ +

+ +

Figure 5.1: Skeleton Dyson-Schwinger equations in the large N expansion.

The first two term in figure 5.1 of each equation are LO, the final two graphs are

NLO Feynman diagrams. Note that the same counting rules used in Chapter 2

apply again here. The leading order terms were computed in equations (2.67),

(2.68) and figure 2.19. Inserting these results into the leading order skeleton

Dyson-Schwinger equations and equating the two equations an expression can be

obtained to evaluate η1,

p(α) =
2p(β)

N
. (5.10)

The left-hand side of this expression can be solved by first substituting in α=µ−
2+η

2
, where d = 2µ, and then simplifying

p(α) = p

(
µ− 2 +

η

2

)
=

Γ(µ− η
2

+ 2)Γ(µ− 2 + η
2
)

Γ(η
2
− 2)Γ(2− η

2
)

.

As only leading order terms are required all but one of the η terms can be ignored.

The identity zΓ(z) = Γ(z + 1) is implemented to isolate the leading order term

of η,

p(α) =
Γ(µ+ 2)Γ(µ− 2)(η

2
− 2)(η

2
− 1)(η

2
)

Γ(η
2

+ 1)

= Γ(µ+ 2)Γ(µ− 2)

(
η1

N
+ O

(
1

N2

))
.

Calculating the right-hand side is much simpler. Substituting in β = 4 − η − χ
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and ignoring NLO terms in η we obtain

2p(β)

N
=

2

N

a(4− η − χ− µ)

a(4− η − χ)

=
12

N

Γ(2µ− 4)

Γ(4− µ)Γ(µ− 4)
.

Putting both sides together the result for η1 at n = 2 can be found,

η1 =
12Γ(2µ− 4)

Γ(4− µ)Γ(µ− 4)Γ(µ+ 2)Γ(µ− 2)
. (5.11)

The skeleton Dyson-Schwinger equations at leading order are

p(α)

A(x2)2µ−α +
AB

(x2)α+β
= 0 ,

p(β)

B(x2)2µ−β +
NA

2(x2)2α
= 0 .

Multiplying the first equation by A and (x2)2µ−α, the second equation by B and

(x2)2µ−β and setting z = A2B we obtain

p(α) + z + O(1/N2) = 0 ,
2

N
p(β) + z + O(1/N2) = 0

where z is a also an expansion in 1/N . The exponent in the denominator has

been simplified as 2α + β − 2µ = −χ and χ can be ignored at leading order. As

discussed in Chapter 2, since z also has an expansion in 1/N we must work out

its leading order term before moving on to calculate χ1. This can be done by

using the first skeleton Dyson-Schwinger equation

z1 = − η1Γ(µ+ 2)Γ(µ− 2) . (5.12)

To calculate χ1 we also only need to look at the first skeleton Dyson-Schwinger

equation, however we now need to include diagrams of order O(1/N2) to incor-

porate the χ1 term. In coordinate space notation the Feynman diagrams of order

O(1/N2) in both skeleton Dyson-Schwinger equations are illustrated in figure

5.2. Here Σ1, Σ2, Π1 and Π2 are the dimensionless integrals for each respective

O(1/N2) diagram.
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= A3B2Σ1

(x2)3α+2β−2µ

= NB3A5Σ2

(x2)5α+3β−4µ

= NA4BΠ1

(x2)4α+β−2µ

= N2A6B2Π2

(x2)6α+2β−4µ

Figure 5.2: Feynman diagrams in both skeleton Dyson-Schwinger equations of
order O(1/N2).

Inserting the expressions for the first two diagrams into the first skeleton

Dyson-Schwinger equation and simplifying by setting z = A2B we find

p(α) +
z

(x2)2α+β−2µ
+

z2Σ1

(x2)4α+2β−4µ
+

Nz3Σ2

(x2)6α+3β−6µ
= 0 . (5.13)

However the diagrams of order O(1/N2) are divergent, see figure 2.24, where K1

and K2 are the coefficients of the divergent pieces of the diagrams while Σ′1 and

Σ′2 are finite. The two NLO diagrams in the second skeleton Dyson-Schwinger

equation can also be split into their finite and divergent parts in figure 5.3.

= K1

∆
+ Π′1

= K2

∆
+ Π′2

Figure 5.3: The next to leading order (NLO) diagrams in the skeleton Dyson-
Schwinger equation for the σ field split into finite and divergent parts.
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It turns out that the coefficients of the divergent pieces of the two sets of diagrams

are the same, while the finite parts differ. As the diagrams of order O(1/N2)

are divergent they first need to be regularised before renormalizing the theory.

This was discussed in great detail in Chapter 2 and it was concluded that after

renormalization a condition is obtained which allows the computation of χ1,

χ1 = − z1K1 − 2z2
1K2 . (5.14)

As we have already noted, K1 and K2 are present in both sets of O(1/N2) di-

agrams so either pair can be computed to calculate χ1. The integration in co-

ordinate space of the NLO Feynman diagrams will be the focus in the following

subsection.

5.2.1 Calculation of NLO Diagrams

The four next-to-leading order diagrams required to compute χ1 and η2 can be

evaluated using conformal integration. We utilize the conformal integration iden-

tities derived in Chapter 2 throughout this calculation. As only two diagrams

need to be calculated to find the NLO critical exponents we compute the first

set here, Π1 and Π2, and simply state the results of the Σ1 and Σ2 diagrams for

completeness. Note that the values of K1 and K2 were stated earlier in equation

(2.83) without derivation which is provided here. As a reminder for the reader,

Π1 and Π2 are the dimensionless values of two of the NLO diagrams, see figure

5.2. As the dimensionality of the diagrams has been included in the skeleton

Dyson-Schwinger equations, we make Π1 and Π2 dimensionless to prevent over-

counting of dimension-full terms. To begin we will evaluate the NLO Feynman

diagram Π1 which can be evaluated as an expansion in 1/N , where Xi are some

coefficients to be determined,

Π1 ≡ X0 +
X1

N
+

X2

N2
+ . . . .

This NLO diagram is illustrated in both momentum and coordinate space repre-

sentations by figure 5.4.
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(a)

x x

y z

x− y x− z

y − z

(b)
α α

α α

β0

y

z

x

Figure 5.4: NLO Feynman diagram Π1 in (a) momentum space and (b) coordi-
nate space representations. In coordinate space α and β indicate the power on
the propagator, while x, y and z represent the momentum flow in both represen-
tations.

To use conformal methods one has to check the sum of the exponents at each

vertex in the coordinate space representation is unique. It can be seen from the

uniqueness theorem that each 3-point vertex in figure 5.4 (b) is almost unique,

2α + β = d − χ 6= d .

However from the structure of the RG equations at criticality the χ and η expo-

nents begin at order O(1/N). Therefore at leading order in the 1/N expansion

the vertices are completely unique. Hence at this order one can integrate at either

vertex using conformal methods. It is worth contrasting the use of uniqueness

here with another aspect of the conformal integration rule. This is that there is

not one condition for the coordinate space vertex to be integrable. If the sum

of the exponents at a vertex sum to the space-time dimension plus a positive

integer then the vertex can be integrated. See [237], for example, for lectures on

this construction. However the resulting expression may be cumbersome. While

it is possible to consider theories based on the one step from uniqueness criterion

it is not our main focus here.

It turns out that we only need to compute the leading order result for Π1

anyway as this Feynman graph is multiplied by the term z2
1/N in the skeleton

Dyson-Schwinger equation, so the leading order result will automatically become

order O(1/N). Additionally the NLO Feynman diagram Π1 will turn out to be

divergent and we will have to use a new technique to cope with this. To illustrate

where the divergences appear we naively first try to compute the leading order

term in figure 5.4 (b). At leading order the two vertices we wish to integrate

over are unique, we can therefore use the conformal integration identities given

in Chapter 2, see figure 2.14. The lower 3-point vertex is integrated at first, as

indicated by the boldface dot in figure 5.5, before we then integrate at the upper
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vertex. This convention will be used throughout the Chapter.

0 x

µ− 1

µ− 1

µ− 1

µ− 1

2 = ν(2, µ− 1, µ− 1)

0 x

µ µ

µ− 2

= ν(2, µ− 1, µ− 1)ν(µ, µ, 0)(x2)2−2µ

Figure 5.5: Coordinate space integration of NLO Feynman diagram Π1.

It is clear to see that we are left with divergent terms as formally

ν(µ, µ, 0) =
Γ(0)Γ(0)Γ(µ)

Γ(µ)Γ(µ)Γ(0)

is ill defined due to singularities deriving from the Γ-function. Hence the diagram

requires a regularisation in this critical point formulation. We use an analytic

regulator of the form β → β − ∆ where the vertex anomalous dimension is

shifted by an infinitesimal amount ∆, see figure 5.6. In effect we are performing a

perturbative expansion in the anomalous dimension of the vertex. Consequently

even at leading order the graph no longer has a unique vertex due to a non-zero

∆. We therefore use the method of subtractions, [49], to deal with the divergent

pieces.

α α

α α

β −∆

Figure 5.6: NLO Feynman diagram Π1 with analytic regulator ∆ introduced.

The method of subtractions relies on the fact that simpler graphs can be used

to deal with the divergent part of the NLO diagram. We first subtract the two

diagrams illustrated in figure 5.7 from the NLO diagram which gives a convergent

result. These two graphs have been chosen in such a way that their singularity

structure in ∆ exactly matches that of figure 5.4 (b). We then add the two

diagrams which allows the divergent piece of the NLO diagram to be extracted

more easily. The full method of subtraction is illustrated in figure 5.9 for clarity.
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α

α

α

α

β −∆0 x

α

α

α

α

β −∆0 x

Figure 5.7: Two divergent diagrams which are first subtracted then added to
figure 5.4 (b) to compute Π1. As both diagrams will give the same result they
can both be labelled as If .

To begin we calculate one of the divergent diagram in figure 5.7 using simple

chain integration as follows. This integration is given in figure 5.8, note that both

divergent diagrams will give the same result.

α α

β −∆

α

α

= ν(α, β −∆, 2µ− α− β + ∆)

0 x α 2α + β
−∆− µ

α

= ν(α, β −∆, 2µ− α− β + ∆)ν(α, µ−∆, µ− α + ∆)(x2)∆−2α

0 x

Figure 5.8: Coordinate space integration of the divergent Feynman diagram If
used in the method of subtractions to calculate Π1.

Useful relations are listed below in equations (5.15) and (5.16) which allow the

result of the chain integration to be simplified,

a(α ± ∆) = a(α)[1 ∓ ∆B(α) + O(∆2)] , (5.15)

a(µ ± ∆) = ∓ 1

∆Γ(µ)
[1 ∓ ∆(ψ(µ) + ψ(1))] . (5.16)

The result for the divergent diagrams is therefore

If =
π2µa2(α)a(β)

∆Γ(µ)(x2)2α−∆
[1 + ∆(B(β)− 2B(α) + ψ(µ) + ψ(1)) +O(∆2)] (5.17)

where B(z) = ψ(µ − z) + ψ(z) for z and µ − z not equal to zero or a negative

integer and ψ(z) = (d ln Γ(z))/(dz). It is clear to see that the singularity has

been regularised.
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α α

α α

β −∆ =

α α

α α

β −∆ −

α α

α

α

β −∆ −

α α

α

α

β −∆

+

α α

α

α

β −∆ +

α α

α

α

β −∆

Figure 5.9: Method of subtraction to calculate the NLO diagram. The three
terms in the brackets produce a convergent result, while the two Feynman graphs
that have been added give a simpler way to calculate the divergences of the NLO
diagram. Note that the three diagrams enclosed in the brackets are labelled Ig.

To complete the evaluation another technique is introduced to extract the

finite term from a graph. This is a temporary regularisation, [49]. If one subtracts

the graphs given in figure 5.7 from figure 5.6 the combination is finite with respect

to ∆ which is therefore not required and can be set to zero. Thus one can

complete the first integration at the upper vertex of each graph. Note without a

regularisation the point where one integrates in each graph has to be the same

and thence the order of integration is important. Performing chain integration at

each of the upper vertices of the three graphs enclosed in the brackets of figure

5.9 simplifies the diagrams. This is illustrated in figure 5.10

= ν(α, α, β)

= ν(α, α, β)

= ν(α, α, β)

α

α

α

α

β
µ− δ µ− δ

µ− β

α

α

α

α

β α− δ µ− δ

α

α

α

α

α

β µ− δ α− δ

α

Figure 5.10: Coordinate space integration of the three diagrams enclosed in the
brackets of figure 5.9, labelled Ig.

However each of the three subsequent chain integrals has a singular exponent, µ.
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To circumvent this the lower two propagators of all three graphs are temporarily

regularised by α→ α− δ and µ→ µ− δ where δ is arbitrary. Here δ represents

the temporary analytic regulator, [49]. We can then integrate at the lower vertex

of each of the three triangle graphs to produce the result for this combination of

diagrams,

Ig =
ν(α, α, β)

(x2)2α−2δ
[ν(µ− δ, µ− δ, 2δ) − 2ν(α− δ, µ− δ, µ− α + 2δ)]

=
2π2µa2(α)a(β)

(x2)2α−2δΓ(µ)
[B(α) − ψ(µ) − ψ(1)] + O(δ) . (5.18)

This is clearly finite as δ → 0. Thus we can set δ = 0 and remove the temporary

regularisation. Therefore to obtain the result for the diagram given by figure

5.4 to order O(∆) we substitute the values (5.17) and (5.18) into figure 5.9 to

evaluate the final result of Π1, [48–50],

Π1 =
2ν(α, α, β)

Γ(µ)
(B(α)− ψ(µ)− ψ(1))

+
2ν(α, α, β)

∆Γ(µ)
[1 + ∆(B(β)−B(α) + ψ(µ) + ψ(1))]

=
2π2µa2(α)a(β)

Γ(µ)

[
1

∆
−B(α) +B(β) +O(∆)

]
. (5.19)

Note that Π1 is the dimensionless value of the NLO diagram, therefore the term

(x2)−2α has been excluded from the result as is it included in the skeleton Dyson-

Schwinger equations.

The computation of diagram Π2, illustrated in figure 5.11 in both the mo-

mentum and coordinate space representations, follows a very similar derivation

to that of Π1. The value of Π2 will be dimensionless for the same reasons that

we ensured Π1 was dimensionless. We will again compute to order O(1/N).

(a) (b)

x

x+ y

y

y − u

x+ u

u

z − u

x+ z

z
x

0

y

z

u

v

x

α

α

α

β

β

α

α

α

Figure 5.11: NLO Feynman diagram Π2 in (a) momentum space and (b) coordi-
nate space representations. In coordinate space α and β indicate the power on
the propagator, while x, y, z, u and v represent momentum flow.

As in the computation of diagram Π1, each 3-point vertex of Π2 will be unique
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at leading order and we can therefore employ conformal methods to evaluate this

diagram to leading order. If we naively try to compute Π2, first by integrating at

the upper right vertex then at the lower right vertex the result turns out to be

divergent. This is illustrated in figure 5.12.

α

α

α α

α

α

β

β

0 x = ν(α, α, β)

α

α

α

β

µ− α

µ− α
µ− β + α0

x

= ν(α, α, β)ν(µ− β + α, β, µ− α)

α

α

α

α

β0 x

Figure 5.12: Coordinate space integration of Π2.

It is clear that this diagram is divergent as it contains the divergent diagram

Π1. Therefore a regularisation must be introduced of the same form as we used

previously, that is β → β − ∆. This regularisation violates the uniqueness of

the vertices, and so we must therefore use the method of subtractions, [49], to

compute the divergent part of Π2. The two diagrams that we subtract from Π2

are given in figure 5.13. These graphs have been chosen in such a way that their

singularity structure in ∆ exactly matches that of figure 5.11. Therefore when

subtracting these two diagrams from 5.11 we obtain a finite result. The pole of Π2

is recreated by the addition of these two diagrams which are simpler to evaluate,

as we shall see.

(a) (b)

α

α

α

α

α

α

β −∆

β −∆

α

α

α α

α

α

β −∆

β −∆

Figure 5.13: Two divergent diagrams which are first subtracted then added to
figure 5.11 to compute Π2.

A unique complication when computing Π2 arises at this point of the calculation.

It turns out that the first diagram in our method of substitution, figure 5.13

(a), will also require a subtraction to extract the divergent part. Consequently
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we need to subtract the diagram 5.14 from figure 5.13 (a). Note that we only

need to substitute one diagram as the singularity structure of figure 5.14 exactly

matches that of 5.13 (a).

α

α

α α

α

α

β −∆

β −∆

Figure 5.14: Divergent diagram Ih which is first subtracted then added to figure
5.13 (a) in the method of subtraction.

As the calculation of Π2 is more complicated than that of Π1, the full method of

subtraction is illustrated in figure 5.15 and we summarise how this works before

continuing.

= − −

+ − +

+

α

α

α

α

α

α

β −∆

β −∆

α

α

α

α

α

α

β −∆

β −∆

α

α

α

α

α

α

β −∆

β −∆

α

α

α

α

α

α

β −∆

β −∆
α α

α

α

α

α

β −∆

β −∆

α

α

α

α

α α

β −∆

β −∆

α

α

α α

α

α
β −∆

β −∆

α

α

α α

α

α
β −∆

β −∆

Figure 5.15: Method of subtraction to calculate the second NLO diagram Π2.
The two combinations of diagrams in brackets are finite, while the two additional
Feynman graphs have been added to produce the divergence part of the NLO
diagram. The diagrams in the first set of brackets are collectively labelled as Ii,
the diagrams in the second set of brackets are labelled Ij. The final two diagrams
which are equal are denoted as Ih.

201



Chapter 5

The two combinations of diagrams enclosed in brackets in figure 5.15 will pro-

duce finite values. The remaining two graphs outside the brackets are equivalent

and produce the divergent pole term of Π2. Note that all diagrams illustrated

so far in the computation of Π2 are dimension-full, we will need to remove this

dimension dependence when stating the final result to avoid over-counting when

results are inserted into the skeleton Dyson-Schwinger equations. We begin by

computing the divergent integral given in figure 5.14, which also appears in figure

5.7. We first integrate at the bottom right-hand vertex using conformal integra-

tion before integrating at the left-hand vertex of the resulting diamond graph. To

avoid any ambiguity this integration process is fully illustrated in figure 5.16 with

integration points noted. The next step is to integrate at the upper vertex before

finally performing one last integration at the lower most vertex. The relations

given in equations (5.15) and (5.16) can then be used to simplify the result.

Ih = = ν(α, β −∆, α + ∆)

= ν(α, β −∆, α + ∆)
× ν(β −∆, µ− α−∆, µ− β + α + 2∆)

= ν(α, β −∆, α + ∆)
× ν(β −∆, µ− α−∆, µ− β + α + 2∆)

× ν(α, β − 2∆, α + 2∆)

α

α

α α

α

α

β −∆

β −∆

α

α

α

α

α

β −∆

µ−
α−

∆

α

α α

α

β − 2∆

α

α

µ−
2∆

Figure 5.16: Coordinate space integration of Ih.

Performing the final integration in coordinate space Ih can then be simplified

Ih = ν(α, β −∆, α + ∆)ν(β −∆, µ− α−∆, µ+ α− β + 2∆)

× ν(α, β − 2∆, α + 2∆)ν(α, µ− 2∆, µ− α + 2∆)(x2)−2α+2∆

= × ν2(α, α, β)ν(µ+ α− β, β, µ− α)

2∆Γ(µ)(x2)2α−2∆

[
1 + ∆(4B(β)− 4B(α)

−2B(µ+ α− β) + 2(ψ(µ) + ψ(1)))

]
(5.20)

Then, for the first combination of finite diagrams, illustrated by the three dia-
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grams enclosed in the first set of brackets in figure 5.15, we can set ∆ = 0 as

this combination is finite. To compute this set of diagrams the integration is first

performed at the lower right-hand vertex then at the upper right-hand vertex.

This produces two ν(α, β, γ) terms. Two final integrations are performed, first

at the upper vertex and then at the lower vertex of the three triangle shaped

graphs. Once again a temporary analytic regulator δ has been introduced to

prevent propagators of the form µ which are singular. The integration process is

illustrated in figure 5.17.
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µ−
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−
δ

µ− β

µ−
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−
δ

α

µ−
δ µ

−
δ

α

Figure 5.17: Coordinate space integration of Ii.

This can be reduced to a simpler form using the identities given in equations

(5.15) and (5.16) to give

Ii =
ν2(α, α, β)ν(µ− α, β, µ+ α− β)

(x2)2α−2δ

[
ν(µ− δ, µ− δ, 2δ)

−2ν(µ− δ, α− δ, µ− α + 2δ)

]

=
2ν2(α, α, β)ν(µ− α, β, µ+ α− β)

(x2)2α−2δΓ(µ)

[
B(α)− ψ(µ)− ψ(1)

]
. (5.21)

The only remaining computation is that given by the combination of diagrams

in the second set of brackets in figure 5.15 labelled now as Ij. Again we can set

∆ = 0 as this sequence of diagrams is finite. To begin we integrate at the upper

right-hand vertex before performing a second and third conformal integration at
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the respective indicated vertices illustrated in figure 5.18.

Ij =
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−
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µ−
α
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µ
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α
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α

β

µ− α− δ

µ
+
α
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β

Figure 5.18: Coordinate space integration of Ij.

Once again a temporary regulator δ has been introduced which allows the inte-

gration with respect to the unique vertex. The temporary regulator is set to zero

after the computation once it is no longer required.

Ij = ν2(α, α, β) ν(β, α− β + µ, µ− α)

− ν(β, µ− α− δ, µ− β + α + δ)

µ−
α µ

−
δ

µ+ α− β

α

α

µ
−
δ

Performing one last conformal integration, this result can then be simplified using

the identities given in equations (5.15) and (5.16),

Ij =
ν2(α, α, β)

(x2)2α−δ

[
ν(β, µ+ α− β, µ− α)ν(µ− α, µ− δ, α + δ)

− ν(β, µ− α− δ, µ+ α− β + δ)ν(α, µ− δ, µ− α + δ)

=
a3(α)a3(β)a(α + µ− β)

(x2)2α−δΓ(µ)

(
B(µ+ α− β)−B(α)

)
. (5.22)

Finally the calculated components of the method of subtractions given by equa-
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tions (5.20), (5.21) and (5.22) can be inserted into the full equation for Π2 which

is illustrated in figure 5.15. The final result for the NLO diagram Π2 at leading

order is given by

Π2 =
a3(α)a3(β)a(α + µ− β)

Γ(µ)

[
1

∆
+ 4B(β)− 3B(α)−B(µ+ α− β) +O(∆)

]
.

(5.23)

Note that the term (x2)2α has been excluded from the final result of Π2. This is

because Π2 is the dimensionless value of the NLO diagram. Although the results

for Σ1 and Σ2 are not needed in the computation of χ1 they are stated below for

completeness, [49]. The full derivation of these diagrams follows the same method

as for Π1 and Π2,

Σ1 =
2µ2µa2(α)a(β)

Γ(µ)

[
1

∆
+

1

2
(B(β)−B(α)) + O(∆)

]
, (5.24)

Σ2 =
2µ2µa3(α)a3(β)a(µ+ α− β)

Γ(µ)

[
1

∆
+ 2(B(β)−B(α))

]
. (5.25)

Note that these are valid for arbitrary α and β.

5.2.2 Calculation of χ1 and η2

From the calculation of the Feynman diagrams to orderO(1/N2) we have obtained

the coefficients of the divergent parts of both NLO diagrams

K1 =
2a2(α)a(β)

Γ(µ)
,

K2 =
a3(α)a3(β)a(α + µ− β)

Γ(µ)
. (5.26)

Inserting these values into equation (5.14) for χ1 we find

χ1 =
2a2(α)a(β)η1Γ(µ+ 2)Γ(µ− 2)

Γ(µ)

− 2η2
1Γ(µ+ 2)2Γ(µ− 2)2a3(α)a3(β)a(α + µ− β)

Γ(µ)
.

Then, substituting the leading order terms of α and β for n = 2 into χ1 one finds

χ1 =

[
− µ(4µ3 + 26µ2 − 17µ− 47)

9(µ− 4)(µ− 3)

]
η1 . (5.27)

We now want to calculate the NLO critical exponent η2. To do this both of

the skeleton Dyson-Schwinger equations up to order O(1/N2) are required. In
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Chapter 2 we discovered that both the choice of counterterms and the value of χ1

automatically cancels the pole terms with respect to ∆ and the logarithms of x

in the second skeleton Dyson-Schwinger equation. This is because the divergent

piece of diagrams Πi are identical to the divergences of the diagrams Σi. This

can be verified by the direct calculation of all diagrams and is a special mani-

festation of the general property of renormalizability, so that the requirement of

coincidence of Πi and Σi poles is a method of testing the calculations, see [48].

After renormalizing and cancelling of logarithms, the skeleton Dyson-Schwinger

equations take the form

p(α) + z + z2Σ′1 + z3NΣ′2 = 0 , (5.28)

2p(β)

N
+ z + z2Π′1 + z3NΠ′2 = 0 (5.29)

where the prime denotes the finite contribution of the diagrams. We have taken

the exponent χ at leading order in the denominator which removes the x terms

from our equations.

If equation (5.28) is subtracted from (5.29) the lone z term can be eliminated

from the computation. This removes the need to calculate the NLO coefficient

z2 and hence speeds up the computation,

0 = p(α) − 2p(β)

N
+ z2Σ′1 − z2Π′1 + z3NΣ′2 − z3NΠ′2 . (5.30)

This equation can be solved to find η2. Note that η2 is the order O(1/N2) of η.

Therefore in the above expression we must compute p(α) to order O(1/N2) and

p(β) to order O(1/N) as this term is multiplied by a factor of 1/N . We also need

diagrams Σ′i and Π′i to leading order in 1/N as they are all multiplied by 1/N2

which is simpler to see when noting that z is a series in 1/N ,

0 = p(α) − 2p(β)

N
+

z2
1

N2
Σ′1 −

z2
1

N2
Π′1 +

z3
1

N2
Σ′2 −

z3
1

N2
Π′2 . (5.31)

As a reminder for the reader p(α) = a(α − µ)/a(α) where a(α) was defined in

(2.44). We begin by working out each term individually, starting with p(α) to

order O(1/N2).

p(α) = p

(
µ− 2 +

η

2

)
=

a(η
2
− 2)

a(µ− 2 + η
2
)

=
(η

2
− 2)(µ− η

2
+ 1)(η

2
− 1)(µ− η

2
)(η

2
)(µ− η

2
− 1)a(η

2
+ 1)

a(µ− 2)[1− η1
2N
B(µ− 2)]
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=
(η

2
− 2)(µ− η

2
+ 1)(η

2
− 1)(µ− η

2
)(η

2
)(µ− η

2
− 1)a(1)[1− (η1/2N)B(1)]

a(µ− 2)[1− (η1/2N)B(µ− 2)]

=
a(1)

a(µ− 2)

(
η

2
− 2

)(
µ− η

2
+ 1

)(
η

2
− 1

)(
µ− η

2

)(
η

2

)(
µ− η

2
− 1

)

×
[
1− η1

2N
B(1)

][
1 +

η1

2N
B(µ− 2)

]
(5.32)

where we have used the identities (5.15), (5.16) and

a(α) = α(µ− α− 1)a(α + 1) . (5.33)

Expanding out to NLO in η and also noting that B(µ− z) = B(z) we find

p(α) =
a(1)

a(µ− 2)

(
− 3η2

1µ
2

2N2
− 3η2

1µ
3

4N2
+
η1µ

3

N
+
η2µ

3

N2
+

3η2
1µ

4N2

−η1µ

N
− η2µ

N2
+

η2
1

2N2
+
η2

1µB(1)

2N2
− η2

1µ
3B(1)

2N2
+
η2

1µ
3B(2)

2N2

−η
2
1µB(2)

2N2

)
+ O

(
1

N3

)
. (5.34)

Moving on to the calculation of p(β) to order O(1/N) we use the identities given

by equations (5.15), (5.16) and (5.33) to obtain

p(β) =
a(β − µ)

a(β)
=

a(4− η − χ− µ)

a(4− η − χ)

=
a(4− µ)

a(4)

[(
1 +

(
η1

N
+
χ1

N

)
B(4− µ)−

(
η1

N
+
χ1

N

)
B(4)

]
(5.35)

for n = 2, where we have kept the η and χ terms in β as we want p(β) to order

1/N . The diagrams Πi and Σi to order O(1/N2) have already been computed.

The values of Σ′i and Π′i to leading order in α and β for n = 2 are

Σ′1 =
π2µa2(µ− 2)a(4)

Γ(µ)
[B(4)−B(µ− 2)] , (5.36)

Π′1 =
2π2µa2(µ− 2)a(4)

Γ(µ)
[B(4)−B(µ− 2)] , (5.37)

Σ′2 =
2π4µa3(µ− 2)a3(4)a(2µ− 6)

Γ(µ)
[B(4)−B(µ− 2)] (5.38)

Π′2 =
π4µa3(µ− 2)a3(4)a(2µ− 6)

Γ(µ)
[4B(4)− 3B(µ− 2)−B(2µ− 6)] .(5.39)

Putting all of these components into equation (5.31), incorporating only terms of
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order O(1/N2) and solving for η2 using maple we find

η2 =

[
− (2µ4 − 13µ3 − 2µ2 + 85µ− 108)

9(µ− 3)(µ− 4)
[B(3− µ)−B(µ− 1)]

+
(
4µ10 − 72µ9 + 433µ8 − 697µ7 − 3085µ6 + 15845µ5

− 26504µ4 + 11816µ3 + 15436µ2 − 16416µ+ 2592)

18(µ+ 1)(µ− 1)(µ− 2)(µ− 3)2(µ− 4)2µ

]
η2

1 (5.40)

where η1 is given by equation (5.11). Compared to the same exponents for the

n = 1 case this expression is more involved. This is because the derivation of the

arguments of the Γ and ψ-functions will involve n. This is more apparent in the

n = 3 case which is given in [3].

5.3 Perturbative Results for n = 2

To compare new large N results for the critical exponents with perturbative re-

sults, we need to compute the Renormalization Group functions to as high a

loop order as is viable for the Lagrangians. These RG functions were calculated

in [3] and we summarise the method and results here. For consistency with other

work on the O(N) thread of earlier Chapters the same notation and conventions

as [2, 3, 53] are used. The same underlying computational technology described

for the ten dimensional calculation of Chapter 3 and the LGW computation of

Chapter 4 is used here. For instance in the LGW calculation an efficient al-

gorithm was used to easily access the renormalization of 3-point vertices using

an insertion on the 2-point vertex. This exploited the fact that the propagator

1/(k2)α is infrared (IR) safe in d > 2α dimensions. This approach is applicable

to every Lagrangian here containing 3-point interactions. The renormalization

of all 2-point Green’s functions proceeds in the same way as described in the

previous calculations. For certain Lagrangians, for example L(8,16), the 3-point

vertex functions are renormalized by considering the Green’s functions at either

a completely symmetric point or at a completely off-shell point. The former is

appropriate to use when there is either a non-derivative 3-point interaction or a

single 3-point vertex. The off-shell configuration is required when there is more

than one 3-point interaction and they involve derivative couplings.

