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Abstract 

Contamination of water bodies with human and animal fecal sources could significantly affect human 

health by disseminating pathogenic microorganisms. Therefore, accurate identification of sources that 

contribute to fecal pollution is vital for executing effective management strategies. Microbial source 

tracking (MST) is a promising approach to identify the sources of fecal contamination, which could 

be valuable for best management practices. The waterbody of interest, Taihu Lake, is one of the largest 

freshwater Lakes in China and serves as an important source for drinking water in addition to many 

other roles. Though this Lake is connected to several Rivers, Tiaoxi River provides most of the inflow 

(>60%). Previous reports indicated that Tiaoxi river is facing serious issues with fecal contamination 

and suggested implementing MST study. In this regard, 25 sampling locations were selected across 

the Tiaoxi River to monitor fecal contamination, and samples (water and sediment) were collected in 

three seasons (autumn 2014, winter and summer 2015). Physico-chemical and culture-based 

microbiological analysis of water samples were carried out for preliminary assessment of fecal 

contamination at these locations. The results showed that TN, TP, NO2-N, and NH4-N were the major 

nutrients that contributed to pollution in this River, and fecal coliform counts were high (>250 

CFU/100 mL) in 15 locations indicating that a MST study was needed to ascertain sources of fecal 

contamination. Before applying MST, microbial community analysis was carried out in 45 water 

samples (collected from 15 locations in three seasons) to identify the diversity and composition of 

bacteria, including fecal and pathogenic bacteria, using Illumina high throughput sequencing. The 

Operational Taxonomic Units (OTUs) data comparison between total water samples with individual 

fecal sources indicated that chicken (9.8%), pig (7.1%), and human fecal samples (4.5%) have shared 

OTUs with total water samples, indicating the presence of avian, pig and human fecal contamination 

in this River. The genus level bacterial community data revealed that members of five fecal associated 

genera (Bacteroides, Prevotella, Blautia, Faecalibacterium, and Dorea) were present at several 

locations, pointing to human or animal fecal contamination in those locations. Furthermore, seven 

potential pathogenic bacterial genera namely Acinetobacter, Aeromonas, Arcobacter, Brevundimonas, 

Enterococcus, Escherichia-Shigella, and Streptococcus were also detected with high relative 

abundance (>0.1%), specific PCR assays are needed for accurate identification of their pathogenicity. 

As MST validation is required prior to its application in any new geographical area, a comprehensive 

evaluation of ten MST assays including two universal/general Bacteroidales (BacUni and GenBac3), 

four human-associated (HF183 SYBR, HF183 Taqman, BacHum and Hum2), one swine associated 

(Pig-2-Bac), one livestock/domestic animal associated (BacCow) and two avian associated MST qPCR 

assays (GFD and AV4143) targeting sewage, human and animal fecal DNA was carried out to 

determine the suitable MST assays for identifying fecal pollution sources at Taihu watershed. The 
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results showed that BacUni, HF183 Taqman, Pig-2-Bac and GFD markers were the best performers 

and are recommended for tracking total and host-associated fecal contamination in this region. The 

above evaluated MST markers were quantified in 15 locations (in water and sediment samples) of 

Tiaoxi River. Total Bacteroidales marker was detected in all the water and sediment samples, 

confirming the presence of fecal contamination. The human-associated marker was frequently detected 

at four locations at high concentrations (4.83-5.62 log10 copies/100ml) indicating that those locations 

were heavily contaminated with fecal pollution. Swine associated marker was frequently detected in 

samples from two locations and the avian associated marker was detected with high concentrations at 

4 locations, correlating with the land use patterns and pointing to the entry of pig and avian fecal 

sources into Tiaoxi River. Among five bacterial pathogens monitored, Campylobacter jejuni was 

detected exceeding levels of lowest infection dose in 2 locations that are highly polluted with avian 

fecal source. Similarly, Shigella spp. were detected at two locations that are highly contaminated with 

human fecal sources, and Shiga toxin producing E.coli (STEC) at 2 locations that are contaminated 

with either human or pig fecal sources. The bacterial pathogen quantification results correlate with the 

findings of host associated fecal markers, demonstrating the potential of MST in predicting the 

presence of pathogenic organisms and the concomitant risk to human health.
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1.1 Water Pollution 

Water is a vital resource for the human and natural environment (Oki and Kanae, 2006). 

Pollution of water occurs when contaminants such as chemical, physical, pathogenic microbes 

or radioactive substances (pollutants) enter the natural water bodies (Rivers, Lakes, 

groundwater, and oceans) leading to changes in water quality and harming human health and 

the environment (Briggs, 2003). Insufficient remediation or management of wastewater from 

urban, agricultural and industrial sources could lead to accumulation of chemical and biological 

pollutants at hazardous levels in water resources (Stevens et al., 2009). In terms of human 

health, it has been reported that unsafe drinking water and inadequate sanitation facilities are 

primary concerns affecting one-third of the world population. In addition, other threats include 

pathogen or chemical toxicant exposure through food (via edible plants irrigated with 

contaminated water or toxic chemical bioaccumulation in fish and other seafood) or 

recreational activities like swimming and surfing in contaminated water (Schwarzenbach et al., 

2010).  

Globally, particularly in low-income countries, drinking water contamination is a major 

concern as it causes infection or illness (Bylund et al., 2017). According to the World Health 

Organization, diarrheal disease is the second major cause of child death (<5 years) in the world 

though it is preventable (WHO, 2017). Globally, around 480,000 children (<5 years) die due 

to diarrheal diseases which accounts for nearly 8% of total child deaths (UNICEF, 2018). In 

China, 4% of total child deaths under the age of 5 years are due to diarrheal diseases (WHO, 

2015). In most of the developing countries, diarrheal diseases are primarily transmitted through 

contaminated drinking water or inadequate sanitation facilitates (Ashbolt, 2004). Primarily, 

diarrheal diseases are due to contamination of water with human or animal feces transmitting 

pathogenic microorganisms (WHO, 2017).  
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1.2 Fecal pollution 

Fecal contamination of the aquatic environment by human and animal sources is one of the 

critical concerns for public health and the environment. Fecal pollution occurs when feces from 

septic leakages, agricultural runoff, inadequately treated sewage from treatment plants, and 

wildlife or livestock enters water bodies (Harwood et al., 2000, Bernhard and Field, 2000b). 

Fecal pollution of waters can transmit a wide range of pathogenic microorganisms (Ashbolt, 

2015). Therefore, proper water quality monitoring and remediation procedures are required to 

prevent waterborne diseases. Globally, waterborne outbreaks due to fecal contamination occur 

in all countries, although, the occurrence and severity levels are higher in developing countries 

(Shuval, 2003, Tornqvist et al., 2011). Most of the pathogenic microorganisms associated with 

waterborne diseases originate from feces of mammals (Leclerc et al., 2002). Therefore, in terms 

of human health, it is crucial to prevent contamination of water bodies with mammalian fecal 

sources (Stewart et al., 2007). Similarly, avian fecal pollution originating from domestic and 

wildlife are also very important as it can transmit pathogenic microorganisms such as 

Campylobacter species, Giardia lamblia, and Cryptosporidium parvum (Kuhn et al., 2002, 

Ahmed et al., 2016b). Both human and animal fecal pollution enter water bodies in different 

ways through point sources or non-point sources. Point sources refer to contamination of water 

bodies through single, discrete, identifiable sources like ditches and pipes. Non-point sources, 

which are commonly termed “diffuse sources”, refer to contamination that cannot be attributed 

to a single, discrete source; some examples are storm runoff, illegal dumping, wildlife and 

septic leakages. Mostly, it is the non-point sources of pollution that are considered the primary 

cause for the declining of water quality in a watershed (Santo Domingo et al., 2007). Therefore, 

appropriate monitoring is required to determine the influence of different fecal sources on the 

water bodies and to enable effective management of water resources. 
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1.3 Traditional indicators of fecal pollution  

Culture-based methods to enumerate fecal indicator bacteria (FIB) have been routinely used as 

indicators of fecal contamination in the aquatic environment traditionally (Fremaux et al., 

2009). FIB, which includes fecal coliforms (FC), fecal Escherichia coli, and fecal 

Enterococcus spp., are normally found in the intestinal tract of warm-blooded animals and are 

excreted in feces. As direct monitoring of pathogens is cost-effective and technically complex 

due to their high diversity and low concentration, FIB cultivation and enumeration have been 

commonly used to determine public health risk associated with human and animal fecal 

pollution (Schriewer et al., 2010, Shahryari et al., 2014). However, several studies have 

indicated that the correlation between traditional fecal indicator bacteria (FIB) and pathogen 

presence is not perfect (Walters et al., 2009, Fremaux et al., 2009, Shahryari et al., 2014). 

Additionally, FIB occurrence and proliferation in the natural aquatic environment has been 

reported (Byappanahalli et al., 2003). Furthermore, FIB detection in water cannot determine 

the origin of the fecal source (Field and Samadpour, 2007). Determining the sources of fecal 

pollution is essential to assess the potential public health risks associated and also to implement 

effective remediation measures by taking legitimate actions (Santo Domingo et al., 2007). In 

this regard, various microbial source tracking (MST) techniques have emerged to ascertain the 

source or origin of fecal contamination in environmental samples (Bernhard and Field, 2000b, 

Harwood et al., 2000, Scott et al., 2005, Layton et al., 2006, Kildare et al., 2007, Ahmed and 

Katouli, 2008). 

1.4 Microbial Source Tracking 

Microbial source tracking (MST) is a group of methods that examine similarities/genetic 

matches between fecal indicator bacteria of different hosts and contaminated environmental 

samples to distinguish the fecal source of origin (Bernhard and Field, 2000b). Typically, MST 

methods are categorized into library-dependent (LD) and library independent (LI) methods 
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based on the requirement of reference source “library” construction. Some of the commonly 

used LD and LI methods with their advantages and disadvantages are summarized in Table 1.1. 

1.4.1 Library-dependent MST method 

LD-MST methods require the construction of libraries or databases of bacterial strains 

(typically based on phenotypic or genotypic characteristics) isolated from reference fecal 

sources (known), and these libraries are used for comparison against isolates of water samples 

(unknown) to ascertain the sources of fecal pollution (Harwood et al., 2000, Wiggins et al., 

2003). LD-MST approach relies on the assumption that the target organism of a particular host 

source has specific phenotypic and genotypic characteristics and these remain constant for a 

period in the environment to which a fingerprint library can be constructed to predict the source 

of isolates present in unknown samples (Ritter et al., 2003, Robinson et al., 2007). Many of the 

LD-MST techniques require culturing of target organisms from reference fecal sources and 

unknown water samples collected from a watershed of interest; though recently developed Next 

Generation Sequencing (NGS) based LD-MST methods do not require culturing (Cao et al., 

2011, Unno et al., 2012). The culture based LD-MST methods rely on either genotypic or 

phenotypic analysis of FIB. Ribotyping of E. coli has been the most frequently used culture-

based genotypic LD-MST method (Parveen et al., 1999, Scott et al., 2003, Carson et al., 2001) 

and in the culture based phenotypic LD-MST method, antibiotic resistance profiling of fecal 

coliforms (Harwood et al., 2000, Whitlock et al., 2002), fecal enterococci (Hagedorn et al., 

1999, Harwood et al., 2003) were commonly used. Several evaluation studies have revealed 

that culture based LD-MST methods performed poorly making them less useful for source 

tracking of environmental samples, as well as the disadvantage of needing to culture large site-

specific libraries or databases of phenotypic or genotypically characterized isolates (Moore et 

al., 2005, Harwood et al., 2014). However, culture-independent LD-MST methods such as 

NGS based methods have gained more attention in recent years, though these methods are site-
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specific (specific to a geographical location) and requires optimizations and validations before 

applying to environmental samples (Ahmed et al., 2015b, Staley et al., 2018, Unno et al., 2018). 

The culture based (phenotypic and genotypic) and culture-independent (NGS) LD-MST 

methods are briefly given below.  

1.4.1.1 Culture based LD-MST: phenotypic methods 

Phenotypic methods depend on comparison of physical or biochemical characteristics such as 

antibiotic resistance profiles or carbon sources utilized by the target organism. The commonly 

used phenotypic methods are antibiotic resistance analysis (ARA) and carbon utilization 

profiling (CUP), in which ARA has mostly used method due to its simple and inexpensive 

nature requiring less technical skills. However, these methods require complex statistical 

analysis to predict the source of contamination, which is a major disadvantage. The details of 

these two phenotypic approaches along with their applicability to field studies for source 

tracking have been reviewed in several papers (Stoeckel and Harwood, 2007, Ahmed and 

Katouli, 2008, Field and Samadpour, 2007). 

1.4.1.2 Culture based LD-MST: Genotypic methods 

Genotyping utilizes comparison of genetic material of target organisms to differentiate between 

the fecal sources (Griffith et al., 2003). Ribotyping, Repetitive palindromic Polymerase Chain 

Reaction (rep-PCR), and pulsed-field gel electrophoresis (PFGE) are the most commonly used 

genotypic methods. These methods are highly reproducible when performed by a skilled 

technician. However, these methods are expensive; require high technical skills and complex 

statistical analysis to predict the source (Scott et al., 2002, McLellan et al., 2003). The complete 

details of genotypic methods can be found in previous review papers (Yan and Sadowsky, 2007, 

Meays et al., 2004, Stoeckel and Harwood, 2007).  
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1.4.1.3 Culture independent LD-MST: NGS based methods  

Advances in sequencing technologies with the introduction of NGS has improved the ability to 

characterize bacterial communities in different sources such as environmental and fecal 

samples, which further facilitated the development of culture-independent LD-MST in recent 

years (Knights et al., 2011, Unno et al., 2012).  This method relies on construction or creation 

of large sequence libraries in the form of operational taxonomic units (OTUs) for different fecal 

sources at a geographical location and their comparison with OTUs of environmental samples 

(Unno et al., 2010, Knights et al., 2011). This can be discrete examination of shared OTUs 

from fecal and environmental samples (called community based LD-MST using shared OTU 

method) (Unno et al., 2010) or by using a software program named SourceTracker which uses 

a Bayesian algorithm to indicate the contribution of OTUs from fecal source in environmental 

samples (Knights et al., 2011). 

Community-based LD-MST using the shared OTU method can facilitate qualitative assessment 

of fecal pollution (Boehm et al., 2013).  Although there is a criticism in assigning these OTUs 

or short sequence reads generated by NGS to species level (Nguyen et al., 2016), they can be 

used to characterize bacterial species present in different fecal sources and group them as host-

specific or shared species (OTUs) between several fecal sources.  Host-specific OTUs have 

been compared with OTUs of environmental samples to enable the potential fecal source of 

contamination and magnitude of the contamination based to be ascertained, based on total 

abundance (Unno et al., 2010, Unno et al., 2012).  

As discussed above, the SourceTracker method utilizes a Bayesian algorithm to track the fecal 

pollution by determining the shared OTUs of the fecal origin with environmental samples 

(Knights et al., 2011). This method has gained much attention in recent years, as it was 

developed to predict the quantitative presence of fecal contamination. However, some 

validation studies have reported that this method has high variability in quantification results 
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among technical replicates and showed lower confidence (Henry et al., 2016, Brown et al., 

2017). Furthermore, a validation study conducted very recently in Florida, USA indicated the 

geographical variability (spatial) of this method and recommended that further work is 

mandatory to assess the temporal variability in fecal communities  (Staley et al., 2018).  

Overall, both culture independent LD-MST methods have spatio-temporal limitations, and in-

depth evaluation and optimizations are needed before their application in a new geographical 

setting (Staley et al., 2018, Unno et al., 2018).  

1.4.2 Library independent MST method 

LI-MST methods do not involve preparation of libraries for fecal sources. LI-MST methods 

need either culturing of host-specific microbes from environmental samples or molecular 

analysis of host-specific viral or bacterial genetic material isolated from environmental samples 

in order to identify human and animal fecal sources (Griffith et al., 2003, Hagedorn and Liang, 

2011). Some of the commonly used LI-MST techniques are given below.  

1.4.2.1 Bacteriophage typing 

The viruses that infect specific bacteria (in some cases species-specific) are bacteriophages. 

Coliphages are a broad group of viruses that infect E.coli. There are further categories based 

on the genome (RNA or DNA), nature of attachment to target cell before infecting, such as 

some adsorb to the cell wall called somatic coliphages and some attach to sex pilus of E.coli 

called F+ RNA or DNA coliphages (Vinje et al., 2004). In LI-MST, F+RNA coliphages are 

largely used in discrimination of human fecal sources from non-human sources in 

environmental samples (Vergara et al., 2015, Shahrampour et al., 2015). The brief procedure 

includes initial F+RNA coliphages isolation in the presence of DNAse to separate them from 

F+DNA types and then followed by serotyping (using antisera that inhibit its infection to E.coli) 

or genotyping (using labeled probes)  (Havelaar et al., 1990, Wolf et al., 2008). Though this 

technique is fast and relatively easy to perform, the main disadvantage is it can only 
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discriminate human fecal sources from animal sources, but not amongst animal sources. 

Furthermore, F+ RNA coliphages have unpredictable survival kinetics in the environment 

(McQuaig et al., 2012).  

1.4.2.2 Viral PCR and qPCR:  

Generally, viruses are very specific to the host. With limited host range, viruses have been used 

as targets to differentiate human and animal fecal sources in environmental samples. The viral 

LI-MST method is relatively simple which includes isolation of virus from samples, followed 

by viral genome extraction and amplification of targets by PCR or qPCR. Enterovirus and 

adenovirus that are specific to human, bovine and porcine have been used as targets to indicate 

human, bovine, and livestock-associated fecal contamination in environmental samples (Noble 

et al., 2003, Wolf et al., 2010). However, an evaluation study has reported that bovine 

enteroviruses lack specificity and had cross reactivity with other animals like horse and geese 

(Field and Samadpour, 2007). Another study reported that though human viral fecal markers 

showed good sensitivity to sewage samples, they failed to detect viral DNA in human fecal 

samples, as their abundance is low in the human population (Griffith et al., 2003).  

1.4.2.3 Bacterial PCR and qPCR: 

Several host specific bacteria have been suggested for their use as a fecal indicator in MST 

studies and most of these methods rely on extraction of DNA from environmental samples, 

followed by PCR or qPCR amplification of marker gene of bacteria specific to a host. Some of 

the recommended host specific bacteria are Bacteroidales (Bernhard and Field, 2000b), 

Bifidobacterium spp. (Bonjoch et al., 2004), Methanobrevibacter spp. (Ufnar et al., 2007, 

Harwood et al., 2013), Rhodococcus coprophilus (Wicki et al., 2012), Escherichia coli (Kim 

et al., 2010) and Enterococcus spp.  (Scott et al., 2003). Among these, Bacteroidales based 

MST makers targeting 16S rRNA genes have shown most promising results.  
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Table 1.1 Summary of commonly used MST methodologies with advantages and disadvantages. 

Method Library-

dependent 

Culture-

dependent 

Method Description Advantages Disadvantages 

Rep-PCR Yes Yes Requires PCR amplification of specific 

repetitive sequences and DNA fragments 

separation by agarose gel, producing unique 

fingerprints of bacterial strains.  

Differentiates isolates among 

multiple hosts, 

Easy and rapid, higher accuracy 

(based on the size of library). 

Reference libraries are required, 

concerns over reproducibility, 

Geographical and temporal-

specific. 

Ribotyping Yes Yes Involves digestion of genomic DNA with 

restriction enzymes, followed by Southern 

blotting of digested genomic DNA. 

 

Highly reproducible 

differentiates isolates among 

multiple hosts, higher accuracy 

(based on the size of library). 

Reference libraries are required, 

Geographical and temporal-

specific, specialized training is 

required. 

Antibiotic 

resistance 

profiling 

Yes Yes A biochemical method that discriminates 

bacteria based on response and resistance 

pattern to antibiotics.    

Easy, rapid and inexpensive.  Geographical and temporal-

specific, higher false-positives, 

complex analysis.  

Next-Generation 

Sequencing 

Yes No DNA extraction, sequencing using NGS, 

computational analysis. 

Comprehensive bacterial 

communities identification, 

multiple fecal sources can be 

identified if libraries are 

available.  

Geographical and temporal-

specific requires the 

construction of large libraries 

for different hosts. 

Bacteriophage 

typing 

No Yes Involves source specific bacteriophage 

isolation and enumeration, followed by 

serotyping or genotyping of the phages. 

Highly specific, relatively 

inexpensive 

Only distinguishes between 

human and animal only, less 

sensitive due to low abundance. 

Bacterial PCR 

and qPCR 

No No Involves amplification of host-associated 

bacterial markers, several markers were 

developed to discriminate between human 

and animal fecal sources.  

Specificity to host, accuracy 

ranged from medium to high, 

fast and easy to perform.  

Markers available for relatively 

few hosts, marker unknown 

persistence of markers, 

expensive, errors in 

amplification. 

Viral PCR and 

qPCR 

No No Involves amplification of host-associated 

viral markers.  

Host specificity, fast and easy to 

perform 

Less abundance in the 

environment, markers 

availability for very few hosts.  
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Currently, PCR/qPCR assays targeting members of the order Bacteroidales are the widely used 

in MST, as they have shown higher potential in tracking fecal sources (Wuertz et al., 2011). 

Bacteroidales are obligate anaerobic bacteria living in the gastrointestinal tract of mammals 

(Wexler, 2007). They are present at a higher concentration than conventional indicator bacteria 

in mammalian feces, though this ratio varies in different animal species (Meays et al., 2004). 

The Bacteroidales abundance has been reported as low in avian species, such as chicken, goose, 

and gull (Jeter et al., 2009, Lu et al., 2008, Ohad et al., 2016). Bacteroidales are strictly 

anaerobic bacteria, which means they cannot survive for a long time in environmental samples 

and their presence indicates recent fecal contamination, an important feature for microbial 

source tracking. It was reported that Bacteroidales could persist for about one week in the 

environment (Bae and Wuertz, 2009, Walters and Field, 2009, Bae and Wuertz, 2012). 

However, it has been reported that Bacteroides thetaiotaomicron could survive for a longer 

period in the environment (Xu et al., 2003). 

Although most of the Bacteroidales LI-MST assays are based on traditional PCR amplification 

to detect presence or absence of target genes initially, in recent years they have been replaced 

with quantitative PCR (qPCR) assays to quantify the markers in environmental samples. 

Marker gene detection and quantification by qPCR can be accomplished either by non-specific 

fluorescent reporters like SYBR Green (Seurinck et al., 2005, Okabe et al., 2007) or using 

specific labeling probes, based on Taqman assays (Layton et al., 2006, Kildare et al., 2007, 

Mieszkin et al., 2009, Green et al., 2014). However, TaqMan based assays are recommended 

for MST studies on environmental sample due to probe and primer requirement in the assay to 

provide more specificity (Kildare et al., 2007). Currently, total or universal Bacteroidales can 

be detected by four assays: BacUni (Kildare et al., 2007), GenBac (Dick and Field, 2004, 

Siefring et al., 2008), AllBac (Layton et al., 2006) and BacPre1 (Okabe et al., 2007). Several 

human-associated Bacteroidales MST assays have been developed and field-tested for 
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quantification of human fecal markers in environmental samples (Layton et al., 2006, Kildare 

et al., 2007, Seurinck et al., 2005, Reischer et al., 2007, Shanks et al., 2009, Haugland et al., 

2010, Green et al., 2014). Similarly, several host-associated assays were developed for pig, 

ruminant, dog, gull, Canada geese, horse and elk (Converse et al., 2009, Dick et al., 2005, 

Dorai-Raj et al., 2009, Fremaux et al., 2010, Mieszkin et al., 2009, Silkie and Nelson, 2009, 

Stricker et al., 2008). Though numerous MST studies focused on the evaluation of source 

specificity and cross reactivity of fecal sources, few studies have validated the geographical 

applicability of these host-specific markers and it has been recommended that local validation 

is needed prior to their use at any new study area (Ahmed et al., 2007, Reischer et al., 2013, 

Jenkins et al., 2009, Boehm et al., 2016, Odagiri et al., 2015). 