A Lagrangian with quartic and higher spectator interactions will require a

more direct approach. For example, the 4-point Green’s functions are calculated

by evaluating the vertex function at the completely symmetric point. In terms of

loop number the theories in the higher dimensions are renormalized to mostly two
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loops but to three loops for a few cases above the critical dimension of the base

Lagrangian. This is because there are practical limitations in the construction

of the databases used to apply the Laporta and Tarasov algorithms, [192, 195,

196]. The increase in the powers on the propagators means that to build the

three loop 2-point master integrals beyond twelve dimensions, which requires a

significant amount of integration by parts even for non-tensor integrals, was not

viable. However we take the point of view that it will be evident even with two

loop Renormalization Group functions that the connection between the tower

of theories will be established. We record the results for the theories along the

thread for n = 2 based on L(8). We have

γ
(8)
φ (g1) = − [N + 2]

4320
g4

1 +
[N + 2][N + 8]

9331200
g6

1 + O(g8
1) ,

γ(8)
m (g1) = − [N + 2]

36
g2

1 −
7[N + 2]

12960
g4

1 + O(g6
1) ,

β(8)(g1) =
[N + 8]

36
g4

1 +
[41N + 202]

19440
g6

1 + O(g8
1) (5.41)

for the base Lagrangian. Structurally these are similar to the four dimensional

L(4) results from the point of view of the factors (N + 2) and (N + 8). More

interestingly the β-function for L(8) is not asymptotically free in parallel with the

four dimensional case. For the first extension to this n = 2 tower we find

γ
(8,10)
φ (g1) =

g2
1

120
+ [194N − 567]

g4
1

864000

+ [−37786N2 − 259420N + 648000ζ3 + 505299]
g6

1

21772800000
+ O(g8

1) ,

γ(8,10)
σ (g1) = − Ng2

1

60
+

167Ng4
1

216000

+ [259847N − 648000ζ3 + 256266]
Ng6

1

10886400000
+ O(g8

1) ,

β(8,10)(g1) = [−N + 6]
g3

1

240
+ [−197N − 297]

g5
1

288000
+ [−859789N2 + 25272000ζ3N − 38231814N − 38232000ζ3

+ 43101039]
g7

1

43545600000
+ O(g9

1) (5.42)

for L(8,10). Our three loop results for L(8,12) are

γ
(8,12)
φ (g1, g2) =

g2
1

280
+ [−1587Ng2

1 − 9334g2
1 − 6160g1g2 − 1587g2

2]
g2

1

197568000
+ [−13130181N2g4

1 + 175046616Ng4
1 + 8890560000ζ3g

4
1

− 9803169176g4
1 + 425268522Ng3

1g2 + 712313280g3
1g2
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+ 76042962Ng2
1g

2
2 + 8890560000ζ3g

2
1g

2
2 − 10046446142g2

1g
2
2

− 150402798g1g
3
2 + 209985345g4

2]
g2

1

1254635827200000
+ O(g8

i ) ,

γ(8,12)
σ (g1, g2) = [Ng2

1 + g2
2]

1

560

+ [−6254Ng4
1 − 6160Ng3

1g2 − 1587Ng2
1g

2
2 − 4667g4

2]
1

197568000
+ [930040938N2g6

1 + 8890560000ζ3Ng
6
1 − 9419379728Ng6

1

+ 194624640N2g5
1g2 + 491748768Ng5

1g2 − 34230843N2g4
1g

2
2

+ 22226400000ζ3Ng
4
1g

2
2 − 26093250026Ng4

1g
2
2

+ 1287984600Ng3
1g

3
2 + 417101400Ng2

1g
4
2 + 4445280000ζ3g

6
2

− 4603622893g6
2]

1

2509271654400000
+ O(g8

i ) ,

β
(8,12)
1 (g1, g2) = [3Ng2

1 + 40g2
1 + 28g1g2 + 3g2

2]
g1

3360
+ [12042Ng4

1 − 53464g4
1 − 133308Ng3

1g2 + 490392g3
1g2

− 14283Ng2
1g

2
2 + 66956g2

1g
2
2 + 57960g1g

3
2

− 42003g4
2]

g1

3556224000
+ [−14938245342N2g6

1 − 617004864000ζ3Ng
6
1

+ 3109795833456Ng6
1 + 2311545600000ζ3g

6
1

+ 1737998549536g6
1 − 2875390812N2g5

1g2

+ 1867017600000ζ3Ng
5
1g2 − 2203538203104Ng5

1g2

+ 547658496000ζ3g
5
1g2 − 423865546832g5

1g2

− 308077587N2g4
1g

2
2 + 200037600000ζ3Ng

4
1g

2
2

− 178146641322Ng4
1g

2
2 + 2261758464000ζ3g

4
1g

2
2

+ 6401866158256g4
1g

2
2 + 8781904656Ng3

1g
3
2

+ 497871360000ζ3g
3
1g

3
2 − 586662087088g3

1g
3
2

+ 3753912600Ng2
1g

4
2 + 49787136000ζ3g

2
1g

4
2

+ 2136750334680g2
1g

4
2 + 373403520000ζ3g1g

5
2

− 374235507660g1g
5
2 + 40007520000ζ3g

6
2

− 41432606037g6
2]

g1

45166889779200000
+ O(g9

i ) ,

β
(8,12)
2 (g1, g2) = [28Ng3

1 + 9Ng2
1g2 + 37g3

2]
1

3360
+ [173880Ng5

1 + 32826Ng4
1g2 + 241164Ng3

1g
2
2

− 159651Ng2
1g

3
2 + 96073g5

2]
1

3556224000
+ [121231189296N2g7

1 + 1194891264000ζ3Ng
7
1

− 1408785519120Ng7
1 − 4290992658N2g6

1g2
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+ 1434936384000ζ3Ng
6
1g2 + 7192728107344Ng6

1g2

− 90566288568N2g5
1g

2
2 + 1344252672000ζ3Ng

5
1g

2
2

− 1313378645040Ng5
1g

2
2 − 10178257905N2g4

1g
3
2

+ 1869684768000ζ3Ng
4
1g

3
2 + 4814949206106Ng4

1g
3
2

+ 746807040000ζ3Ng
3
1g

4
2 − 890895567408Ng3

1g
4
2

− 34486893072Ng2
1g

5
2 + 941510304000ζ3g

7
2

+ 1196618048425g7
2]

1

45166889779200000
+ O(g9

i ) . (5.43)

However, for L(8,14) computational limitations meant we can only provide two

loop results which are

γ
(8,14)
φ (g1, g2) =

g2
1

1120
+ [107964Ng2

1 − 1533897g2
1 + 718200g1g2

− 54586g2
2]

g2
1

768144384000
+ O(g6

i ) ,

γ(8,14)
σ (g1, g2) = [−18Ng2

1 + 7g2
2]

1

136080
+ [13056633Ng4

1 − 6826680Ng3
1g2 + 467334Ng2

1g
2
2

+ 275849g4
2]

1

23332385664000
+ O(g6

i ) ,

β
(8,14)
1 (g1, g2) = [−18Ng2

1 + 621g2
1 − 252g1g2 + 7g2

2]
g1

272160
+ [171159480Ng4

1 − 12056931g4
1 − 67296096Ng3

1g2

− 377785296g3
1g2 + 1869336Ng2

1g
2
2 − 7019838g2

1g
2
2

− 59274432g1g
3
2 + 1103396g4

2]
g1

186659085312000
+ O(g6

i ) ,

β
(8,14)
2 (g1, g2) = [72Ng3

1 − 6Ng2
1g2 + g3

2]
1

30240
+ [−7007148Ng5

1 + 25365069Ng4
1g2 + 27512136Ng3

1g
2
2

− 639018Ng2
1g

3
2 + 2198333g5

2]
1

15554923776000
+ O(g7

i ) . (5.44)

Equally for similar computational constraints we could only determine the full

Renormalization Group functions for L(8,16) at one loop. We found

γ
(8,16)
φ (gi) =

g2
1

6048
+
[
−1468755Ng2

1 − 55406142g2
1 − 4477968g1g2 − 29420424g1g3

− 2792128g2
2 + 2456232g2g3 − 2116377g2

3

] g2
1

1003811081011200
+ O(g6

i ) ,
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γ(8,16)
σ (gi) =

[
45Ng2

1 + 296g2
2 − 384g2g3 + 159g2

3

] 1

5987520
+
[
−2880219870Ng4

1 − 1664530560Ng3
1g2 − 338294880Ng3

1g3

− 479937600Ng2
1g

2
2 + 584739000Ng2

1g2g3 − 243713475Ng2
1g

2
3

− 1869662576g4
2 + 691909088g3

2g3 − 1637070624g2
2g

2
3

− 2769180480g2
2g

2
4 + 4241645772g2g

3
3 + 3466964160g2g3g

2
4

− 1825036161g4
3 − 1227798000g2

3g
2
4

− 86444820g4
4

] 1

496886485100544000
+ O(g6

i ) ,

β
(8,16)
1 (gi) =

[
45Ng2

1 + 4356g2
1 + 1584g1g2 + 792g1g3 + 296g2

2 − 384g2g3

+ 159g2
3

] g1

11975040
+ O(g4

i ) ,

β
(8,16)
2 (gi) =

[
1782Ng3

1 + 135Ng2
1g2 + 2516g3

2 − 866g2
2g3 − 447g2g

2
3 + 3168g2g

2
4

−330g3
3 − 2376g3g

2
4

] 1

11975040
+ O(g5

i ) ,

β
(8,16)
3 (gi) =

[
2376Ng3

1 + 135Ng2
1g3 + 176g3

2 − 696g2
2g3 − 1020g2g

2
3

+ 961g3
3

] 1

11975040
+ O(g5

i ) ,

β
(8,16)
4 (gi) = [1782Ng4

1 + 45Ng2
1g

2
4 + 352g4

2 + 704g3
2g3 + 528g2

2g
2
3 + 1880g2

2g
2
4

+ 176g2g
3
3 + 1200g2g3g

2
4 + 22g4

3 + 555g2
3g

2
4

+ 891g4
4]

1

2993760
+ O(g6

i ) . (5.45)

The two loop wave function anomalous dimensions were computed to provide a

non-trivial check on the one loop coupling constant renormalization via ensuring

the double pole at two loops correctly emerges consistent with the RG equation.

All the Renormalization Group functions have been determined using dimen-

sional regularisation with the renormalization constants defined with respect to

the modified minimal subtraction (MS) scheme. It is worth nothing that in the

critical dimension of each Lagrangian we used the coupling constant dimension-

less in that dimension but the standard arbitrary scale is introduced to preserve

dimensionlessness of the couplings in the regularised theory.

5.4 Fixed Point Analysis

The main reason for constructing the RG functions is to verify that the critical

exponents at the Wilson-Fisher fixed point are consistent with the large N critical

exponents calculated in section 5.2 for the underlying theory. In order to carry

out the comparison we follow the process given in [51,52] and first find the values
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of the critical coupling constants g∗i by solving

β
(d1,d2)
i (g∗j ) = 0 (5.46)

where g∗j is a power series in 1/N . Taking the L(8,10) theory as an example, the

coupling constant is rescaled by a factor to keep the results consistent with the

work of [51–53],

g1 =
x
√

12Nε

N

where the new coupling constant x is a power series in 1/N

x = x0 +
x1

N
+

x2

N2
+

x3

N3
+ . . . .

Each coefficient is in itself a power series in ε aside from the leading order 1/N

term which only involves ε due to the structure of the N dependence at two and

higher loops. Once these critical couplings are determined the field anomalous di-

mensions γ
(d1,d2)
φ (gi) and γ

(d1,d2)
σ (gi) are evaluated at criticality as a series in 1/N .

Then the coefficients of each term in ε of each successive power of 1/N should be

in total agreement with the critical exponents η and η+ χ respectively. We have

checked this correspondence holds for all the Renormalization Group functions

in the thread n = 2 for the large N exponents η1, χ1 and η2 computed. For com-

pleteness the ε-expanded critical exponents calculated in the critical dimensions

are

η
(8)
1 = 88ε − 65278

315
ε2 − 66531221

198450
ε3 + O(ε4) ,

(η1 + χ1)(8) = − 10648

5
ε +

406978

63
ε2 +

4601740271

992250
ε3 + O(ε4) ,

η
(8,10)
1 = 936ε − 857938

385
ε2 − 9303326749

2668050
ε3 + O(ε4) ,

(η1 + χ1)(8,10) = − 39104ε +
54864544

495
ε2 +

1224918967472

12006225
ε3 + O(ε4) ,

η
(8,12)
1 = 10336ε − 1127998496

45045
ε2 − 76011160703752

2029052025
ε3 + O(ε4) ,

(η1 + χ1)(8,12) = − 17390320

27
ε +

48368473220

27027
ε2 +

19304724881269937

10956880935
ε3

+ O(ε4) ,

η
(8,14)
1 = 118864ε − 1882358228

6435
ε2 − 852336345618763

2029052025
ε3 + O(ε4) ,

(η1 + χ1)(8,14) = − 112683072

11
ε +

4039782672

143
ε2 +

212144421361482188

7439857425
ε3

+ O(ε4) ,

η
(8,16)
1 = 1415880ε − 42906667899

12155
ε2 − 170100399530093051

34749394680
ε3
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+ O(ε4) ,

(η1 + χ1)(8,16) = − 2089052280

13
ε +

16109344477639

36465
ε2

+
37381478285711124137

82973044440
ε3 + O(ε4) . (5.47)

Such agreement should be regarded as evidence for the underlying universality of

the core interaction across the dimensions in the same spirit as that of the original

and well-established universality of the Wilson-Fisher fixed point of O(N) φ4 the-

ory given by the n = 1 thread. Equally the agreement is a reassuring check that

the renormalization has been correctly performed to several loop orders which

relied on elevating various integrals to higher dimensions.

Having established the connection with the underlying universal theory we

now analyse aspects of the non-trivial fixed point structure of each theory and in

particular the location, if it exists, of the conformal window. This analysis will

fall into two classes, the first class of critical points is a feature of a single coupling

theory. A well established example is Quantum Chromodynamics (QCD) where

the signs of the one and two loop term of the single coupling strictly four dimen-

sional β-function are different. The subsequent non-trivial fixed point is called

the Banks-Zaks fixed point, [88]. The only higher dimensional theory constructed

here that possesses one coupling is given by the Lagrangian L(8,10). As it turns

out this theory will fall into the same class as QCD. We have calculated the fixed

point structure of β(8,10)(g1) by first rescaling the coupling in the same manner

as [51,52] using the factor given in equation (5.4). This maintains consistency in

the results. We then set a value for N and attempt to solve for the coupling. A

selection of results are

x
(8,10)
N=2 = 1.581139i + 1.707136iε + 11.843630iε2 + O(ε3) ,

x
(8,10)
N=3 = 2.236068i + 5.515634iε + 75.679580iε2 + O(ε3) ,

x
(8,10)
N=4 = 3.162278i + 21.444195iε + 697.298728iε2 + O(ε3) ,

x
(8,10)
N=5 = 5i + 160.25iε2 + 21131.6928119iε2 + O(ε3) ,

x
(8,10)
N=6 = 0 ,

x
(8,10)
N=7 = 5.916080 + 247.883743ε + 20485.390260ε2 + O(ε3) ,

x
(8,10)
N=8 = 4.472136 + 52.351942ε + 1475.523528ε2 + O(ε3) ,

x
(8,10)
N=9 = 3.872983 + 22.269654 + 244.424231ε2 + O(ε3) ,

x
(8,10)
N=10 = 3.535534 + 12.523524ε + 63.536945ε2 + O(ε3) .

It is clear to see that the boundary of the conformal window lies at the value
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N = 6. In fact, we can see that the two loop term of β(8,10)(g1) is always nega-

tive but the one loop term changes sign at N = 6. Hence it is straightforward

to conclude that the conformal window is N > 6. When N = 6 the two and

three loop terms are both negative which is the reason for the strict inequality.

Above N = 6 the non-trivial critical coupling of the fixed point is real whereas it

becomes pure imaginary below this value of N .

The second class of fixed point analysis concerns theories with more than one

coupling constant. To access the conformal window we have to solve a set of

equations, [51,52], which for two coupling theories considered are

β1(gi) = β2(gi) = 0 ,

∂β1

∂g1

∂β2

∂g2

− ∂β1

∂g2

∂β2

∂g1

= 0 . (5.48)

The first equation determines the critical couplings and the final equation, which

is the vanishing of the Hessian, provides the condition where there is a change in

the stability property of a fixed point. Moreover, as in [51,52], we can determine

the window as a perturbative series in ε which, in principle, provides insight into

other dimensions. For L(8,12) we find three solutions to the equation set (5.48).

The critical values of N along with the fixed point values for the three solutions

are

N
(8,12)
(A) = 1.015123 − 0.024469ε − 0.324484ε2 + O(ε3) ,

x
(8,12)
(A) = 1.413668i − 0.113986ε + 7.181859iε2 + O(ε3) ,

y
(8,12)
(A) = 1.290822i − 0.011116ε − 5.679283iε2 + O(ε3) ,

N
(8,12)
(B) = − 0.366698 + 0.451194ε − 41.675880ε2 + O(ε3) ,

x
(8,12)
(B) = 1.365178 − 0.688747ε + 69.948018ε2 + O(ε3) ,

y
(8,12)
(B) = − 0.579975 + 0.757594ε − 86.044498ε2 + O(ε3) ,

N
(8,12)
(C) = − 910.687640 + 2668.861873ε − 1565.439288ε2 + O(ε3) ,

x
(8,12)
(C) = 6.821431i + 0.214285iε + 0.194583iε2 + O(ε3) ,

y
(8,12)
(C) = − 48.271870i + 107.514458iε2 + O(ε3) .

Solution B has real critical couplings whereas the other two solutions are imagi-

nary. Given the non-unitary nature of solution A and the negative corrections to

the critical value of N defining the conformal window boundary, it would appear

that for this theory there is no interesting structure. By contrast for the theory

based on the related group Sp(N), that is making the adjustment N → −N in

the Renormalization Group functions, the conformal window is determined from
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the negative solutions, [182]. This means that the theory would appear to have a

conformal window around N = 910. A similar feature was observed in the eight-

dimensional extension of the O(N) universality class, [53]. Moving on to L(8,14)

theory, there are three real solutions for the conformal window of β
(8,14)
i (g1, g2)

which are

N
(8,14)
(A) = 602.601144 − 33341.878584ε + O(ε2) ,

x
(8,14)
(A) = 24.798057 + 382.085407ε + O(ε2) ,

y
(8,14)
(A) = 794.728224 + 55417.635536ε + O(ε2) ,

N
(8,14)
(B) = 0.627879 − 1.399181ε + O(ε2) ,

x
(8,14)
(B) = 4.841765i − 11.017963iε + O(ε2) ,

y
(8,14)
(B) = 6.091652i − 35.439190iε + O(ε2) ,

N
(8,14)
(C) = − 186.979023 + 45848.701747ε + O(ε2) ,

x
(8,14)
(C) = 6.204761 + 433.091887ε + O(ε2) ,

y
(8,14)
(C) = − 430.028090 + 74159.460689ε + O(ε2) .

There is a clear indication of a conformal window here with a relatively high value

for N which is similar to the six-dimensional φ3 theory in the O(N) universality

class looked at in [51–53]. The multi-coupling theory L(8,16) has a larger number

of couplings and hence the β-functions together with a substantial Hessian means

that our computer resources rather than any principle are not powerful enough

to solve the system of equations in general.

5.5 Discussion

Instead of continuing research into universality classes by analysing higher di-

mensional extensions of other scalar or even gauge theories, we have chosen to

take a different path. The ideas in this Chapter are centred on the observation

that the universal theory based on the φ4 interaction has an infinite number of

universality classes. The core interaction σφiφi defines the linear relation between

the dimensions of the separate fields. Ordinarily one regards the kinetic term as

the canonical starting point for constructing a Lagrangian rather than the inter-

action. We instead considered the Lagrangian construction from a critical point

perspective where the interaction by contrast informs the kinetic term. The vari-

able n emerges from the general solution for the dimensions of the two fields and

relates to or classifies the power of the derivatives in the kinetic term. In [48–50]

specific solutions were examined at length in the n = 1 thread. For integers n > 1
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higher derivative kinetic terms emerge. A higher value of n increases the critical

dimension where the Lagrangian is renormalizable. It also opens up a host of new

Lagrangians which can be studied within the developing d-dimensional conformal

field theory formalism. Free field higher derivative kinetic terms were investigated

in [234–236]. We now have an opportunity to look at interacting cases. Inter-

acting higher derivative scalar field theories can be used as a laboratory to study

connections with AdS/CFT ideas as well as being a starting point to classify and

more importantly connect scalar quantum field theories. They also have links to

physics via elasticity, [68].

The higher threads of n are accessible via the large N expansion developed

in [48–50]. In this Chapter new large N d-dimensional solutions were computed

for the critical exponents η and χ at next to leading order for n = 2. These large

N exponents were found to be in complete agreement with the exponents cal-

culated using traditional perturbation theory for every Lagrangian in the n = 2

thread. Therefore a new universality class, analogous to the existing n = 1 tower,

was established. The next stage of research would be to compute other large N

exponents for n = 2 such as ν as well as η at O(1/N3). Although here we have

concentrated on the n = 2 tower of theories, results for n = 3 have been pub-

lished in [3]. Additionally there is no reason why the analysis cannot be extended

to higher values of n aside from potential computation limitations. For all La-

grangians constructed for the n > 1 the critical dimension will be greater than

four. This opens up a new potential feature described in [3] as lower dimensional

completeness. This is a speculative idea that involves constructing Lagrangians

in a lower dimension than the base theory. For example six, four and two dimen-

sional theories may be constructed using the eight dimensional Lagrangian (5.5)

which will also lie in the n = 2 universality class.

A complicating feature which emerges in lower dimensional constructions ap-

pears to be the presence of non-localities. At the critical point this is not a

major problem compared with trying to construct a viable non-local Lagrangian

away from criticality. There are examples, such as that introduced by Gri-

bov, [238], which can be renormalized after the localization process introduced

by Zwanziger, [239–244]. In principle this provides a potential route to study

lower dimensional complete Lagrangians. Understanding non-localities in the La-

grangian context may inform models of colour confinement in Yang-Mills theories

for which the Gribov construction has already been widely studied. Further work

will require going beyond the scalar theories considered. The developement of

higher derivative scalar quantum field theories (QFTs) has been discussed in this
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Chapter in detail. Suggestions on how these ideas can be extended to fermionic

models such as the O(N) Gross-Neveu and non-abelian Thirring model have been

indicated in [3]. The extension of general large N solutions with n > 1 leading

to higher derivative fermionic theories is yet to be analysed in the same depth

perturbatively or in the large N construction which we leave to future work.
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Background

6.1 Gauge Theories

In Part I we looked at the d-dimensional Wilson-Fisher (WF) fixed point and

considered only scalar quantum field theories (QFTs). Calculations involving

scalar theories are much simpler than those containing gauge fields as they con-

tain Feynman integrals with a more basic structure. While they provide a useful

testing ground for ideas on universality and the stability of fixed points, scalar

theories lack crucial fermionic particles which are essential if one wishes to study

real world physics. In Part II we move our focus from the Wilson-Fisher fixed

point to the Banks-Zaks fixed point of Quantum Chromodynamics (QCD). The

Banks-Zaks fixed point is different from the Wilson-Fisher fixed point in that it

is strictly four dimensional and can only be found using the β-function of QCD.

The Banks-Zaks fixed point is of interest mainly due to its apparent connection

with chiral symmetry breaking. We therefore use this Chapter to review the

background of gauge theories to support calculations in later Chapters on the

location of this fixed points and corresponding critical exponents.

A gauge theory is a type of quantum field theory (QFT) in which the La-

grangian is invariant under certain Lie groups of local transformations. Gauge

theories enable the interaction of elementary particles. These interactions appear

in different guises; the strong (nuclear) interaction and the electroweak interac-

tion being the two most associated with the Standard Model. The term gauge

refers to any specific mathematical formalism to regulate redundant degrees of

freedom in the Lagrangian. Transformations between possible gauges form a

Lie algebra of group generators and for each group generator a corresponding
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gauge field arises. Moreover, physical quantities must be gauge invariant. The

idea of a gauge field first appeared in 1864 in James Clerk Maxwell’s theory of

electromagnetism. The principle of gauge invariance dictated the form of the

electromagnetic interaction. However the symmetries of the theory, both Lorentz

and gauge, were not fully appreciated until the end of the 19th century. A full

understanding of gauge invariance required insights of both quantum mechanics

and relativity. After Einstein developed his theory of general relativity, in which

a dynamical role was given to geometry, Herman Weyl conjectured that perhaps

the scale of length would also be dynamical. He imagined a theory in which the

scale of all dimensional quantities would vary from point to point in space and

time. His motivation was to unify gravity and electromagnetism; to find a geo-

metrical origin for electrodynamics. In 1929 Weyl showed how electrodynamics

was invariant under the gauge transformation of the gauge field. However gauge

invariance was still regarded as a complication and a technical difficulty that had

to be carefully handled.

In 1954, Chen-Ning Yang and Robert L. Mills created what is now known as

Yang-Mills gauge theory through a generalisation of Maxwell’s theory for non-

abelian field theories, [248]. For 20 years the idea of gauge invariance was regarded

as a beautiful but ultimately useless mathematical exercise. That all changed in

the 1970s when it was called upon to unify the electromagnetic and weak in-

teractions. The main difficulty in the resulting electroweak theory was how to

break gauge invariance. If unbroken the gauge bosons are necessarily massless.

The fact that such particles, aside from the photon, do not exist in Nature was a

major stumbling block for Yang-Mills. The solution came by insight from Peter

Higgs, Robert Brout, François Englert and Tom Kibble, [8,9,249], in the form of

the Higg’s mechanism to explain how the symmetry of Yang-Mills theory may be

apparently broken yet no massless vector mesons need emerge. The application of

Yang-Mills to the strong interaction; the original motivation for the theory, was

even trickier. Yang and Mills constructed a prototype quantum field theory of

strong interactions modelled closely on Quantum Electrodynamics (QED) and its

symmetries, this was named Quantum Chromodynamics. A major difficulty was

that the constituents of hadrons as well as the conserved charges were all hidden

by confinement. The idea that hadrons might be composed of quarks emerged in

the work of Gell-Mann and Zweig in 1964, [15,16], from the approximate flavour

SU(3) symmetry of the strong interaction. The Gell-Mann ‘Eightfold Way’ was

proposed in 1961, [250], to classify baryons and mesons for the first time. The

triangular ‘Eightfold Way’ was established in 1964. It was known as the quark

model and contained three unique quarks; up, down and strange. Although this
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model was mathematically sound, the problem was that no individual quark had

ever been seen in Nature, a problem which still exists today. In the late 1960s

an experiment by Jerome Friedman, Henry Kendall and Richard Taylor at the

Stanford Linear Accelerator Centre (SLAC) produced evidence that quarks ex-

ists. All three physicists were awarded Nobel prize for their work in 1990.

The discovery that QCD was asymptotically free was a key advancement in

physics, first remarked upon in 1972, [251]. A few years later QCD was found

by ’t Hooft and Veltman, [122], to be a renormalizable quantum field theory.

Three additional and much heavier quarks were predicted but not discovered

until much later. The charm quark was found in 1974 and the top quark was

discovered at FermiLab, [252, 253], in 1995 with a mass of 175GeV. At present

the complete quark model contains six flavours; up, down, strange, charm, bot-

tom and top. In 1979 gluons, predicted by QCD to be carriers of the strong force

which binds quarks together, were discovered via electron-positron annihilation at

the Deutsches Elekronen-Synchrotron (DESY), [254]. Quantum Chromodynam-

ics is the most realistic quantum field theory describing the strong force at both

the microscopic (quarks and gluons) and macroscopic (hadronic) level. Although

there has been a good agreement between theory and experiment in general, gaps

in QCD as a field theory still remain. The underlying mechanism behind con-

finement, for example, is still unsolved. This has led to infrared (IR) QCD being

a key area of interest since perturbative calculations do not suffice in this region

which makes confinement difficult to probe analytically. Despite the problem

that quarks are thought to be absolutely confined, QCD along with electroweak

(EW) theory forms the basis for the Standard Model which is the foundation for

all non-gravitational physics. In Part II we focus our perturbative calculations on

QCD. The main reason being that an interesting non-trivial fixed point emerges

from its β-function, the Banks-Zaks fixed point, [88]. Before attempting any per-

turbative calculation of the location of this fixed point we first discuss the theory

of QCD in more detail. To construct the interacting QCD Lagrangian and gauge

fixing terms we follow the work of [245–247].

6.2 Quantum Chromodynamics

Quantum Chromodynamics is an unbroken gauge theory which describes the

interaction of quarks via their colour quantum numbers. It has a similar structure

to that of QED with the main difference being that QCD is invariant under a

non-abelian gauge group. The gauge bosons in QCD are gluons whereas for QED
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they are photons. Nevertheless QCD can be derived in the same way as QED. We

begin with a non-interacting quark Lagrangian before modifying it to be invariant

under a change of gauge. The gauge transformation for QCD is the non-abelian

group SU(3). The special unitary Lie group SU(Nc) is a group of Nc×Nc unitary

matrices satisfying the conditions

U †U = 1 and detU = 1 ,

where U ∈ Matn(C) is an element of SU(Nc). A complex 3 × 3 matrix is char-

acterised by eighteen numbers but only eight are independent if the matrix is

hermitian, traceless and has a determinant equal to one. The dimension of the

SU(3) gauge group is therefore equal to eight and we can form a basis of eight

matrices for the group satisfying

Tr(λaλb) = 2δab

where λa are the Gell-Mann matrices, [255], given by

λ1 =




0 1 0

1 0 0

0 0 0


 λ2 =




0 −i 0

i 0 0

0 0 0


 λ3 =




1 0 0

0 −1 0

0 0 0




λ4 =




0 0 1

0 0 0

1 0 0


 λ5 =




0 0 −i
0 0 0

i 0 0


 λ6 =




0 0 0

0 0 1

0 1 0




λ7 =




0 0 0

0 0 −i
0 i 0


 λ8 =

1√
3




1 0 0

0 1 0

0 0 −2


 . (6.1)

These eight matrices play a role that is equivalent to that of the Pauli matri-

ces of SU(2). Note that the Pauli matrices are in fact contained within the

matrices of (6.1). The Gell-Mann matrices are unitary and together with the

3-dimensional quark vectors on which they act form the fundamental represen-

tation. The fundamental or anti-fundamental representations are the most basic

irreducible representation. By irreducible we mean that the set of matrices can-

not be decomposed into block diagonal form.

Although they are the most popular to use, (6.1) are only one of several pos-

sible representations of the infinitesimal generators of SU(3). The commutation
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relation of the matrices is given by

[λa, λb] = 2ifabcλc (6.2)

where the repeated index implies the sum of all eight gluon colour states, as

is consistent with Einstein’s summation convention. The colour group struc-

ture constants fabc are anti-symmetric under exchange of any two indices for all

SU(Nc). The non-zero structure constants are

f 123 = 1 , f 147 = f 246 = f 257 = f 345 =
1

2
,

f 156 = f 367 = − 1

2
, f 458 = f 678 =

√
3

2
. (6.3)

The generators of the gauge group in the fundamental representation can be

defined by

ta =
1

2
λa (6.4)

where a = 1, . . . , 8 and ta are hermitian operators which form the Lie algebra

defined by the commutation relation

[ta, tb] = ifabctc . (6.5)

The Jacobi identity can be determined using the general result for the commuta-

tor.

[ta, [tb, tc]] + [tb, [tc, ta]] + [tc, [ta, tb]] = 0

if bce[ta, te] + if cae[tb, te] + ifabe[tc, te] = 0

i2f bcefaedtd + i2f caef bedtd + i2fabef cedtd = 0

− (f bcefaed + f caef bed + fabef ced)td = 0

fadef bce + facefdbe + fabef cde = 0 .

In general a Lie algebra will contain n elements, r of which will commute

amongst themselves and are known as the Cartan sub-algebra. For SU(3) the

two diagonalised generators t3 and t8 form the Cartan sub-algebra

[t3, t8] = 0 .

To define the adjoint representation we fist introduce the step operators which

are made up of the remaining six generators. The six independent step operators
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are given by

E12
+ = i(t1 + it2) , E12

− = i(t1 − it2) ,

E45
+ = i(t4 + it5) , E45

− = i(t4 − it5) ,

E67
+ = i(t6 + it7) , E67

− = i(t6 − it7) .

The commutation relations of these step operators with the Cartan sub-algebra

can be computed as

[t3, E
12
± ] = f 123E12

± = E12
± , [t8, E

12
± ] = f 128E12

± = 0 ,

[t3, E
45
± ] = f 453E45

± =
1

2
E45
± , [t8, E

45
± ] = f 458E45

± =

√
3

2
E45
± ,

[t3, E
67
± ] = f 673E67

± = − 1

2
E67
± , [t8, E

67
± ] = f 678E67

± =

√
3

2
E67
± .

Consequently we can then define six roots of the Lie algebra,

α12
± = (±f 123,±f 128) ,

α45
± = (±f 453,±f 458) ,

α67
± = (±f 673,±f 678) .

These roots, along with two additional roots at α38
± = (±f 383,±f 388) = (0, 0) for

the generators t3 and t8, are plotted in figure 6.1. This is known as the ‘eight-fold

way’ and displays the adjoint representation illustrating the eight gluons.

α38
± =

(0, 0)

α12
+ = (1, 0)α12

− = (−1, 0)

α45
+ = (1/2,

√
3/2)

α45
− = (−1/2,−

√
3/2)

α67
+ = (−1/2,

√
3/2)

α67
− = (1/2,−

√
3/2)

Figure 6.1: The ‘eight-fold way’ or adjoint representation of the SU(3) Lie group.

The fundamental and adjoint representations are used when dealing with quarks

and gluons respectively. However other representations are possible. The elemen-

tary Casimirs that commute with all generators of the group are defined for any
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general lie group as

Tr(tatb) = TF δ
ab ,

tatb = CF I ,

facdf bed = CAδ
ab (6.6)

for general Nc where A and F represent the adjoint and fundamental representa-

tions respectively. The rank 2 Casimirs have dimension NF and NA, respectively,

and hence NF and NA are the relative dimensions of the fundamental and ad-

joint representations. The Dynkin index is TF and Nf is the number of massless

quark flavours. Using these definitions of the Casimirs we are able to simplify

expressions and are free to calculate in a general SU(Nc) gauge group. We have

again utilized the Einstein summation convention to simplify the definitions of

the group Casimirs. For example, the second definition in (6.6) is used instead of∑
a t

a
ijt

a
jk = CF δik where i = 1, ..., Nf , to simplify the expression. For the SU(3)

gauge group the Casimirs take the following values

CF =
4

3
, TF =

1

2
, CA = Nc = 3 . (6.7)

The three dimensional quark vectors which the Gell-Mann matrices act on to

form the fundamental representation are given by

ψ(x) =



ψred(x)

ψblue(x)

ψgreen(x)


 , ψ̄(x) =

(
ψ̄red(x), ψ̄blue(x), ψ̄green(x)

)
. (6.8)

Each entry represents a colour charge. There are three different quark colours

for each flavour and six flavours in total; up, down, strange, charm, bottom and

top. The colour charge was introduced by Greenberg as a way of solving the

problem of the quark model violating the Pauli exclusion principle, [17], which

says that no two electrons can occupy the same state, [256]. Since quarks have

half integer spin, this also applies to them. We can at this point illustrate the

fundamental and anti-fundamental representations. If we compute the Cartan

sub-algebra multiplied by the first entry of the quark 3-vector then we obtain

t3(1, 0, 0) =
1

2




1 0 0

0 −1 0

0 0 0


 (1, 0, 0) =

1

2
(1, 0, 0) = µ1,1(1, 0, 0) ,
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t8(1, 0, 0) =
1

2
√

3




1 0 0

0 1 0

0 0 −2


 (1, 0, 0) =

1

2
√

3
(1, 0, 0) = µ1,2(1, 0, 0) .

Hence the first weight of the fundamental representation can be defined as

µ1 = (µ1,1, µ1,2) =

(
1

2
,

1

2
√

3

)
.

Multiplying the Cartan sub-algebra by the second and third entries of the quark

3-vector we obtain the two remaining weights of the fundamental representation

µ2 = (µ2,1, µ2,2) =

(
− 1

2
,

1

2
√

3

)
,

µ3 = (µ3,1, µ3,2) =

(
0,− 1√

3

)
.