1.5 Water quality issues in China 

Rapid urbanization, industrialization, and socio-economic development have led to a severe 

ground and surface water pollution in China, which has been acknowledged as a heavily 

degraded natural resource of China (Han et al., 2016). Several lakes and rivers are contaminated 

by a high degree of pollution and the limitations of water resources is a major concern to 

China’s development (Jiang, 2009). Though China has higher total renewable freshwater 

resources of 2796 billion m3 per year, it still has low water reserves of 2039 m3 per person 

which are only 34% of the world average per capita per year (6016 m3) (NBSC, 2015, WHO, 

2015). The total water consumption in China had gradually increased with an annual average 

rise of 0.97% from the year 2000 (550 billion m3) to 2013 (618 billion m3), followed by a slight 

decrease in 2014 and 2015. Agriculture sector continued to be the major water consumer in 

China accounting for 61-69% of total water consumption annually and it had a 385 billion-m3 

water consumption in 2015. The remaining water consumption came from industry (21-24%), 

domestic usage (10-13%) and ecological protection (1-2%) purposes (NBSC, 2015, Jiang, 

2015). The wastewater discharge from these consumers could further pollute the existing 
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freshwater sources, which is evident from increase in water pollution. By 2015, the total 

amount of wastewater discharge was almost 73 billion m3 and about 68% of the discharge came 

from domestic sources, which is also increasing annually (NBSC, 2015). Although wastewater 

discharge is increasing, treatment plant provision is inadequate and infrastructure 

developments are lagging behind the actual requirement (Hagedorn and Liang, 2011). As of 

2014, it was reported that 82% of urban areas are equipped with wastewater treatment plants 

but only 1% of rural areas have these facilities, and discharge from these areas could degrade 

the aquatic environment of receiving sources (Jiang, 2015). According to the WHO, more than 

36% of the population in rural China still lack access to improved sanitation and drinking water 

(WHO, 2015). Though drinking water quality is improving in recent years, nearly 200 million 

people are still consuming unsafe drinking water in China (Tao and Xin, 2014, Han et al., 2016). 

Approximately 60,000 people are dying in China annually due to water pollution-related 

diseases (Qiu, 2011). 

Depending on pollution levels, the Ministry of Environmental Protection (MEP), China has 

classified water quality into classes I-III (excellent, good, satisfactory), IV-V (moderately and 

heavily polluted), and >V (seriously polluted). Based on this grading system, the overall 

surface water quality of China for 2015 was graded as Class I-III (64.5%), Class IV-V (26.7%), 

and Class >V (8.8%) and one-third of lakes, rivers were reported as seriously polluted, and 

human contact was not recommended in these waters (MEP, 2016). For the Taihu Lake basin, 

the study of interest here, water quality was graded as Class I-III (41.1%), Class IV-V (52.9%), 

and Class >V (5.9%) (Rose et al., 2015, Sha Long et al., 2018) and it was reported that this 

lake has eutrophication and fecal pollution issues (Hagedorn and Liang, 2011, He et al., 2016a).  

1.6 Taihu Lake water quality 

Taihu Lake is one of the top five larger freshwater lakes in China, located in southeast Jiangsu 

province and the Yangtze River basin (Chen et al., 2016), one of the most industrialized regions, 



14 
 

where this lake serves multiple functions as drinking water source, flood protection, fisheries, 

tourism, and transportation (Fig. 1.1A) (Qin et al., 2007). Pollution of water bodies is a serious 

concern in areas experiencing rapid urbanization. Rapid industrial development coupled with 

an increase in the population of the Taihu watershed has resulted in declining water quality and 

ecosystem health (Chen et al., 2016). Increased anthropogenic activities combined with 

existing land use practices can increase pollutant loadings, such as nutrients and microbes into 

water bodies that can affect public health (Carroll et al., 2006). On the other hand, rainfall 

events can further accelerate the pollutant loadings due to the entry of storm water runoff from 

urban areas, as well as from agricultural areas due to common practices such as manure use as 

fertilizers and livestock grazing near the water bodies (Ackerman and Weisberg, 2003). 

Although entry of pathogenic organisms is a major concern, nutrient loading can cause 

enrichment of water resources resulting in eutrophication (Carroll et al., 2006). Previous reports 

showed that pollution from inflow rivers in a watershed could contribute to severe ecological 

and sanitary problems (Singh et al., 2005, Wang et al., 2007b). Therefore, it is important to 

assess the water quality of connecting rivers to prevent the entry of polluted waters and provide 

effective management of Taihu Lake water quality. Taihu Lake watershed is a complex 

network and currently, it is connected to 220 rivers and tributaries approximately (Wang et al., 

2007b). Water from tributaries enters the Lake from the west side and goes out to Rivers in the 

eastern side, primarily through Taihu Bay (Xu et al., 2013). Among the 13 main inflow Rivers, 

Tiaoxi River is the major water source contributor to Taihu Lake (Fig. 1.1B) (Zhang et al., 

2016b). Therefore, Tiaoxi River could significantly influence the water quality of this Lake 

and it is crucial to monitor the water quality of Tiaoxi River for active regulation of Taihu Lake 

watershed. However, recent reports showed that Tiaoxi River is heavily contaminated with 

pollution from multiple sources such as farmland, domestic sewage, and industry, which 

consequently influences Taihu Lake water quality (Hagedorn and Liang, 2011, Lv et al., 2015). 
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Figure 1.1 Map of Taihu Lake watershed (A) and Tiaoxi River watershed (B). 
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Further literature about the Tiaoxi River water quality is given in the next chapters based on 

the type of pollution the chapter is focused on (for example; physico-chemical analysis or fecal 

pollution monitoring chapters). 

Overall, to the best of our knowledge, no MST study has been carried out at Tiaoxi River thus 

far and therefore, this current study was aimed at application of library independent-MST 

Techniques to characterize fecal pollution entering Taihu Lake.  

1.7 Research Objectives 

 Preliminary identification of locations (hot spots) with possible fecal pollution based 

on physicochemical and culture-based microbiological analysis.  

 Investigation of the bacterial community diversity in water samples of Tiaoxi River and 

their temporal and spatial variations.  

 Evaluation of human and animal associated microbial source tracking quantitative PCR 

markers for monitoring fecal pollution in Taihu Watershed, China 

 Investigation of the MST markers and genes of specific bacterial pathogens (by qPCR 

of environmental DNA) in water and sediment samples of Tiaoxi River and their 

correlation with conventional FIB. 

 

Figure 1.2 Schematic representation of research objectives of this study 
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Abstract 

This chapter was aimed to evaluate the physico-chemical and microbiological characteristics 

of Tiaoxi River and to determine the spatial and seasonal variations in the water quality. Water 

samples were collected from 25 locations across the Tiaoxi River in three seasons in 2014–

2015. Fourteen water quality parameters including multiple nutrients and indicator bacteria 

were assessed, and the data analyzed by multivariate statistical analyses. The physico-chemical 

analysis showed high levels (>1 mg/L) of total nitrogen (TN) in all locations for all seasons. 

Total phosphorus (TP), nitrite-N (NO2-N), and ammonium-N (NH4-N) exceeded the acceptable 

limits in some locations and fecal coliform counts were high (>250 CFU/100 mL) in 15 

locations. Hierarchical cluster analysis showed that the sampling sites could be grouped into 

three clusters based on water quality, which were categorized as low, moderate, and high 

pollution areas. Principal component analysis (PCA) applied to the entire dataset identified 

four principal components, which explained 83% of the variation; pH, conductivity, TP, and 

NO3-N were found to be the key parameters responsible for variations in water quality. The 

overall results indicated that some of the sampling locations in the Tiaoxi River are heavily 

contaminated with pollutants from various sources, which can be correlated with land use 

patterns and anthropogenic activities. 
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2.1 Introduction 

Surface water pollution remains a major problem worldwide, caused by both natural processes 

and anthropogenic activities (Noori et al., 2010). Evaluation of surface water quality in 

drinking water sources is important, as it can be one of the main pathways for the dissemination 

of toxic chemicals and pathogenic microorganisms (Lodder et al., 2010, Ouyang, 2005). 

Identifying the source(s) of contamination and developing appropriate management strategies 

is essential to minimize potential public health risks (Carroll et al., 2006). The surface water 

quality in a region can be affected by both point and non-point sources of pollution (Nnane et 

al., 2011). Point source (PS) pollution occurs through a single identifiable source such as 

effluents from industries and wastewater treatment plants (WWTPs) (Hill, 2010) whereas, non-

point sources (NPS) include run-off associated with a particular land use pattern such as urban 

(e.g. stormwater, sewage overflows), agriculture (e.g. fertilizers, pesticides, animal manure) or 

forestry land uses (Bu et al., 2014). Entry of these sources into the water can represent improper 

discharge of toxic chemicals and pathogenic microorganisms, therefore, water quality 

monitoring and sanitary risk identification is essential to protect the population from 

waterborne diseases and to develop appropriate preventive measures. Since environmental 

systems like rivers and lakes are affected by multiple sources, it is important to understand the 

spatial and temporal variations in physico-chemical and microbiological parameters for 

assessment and management (Razmkhah et al., 2010). However, assessing multiple water 

quality parameters generates large and complex datasets and multivariate statistical techniques 

are required to interpret the results (Li et al., 2011, Mei et al., 2014, Wang et al., 2012). 

Multivariate techniques like cluster analysis (CA) and principal component analysis (PCA), 

have been successfully applied to better understand the water quality and ecological status of 

studied systems (Shrestha and Kazama, 2007, Singh et al., 2005). In addition to assessing the 

water quality, multivariate techniques have several applications such as identification of 
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possible factors/ sources that influence water systems (Ogwueleka, 2015, Sheikhy Narany et 

al., 2014), data reduction (Mustapha et al., 2013, Sharma et al., 2013), spatial and temporal 

variations (Ogwueleka, 2015) and grouping of sampling sites (Gatica et al., 2012). 

The current waterbody of interest, Taihu Lake, is the third largest freshwater lake in China, 

serving multiple functions such as drinking water source, flood protection, fisheries, tourism, 

and transportation (Qin et al., 2007). As mentioned earlier, this lake is facing serious water 

quality issues and previous reports showed that input rivers significantly contribute to the 

eutrophication, algal blooming and fecal pollution to this lake (Wang et al., 2011a, Du et al., 

2017, Hagedorn and Liang, 2011). Therefore, it is essential to assess water quality of inflow 

rivers to prevent the entry of polluted waters and provide effective management of Taihu Lake 

water quality. At present, Taihu Lake is connected to more than 200 Rivers (Qin et al., 2007), 

and Tiaoxi River is the main inflow river contributing approximately 60% of the total source 

water for this lake (Liu et al., 2011, Zhang et al., 2016b). Although Tiaoxi River significantly 

influences Taihu Lake by providing source water, studies focusing on the detailed water quality 

analysis of Tiaoxi River or identification of pollution hotspots are limited (Liu et al., 2011, 

Tang et al., 2012, Zheng et al., 2017). Liu et al. (2011) studied the size distribution and 

composition of phosphate in the East Tiaoxi River and Tang et al. (2012) investigated the 

estrogen pollution in the Tiaoxi River by chemical and bioassays. Recently, Zheng et al. (2017) 

studied the profiling of antibiotic resistance genes (ARGs) in water samples collected from 

different catchment areas in East Tiaoxi River and analyzed some water quality parameters, 

namely chemical oxygen demand (COD), TN, TP and NH3-N and correlated with ARGs and 

pathogenic bacteria. Therefore, the main objective of the study reported here was to provide a 

more comprehensive assessment of Tiaoxi River (east, west and combined River) water quality 

and identify pollution hotspots based on physico-chemical and microbiological data through 

the application of multivariate statistical approaches.  
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2.2. Materials and Method  

2.2.1 Study Area 

This study was carried out in the Tiaoxi River, which is one of the major Rivers connected to 

Taihu Lake. The mainstream of the Tiaoxi River is 158 km in length, comprising east and west 

Tiaoxi Rivers. The annual inflow of Tiaoxi River to Taihu Lake is 2.7 billion m3 which are 

approximately 60% of the total source water input of the lake (Liu et al., 2011). Furthermore, 

it serves as a drinking water source and also supplies water for agricultural and industrial 

purposes for many cities located in northern Zhejiang Province, China (Tang et al., 2012). 

Upstream, the river flows through agricultural areas, while the downstream part flows within 

the urban cities of northern Zhejiang Province and is subject to industrial inputs. The River 

collects waters from a population of approximately one million inhabitants, primarily located 

in moderately sized cities such as Huzhou along the River stream (Zhang et al., 2016b). 

2.2.2 Sampling Locations and Sample Collection 

Twenty-five sampling locations were selected for this study covering domestic, agricultural 

and industrial areas. The land use patterns of areas close to sampling locations are shown in 

Table 2.1 Surface water samples were collected along 100 km in the main streams of east and 

west Tiaoxi Rivers and from Tiaoxi River junctions with other tributaries (Fig. 2.1) in autumn 

2014, winter and summer 2015. Water samples were collected in sterile 5L polypropylene 

containers and kept at ambient temperature until they were brought to the laboratory. The water 

samples were processed within 24h of the collection. Due to unforeseen circumstances, it was 

not possible to collect samples from a few locations in one or more seasons. 

2.2.3 Physico-chemical Parameters 

In China, the surface water quality is regulated by the Ministry of Environmental Protection 

(MEP) of People’s Republic of China (PRC) and quality standards have been set for surface 
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water (MEP, 2016).  Based on MEP standards, surface water bodies in China are classified into 

five categories based on their utilization and protection objectives. The values of physico- 

chemical and microbiological parameters of Tiaoxi River water were compared to the class III 

water quality category standards (applicable to second class of protected area for centralized 

sources of drinking water, protected area for common fishes and swimming areas) as cited in 

“Environmental Quality Standards for Surface Water (GB3838–2002, GHZB1–1999)”, MEP, 

PRC guidelines for surface water. The following physico-chemical parameters were analyzed 

in this study: air and water temperature, pH, conductivity (EC), total nitrogen (TN), total 

phosphorous (TP), nitrate (NO3-N), nitrite (NO2-N), phosphate (PO4-P), ammonia nitrogen 

(NH4-N), total organic carbon (TOC) and chlorophyll a (Chl a). 

Temperature and conductivity were measured on site with COM-100 handheld meter 

instruments (HM Digital Inc., USA) and pH was measured using Eutech pH 700 instrument 

(Thermo Fisher Scientific Inc., USA). TN and TP were determined by peroxodisulphate 

oxidation and spectrophotometric method. NO3-N, NO2-N, NH4-N, and PO4-P were measured 

using a continuous flow analyser (Skalar SA 1000, Breda, Netherlands) as described in Wang 

et al. (Wang et al., 2011b)). The TOC was measured by high-temperature oxidation with a 

Shimadzu analyser (model 5000; Tokyo, Japan). Chl a was measured following by the 

procedures recommended by American Public Health Association (APHA, 2005, Paerl et al., 

2011). 

2.2.4 Microbiological Parameters 

Total viable count (TVC) was determined by using plate count agar (LabM, UK). Briefly, 100 

µl of each serially diluted water sample was aseptically plated onto agar plates in duplicates 

and incubated at 37 °C for a maximum duration of 48 h. The mean colony counts were 

expressed as CFU/mL (Reasoner and Geldreich, 1985). 
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Figure 2.1 Map of the study area with locations selected for surface water sampling in Tiaoxi River Basin. 
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Table 2.1 Description of sampling locations along with coordinates and corresponding land use types.  

Sampling 

location 
Description of location and land use types Coordinates  

  Latitude Longitude 

1 Taihu Lake and Tiaoxi River junction; 1 km inside the Taihu Lake; Aquaculture/fishing area. N30°57′3.15″ E120°07′42.64″ 

2 Suburban area with aquaculture and fish handling/processing area. N30°56′25.30″ E120°07′35.72″ 

3 Fishermen village; People live on boats stationed at this location. N30°55′57.65″ E120°07′37.27″ 

4 
Sub-urban area with residential apartments, businesses, and parks; East and West Tiaoxi River 

junction near south Taihu bridge. 
N30°53′50.96″ E120°06′0.95″ 

5 
Urban area with construction sites and various factories; Heavy ferry transportation were noticed in 

this area. Close to WWTP.  
N30°53′19.40″ E120°03′18.16″ 

6 
Suburban and industrial area with various factories; West Tiaoxi River and Changxin River junction. 

Active in Pig and Poultry farming. 
N30°52′55.15″ E120°0′58.87″ 

7 
Residential, farming and small industrial area close to a village; Various farm animals in small scale 

were noticed at the Riverbank. 
N30°53′14.16″ E119°58′38.58″ 

8 
Close to a town with businesses and residences, Ferry/boat docking area. Active in Pig and Poultry 

farming. 
N30°53′1.82″ E119°58′48.08″ 

9 Rural agricultural area with sparse residential apartments. N30°52′43.41″ E119°56′43.37″ 

10 
Rural agriculture area with few industries (e.g. shipping industries and oil station); Heavy ferry 

transportation was noticed in this area. 
N30°52′21.55″ E119°53′55.85″ 

11 
Rural with a high number of residential apartments; Heavy ferry transportation was noticed in this 

area. 
N30°52′8.11″ E119°52′15.52″ 
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12 
Urban area with businesses (e.g. many shopping malls) and residential apartments; Tourist boats 

docked close to this location. 
N30°52′54.56″ E120°06′1.47″ 

13 
Urban area with residential apartments and construction sites; Second junction between west and east 

Tiaoxi River. Pig and Poultry farms are present within 1km.  
N30°51′56.74″ E120°04′25.11″ 

14 
Sub-urban area with construction sites, residential apartments, and businesses; Ferry docking (large-

scale) area. 
N30°50′53.74″ E120°05′38.57″ 

15 
Sub-urban area with residential apartments and businesses; Junction between east Tiaoxi and a small 

River that connects to Taihu; Sampled close to ferry docking (large-scale) area. 
N30°50′59.27″ E120°06′21.50″ 

16 
Sub-urban and residential/business area; Junction between the main River and a canal, which connects 

to Taihu Lake. 
N30°51′27.75″ E120°07′32.13″ 

17 
Sub-urban and sparse residential area; Sampled at the third junction between west and east Tiaoxi 

River. 
N30°52′40.51″ E120°01′58.88″ 

18 
Sub-urban and industrial area; Sampled in the junction of ChangXing and Tiaoxi River; Sampled near 

ferry docking station. 
N30°53′11.17″ E120°0′52.95″ 

19 Rural/village, sparse residential and industrial area. N30°54′2.88″ E119°58′42.16″ 

20 
Rural/village and sparse residential/industrial area. Pig and Poultry farms are present near to this 

location. 
N30°54′33.91″ E119°57′31.34″ 

21 
Rural/village, residential and sparse industrial area. Pig and Poultry farms are present near to this 

location. 
N30°55′52.05″ E119°55′9.61″ 

22 
Rural/village and industrial area; Heavy ferry transportation; Sampled close to a factory and ferry 

docking station. 
N30°57′45.22″ E119°55′19.98″ 

23 Rural/village area; Sampled in a small canal, which connects to Taihu Lake. N30°55′53.87″ E120°11′35.48″ 

24 Rural/village and sparse residential /industrial area. N30°51′0.12″ E119°51′28.68″ 

25 Sub-urban area with businesses and industries; Many small Rivers branch off from East Tiaoxi River. N3050045.36” E120°08′21.54″ 
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Total coliform (TC) bacteria were determined using Harlequin™ E. coli/Coliform medium 

(LabM, UK). Briefly, 500 µl of 1:10 diluted sample was spread over the entire surface of the 

plate and incubated at 37 °C for 24 hrs. The average colony counts were expressed as CFU/1mL 

(Baylis and Patrick, 1999). 

Fecal coliform (FC) counts were carried out according to the membrane filtration method 

suggested by APHA (APHA, 2005). Water samples were filtered through 0.45 µm 

nitrocellulose filters (Millipore, UK) and the filters were placed on mFC agar (Difco, 

Germany), and incubated at 44.5 °C for 24 h. Colonies that exhibiting any shades of blue were 

counted and expressed as CFU/100 ml surface water (APHA, 2005). 

2.2.5 Statistical Analyses 

The variations in physico-chemical and microbiological parameters (excluding fecal coliforms) 

across the sampling locations (spatial) and seasons were analyzed by one-way analysis of 

variance (ANOVA). Only the data, which was available for all three seasons, were used for 

statistical analysis. In total, physico-chemical and microbiological data (excluding fecal 

coliforms) collected from 19 locations in three seasons were used for further statistical 

analyses. The correlations between the bacterial counts (TVC, TC) and physicochemical 

parameters of water samples were determined by Spearman’s non-parametric rank correlation 

test. The data transformation and the statistical analyses were performed using SPSS 22 version 

software (SPSS Inc., Chicago, IL, USA). 

2.2.5.1 Cluster Analysis  

Cluster analysis (CA) is a common technique for statistical data analysis and exploratory data 

mining applied in many fields of research as well as for water quality assessment (Kazi et al., 

2009, Shrestha and Kazama, 2007). With the aim of studying the spatial variability of water 

quality in Tiaoxi River basin and grouping similar sampling locations, hierarchical 
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agglomerative clustering was performed using the normalized dataset. Ward’s method of 

linkage with squared Euclidean distances was used as a measure of similarity (Shrestha and 

Kazama, 2007). Previous studies indicated that CA reliably classifies surface water quality and 

the results can be used as a guide for developing sampling strategies for the future (Alberto et 

al., 2001, Singh et al., 2004). 

2.2.5.2 Principal Component Analysis /Factor Analysis  

Principal component analysis (PCA)/Factor analysis (FA) provides information on the most 

meaningful parameters which describe whole dataset rendering data reduction with minimum 

loss of original information (Helena et al., 2000). It is a powerful technique for pattern 

recognition that attempts to explain the variance of a large set of inter-correlated variables and 

transforming into a smaller set of independent (uncorrelated) variables called principal 

components (Ouyang, 2005). In order to classify the variations of water quality indicators 

(thirteen in total) namely water temperature, pH, EC, TN, TP, NO3-N, NO2-N, PO4-P, NH4-N, 

TOC, Chl a, TVC and TC were used. PCA was executed using normalized variables to extract 

significant principal components (PCs) and these PCs were subjected to the varimax rotation 

(raw) generating factors to further reduce the contribution of variables with minor significance 

(Abdul-Wahab et al., 2005, Shrestha and Kazama, 2007). 

2.3 Results and Discussion 

Since this chapter has a lot of statistical analysis, the results and discussion sections of this 

chapter were combined together in order to give a better explanation.   

2.3.1 Physico-chemical and Microbiological Parameters 

The results (range values) of physico-chemical and microbiological analyses from 25 sampling 

locations within Tiaoxi River across three seasons are summarized in Table 2.2. The complete 
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results of physico-chemical and microbiological analyses from 25 sampling locations within 

Tiaoxi River for three seasons were presented in Supplementary Table S2.1. 

2.3.1.1 Physico-chemical Parameters  

The surface water temperature was in the range of 22.3-26.6 °C in autumn, 6–8.8 °C in winter 

and 29-31.2 °C in summer. Water samples in all locations were within the pH range set by 

Ministry of Environmental Protection (MEP), People Republic of China (PRC) for surface 

water and also natural waters pH limits (6.5–8.5) set for aquatic life and irrigation purposes 

(Chapman, 1996). Most natural water systems require a pH range of 6.5–8 to support a diverse 

aquatic population (Pearce et al., 1999). Significant statistical differences in pH were observed 

seasonally (P<0.05) however, no spatial variation was observed. EC values were within the 

range of 124-400 µS/cm in all the locations and the values varied significantly with seasons 

(p<0.05) (Table 2.2). For most freshwaters, the EC ranges from 10 to 1000 µS/cm and elevated 

levels of above 1000 µS/cm can be seen in polluted water or water bodies that receive large 

quantities of land runoff (Chapman, 1996). In streams and Rivers, the conductivity is affected 

by various factors such as the type of soils, bedrocks, and presence of inorganic dissolved 

solids. The sewage or wastewater could raise the conductivity due to the presence of chloride, 

phosphate, and nitrate (USEPA, 2012).The seasonal and spatial variations in TN, TP, NO3-N, 

NO2-N, PO4-P, NH4-N, TOC, and Chl a are shown in Figures 2.2 (A-D) and 2.3 (A-D). Among 

all these parameters tested only TP, NH4-N and Chl a showed significant (P<0.001) seasonal 

and spatial variations (Table 2.2). The parameters such as TN, NO3-N, NO2-N, and TOC 

showed significant (p<0.05) spatial variations. Based on MEP guidelines, TN values were 

outside the acceptable limits (≥ 1mg/L) in all locations for all seasons. The highest TN values 

(4.13mg/L) were reported in samples collected from location 18 in Autumn 2014 (Fig. 2.2A), 

and this location is near to suburban/industrial area (junction of ChangXing and Tiaoxi River) 

with ferry docking facilities. The sources for elevated levels of TN in water bodies include
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Table 2.2 Summary of the results of physico-chemical and microbiological characteristics of Tiaoxi River water with statistical analyses. 