The fundamental and anti-fundamental representations are illustrated in figures

6.2 (a) and (b), respectively. The anti-fundamental representation is found by

multiplying the weights of the fundamental representation by −1.

(a) (b)

dquark = (−1
2 ,

1
2
√

3
) uquark = (1

2 ,
1

2
√

3
)

squark = (0,− 1√
3
)

squark = (0, 1√
3
)

uquark = (−1
2 ,− 1

2
√

3
) dquark = (−1

2 ,
1

2
√

3
)

Figure 6.2: The (a) fundamental and (b) anti-fundamental representations of
SU(3).

In Part II we will be calculating in several representations, therefore we give

explicit values for the group invariants of these representations in table 6.1. The

representations included are the fundamental representation denoted by F , the

adjoint representation labelled as G, the two-indexed symmetric representation

denoted by 2S and two-indexed anti-symmetric representation given by 2A, [97].

The notation in the table is as follows; T (r) and C2(r) give the trace normaliza-

tion factor and quadratic Casimir respectively. In the fundamental representation

these correspond to T (r) = TF and C2(r) = CF , respectively. These group in-

variants enter at every loop order. Furthermore d(r) gives the dimension of the
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representation, in the fundamental this is denoted NF and in the adjoint this is

NA. The fourth order tensor dabcdr is also given in table 6.1 which appears at four

loops.

r d(r) T (r) C2(r)

F N 1
2

N2−1
2N

G N2 − 1 N N

2S N(N+1)
2

N+2
2

(N−1)(N+2)
N

2A N(N−1)
2

N−2
2

(N+1)(N−2)
N

r dabcdr dabcdG dabcdr dabcdr

F N(N2−1)(N2+6)
48

(N2−1)(N4−6N2+18)
96N2

G N2(N2−1)(N2+36)
24

N2(N2−1)(N2+36)
24

2S N(N2−1)(N+2)(N2+6N+24)
48

(N2−1)(N+2)(N5+14N4+72N3−48N2−288N+576)
96N2

2A N(N2−1)(N−2)(N2−6N+24)
48

(N2−1)(N−2)(N5−14N4+72N3+48N2−288N−576)
96N2

Table 6.1: Group invariants for SU(N). The explicit values for four representa-
tions r are displayed.

The non-interacting Lagrangian for QCD is given by the basic Dirac La-

grangian describing the free fermion field

L = iψ̄i(x)γµ∂µψ
i(x) − mψ̄i(x)ψi(x) , (6.9)

here γµ is the Dirac matrix which satisfies the Clifford algebra

{γµ, γν} = γµγν + γνγµ = 2I4ηµν ,

and for simplicity /∂ = γµ∂µ. Note that the metric tensor in d-dimensional Eu-

clidean space is given by ηµν and ηµµ = d. The mass of the quark is denoted by

m which can be ignored in massless QCD where chiral symmetry is naturally

preserved. The flavour of the quark is distinguished by the index i on ψi(x)

where 1 ≤ i ≤ Nf . In Nature Nf = 6 according to the LHC experiment. As

only colourless states are allowed in the form of hadrons we have colour singlets,

usually described as ‘white’, that are invariant under rotations in colour space.

The classical Lagrangian (6.9) is invariant under global SU(3) transformations

ψ(x)→ Uψ(x) , ψ̄(x)→ ψ̄(x)U † (6.10)

where U are the unitary 3× 3 hermitian matrices of SU(3). If we try to impose
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this transformation locally

ψ(x)→ U(x)ψ(x) , ψ̄(x)→ ψ̄(x)U †(x) (6.11)

local gauge invariance is not satisfied. This can be seen from the presence of an

additional term which is the result of the derivative acting on U which depends

on x and so does not commute past the partial derivative

iψ̄i(x)γµ∂µψ
i(x)→ iψ̄i(x)γµ∂µψ

i(x) + iψ̄i(x)U †(x)γµ(∂µU(x))ψi(x) .

The Lagrangian therefore requires a covariant derivative Dµ which replaces the

partial derivative to ensure gauge invariance is restored

Dµ = ∂µ + igAµ(x) . (6.12)

The object Aµ(x) is a group valued gauge potential which acts as the gluon field.

It transforms as an adjoint representation of SU(3) with a = 1, . . . , 8 where

Aµ(x) = Aaµ(x)ta . (6.13)

This introduces eight gauge gluon fields into the Lagrangian formalism. Note

that the ‘+’ appearing in equation (6.12) is a convention used here, it may be

different in other literature and will not alter our results or analysis in any way

as only g2 appears in physical quantities. The gauge field transforms locally as

Aµ(x)→ U(x)Aµ(x)U †(x) +
i

g
(∂µU(x))U †(x) .

The covariant derivative acting on the quark field transforms as

Dµψ(x) → U(x)Dµψ(x)

= (∂µ + igAµ(x))ψ(x)

= ∂µψ(x) + igAaµ(x)taψ(x)

where Aaµ(x) is the vector potential. The covariant derivative of a group valued

object X satisfies, [116],

DµX = ∂µX + ig[Aµ, X] .

Therefore the covariant derivative acting on the gauge field Aµ gives

DµAν = ∂µAν + ig[Aµ, Aν ]
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(DµAν(x))ata = (∂µA
a
ν(x) − gfabcAbµ(x)Acν(x))ta

(DµAν(x))a = ∂µA
a
ν(x) − gfabcAbµ(x)Acν(x) .

The commutation relation between the covariant derivatives satisfies

[Dµ, Dν ] = ig(∂µAν − ∂νAµ + ig[Aµ, Aν ]) .

From this relation we can define the field strength tensor

Ga
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAbµA

c
ν . (6.14)

The field strength tensor of QCD is different to that in QED in that we must add

one additional term to have a gauge invariant Lagrangian. This additional term

of (6.14) will give rise to asymptotic freedom due to the gluon self-interactions.

Introducing a kinetic term for the field strength tensor into the Lagrangian we

obtain a Lagrangian which is invariant under local SU(3) gauge transformations

L = − 1

4
(Ga

µν)
2 + ψ̄ia(i /D − m)ψib , (6.15)

where /D = γµDµ. The kinetic term (Ga
µν)

2 is gauge invariant under Gµν →
U(x)GµνU

†(x) and contains cubic and quartic gluon interactions. Before defining

the Feynman rules which illustrate the interactions between fields we must first

fix the gauge. It is not possible to do any perturbative calculations until the

gauge is fixed for two important reasons. Firstly the degrees of freedom in (6.15)

are incorrect. Any redundant degrees of freedom left over will give unphysical

results which have no relation to Nature. The second problem is in determining

the gluon propagator. To successfully construct the propagator we need to be

able to invert the gluon operator associated with the quadratic terms in Aaµ. This

is not possible without first including additional terms which allow us to invert

that matrix operator.

Choosing an appropriate gauge will greatly simplify perturbative calculations.

We do this by introducing a gauge fixing term into Lagrangian (6.15) which will

eliminate unphysical degrees of freedom in the gauge field Aaµ. To fix the gauge

Faddeev and Popov, [258], proposed a condition of the form

FA[Aµ] = 0 (6.16)

where FA is some function on the gauge field Aµ, [259]. The standard gauge

fixing condition for an arbitrary linear covariant gauge is the Landau gauge fixing
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condition

FA[Aµ] = ∂µAaµ = 0 . (6.17)

This is more commonly known as the Lorentz gauge and it reduces the number

of independent components of Aµ from four to three, [116], as

∂0A0 + ∂1A1 + ∂2A2 + ∂3A3 = 0 .

However this gauge fixing construction is only applicable to Landau type gauges.

For non-linear gauge fixing such as the Maximal Abelian gauge (MAG) the cor-

respodning functional of (6.16) is more involved. As part of the gauge fixing

program, the Faddeev Popov construction also introduces ghost terms to ensure

unitarity is preserved. Unfortunately the gauge fixing procedure breaks gauge

invariance and a new symmetry is needed to ensure gauge invariant indepen-

dent results emerge for physical quantities. Slavnov and Taylor were the first to

generalise a set of off-shell identities extending the Ward-Takahashi identities of

QED, [260, 261], that must be fulfilled. A more general and easier way of gauge

fixing was discovered by Becchi, Rouet, Stora and Tyutin, [262, 263], who pro-

posed a way of using symmetry arguments, in particular global symmetries to

define a set of gauge fixing terms which satisfied global gauge symmetries

δAaµ = −Dµc
a ,

δca = −g
2
fabccbcc ,

δc̄a = ba ,

δba = 0 . (6.18)

Here δ is the BRST transform that anti-commutes with the ghost ca and anti-

ghost fields c̄a. The ghost particles are Grassmann variables. They are unphysical

fields which are inserted on a purely mathematical level and do not contribute

to the overall physics. As they are Grassmann variables the ghost fields anti-

commute

cac̄b = − c̄bca .

The role of the ghost field is to cancel longitudinal components of the gluon

propagator, leaving it fully transverse in the quantum theory, [258, 264, 265].

Without ghost fields unitarity of QCD is violated at the one loop level. The

ghost fields will only appear in the internal part of Feynman diagrams in closed

loops, for example, and never as an incoming or outgoing particle. This leaves the

physics completely intact. Note that quarks and anti-quarks will also transform
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in a BRST way

δψiI = igca(ta)IJψ
iJ ,

δψ̄iI = −igca(ta)IJ ψ̄iJ

where i is the flavour of the quark, 1 ≤ i ≤ Nf and I defines the group spinor

index on a quark. Valid in the gauge fixed theory the BRST invariance, which

can be applied to both linear and non-linear gauges, effectively replaces gauge

invariance.

Imposing the gauge fixing of Faddeev and Popov given by equation (6.17),

the full QCD Lagrangian for an arbitrary linear covariant gauge is

L = − 1

4
(Ga

µν)
2 + iψ̄i( /D −m)ψi − 1

2α
(∂µAaµ)2 − c̄a∂µD

µca (6.19)

where α is the arbitrary gauge parameter. Gauge invariance in the above La-

grangian has been broken since the gauge fixing terms are gauge dependent.

However the BRST symmetry preserves some remnant of this lost gauge symme-

try. Note that the original terms in Lagrangian (6.15) are BRST invariant since

gauge invariance implies BRST invariance and the gauge fixing term in (6.19)

ensures any extra terms added will not affect the original terms in (6.15). The

above method of fixing the gauge is not unique and the overall result should

be independent of the gauge choice. Once the gauge is fixed we can proceed to

calculate with the complete Lagrangian.

6.2.1 The Banks-Zaks Fixed Point

If one were to attempt any perturbative calculation of QCD infinities would

quickly emerge as we observed in the earlier part of this thesis. The Feynman

diagrams of QCD in four dimensions are divergent and meaningful physics cannot

be obtained without first dealing with these infinities. Helpfully, QCD is a renor-

malizable theory and here we shall focus on the renormalization of massless QCD.

Dimensional regularisation is commonly used as the regulator to preserve gauge

and Lorentz symmetry, [121, 122, 266] before the variables of the Lagrangian are

rescaled via

Aµ0 =
√
ZAA

µ , g0 = µεZgg , ψ0 =
√
Zψψ ,

ca0 =
√
Zcc

a , α0 =
ZA
Zα

α .
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The renormalization constants use the conventions of [1,4,102,103] and may ap-

pear slightly different in other literature. They include the arbitrary mass scale

µ introduced when dimensionally regularising the theory to keep the coupling

dimensionless in d-dimensions. This naturally leads to a set of Renormalization

Group (RG) functions, in particular the β-function which measures the change

in the coupling over the energy scale. The one loop QCD β-function was cal-

culated over forty years ago, [21, 22], and the two loop result followed a year

later, [267, 268], along with the two loop field anomalous dimensions, [269, 270].

This β-function was then extended to three, [224], and then four loops, [271,272].

The four loop quark mass anomalous dimension was then calculated, [273–276].

Notably the five loop result for the QCD β-function has been found recently,

[277–279]. Additionally the five loop β-function and anomalous dimensions were

found in [280,281] before the five loop quark mass anomalous dimension was cal-

culated, [282, 283]. There has also been general gauge group calculations at five

loops in [284, 285] for all gauges. All these results have all been obtained using

the modified minimal subtraction (MS) renormaliztion scheme, other schemes

have been looked at with the minimal momentum subtraction (mMOM) results

published in [286].

We review the situation in the MS scheme here as this was the scheme in

which the fixed point properties of the theory were explored initially. The three

loop result of [287] is sufficient to study these properties with the β-function in

four dimensions given by

βMS(a) = −
[

11

3
CA −

4

3
TFNf

]
a2 −

[
34

3
C2
A − 4CFTFNf −

20

3
CATFNf

]
a3

+
[
2830C2

ATFNf − 2857C3
A + 1230CACFTFNf − 316CAT

2
FN

2
f

− 108C2
FTFNf − 264CFT

2
FN

2
f

] a4

54
+ O(a5) (6.20)

where a = g2/(16π2). It was observed in [88] that at two loops for a range of

Nf there exists a non-trivial zero of the β-function. This is in additional to the

traditional Gaussian fixed point at g∗ = 0. The non-trivial fixed point of QCD is

strictly four dimensions is known as the Banks-Zaks fixed point. It arises when

the first term of the β-function is negative and the second term positive. The

range of Nf values for which this non-trivial fixed point exists is known as the

conformal window. The upper bound of which is determined using the one loop

coefficient while the two loop term gives the lower limit. For SU(3) the conformal

window is estimated using perturbation theory to two loops to be 9 ≤ Nf ≤ 16.

The Banks-Zaks fixed point has been studied since its discovery due to its poten-
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tial connection with chiral symmetry breaking. In more recent years interest in

this fixed point has in the main been due to the connection with physics beyond

the Standard Model such as technicolor, [288, 289]. More specifically while the

early focus was on QCD itself, taking colour groups other than SU(3) with quarks

in non-fundamental representations as well as looking at supersymmetric QCD

(SQCD) opened up the analysis to model building. This is primarily due to the

need to understand where the conformal window is and the true range for which

it exists.

In mass independent renormalization schemes with a single coupling the two

loop term of the β-function is scheme independent, [104]. In momentum sub-

traction (MOM) renormalization schemes with a non-zero gauge parameter the

two loop term is both α and scheme dependent. However in the Landau gauge,

α = 0, the two loop term of each MOM scheme β-function reduces to the same

value as the two loop MS case. This may not be the situation in other gauges

such as a non-linear gauge. As the non-trivial Banks-Zaks fixed point in mass-

less QCD occurs for the part of the β-function which is scheme independent it

should be a universal property of the theory. Computing the Banks-Zaks fixed

point to higher orders will refine its location and the specific value will be scheme

dependent. Note that it is possible to have more than one non-trivial fixed point

with the Banks-Zaks fixed point always being located closest to the origin. For

the gauge group SU(3) the one loop β-function can be solved for the value of the

coupling

g2(µ) =
1

(11− 2
3
Nf )

16π2 ln( µ
ΛQCD

)
. (6.21)

The constant of integration ΛQCD is similar to the Landau pole present in QED.

If we denote b = (11 − 2
3
Nf )/(16π2), then b can be either positive or negative

for a different range of quark flavours. For the entire range of the conformal

window, 9 ≤ Nf ≤ 16, b is positive and this ensures µ > ΛQCD. Therefore

as µ increases the coupling decreases which gives the property of asymptotic

freedom, [21,22]. It implies that at high energy the quark and gluon constituents

of hadrons act as quasi-free particles. Furthermore as µ decreases the value of

the coupling increases. Therefore at lower energy the coupling becomes stronger.

This property is known as confinement and ensures only colour singlets in the

form of hadrons can propagate over macroscopic distances. Outside the range

of the conformal window, that is Nf > 16, the value of b becomes negative. As

the right-hand side of (6.21) must remain positive this produces the requirement

µ < ΛQCD. In this case as µ increases the coupling also increases, much like it

does in QED. Meanwhile as the energy µ decreases the coupling will also decrease
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in strength. The Renormalization Group flow for QCD is illustrated in figure 6.3.

The Gaussian fixed point is present in both graphs at g∗ = 0 and is ultraviolet

stable in the b > 0 case on but ultraviolet unstable for b < 0. Consequently

the Banks-Zaks fixed point, g∗ 6= 0 in figure 6.3 (b), is ultraviolet unstable and

hence infrared stable. This is predicted by the properties of asymptotic freedom

and confinement. The stability of the fixed points can be found by analysing the

value of the first derivative of the β-function.

(a) (b)

g

β(g)

λ

β(λ)

0 0

Landau pole ΛQCD

b > 0 b < 0

Figure 6.3: Renormalization Group flow in the ultraviolet (UV) for QCD with
(a) b > 0 (b) b < 0.

6.3 Renormalization Scheme Dependence

The Banks-Zaks fixed point of QCD has been the subject of intense study in

recent years with much of the interest focused on the conformal window. Pi-

oneering this research, [88] used the two loop QCD β-function and implicitly

assumed that the Banks-Zaks fixed point was accessible perturbatively. This is

not necessarily true and therefore the lower end of the conformal window for

QCD, that is Nf = 9, [267], may be beyond the range of perturbative reliability.

Along with perturbative research there has been a vast array of non-perturbative

work completed. Much of this is centred in the lattice community with the aim of

understanding how to find non-trivial fixed points non-perturbatively. The value

of Nf = 12 is of particular interest which is on the limit of perturbative reliabil-

ity, [290–297]. There is also a desire to understand how to explore the fixed point

structure for Nf ≤ 6, if it exists, in order to tackle the relation to chiral symmetry

breaking, [291, 296, 297]. Additionally non-perturbative Schwinger-Dyson meth-

ods have been used in relation to the Banks-Zaks fixed point, [298]. A key area

of research is the measurement of critical exponents associated with the phase
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transition corresponding to the Banks-Zaks fixed point. In particular the quark

mass anomalous dimension exponent which is of interest due to the relation to

the definition of a conformal theory. The full dimension of the quark mass op-

erator must be greater than unity, which places an upper bound of two on the

contribution of the anomalous dimension for this theory to be conformal, see [97].

Determining the range of the conformal window for which a theory satisfied this

condition is an indication of whether conformal symmetry is present.

Critical exponents for QCD have been accurately determined on the lattice

and there is good agreement between results at Nf = 12 for the quark mass

anomalous dimension exponent with 0.235(15) found in [296] and a value of

0.235(46) found in [297]. Perturbative methods can also be used to calculate crit-

ical exponents. As critical exponents are physical quantities their values should

be renormalization scheme independent. However as perturbative expansion are

truncated at some order, one must calculate to a high loop order to observe this

scheme independence. Additionally as the β-function is computed to a higher

and higher order the location of the fixed point is refined, [299]. One immediate

question which arises when looking at renormalization schemes is regarding the

convergence of such schemes. Most crucially, does the value of Green’s functions

converge quicker in one scheme than another at the same loop order? If one

knew the full series then there would be no difference in the values at the same

evaluation point. However in a truncated series the numerical values of coeffi-

cients of the coupling constant differs in different schemes. Note that as Green’s

functions are not physical quantities there is an easier way of seeing scheme de-

pendence. That is the computation of RG invariant critical exponents at a phase

transition. Any discrepancies between the computation of critical exponents in

different schemes at a high enough loop order can be see as a potential issue with

the scheme in question.

The relation between different schemes at the Banks-Zaks fixed point has

been investigated in [89, 90, 93, 95–97]. In particular, a comprehensive study of

scheme dependence in QCD involving several loop orders, representations and

colour groups was performed in [97]. The results in alternative representations

produced information relevant to several problems such as those underlying tech-

nicolor theories. One feature that emerged from [97] was that estimates for the

critical exponents were more reliable when using a higher order. Values of the

quark mass anomalous dimension were also provided for the specific case Nf = 12

which were found to be on the edge of the error ranges given in corresponding lat-

tice results, [296,297]. On the whole it was not completely clear whether the per-
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turbative results of [97] compared favourably with lattice data. However it would

not be surprising if they did not as non-perturbative properties are present within

lattice regularised theories. The renormalization schemes considered in [97] were

MS, mMOM [301] and modified regularization invariant (RI′), [302, 303]. The

MS, mMOM and RI′ schemes are all similar in the sense that they are defined

with respect to Green’s functions where there is a nullified external momenta. For

example, the mMOM scheme is based on the property that in the Landau gauge

the ghost-gluon vertex is finite when one ghost leg is nullified, [261]. Although

it is important to note that for the 3-point nullified leg exceptional configuration

potential IR issues may arise. This is not a problem at high energies, although

one has to take care in any low energy analysis.

The aim in the remaining Chapters is to extend the investigation of [97] into

scheme dependence of the Banks-Zaks fixed point and corresponding exponents

to a different class of renormalization schemes. We look at the momentum sub-

traction (MOM) schemes as well as the interpolating momentum subtraction

schemes (iMOM). These new schemes will be physical and renormalized at a

non-exceptional point and as they are a different class to those examined in [97],

will add a new layer to the analysis of scheme dependence. Before any results

are presented it is important to first note that one never knows a priori which if

any scheme would converge faster than another. Although the set-up of certain

schemes may give a hint.
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Banks-Zaks Fixed Point Analysis

in Momentum Subtraction

Renormalization Schemes

7.1 Introduction

The motivation for this Chapter is to analyse the renormalization scheme de-

pendence of critical exponents associated with the Banks-Zaks fixed point of

Quantum Chromodynamics (QCD), in particular the quark mass anomalous di-

mension exponent. Furthermore we wish to examine to what extent scheme

invariance holds as a function of Nf in the conformal window. We extend the

work of [97] to the kinematic momentum subtraction schemes (MOM) of Celmas-

ter and Gonsalves, [98, 99]. The MOM schemes of [98, 99] are a different class to

that of the modified minimal subtraction (MS), minimal momentum subtraction

(mMOM) and regularization invariant (RI′) schemes so offer a more non-trivial

insight into the Banks-Zaks properties. More specifically, in the MS scheme the

class of numbers appearing are the rationals and the Riemann zeta function eval-

uated for integers n ≥ 3. The MOM schemes additionally contain polylogarithms

reflecting the kinematic information. In [98] the MOM renormalization schemes

were introduced with the 3-point QCD vertices renormalized at a non-exceptional

external momentum configuration. Specifically the subtraction point is defined

as the point where the squares of the external momentum are all equal, [98, 99].

This is known as the symmetric subtraction point. For QCD it leads to three

separate momentum subtraction schemes: MOMq, MOMggg and MOMh, cor-

responding to schemes based on the quark-gluon, triple gluon and ghost-gluon
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vertices respectively. The MOM schemes are physical schemes and are therefore

mass dependent. There is no doubt about infrared (IR) issues due to the non-

exceptional nature of the subtraction point. In [99] it was hoped that perturbative

results in MOM schemes would have faster convergence than other schemes.

The analysis here will also be performed in the MS and mMOM schemes,

primarily as a check with results obtained in [97] as well as for comparison. Be-

fore perturbatively calculating the critical exponents, the Renormalization Group

(RG) functions must be found. The three loop MOM β-functions have previously

been calculated for an arbitrary linear covariant gauge and more specifically in

the Landau gauge, [99, 307]. This was possible due to the advance in deter-

mining the two loop 3-point integrals for non-exceptional momentum configura-

tions, [193, 197, 308, 309]. The three loop quark mass anomalous dimension has

since been calculated in the MOM schemes, [1]. This required the renormaliza-

tion of the quark mass operator inserted into a two loop 2-point function for the

quark where a non-zero external momentum flows through the inserted operator.

The Landau gauge is assumed throughout this Chapter where scheme dependence

first appears at three loops. The main focus will be the scheme analysis of critical

exponents, however we briefly summarise the quark mass anomalous dimension

calculation first.

This Chapter is organised as follows. We begin by stating the known QCD

Renormalization Group functions for the three MOM schemes. Key details of the

calculation for the quark mass anomalous dimension are then summarised. The

main results are presented in section 7.4 along with an analysis. The bulk of the

results are given in Appendix D. All original data provided in this Chapter is

published in [1]. Finally a brief conclusion of the results is provided.

7.2 Renormalization Group Functions

The β-functions for the three MOM schemes have been computed in [99,307]. We

first introduce some key notation. The β-function in the Landau gauge renor-

malized in the scheme S is defined as

βS(a, 0) =
∞∑

r=1

βSr a
r+1 (7.1)
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where the β-function partial sums are given by

βSn (a, 0) =
n∑

r=1

βSr a
r+1 . (7.2)

The second argument of the beta-function is the gauge parameter α, in the Lan-

dau gauge this is set to zero. For each renormalization scheme the Banks-Zaks

fixed point aL at the Lth loop order is the first non-trivial zero of

βSL(aL, 0) = 0 . (7.3)

Furthermore, the critical exponent ω at the Lth loop order is defined as

ωL = 2β′L(aL, 0) . (7.4)

The Landau gauge quark mass anomalous dimension is perturbatively defined in

a similar way to the β-function,

γSψ̄ψ(a, 0) =
∞∑

r=1

γSr a
r (7.5)

with the corresponding partial sums

γSψ̄ψn(a, 0) =
n∑

r=1

γSr a
r . (7.6)

We can then define the quark mass anomalous dimension exponent ρ evaluated

at the Lth loop order by evaluating γS
ψ̄ψ

at the Banks-Zaks fixed point for each

scheme

ρL = − 2γψ̄ψL(aL, 0) . (7.7)

The definition of ρ coincides with [97] and we can therefore make direct com-

parisons between the results. However our Banks-Zaks critical points will differ

from [97] by a factor of 4π as we have defined the β-functions in such a way to

be consistent with [307]. The expression for the MOMh scheme in the Landau

gauge is recorded here as it is the more compact of the three. It is, [99, 307],

βMOMh(a, 0) = −
[

11

3
CA −

4

3
TFNf

]
a2

−
[

34

3
C2
A − 4CFTFNf −

20

3
CATFNf

]
a3

+
[
[18817920 + 103680π2 − 16422912ζ3

− 155520ψ′(1
3)]NfTFCACF +

[
29167776 + 3729024π2
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+ 29568π4 + 11562912ζ3 − 5593536ψ′(1
3) + 7200π2ψ′(1

3)

− 5400(ψ′(1
3))2 − 11988ψ′′′(1

3)− 31726080s2(π6 )

+ 63452160s2(π2 ) + 52876800s3(π6 )− 42301440s3(π2 )

+ 78880π3
√

3 + 881280 ln(3)π
√

3

− 73440 ln2(3)π
√

3
]
NfTFC

2
A +

[
−4105728− 705024π2

− 3981312ζ3 + 1057536ψ′(1
3) + 5971968s2(π6 )

− 11943936s2(π2 )− 9953280s3(π6 ) + 7962624s3(π2 )

− 14848π3
√

3− 165888 ln(3)π
√

3

+ 13824 ln2(3)π
√

3
]
N2
f T

2
FCA + [−5723136

+ 5971968ζ3]N2
f T

2
FCF − 559872NfTFC

2
F + [−35200008

− 4741632π2 − 81312π4 − 1689336ζ3 + 7112448ψ′(1
3)

− 19800π2ψ′(1
3) + 14850(ψ′(1

3))2 + 32967ψ′′′(1
3)

+ 42083712s2(π6 )− 84167424s2(π2 )− 70139520s3(π6 )

+ 56111616s3(π2 )− 104632π3
√

3− 1168992 ln(3)π
√

3

+ 97416 ln2(3)π
√

3
]
C3
A

] a4

279936
+ O(a5) (7.8)

to three loops where sn(θ) was defined in equation (3.24). The β-functions in

the MOMq and MOMggg schemes can be found in [99,307]. The presence of the

underlying symmetric point masters in equation (7.8) are evident. Note that we

are effectively quoting the full expression given in [307] but with a modification.

In the three loop term of equation (5.28) in [307] an additional numerical object,

Σ, was present which was a combination of harmonic polylogarithms. When [307]

appeared it was not apparent that this was not an independent quantity and is

known to correspond to, [101],

Σ =
1

36
ψ′′′
(

1

3

)
− 2π4

27
(7.9)

in the notation of the previous Renormalization Group equations. We have sub-

stituted (7.9) in the original expression of [307] for consistency here. In comparing

the β-function in (7.8) with the MS expression one can see that there is a struc-

tural question to be addressed. If when one computes the critical exponent for,

say, the quark mass anomalous dimension in MS and MOMh at the Banks-Zaks

fixed point then both expressions ought to be the same. This is because ulti-

mately the critical exponent is a physical quantity and hence a Renormalization

Group invariant. It is independent of the renormalization scheme in which it is

determined. However, given the form of both β-functions this cannot be the case.
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Indeed this is one of the motivations for examining the critical exponents at the

Banks-Zaks fixed point in MOM schemes. The MOM β-functions are clearly in

a different class from the point of view of the numerology when compared with

the schemes analysed in [97] which were MS, mMOM and RI′. The coefficients

appearing in the Renormalization Group functions of these three schemes are

from the set {
Q, π2, ζ3, ζ5

}

to four loops. By contrast the basis for the MOM scheme coefficients to three

loops is

{
Q, π2, ζ3, ζ4, ψ

′(1
3), ψ′′′(1

3), s2(π2 ), s2(π6 ), s3(π2 ), s3(π6 ),
ln2(3)π√

3
,
ln(3)π√

3
,
π3

√
3

}
.

7.3 Mass Operator Anomalous Dimension

To include several critical exponents in the analysis and to follow the work of [97],

the quark mass anomalous dimension is required. In [1] this was calculated in the

three MOM schemes to three loops. The calculation of the quark mass anomalous

dimension uses the same technique of the mass dimension computation in Chap-

ter 4. In that particular calculation the three mass operators were inserted into

the 2-point function, 〈φ[1
2
φ2]φ〉, before an external leg momentum was nullified

and a reduction was applied with master integrals then used. For the quark mass

anomalous dimension a quark mass operator can be inserted into the 2-point

function for the quark, 〈ψ[ψ̄ψ]ψ̄〉. In Chapter 4 an added complication was the

presence of three masses, all possessing the same canonical dimension and hence

resulting in mass mixing. There is no such complication here as only one mass

is present for the quark whose mass operator has a canonical dimension of three.

Therefore rather than renormalizing the quark mass itself directly its anomalous

dimension can be deduced from the renormalization of the associated quark mass

operator which is ψ̄ψ. The same approach was used in the computation of the

quark mass anomalous dimension in the MS scheme to three loops, [310]. There

is one important difference between the mass anomalous dimension calculation

of Chapter 4 and the present computation. As the calculation in Chapter 4 was

performed in the non-kinematic MS renormalization scheme, only the divergent

piece of the Green’s function was required for the renormalization constants. This

enabled a simplification in the computation as the external leg corresponding to

the mass insertion could be nullified. This gave effectively a 2-point function

which could be reduced to 2-point master integrals.
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However as the MOM schemes are kinematic, a finite part as well as divergent

terms in the Green’s function are required. Therefore for the calculation of the

quark mass anomalous dimension the MOM schemes require a momentum config-

uration with a non-zero momentum flowing through all external legs. Known as a

non-exceptional momentum configuration it possesses no potential IR problems.