Parameters Acceptable Range Range (Minimum – Maximum) P value 
 

 
( by MEP) Autumn 2014 Winter 2015 Summer 2015 Season Spatial 

WT (oC)  - 22.8-26.6 6-8.8  27.2-30.8 0.0001* 0.712 

pH 6.5-8.5 7.2 – 8 7.4 – 7.9 7.3 – 7.9 0.112* 0.4546 

EC (µS/cm) -  153 – 400 164 – 356 124 – 234 0.0102* 0.6564 

TN (mg/l) ≤1 1.78 - 4.13 1.3 - 4.03 1.88 - 3.11 0.5209 0.0001*** 

TP (mg/l) ≤0.2 (≤0.05ª)  0.07 - 0.18 0.07 - 0.19 0.08 - 0.14 0.0001*** 0.0001*** 

NO3-N (mg/l) ≤ 10 0.84 - 3.43 0.376 - 3.39 1.07 - 2.02 0.2464 0.0220* 

NO2-N (mg/l) ≤0.15  0.02 - 0.16 0.002 - 0.05 0.04 - 0.18 0.9987 0.0011** 

PO4-P (µg/l) -  2.4 - 38.2 3.2 - 35.24 6.8 - 51.9 0.1324 0.0001*** 

NH4-N (mg/l) ≤1 0.013 – 1 0.05 - 1.025 0.02 - 0.81 0.0001*** 0.0001*** 

TOC (mg/l) - 2.38 - 8.46 14.9 - 268.9 1.9 - 13.7 0.2929 0.0083** 

Chl a (µg/L) - 36.3 - 103.4 29.8 - 89.3 49.1 - 132.6 0.0001*** 0.0001*** 

TVC (Log10 CFU/mL) - 3.57 – 4.28 3.06 – 4.34 3.60 – 4.19 0.3078 0.2454 

TC (Log10 CFU/mL) 1 1.60 – 3.30 2.0 – 3.31 2.22– 3.61 0.328 0.0025** 

FC (Log10 CFU/100mL) -  2.0 – 3.45 1.69 –3.62 - 0.0055** 

ª for Lakes, * Statistically significant difference at p < 0.05; ** Statistically significant difference at p < 0.01; *** Statistically significant 

difference at p < 0.001; MEP: Ministry of Environmental Protection, PR China.
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runoff from agricultural croplands and animal manure, discharge from wastewater treatment 

plants and leakage from septic tanks (USEPA, 2013b). Presence of elevated levels of TN and 

ammonia in water are considered indicative of freshly polluted water by environmental 

management engineers (Farhadinejad et al., 2012). As per MEP guidelines, the acceptable TP 

levels for class III water bodies is <0.2mg/L but for Lakes and reservoirs, the TP levels should 

be <0.05mg/L. Here, TP levels were outside the acceptable range in Location 1 (Taihu Lake, 

~1km inside from Taihu Lake/Tiaoxi River junction) and the levels were closer to acceptable 

limits in location 16 for autumn (175.58 µg/L) and winter (187.42 µg/L) seasons (Fig.2.2B). 

Location 16 is a suburban mixed residential and business area and the samples were collected 

at a junction between the main River and a canal that connects to Taihu Lake (Table 2.1). Zheng 

et al. (2017)  reported higher levels of TP and TN in catchment 8 (urban land) of East Tiaoxi 

River which has two WWTPs out of which one is located near sampling locations 15 and 16 

of the current study. The higher levels of TP observed at location 16 could be due to effluents 

from WWTP. As stated above, the concentrations of TP showed significant seasonal and spatial 

variation (p<0.001) and TP levels were comparatively high for most of the locations in winter 

2015. 

 Wang et al. (2007) reported similar TP levels for Rivers surrounding Taihu Lake (Wang et al., 

2007b). Possible runoff from fertilized lawns and cropland, animal manure and also domestic 

sewage entry into the water are likely causes (Yan et al., 2015). NO3-N levels were within 

acceptable limits (<10mg/L) as suggested by MEP but elevated levels of NO2-N (>0.15 mg/L) 

were observed in location 3 of autumn season and location 15 and 16 during the summer season 

(Fig. 2.2 C-D). Sources of NO2-N include human sewage, livestock manure, fertilizers and 

erosion of natural deposits (Lucassen et al., 2004). Location 3 is a fishing village where people 

live on boats stationed at this location. Locations 15 and 16 are in a suburban area and the 

sampling was conducted in a junction between Tiaoxi River and a canal that connects to Taihu 
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Lake where boats/ferries were docked. The higher levels of NO2-N observed in these three 

locations may be due to the entry of human sewage into the water. Previous study showed that 

presence of higher concentrations of NO2-N in water is a potential problem due to its toxicity 

to human (more potential health effects are seen in infants) and livestock when consumed (Fewtrell, 

2004). 

NH4-N levels were outside standard limits (>1 mg/L) in location 16 in autumn and at location 

24 in winter (Fig. 2.3 B). NH4-N enters into water mostly from anthropogenic sources such as 

human sewage, municipal effluent discharges, livestock manure, and agricultural runoff. 

Elevated levels of NH4-N in surface water primarily exerts toxic effects on the higher aquatic 

organisms such as fish and shrimps (USEPA, 2013a). Xu et al. (2009) reported similar results 

for surface water quality in the Taihu watershed (Xu et al., 2009). There are no specific 

standards for PO4-P as per MEP, PR China but a concentration of <20µg/L is commonly 

present in streams and Rivers. Elevated levels of >20µg/L indicates pollution and can lead to 

excessive algal growth (Shock and Pratt, 2003). In the present study, PO4-P levels were high 

in all locations (Fig. 2.3A) on one or more occasions, however, no significant correlation 

between PO4-P and Chl a was observed (Table 2.2). Similarly, for TOC there are no specific 

standards set by MEP, PRC. Both PO4-P and TOC levels showed statistically significant 

P<0.05) spatial variation (Table 2.2, Fig. 2.3 A &C). Most of the surface waters with low 

nutrients levels have Chl a levels of <2.5µg/L but higher levels can be seen if there is high 

nutrient availability (Chapman, 1996). In the current study, all locations showed higher Chl a 

levels in all seasons indicating high algal growth in Tiaoxi River water (Fig. 2.3 D). 

Chlorophyll a levels were high in the summer season followed by autumn and winter, which 

can be correlated with warm temperature in summer and autumn seasons and availability of 

nutrients. In general, the concentrations of Chl a was high if the location has high TP  
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Figure 2.2 Spatial and temporal variations in physico-chemical parameters: Total Nitrogen (A), 

Total phosphorus (B), Nitrate-N (C), Nitrite-N (D), “----- line”  indicates acceptable range for 

parameter as suggested by MEP, China . 
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Figure 2.3 Spatial and temporal variations in physico-chemical parameters: Phosphate-P, 

(A), Ammonium-N (B), Total Organic Carbon (C), Chlorophyll a (D). “----- line” indicates 

acceptable range for parameter as suggested by MEP, China. 
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concentration. Xu et al. (2010) reported similar results for Chl a levels in Taihu Lake water 

(Xu et al., 2010). The prevalence of cyanobacteria and higher concentrations of Chl a during 

the summer season in Taihu Lake has been reported previously (Du et al., 2017, Xu et al., 

2010). Highest Chl a levels were observed at locations 1, 12 and 23 during the summer season, 

and Chl a concentrations were statistically significant both spatially and seasonally (p<0.05) 

(Table 2.2). 

2.3.1.2 Microbiological Parameters 

TVC was carried out to enumerate aerobic/facultative anaerobic mesophiles in the surface 

water, primarily to determine whether these counts showed any relationship with physico-

chemical parameters and coliform counts. TVC values neither showed any seasonal or spatial 

significance statistically nor followed the similar trend as total coliform and fecal coliform 

numbers (Table 2.2, Fig. 2.4A). As per MEP standards, the suggested standard limit for 

total/fecal coliforms for level III water bodies is <10000/L (or <10/ml) but elevated levels of 

total coliforms were observed in all locations for all seasons, and much higher levels were 

observed in seven locations (locations 2, 3, 5, 12, 15, 16 and 17) on one or more occasions with 

highest at location 16 (3.61 Log10 CFU/mL) during the summer season (Fig. 2.4B). The results 

correlate well with the land use pattern or possible mixing of waste into the above locations 

where boats/ferries were docked or leakage of waste into the river through human activities 

was observed. Hagedorn and Liang (2011) also indicated a serious fecal contamination of 

Tiaoxi River and reported higher levels (2.54 log10 CFU/ml) of E.coli for the water samples 

collected near FENGKOU drinking water station (Hagedorn and Liang, 2011). TC showed 

statistically significant (p<0.005) differences between locations (Table 2.2, Fig. 2.4C). 

Previously, total coliforms were considered as bacterial water quality indicators to assess fecal 

contamination in recreational waters in the USA, as required by the Beaches Environmental 

Assessment and Coastal Health Act (BEACHAct, 2000) to reduce health risks. However, it 
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was reported that some members of the coliform group live in the environment (i.e. outside of 

the gastrointestinal tract), which may show a false indication for fecal contamination in water 

(Pisciotta et al., 2002). Therefore, TC counts are no longer used as an indicator for recreational 

waters as they are widespread in nature, but are still used to assess drinking water quality 

(USEPA, 2012). Fecal coliform (FC) counts are used as guidelines for microbial water quality 

to assess fecal contamination. In the present study, most of the locations showed higher levels 

of FC (>400CFU/100ml) in winter and summer seasons (Fig. 2.4C) as compared to USEPA 

standards, however, no guidelines were suggested by MEP for FC in surface water in China. 

High FC count was observed in five locations (Locations 2, 3, 5, 12, 16) in one or more 

occasions with the highest at location 16 (3.62 log10 CFU/100ml) during the summer season. 

As indicated previously, these are the locations near either the residential areas where people 

live on boats without adequate sanitation facilities or urban residential areas with multiple 

waste inputs into the Rivers such as leakage of waste from unknown sources.  The higher levels 

of FC observed in these locations could be correlated with the discharge of effluent from 

WWTP located near locations 15 and 16. Only some fecal coliforms are pathogenic and a 

previous study showed that FC presence does not always correlate with pathogen presence 

(Schriewer et al., 2010). However, high FC count implies impaired water quality and increased 

risk associated with the presence of pathogen (Haller et al., 2009). FC levels were 

comparatively higher in summer compared to winter and this may be due to the runoff and 

heavy rainfall that occurred before summer sampling in 2015. The increased concentrations of 

fecal coliforms after rainfall events were widely acknowledged in the scientific literature 

(Ackerman and Weisberg, 2003, Muirhead et al., 2004, Carroll et al., 2006). The higher levels 

of FC observed could also be due to warm temperatures, which can facilitate FC bacteria 

accustomed to such conditions (Heaney et al., 2015). FC numbers showed significant spatial 

(p<0.05) variation. 



36 

 

Figure 2.4 Spatial and temporal variations in microbiological parameters: Total viable count 

(A), Total coliforms (B), Fecal coliforms (C). “----- line” indicates acceptable range for 

parameter as suggested by MEP, China or USEPA. 

2.3.2 Correlation between Variables 

Results of correlation analysis (Table 2.3) showed that TN has a moderate positive correlation 

with NO3-N (r=0.651) and a weak correlation with PO4-P (r=0.486) and NH4-N (r=0.448), 

which suggests that NO3-N could be the major contributor of TN (Mei et al., 2014). TP has a 
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moderate positive correlation with NO2-N and NH4-N, indicating probably a common source 

of organic contamination such as untreated sewage (Vieira et al., 2012). TP also has a strong 

positive correlation with EC and moderate positive correlation with the microbiological 

parameters (TVC). Microbiological parameters (TVC and TC) showed a positive correlation 

with each other (r=0.796) and also with some of the nutrients (TP and NO2-N) indicating 

possible microbial contaminations from sewage (Nnane et al., 2011). pH had a strong positive 

correlation with EC, and NO3-N had a strong negative correlation with EC. No obvious 

correlation (r<0.4) was observed among the other parameters. 

2.3.3 Cluster Analysis for Spatial Grouping 

Cluster analysis (CA) was applied to group sampling locations with similar water quality 

characteristics. Dendrogram was generated by CA grouped 19 locations into three clusters at 

(Dlink/Dmax) <60 (Fig. 2.5). CA results are convincing, as the generated clusters share similar 

characteristic features and land use pattern. Based on the physico-chemical and microbiological 

results, each cluster was classified into respective pollution categories (Table 2.4). Cluster 1 

includes 8 locations (locations 6-11, 13 and 17) and consists of mixed land use, either rural or 

urban/suburban residential areas with little industrial activity, corresponding to a relatively low 

level of pollution. Cluster 2 comprises 4 locations (4, 5, 15 and 16) which are mostly the 

junctions of east and west Tiaoxi River or other streams. These locations are predominantly 

close to urban and semi-urban residential areas with a large-scale business, ferry transportation, 

and ferry docking activities, and in some of these locations entry of wastewater in the River 

was noticed during sampling (Fig. 2.6). This cluster was classified as highly polluted based on 

the physico-chemical and microbiological results. Cluster 3 comprises 7 locations (1, 2, 3, 12, 

14, 20 and 21), and includes mixed land use and can be categorized as moderately polluted 

locations based on the physico-chemical and microbiological analysis. Sampling location 20 

and 21 were close to sparse residential/industrial areas and locations 2 and 3 are residential 
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Table 2.3 Spearman’s correlation coefficient (r) values observed between different water quality parameters. 

 WT pH EC TN TP NO3-N NO2-N PO4-P NH4-N TOC Chl a TVC TC 

WT 1             

pH 0.03 1            

EC 0.22 0.80** 1           

TN -0.15 -0.35 -0.35 1          

TP 0.17 0.74** 0.78** 0.08 1         

NO3-N -0.16 -0.61** -0.73** 0.65** 0.45* 1        

NO2-N    0.34 0.16 0.46* 0.23 0.54* -0.24 1       

PO4-P    0.27 0.06 -0.02 0.49* 0.28  0.10 -0.01 1      

NH4-N    -0.17 0.25 0.23 0.45* 0.53* -0.08 0.16 0.73** 1     

TOC 0.57* -0.15 0.24 -0.08 0.21 -0.16 0.23 0.15 0.12 1    

Chl a -0.02 0.06 0.33 -0.23 0.12 -0.41 0.34 -0.37 0.01 0.33 1   

TVC 0.09 0.29 0.30 0.27 0.50* -0.13 0.59** 0.01 0.32 0.125 0.37 1  

TC -0.03 0.18 0.19 0.24 0.36 -0.12 0.50* -0.11 0.25 0.037 0.47* 0.80** 1 

* The correlation was significant at p < 0.05; ** The correlation was significant at p < 0.01.
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areas where a few people are living on boats (Fig. 2.6). The CA enabled us to categorize 

sampling locations based on water quality so that in future studies, the number of sampling 

locations can be minimized for cost-effective monitoring of water quality in Tiaoxi River by 

choosing a few locations from each cluster based on the distance distribution and pollution 

levels in those locations. Previous studies have reported that a similar strategy has been 

successfully applied in water quality monitoring programs elsewhere (Pejman et al., 2009, 

Phung et al., 2015, Shrestha and Kazama, 2007, Singh et al., 2005), and the Tiaoxi River Taihu 

catchment is therefore similarly amenable to this rational approach. 

 

Figure 2.5 Dendrogram showing clustering of 19 sampling locations based on surface water 

quality characteristics of the Tiaoxi River. 
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Table 2.4 Range of physico-chemical and microbiological characteristics for locations in which pollution is classified as relatively low, moderate 

or high.  

Parameter Cluster 1- Relatively low pollution Cluster 2- Highly Polluted Cluster 3- Moderately polluted 

 (Locations: 6,7,8,9,10,11,13,17) (Locations: 4,5,15,16) (Locations: 2,3,12,14,20,21) 

pH 7.25-7.67 7.25-7.88 7.3-7.86 

Conductivity 125-257 143-400 136-356 

TN (mg/L) 2.25-3.69 2.40-3.74 1.31-3.47 

TP (µg/L) 53.4-112.6 74.89-187.4 64.6-140.4 

NO3-N (mg/L) 1.75-3.51 0.96-3.34 0.37-3.42 

NO2-N (mg/L) 0.03-0.08 0.01-0.18 0.01-0.16 

PO4-P (µg/L) 9.01-30.7 3.51-50.9 2.46-37.6 

NH4-N (mg/L) 0.04-0.52 0.04-1.01 0.03-0.73 

TOC (mg/L) 2.39-11.31 1.97-16.71 2.27-15.81 

Chl a (µg/L) 29.88-79.6 37.82-86.7 26.8-102.3 

TVC (CFU/mL) 3040-9800 4190-22050 1150-15500 

TC (CFU/mL) 50-2766 145-4133 175-2133 

FC (CFU/100mL) 100-2800 450-4325 150-2600 
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Figure 2.6 Sampling locations representing high (HP), medium (MP) and low (LP) pollution risk locations.
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2.3.4 Principal Component Analysis /Factor Analysis for Source Identification 

Principal component analysis (PCA)/Factor analysis (FA) was performed using log-

transformed data to identify the factor(s) that influence the water quality during the entire 

sampling period and in seasons (autumn, winter, and summer). Kaiser-Meyer-Olkin (KMO) 

and Bartlett’s tests were carried out to verify the suitability of data for PCA/FA. KMO value 

of 0.5 or more is required to perform PCA and lower KMO value indicates that the dataset is 

not suitable for the PCA (Ogwueleka, 2015).  

In this study, the KMO value for the entire dataset was 0.53, however, Bartlett’s test gave a P 

value of <0.001 indicating the suitability of the data for PCA. The significance of the factor is 

evaluated by eigenvalue in PCA; the higher the eigenvalues, the higher the significance of 

factors, with 1.0 or greater eigenvalues considered significant (Shrestha and Kazama, 2007). 

The PCA for the entire dataset yielded four PCs (with eigenvalues ≥1), which explained over 

83% of the total variance in the dataset. The variable loadings on varimax rotated PCs for the 

entire data set is provided in Table 2.5. Variable loading is classified as ‘strong’, ‘moderate’ 

and ‘weak’, corresponding to their absolute loading values of >0.75, 0.75-0.50 and 0.50-0.30, 

respectively (Liu et al., 2003). 

The first component (VF1) accounted for 32.2% of total variance and has a strong positive 

loading for pH, EC and TP, and strong negative loading for NO3-N indicating variability in 

physico-chemical sources (Table 2.5). Normally EC is used to indicate natural pollution and 

can be due to soil erosion or weathering effects on water quality during seasonal changes 

(Ogwueleka, 2015). This component also suggests that most of the variation is due to pH and 

EC changes. The second component (VF2) is responsible for 25.4% of the total variance and 

showed strong positive loading for TN, PO4-P, and NH4-N. This component also gave 

moderate negative loading to Chl a indicating nutrient pollution and this could be interpreted 

as influences from agricultural and domestic waste (Ruzdjak and Ruzdjak, 2015). The third 
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component (VF3) explained 14.2% of the total variance and has a strong positive loading for 

TVC and TC. This component also has a moderate positive loading for Chl a and represents 

influences of mainly microbial origin. The microbial factor TC can be associated with sewage 

pollution in the River. The fourth component (VF4), accounting for 12% of the total variance 

has a strong positive loading for WT and TOC. This component represents physicochemical 

sources and could be interpreted as influences from organic pollution caused by domestic and 

industrial discharges. Similar results have been reported by other authors for water quality 

assessment by PCA/FA (Mei et al., 2014, Ruzdjak and Ruzdjak, 2015). 

Table 2.5 Loadings of thirteen variables on Varimax rotated principal components. 

 Components 

 VF1  VF2 VF3 VF4 

WT 0.134 0.121 -0.173 0.857 

pH 0.911 0.131 -0.003 -0.160 

EC 0.926 -0.086 0.182 0.207 

TN -0.474 0.837 0.181 -0.056 

TP 0.755 0.443 0.393 0.172 

NO3-N -0.808 0.388 -0.123 -0.195 

NO2-N 0.385 0.279 0.495 0.392 

PO4-P 0.088 0.938 -0.024 0.127 

NH4-N 0.175 0.866 0.195 -0.076 

TOC 0.013 -0.170 0.114 0.861 

Chl a 0.145 -0.602 0.589 0.168 

TVC 0.183 0.183 0.848 0.010 

TC 0.030 -0.030 0.885 -0.140 

Eigenvalue 

% Total variance 

Cumulative % variance 

4.186 

32.197 

32.197 

3.297 

25.365 

57.562 

1.843 

14.174 

71.735 

1.567 

12.054 

83.786 

Values in bold indicate strong or moderate loadings. 
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2.5 Conclusions 

 Physico-chemical analysis results indicated that TN, TP, NO2-N, and NH4-N were the 

major nutrient pollutants of the Tiaoxi River. 

 The microbiological results indicated that TC and FC counts were high in 15 locations, 

suggesting fecal contamination of those locations.  

 Cluster analysis grouped sampling locations into three clusters and these three clusters 

can be classified as relatively low, moderate and high pollution areas based on the land 

use patterns, physico-chemical and microbiological data. 

 Principal component analysis (PCA) indicated that pH, conductivity, TP, and NO3-N 

were the key parameters responsible for variations in Tiaoxi water quality. 

 Based on physico-chemical and microbiological results, 15 locations were assessed as 

possible fecal polluted locations, and used for microbial source tracking study to 

identify sources for fecal contaminations.  
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Abstract 

This study was aimed at characterizing bacterial diversity including fecal and potential 

pathogenic bacteria in Tiaoxi River water by a next-generation sequencing (NGS) approach 

and to examine the relationship between physico-chemical parameters and bacterial 

community composition. Forty-five water samples (collected from 15 locations in three 

seasons) were used for bacterial community analysis along with fecal samples collected from 

7 different hosts (human and animal fecal samples) and sewage samples from a wastewater 

treatment plant. DNA was extracted from water, fecal and sewage samples and bacterial 

diversity and community composition was studied using the Illumina MiseqPE250 platform to 

sequence the V3-V4 region of 16S rRNA genes. The bacterial diversity results showed that 

Proteobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria were dominant phyla in most 

of the Tiaoxi River water samples, although their percentage distribution varied among the 

samples tested. In fecal samples, phyla Bacteroidetes, Firmicutes, and Proteobacteria were 

abundant, whereas wastewater samples were dominated by Proteobacteria, Bacteroidetes, and 

Chloroflexi. The hierarchical cluster analysis and principal coordinate analysis (PCoA) 

indicated that the community composition was significantly different between water, fecal and 

sewage samples. At the genus level, ~180 different genera were detected in the River water 

samples among which five bacterial genera of fecal origin and seven potential pathogens were 

detected in many locations. Members of Bacteroides and Prevotella were frequently observed 

in many locations which indicate possible human and animal fecal pollution in river water. 

Genus Dorea was observed in some of the locations and their presence in the water indicates 

potential human fecal pollution. Potentially pathogenic bacterial genera such as Arcobacter, 

Aeromonas, Enterococcus, and Shigella were found with higher abundance (>0.10%) in some 

of the locations. The redundancy analysis (RDA) results showed that pH, conductivity and 

temperature were the main environmental factors that contributed to shaping the bacterial 
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composition of water samples although a few other nutrients parameters were also found to 

have a seasonal influence. Overall, the results obtained by NGS indicate possible human and 

animal fecal pollution in several locations in the Tiaoxi River.  
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3.1 Introduction 

Waterborne diseases are one of the major concerns of the world and cause about 2.2 million 

deaths annually, with the majority of these deaths occurring in children under the age of 5 years 

(WHO, 2015). In China, rapid urbanization, industrialization, and socio-economic 

development have led to a high degree of pollution in Lakes and Rivers, which are regarded as 

major challenging environmental issues in China (Jiang, 2009, Han et al., 2016). Although 

drinking water quality is improving rapidly in recent years in China, it has been reported that 

200 million people still consume unsafe drinking water and 60,000 people die every year due 

to water related issues such as diarrheal diseases in China (Qiu, 2011, Han et al., 2016). As 

diarrheal diseases are primarily caused due to contamination of water source with human or 

animal feces transmitting pathogenic microorganisms (WHO, 2017), monitoring of fecal 

contamination and pathogenic microorganisms in waters used for human consumption and 

recreational activities have become mandatory to reduce human health risk. 