To determine the quark mass anomalous dimension in each of the three MOM

schemes one must consider the Green’s function

〈ψ(p)ψ̄(q)[ψ̄ψ](r)〉 (7.10)

where

p+ q + r = 0 (7.11)

and p, q and r are the external momentum. We have chosen p and q to be the

two independent momenta. At the symmetric point the following condition is

satisfied

p2 = q2 = r2 = − µ2 (7.12)

which implies

pq =
1

2
µ2 (7.13)

where µ is the mass scale introduced to ensure the coupling remains dimensionless

in dimensional regularisation. The conventions used here for dimensional regu-

larisation are d = 4− 2ε where ε is the regularising parameter. As (7.10) cannot

be simplified by nullifying one of the external momenta, it cannot be reduced

to 2-point master integrals. Nevertheless the Laporta algorithm via reduze can

still be used to simplify (7.10) but we will now require 3-point master integrals

in the evaluation. Helpfully these master integrals have been computed explic-

itly, [193,194,308,309]. Having described the method used to evaluate the quark

mass anomalous dimension in each of the three MOM schemes we now record

their explicit values for the Landau gauge. We have

γ
MOMq
ψ̄ψ

(a, 0) = − 3CFa

+

[[
2 +

8

9
π2 − 4

3
ψ′(1

3)

]
NfTFCF +

[
−13

4
− π2

+
3

2
ψ′(1

3)

]
CFCA +

[
−27

2
− 8

9
π2 +

4

3
ψ′(1

3)

]
C2
F

]
a2

+

[[
41− 20

3
ζ3 −

16

9
π2 − 8

27
π4 − 8s2(π6 ) + 16s2(π2 )

+
40

3
s3(π6 )− 32

3
s3(π2 ) +

8

3
ψ′(1

3) +
16

9
ψ′(1

3)π2 − 4

3

(
ψ′(1

3)
)2
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− 1

9
ψ′′′(1

3)− 1

54
ln2(3)

√
3π +

2

9
ln(3)

√
3π

+
29

1458

√
3π3

]
NfTFCFCA +

[
130

3
− 32

3
ζ3 +

40

9
π2

− 64

81
π4 + 64s2(π6 )− 128s2(π2 )− 320

3
s3(π6 ) +

256

3
s3(π2 )

− 20

3
ψ′(1

3) +
16

9
ψ′(1

3)π2 − 4

3

(
ψ′(1

3)
)2

+
2

27
ψ′′′(1

3)

+
4

27
ln2(3)

√
3π − 16

9
ln(3)

√
3π − 116

729

√
3π3

]
NfTFC

2
F

− 8N2
f T

2
FCF +

[
−249

4
+

2503

48
ζ3 −

1297

72
π2 − 191

486
π4

+
347

2
s2(π6 )− 347s2(π2 )− 1735

6
s3(π6 ) +

694

3
s3(π2 )

+
1297

48
ψ′(1

3) +
175

324
ψ′(1

3)π2 − 175

432

(
ψ′(1

3)
)2

+
23

288
ψ′′′(1

3)

+
347

864
ln2(3)

√
3π − 347

72
ln(3)

√
3π − 10063

23328

√
3π3

]
CFC

2
A

+

[
−467

12
+

106

3
ζ3 +

515

9
π2 +

1216

243
π4 − 428s2(π6 )

+ 856s2(π2 ) +
2140

3
s3(π6 )− 1712

3
s3(π2 )− 515

6
ψ′(1

3)

− 1192

81
ψ′(1

3)π2 +
298

27

(
ψ′(1

3)
)2 − 1

27
ψ′′′(1

3)

− 107

108
ln2(3)

√
3π +

107

9
ln(3)

√
3π +

3103

2916

√
3π3

]
C2
FCA

+

[
−279

2
+ 56ζ3 −

364

9
π2 +

176

243
π4 − 48s2(π6 ) + 96s2(π2 )

+ 80s3(π6 )− 64s3(π2 ) +
182

3
ψ′(1

3) +
400

81
ψ′(1

3)π2

− 100

27

(
ψ′(1

3)
)2 − 8

9
ψ′′′(1

3)− 1

9
ln2(3)

√
3π +

4

3
ln(3)

√
3π

+
29

243

√
3π3

]
C3
F

]
a3 + O(a4) (7.14)

for the MOMq scheme and

γ
MOMggg
ψ̄ψ

(a, 0) = − 3CFa

+

[[
2

3
+

88

27
π2 − 44

9
ψ′(1

3)

]
NfTFCF +

[
−53

6
− 89

27
π2

+
89

18
ψ′(1

3)

]
CFCA −

3

2
C2
F

]
a2

+

[[
2369

54
− 128

3
ζ3 +

226

243
π2 +

12688

2187
π4 − 377

243
√

3
π3

− 52

3
√

3
ln(3)π +

13

9
√

3
ln2(3)π + 208s2(π6 )− 416s2(π2 )
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− 1040

3
s3(π6 ) +

832

3
s3(π2 )− 113

81
ψ′(1

3)− 15280

729
ψ′(1

3)π2

+
3820

243

(
ψ′(1

3)
)2

+
4

9
ψ′′′(1

3)

]
NfTFCFCA +

[
18− 32

3
ζ3

+
104

27
π2 − 320

243
π4 − 116

243
√

3
π3 − 16

3
√

3
ln(3)π

+
4

9
√

3
ln2(3)π + 64s2(π6 )− 128s2(π2 )− 320

3
s3(π6 )

+
256

3
s3(π2 )− 52

9
ψ′(1

3) +
272

81
ψ′(1

3)π2 − 68

27

(
ψ′(1

3)
)2

+
2

27
ψ′′′(1

3)

]
NfTFC

2
F +

[
−196

27
+

320

243
π2 − 10240

2187
π4

− 160

81
ψ′(1

3) +
10240

729
ψ′(1

3)π2 − 2560

243

(
ψ′(1

3)
)2
]
N2
f T

2
FCF

+

[
−220159

1728
+

6367

48
ζ3 +

1643

243
π2 − 9779

17496
π4

+
12499

3888
√

3
π3 +

431

12
√

3
ln(3)π − 431

144
√

3
ln2(3)π

− 431s2(π6 ) + 862s2(π2 ) +
2155

3
s3(π6 )− 1724

3
s3(π2 )

− 1643

162
ψ′(1

3) +
22183

2916
ψ′(1

3)π2 − 22183

3888

(
ψ′(1

3)
)2

− 427

576
ψ′′′(1

3)

]
CFC

2
A +

[
13 +

88

3
ζ3 +

593

27
π2 +

880

243
π4

+
319

243
√

3
π3 +

44

3
√

3
ln(3)π − 11

9
√

3
ln2(3)π − 176s2(π6 )

+ 352s2(π2 ) +
880

3
s3(π6 )− 704

3
s3(π2 )− 593

18
ψ′(1

3)

− 748

81
ψ′(1

3)π2 +
187

27

(
ψ′(1

3)
)2 − 11

54
ψ′′′(1

3)

]
C2
FCA

− 129

2
C3
F

]
a3 + O(a4) , (7.15)

γMOMh
ψ̄ψ (a, 0) = − 3CFa

+

[[
2 +

8

9
π2 − 4

3
ψ′(1

3)

]
NfTFCF +

[
−55

4
− 49

18
π2

+
49

12
ψ′(1

3)

]
CFCA −

3

2
C2
F

]
a2

+

[[
157

2
− 32

3
ζ3 +

313

27
π2 +

104

243
π4 − 29

243
√

3
π3

− 4

3
√

3
ln(3)π +

1

9
√

3
ln2(3)π + 16s2(π6 )− 32s2(π2 )

− 80

3
s3(π6 ) +

64

3
s3(π2 )− 313

18
ψ′(1

3)− 104

81
ψ′(1

3)π2

+
26

27

(
ψ′(1

3)
)2
]
NfTFCFCA +

[
46

3
− 32

3
ζ3 −

152

27
π2
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− 320

243
π4 − 116

243
√

3
π3 − 16

3
√

3
ln(3)π +

4

9
√

3
ln2(3)π

+ 64s2(π6 )− 128s2(π2 )− 320

3
s3(π6 ) +

256

3
s3(π2 ) +

76

9
ψ′(1

3)

+
272

81
ψ′(1

3)π2 − 68

27

(
ψ′(1

3)
)2

+
2

27
ψ′′′(1

3)

]
NfTFC

2
F

+

[
−1419

8
+

3757

48
ζ3 −

3383

108
π2 − 469

486
π4 +

1015

3888
√

3
π3

+
35

12
√

3
ln(3)π − 35

144
√

3
ln2(3)π − 35s2(π6 ) + 70s2(π2 )

+
175

3
s3(π6 )− 140

3
s3(π2 ) +

3383

72
ψ′(1

3) +
4751

1296
ψ′(1

3)π2

− 4751

1728

(
ψ′(1

3)
)2 − 37

384
ψ′′′(1

3)

]
CFC

2
A +

[
97

12
+

88

3
ζ3

+
1217

54
π2 +

880

243
π4 +

319

243
√

3
π3 +

44

3
√

3
ln(3)π

− 11

9
√

3
ln2(3)π − 176s2(π6 ) + 352s2(π2 ) +

880

3
s3(π6 )

− 704

3
s3(π2 )− 1217

36
ψ′(1

3)− 748

81
ψ′(1

3)π2 +
187

27

(
ψ′(1

3)
)2

− 11

54
ψ′′′(1

3)

]
C2
FCA − 8N2

f T
2
FCF −

129

2
C3
F

]
a3

+ O(a4) (7.16)

for MOMggg and MOMh respectively. Additionally as the anomalous dimensions

of the quark, gluon and ghost have been computed in the MS, mMOM and MOM

schemes, [304, 306, 307], the analysis can be extended to include the relevant

exponents. The anomalous dimensions for the quark, gluon and ghost in the

Landau gauge have been listed in Appendix F.

7.4 Results

We can now use the Renormalization Group functions to analyse the Banks-Zaks

fixed point and critical exponents in various renormalization schemes. The main

critical exponent of interest will be the quark mass anomalous dimension expo-

nent, due to the relation to the conformal window. We will also look at exponent

ω which is related to the critical slope of the β-function and gives more insight

into convergence. Our analysis will include a variety of colour groups with quarks

in various representations, although the fundamental representation will form the

main part of the analysis. The adjoint representation and two-index symmetric

and antisymmetric representations will also be examined for comparison with the

results in [97] which looked at theories that could be applied to problems beyond
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the Standard Model. Another reason for looking at multiple representations is

to gain as wide an analysis as possible to find where the convergence is most

apparent. Note that the range of the conformal window for the Banks-Zaks fixed

point depends on the particular representation. For some the conformal window

will have a much smaller range of Nf values than for quarks in the fundamental

representation. Explicit values of all the analysis are given in tables in Appendix

D to six decimal places. We present the MS and mMOM results together to four

loops. The MOMq, MOMh and MOMggg schemes are also grouped together,

albeit to only three loops. For certain cases the format of the tables parallels [97]

and we summarise the main results here. The order of the results in the tables is

fixed point location, ω and then ρ for each choice of quark representation. Note

that we have also included a brief analysis on the ’t Hooft scheme of [312] in the

fundamental representation for additional analysis. Briefly the Renormalization

Group functions of the ’t Hooft scheme are defined as that part which is renor-

malization scheme independent. For the β-function this is the two loop part and

for the quark mass anomalous dimension it is the one loop term, [313].

We first look at the data given in tables D.1 and D.2 of Appendix D. These ta-

bles show the location of the fixed point for the MS, mMOM and MOMi schemes

in the fundamental representation. We make no comment on these values as the

specific location of the fixed point is not physically meaningful. However we can

see where the fixed point is becoming reasonably stable for certain values of Nf .

One would hope the corresponding critical exponents are converging. In table

D.1 for Nc = 3 and Nf ≥ 13 the fixed point seems to reach a plateau for each

scheme from the stability at three and four loops. As Nf = 12 is a value of

intense interest in the lattice community and the subject of many computations,

our perturbative results may therefore not be competitive when compared with

these lattice calculations. A similar conclusion was reached in [97] which stated

then that the convergence was best at the upper end of the conformal window

for the IR fixed point. This is because we are still in the region where the cou-

pling has a small value. For smaller Nf values perturbative results do not appear

reliable. Throughout this Chapter our analysis is broadly in agreement with this

point of view. For the MOMi schemes in table D.2 we only have the three loop

results and are therefore not in a position to indicate whether the same range of

Nf gives perturbatively reliability.

A more fitting way to look at convergence is through the analysis of the critical

exponents. As the exponents are physical quantities and hence Renormalization

Group invariants, their values should be the same in all schemes. Tables D.3
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and D.4 give the critical exponent ω for the five different schemes in the funda-

mental representation using the fixed points from tables D.1 and D.2. We focus

our analysis here on the conformal window for the SU(3) colour group as it is

related to QCD. Parallel remarks will apply for Nc = 2 and 4 but for different

Nf values. From tables D.3 and D.4 we can see that the three loop values of

ω in all five schemes are all in accord for Nf = 16 as expected. Although the

MOMggg scheme gives a slightly lower value of ω. Similarly at Nf = 13 the MS,

mMOM and MOMi schemes at three loops all have similar ω values, again with

MOMggg being slightly lower. As expected, this relative convergence is absent

when Nf = 12. This is illustrated more clearly in the graphs of figure 7.1 for

Nf = 10 and 14. In the left plot in figure 7.1 no clear convergence emerges, even

between the MS and mMOM schemes at four loops. Note that the two loops

results in both graphs are somewhat trivial, we expect exact agreement in all

schemes from the two loop definition of the quark mass anomalous dimension. In

the plot on the right-hand side in figure 7.1 the schemes appear to converge to a

particular value, we can also see the MOMggg scheme value is noticeably below

the other schemes at three loops.

In general a parallel picture emerges for tables D.5, D.6 and D.7. Note that

we have included the ’t Hooft scheme of [312] for additional analysis. This was

not required in tables D.3 and D.4 since the two loop MS column in table D.3

corresponds to that scheme. For the ρ exponent the ’t Hooft estimate lies well

away from the other schemes we have looked at. This is not surprising given the

way the series is defined. For Nf = 16 in SU(3) the values of ρ are comparable in

the MS, mMOM and MOMi schemes. Once again MOMggg is the outlier with

its value being slightly higher, this is also reflected in smaller values of Nf . For

Nf = 13 the four loop MS and three loop MOMq results are similar, the mMOM

value is slightly higher but is slowly decreasing. Finally for Nf = 12 the situation

is the same as that for the ω exponent. No obvious value emerges which all five

schemes are converging towards. However for ρ at Nf = 12 we can compare with

lattice estimates. One analysis gives a value of ρ = 0.235(15), [296], while a more

recent study gives ρ = 0.235(46), [297]. In both cases the lattice results are lower

than the three and four loop perturbative estimates. This reinforces the observa-

tion of [97] that non-perturbative properties may be beginning to dominate the

window at this point.

An interesting feature also emerges when comparing with lattice results. If

the values of ρ given by the two lattice computations are correct, then the four

loop MS value of ρ is the closest estimate. However for convergence, the three
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loop MOMq and MOMh values are smaller than the corresponding three loop

MS result. Hence we hope a four loop analysis of MOMq and MOMh may pro-

vide better estimates to compare with. This is not unsurprising since ρ gives

the quark mass anomalous dimension exponent, we therefore expect MOMq to

produce the most reliable value. That the MOMh scheme is also competitive is

more surprising, however a simple explanation is that there is a similar structure

of Feynman diagrams within the vertex function defining each of the MOMq and

MOMh schemes. In each case one renormalizes the same number of graphs in the

respective vertex renormalizations, [307], and the graphs are effectively the same

structure topologically when examined in detail.

To further our analysis we can also look at five loop estimates. Table D.8

gives the value of the five loop quark mass anomalous dimension, [282], evaluated

at the Banks-Zaks fixed point in MS for Nc = 3. As the five loop β-function was

not available at the time of our original calculation, [1], we carried out a tentative

analysis at that time using the fixed points at three and four loops. The notation

is ρ5l where the l-loop fixed point is given in the MS column of table D.1. It was

hoped that the three and four loop fixed points would bound the actual five loop

fixed point value. As a4 > a3 we have assumed without justification that there

is such an alternating convergence. So if these are the bounding values the same

reasoning would be that ρ53 and ρ54 bound the five loop value ρ55. Note that

the values of ρ53 and ρ54 from table D.8 are significantly different from lattice

estimates, [296,297]. Another way to examine the data at five loops is to take the

central value of ρ5 from [296, 297] and determine what value a5 we should then

be using, [282]. We obtain a value of a5 = 0.028376 which is significantly lower

than the three and four loop results. Therefore it can only be assumed that non-

perturbative properties are the drive behind lattice results as we do not see such a

large drop in the value of the coupling from successive loop order in MS for any Nf .

The graphs in figures 7.2 and 7.3 display this analysis more clearly. A greater

convergence is seen in the right plot in figure 7.2 for Nf = 14 than in the left plot.

Additionally we have given the lattice results in figure 7.3 with the five loop re-

sult ρ54 also displayed. It is clear to see from the graphs the discrepancy between

perturbative and lattice results for Nf = 12. At the time of publication, [1], the

five loop β-function was not known. However it has since been calculated in the

MS scheme, [277–281]. We have therefore given ρ evaluated at the five loop fixed

point, as well as the fixed point itself, in table D.9. As it turns out the value of ρ5

for Nf = 12 does not sit between ρ53 and ρ54 as suspected; the value is actually

slightly higher than ρ54. For Nf = 16 the value of ρ5 seems to indicate a continued
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convergence following from the three and four loop results. Finally, to compare

with lattice estimates we conclude that the value for ρ5 at Nf = 12 is not only

higher than the lattice results but it is also higher than the four loop result. It

therefore does not seem to be converging to a result that would be competitive

with lattice. Following the publication of the five loop β-function, [105] also calcu-

lated five loop results for the Banks-Zaks fixed point in MS and the corresponding

quark mass anomalous dimension evaluated at this fixed point using the results

of [277]. Interestingly, [105] found the conformal window to narrow at five loops

with physical IR fixed points found only in the range 13 ≤ Nf ≤ 16. The five

loop result for the quark mass anomalous dimension was also calculated in [105]

and was found to be close to the four loop value for the range 11 ≤ Nf ≤ 16.

Moreover the value at Nf = 12 was found to be in good agreement with lattice

measurements.

To conclude the analysis of the fundamental representation we can look at

the colour group SU(2). This group was studied on the lattice in [292] for

6 ≤ Nf ≤ 10. For Nf = 10 the lattice estimates gave a value of ρ = 0.08

which is in good agreement with our perturbative results. As this value of Nf is

at the upper end of the SU(2) conformal window, this conclusion is in keeping

with what was found for SU(3). The lower end of the SU(2) conformal window

has been a current topic of study in the lattice community. However a consensus

has not yet been reached on exponent values with a value of ρ for Nf = 6 found

to be in the region ρ ∈ [0.26, 0.74], [294]. Only the MOMq and MOMh perturba-

tive results at three loops fit into this band. However as perturbative reliability

may be lost at lower values of Nf we must not take this as a definitive matching.

Additionally the four loop corrections to MOMq and MOMh may change the

situation as is the case for MS.

One of the main reasons for looking at the Banks-Zaks fixed point is the pos-

sible connection it has with the phase transition associated with chiral symmetry

breaking in QCD. This occurs when the quarks are in the fundamental repre-

sentation. However we can also look at other representations to analyse theories

beyond the Standard Model as in [97]. The fixed points and corresponding criti-

cal exponents in the adjoint representation are listed in tables E.9 to E.14. Note

that these results do not give a supersymmetric version of QCD as there are not

equal numbers of Bose and Fermi degrees of freedom. We have again looked at

three different colour groups; SU(2), SU(3) and SU(4), with only one non-trivial

IR fixed point present at Nf = 2. In all schemes the two and three loop estimates

of exponents ω and ρ are independent of the colour group. The Nc dependence
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appears at four loops in the MS and mMOM schemes of tables E.11 and E.13.

For the critical exponent ω there is a good convergence at four loops between

the MS and mMOM schemes. Additionally the ρ critical exponent estimate at

three loops in the MOMq schemes is competitive with four loop MS and mMOM

results. This may be due to the origin of the operator being a scalar quark bilinear.

When the quarks are in a 2S representation this corresponds to a double in-

dex symmetric representation. The results for the 2S representation are given in

tables D.16 to D.21. There exists only two fixed points in each of the Nc = 3 and

Nc = 4 colour groups, corresponding to low values of Nf as in the adjoint repre-

sentation. The critical exponents have similar properties to those found in the

fundamental representation. For Nf = 3 in both colour groups we find convergent

results when comparing the four loop MS and mMOM schemes with three loop

MOMi estimates. The only potential outlier is once again the MOMggg renor-

malization scheme. For Nf = 2, the lower end of the conformal window for the 2S

representation, no clear convergence pattern emerges for either exponent. The

2A representation is an antisymmetric double index partner to 2S, the results of

this representation are listed in tables E.21 to E.26. For the SU(4) colour group

there exists a greater number of fixed points. We do not present the Nc = 3 re-

sults as in the 2S representation the colour group Casimirs are precisely equal to

their corresponding values in the fundamental representation and we have com-

mented on these already. For the ρ critical exponent we find the same converging

behaviour as that in the fundamental representation where convergence becomes

apparent for values over Nf = 12. In the 2A representation this occurs above the

value Nf = 7, with MOMggg once again excluded as an outlier. These results

can also be compared with lattice estimates at Nf = 6, [293], obtained the result

ρ ∈ [0.3, 0.35] and only our four loop estimates are close to this.

To conclude we make general remarks on the analysis as a whole, as the anal-

ysis of different representations to give a perspective on the reliability of results

may miss key features. For the critical exponent ρ as a general rule when ρ2 is

in the region of 1 or larger, higher loop estimates appear unreliable in that the

values appear to be different from other schemes, not that they do not converge.

Additionally for Nf close to the upper boundary of the conformal window in all

schemes, ρ clearly is in line with all other schemes. More loop terms, especially for

the MOMi schemes, are needed to analyse convergence further. Finally, through-

out this analysis MOMggg appears to always be the outlier scheme. This is not

unreasonable due to the nature of MOMggg. It is based on ensuring that the

triple gluon vertex has no O(a) corrections at the completely symmetric point.
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Therefore for the corresponding Renormalization Group functions the content is

necessarily weighted by gluonic rather than quark contributions. Hence for the

quark mass anomalous dimension the quark content in the MOMggg scheme will

not be dominant.
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Figure 7.1: Value of the critical exponent ω in SU(3) for Nf = 10 (left) and
Nf = 14 (right) when the quark is in the fundamental representation.
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Figure 7.2: Value of the critical exponent ρ in SU(3) for Nf = 10 (left) and
Nf = 14 (right) when quark is in the fundamental representation.
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Figure 7.3: Value of the critical exponent ρ in SU(3) for Nf = 12 when quark is
in the fundamental representation. Lattice results found in [296,297].

In addition to the critical exponents ω and ρ we can also analyse the conformal

window of the quark, gluon and ghost anomalous dimensions; γψ, γA and γc, eval-

uated at the Banks-Zaks fixed point. These Renormalization Group functions to

four loop in the Landau gauge for the MS scheme are listed in Appendix F and

were first published in [304, 306, 307]. The results of our analysis for the three

colour groups SU(2), SU(3) and SU(4) are given in tables D.28 to D.35. We have

again studied the same range for the conformal window of the three colour groups

as in the ω and ρ analysis. Additionally in tables D.34 and D.35 of Appendix D

we have looked at the results for γAC = (γA + γc) evaluated at the Banks-Zaks

fixed point in all five renormalization schemes. Before moving on to discuss the

results we briefly discuss the importance of the value for γAC = (γA + γc).

Recall that the Slavnov-Taylor identities, [260, 261], are the non-abelian gen-

eralisation of a Ward-Takahashi identity. This is in turn an identity between

correlation functions that follows from the global or gauged symmetries of a the-

ory, and which remains valid after renormalization. The Ward-Takahashi identity

can be thought of as a quantum version of the classical Noether’s theorem. In

gauge theories, such as QCD, there are relations between the renormalization

constants in consequence of the Slavnov-Taylor identities, and in renormalizing

QCD these identities must be satisfied. Moreover the Slavnov-Taylor identities
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impose conditions on the construction of the gluon field operator, 1
2
(Aaµ)2, so that

the renormalization constants are not independent. As it turns out the mass

operator of the gluon field is related to the anomalous dimensions of the gluon

and ghost, [314–317]. This can be shown explicitly through the renormalization

of γA2 by the insertion of the mass operator, which will match the value for

(γA + γc), [315, 316]. More simply it can be shown using the following Slavnov-

Taylor identity, [314,316],

γA2 = −
(
β(a)

a
− γA(a)

)
(7.17)

where a = g2/16π2. This relation was found to three loops in [315]. Note that

β(a) in the above relation can by replaced using a second Slavnov-Taylor identity,

[316,318],

2γc(a) =
β(a)

a
− γA(a) . (7.18)

A purely algebraic proof of the two relations (7.17) and (7.18) is given in [314,316]

to all orders in perturbation theory in the Landau gauge. The general gauge in-

variant non-local gluon operator has been renormalized at one loop in an arbitrary

linear covariant gauge and shown to be independent of the gauge parameter and

hence equivalent to the Landau gauge value, [317]. We therefore have included

the result for (γA + γc) evaluated at the Banks-Zaks fixed point as it models the

gluon mass anomalous dimension.

From Appendix D tables D.28 and D.31 display the two and three loop values

of the anomalous dimension of the gluon, γA, in the MS, mMOM and MOMi

schemes. The four loop results are included for the MS and mMOM schemes. As

with the previous analysis there seems to be a poor convergence at the lower end

of the conformal window for all three colour groups, where perturbation theory

is less reliable. At higher values of Nf the values seem to settle to a more stable

value for all schemes. In particular the MS and mMOM results have a very good

convergence at four loops. The three loop result for MOMq and MOMh is similar

to the three loop results in the MS and mMOM schemes. The MOMggg value is

slightly higher but not too dissimilar. Four loop results may provide more clarity.

These results are plotted in figure 7.4 which successfully shows the convergence in

SU(3) at the upper end of the conformal window for all renormalization schemes.

The values of γψ evaluated at the Banks-Zaks fixed point in all five schemes are

given in tables D.29 and D.32. The same conclusion can be drawn as for the γA

tables, with the upper end of the conformal window in all three colour groups

providing the best convergence. Note that at the higher values of Nf , for each
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colour group, where perturbation theory is most reliable the values for γψ are

extremely small and in some cases negative. While the negative values can be

attributed to errors margins in the calculation, the indication that γψ → 0 in

the asymptotic limit is due to the fact the quark is quasi-free and the fixed point

is very close to the origin. We can therefore deduce from the upper end of the

conformal window of the graph that the quark appears to be a free particle. The

results for the schemes MS, mMOM and MOMi for SU(3) are illustrated in figure

7.5.

Tables D.30 and D.33 give the results for the anomalous dimension of the

ghost γc evaluated at the Banks-Zaks fixed point in all five schemes. All the

values produced are negative which is not surprising given our conventions and

the fact that we are looking at ghost particles. Once again, greater convergence is

apparent at the upper end of the conformal window for all three colour groups. A

higher loop order also appears to provide more convergent results. Note MOMggg

at three loops appears to be a slight outlier when compared with the other four

renormalization schemes. However four loop results for the MOMi schemes may

resolve this issue. The results for SU(3) are displayed in figure 7.6. Results for

(γA+γc) are listed in tables D.34 and D.35 with results to four loop in the MS and

mMOM schemes, and to three loops for the MOMi schemes. In keeping with our

observations for other critical exponents, there is very good convergence where

perturbation theory is most reliable at the upper end of the conformal window.

Note also that values in all schemes appears to be very small. The MOMq and

MOMh results to three loops are similar to the three loop results in the MS and

mMOM schemes. The value of (γA + γc) in the MOMggg schemes is slightly

different but not too dissimilar. These results for the SU(3) colour group are

illustrated in figure 7.7 where we observe poor convergence below Nf ≤ 13 and

fairly good convergence above this boundary.
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Figure 7.4: Value of the anomalous dimension of the gluon, γA, in SU(3) to three
loops when quark is in the fundamental representation.
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Figure 7.5: Value of the anomalous dimension of the quark, γψ, in SU(3) to three
loops when quark is in the fundamental representation.
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Figure 7.6: Value of the anomalous dimension of the ghost, γC , in SU(3) to three
loops when quark is in the fundamental representation.

SU(3) Three Loop (�A + �C)3 results in MS mMOM and MOMi schemes.
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Figure 7.7: Value of γA + γC , in SU(3) to three loops when quark is in the
fundamental representation.
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7.5 Discussion

It is worth making some general comments on our analysis. In [97] estimates for

the quark mass anomalous dimension at the Banks-Zaks fixed point were exam-

ined in the conformal window for a variety of schemes and colour groups. We

have extended this analysis by considering the MOM schemes of Celmaster and

Gonsalves, [98, 99]. This adds to the discussion as the analytic structure of the

MOM schemes are different from the point of view of specific numbers which ap-

pear. As critical exponents are physical quantities their values should be scheme

independent. However at the Banks-Zaks fixed point renormalization scheme in-

variance is not exact. The Banks-Zaks fixed point is an IR stable critical point

and as QCD is a high energy quantum field theory (QFT), the value of the as-

sociated exponents can only be perturbatively estimated. Until the low energy

Lagrangian which drives the Banks-Zaks fixed point is found then at present a

numerical evaluation of the critical exponents order by order in the loop expan-

sion is one of the only tools available. In other words there may be a theory in

the same universality class as QCD at the Banks-Zaks fixed point, with the fixed

point being ultraviolet (UV) stable in the new theory, where direct computation

of its anomalous dimensions in various schemes ought to be the way to see the

renormalization invariance of the critical exponents. Developing a Lagrangian in

higher dimensions that exists in the same universality class as QCD may be the

way forward. Toy scalar theories were examined at length in Part I as a potential

laboratory of these ideas and a six dimensional extension of QCD was recently

considered in [54].

Nevertheless, despite differing numerical natures of the Renormalization Group

functions in the MOM schemes versus those of the MS, RI′ and mMOM analysed

in [97], scheme dependence appears to disappear for values of Nf near the up-

per end of the conformal window for the various representations considered. As

perturbation theory is at its most reliable in the higher regions of the conformal

window, this came as no great surprise. A secondary motivation for considering

the MOM schemes was to provide estimates with which to compare with non-

perturbative data. For Nf = 12 in the fundamental representation and SU(3)

colour group the quark mass anomalous dimension appears to converge slowly

towards recent values measured on the lattice, [296,297]. For the MOMq scheme

the three loop estimate of ρ was closer than the corresponding MS value. Al-

though this seems to indicate faster convergence in the MOMq scheme, the four

loop result would be required to confirm this. The nature of the scheme however,

founded on the quark-gluon vertex, indicates that this may be the case. It is
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worth noting that at Nf = 12 non-perturbative features start to dominate, [97],

which must be taken into account. A measure of that can be seen in the evalu-

ation of the stability critical exponents ω. In tables D.3 and D.4 for Nf = 13 it

appears ω is consistent across all schemes, except for MOMggg. The values for

ρ are also consistent for this value of Nf . However for Nf = 12 the ω estimates

have a broader range across the schemes.
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Banks-Zaks Fixed Point Analysis

in Interpolating Momentum

Subtraction Renormalization

Schemes

8.1 Introduction

We now want to re-examine the scheme dependence of Banks-Zaks critical ex-

ponents in a more general set of kinematic renormalization schemes than the

original momentum subtraction (MOM) schemes. These are the interpolating

momentum subtraction (iMOM) schemes which will depend on a parameter ω

which tags the external momentum of one of the legs of the 3-point vertex func-

tions of Quantum Chromodynamics (QCD). The parameter ω will be restricted

to the values 0 < ω < 4. Note that the earlier MOM renormalization schemes

correspond to ω = 1. By allowing for a parameter ω we will be able to potentially

quantify where and when the divergence from RG invariance of the Banks-Zaks

critical exponents begins in the conformal window. The parameter ω acts as a

variation on the subtraction point, its variation tracks the effect of the vertex

subtraction within the graphs constituting the truncated series of the quantity

of interest. In our analysis we focus on the specific values ω = 1/2 and ω = 2,

although the Renormalization Group (RG) functions for arbitrary ω will also be

stated. Analysing the exponents for these two ω values will be sufficient to band

the ω = 1 MOM value and gauge the tolerance on the exponents. There will be

an iMOM scheme for each of the 3-point vertices of QCD; iMOMq, iMOMg and
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iMOMh, parallel to the earlier MOM set. The iMOMi schemes were introduced

in [101,194] for the specific case of the quark mass operator renormalization only.

The application was to assist with matching to a lattice gauge theory compu-

tation where the coupling constant was renormalized in the modified minimal

subtraction (MS) scheme.

The β-function in a kinematic renormalization scheme has the property of be-

ing gauge dependent, [98,99]. In general the gauge parameter of a linear covariant

gauge can be regarded as a second coupling constant. Therefore at criticality the

RG function of a gauge parameter has to be zero which corresponds to the Landau

gauge. Hence all MOM and iMOM data will be in that gauge. However there is

a second covariant gauge that is of interest in our analysis. The maximal abelian

gauge (MAG) is based on gauge fixing the gluon in the abelian subgroup of the

colour group differently from other gluons. The MAG gauge was first introduced

in [313,319,320] to study abelian monopole condensation since it is believed to be

a potential mechanism for colour confinement, [321,322]. The gauge was shown to

be renormalizable in [323–327]. The three loop RG functions in the MAG gauge

have been calculated in the MS renormalization scheme, [328], and in the MOM

schemes, [102,103]. In [102] it was stated that the lower bound of the conformal

window seemed to drop to Nf = 8 for the MAG gauge. However this does not

imply a lower limit ahead of a full perturbative analysis. Although the lattice

study [290] does accommodate the value Nf = 8 in the conformal window. As the

RG functions are readily available it is natural to extend our Banks-Zaks critical

exponent analysis to the MAG gauge. The analysis of the second gauge will run

in parallel with the Landau gauge analysis.

The aim here is to quantify how far the gauge independence of Banks-Zaks

critical exponents extends into the conformal window. Additionally we will pro-

duce a comprehensive overview of scheme and gauge dependence in the new set of

iMOM renormalization schemes. This Chapter is organised as follows. We begin

by briefly discussing the set-up of the MAG gauge. The key points in the calcu-

lation of the Renormalization Group functions for the iMOM schemes will also

be discussed. The known RG functions for the iMOM schemes in both gauges

are then stated. The main results and analysis are presented in section 8.4 with

the bulk of the data given in Appendix E. Finally a brief discussion follows on

the results.
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8.2 Maximal Abelian Gauge

Fixing the gauge in QCD is necessary to eliminate unphysical degrees of freedom

in the gauge field Aaµ. This can be done by introducing a gauge fixing term into

the Lagrangian. The most common gauge fixing, which we have used thus far, is

the linear Landau gauge which satisfies the gauge fixing condition

FA[Aµ] = ∂µAaµ = 0 . (8.1)

As well as linear gauges, obtaining multi-loop information for non-linear gauges

is also important. In fact it is thought that low energy properties of Yang-Mills

theories may be best described using gauges non-linear in nature. This comes

from research, [313, 321, 322, 329, 330], looking into effective gluon masses and

their behaviour in QCD. ’t Hooft suggested some components of the gluon field

may acquire dynamically generated masses due to the condensation of abelian

monopoles originating from the diagonal elements of the colour group algebra.

Abelian monopoles are believed to dominate the infrared (IR) dynamics, [102].

Hence confinement may be best explained using the diagonal elements of the

colour group, [328], and low energy behaviour of the diagonal and off-diagonal

gluons may differ. Significantly it has been speculated that the low energy be-

haviour of QCD may be best described using an effective abelian theory.