Most of the conventional fecal monitoring studies rely on enumeration of fecal indicator 

bacteria (FIB), which are considered as the “golden standard” to assess the microbiological 

water quality and pathogen presence in environmental waters (Savichtcheva and Okabe, 2006, 

Figueras and Borrego, 2010). However, FIB can originate from multiple hosts and it has been 

reported that human health risks varies on the exposure to the nature of host fecal source. For 

example, exposure to human fecal contamination is considered as a serious concern as human 

feces contains many potentially pathogenic microbes. Conventional FIB enumeration methods 

do not determine the origin of the fecal source, and previous reports showed poor or no 

correlation between FIB and pathogenic organisms (Fremaux et al., 2009, Shahryari et al., 

2014). Therefore, several qualitative and quantitative “Microbial Source Tracking (MST)” 

methods were developed in recent decade to overcome this limitation and MST methods 

focused on determining the origin of the fecal sources (Seurinck et al., 2005, Kildare et al., 
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2007, Mieszkin et al., 2009, Green et al., 2014). In addition, several quantitative polymerase 

chain reaction (qPCR) methods have been widely used to determine the presence and 

abundance of pathogens (Ahmed et al., 2009b, Sidhu et al., 2012, Oster et al., 2014), and these 

methods can identify the targeted pathogens that are specifically chosen for monitoring, but 

not all the pathogens. As a result, it is challenging to monitor the wide-range of pathogens in a 

watershed with culture-based or culture independent qPCR based methods. Therefore, a 

comprehensive monitoring method is required to characterize the diversity of microorganisms 

at a watershed and to ascertain the presence of dominant pathogens in order to assess the public 

health risks. In this regard, next-generation sequencing (NGS) method targeting the 16S rRNA 

gene has gained attention to explore the diversity of bacterial communities and their influence 

on microbial water quality (Staley et al., 2013, Ibekwe et al., 2013). Although community based 

NGS methods (OTU comparison between fecal source and environmental samples) were 

proposed for MST study (as culture independent library dependent MST method) (Unno et al., 

2010, Jeong et al., 2011), they are considered as a qualitative method for assessing fecal 

pollution since the OTU comparison results shows discrepancies with the nature of the fecal 

OTU library applied (Boehm et al., 2013). However, a Bayesian algorithm based NGS method 

(SourceTracker) has been developed to predict the quantitative presence of fecal contamination 

(Knights et al., 2011). Recent reports indicated lower confidence in quantification results and 

also spatio-temporal limitations of SourceTracker method pointed to the necessity of 

optimization and validation prior to their application in a new geographical area (Ahmed et al., 

2015a, Henry et al., 2016, Brown et al., 2017, Staley et al., 2018). However, the NGS based 

microbial community analysis approach is still considered as a valuable tool for premilinary 

investigation of water samples to assess public health risk associated with fecal contamination 

or pathogens (Tan et al., 2015). Although quantitative (qPCR) methods are appropriate for 

assessment of fecal contamination or pathogens, the NGS method can evaluate bacterial 
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diversity (including fecal and pathogenic bacteria) of water or environmental samples and their 

relative abundance, which could provide useful information to prioritize more specific 

exposure assessment of suitable targets using quantitative (qPCR) methods (Tan et al., 2015). 

Most of the NGS studies monitoring microbial communities in water samples have relied on 

targeting hypervariable regions (V1, V3, V4, V6) of the 16S rRNA gene (Guo et al., 2013). 

The 454-pyrosequencing platform was preferred earlier to assess microbial communities in 

water samples however in recent years, the Illumina platform has gained much attention as 

several studies revealed it is superior over pyrosequencing and also 454 sequencing has been 

discontinued  (Sinclair et al., 2015, Newton et al., 2015, Loman et al., 2012). Furthermore, the 

commonly used open source software packages for sequence analysis such as QIIME and 

MOTHUR have been upgraded to analyze pair end sequence data produced by Illumina 

sequencers, improving the performance (Kozich et al., 2013, Caporaso et al., 2010).  

As indicated in the previous chapter(s), Taihu Lake is suffering from water quality issues such 

as eutrophication, cyanobacterial blooms and fecal pollution due to various discharges into the 

watershed and Tiaoxi River was reported as one of the main contributors. Fecal pollution is 

one of the major concerns to water bodies, particularly if water is used for drinking, recreation 

and aquaculture due to possible human exposure to pathogens. Although previous studies 

focused on assessing the microbial community in water and sediment samples of Taihu Lake 

(Wilhelm et al., 2011, Paerl et al., 2011, Cai et al., 2013, Zhao et al., 2017), the microbial water 

quality assessment and studies aiming at characterizing the microbial communities with respect 

to fecal and pathogen diversity at Tiaoxi River are very limited.  Zheng et al. (2017) studied 

the antibiotic resistance genes (ARGs) pattern and analyzed conventional water quality factors 

in samples collected from East Tiaoxi River and indicated that ARGs variation at different 

catchment areas could be due to changes in bacterial communities . Therefore, the current study 

was aimed at assessing the diversity and relative abundance of bacteria including fecal and 
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potential bacterial pathogens in Tiaoxi River water by 16S rRNA genes targeted NGS. The 

specific objectives were to i) study the bacterial diversity in Tiaoxi River water including the 

seasonal variations, and ii) determine the relative abundance of bacteria of fecal origin and 

potential pathogens and iii) to assess the influence of environmental factors on bacterial 

diversity by statistical analysis.  

3.2 Materials and Method 

3.2.1 Collection of water and fecal samples 

As stated in the previous chapter 2, 15 out of 25 sampling locations in the Tiaoxi River were 

identified as hotspots of fecal contamination, and samples collected from those locations were 

used further studies. The details of land use type around the selected sampling locations are 

given in Table 2.1. Sampling was carried out at these locations on three occasions: autumn 

2014, winter 2015 and summer 2015 and 5L of surface water samples were collected in sterile 

polypropylene bottles and brought to the laboratory on ice. The processing of samples was 

carried out within 8 hrs of sampling. 250mL of water sample was filtered using 0.22-µm 

polycarbonate membrane filters (Millipore, UK) and filters were stored at -20oC until DNA 

extraction. 

A total of 120 fresh individual fecal samples from several hosts such as chicken (CK), cow 

(CW), dog (DG), duck (DU), goose (GO), human (HU), and pigs (PI) and primary effluents 

from wastewater treatment plants (WWTP) were collected from Huzhou (Zhejiang province) 

and Suzhou (Jiangsu province) areas. Fresh human fecal samples were provided by healthy 

volunteers (n=12) aged between 16 and 40 years and the samples were collected in sterile 

containers by the volunteers. Safety guidelines were given to them in handling the samples and 

their consent for use of samples in this study was obtained. Ethical approval for handling fecal 

samples in this study was acquired from Xian Jiaotong Liverpool University Research Ethics 

Committee. Individual fecal samples from animal hosts representing pigs (n=28), chicken 
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(n=23), dog (n=21), duck (n=13), goose (n=11) and cow (n=12) were collected from farms 

located near Tiaoxi River water sampling locations in Zhejiang Province. All the samples were 

carried on ice to the laboratory and the samples were stored at -20oC within 6 hours of sample 

collection. Approximately 0.5gms of different individual fecal samples of a host were pooled 

together to form a composite sample of a respective host. The composite samples were used 

for further DNA extractions. Primary effluents (500 mL; n=6) from a WWTP located in Suzhou 

were collected and brought to the laboratory on ice. Biomass from primary influents was 

collected by centrifugation (at 4000×g for 10min at 4oC) and the DNA was extracted 

immediately. 

3.2.2 Physico-chemical assessment 

The physico-chemical assessment of the Tiaoxi River was reported in our earlier chapter and 

the physico-chemical data were used to evaluate their influence on bacterial diversity of Tiaoxi 

River.  The parameters that were included for the analysis include conductivity (EC), pH, water 

temperature (WT), Total Nitrogen (TN), and Total phosphorous (TP), ammonia nitrogen (NH4-

N) and nitrite (NO2-N). 

3.2.3 Extraction of genomic DNA from water and fecal samples 

Genomic DNA was extracted from membrane filters (water samples) using the PowerSoil 

DNA Isolation Kit (MoBio Inc., Carlsbad, CA). Initially, the membrane filters were cut into 

pieces, placed into the PowerBead tubes aseptically to extract the genomic DNA as instructed 

by the manufacturer. 

DNA was extracted in duplicate for each composite fecal/sewage sample (respective host) 

using PowerFecal® DNA isolation kit (MoBio, Carlsbad, CA USA), according to the 

instructions provided by the manufacturer. Approximately 0.25 grams of composite feces or 

biomass from primary effluent samples were used for DNA extraction. To avoid any cross 

contamination with other hosts, DNA extraction was conducted for each type of fecal source 
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separately. The DNA concentrations and quality were assessed by using NanoDrop ND 

2000UV spectrophotometer (Thermo Fisher Scientific., Vienna, Austria) and the DNA extracts 

were stored at -20oC until further analysis. 

3.2.4 Bacterial community analysis by Illumina MiSeq Sequencing (NGS): 

The diversity and composition of bacterial communities in water and fecal samples was 

investigated by NGS using the Illumina MiseqPE250 platform. The Illumina sequencing, 

sequence data processing and statistical analyses were carried out by outsourcing at the 

Shanghai Majorbio Pharmaceutical Technology Limited, China. Further data analysis, 

interpretation of results for NGS and preparation of thesis chapter were carried out by myself 

(PhD candidate), with the direction of my supervisors. The hypervariable region (V4 region)  

of bacterial 16S rRNA genes present in water and fecal DNA samples was amplified by PCR 

using a universal primer set as described elsewhere (Kozich et al., 2013). The barcoded 515F 

(5’-GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’-GGACTACHVGGGTWTCTAAT-3’) 

was used fasor amplification. Triplicate PCR reactions were carried out for each sample with 

each reaction mixture contains 4 μL of 5 × FastPfu Buffer, 0.4 μL of FastPfu Polymerase, 2 μL 

of 2.5 mM dNTPs, 0.8 μL of each primer (5 μM), 10 ng of template DNA and reaction volume 

was made up to 20 μL with nuclease-free water. PCR amplification conditions used were as 

follows: 95 °C for 2 min, followed by 30 cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C 

for 30 s with a final extension at 72 °C for 10 min to ensure complete amplification. The 

amplified PCR products that were separated on 2% agarose gels were extracted and purified 

using the Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) following the 

manufacturer instructions and quantified using QuantiFluor™ -ST (Promega, USA). Purified 

amplicons were pooled in equimolar concentration and paired-end sequenced (2 × 250) on an 

Illumina MiSeqPE250 platform according to the standard protocols.  
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3.2.5 Sequence data processing and analysis 

The quality check for raw data sequence files from Illumina was carried out using FastQC 

software (Andrews, 2010). The raw sequences were demultiplexed, poor quality sequences 

were removed, and barcode, adaptor, and primer sequences were trimmed off using QIIME 

(version 1.17). UPARSE （ version 7.1 http://drive5.com/uparse/) was used to cluster 

Operational Taxonomic Units (OTUs) with 97% similarity cutoff and chimeric sequences were 

removed using UCHIME to produce high-quality sequences. These sequences (around 250bp) 

were aligned with sequences in SILVA 16S rRNA database and RDP Classifier 

(http://rdp.cme.msu.edu/) was used for phylogenetic affiliation of each high-quality sequence.  

The sequences obtained in this study were submitted to the National Center for 

Biotechnological Information (NCBI) Short Read Archive (SRA) database under the accession 

numbers SAMN09469451 to SAMN09469511.  

3.2.6 Statistical analysis 

The species diversity and richness of bacterial communities within each sample (alpha diversity) 

were determined by Shannon (H’) and Simpson (D) diversity indices, abundance based 

coverage estimator (ACE), and Chao1 richness estimator using MOTHUR 

(http://www.mothur.org) (Schloss, 2009). Principle Coordinate Analysis (PCoA) and cluster 

analysis compared the bacterial diversity between different samples (beta diversity) by using 

QIIME (Caporaso et al., 2010). The relationship between the environmental parameters and 

bacterial community in the samples was performed by redundancy analysis (RDA) by using R 

language vegan package (http://www.R-project.org/ 2013). 

3.3 Results 

3.3.1 Assessment of physico-chemical parameters 

The detailed results of physio-chemical parameters are provided in Table S2.1 and results were 

discussed in detail in chapter 2. Among the tested parameters, conductivity and pH were in 

http://rdp.cme.msu.edu/
http://www.mothur.org/
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acceptable limits as suggested by Ministry of Environmental Protection (MEP), China (MEP, 

2016) but TN was higher than acceptable levels in all the locations during three occasions. 

NH4-N, NO2-N, and TP had surpassed acceptable levels in some locations. The relationship 

between these parameters and bacterial diversity are discussed in this chapter.  