This is one of the main motivations for looking at non-linear gauges and the

one which we shall introduce here is the MAG. The MAG splits the colour group

into its diagonal and off-diagonal parts. Hence the gluon and ghost fields are

also split into these two groups. Gluons corresponding to the diagonal part are

named diagonal and form an abelian subgroup, while gluons not contained in this

subgroup are termed off-diagonal, [102,328]. This non-linear gauge will therefore

give an insight into any strange behaviour in either sector. A recent lattice

study, [331], investigated the effect of diagonal gluons on the inter-quark static

potential. Within the theoretical set-up it was possible to identify the contribu-

tions made by the diagonal gluons to the potential. It was claimed that excluding

these contributions forced the linearly rising potential to collapse, indicating that

the abelian sector was effectively responsible for quark confinement. The data

was determined on the fine lattice and the authors concluded that in studying

the maximal abelian projection they had found that confinement is entirely kept

in the abelian sector of QCD in the MAG. Note that studying the confinement

mechanism in this way lies beyond the scope of perturbation theory. Therefore

the property of the MAG we are primarily interested in is its structure and rela-

tionship with other gauges such as the Landau gauge.
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The primary reason for introducing the MAG gauge is because Renormaliza-

tion Group functions in the MS, minimal momentum subtraction (mMOM) and

iMOM schemes for this gauge have been calculated, [102,328]. Therefore we can

compare results for the critical exponents in two different gauges and examine

their scheme dependence without having to calculate any additional RG func-

tions. We will however recap the essential features of this gauge fixing to better

understand why it can be a useful tool and the differences compared with linear

gauges. Note that the MAG will depend on gauge parameter α which is not to

be confused with the same parameter in a linear covariant gauge. The basic idea

of the MAG is to remove as many non-abelian degrees of freedom as possible

by partially fixing the gauge, leaving the theory with a residual abelian gauge

symmetry which is then gauge fixed separately. The group valued gauge field Aµ

can be decomposed as

Aµ = Aaµt
a . (8.2)

Recall the colour group generator are given by ta where 1 ≤ a ≤ NA and NA

is the dimension of the adjoint representation. The group generators can then

be split into two sets, the diagonal (or photonic) and off-diagonal sectors. The

diagonal sector will form an abelian subgroup. For notational purposes we use

the indices i, j, k and l to denote the diagonal elements and A, B, C and D to

denote off-diagonal elements. Thus Aµ can alternatively be decomposed as

Aµ = AAµ t
A + Aiµt

i . (8.3)

The diagonal indices range over 1 ≤ i ≤ Nd
A and the off-diagonal indices span

1 ≤ A ≤ N o
A. Clearly we have

Nd
A + N o

A = NA . (8.4)

Additionally the field strength tensor Gµν can be split into diagonal and off-

diagonal parts

Gµν = Ga
µνt

a = GA
µνt

A + Gi
µνt

i (8.5)

with diagonal and off-diagonal parts given respectively as

Gi
µν = ∂µA

i
ν − ∂νA

i
µ + gfabiAaµA

b
ν

GA
µν = DAb

µ A
b
ν − DAb

ν A
b
µ + gfAbcAbµA

c
ν
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and the covariant derivative has been redefined as

Dab
µ = ∂µδ

ab − gfabiAiµ .

Thus, taking the above into consideration, the Lagrangian in the MAG contains

two field strength tensors, one for each sector,

LMAG = − 1

4
GA
µνG

Aµν − 1

4
Gi
µνG

iµν + iψ̄ /Dψ + LMAG
GF (8.6)

where LMAG
GF is the gauge fixing term specific to the MAG. In a linear covariant

gauge the corresponding gauge fixing term contains the gauge fixing condition and

the consequent ghost Lagrangian. For the MAG the situation is the same but the

actual Lagrangian is more complicated, [323–327, 332]. The MAG gauge fixing

term can be constructed in the standard way by the BRST variation of a specific

operator, see for example [332, 333]. We state the full Lagrangian including the

gauge fixing term in the MAG for completeness.

LMAG
GF = − 1

2α

(
∂µAAµ

)2 − 1

2ᾱ

(
∂µAiµ

)2
+ c̄A∂µ∂µc

A + c̄i∂µ∂µc
i

+ g

[
fABkAAµ c̄

k∂µcB − fABCAAµ c̄B∂µcC −
1

α
fABk∂µAAµA

B
ν A

k ν

− fABk∂µAAµ cB c̄k −
1

2
fABC∂µAAµ c̄

BcC − 2fABkAkµc̄
A∂µc̄B

− fABk∂µAkµc̄BcC
]

+ g2

[
fACBDd AAµA

B µc̄CcD − 1

2α
fAkBlo AAµA

B µAkνA
l ν

+ fADCjo AAµA
j µc̄CcD − 1

2
fAjCDo AAµA

j µc̄CcD

+ fAjClo AAµA
j µc̄Ccl + fAlCjo AAµA

j µc̄Ccl − fCjDio AiµA
j µc̄CcD

− α

4
fABCDd c̄Ac̄BcCcD − α

8
fABCDo c̄Ac̄BcCcD

+
α

8
fACBDo c̄Ac̄BcCcD − α

4
fABClo c̄Ac̄BcCcl +

α

4
fACBlo c̄Ac̄BcCcl

− α

4
fAlBCo c̄Ac̄BcCcl +

α

2
fAkBlo c̄Ac̄Bckcl

]
. (8.7)

As noted in [328] the gauge fixing part of the MAG Lagrangian is generated auto-

matically via a computer algebra routine from the BRST variation of the defining

functional. This is to ensure that definitions and conventions are correctly im-

plemented without errors as well as to be confident that the resulting Feynman

rules are derived correctly using symbolic manipulation.
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8.3 Renormalization Group Functions

Before analysing the location of the Banks-Zaks fixed point and critical expo-

nents in the iMOM schemes we first must acquire the Renormalization Group

functions. In [4] QCD was renormalized in the interpolating MOM schemes in

both the Landau and MAG gauges. This renormalization follows a similar path

to that of the scalar calculations with the added complicated of a Lorentz tensor

structure present. The computation method will be briefly discussed here before

the Renormalization Group functions are stated. Note that there are common

aspects of the renormalization for both the Landau and MAG gauges which can

be outlined together. The renormalization will centre on the 2 and 3-point func-

tions or the self-energy and vertex Green’s functions respectively. The mincer

algorithm implemented in form, [334,335], is used to integrate each 2-point dia-

gram generated by qgraf. As only one external momentum is present the wave-

function renormalization constants can be defined at the point p2 = −µ2, where

µ is the mass scale introduced when we dimensionally regularise in d = 4 − 2ε

dimensions. Additionally as only massless fields are present this ensures the 2-

point renormalization is straightforward.

The vertex renormalization is more involved as there are two independent

external momentum present. Three separate vertex functions need to be consid-

ered based on the quark-gluon, ghost-gluon and triple-gluon vertices. All 3-point

graphs are generated using qgraf. One has to be careful in specifying the point

where the three Green’s functions are renormalized. The momentum of the ex-

ternal legs are given by p, q and r, as the first two are assumed to be independent

and we can set

r = − p − q . (8.8)

The squared external momenta are constrained to satisfy

p2 = q2 = − µ2 ,

r2 = − ωµ2 (8.9)

in contrast to equations (7.12) and (7.13) where ω is the interpolating parameter.

This leads to

pq =

[
1 − ω

2

]
µ2 ,

pr = qr = − ωµ2 . (8.10)

These relations restrict the range of validity for the interpolating parameter to
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0 < ω < 4. The lower bound corresponds to the emergence of IR divergences,

while the upper bound would produce collinear singularities. The original MOM

configuration of Celmaster and Gonsalves, [98,99], corresponds to ω = 1 and can

be used as an internal check throughout the computation. The main difference

between the renormalization of QCD and earlier scalar renormalizations is the

presence of Lorentz tensor amplitudes. These can be decomposed into a set of

scalar amplitudes for each vertex by the projection method discussed in [103,307].

The outcome of the projection process is to relegate the Green’s functions to a

sum over Lorentz scalar amplitudes for each gauge. To apply the projections the

electronic representations of the 3-point graphs are individually passed through

a projection algorithm once the colour, spinor, flavour and Lorentz indices have

been appended. The consequence is that the amplitude for each Feynman dia-

gram is a sum of Feynman integrals which have scalar products of the external

and internal momenta.

Once all 3-point graphs for the vertices have been decomposed into a set

of scalar amplitudes, the Laporta algorithm via reduze can be implemented.

This ensures that all integrals contributing to a Feynman graph of the original

Green’s functions can be written as a sum over a relatively small set of master

integrals. Their ε-expansion has to be determined by explicit evaluation. To two

loops the master integrals for the iMOM renormalization have been computed

in [193, 197, 308, 309]. These results were discussed in [103] for the renormaliza-

tion of the quark mass operator as a function of ω used for lattice matching.

Once master integrals have been inserted the graphs for each vertex function can

be summed together. As in scalar renormalization, variables such as the coupling

constants and gauge parameter can be rescaled to introduce the renormalization

constants. Note that the renormalization constants in the Landau gauge and

MAG will differ. For example, in a linear covariant gauge in our conventions,

Zα = 1. However this is not true in general in other gauges. In particular in

the MAG the corresponding parameter of the off-diagonal gauge fixing is not

unity, [323–327, 332]. Note that for the iMOM schemes the subtraction pre-

scription is that the renormalization constants for the 2- and 3-point functions

are chosen so that at the subtraction point there are no O(a) corrections where

a = g2/16π2. The renormalization functions can be found by substituting the

renormalization constants into the definition of the functions.

The renormalization of the quark mass operator, ψ̄ψ, is also considered in [4].

It follows the same method as in the MOMi calculation. That is, the operator

can be inserted into a 2-point function, 〈ψ(p)[ψ̄ψ](r)ψ̄(q)〉, before being reduced
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to a set of master integrals via the Laporta algorithm. Note that once again we

cannot nullify any external momenta to simplify the reduction as we require a

non-exceptional momentum prescription. The renormalization constant for the

quark mass operator will be the same in both the Landau gauge and MAG. For

the interpolating momentum subtraction schemes the parameter ω will play the

role of potentially running over a range of different possible schemes. The full list

of definitions for the calculation of the RG functions via renormalization constants

is

γA(a, α) = β(a, α)
∂

∂a
lnZA + αγα(a, α)

∂

∂α
lnZA ,

γα(a, α) =

[
β(a, α)

∂

∂a
lnZα − γA(a, α)

][
1 − α

∂

∂α
lnZα

]−1

,

γc(a, α) = β(a, α)
∂

∂a
lnZc + αγα(a, α)

∂

∂α
lnZc ,

γψ(a, α) = β(a, α)
∂

∂a
lnZψ + αγα(a, α)

∂

∂α
lnZψ ,

γO(a, α) = − β(a, α)
∂

∂a
lnZO − αγα

∂

∂α
lnZO (8.11)

where O is the quark mass operator O = ψ̄ψ. A key point in the renormalization

set-up is that the renormalization constants will depend on variables such as the

coupling constant defined with respect to a specific scheme. Equally we can define

another set of renormalization constants which will depend on the variables in a

different scheme. These two sets of renormalization constants are equally valid

and are related through properties of the Renormalization Group. The three loop

iMOMi Renormalization Group functions were obtained in [4] using this short-

cut. We display one iMOM Renormalization Group function in analytic form.

The β-function for the iMOMh scheme for colour group SU(3) in the Landau

gauge is given by

βiMOMh(a, 0)
∣∣∣
SU(3)

= [2Nf − 33]
a2

3
+

2

3
[19Nf − 153]a3

+
[
24192 ln2(ω)ω4N2

f − 1728 ln2(ω)ω5N2
f

−110592 ln2(ω)ω3N2
f + 165888 ln2(ω)ω2N2

f

−71928 ln2(ω)ω5Nf + 270864 ln2(ω)ω4Nf

+787968 ln2(ω)ω3Nf − 2882304 ln2(ω)ω2Nf

+1657260 ln2(ω)ω5 − 11055528 ln2(ω)ω4

+17107200 ln2(ω)ω3 + 2395008 ln2(ω)ω2

+2304 ln(ω)Φ(1)ω,ωω
5N2

f − 31104 ln(ω)Φ(1)ω,ωω
4N2

f

+148608 ln(ω)Φ(1)ω,ωω
3N2

f − 285696 ln(ω)Φ(1)ω,ωω
2N2

f
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+165888 ln(ω)Φ(1)ω,ωωN
2
f − 3132 ln(ω)Φ(1)ω,ωω

5Nf

+309096 ln(ω)Φ(1)ω,ωω
4Nf − 2256336 ln(ω)Φ(1)ω,ωω

3Nf

+5011200 ln(ω)Φ(1)ω,ωω
2Nf − 2923776 ln(ω)Φ(1)ω,ωωNf

−575586 ln(ω)Φ(1)ω,ωω
5 + 3367980 ln(ω)Φ(1)ω,ωω

4

−3228984 ln(ω)Φ(1)ω,ωω
3 − 4904064 ln(ω)Φ(1)ω,ωω

2

+3079296 ln(ω)Φ(1)ω,ωω − 3456 ln(ω)ω5N2
f

+24192 ln(ω)ω4N2
f − 27648 ln(ω)ω3N2

f

−55296 ln(ω)ω2N2
f − 141696 ln(ω)ω5Nf

+1461024 ln(ω)ω4Nf − 4886784 ln(ω)ω3Nf

+5239296 ln(ω)ω2Nf + 505440 ln(ω)ω5

−6286896 ln(ω)ω4 + 26034048 ln(ω)ω3

−35894016 ln(ω)ω2 + 30456Ω(2)ω,ωω
5Nf

−339552Ω(2)ω,ωω
4Nf + 1254528Ω(2)ω,ωω

3Nf

−1534464Ω(2)ω,ωω
2Nf − 502524Ω(2)ω,ωω

5

+5602608Ω(2)ω,ωω
4 − 20699712Ω(2)ω,ωω

3

+25318656Ω(2)ω,ωω
2 − 4608Ω(2)1,ωω

5N2
f

+55296Ω(2)1,ωω
4N2

f − 221184Ω(2)1,ωω
3N2

f

+294912Ω(2)1,ωω
2N2

f + 102168Ω(2)1,ωω
5Nf

−1302480Ω(2)1,ωω
4Nf + 5523552Ω(2)1,ωω

3Nf

−7824384Ω(2)1,ωω
2Nf + 124416Ω(2)1,ωωNf

−431244Ω(2)1,ωω
5 + 6436584Ω(2)1,ωω

4

−30921264Ω(2)1,ωω
3 + 48812544Ω(2)1,ωω

2

−2052864Ω(2)1,ωω − 4374Φ2
(1)ω,ωω

5Nf

+34992Φ2
(1)ω,ωω

4Nf − 110808Φ2
(1)ω,ωω

3Nf

+209952Φ2
(1)ω,ωω

2Nf − 217728Φ2
(1)ω,ωωNf

+124416Φ2
(1)ω,ωNf + 72171Φ2

(1)ω,ωω
5

−577368Φ2
(1)ω,ωω

4 + 1828332Φ2
(1)ω,ωω

3

−3464208Φ2
(1)ω,ωω

2 + 3592512Φ2
(1)ω,ωω

−2052864Φ2
(1)ω,ω + 7488Φ(1)ω,ωω

5N2
f

−89856Φ(1)ω,ωω
4N2

f + 376704Φ(1)ω,ωω
3N2

f

−617472Φ(1)ω,ωω
2N2

f + 276480Φ(1)ω,ωωN
2
f

−46224Φ(1)ω,ωω
5Nf + 618192Φ(1)ω,ωω

4Nf

−2741472Φ(1)ω,ωω
3Nf + 4091904Φ(1)ω,ωω

2Nf
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−235008Φ(1)ω,ωωNf − 443880Φ(1)ω,ωω
5

+5942808Φ(1)ω,ωω
4 − 28479600Φ(1)ω,ωω

3

+56215296Φ(1)ω,ωω
2 − 35894016Φ(1)ω,ωω

+11664Φ(2)ω,ωω
5Nf − 159408Φ(2)ω,ωω

4Nf

+832032Φ(2)ω,ωω
3Nf − 1982880Φ(2)ω,ωω

2Nf

+1804032Φ(2)ω,ωωNf + 124416Φ(2)ω,ωNf

−192456Φ(2)ω,ωω
5 + 2630232Φ(2)ω,ωω

4

−13728528Φ(2)ω,ωω
3 + 32717520Φ(2)ω,ωω

2

−29766528Φ(2)ω,ωω − 2052864Φ(2)ω,ω

−1296Φ(2)1,ωω
6Nf + 106272Φ(2)1,ωω

5Nf

−808704Φ(2)1,ωω
4Nf + 1700352Φ(2)1,ωω

3Nf

−331776Φ(2)1,ωω
2Nf + 21384Φ(2)1,ωω

6

−1753488Φ(2)1,ωω
5 + 13343616Φ(2)1,ωω

4

−28055808Φ(2)1,ωω
3 + 5474304Φ(2)1,ωω

2

−6144ζ3ω
5N2

f − 123136ω5N2
f + 73728ζ3ω

4N2
f

+1477632ω4N2
f − 294912ζ3ω

3N2
f − 5910528ω3N2

f

+393216ζ3ω
2N2

f + 7880704ω2N2
f − 147456ζ3ω

5Nf

+4157856ω5Nf + 1715040ζ3ω
4Nf − 49894272ω4Nf

−6689088ζ3ω
3Nf + 199577088ω3Nf + 8939520ζ3ω

2Nf

−266102784ω2Nf − 746496ζ3ωNf + 4105728ζ3ω
5

−23466672ω5 − 48370608ζ3ω
4 + 281600064ω4

+190659744ζ3ω
3 − 1126400256ω3 − 254555136ζ3ω

2

+1501867008ω2 + 12317184ζ3ω
] a4

6912ω2[ω − 4]2

+ O(a5) (8.12)

where we have introduced the shorthand notation

Φ(n) 1,ω = Φ(n) (1, ω) , Φ(n)ω,ω = Φ(n)

(
1

ω
,

1

ω

)
,

Ω(n) 1,ω = Ω(n) (1, ω) , Ω(n)ω,ω = Ω(n)

(
1

ω
,

1

ω

)
. (8.13)

The analytic expressions for this β-function for an arbitrary colour group together

with all other RG functions in both gauges are included in the attached data

file of [4]. The decomposition of the vertex functions into the tensor basis and

conversion functions are also provided in the data file. Note that for an arbitrary
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colour group in the Landau gauge, the β-function has the property that one and

two loop terms are in agreement with the scheme independent parts which were

first computed in [21, 22, 267, 268]. For a non-zero gauge parameter α, the two

loop term is in fact gauge dependent as one would expect. As α can be regarded

as a second coupling constant and the β-function is only scheme dependent to

two loops in a theory with one coupling. The three loop term of (8.13) is scheme

dependent and also ω dependent. The results for all three β-functions for ω = 1/2

and 2 are stated below. These are given in numerical form for both gauges as it

is the most straightforward way to compare expressions and see effects of varying

ω within the RG function. Note that the notation is iMOMi in Landau gauge

while iMOMmi is the MAG gauge, [4]. For ω = 1/2 we have

βiMOMg(a, 0)
∣∣∣
ω=

1
2

= [0.666667Nf − 11.000000] a2 + [12.666667Nf

−102.000000] a3 +
[
−1.958625N3

f + 45.770375N2
f

+154.329226Nf − 1973.775606] a4 + O(a5) ,

βiMOMh(a, 0)
∣∣∣
ω=

1
2

= [0.666667Nf − 11.000000] a2 + [12.666667Nf

−102.000000] a3 +
[
−21.248801N2

f + 615.665280Nf

−2861.242336] a4 + O(a5) ,

βiMOMq(a, 0)
∣∣∣
ω=

1
2

= [0.666667Nf − 11.000000] a2 + [12.666667Nf

−102.000000] a3 +
[
−21.559789N2

f + 599.589376Nf

−2133.132445] a4 + O(a5) ,

βiMOMmg(a, 0)
∣∣∣
ω=

1
2

= [0.666667Nf − 11.000000] a2 + [12.666667Nf

−96.417290] a3 +
[
−1.958625N3

f + 36.668278N2
f

+469.963542Nf − 3720.350935] a4 + O(a5) ,

βiMOMmh(a, 0)
∣∣∣
ω=

1
2

= [0.666667Nf − 11.000000] a2 + [12.666667Nf

−108.504849] a3 +
[
−24.371002N2

f + 689.727288Nf

−3346.349782] a4 + O(a5) ,

βiMOMmq(a, 0)
∣∣∣
ω=

1
2

= [0.666667Nf − 11.000000] a2 + [12.666667Nf

−100.990317] a3 +
[
−21.514813N2

f + 630.898042Nf

−2435.486351] a4 + O(a5) (8.14)

and for ω = 2 the results are

βiMOMg(a, 0)
∣∣∣
ω=2

= [0.666667Nf − 11.000000] a2 + [12.666667Nf

−102.000000] a3 +
[
−3.752885N3

f + 99.867703N2
f
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−234.213856Nf − 976.833287] a4 + O(a5) ,

βiMOMh(a, 0)
∣∣∣
ω=2

= [0.666667Nf − 11.000000] a2 + [12.666667Nf

−102.000000] a3 +
[
−21.654322N2

f + 617.879121Nf

−2746.474396] a4 + O(a5) ,

βiMOMq(a, 0)
∣∣∣
ω=2

= [0.666667Nf − 11.000000] a2 + [12.666667Nf

−102.000000] a3 +
[
−23.801168N2

f + 563.445891Nf

−1355.780477] a4 + O(a5) ,

βiMOMmg(a, 0)
∣∣∣
ω=2

= [0.666667Nf − 11.000000] a2 + [12.666667Nf

−89.805313] a3 +
[
−3.752885N3

f + 82.563084N2
f

+297.046404Nf − 3156.729291] a4 + O(a5) ,

βiMOMmh(a, 0)
∣∣∣
ω=2

= [0.666667Nf − 11.000000] a2 + [12.666667Nf

−107.331545] a3 +
[
−25.485264N2

f + 636.479467Nf

−2354.843991] a4 + O(a5) ,

βiMOMmq(a, 0)
∣∣∣
ω=2

= [0.666667Nf − 11.000000] a2 + [12.666667Nf

−91.096267] a3 +
[
−23.905680N2

f + 614.725445Nf

−2055.563293] a4 + O(a5) . (8.15)

For comparison the numerical form of the RG functions in the MOMi schemes

for the MAG gauge are listed in [102, 103]. As the β-function is not a physically

meaningful quantity it is more beneficial to examine the critical exponents. We

will therefore also consider the quark mass anomalous dimension. Known MS

and MOMi numerical results are given in [1, 273–276, 310]. The corresponding

iMOMi results for the quark mass anomalous dimension for ω = 1/2 and 2 in the

SU(3) colour group are

γ
iMOMg
ψ̄ψ

(a, 0)
∣∣∣
ω=

1
2

= − 4.000000a+ [− 8.524052Nf + 9.467706] a2

+
[
− 32.491101N2

f + 140.861801Nf + 357.940500
]
a3

+ O(a4) ,

γiMOMh
ψ̄ψ (a, 0)

∣∣∣
ω=

1
2

= − 4.000000a+ [− 0.607233Nf − 19.365345] a2

+
[
− 2.666667N2

f + 36.838982Nf + 341.949868
]
a3

+ O(a4)

γ
iMOMq
ψ̄ψ

(a, 0)
∣∣∣
ω=

1
2

= − 4.000000a+ [− 0.607233Nf − 33.503320] a2

+
[
− 2.666667N2

f + 30.680528Nf − 240.778923
]
a3

+ O(a4) ,
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γ
iMOMmg
ψ̄ψ

(a, 0)
∣∣∣
ω=

1
2

= − 4.000000a+ [− 8.524052Nf − 17.879808] a2

+
[
− 32.491101N2

f − 29.514002Nf + 659.067463
]
a3

+ O(a4) ,

γiMOMmh
ψ̄ψ (a, 0)

∣∣∣
ω=

1
2

= − 4.000000a+ [− 0.607233Nf − 15.413838] a2

+
[
− 2.666667N2

f + 20.098107Nf + 577.599012
]
a3

+ O(a4) ,

γ
iMOMmq
ψ̄ψ

(a, 0)
∣∣∣
ω=

1
2

= − 4.000000a+ [− 0.607233Nf − 41.488147] a2

+
[
− 2.666667N2

f + 29.318648Nf − 337.686951
]
a3

+ O(a4) (8.16)

for ω = 1
2 and

γ
iMOMg
ψ̄ψ

(a, 0)
∣∣∣
ω=2

= − 4.000000a+ [− 14.510481Nf + 61.367526] a2

+
[
− 74.6686432N2

f + 492.015439Nf + 158.572781
]
a3

+ O(a4) ,

γiMOMh
ψ̄ψ (a, 0)

∣∣∣
ω=2

= − 4.000000a+ [− 3.551816Nf + 27.691568] a2

+
[
− 2.666667N2

f − 53.424921Nf + 1239.598236
]
a3

+ O(a4) ,

γ
iMOMq
ψ̄ψ

(a, 0)
∣∣∣
ω=2

= − 4.000000a+ [− 3.551816Nf + 31.128323] a2

+
[
− 2.666667N2

f − 60.202636Nf + 715.222060
]
a3

+ O(a4) ,

γ
iMOMmg
ψ̄ψ

(a, 0)
∣∣∣
ω=2

= − 4.000000a+ [− 14.510481Nf + 27.838788] a2

+
[
− 74.668643N2

f + 138.832502Nf + 1356.765556
]
a3

+ O(a4) ,

γiMOMmh
ψ̄ψ (a, 0)

∣∣∣
ω=2

= − 4.000000a+ [− 3.551816Nf + 45.455562] a2

+
[
− 2.666667N2

f − 50.959511Nf + 921.958650
]
a3

+ O(a4) ,

γ
iMOMmq
ψ̄ψ

(a, 0)
∣∣∣
ω=2

= − 4.000000a+ [− 3.551816Nf + 24.910097] a2

+
[
− 2.666667N2

f − 77.968868Nf + 999.570302
]
a3

+ O(a4) (8.17)

for ω = 2. Recall the scheme dependence begins at two loops here. Note that

a similar pattern emerges for both the β-functions and quark mass anomalous

dimensions. For the MOMi β-functions the corresponding coefficients to the Nf
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independent part of each three loop term are exactly halfway between the ω = 1/2

and 2 coefficients in each iMOM scheme as | ln(1/2)| = | ln(2)|. Similarly for the

Nf independent two and three loop terms of the quark mass anomalous dimension

we find the same general trend. More precisely, at two loops the ω = 1 Nf

independent coefficient lies roughly halfway between the ω = 1/2 and 2 values.

The effect of varying the parameter ω between 1/2 and 2 in comparison with the

symmetric point MOM schemes of [98,99] can now be quantified by analysing the

critical exponents in each scheme. First we recall some internal checks that were

used in this calculation. The two loop terms of all RG functions were evaluated

using two different methods. A direct evaluation as well as the conversion method

was performed with both of these techniques producing the same results at two

loops. Additionally the 2-point three loop functions were also computed directly

which matched the conversion results. The final check is the correct emergence

of the ω → 1 limit.

8.4 Results

Having obtained all Renormalization Group functions for the iMOM schemes

in both the Landau and MAG gauges, we can evaluate the critical exponents

and perform a full analysis on the results. Note in this Chapter all analysis is

performed in the fundamental representation. To a sufficiently high loop order

the critical exponents should be renormalization scheme invariant. The iMOM

analysis will run parallel to the MOMi schemes of Chapter 7. However the new

schemes may give a greater insight into RG invariance with the choice of the two

specific values of parameter ω used to quantify the variation. The notation used

to define the β-function and quark mass anomalous dimensions in the Landau

gauge in an arbitrary scheme S was given in equations (7.1), (7.2), (7.3), (7.5) and

(7.6). The same formalism applies to the MAG. The truncated critical exponents

evaluated in each iMOM scheme at the Banks-Zaks fixed point are

ω̃L = 2β′L(aL, 0) ,

ρL = −2γψ̄ψL(aL, 0) . (8.18)

Here ω̃ now denotes the exponent associated with the β-function as in the iMOM

schemes ω signifies the interpolating parameter. Note that ω̃ and ρ have the same

definition as [1, 97]. However since we used the β-function conventions of [328]

comparing the location of the critical coupling with [97] there will be a difference

of 4π. This has been absorbed into our coupling. We solve for the Banks-Zaks

273



Chapter 8

fixed points at two and three loops in each of the iMOM schemes for ω = 1/2

and 2. The full set of results are listed in Appendix E and summarized here.

Tables E.1 to E.5 are for the Landau gauge while the remaining tables give data

corresponding to the MAG gauge. The critical couplings for the iMOMq, iMOMh

and iMOMg schemes are given in table E.1 at three loops for ω = 1/2 and 2. As

the β-functions are scheme independent to two loops, only the three loop results

are listed. Table E.2 displays the three loop ω̃ exponent in all three schemes.

Once again only the three loop results are given. The exponent ρ in each of the

three iMOM schemes to two and three loops are given by tables E.3, E.4 and

E.5. We have given the results of this exponent for ω = 1/2, 1 and 2, the sym-

metric point values corresponding to ω = 1 were computed in [1] and discussed

in Chapter 7. They are included here for comparison with the new values and

in order to gauge, for instance, what the range of exponent is when ω is varied.

For the analysis we have concentrated on the SU(2) and SU(3) groups for their

two loop conformal windows which are 6 ≤ Nf ≤ 10 and 9 ≤ Nf ≤ 16 respectively.

For the remaining tables in Appendix E the same data is given but for the

MAG gauge. For example, tables E.6, E.7 and E.8 give the critical couplings

for each of the iMOM schemes at two and three loops. While tables E.9, E.10

and E.11 give the corresponding critical exponent ω̃ values to the fixed points.

The exponent ρ is given to two and three loops for ω = 1/2, 1 and 2 in tables

E.12, E.13 and E.14. Note that in the MAG for several of the schemes the lower

bound of the conformal window for SU(3) is at Nf = 8 rather than 9, we have

included these results. However the two loop exponents for Nf = 8 have been

omitted as they are several orders of magnitude larger than either the subsequent

Nf estimates or the three loop value. This suggests perturbative theory may not

be totally reliable at Nf = 8. The three loop data for Nf = 8 has been included

as it is not unreasonable when compared with Nf = 9.

To illustrate more clearly how the value of the exponent ω̃ depends on the

renormalization scheme it is evaluated in, the data for this exponent has been

plotted in figures 8.1, 8.2 and 8.3. These plots are in the Landau gauge for both

SU(2) and SU(3) to three loops. Although we have calculated discrete values of

ω̃ for Nf , we have chosen to present piecewise linear connections between the spot

values for this and other tables similar to [97], in order to spot trends. Note that

the results for exponents in the MS and mMOM schemes have been included in

all figures to provide a guide point for comparing scheme results for each colour

group.
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One of the main themes that emerges in figures 8.1, 8.2 and 8.3 for both the

SU(2) and SU(3) groups is that the MS values diverge away from iMOM results

at about the midpoint of the conformal window as Nf decreases. This is not unex-

pected due to the loss of perturbative reliability at the lower end of the conformal

window. This effect is most pronounced for the iMOMg scheme whereas for the

the iMOMh plot there is a smaller spread for the values of ω for relatively low

Nf . In general for all iMOM schemes the spread across the scheme for ω̃ values

is relatively small. This is perhaps surprising for low values of Nf but in keeping

with our expectations for higher values where one is in the perturbative region.

For the SU(3) group where Nf = 12 the exponent ω̃ appears to be in general

agreement for all schemes except MS. A feature of the three loop ω̃ plots is a

relatively small spread for the range of ω we took. However as at two loops the

exponents are scheme independent we cannot say whether the momentum sub-

traction based schemes have any marked difference with non-kinematic schemes.

Obtaining results to four loops would help with this question. As the quark mass

anomalous dimension is scheme dependent at two loops we can examine features

at two and three loops. For group SU(2) and SU(3) the values for exponent ρ

are illustrated in figures 8.4-8.9 in the Landau gauge. The scheme order is the

same as for figures 8.1, 8.2 and 8.3. As a general comment we note that in both

SU(2) and SU(3) the two loop results at the lower end of the conformal win-

dow are unreliable. There is a huge difference at the lower end of the window

compared with three loops. This was the same for the ω̃ exponent although is

more apparent for ρ. Note that even for Nf above the lower end of the conformal

window there is still a large discrepancy between the two and three loop values.

A general feature for the ρ values, which is shared with ω̃, is that the MS

scheme and to a lesser extent the mMOM scheme have different behaviour to

iMOM as Nf decreases. This discrepancy is most apparent at Nf = 12 for SU(3)

which is where perturbation theory is perhaps on the limit of credibility. There is

a parallel structure when comparing each scheme for both colour groups. For the

three loop plots aside from iMOMg there is a slight discrepancy between MS and

mMOM scheme estimates and iMOM values. This is most pronounced for the

lower Nf values in the iMOMh case. As there is a significant difference between

values in all iMOM schemes at the lower end of the conformal window, no seri-

ous significance should be placed on values ρ3 here. Acquiring four loop results

will help establish to what extent scheme dependence plays a role at the lower

end of the window. A feature of the three loop plots for both exponents is that

the mMOM results faithfully track to MS values. This may not be surprising as

both schemes are defined in a similar way. However there is one exception to this
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trend. For the plot of ω̃ in the iMOMh scheme given by figure 8.2, the mMOM

result is virtually on top of the iMOM schemes for ω = 1/2, 1 and 2 for the entire

conformal window. The fact is that as the mMOM scheme preserves by defini-

tion a property of the ghost-gluon vertex then this is reflected in the agreement

with the kinematic scheme behaviour. Indeed of the three schemes the iMOMh

ω̃ exponents have minimal spread for all Nf . Again this observation needs to be

balanced by noting that the iMOMg behaviour of ρ3 is parallel to the MS and

mMOM schemes for low Nf .

Results in the MAG gauge are plotted in figures 8.10, 8.11 and 8.12. We have

illustrated fewer plots in the MAG gauge as there is a strong general similarity

with the results in the Landau gauge at two loops. The plots for both exponents

are given in SU(3) to three loops as there are similar trends in both sets of re-

sults. Note that we have excluded the data for Nf = 8 as this would skew the

analysis. Examining only 9 ≤ Nf ≤ 16 allows finer detail to be seen. The ω̃

exponent three loop results are virtually the same as the Landau values. There

is little difference between the MS, mMOM and iMOMmi schemes in the range

13 ≤ Nf ≤ 16. For the border point of Nf = 12 the iMOMmq and iMOMmh

schemes are practically the same but backs up the earlier observation that this

is probably the place where higher order corrections could remove scheme ambi-

guity. For the iMOMmg plot the discrepancy in the ω̃ value at Nf = 13 is large

than in the Landau gauge. This is due in part to the nature of the MAG gauge

where a subset of gluon fields are isolated in the definition of the gauge itself.

However with higher order corrections this discrepancy could fade.

For the ρ exponent in the MAG gauge the behaviour is different in that we

have different functional behaviour for each scheme below Nf = 16. However the

general behaviour of the three iMOMmi schemes is not dissimilar to that of the

Landau gauge plots. The different behaviour lies in the nature of the quantity

plotted which is the quark mass operator. This operator does not have any gluon

content where the split colour group property would be significant. However,

the plots may be misleading in that the difference between ρ exponent estimates

between Nf = 13 and 15 range from 5% to 8%. Finally, what is noticeable in

both gauges is that the behaviour of the schemes based on the triple gluon vertex

is different from the other two schemes at the lower end of the conformal window.

That this is the case in the MAG as well as the Landau gauge suggests that it

is a feature of the particular vertex which has significantly more graphs at two

loops and these are predominantly gluonic. It will not be until three loops that

there would be a commensurate number of gluonic contributions to the quark-
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and ghost-gluon vertex functions with which to compare. It may be then that

the behaviour at the lower end of the window becomes similar across all three

iMOMi schemes.
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Figure 8.1: Critical exponent ω̃ at three loops for SU(2) (left) and SU(3) (right)
for the iMOMq renormalization scheme.
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Figure 8.2: Critical exponent ω̃ at three loops for SU(2) (left) and SU(3) (right)
for the iMOMh renormalization scheme.
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Figure 8.3: Critical exponent ω̃ at three loops for SU(2) (left) and SU(3) (right)
for the iMOMg renormalization scheme.
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Figure 8.4: Critical exponent ρ for SU(2) at two (left) and three loops (right) for
the iMOMq renormalization scheme.
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Figure 8.5: Critical exponent ρ for SU(2) at two (left) and three loops (right) for
the iMOMh renormalization scheme.
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Figure 8.6: Critical exponent ρ for SU(2) at two (left) and three loops (right) for
the iMOMg renormalization scheme.
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Figure 8.7: Critical exponent ρ for SU(3) at two (left) and three loops (right) for
the iMOMq renormalization scheme.
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Figure 8.8: Critical exponent ρ for SU(3) at two (left) and three loops (right) for
the iMOMh renormalization scheme.
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Figure 8.9: Critical exponent ρ for SU(3) at two (left) and three loops (right) for
the iMOMg renormalization scheme.
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Figure 8.10: Critical exponents ω̃ (left) and ρ (right) for SU(3) in the MAG at
three loops for the iMOMq renormalization scheme.
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Figure 8.11: Critical exponents ω̃ (left) and ρ (right) for SU(3) in the MAG at
three loops for the iMOMh renormalization scheme.
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Figure 8.12: Critical exponents ω̃ (left) and ρ (right) for SU(3) in the MAG at
three loops for the iMOMg renormalization scheme.

8.5 Discussion

We conclude with some general remarks on our analysis. We have continued the

work of [97] and [1] on the Banks-Zaks analysis of critical exponents, this time

extending to the iMOM schemes. The iMOM schemes are an extension of the

original MOM schemes, [98,99] and depend on a parameter ω which is restricted

to the values 0 < ω < 4. The three iMOMi schemes were considered in both

the Landau gauge and MAG. The main motivation for extending the analysis

to include the iMOM schemes was to provide data for exponents of interest in

a truncated perturbative expansion and see how far into the conformal window
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scheme independence was apparent. The conformal window is such that for val-

ues of Nf near the upper limit, perturbation theory should be a good tool for

reliable information. By contrast as Nf reduces inside the window perturbation

theory ceases to be a reliable guide. However, where the breakdown occurs is

not immediately obvious without numerical analysis. Overall for both gauges it

appears that at three loops one cannot fully rely on estimates at Nf = 12 and

below. This should be quantified by noting that this is from raw results without

re-summation to improve convergence.

There appears to be strong agreement between MS and iMOM results at the

upper end of the conformal window. Numerically the data in the plots for both

sets of schemes lie on top of each other. However this should be balanced by

noting that the numerology of MS and iMOM schemes are different with the

difference first appearing in the scheme dependent terms. Therefore this ought

to motivate not only a study which includes higher loop iMOM terms but also

an investigation to see if this can be established beyond numerical evidence.

One possible avenue of future research would be to extend the iMOM schemes

beyond the appearance of one parameter. For example, a more general set of

schemes could involve two parameters related to the dimensionless variables x

and y appearing in the underlying polylogarithms of the master one and two

loop integrals. While we have not studied this here we expect the outcome to be

the same. In other words the critical exponent values will be scheme independent.

Our MOM and iMOM analysis allows us to analyse where in the conformal

window scheme dependence becomes most prominent. In the absence of a pertur-

bative expansion to all loop orders we can only obtain a truncated approximation

for the critcal exponents. Following the publication of [1], a novel method was

proposed in [106] to disentangle induced scheme dependence. Instead of pertur-

batively expanding in the coupling constant a scheme independent expansion in

∆f = Ñf − Nf was used. Here Ñf is the number of quark flavours above which

asymptotic freedom is lost. We summarise recent work done using this expan-

sion to give an outlook of current research in this area. In [106] the anomalous

dimension of the quark mass at the Banks-Zaks fixed point was calculated in

SU(2) and SU(3) as a series expansion in ∆f in two different schemes to three

loops, O(∆3
f ). Both schemes yielded identical results. This scheme independent

expansion was then tested to three loops against exact results in supersymmetric

Quantum Chromodynamics (SQCD) and found general agreement, [106]. Addi-

tionally it was observed that the scheme independent expansion also preserved

supersymmetry (SUSY) which is lost in traditional perturbation theory. These
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results were extended for SU(3) to four loops in [107] and found good agreement

with recent lattice measurements.

The scheme independent expansion has also been used to analysis asymptot-

ically free vectorial gauge theories with non-abelian gauge groups. In [108] the

critical exponent corresponding to the first derivative of the β-function was com-

puted to four loops for a general group and general representation and to five

loops for SU(3). Additionally the quark mass critical exponent was calculated to

four loops for SU(2) and SU(3) in [109] and was favourably compared with recent

lattice and traditional perturbative results. In [110] these results were extended

to four and five loops respectively for a general gauge group as well as for SU(2),

SU(3) and SU(4). Furthermore scheme independent expansions for the two ex-

ponents were calculated in an asymptotically free vectorial gauge theory with

SO(Nc) and Sp(Nc) symmetry in [111]. More recently scheme independent calcu-

lations were performed in several asymptotically free chiral gauge theories, [112].

In [114] the first analytic scheme independent expansion to three loops was found

for the anomalous dimensions of a variety of (gauge-invariant) baryon operators

at the Banks-Zaks fixed point in asymptotically free SU(3) gauge theories in the

fundamental representation. Importantly the regularization invariant (RI′) and

several MOM schemes were used in [114] to calculate exponents in an asymptot-

ically free gauge theory with a general gauge group. All schemes used yielded

identical results for the coefficients in the scheme independent expansion.
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Perspective

In Part I of this thesis the focus was on calculations involving the d-dimensional

Wilson-Fisher fixed point. The central theme throughout Part I was the property

of universality and how it can be used to connect theories in different space-time

dimensions through this fixed point. All theories considered contained scalar

fields only, with the hope of developing new ideas and techniques using scalar

‘toy’ models that may later be applied to gauge and Beyond the Standard Model

(BSM) physics. The large N expansion is an invaluable aspect of universality. A

comprehensive overview of this method was given in Chapter 2, predominantly as

details on this technique are rarely provided in the literature. We therefore took

the opportunity here to fully explain the intricacies of the method and provide

steps for the computation of leading order critical exponents in the 1/N expan-

sion using the non-linear σ model (NLσM).

Chapter 3 concentrated on the universality class containing both the NLσM

and four dimensional φ4 theory with O(N) symmetry. We reviewed recent ex-

tensions of the universality to six and eight dimensions, [51–54], before then con-

structing the connected ten dimensional Lagrangian. Building the Lagrangian

used dimensionality arguments for the two basic fields along with the universal

interaction of the two fields, σφiφi. All necessary spectator interactions con-

taining σ fields were also included to ensure renormalizability in ten dimensions.

The Renormalization Group (RG) functions for the ten dimensional theory were

then computed with the β-functions and anomalous dimensions calculated to one

and two loops, respectively. The subsequent ten dimensional critical exponents

were also found. Many techniques were introduced which aided in this computa-

tion. The Laporta algorithm using integration by parts (IBP) and the Tarasov

method were fully exploited. Additionally we introduced the vacuum bubble ex-
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pansion and developed equations from the renormalization constants that allow

the computation of Renormalization Group functions order by order. The two

dimensional NLσM gives the foundation for this universality and was used in

Chapter 2 to derive d-dimensional critical exponents for this universality class.

We compared large N results order by order with the ten dimensional critical

exponents to verify the extension of the universality class to ten dimensions.

The universality of a different scalar theory was examined in Chapter 4. We

constructed the six dimensional extension of the O(N)×O(m) Landau-Ginzburg-

Wilson (LGW) model. The Renormalization Group functions were calculated

using similar techniques to those developed in Chapter 3 and subsequent criti-

cal exponents matched to large N results. An additional motivation for the six

dimensional LGW model beyond proving universality was to examine the fixed

point structure and the location of the conformal window. The six dimensional

LGW theory has more coupling constants than O(N) theory of Chapter 3 and

hence a richer fixed point structure. Our fixed point analysis was centred on

O(N)×O(2) but we expect the same general picture to emerge for different val-

ues of m. We were able to isolate fixed points for various values of N which had

a structure in keeping with the phase plane of the four dimensional model and

analyse the stability behaviour. Real and complex fixed points were found for

various values of N , with the complex values indicating a non-unitary theory. A

sectioning method was applied to find an estimate for the full chiral stable (CS)

conformal window which was found to be N ≥ 1106. Computational limitations

prevented a full analysis of the conformal window for all couplings, however we

were able to study the anti-chiral unstable (AU) conformal window where only

two of the couplings are non-zero for various values of m. We found that at

leading order a conformal window exists in the six dimensional O(N) × O(m)

theory for m > 5. We also attempted to establish whether a fixed point exists

down to five dimensions and the potential conformal window. It was indicated

in non-perturbative bootstrap results, [66], that a five dimensional fixed point

would not be easy to find from the lower dimensional point of view unless one

was examining AU type coupling patterns. We reached a similar conclusion, al-

though it is hoped that data provided here will be useful in future for mining and

comparison with non-perturbative work in five dimensions.

The scalar theories of Chapters 3 and 4 act as a laboratory for testing tech-

niques that may be applied to non-scalar theories such as those with gauge sym-

metry or supersymmetry (SUSY). One interesting idea that emerges from our

scalar calculations is the apparent connection of ultraviolet (UV) stable fixed
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points in a higher dimension with infrared (IR) fixed points in lower dimensions.

This is known as UV/IR duality, [46]. For this reason extending the universal-

ity class to a higher dimension is sometimes referred to as UV completion. The

stability properties of fixed points were examined in Chapter 4, it is hoped that

the same methodology can be applied to more complex theories, in particular

Quantum Chromodynamics (QCD). It is known that in 2 < d < 4 QCD lies in

the same universality class as the two dimensional non-abelian Thirring model.

This connection has been established through the large Nf expansion, [228–231].

The non-trivial fixed point of QCD, known as the Banks-Zaks fixed point is IR

stable. QCD is a high energy quantum field theory (QFT) and in the absence

of a low energy Lagrangian the value of the fixed point can only be perturba-

tively estimated. One possible solution however is to extend the universality

class to a higher dimension and investigate whether a UV stable fixed point is

present there. A six dimensional Lagrangian for QCD was constructed in [54]

and the corresponding RG functions computed to two loops. It was hoped that

information in four dimensions could be accessed by perturbatively calculating

in six dimensions to high precision. As six dimensional QCD has extra couplings

it was speculated that these additional operators could become relevant in the

critical sense and be the dominant operators driving the IR behaviour in four

dimensions, [54]. Moreover it was established that the quark-gluon coupling is

asymptotically free in six dimensions, [54], so there is the potential to study issues

of colour confinement using the six dimensional Lagrangian. It is still premature

to think that links with the Banks-Zaks fixed point and higher dimensions have

been established in any respect. However methods introduced in Part I could

prove useful in future research.

As the RG functions of six dimensional QCD have only been calculated to

two loops, one potential avenue of future work is to calculate to a higher loop

order. The location of the conformal window in purely six dimensions was found

to be between Nf = 16 and 17 similar to four dimensional QCD, [54]. It would

be interesting to see what effect the three loop corrections would have on this

critical Nf value. There is also the potential to look at other higher dimensional

gauge theories. In recent years an eight dimensional extension of QCD was ex-

amined, [70], as well as QED in six and eight dimensions, [54, 69]. In Part I we

speculated that a universality class can be looked at from an alternative point

of view. Instead of having a tower of separate theories in different dimensions,

connected via the Wilson-Fisher fixed point, we could instead have one single

d-dimensional universal theory. All potential interactions between the fields in

the theory exist in d-dimensions, with only certain couplings becoming relevant
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in a fixed dimension. We could therefore write a Lagrangian in a fixed dimension

that would only contain relevant interactions. The universal interaction of the

theory will continue to be relevant in d-dimensions and therefore will appear in

every fixed dimension Lagrangian of the universality class and drive the dynam-

ics. Recall in Chapter 3 this universal interaction was σφiφi. In future work it

may therefore be possible to construct a d-dimensional theory with gauge sym-

metry SU(3) × SU(2) × U(1), from which the Standard Model emerges in four

dimensions. If one could find a non-trivial fixed point of the Standard Model it

may then possibly be part of some d-dimensional universal theory.

In Chapter 5 we constructed a new set of universality classes with a φ4 inter-

action. However instead of constructing a Lagrangian using the dimensionality

of the fields based on the kinetic terms, we instead started from a critical point

perspective where the interaction term informs the kinetic term. This produced

an infinite number of higher derivative universality classes. While free field higher

derivative kinetic terms have been investigated in [234–236], for instance, we now

had the opportunity to study interacting cases. We focused our attention on

the n = 2 tower where n relates or classifies powers of the derivatives in the

matter field kinetic term. As well as opening up higher derivative kinetic term

Lagrangians, setting n = 2 also increased the critical dimension in which the

Lagrangian is renormalizable. We studied the UV completion of the n = 2 uni-

versality class, calculating RG functions for each theory in the tower to as high an

order as was computationally viable. Moreover we proved that the higher threads

of n are accessible via the large N expansion developed in [48–50]. In Chapter

5 we calculated the exponents η1, η2 and χ1 for n = 2. We hope in future work

to find the exponents to a higher order to provide further analysis. Additionally

we hope to apply these ideas to higher derivative fermionic theories which have

yet to be analysed in the same depth perturbatively or in the largeN construction.

Techniques presented in Part I for obtaining UV stable fixed points could in

future also be applied to ideas beyond the Standard Model, such as asymptotic

safety in quantum gravity. As quantum gravity is non-renormalizable in four di-

mensions, it is not a predictive QFT. Similarly the NLσM is non-renormalizable

in two dimensions, it is however renormalizable through the large N expansion

and connected to φ4 theory through the Wilson-Fisher fixed point. One hope is

that a similar situation will occur in the theory of gravity with a higher dimen-

sional quantum gravity Lagrangian containing a UV stable fixed point. It is at

this fixed point that UV properties of gravity may be studied. As gravity has not

yet been tested at very high energies there is ample space for ‘new’ physics to
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emerge such as dark matter, dark energy and modifications of general relativity.

One advantage of exploring asymptotic safety is that it can be tested in the phys-

ical world via cosmology. For example, [336] speculated that although a classical

black hole has a temperature that diverges, if we were to look at a black hole with

asymptotic safety there should be a maximum temperature. As the majority of

research into asymptotic safety has been non-perturbative using methods such as

functional Renormalization Group (FRG) used, [78–84], perturbative techniques

introduced in Part I may be used for comparison. Another potential avenue for

future research is to consider emergent symmetries. A fundamental symmetry is

one which exists for the whole spectrum of energy. In contrast an emergent sym-

metry only manifests in specific sectors such as at fixed points, [337]. Emergent

symmetries can be used to explore deep questions concerning the microscopic

structure of the space-time and its constituents. In Chapter 4 an emergent sym-

metry appeared at N = 2 for the AU styled fixed point with the anomalous

dimensions of the σ and T ab fields found to be equal at that fixed point.

In Part II of this thesis we focused on the computation of another type of fixed

point, the Banks-Zaks fixed point of QCD in four dimensions. This fixed point

is IR stable and although QCD is a high energy QFT, if the coupling is small its

value can be perturbatively estimated. Similarly critical exponents corresponding

to this fixed point can also be perturbatively evaluated. As critical exponents are

physical their value should be independent of the renormalization scheme used.

However as perturbation theory must be truncated at some order this does not

happen in practice. We extended the work of [97] by calculating the value of the

Banks-Zaks fixed point and critical exponents in a variety of schemes, in particu-

lar we computed exponent associated with the quark mass anomalous dimension.

The main motivation was to understand where in the conformal window scheme

dependence becomes most apparent. We analysed the conformal window for a

variety of colour groups and representations to understand where the true value

of the conformal window lies in perturbation theory. Additionally the results for

different representations, such as the two-indexed symmetric and anti-symmetric

representations, may be used for problems in BSM physics such as technicolor.

In Chapter 7 we calculated in the modified minimal subtraction (MS), minimal

momentum subtraction (mMOM) and momentum subtraction (MOM). Chap-

ter 8 used the interpolating momentum subtraction (iMOM) schemes which de-

pended on some interpolating parameter. All critical exponents were computed

in the Landau gauge for all schemes, additionally the maximal abelian gauge

(MAG) was used for the iMOM schemes as the RG functions were already avail-

able, [102,328]. Along with analysing the conformal window the main motivation
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was to find which, if any, scheme had the best convergence at a particular loop

order.

Overall scheme dependence seemed to disappear for values of Nf near the

upper end of the conformal window for various groups and representations. This

was not a surprising result as this is where perturbation theory is most reli-

able. We were also able to compare our result with non-perturbative methods,

in particular with recent lattice estimates. In Chapter 7 we found that in the

fundamental representation for SU(3) at Nf = 12 the value for the quark mass

anomalous dimension appeared to be converging slowly towards recent lattice

values measured, [296,297]. Significantly, the MOMq scheme seemed to converge

better to the lattice value at three loops than the MS value at four loops. There-

fore a possible avenue for future research would be to extend the calculation in

the MOM and iMOM schemes to four loops. However it is worth acknowledging

that Nf = 12 is at the boundary of where perturbation theory loses reliability.

Another logical extension of our work in Part II is to examine if scheme inde-

pendence can be established beyond numerical evidence. In fact this has been

achieved recently since publication of our results, [1, 4], using a scheme indepen-

dent perturbative expansion. The expansion parameter involves only the number

of quark flavours and the point at which asymptotic freedom is lost. Critical

exponents have been consistently calculated in a scheme independent way using

this expansion in a variety of schemes including QCD with SU(2), SU(3) and

general SU(Nc), [106, 107, 114]. Additionally this scheme independent expansion

was used for general asymptotically free vectorial gauge theories, [108–111] and

chiral theories, [112]. Values for the critical exponents found using this expan-

sion were favourably compared with lattice estimated and were matched against

known supersymmetric QCD (SQCD) results.
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Master Integrals for Scalar

Calculations

We state here the explicit values of the master integrals used in both the ten

dimensional O(N) calculation of Chapter 3 and the six dimensional O(N)×O(m)

Landau-Ginzburg-Wilson calculation of Chapter 4. We begin by looking at the

2-point master integrals used in both calculations. The 2-point master integrals

in ten dimensions are required to two loops, while three loop results are needed in

six dimensions. To begin we state the one loop 2-point master integrals in four,

six, eight and ten dimensions. As a reminder the notation here is Iij(α1, . . . , αn)

where i signifies the number of external propagators and j denotes the loop order.

The values α1, . . . , αn give the power on each propagator of the Feynman integral.

The dimension the integral has been computed in is given in the superscript. All

integrals are assumed to be at the completely symmetric point unless otherwise

stated. All of the one loop master integrals are calculated by hand as they are

straightforward to construct directly by expanding products of Γ-functions. We

have

I(d=4)
21 (1, 1) =

[
1

ε
+ 2 +

(
− π2

12
+ 4

)
ε +

(
− 7

3
ζ3 −

π2

6
+ 8

)
ε2

+

(
− 14

3
ζ3 + 16− π2

3
− 47π4

1440

)
ε3 + O(ε4)

]
1

(4π)2
,

I(d=6)
21 (1, 1) =

[
− 1

6ε
− 4

9
+

(
π2

72
− 26

27

)
ε +

(
− 160

81
+

7

18
ζ3 +

π2

27

)
ε2

+

(
28

27
ζ3 +

13π2

162
+

47π4

8640
− 968

243

)
ε3 + O(ε4)

]
(−µ2)

(4π)3
,

I(d=8)
21 (1, 1) =

[
1

60ε
+

23

450
+

(
− π2

720
+

394

3375

)
ε
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+

(
12364

50625
− 23π2

5400
− 7

180
ζ3

)
ε2

+

(
− 161

1350
ζ3 +

376684

759375
− 197π2

20250
− 47π4

86400

)
ε3

+ O(ε4)

]
(−µ2)2

(4π)4
,

I(d=10)
21 (1, 1) =

[
− 1

840ε
− 44

11025
+

(
π2

10080
− 10973

1157625

)
ε

+

(
− 2449616

121550625
+

11π2

33075
+

ζ3

360

)
ε2

+

(
44

4725
ζ3 −

525697622

12762815625
+

10973π2

13891500
+

47π4

1209600

)
ε3

+ O(ε4)

]
(−µ2)3

(4π)3
. (A.0.1)

All integrals have been computed at the completely symmetric point so that

p2 = −µ2 where µ is the parameter introduced during dimensional regularisation.

The 2-point master integrals at two loops are given below in four, six, eight and

ten dimensions. Once again these can be easily computed by hand. There are two

different master integrals at two loops, both illustrated in figure . The notation

(I21(1, 1))2 and I22(1, 1, 0, 0, 1) is used. For the first master integral we have

(I(d=4)
21 (1, 1))2 =

[
1

ε2
+

4

ε
− π2

6
+ 12 +

(
− 14

3
ζ3 −

2π2

3
+ 32

)
ε

+

(
− 56

3
ζ3 + 80− 2π2 − 7π4

120

)
ε2 + O(ε3)

]
1

(4π)4
,

(I(d=6)
21 (1, 1))2 =

[
1

36ε2
+

4

27ε
− π2

216
+

14

27
+

(
368

243
− 7

54
ζ3 −

2π2

81

)
ε

+

(
− 56

81
ζ3 −

7π2

81
− 7π4

4320
+

2924

729

)
ε2 + O(ε3)

]
(−µ2)2

(4π)6
,

(I(d=8)
21 (1, 1))2 =

[
1

3600ε2
+

23

13500ε
− π2

21600
+

439

67500

+

(
15244

759375
− 7

5400
ζ3 −

23π2

81000

)
ε

+

(
− 322

40500
ζ3 +

25118

455625
− 439π2

405000
− 7π4

432000

)
ε2

+ O(ε3)

]
(−µ2)4

(4π)8
,

(I(d=10)
21 (1, 1))2 =

[
1

705600ε2
+

11

1157625ε
− π2

4233600
+

6239

162067500

+

(
1578028

12762815625
− 1

151200
ζ3 −

11π2

6945750

)
ε
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+

(
− 22

496125
ζ3 +

186958937

536038256250
− 6239π2

972405000

− π4

12096000

)
ε2 + O(ε3)

]
(−µ2)6

(4π)10
(A.0.2)

and for the second master integral we find

I(d=4)
22 (1, 1, 0, 0, 1) =

[
− 1

4ε
− 13

8
+

(
π2

24
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16
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ε

+
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+

8

3
ζ3 +
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ε2 + O(ε3)

]
− µ2π4 ,

I(d=6)
22 (1, 1, 0, 0, 1) =

[
− 1

1440ε
+
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86400
+

(
π2

8640
− 129811

5184000

)
ε

+

(
− 30725071

311040000
+

ζ3
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+

451π2

518400

)
ε2

+ O(ε3)

]
(−µ2)3π6 ,

I(d=8)
22 (1, 1, 0, 0, 1) =

[
− 1

1209600ε
− 1381

203212800

+

(
π2

7257600
− 29431831

853493760000

)
ε

+

(
− 20213631169

143386951680000
+

ζ3

113400
+

1381π2

1219276800

)
ε2

+ O(ε3)

]
(−µ2)5π8 ,

I(d=10)
22 (1, 1, 0, 0, 1) =

[
− 1

1862784000ε
− 80807

17212124160000

+

(
π2

11176704000
− 789462991
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)
ε

+
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+
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+
80807π2

103272744960000

)
ε2 + O(ε3)
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(A.0.3)

Finally the 2-point master integrals to three loops are stated in four and six

dimensions. We calculate only to six dimensions here as the three loops results are

required for the O(N) × O(m) Landau-Ginzburg-Wilson calculation of Chapter

4 only. There are six three loop 2-point master integrals, the non-planar master

integral is illustrated in figure and the other five are depicted in figure 4.18. The

notation used here is I23l(α, β, γ, ρ, δ, θ, λ, τ) for the five planar master integrals

and I23n(α, β, γ, ρ, δ, θ, λ, τ) for the non-planar master integral. Four of these

master integrals can be computed by hand, we state these results in four and six
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dimensions first. We have

I(d=4)
23l (0, 1, 1, 0, 0, 0, 1, 1) =

[
1

36ε
+
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+

(
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+
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+
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23l (0, 1, 1, 0, 0, 0, 1, 1)) =
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+
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+
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1
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,
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,
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− 1
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I(d=4)
23l (1, 1, 1, 1, 1, 1, 0, 0) =
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+
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The final two three loop 2-point master integrals cannot be computed by hand.

Instead we take known four dimensional results found in [223] and lift to six

dimensions using the Tarasov method. We find

I(d=6)
23l (1, 1, 1, 1, 0, 0, 1, 1) =

[
1
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+
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+
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There is only one master integral for the 3-point Green’s function which is required

in the ten dimensional O(N) scalar calculation. We therefore only need the 3-

point function to one loop order. We do however require both the master integrals

in the completely symmetric momentum configuration and off-shell configuration.

The symmetric results will be stated first. The four dimensional master integral

was calculated in [194] and is stated below using the notation of [194]. We have

I(d=4)
31 (1, 1, 1) =

1

µ2

[(
2

3
π

)2

− 2

3
Ψ′
(

1

3

)

+

(
12s3

(
π

6

)
− 35

108

π3

√
3
− log2(3)π

4
√

3

)
ε + O(ε2)

]

(A.0.6)

where sn(z) was defined in equation (3.24). The Tarasov method is used to find

the 3-point one loop master integral in dimensions six to ten which are
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+
1

1296

√
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]
µ4 . (A.0.7)

The 3-point one loop master integral in the off-shell configuration was illustrated

in figure 3.20 and has three independent external momenta and p + q + r = 0.

The four dimensional result was given in [197] and we state it here for complete-

ness. The notation for the 3-point master integral at one loop in an off-shell

configuration is Io31(1, 1, 1). We have

Io (d=4)
31 =

iπ2

p2
3

φ1(x, y) (A.0.8)

where the function φ1(x, y) can be written in terms of dilogarithms

φ1(x, y) =
1

λ

[
2Li2(−ρx) + 2Li2(−ρy) + ln

(
y

x

)
ln

(
(1 + ρy)

(1 + ρx)

)

+ ln(ρx) ln(ρy) +
π2

3

]
(A.0.9)

and

λ(x, y) =
√

(1− x− y)2 − 4xy , ρ(x, y) = 2(1− x− y + λ)−1

with

x =
p2

r2
, y =

q2

r2
. (A.0.10)

The Tarasov method is used to compute this 3-point master integral in higher

dimensions. We state only the leading order terms here as we only require the

divergent pieces from the Green’s function,

Io (d=6)
31 (1, 1, 1) =

1

2ε
+ O(ε) ,

Io (d=8)
31 (1, 1, 1) =

(y + 1 + x)µ2

24ε
+ O(ε) ,

Io (d=10)
31 (1, 1, 1) =

((y + 1 + x)x+ y2 + y + 1)µ4

360ε

+

(51x2 − 25y − 51(y + 1)x)x2 + 51(y2 + y + 1)(y − 1)2

−(51y2 − 26y + 51)(y + 1)x− 15(y − 1− x) ln(µ2y)y3

+ 15(y + 1− x) ln(µ2x)x3 + 15(y − 1 + x) ln(µ2)µ4

5400((y − 1)2 + x2 − 2(y + 1)x)

+ O(ε) . (A.0.11)

Finally, the one loop 4-point master integral is known in four dimensions and
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we use the Tarasov method to lift this result to higher dimensions. The four

dimensional one loop 4-point master integral is, [199,200],

I(d=4)
41 (1, 1, 1, 1) =

iπ2

st
φ1(x, y) (A.0.12)

where for the 4-point function

x =
p2r2

(p+ q)2(q + r)2
, y =

q2(−p− q − r)2

(p+ q)2(q + r)2
. (A.0.13)

Note p, q and r are the three independent incoming momenta of the 4-point

one loop diagram. This diagram is illustrated in figure 3.23. Using the Tarasov

method this master integral can be lifted up to six, eight and ten dimensions. We

have

I(d=6)
41 (1, 1, 1, 1) =

−3

32µ2

[
8φ1

(
3

4
,
3

4

)
− 5φ1

(
9

16
,

9

16

)]
+ O(ε) ,

I(d=8)
41 (1, 1, 1, 1) =

1

6ε
+

[
5

18

(
11

5
+

15

32
φ1

(
9

16
,

9

16

)
− 87

80
φ1

(
3

4
,
3

4

)

− 3

5
ln(−µ2)− 3

10
ln(2) +

3

20
ln(3)

]
+ O(ε) ,

I(d=10)
41 (1, 1, 1, 1) =

1

18ε
µ2 +

[
− 4209φ1

(
3

4
,
3

4

)
− 1500φ1

(
9

16
,

9

16

)

− 15088 + 1992 ln(2)− 996 ln(3)

+ 3840 ln(−µ2)

](
µ2

69120

)
+ O(ε) .

(A.0.14)

The finite piece can also be written in terms of the Clausen function Cl2(θ)

via [338],

φ1

(
3

4
,
3

4

)
=
√

2

[
2Cl2

(
2 cos−1

(
1√
3

))
+ Cl2

(
2 cos−1

(
1

3

))]
,

φ1

(
9

16
,

9

16

)
=

4√
5

[
2Cl2

(
2 cos−1

(
2

3

))
+ Cl2

(
2 cos−1

(
1

9

))]
.
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Feynman Diagrams for

O(N)×O(m)

Landau-Ginzburg-Wilson Theory

in Six Dimensions

For completeness and to illustrate the types of interactions present at a higher

loop order, we present all 2-point Feynman diagrams in the six dimensional

Landau-Ginzburg-Wilson theory to two loops. All diagrams have been gener-

ated using qgraf, [184], and presented using jaxodraw, [188, 189]. To begin

the φia 2-point functions are displayed in figure B.1. There are 23 such diagrams

at two loops.

299



Appendix B

Figure B.1: All Feynman diagrams for the φia 2-point function at two loops.
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Next the 2-point diagrams for the σ 2-point function are illustrated in figure B.2.

There are 19 graphs of this type to two loops.

Figure B.2: All Feynman diagrams for the σ 2-point function at two loops.

Finally the T ab 2-point function is depicted in figure B.3 at two loops. There are

27 such graphs.
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Figure B.3: All Feynman diagrams for the T ab 2-point function at two loops.

Altogether there are 69 2-point Feynman diagrams at two loops for the fields φia,

σ and T ab.
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Reduction Relations for the

2-point Function in

Landau-Ginzburg-Wilson Theory

at Three Loops

Using the reduze package two databases can be constructed to reduce the 2-

point Green’s function of the six dimensional Landau-Ginzburg-Wilson theory at

three loops. Two databases are needed at three loops as the 2-point function

has three auxiliary topologies at three loops, illustrated in figure A. Two of

the topologies will reduce down to the other plus the remaining third topology,

known as the ‘non-planar’ auxiliary topology. Therefore one database is required

for integration by parts (IBP) relations for the ‘ladder’, or alternatively the ‘benz’

topology, while the second database is required for relations involving the ‘non-

planar’ topology. These databases contain relations developed using IBP which

relate diagrams to six master integrals computable by hand or using the Tarasov

relation. Five of these master integrals come from reducing the ‘ladder’ topology.

The sixth master integral is the non-planar diagram. Note that the notation

I23l(α, β, γ, ρ, δ, θ, λ, τ) signifies the labelling of the ‘Ladder’ auxiliary topology

which is given in figure 4.17, while I23n(α, β, γ, ρ, δ, θ, λ, τ) signifies the ‘non-

planar’ diagram. A relation between a higher power integral and its corresponding

master integrals is displayed here to illustrate the kind of form these relations take.

It is,

I23l(1, 2, 1, 1, 1, 1, 1, 1) =
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+
3(−420 + 356d− 99d2 + 9d3)

4(d− 5)(d− 4)(p2)3
I23l(1, 1, 1, 1, 0, 0, 1, 1)

+
16(−27 + 15d− 2d2)

3(d− 5)(d− 4)(p2)3
I23l(0, 1, 0, 1, 2, 0, 1, 1)

+
16(−99 + 49d− 6d2)

3(d− 5)(d− 4)(p2)3
I23l(0, 1, 0, 1, 1, 0, 1, 2)

− 16(−99 + 15d− 2d2)

3(d− 5)(d− 4)(d− 6)(p2)3
I23l(1, 0, 0, 2, 1, 1, 0, 1)

− 16(−99 + 49d− 6d2)

3(d− 5)(d− 4)(d− 6)(p2)3
I23l(1, 0, 0, 1, 1, 1, 0, 2)

+
3(−340 + 222d− 46d2 + 3d3)

(d− 5)(d− 4)(d− 6)(p2)3
I23l(1, 1, 0, 1, 1, 0, 0, 2)

− 8(−378 + 291d− 73d2 + 6d3)

3(d− 5)(d− 4)(d− 6)(p2)3
I23l(0, 2, 1, 0, 1, 1, 1, 0)

+
8(−1386 + 983d− 231d2 + 18d3)

3(d− 5)(d− 4)(6p2 − p2d)(p2)3
I23l(0, 1, 1, 0, 1, 1, 2, 0)

− 3(−140 + 72d− 9d2)

(d− 4)(d− 6)(p2)3)
I23l(0, 1, 1, 1, 1, 0, 2, 0)

−

(−46200 + 48716d+ 9d5 − 312d4

− 19538d2 + 3665d3

)

2(d− 5)2(d− 4)2(d− 3)(3d− 10)(p2)3
I23l(1, 0, 0, 1, 0, 0, 1, 3)

−

(
−4090080 + 493100d+ 297d5 − 6456d4

− 235154d2 + 55433d3

)

2(d− 5)2(d− 4)2(d− 3)(3d− 10)(p2)3
I23l(0, 1, 1, 0, 0, 0, 1, 3)

+
12(−4158 + 3876d− 12d4 − 1349d2 + 208d3)

(d− 5)2(d− 4)2(d− 3)(p2)3
I23l(0, 1, 0, 0, 1, 1, 0, 3)

+
12(−882− 637d− 152d2 + 12d3)

(d− 5)2(d− 4)2(d− 3)(p2)3
I23l(0, 0, 0, 1, 1, 1, 3, 0) . (C.0.1)

The master integrals contained in this reduction are illustrated in figure C.1.
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Figure C.1: Feynman diagrams containing in the IBP relation of equation (C.0.1).

Beginning with the top row and working our way down the labelled for the Feyn-

man diagrams in figure C.1 is from left to right:

First row: I23l(1, 1, 1, 1, 1, 1, 1, 2) , I23l(1, 1, 1, 1, 0, 0, 1, 1) ,

I23l(0, 1, 0, 1, 2, 0, 1, 1) ,

Second row: I23l(0, 1, 0, 1, 1, 0, 1, 2) , I23l(1, 0, 0, 2, 1, 1, 0, 1) ,

I23l(1, 0, 0, 1, 1, 1, 0, 2) ,

Third row: I23l(1, 1, 0, 1, 1, 0, 0, 2) , I23l(0, 2, 1, 0, 1, 1, 1, 0) ,

I23l(0, 1, 1, 0, 1, 1, 2, 0) ,

Fourth row: I23l(0, 1, 1, 1, 1, 0, 2, 0) , I23l(1, 0, 0, 1, 0, 0, 1, 3) ,

I23l(0, 1, 1, 0, 0, 0, 1, 3) ,

Final row: I23l(0, 1, 0, 0, 1, 1, 0, 3) , I23l(0, 0, 0, 1, 1, 1, 3, 0) .
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Banks-Zaks Fixed Points and

Critical Exponents for MS,

mMOM and MOMi

Renormalization Schemes

Tables containing the results of the Banks-Zaks analysis in the MS, mMOM and

MOMi renormalization schemes are presented below. The first few tables contain

values for the Banks-Zaks fixed point while results for the corresponding critical

exponents are contained in the following tables. A variety of colour groups and

representations are presented. We calculate to two, three and four loops which

are labelled in the subsequent tables. Note that all results presented in Appendix

D are in the Landau gauge.
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F MS mMOM

Nc Nf a2 a3 a4 a2 a3 a4

2 6 0.909091 0.130937 0.190588 0.909091 0.100122 0.088677

2 7 0.225352 0.083898 0.096318 0.225352 0.067933 0.062904

2 8 0.100000 0.054773 0.060487 0.100000 0.046821 0.045404

2 9 0.047337 0.033280 0.035339 0.047337 0.030031 0.029984

2 10 0.018349 0.015622 0.015944 0.018349 0.014878 0.014954

3 9 0.416667 0.081803 0.085291 0.416667 0.064438 0.054935

3 10 0.175676 0.060824 0.064860 0.175676 0.049421 0.044230

3 11 0.098214 0.046039 0.049832 0.098214 0.038603 0.036070

3 12 0.060000 0.034607 0.037434 0.060000 0.029962 0.028981

3 13 0.037234 0.025191 0.026853 0.037234 0.022535 0.022329

3 14 0.022124 0.017070 0.017793 0.022124 0.015786 0.015838

3 15 0.011364 0.009818 0.010001 0.011364 0.009383 0.009431

3 16 0.003311 0.003162 0.003170 0.003311 0.003118 0.003121

4 12 0.281690 0.060040 0.060411 0.281690 0.047748 0.040336

4 13 0.147239 0.048027 0.049944 0.147239 0.039016 0.034347

4 14 0.092219 0.038926 0.041445 0.092219 0.032328 0.029529

4 15 0.062291 0.031616 0.034072 0.062291 0.026858 0.025323

4 16 0.043478 0.025488 0.027490 0.043478 0.022159 0.021442

4 17 0.030558 0.020179 0.021580 0.030558 0.017964 0.017724

4 18 0.021136 0.015460 0.016291 0.021136 0.014097 0.014086

4 19 0.013962 0.011175 0.011573 0.013962 0.010440 0.010493

4 20 0.008316 0.007218 0.007350 0.008316 0.006907 0.006943

4 21 0.003758 0.003511 0.003530 0.003758 0.003438 0.003446

Table D.1: Location of the Banks-Zaks fixed points for MS and mMOM renor-
malization schemes at two, three and four loops.
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F MOMq MOMggg MOMh

Nc Nf a2 a3 a2 a3 a2 a3

2 6 0.909091 0.079453 0.909091 0.075345 0.909091 0.100010

2 7 0.225352 0.060047 0.225352 0.051522 0.225352 0.069384

2 8 0.100000 0.044163 0.100000 0.035988 0.100000 0.048379

2 9 0.047337 0.029574 0.047337 0.023848 0.047337 0.031152

2 10 0.018349 0.014999 0.018349 0.012674 0.018349 0.015317

3 9 0.416667 0.051906 0.416667 0.047997 0.416667 0.064858

3 10 0.175676 0.042853 0.175676 0.037161 0.175676 0.050466

3 11 0.098214 0.035202 0.098214 0.029277 0.098214 0.039778

3 12 0.060000 0.028357 0.060000 0.023018 0.060000 0.031047

3 13 0.037234 0.021938 0.037234 0.017681 0.037234 0.023405

3 14 0.022124 0.015687 0.022124 0.012809 0.022124 0.016367

3 15 0.011364 0.009437 0.011364 0.008032 0.011364 0.009655

3 16 0.003311 0.003136 0.003311 0.002914 0.003311 0.003156

4 12 0.281690 0.038650 0.281690 0.035451 0.281690 0.048181

4 13 0.147239 0.033425 0.147239 0.029214 0.147239 0.039802

4 14 0.092219 0.028879 0.092219 0.024372 0.092219 0.033229

4 15 0.062291 0.024786 0.062291 0.020409 0.062291 0.027756

4 16 0.043478 0.020992 0.043478 0.017023 0.043478 0.022982

4 17 0.030558 0.017383 0.030558 0.014013 0.030558 0.018663

4 18 0.021136 0.013876 0.021136 0.011238 0.021136 0.014641

4 19 0.013962 0.010408 0.013962 0.008578 0.013962 0.010810

4 20 0.008316 0.006940 0.008316 0.005922 0.008316 0.007105

4 21 0.003758 0.003461 0.003758 0.003134 0.003758 0.003498

Table D.2: Location of the Banks-Zaks fixed points for MOMq, MOMggg and
MOMh renormalization schemes at two and three loops.
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F MS mMOM

Nc Nf ω2 ω3 ω4 ω2 ω3 ω4

2 6 6.060606 1.620106 0.974775 6.060606 1.261453 1.245537

2 7 1.201878 0.728326 0.676986 1.201878 0.615403 0.618233

2 8 0.400000 0.318182 0.299703 0.400000 0.286878 0.289100

2 9 0.126233 0.115100 0.110454 0.126233 0.109360 0.109439

2 10 0.024465 0.023925 0.023541 0.024465 0.023590 0.023507

3 9 4.166667 1.475455 1.464386 4.166667 1.189101 1.165667

3 10 1.522523 0.871775 0.853407 1.522533 0.736141 0.736306

3 11 0.720238 0.516977 0.498035 0.720238 0.454913 0.459085

3 12 0.360000 0.295517 0.282328 0.360000 0.269774 0.272234

3 13 0.173759 0.155581 0.149130 0.173759 0.146681 0.147243

3 14 0.073746 0.069899 0.067812 0.073746 0.067695 0.067572

3 15 0.022727 0.022307 0.021975 0.022727 0.022037 0.021957

3 16 0.002208 0.002203 0.002198 0.002208 0.002200 0.002198

4 12 3.755869 1.430447 1.429308 3.755897 1.165365 1.140669

4 13 1.766871 0.964661 0.954675 1.766861 0.812318 0.809419

4 14 0.983670 0.655163 0.639277 0.983670 0.568776 0.572539

4 15 0.581387 0.440398 0.424261 0.581387 0.393264 0.397364

4 16 0.347826 0.288274 0.275809 0.347826 0.264197 0.266663

4 17 0.203718 0.180219 0.172523 0.203718 0.169115 0.170002

4 18 0.112726 0.104596 0.100807 0.112726 0.100224 0.100263

4 19 0.055846 0.053622 0.052223 0.055846 0.052293 0.052131

4 20 0.022176 0.021789 0.021468 0.022176 0.021539 0.021457

4 21 0.005010 0.004989 0.004965 0.005010 0.004974 0.004964

Table D.3: Critical exponent ω for the Banks-Zaks fixed point for MS and mMOM
renormalization schemes at two, three and four loops.
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F MOMq MOMggg MOMh

Nc Nf ω2 ω3 ω2 ω3 ω2 ω3

2 6 6.060606 1.013077 6.060606 0.962970 6.060606 1.260113

2 7 1.201878 0.555171 1.201878 0.486742 1.201878 0.626165

2 8 0.400000 0.275290 0.400000 0.236097 0.400000 0.293412

2 9 0.126233 0.108457 0.126233 0.095150 0.126233 0.111475

2 10 0.024465 0.023649 0.024465 0.022125 0.024465 0.023797

3 9 4.166667 0.973459 4.166667 0.904648 4.166667 1.196201

3 10 1.522523 0.652189 1.522533 0.575996 1.522533 0.749100

3 11 0.720238 0.423769 0.720238 0.365393 0.720238 0.465266

3 12 0.360000 0.259872 0.360000 0.223235 0.360000 0.276171

3 13 0.173759 0.144437 0.173759 0.125839 0.173759 0.149791

3 14 0.073746 0.067504 0.073746 0.060674 0.073746 0.068753

3 15 0.022727 0.022074 0.022727 0.020774 0.022727 0.022213

3 16 0.002208 0.002201 0.002208 0.002176 0.002208 0.002203

4 12 3.755869 0.959967 3.755869 0.885870 3.755869 1.174951

4 13 1.766871 0.711138 1.766871 0.631571 1.766871 0.826128

4 14 0.983670 0.519614 0.983670 0.451225 0.983670 0.581177

4 15 0.581387 0.370624 0.581387 0.318564 0.581387 0.402677

4 16 0.347826 0.254787 0.347826 0.219046 0.347826 0.270526

4 17 0.203718 0.165850 0.203718 0.144003 0.203718 0.172852

4 18 0.112726 0.099425 0.112726 0.088003 0.112726 0.102081

4 19 0.055846 0.052229 0.055846 0.047543 0.055846 0.053001

4 20 0.022176 0.021569 0.022176 0.020338 0.022176 0.021706

4 21 0.005010 0.004979 0.005010 0.004872 0.005010 0.004986

Table D.4: Critical exponent ω for the Banks-Zaks fixed point for MOMq,
MOMggg and MOMh renormalization schemes at two and three loops.
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F MS mMOM

Nc Nf ρ2 ρ3 ρ4 ρ2 ρ3 ρ4

2 6 33.171488 0.924853 - 4.019013 39.576446 1.034933 0.893430

2 7 2.674073 0.456824 0.032536 3.118429 0.523238 0.455155

2 8 0.751875 0.272074 0.203618 0.849375 0.300337 0.279549

2 9 0.275060 0.160546 0.157402 0.299149 0.168800 0.165956

2 10 0.091049 0.073829 0.074794 0.095005 0.074836 0.075064

3 9 19.768519 1.061659 - 0.143490 23.356481 1.191042 0.979184

3 10 4.189838 0.646806 0.155885 4.882518 0.734781 0.620806

3 11 1.613131 0.439241 0.249686 1.846779 0.492300 0.436592

3 12 0.772800 0.311751 0.253328 0.866400 0.340313 0.317156

3 13 0.404469 0.220154 0.209757 0.442979 0.233293 0.226367

3 14 0.212450 0.146369 0.147421 0.226917 0.151029 0.150241

3 15 0.099690 0.082573 0.083600 0.103736 0.083547 0.083816

3 16 0.027187 0.025833 0.025895 0.027550 0.025868 0.025896

4 12 17.296915 1.107600 0.058357 20.371702 1.243981 1.009616

4 13 5.380895 0.755292 0.192015 6.275170 0.855872 0.712621

4 14 2.445332 0.552297 0.258813 2.817397 0.622351 0.537602

4 15 1.318886 0.420081 0.280672 1.498346 0.466289 0.419073

4 16 0.778444 0.324942 0.268806 0.870599 0.353508 0.329838

4 17 0.480849 0.250606 0.234022 0.528704 0.266804 0.256937

4 18 0.300568 0.188596 0.186947 0.324580 0.196704 0.193870

4 19 0.183246 0.134334 0.136002 0.194211 0.137668 0.137526

4 20 0.102410 0.085397 0.086461 0.106473 0.086356 0.086657

4 21 0.043993 0.040685 0.040877 0.044858 0.040801 0.040884

Table D.5: Quark mass critical exponent at the Banks-Zaks fixed point for MS
and mMOM renormalization schemes at two, three and four loops.
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F ‘t Hooft

Nc Nf ρ

2 6 4.090909

2 7 1.014085

2 8 0.450000

2 9 0.213018

2 10 0.082569

3 9 3.333333

3 10 1.405405

3 11 0.785714

3 12 0.480000

3 13 0.297872

3 14 0.176991

3 15 0.090909

3 16 0.026490

4 12 3.169014

4 13 1.656442

4 14 1.037464

4 15 0.700779

4 16 0.489130

4 17 0.343774

4 18 0.237781

4 19 0.157068

4 20 0.093555

4 21 0.042273

Table D.6: Quark mass critical exponent at the Banks-Zaks fixed point for the ‘t
Hooft scheme.
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F MOMq MOMggg MOMh

Nc Nf ρ2 ρ3 ρ2 ρ3 ρ2 ρ3

2 6 17.262397 0.461381 45.730994 0.861480 13.977991 0.305679

2 7 1.925820 0.346755 4.202074 0.542352 1.724000 0.304515

2 8 0.649692 0.247039 1.201675 0.336642 0.609951 0.234852

2 9 0.262282 0.156674 0.409221 0.189326 0.253377 0.153796

2 10 0.090649 0.073686 0.116219 0.079602 0.089311 0.073373

3 9 11.561746 0.553462 26.804208 0.954324 9.016606 0.375534

3 10 2.978729 0.452897 6.257561 0.701362 2.526293 0.377682

3 11 1.312033 0.364656 2.514774 0.516777 1.170622 0.330763

3 12 0.689329 0.285218 1.204608 0.374024 0.636553 0.270097

3 13 0.383454 0.212345 0.607462 0.259356 0.363130 0.206167

3 14 0.208960 0.144860 0.297076 0.165375 0.201785 0.142818

3 15 0.099806 0.082504 0.125435 0.088262 0.097913 0.082094

3 16 0.027285 0.025840 0.029663 0.026154 0.027124 0.025826

4 12 10.475472 0.586353 23.326276 0.984386 8.082819 0.401265

4 13 3.761930 0.503058 7.835301 0.780943 3.108222 0.406260

4 14 1.906259 0.428513 3.724747 0.622031 1.649824 0.375454

4 15 1.116733 0.360679 2.047092 0.493265 0.999731 0.331200

4 16 0.701301 0.298087 1.203586 0.386035 0.644300 0.281973

4 17 0.453285 0.239729 0.725617 0.294985 0.425128 0.231347

4 18 0.292424 0.184975 0.434301 0.216727 0.278953 0.181016

4 19 0.181893 0.133522 0.248856 0.149155 0.176016 0.131953

4 20 0.102711 0.085353 0.128262 0.091032 0.100626 0.084913

4 21 0.044214 0.040704 0.049797 0.041635 0.043788 0.040652

Table D.7: Quark mass critical exponent at the Banks-Zaks fixed point for
MOMq, MOMggg and MOMh renormalization schemes at two and three loops.
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F MS

Nc Nf ρ53 ρ54

3 9 - 0.370415 - 0.596381

3 10 0.198718 0.105449

3 11 0.289590 0.266959

3 12 0.262582 0.268132

3 13 0.205572 0.215243

3 14 0.143001 0.148548

3 15 0.082153 0.083692

3 16 0.025828 0.025895

Table D.8: Estimates of quark mass critical exponent at the Banks-Zaks fixed
point for the MS renormalization scheme at five loops using the three and four
loop critical coupling.

F MS

Nc Nf a5 ρ5

3 9 0.068656 0.180468

3 10 0.056886 0.264038

3 11 0.048471 0.276783

3 12 0.042030 0.265626

3 13 0.032315 0.238701

3 14 0.018526 0.154060

3 15 0.010078 0.084340

3 16 0.003171 0.025903

Table D.9: Location of Banks-Zaks critical coupling and quark mass critical ex-
ponent for MS at five loops.

G MS mMOM

Nc Nf a2 a3 a4 a2 a3 a4

2 2 0.050000 0.036525 0.035814 0.050000 0.033778 0.031703

3 2 0.033333 0.024350 0.024537 0.033333 0.022519 0.021491

4 2 0.025000 0.018263 0.018596 0.025000 0.016889 0.016217

Table D.10: Location of the Banks-Zaks fixed points for MS and mMOM renor-
malization schemes at two, three and four loops for the quarks in the adjoint
representation.
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G MOMq MOMggg MOMh

Nc Nf a2 a3 a2 a3 a2 a3

2 2 0.050000 0.032037 0.050000 0.026198 0.050000 0.035416

3 2 0.033333 0.021358 0.033333 0.017465 0.033333 0.023611

4 2 0.025000 0.016019 0.025000 0.013099 0.025000 0.017708

Table D.11: Location of the Banks-Zaks fixed points for MOMq, MOMggg and
MOMh renormalization schemes at two and three loops for the quarks in the
adjoint representation.

G MS mMOM

Nc Nf ω2 ω3 ω4 ω2 ω3 ω4

2 2 0.200000 0.185475 0.187427 0.200000 0.178949 0.183383

3 2 0.200000 0.185475 0.184637 0.200000 0.178949 0.182466

4 2 0.200000 0.185475 0.183419 0.200000 0.178949 0.182086

Table D.12: Critical exponent ω for the Banks-Zaks fixed point for MS and
mMOM renormalization schemes at two, three and four loops for the quarks in
the adjoint representation.

G MOMq MOMggg MOMh

Nc Nf ω2 ω3 ω2 ω3 ω2 ω3

2 2 0.200000 0.174187 0.200000 0.154678 0.200000 0.182985

3 2 0.200000 0.174187 0.200000 0.154678 0.200000 0.182985

4 2 0.200000 0.174187 0.200000 0.154678 0.200000 0.182985

Table D.13: Critical exponent ω for the Banks-Zaks fixed point for MOMq,
MOMggg and MOMh renormalization schemes at two and three loops for the
quarks in the adjoint representation.

G MS mMOM

Nc Nf ρ2 ρ3 ρ4 ρ2 ρ3 ρ4

2 2 0.820000 0.543233 0.499621 0.885000 0.569034 0.520679

3 2 0.820000 0.543233 0.522652 0.885000 0.569034 0.537795

4 2 0.820000 0.543233 0.531736 0.885000 0.569034 0.544255

Table D.14: Quark mass critical exponent at the Banks-Zaks fixed point for MS
and mMOM renormalization schemes at two, three and four loops for the quarks
in the adjoint representation.
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G MOMq MOMggg MOMh

Nc Nf ρ2 ρ3 ρ2 ρ3 ρ2 ρ3

2 2 0.843280 0.523076 1.119867 0.563241 0.725384 0.493780

3 2 0.843279 0.523076 1.119867 0.563241 0.725384 0.493780

4 2 0.843280 0.523076 1.119867 0.563241 0.725384 0.493780

Table D.15: Quark mass critical exponent at the Banks-Zaks fixed point for
MOMq, MOMggg and MOMh renormalization schemes at two and three loops
for the quarks in the adjoint representation.

2S MS mMOM

Nc Nf a2 a3 a4 a2 a3 a4

3 2 0.067010 0.039795 0.037400 0.067010 0.036641 0.031345

3 3 0.006757 0.006290 0.006324 0.006757 0.006133 0.006137

4 2 0.076923 0.038610 0.034993 0.076923 0.035879 0.028481

4 3 0.012085 0.010266 0.010429 0.012085 0.009773 0.009706

Table D.16: Location of the Banks-Zaks fixed point for MS and mMOM renormal-
ization schemes at two, three and four loops for quarks in the 2S representation.

2S MOMq MOMggg MOMh

Nc Nf a2 a3 a2 a3 a2 a3

3 2 0.067010 0.033185 0.067010 0.026936 0.067010 0.038706

3 3 0.006757 0.006043 0.006757 0.005449 0.006757 0.006272

4 2 0.076923 0.031380 0.076923 0.025513 0.076923 0.037977

4 3 0.012085 0.009452 0.012085 0.008038 0.012085 0.010154

Table D.17: Location of the Banks-Zaks fixed point for MOMq, MOMggg and
MOMh renormalization schemes at two and three loops for quarks in the 2S
representation.

2S MS mMOM

Nc Nf ω2 ω3 ω4 ω2 ω3 ω4

3 2 0.580756 0.484962 0.494313 0.580756 0.461475 0.470733

3 3 0.013514 0.013449 0.013385 0.013514 0.013398 0.013391

4 2 1.025641 0.771209 0.784341 1.025641 0.733643 0.730358

4 3 0.064451 0.062991 0.062225 0.064451 0.062094 0.062379

Table D.18: Critical exponent ω for the Banks-Zaks fixed point for MS and
mMOM renormalization schemes at two, three and four loops for quarks in the
2S representation.
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2S MOMq MOMggg MOMh

Nc Nf ω2 ω3 ω2 ω3 ω2 ω3

3 2 0.580756 0.432782 0.580756 0.373054 0.580756 0.477139

3 3 0.013514 0.013363 0.013514 0.013007 0.013514 0.013444

4 2 1.025641 0.666122 1.025641 0.567521 1.025641 0.762733

4 3 0.064451 0.061393 0.064451 0.057224 0.064451 0.062807

Table D.19: Critical exponent ω for the Banks-Zaks fixed point for the MOMq,
MOMggg and MOMh renormalization schemes at two and three loops for quarks
in the 2S representation.

2S MS mMOM

Nc Nf ρ2 ρ3 ρ4 ρ2 ρ3 ρ4

3 2 2.442844 1.284021 1.122151 2.694805 1.422422 1.210883

3 3 0.143809 0.132625 0.133158 0.147386 0.133175 0.133159

4 2 4.815089 2.077658 1.787181 5.365385 2.436574 1.949337

4 3 0.380719 0.313071 0.314964 0.399558 0.318680 0.315594

Table D.20: Quark mass critical exponent at the Banks-Zaks fixed point for the
MS and mMOM renormalization schemes at two, three and four loops for quarks
in the 2S representation.

2S MOMq MOMggg MOMh

Nc Nf ρ2 ρ3 ρ2 ρ3 ρ2 ρ3

3 2 2.440100 1.088873 3.194973 1.123601 1.837734 0.959833

3 3 0.148363 0.133049 0.166564 0.135940 0.142239 0.132247

4 2 4.616444 1.554419 5.894166 1.548531 3.166038 1.294776

4 3 0.399558 0.313149 0.485641 0.326803 0.363762 0.305782

Table D.21: Quark mass critical exponent at the Banks-Zaks fixed point for the
MOMq, MOMggg and MOMh renormalization schemes at two and three loops
for quarks in the 2S representation.
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2A MS mMOM

Nc Nf a2 a3 a4 a2 a3 a4

4 6 0.172414 0.052865 0.061243 0.172414 0.044308 0.038398

4 7 0.070796 0.034771 0.039931 0.070796 0.029895 0.028047

4 8 0.035714 0.022840 0.025409 0.035714 0.020324 0.020083

4 9 0.017937 0.013814 0.014662 0.017937 0.012777 0.012908

4 10 0.007194 0.006401 0.006518 0.007194 0.006164 0.006212

Table D.22: Location of the Banks-Zaks fixed points for MS and mMOM renor-
malization schemes at two, three and four loops for quarks in the 2A representa-
tion.

2A MOMq MOMggg MOMh

Nc Nf a2 a3 a2 a3 a2 a3

4 6 0.172414 0.036860 0.172414 0.032342 0.172414 0.045374

4 7 0.070796 0.027053 0.070796 0.022389 0.070796 0.031004

4 8 0.035714 0.019325 0.035714 0.015630 0.035714 0.021179

4 9 0.017937 0.012543 0.017937 0.010258 0.017937 0.013285

4 10 0.007194 0.006161 0.007194 0.005338 0.007194 0.006332

Table D.23: Location of the Banks-Zaks fixed points for MOMq, MOMggg and
MOMh renormalization schemes at two and three loops for quarks in the 2A
representation.

2A MS mMOM

Nc Nf ω2 ω3 ω4 ω2 ω3 ω4

4 6 2.298851 1.193609 1.109724 2.298851 1.029719 1.022181

4 7 0.755162 0.559626 0.511494 0.755162 0.503114 0.508341

4 8 0.285714 0.248588 0.229893 0.285714 0.232661 0.233704

4 9 0.095665 0.090611 0.086504 0.095665 0.087749 0.087236

4 10 0.019185 0.018951 0.018660 0.019185 0.018791 0.018680

Table D.24: Critical exponent ω for the Banks-Zaks fixed points for MS and
mMOM renormalization schemes at two, three and four loops for quarks in the
2A representation.
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2A MOMq MOMggg MOMh

Nc Nf ω2 ω3 ω2 ω3 ω2 ω3

4 6 2.298851 0.877863 2.298851 0.781571 2.298851 1.050754

4 7 0.755162 0.466867 0.755162 0.402103 0.755162 0.516585

4 8 0.285714 0.225543 0.285714 0.195358 0.285714 0.238387

4 9 0.095665 0.087014 0.095665 0.078133 0.095665 0.089231

4 10 0.019185 0.018789 0.019185 0.017908 0.019185 0.018909

Table D.25: Critical exponent ω for the Banks-Zaks fixed points for MOMq,
MOMggg and MOMh renormalization schemes at two and three loops for quarks
in the 2A representation.

2A MS mMOM

Nc Nf ρ2 ρ3 ρ4 ρ2 ρ3 ρ4

4 6 9.782501 1.381815 0.292995 11.318371 1.566192 1.377240

4 7 2.191767 0.695302 0.435137 2.484143 0.769888 0.703235

4 8 0.801977 0.401949 0.368304 0.884885 0.429906 0.414671

4 9 0.330860 0.228000 0.231646 0.353918 0.235533 0.235585

4 10 0.116993 0.101120 0.102557 0.121047 0.101969 0.102620

Table D.26: Quark mass critical exponent at the Banks-Zaks fixed points for MS
and mMOM renormalization schemes at two, three and four loops for quarks in
the 2A representation.

2A MOMq MOMggg MOMh

Nc Nf ρ2 ρ3 ρ2 ρ3 ρ2 ρ3

4 6 7.054427 0.805527 12.794194 1.154631 5.180018 0.582067

4 7 1.882686 0.560447 3.197151 0.730752 1.566644 0.491650

4 8 0.761721 0.375009 1.184460 0.452628 0.681294 0.353174

4 9 0.330392 0.225207 0.459282 0.253314 0.310104 0.219754

4 10 0.118476 0.101235 0.142790 0.106250 0.115212 0.100632

Table D.27: Quark mass critical exponent at the Banks-Zaks fixed points for
MOMq, MOMggg and MOMh renormalization schemes at two and three loops
for quarks in the 2A representation.
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F MS mMOM

Nc Nf γA2 γA3 γA4 γA2 γA3 γA4

2 6 7.548209 0.161858 -1.141471 11.818182 0.428280 0.323136

2 7 0.887655 0.159141 0.077254 1.183892 0.244022 0.205665

2 8 0.325000 0.127791 0.121549 0.390000 0.155189 0.144550

2 9 0.143879 0.088522 0.091514 0.159938 0.095361 0.094193

2 10 0.054765 0.045143 0.045986 0.057403 0.045893 0.046085

3 9 4.153646 0.193341 -0.017807 6.171875 0.406353 0.292463

3 10 1.118449 0.175883 0.096514 1.508081 0.275001 0.218958

3 11 0.520338 0.151892 0.125835 0.651766 0.199789 0.173654

3 12 0.290250 0.125974 0.121873 0.342900 0.148283 0.137930

3 13 0.171886 0.099007 0.101310 0.193548 0.108285 0.105460

3 14 0.099863 0.071194 0.073373 0.108001 0.074248 0.074090

3 15 0.050894 0.042753 0.043478 0.053170 0.043354 0.043538

3 16 0.014853 0.014138 0.014174 0.015057 0.014158 0.014174

4 12 3.541625 0.201447 0.036834 5.181512 0.399171 0.284083

4 13 1.317024 0.184656 0.098283 1.793970 0.295580 0.228526

4 14 0.695053 0.165357 0.123254 0.893488 0.229594 0.191094

4 15 0.425485 0.145404 0.128680 0.521197 0.182533 0.161674

4 16 0.279773 0.125194 0.121597 0.328922 0.145999 0.135909

4 17 0.189571 0.104756 0.106440 0.215094 0.115697 0.111740

4 18 0.128305 0.084056 0.086672 0.141112 0.089218 0.088260

4 19 0.083770 0.063101 0.064866 0.089617 0.065123 0.065220

4 20 0.049666 0.041969 0.042670 0.051832 0.042527 0.042719

4 21 0.022452 0.020839 0.020948 0.022913 0.020904 0.020950

Table D.28: Value of the γA anomalous dimension evaluated at the Banks-Zaks
fixed point for MS and mMOM renormalization schemes at two, three and four
loops.
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F MS mMOM

Nc Nf γψ2 γψ3 γψ4 γψ2 γψ3 γψ4

2 6 3.331612 0.097917 -0.390702 3.331612 0.042897 -0.014429

2 7 0.166634 0.020246 -0.030731 0.166634 0.011029 -0.005206

2 8 0.025312 0.004037 -0.005989 0.025313 0.002703 -0.001740

2 9 0.003991 0.000586 -0.000738 0.003991 0.000487 -0.000329

2 10 0.000347 0.000050 -0.000005 0.000347 0.000051 0.000004

3 9 1.793981 0.090126 -0.048726 1.793981 0.042526 -0.010391

3 10 0.277757 0.031336 -0.026915 0.277757 0.016702 -0.006569

3 11 0.073953 0.010955 -0.012892 0.073953 0.006576 -0.003834

3 12 0.022800 0.003509 -0.005073 0.022800 0.002376 -0.001939

3 13 0.006932 0.000920 -0.001559 0.006932 0.000708 -0.000786

3 14 0.001795 0.000163 -0.000337 0.001795 0.000146 -0.000220

3 15 0.000301 0.000015 -0.000034 0.000301 0.000017 -0.000027

3 16 0.000011 0.000002 -0.000001 0.000011 0.000002 0.000001

4 12 1.515696 0.087156 0.032770 1.515696 0.042094 -0.009169

4 13 0.373462 0.039322 -0.025492 0.373462 0.020680 -0.007017

4 14 0.695053 0.017958 -0.016739 0.130555 0.010274 -0.005009

4 15 0.052292 0.007972 -0.009604 0.052292 0.004961 -0.003310

4 16 0.021931 0.003297 -0.004823 0.021931 0.002235 -0.001992

4 17 0.009082 0.001200 -0.002101 0.009082 0.000889 -0.001062

4 18 0.003508 0.000348 -0.000775 0.003508 0.000284 -0.000479

4 19 0.001165 0.000063 -0.000228 0.001165 0.000059 -0.000169

4 20 0.000284 0.000002 -0.000044 0.000284 0.000004 -0.000038

4 21 0.000031 0.000000 -0.000002 0.000031 0.000000 -0.000002

Table D.29: Value of the γψ anomalous dimension evaluated at the Banks-Zaks
fixed point for MS and mMOM renormalization schemes at two, three and four
loops.
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F MS mMOM

Nc Nf −γC2 −γC3 −γC4 −γC2 −γC3 −γC4

2 6 3.774105 0.080929 -0.570736 5.909091 0.214140 0.161568

2 7 0.443827 0.079570 0.038627 0.591946 0.122011 0.102833

2 8 0.162500 0.063896 0.060774 0.195000 0.077595 0.072275

2 9 0.071940 0.044261 0.045757 0.079969 0.047680 0.047097

2 10 0.027383 0.022572 0.022993 0.028701 0.022946 0.023043

3 9 2.076823 0.096670 -0.008903 3.085938 0.203177 -0.146232

3 10 0.559224 0.087941 0.048257 0.754040 0.137501 0.109479

3 11 0.260169 0.075946 0.062918 0.325883 0.099894 0.086827

3 12 0.145125 0.062987 0.060936 0.171450 0.074142 0.068965

3 13 0.085943 0.049504 0.050655 0.096774 0.054143 0.052730

3 14 0.049932 0.035597 0.036686 0.054000 0.037124 0.037045

3 15 0.025447 0.021377 0.021739 0.026585 0.021677 0.021769

3 16 0.007426 0.007069 0.007087 0.007528 0.007079 0.007087

4 12 1.770813 0.100724 0.018417 2.590756 0.199586 0.142041

4 13 0.658512 0.092328 0.049142 0.896985 0.147790 0.114263

4 14 0.347527 0.082678 0.061627 0.446744 0.114797 0.095547

4 15 0.212742 0.072702 0.064340 0.260599 0.091266 0.080837

4 16 0.139887 0.062597 0.060798 0.164461 0.072999 0.067954

4 17 0.094786 0.052378 0.053220 0.107547 0.057848 0.055870

4 18 0.064153 0.042028 0.043336 0.070556 0.044609 0.044130

4 19 0.041885 0.031550 0.032433 0.044809 0.032562 0.032610

4 20 0.024833 0.020985 0.021335 0.025916 0.021264 0.021359

4 21 0.011226 0.010420 0.010474 0.011456 0.010452 0.010475

Table D.30: Value of the γC anomalous dimension evaluated at the Banks-Zaks
fixed point for MS and mMOM renormalization schemes at two, three and four
loops.
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F MOMq MOMggg MOMh

Nc Nf γA2 γA3 γA2 γA3 γA2 γA3

2 6 12.394900 0.186489 10.286115 0.237565 12.638190 0.345390

2 7 1.14845 0.164475 1.317065 0.189268 1.133504 0.210168

2 8 0.369065 0.129721 0.491728 0.146375 0.360234 0.141038

2 9 0.152120 0.089190 0.206542 0.098860 0.148822 0.090802

2 10 0.055758 0.045253 0.069017 0.047961 0.055064 0.045254

3 9 6.400386 0.189612 5.447734 0.224312 6.559457 0.329837

3 10 1.494540 0.173917 1.562849 0.193650 1.485115 0.233644

3 11 0.630605 0.151840 0.755891 0.166770 0.615875 0.176389

3 12 0.328685 0.126653 0.425300 0.138971 0.318789 0.135538

3 13 0.185640 0.099677 0.246309 0.109064 0.180136 0.102106

3 14 0.104350 0.071577 0.135558 0.077336 0.101809 0.071889

3 15 0.051980 0.042870 0.063193 0.045066 0.051152 0.042821

3 16 0.014937 0.014144 0.016175 0.014301 0.014853 0.014138

4 12 5.354649 0.190709 4.593120 0.220072 5.496436 0.324713

4 13 1.793970 0.178866 1.793970 0.197233 1.793970 0.249036

4 14 0.874932 0.163007 0.982694 0.177188 0.859736 0.199375

4 15 0.504264 0.144956 0.614529 0.157308 0.490397 0.162942

4 16 0.316548 0.125591 0.405843 0.136555 0.306415 0.133706

4 17 0.206944 0.105371 0.271497 0.114616 0.200270 0.108473

4 18 0.136238 0.084573 0.178276 0.091587 0.132247 0.085421

4 19 0.087065 0.063408 0.110874 0.067868 0.084976 0.063472

4 20 0.050776 0.042089 0.061375 0.044133 0.049911 0.042025

4 21 0.022666 0.020858 0.025313 0.021271 0.022465 0.020840

Table D.31: Value of the γA anomalous dimension evaluated at the Banks-Zaks
fixed point for MOMq, MOMggg and MOMh renormalization schemes at two and
three loops.

324



Appendix D

F MOMq MOMggg MOMh

Nc Nf γψ2 γψ3 γψ2 γψ3 γψ2 γψ3

2 6 3.33161 0.018225 3.331612 0.043123 3.331612 0.018792

2 7 0.166634 0.006015 0.166634 0.013976 0.166634 0.004888

2 8 0.025313 0.001636 0.025313 0.004386 0.025313 0.001079

2 9 0.003991 0.000296 0.003991 0.001055 0.003991 0.000159

2 10 0.000347 0.000035 0.000347 0.000118 0.000347 0.000026

3 9 1.793981 0.020033 1.793981 0.042710 1.793981 0.017904

3 10 0.277757 0.009356 0.277757 0.020019 0.277757 0.006970

3 11 0.073953 0.004063 0.073953 0.009440 0.073953 0.002517

3 12 0.022800 0.001526 0.022800 0.004212 0.022800 0.000730

3 13 0.006932 0.000439 0.006932 0.001649 0.006932 0.000115

3 14 0.001795 0.000074 0.001795 0.000497 0.001795 -0.000017

3 15 0.000301 0.000005 0.000301 0.000086 0.000301 -0.000007

3 16 0.000011 0.000002 0.000011 0.000003 0.000011 0.000001

4 12 1.515696 0.020544 1.515696 0.042342 1.515696 0.017410

4 13 0.373462 0.011550 0.373462 0.023910 0.373462 0.008473

4 14 0.130555 0.006270 0.130555 0.013640 0.130555 0.003978

4 15 0.052292 0.003194 0.052292 0.007658 0.052292 0.001697

4 16 0.021931 0.001467 0.021931 0.004121 0.021931 0.000589

4 17 0.009082 0.000566 0.009082 0.002055 0.009082 0.000112

4 18 0.003508 0.000157 0.003508 0.000901 0.003508 -0.000040

4 19 0.001165 0.000016 0.001165 0.000317 0.001165 -0.000049

4 20 0.000284 -0.000006 0.000284 0.000073 0.000284 -0.000020

4 21 0.000031 -0.000001 0.000031 0.000006 0.000031 -0.000001

Table D.32: Value of the γψ anomalous dimension evaluated at the Banks-Zaks
fixed point for MOMq, MOMggg and MOMh renormalization schemes at two and
three loops.
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F MOMq MOMggg MOMh

Nc Nf −γC2 −γC3 −γC2 −γC3 −γC2 −γC3

2 6 3.313858 0.173942 12.803390 0.284140 2.219056 0.154933

2 7 0.432474 0.111550 1.191225 0.165443 0.365200 0.100800

2 8 0.163598 0.074092 0.347592 0.100421 0.150351 0.069676

2 9 0.072933 0.046554 0.121912 0.056866 0.069964 0.045318

2 10 0.027644 0.022763 0.036167 0.024733 0.027198 0.022628

3 9 2.057640 0.170966 6.344571 0.262619 1.341819 0.149574

3 10 0.571245 0.125391 1.493417 0.182608 0.443998 0.110954

3 11 0.268749 0.094592 0.607020 0.131130 0.228978 0.086067

3 12 0.150127 0.071601 0.295049 0.094074 0.135284 0.067109

3 13 0.088562 0.052935 0.151565 0.065442 0.082846 0.050907

3 14 0.051101 0.036630 0.075884 0.042319 0.049083 0.035931

3 15 0.025820 0.021550 0.033028 0.023188 0.025288 0.021412

3 16 0.007464 0.007073 0.008132 0.007163 0.007418 0.007069

4 12 1.811636 0.169926 5.238517 0.255811 1.173595 0.147783

4 13 0.684118 0.133971 1.770351 0.194294 0.509796 0.117458

4 14 0.363241 0.107717 0.848171 0.150966 0.294858 0.096331

4 15 0.222499 0.087373 0.470595 0.118161 0.191299 0.079967

4 16 0.145900 0.070766 0.279843 0.092031 0.130700 0.000039

4 17 0.098379 0.056564 0.171001 0.070450 0.090870 0.054037

4 18 0.066170 0.043910 0.104003 0.052164 0.062577 0.042665

4 19 0.042895 0.032234 0.060751 0.036405 0.041327 0.031734

4 20 0.025237 0.021153 0.032051 0.022692 0.024681 0.021015

4 21 0.011318 0.010436 0.012807 0.010689 0.011204 0.010421

Table D.33: Value of the γC anomalous dimension evaluated at the Banks-Zaks
fixed point for MOMq, MOMggg and MOMh renormalization schemes at two and
three loops.
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F MS mMOM

Nc Nf (γAC)2 (γAC)3 (γAC)4 (γAC)2 (γAC)3 (γAC)4

2 6 3.774104 0.080929 -0.570735 5.909091 0.214140 0.161568

2 7 0.443828 0.079571 0.038627 0.591946 0.122011 0.102832

2 8 0.162500 0.063895 0.060775 0.195000 0.077594 0.072275

2 9 0.071939 0.044261 0.045757 0.079969 0.047681 0.047096

2 10 0.027382 0.022571 0.022993 0.028702 0.022947 0.023042

3 9 2.076823 0.096671 -0.008904 3.085937 0.203176 0.146231

3 10 0.559225 0.087942 0.048257 0.754041 0.137500 0.109479

3 11 0.260169 0.075946 0.062917 0.325883 0.099895 0.086827

3 12 0.145125 0.062987 0.060937 0.171450 0.074141 0.068965

3 13 0.085943 0.049503 0.050655 0.096774 0.054142 0.052730

3 14 0.049931 0.035597 0.036687 0.054001 0.037124 0.037045

3 15 0.025447 0.021376 0.021739 0.026585 0.021677 0.021769

3 16 0.007427 0.007069 0.007087 0.007529 0.007079 0.007087

4 12 1.770812 0.100723 0.018417 2.590756 0.199585 0.142042

4 13 0.658512 0.092328 0.049141 0.896985 0.147790 0.114263

4 14 0.347526 0.082679 0.061627 0.446744 0.114797 0.095547

4 15 0.212743 0.072702 0.064340 0.260598 0.091267 0.080837

4 16 0.139886 0.062597 0.060799 0.164461 0.073000 0.067955

4 17 0.094785 0.052378 0.053220 0.107547 0.057849 0.055870

4 18 0.064152 0.042028 0.043336 0.070556 0.044609 0.044130

4 19 0.041885 0.031551 0.032433 0.044808 0.032561 0.032610

4 20 0.024833 0.020984 0.021335 0.025916 0.021263 0.021360

4 21 0.011226 0.010419 0.010474 0.011457 0.010452 0.010475

Table D.34: Value of γAC = γA + γC evaluated at the Banks-Zaks fixed point for
MS and mMOM renormalization schemes at two, three and four loops.
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F MOMq MOMggg MOMh

Nc Nf (γAC)2 (γAC)3 (γAC)2 (γAC)3 (γAC)2 (γAC)3

2 6 9.081042 0.012547 -2.517275 -0.046575 10.419134 0.190457

2 7 0.715976 0.052925 0.125840 0.023825 0.768304 0.109368

2 8 0.205467 0.055629 0.144136 -0.000010 0.209883 0.071362

2 9 0.079187 0.042636 0.084630 0.041994 0.078858 0.045484

2 10 0.028114 0.022490 0.032850 0.023228 0.027866 0.022626

3 9 4.342746 0.018646 -0.896837 -0.038307 5.217638 0.180263

3 10 0.923295 0.048526 0.069432 0.011042 1.041117 0.122690

3 11 0.361856 0.057248 0.148871 0.035640 0.386897 0.090322

3 12 0.178558 0.055052 0.130251 0.044897 0.183505 0.068429

3 13 0.097078 0.046742 0.094744 0.043622 0.097290 0.051199

3 14 0.053249 0.034947 0.059674 0.035017 0.052726 0.035958

3 15 0.026160 0.021320 0.030165 0.021878 0.025864 0.021409

3 16 0.007473 0.007071 0.008043 0.007138 0.007435 0.007069

4 12 3.543013 0.020783 -0.645397 -0.035739 4.322841 0.176930

4 13 1.109852 0.044895 0.023619 0.002939 1.284174 0.131578

4 14 0.511691 0.055290 0.134523 0.026222 0.564878 0.103044

4 15 0.281765 0.057583 0.143934 0.039147 0.299098 0.082975

4 16 0.170648 0.054825 0.126000 0.044524 0.175715 0.133667

4 17 0.108565 0.048807 0.100496 0.044166 0.109400 0.054436

4 18 0.070068 0.040663 0.074273 0.039423 0.069670 0.042756

4 19 0.044170 0.031174 0.050123 0.031463 0.043649 0.031738

4 20 0.025539 0.020936 0.029324 0.021441 0.025230 0.021010

4 21 0.011348 0.010422 0.012506 0.010582 0.011261 0.010419

Table D.35: Value of γAC = γA + γC evaluated at the Banks-Zaks fixed point for
MOMq, MOMggg and MOMh renormalization schemes at two and three loops.
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Banks-Zaks Fixed Points and

Critical Exponents for iMOMi

Renormalization Schemes

Tables containing the results of the Banks-Zaks analysis in the iMOMi renor-

malization schemes are presented below. The first table contains values for the

Banks-Zaks critical point while results for the corresponding critical exponents

are contained in the subsequent tables. A variety of colour groups and represen-

tations are presented, along with results in both the Landau gauge and MAG.

Note a slight change in the notation in Appendix E. In the previous Appendix

ω denoted the critical exponent associated with the first derivative of the β-

function. Now however as we have an interpolating parameter labelled ω which

takes the values ω = 1/2 and ω = 2 in this analysis, the exponent is relabelled ω̃.

Therefore, ω̃ = 2β′L(a∗L) where a∗L is the Banks-Zaks fixed point at L loop order.
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F ω = 1/2 ω = 2

Nc Nf iMOMq iMOMh iMOMg iMOMq iMOMh iMOMg

2 6 0.082180 0.102178 0.079931 0.075759 0.097485 0.069611

2 7 0.060932 0.070282 0.054313 0.058801 0.068282 0.047987

2 8 0.044235 0.048765 0.037734 0.044086 0.047873 0.033758

2 9 0.029369 0.031291 0.024820 0.029912 0.030949 0.022590

2 10 0.014858 0.015344 0.013027 0.015226 0.015270 0.012204

3 9 0.053594 0.066233 0.050891 0.049640 0.063241 0.044376

3 10 0.043677 0.051213 0.039222 0.041718 0.049554 0.034557

3 11 0.035531 0.040203 0.030790 0.034749 0.039239 0.027353

3 12 0.028408 0.031285 0.024117 0.028304 0.030730 0.021614

3 13 0.021854 0.023529 0.018438 0.022984 0.023223 0.016704

3 14 0.015572 0.016421 0.013274 0.015876 0.016283 0.012202

3 15 0.009362 0.009671 0.008248 0.009557 0.009627 0.007743

3 16 0.003123 0.003158 0.002949 0.003156 0.003154 0.002865

Table E.1: Three loop critical couplings for the three renormalization schemes
iMOMq, iMOMh and iMOMg for ω = 1/2 and ω = 2.

F ω = 1/2 ω = 2

Nc Nf iMOMq iMOMh iMOMg iMOMq iMOMh iMOMg

2 6 1.046201 1.285814 1.018897 0.968029 1.230113 0.892618

2 7 0.562075 0.632772 0.509522 0.545385 0.618001 0.457363

2 8 0.275610 0.295000 0.244918 0.274943 0.291309 0.224482

2 9 0.108045 0.111728 0.097670 0.109128 0.111102 0.091733

2 10 0.023580 0.023809 0.022407 0.023756 0.023776 0.021721

3 9 1.002950 1.219382 0.955671 0.933669 1.168830 0.840254

3 10 0.662954 0.758306 0.603957 0.637256 0.737797 0.540073

3 11 0.426862 0.468961 0.380803 0.419495 0.460538 0.345318

3 12 0.260195 0.277545 0.231243 0.259538 0.274324 0.212649

3 13 0.144113 0.150218 0.129481 0.144993 0.149178 0.120933

3 14 0.067279 0.068846 0.061947 0.067865 0.068606 0.058914

3 15 0.022022 0.022223 0.021019 0.022153 0.022196 0.020420

3 16 0.002200 0.002203 0.002181 0.002203 0.002202 0.002167

Table E.2: Three loop exponent ω̃ for the three renormalization schemes iMOMq,
iMOMh and iMOMg for ω = 1/2 and ω = 2.
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F Two loops Three loops

Nc Nf ω = 1/2 ω = 1 ω = 2 ω = 1/2 ω = 1 ω = 2

2 6 27.239861 17.262397 2.285966 0.600572 0.461381 0.337700

2 7 2.471236 1.925820 1.106095 0.401204 0.346755 0.290809

2 8 0.743765 0.649692 0.508076 0.266242 0.247039 0.225155

2 9 0.280376 0.262282 0.234985 0.161626 0.156674 0.150586

2 10 0.092919 0.090649 0.087215 0.074218 0.073686 0.073000

3 9 16.864034 11.561746 3.624314 0.708237 0.553462 0.411676

3 10 3.848168 2.978729 1.676364 0.533844 0.452897 0.371313

3 11 1.560926 1.312033 0.938925 0.405984 0.364656 0.319805

3 12 0.773689 0.689329 0.562753 0.304867 0.285218 0.262590

3 13 0.412657 0.383454 0.339589 0.220487 0.212345 0.202509

3 14 0.218111 0.208960 0.195196 0.147470 0.144860 0.141586

3 15 0.101914 0.099806 0.096629 0.082990 0.082504 0.081877

3 16 0.027438 0.027285 0.027054 0.025855 0.025840 0.025821

Table E.3: Exponent ρ for the iMOMq renormalization scheme for ω = 1/2, 1
and 2 at two and three loops.

F Two loops Three loops

Nc Nf ω = 1/2 ω = 1 ω = 2 ω = 1/2 ω = 1 ω = 2

2 6 19.223415 13.977991 6.482302 0.397351 0.305679 0.207404

2 7 1.978641 1.724000 1.363952 0.331401 0.304515 0.274502

2 8 0.646766 0.609951 0.558852 0.241931 0.234852 0.226952

2 9 0.258640 0.253377 0.246363 0.155029 0.153796 0.152490

2 10 0.089653 0.089311 0.088924 0.073435 0.073373 0.073325

3 9 11.955015 9.016606 4.817632 0.481863 0.375534 0.265557

3 10 2.975518 2.526293 1.888493 0.423952 0.377682 0.328109

3 11 1.288175 1.170622 1.005228 0.350646 0.330763 0.309163

3 12 0.671895 0.636553 0.587498 0.277955 0.270097 0.261584

3 13 0.373456 0.363130 0.349118 0.208770 0.206167 0.203416

3 14 0.204271 0.201785 0.198561 0.143428 0.142818 0.142216

3 15 0.098263 0.097913 0.097517 0.082160 0.082094 0.082043

3 16 0.027128 0.027124 0.027129 0.025826 0.025826 0.025827

Table E.4: Exponent ρ for the iMOMh renormalization scheme for ω = 1/2, 1
and 2 at two and three loops.
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F Two loops Three loops

Nc Nf ω = 1/2 ω = 1 ω = 2 ω = 1/2 ω = 1 ω = 2

2 6 45.515760 45.730994 46.741820 0.920418 0.861479 0.796716

2 7 4.046556 4.202074 4.463909 0.554462 0.542352 0.527694

2 8 1.143032 1.201675 1.292562 0.336918 0.336642 0.335932

2 9 0.389802 0.409221 0.438400 0.187578 0.189326 0.191453

2 10 0.112358 0.116219 0.121927 0.078876 0.079602 0.080609

3 9 26.683597 26.804168 27.370418 1.020688 0.954324 0.883068

3 10 6.082398 6.257561 6.573996 0.725820 0.701362 0.673553

3 11 2.411977 2.514774 2.681119 0.524318 0.516777 0.507645

3 12 1.148311 1.204608 1.291859 0.374713 0.374024 0.372958

3 13 0.578876 0.607462 0.650756 0.257811 0.259356 0.261181

3 14 0.284546 0.297076 0.315784 0.163806 0.165375 0.167404

3 15 0.121486 0.125435 0.131273 0.088730 0.088262 0.089284

3 16 0.029273 0.029663 0.030236 0.026094 0.026154 0.026247

Table E.5: Exponent ρ for the iMOMg renormalization scheme for ω = 1/2, 1
and 2 at two and three loops.

F Two loops Three loops

Nc Nf ω = 1/2 ω = 1 ω = 2 ω = 1/2 ω = 1 ω = 2

2 6 0.799071 0.537774 0.365556 0.085019 0.080231 0.081241

2 7 0.216131 0.185636 0.154275 0.061121 0.059714 0.059190

2 8 0.097538 0.088764 0.078600 0.043575 0.042749 0.042380

2 9 0.046504 0.043433 0.039661 0.028639 0.028092 0.027695

2 10 0.018097 0.017153 0.015955 0.014474 0.014104 0.013695

3 8 16.520099 1.288823 0.553544 0.067606 0.064207 0.061489

3 9 0.384329 0.293024 0.218305 0.053563 0.051567 0.050019

3 10 0.168767 0.145756 0.121824 0.043260 0.042012 0.041088

3 11 0.095628 0.086485 0.076013 0.034976 0.034165 0.033589

3 12 0.058812 0.054483 0.049258 0.027846 0.027301 0.026914

3 13 0.036644 0.034450 0.031716 0.021368 0.020986 0.020687

3 14 0.021831 0.020731 0.019327 0.015219 0.014936 0.014671

3 15 0.011235 0.010745 0.010111 0.009169 0.008966 0.008733

3 16 0.003278 0.003153 0.002988 0.003078 0.002985 0.002865

Table E.6: Critical coupling for the MAG in the iMOMmq renormalization scheme
for ω = 1/2, 1 and 2 at two and three loops.

332



Appendix E

F Two loops Three loops

Nc Nf ω = 1/2 ω = 1 ω = 2 ω = 1/2 ω = 1 ω = 2

2 7 0.352911 0.348066 0.342161 0.078831 0.073482 0.066826

2 8 0.127203 0.126358 0.125311 0.053505 0.051563 0.048882

2 9 0.055812 0.055568 0.055263 0.034175 0.033613 0.032775

2 10 0.020797 0.020729 0.020644 0.016844 0.016771 0.016655

3 9 0.909893 0.833333 0.749799 0.072040 0.066273 0.059306

3 10 0.238596 0.232143 0.224117 0.054752 0.051951 0.048238

3 11 0.118938 0.117021 0.114577 0.042665 0.041258 0.039270

3 12 0.068973 0.068182 0.067161 0.033125 0.032451 0.031448

3 13 0.041547 0.041176 0.040696 0.024931 0.024651 0.024211

3 14 0.024215 0.024038 0.023809 0.017440 0.017353 0.017207

3 15 0.012271 0.012195 0.012097 0.010298 0.010279 0.010245

3 16 0.003540 0.003521 0.003496 0.003366 0.003356 0.003343

Table E.7: Critical coupling for the MAG in the iMOMmh renormalization
scheme for ω = 1/2, 1 and 2 at two and three loops.

F Two loops Three loops

Nc Nf ω = 1/2 ω = 1 ω = 2 ω = 1/2 ω = 1 ω = 2

2 6 0.456502 0.368962 0.293214 0.068321 0.058604 0.048399

2 7 0.172393 0.155029 0.136508 0.046244 0.041077 0.035270

2 8 0.084619 0.078840 0.072198 0.032787 0.029333 0.025796

2 9 0.041926 0.039760 0.037173 0.021571 0.019852 0.017805

2 10 0.016680 0.015987 0.015140 0.011542 0.010807 0.009909

3 8 1.152688 0.733566 0.491556 0.062251 0.053790 0.044666

3 9 0.284370 0.245200 0.206657 0.045268 0.040311 0.034640

3 10 0.143254 0.131082 0.117558 0.034919 0.031600 0.027699

3 11 0.085438 0.080190 0.074032 0.027530 0.025184 0.022383

3 12 0.053974 0.051377 0.048236 0.021688 0.020014 0.017991

3 13 0.034188 0.032837 0.031169 0.016696 0.015532 0.014111

3 14 0.020597 0.019906 0.019041 0.012119 0.011373 0.010500

3 15 0.010686 0.010374 0.009981 0.007610 0.007219 0.006726

3 16 0.003137 0.003056 0.002953 0.002766 0.002665 0.002534

Table E.8: Critical coupling for the MAG in the iMOMmg renormalization scheme
for ω = 1/2, 1 and 2 at two and three loops.
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F Two loops Three loops

Nc Nf ω = 1/2 ω = 1 ω = 2 ω = 1/2 ω = 1 ω = 2

2 6 5.327143 3.585161 2.437039 1.073281 1.013502 0.962845

2 7 1.152701 0.990057 0.822798 0.559772 0.534507 0.510243

2 8 0.390152 0.355055 0.314319 0.270730 0.259641 0.247612

2 9 0.124010 0.115822 0.105762 0.105709 0.101371 0.096136

2 10 0.024130 0.022871 0.021273 0.023162 0.022148 0.020846

3 8 1.529262 1.419098 1.316340

3 9 3.843291 2.930241 2.183050 0.996607 0.940596 0.885769

3 10 1.462652 1.263216 1.055809 0.653734 0.623259 0.592086

3 11 0.701272 0.634220 0.557432 0.419166 0.402108 0.383796

3 12 0.352874 0.326896 0.295548 0.255045 0.245527 0.234734

3 13 0.171004 0.160769 0.148006 0.141288 0.136210 0.130111

3 14 0.072771 0.068102 0.064422 0.066093 0.063703 0.060684

3 15 0.022469 0.021491 0.020222 0.021710 0.020901 0.019846

3 16 0.002186 0.002102 0.001992 0.002177 0.002096 0.001988

Table E.9: Critical exponent ω̃ for the MAG in the iMOMmq renormalization
scheme for ω = 1/2, 1 and 2 at two and three loops.

F Two loops Three loops

Nc Nf ω = 1/2 ω = 1 ω = 2 ω = 1/2 ω = 1 ω = 2

2 7 1.882193 1.856353 1.824856 0.746948 0.701073 0.643199

2 8 0.508813 0.505432 0.501244 0.338018 0.328334 0.314785

2 9 0.148833 0.148181 0.147369 0.126465 0.125049 0.122966

2 10 0.027729 0.027638 0.027525 0.026727 0.026631 0.026498

3 9 9.098932 8.333333 7.497988 1.383771 1.272760 1.139203

3 10 2.067830 2.011905 1.942349 0.840139 0.799725 0.746148

3 11 0.872209 0.858156 0.840231 0.513518 0.498442 0.477261

3 12 0.413839 0.409091 0.402969 0.302051 0.296744 0.289024

3 13 0.193884 0.192157 0.189917 0.162873 0.161206 0.158755

3 14 0.080716 0.080128 0.079363 0.074398 0.073931 0.073261

3 15 0.024541 0.024390 0.024193 0.023907 0.023788 0.023626

3 16 0.002360 0.022347 0.002331 0.002354 0.002342 0.002326

Table E.10: Critical exponent ω̃ for the MAG in the iMOMmh renormalization
scheme for ω = 1/2, 1 and 2 at two and three loops.
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F Two loops Three loops

Nc Nf ω = 1/2 ω = 1 ω = 2 ω = 1/2 ω = 1 ω = 2

2 6 3.043344 2.459744 1.954763 0.842774 0.719335 0.592056

2 7 0.919427 0.826824 0.728041 0.427109 0.380106 0.327615

2 8 0.338478 0.315362 0.288792 0.209472 0.191012 0.169503

2 9 0.111803 0.106027 0.099128 0.085449 0.079444 0.072219

2 10 0.022240 0.021316 0.020186 0.020130 0.019078 0.017776

3 8 3.123205 2.479437 1.868995

3 9 2.843703 2.452003 2.066569 0.833292 0.739952 0.634737

3 10 1.241532 1.136045 1.018833 0.531501 0.481717 0.423555

3 11 0.626546 0.588059 0.542903 0.338716 0.311363 0.278660

3 12 0.323842 0.308264 0.289414 0.207970 0.193387 0.175627

3 13 0.159546 0.153239 0.145454 0.117778 0.110682 0.101890

3 14 0.068658 0.066355 0.063472 0.057024 0.054161 0.050550

3 15 0.021371 0.020749 0.019961 0.019601 0.018829 0.017838

3 16 0.002092 0.002038 0.001969 0.002062 0.002004 0.001929

Table E.11: Critical exponent ω̃ for the MAG in the iMOMmg renormalization
scheme for ω = 1/2, 1 and 2 at two and three loops.

F Two loops Three loops

Nc Nf ω = 1/2 ω = 1 ω = 2 ω = 1/2 ω = 1 ω = 2

2 6 27.151323 9.421916 2.329600 0.727579 0.529330 0.340358

2 7 2.727786 1.739164 0.911281 0.448441 0.372273 0.295462

2 8 0.802887 0.621964 0.434591 0.282612 0.252537 0.221015

2 9 0.293480 0.252532 0.205388 0.165442 0.154232 0.141942

2 10 0.094414 0.086687 0.077168 0.074136 0.070596 0.066387

3 8 1.133708 0.749544 0.423023

3 9 16.945454 7.666846 2.419001 0.786991 0.593762 0.414971

3 10 4.059420 2.559142 1.289464 0.574469 0.471709 0.371009

3 11 1.645984 1.209145 0.771741 0.426561 0.371078 0.314365

3 12 0.807914 0.651783 0.480014 0.314378 0.284772 0.253448

3 13 0.425766 0.366189 0.296502 0.223991 0.208688 0.191928

3 14 0.222301 0.200185 0.173150 0.148067 0.140545 0.131936

3 15 0.102650 0.095603 0.086687 0.082627 0.079281 0.075218

3 16 0.027328 0.026087 0.024471 0.025626 0.024694 0.023492

Table E.12: Critical exponent ρ for the MAG in the iMOMmq renormalization
scheme for ω = 1/2, 1 and 2 at two and three loops.
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F Two loops Three loops

Nc Nf ω = 1/2 ω = 1 ω = 2 ω = 1/2 ω = 1 ω = 2

2 7 3.747300 2.473367 0.815222 0.319711 0.282781 0.262300

2 8 0.863985 0.720339 0.529470 0.252724 0.234933 0.220454

2 9 0.309416 0.285623 0.254192 0.166848 0.160562 0.154358

2 10 0.101970 0.099095 0.095369 0.080456 0.079152 0.077654

3 9 41.850719 15.814616 - 9.168835 0.387396 0.298384 0.276381

3 10 4.355094 2.760172 0.794656 0.398791 0.340127 0.306951

3 11 1.576575 1.214713 0.748957 0.347815 0.314402 0.289775

3 12 0.767773 0.656673 0.511728 0.283215 0.265652 0.250555

3 13 0.412837 0.376052 0.327950 0.216388 0.208016 0.199960

3 14 0.221764 0.210274 0.195312 0.150500 0.147053 0.143388

3 15 0.105550 0.102718 0.099061 0.086974 0.085862 0.084554

3 15 0.028950 0.028643 0.028250 0.027477 0.027288 0.027045

Table E.13: Critical exponent ρ for the MAG in the iMOMmh renormalization
scheme for ω = 1/2, 1 and 2 at two and three loops.

F Two loops Three loops

Nc Nf ω = 1/2 ω = 1 ω = 2 ω = 1/2 ω = 1 ω = 2

2 6 18.889955 13.115654 9.026188 1.137715 0.904094 0.686813

2 7 3.461711 3.017882 2.588851 0.596908 0.522030 0.439606

2 8 1.096596 1.031878 0.962335 0.338991 0.311343 0.277765

2 9 0.381247 0.370717 0.358819 0.181255 0.171390 0.158654

2 10 0.108207 0.106115 0.103640 0.074094 0.071156 0.067335

3 8 2.311115 1.831479 1.380792

3 9 17.574292 13.681752 10.430036 1.165083 0.991664 0.809849

3 10 5.378418 4.779519 4.181646 0.776540 0.695456 0.602230

3 11 2.313440 2.179419 2.036729 0.539557 0.498978 0.449066

3 12 1.131927 1.100464 1.066610 0.375802 0.355280 0.328634

3 13 0.574349 0.568081 0.561776 0.253855 0.243752 0.230073

3 14 0.281210 0.280212 0.279458 0.159044 0.154304 0.147767

3 15 0.118769 0.095603 0.086687 0.084019 0.079281 0.079108

3 16 0.028135 0.026087 0.027193 0.024828 0.024694 0.023407

Table E.14: Critical exponent ρ for the MAG in the iMOMmg renormalization
scheme for ω = 1/2, 1 and 2 at two and three loops.
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Appendix F

Renormalization Group

Functions γA, γψ and γc of QCD

in MS Scheme

Te anomalous dimensions of the quark, ghost and gluon; γψ, γc and γA, in the MS,

mMOM to four loops and MOMi schemes to three loops have been calculated for

an arbitrary colour group and gauge in [304,306,307]. Additionally the three loop

Feynman gauage results for these anomalous dimensions were computed in [225].

We state the MS result here in the Landau gauge for completeness. Note that

a2 = g2/(16π2). We have

γMS
A =

1

6

(
− 13Nc + 4Nf

)
a +

1
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(
− 59N3

c + 28N2
c Nf − 8Nf
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1
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γMS
ψ = −16

(
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− 1
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and
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