3.3.2 Quality check for NGS study: 

A three-step quality control (QC) measures were applied to ensure the quality of the sequence 

data obtained in this study. In the first step, high-quality genomic DNA was used for NGS after 

confirming with spectrophotometric (Nanodrop) and agarose gel electrophoresis methods. In 

the second step, the amplicons generated after PCR amplification were assessed for appropriate 

sizes (~ 250bp) by 2% agarose gel and quantified to ensure the products were in appropriate 

concentration (Supplementary fig. S3.1 and Table S3.1). Finally, the real-time QC monitoring 

of sequencing run generated by the Illumina Miseq sequencing systems was done by using 

Sequencing Analysis Viewer (SAV, v2.4 version) and a probability of Q20≥90 and Q30≥80 

was set as a selection criteria. The quality check for raw sequence data performed using FastQC 

software produced mean quality Phred score (error rate), GC%, the presence of ambiguous 

bases (N), adapter sequences and other statistics for each set of paired reads (Andrews, 2010). 

The mean Phred score was calculated to be above 37 and the percentage of ambiguous bases 

and remaining adapter sequences was found to be below 1.0 % cut off, indicating sequencing 

accuracy of 99.9% (Cliften, 2015). 

3.3.3 Bacterial diversity and community composition in water and fecal samples 

In total, 61 samples (45 water samples collected in three seasons and 16 host-specific fecal and 

wastewater samples) were used for sequencing and in-depth monitoring of bacterial diversity 

and composition by NGS. A total of 1,694,935 bacterial 16S rRNA reads were generated for 

water, wastewater and fecal samples with sequence libraries of size ranging from 18640 reads 

(goose fecal) to 37367 reads (water sample). Although different sequence size libraries were 
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generated for the water, wastewater and fecal samples, the sequence data were normalized by 

considering library with lowest sequence reads as cutoff and reanalyzing the data to show 

normal distribution of variance and for further comparison between samples (Ahmed et al., 

2015a). The average number of OTUs, species diversity (Simpson and Shannon) indices and 

richness (ACE and Chao1) values for bacterial diversity observed in water, wastewater and 

fecal samples were given in Table 3.1 and a detailed diversity index along with number of 

OTUs for each sample was provided in supplementary files (Table S3.2). The rarefaction 

curves based on total number of OTUs with normalized sequence reads were presented in Fig. 

3.1. For water samples (n=45), a total of 39192 OTUs were generated ranging from 564 to 

1292) OTUs. The highest diversity and species richness was observed at location 20 (WIW20) 

and 21 (WIW21) during winter and lowest at location 2 (WIW2) and 3 (WIW3) as indicated 

by OTU richness, Chao and Shannon indices (Table. S3.1). Similarly, for fecal samples (n=14), 

5254 OTUs were generated ranging from 138 to 640 OTUs (Table S3.2) and the lowest species 

diversity and richness was observed for duck, human, dog and chicken fecal samples compared 

to pig, goose and cow fecal samples (Table 3.1).  A total of 2360 OTUs were generated for 

wastewater samples (n=2) with an average of 1180 and these samples had the highest diversity 

when compared to fecal and water samples (Table 3.1). 

The RDP classifier categorized all the OTUs of water into 20 bacterial phyla, however their 

relative abundance varied with the type of sample (Fig.3.1). Proteobacteria, Actinobacteria, 

Bacteroidetes, and Cyanobacteria are the most dominant phyla accounting for about 90% of 

total abundance in all location except in location 2 (WIW2) and 3 (WIW3) samples collected 

in the winter season. These two samples had Proteobacteria, Firmicutes, Bacteroidetes, and 

Cyanobacteria as abundant phyla. About 180 different genera were identified in Tiaoxi River 

water, although genera related to Cyanobacteria and Actinobacteria (hgcI_clade) showed 

higher relative abundance in all the locations of Tiaoxi River water, except location 2 (WIW2) 
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and 3 (WIW3) samples collected in the winter season (Table S3.3).  Although different genera 

such as Microcystis, Flavobacterium, Sediminibacterium and Fluviicola were also abundant in 

Tiaoxi River water samples, this study was mainly focused on bacteria that are fecal associated 

or potentially pathogenic in nature. In the current study, several fecal-associated and potential 

pathogenic bacterial genera were detected in Tiaoxi River water samples, which are discussed 

in detail in the following sections.  

In fecal samples, only 16 phyla were observed and the most abundant phyla were Bacteroidetes, 

Firmicutes, and Proteobacteria constituting 90% of relative abundance (Fig.3.1). At genus level, 

143 genera were observed but Prevotella, Bacteroides and Lactobacillus were the most 

abundant genera in fecal samples (Table S3.3). In wastewater samples, 20 different phyla were 

observed but the phylum Proteobacteria was the most abundant followed by Bacteroidetes and 

Chloroflexi.  Genera related to Proteobacteria such as Dechloromonas and Arcobacter were 

abundant in wastewater samples (Table S3.3). 

 

Figure 3.1 Rarefaction curves generated with normalized sequence reads (n=18640) for 

water, wastewater and fecal sample
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Table 3.1 Bacterial diversity values based on the 16S rRNA gene sequences by NGS for water and fecal samples (normalized to n=18640 per 

sample). 

Sample group 

OTUs 

(±SD) 

Shannon (±SD) 

Simpson 

(±SD) 

ACE index (±SD) Chao1 (±SD) Coverage (±SD) 

Total water samples a 870±163 4.64±0.33 0.033±0.014 1510±235 1322±231 0.98±0.01 

Chicken fecesb 367±5.6 3.43±0.01 0.062±0.001 504±25 475±20 0.99±0.02 

Cow fecesb 627±26 5.13±0.01 0.015±0.006 685±31 687±29 0.99±0.02 

Dog fecesb 142±6 3.32±0.03 0.060±0.006 193±35 187±3 0.99±0.02 

Duck fecesb 229±58 3.15±0.13 0.09±0.010 328±59 310±19 0.99±0.02 

Goose fecesb 434±22 4.13±0.05 0.033±0.009 544±23 563±24 0.99±0.01 

Human fecesb 223±1 3.25±0.39 0.115±0.037 268±7 289±7 0.99±0.02 

Pig fecesb 598±59 4.39±0.01 0.036±0.001 685±80 698±101 0.99±0.01 

Wastewaterb 1180±9 5.59±0.04 0.010±0.001 1444±21 1461±40 0.98±0.01 

a where n=45 samples, b where n=2 composite samples. 
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Figure 3.2 Relative abundance of bacterial phyla in Tiaoxi River water, fecal and wastewater samples.
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3.3.4 Comparison of bacterial community structure between water and fecal samples 

Hierarchical cluster analysis was performed by the UPGMA method to find out the similarities 

between different water and fecal samples (β-diversity). When three season water samples were 

compared, water samples from location 2 (WIW2) and 3 (WIW3) during winter clustered 

separately from other water samples indicating that the bacterial composition was different in 

these samples (Fig. 3.3A). As stated previously, the phylum and genus level bacterial 

compositions at these locations were different from those of other water samples (Fig.3.3 and 

Table S3.3). The β-diversity analyzed by PCoA also showed similar results and revealed that 

these two samples clustered separately from other water samples (Fig. 3.4A). The results of β-

diversity analyzed by PCoA and cluster analysis also indicated that significant seasonal 

variation was observed for water samples that formed distinct seasonal clusters, though few 

autumn and summer water samples were closely related (Fig. 3.3A and 3.4A). When 

comparison was carried out between water, fecal and wastewater samples, fecal samples 

clustered separately demonstrating that the bacterial composition of fecal samples is distinct 

from water and wastewater samples (Fig.3.3B-D & Fig.3.4B-D). However, WIW2 and WIW3 

water samples clustered close to WW and fecal samples indicating the presence of fecal related 

microbiota in these samples.  

The Venn diagram analysis was performed with unambiguous OTUs for better analysis of 

shared and specific OTUs present in water, wastewater and fecal samples (Fig. 3.5A, B, C and 

D). When three season water samples were analyzed, the results indicated that 42.7% of OTUs 

were shared between water samples, however, winter season water samples (WIW) had the 

highest number of specific OTUs (22.1%) compared to autumn (AUW) (8.4%) and summer 

(SUW) (7.8%) (Fig. 3.5A). The analysis was also performed between three different season 

water samples with total fecal samples, the results indicated that 39.1%, 41.6%, and 38.7% of 
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OTUs from autumn, winter, and summer season water samples were shared with the OTUs of 

fecal samples (Fig. 3.5B). These findings point out at the possible fecal contamination in the  

 

Figure 3.3 Cluster analysis showing similarity in bacterial diversity in water samples collected 

in three seasons (A) and in combinations of diversity in water and fecal samples (B, C, D).  

(AUW-Autumn Water; WIW=Winter Water; SUW-Summer Water; FEC-Fecal samples). 



 

62 
 

 

Figure 3.4 Visualization of β-diversity among water and fecal samples by Principal coordinate analysis. (A) Comparison of bacterial diversity 

between water samples collected during autumn, winter and summer (B) Comparison of bacterial diversity in autumn and winter water samples 

with fecal and wastewater samples. (AUW-Autumn Water; WIW=Winter Water; SUW-Summer Water; FEC-Fecal samples). 
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Figure 3.4 Visualization of β-diversity among water and fecal samples by Principal coordinate analysis. (C) Comparison between autumn and 

summer water samples with all fecal samples (D) Comparison between winter and summer water samples with all fecal samples. (AUW-Autumn 

Water; WIW=Winter Water; SUW-Summer Water; FEC-Fecal samples). 
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Figure 3.5 Venn diagrams showing shared and unique OTUs identified when the sequences were compared between Autumn, Winter and 

Summer water samples (A),  between water samples collected during three season water samples with all fecal samples (B) and between pooled 

water samples and individual fecal samples (human, pig, and chicken) (C) and  between fecal and wastewater samples (D).  
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water samples. Similarly, when OTUs from individual fecal sources were compared with total 

water samples, the results showed that 4.5% from human, 7.1% from pig and 9.8% from 

chicken fecal samples were shared with OTUs of total water samples (Fig.3.5C) indicating 

fecal contamination of water samples from these sources. The analysis was also performed with 

fecal and wastewater samples and the results revealed that 14%, 40% and 57% of OTUs were 

host specific for human, chicken and pig fecal samples (Fig. 3.5D). These specific OTUs could 

be useful as potential targets in developing host-specific fecal indicator bacteria or markers for 

future studies. The wastewater samples showed shared OTUs (17.9%) with the three fecal 

samples, which could have led to high diversity in these samples (Table 3.1).  

3.3.5 Abundance of fecal or sewage-associated genera in Tiaoxi River water samples 

As discussed previously, although 180 different genera were recognized in Tiaoxi River water 

samples, this study was mainly focused on the genera that are associated with fecal sources and 

potential pathogens in nature. Five fecal and one sewage-associated genus that include 

Bacteroides, Prevotella, Blautia, Faecalibacterium, Dorea and Macellibacteroides were 

detected in Tiaoxi River water samples. Bacteroides was detected in most of the locations (39 

out of 45 samples tested) of Tiaoxi River (Fig. 3.6A). Genus Bacteroides, a member of Order 

Bacteroidales, represents Gram-negative obligately anaerobic bacteria that are abundantly 

present in the human and animal gut. Bacteroides contributed to 10-30 % of total fecal bacteria 

in mammalian feces (Layton et al., 2006) and their presence in environmental samples indicates 

potential mammalian fecal pollution. Bacteroides concentrations were comparatively high in 

the winter season and highest abundance was observed at WIW2 (2.6%) and WIW3 samples 

(2.4%) (Fig. 3.6A). Genus Prevotella was also observed at several locations (35 out of 45 

samples tested) of Tiaoxi River with the highest concentration at location 16 during autumn 

season (Fig. 3.6B). Prevotella, a member of Bacteroidales, are Gram-negative obligately 

anaerobic bacteria that are present abundantly in human and animal gut as well as other body 
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parts (Lee et al., 2011). Genus Blautia was detected in several samples (26 out of 45 samples) 

of Tiaoxi River water (Fig. 3.6C). Blautia, which belongs to Order Clostridiales, are Gram-

positive obligately anaerobic bacteria present in high abundance in the mammalian gut 

microbiome (Garcia-Mazcorro et al., 2012). The highest Blautia abundance was detected in 

WIW2 (0.10%) and WIW3 (0.11%) samples of Tiaoxi River water. Genus Faecalibacterium, 

which are obligately anaerobic bacteria and consist of only one known species, was detected 

in 19 out of 45 water samples tested of Tiaoxi River (Fig.3.6D). Faecalibacterium are 

abundantly present in the healthy human intestinal microbiota representing nearly 5% of the 

total bacterial population (Miquel et al., 2013). They were also reported to be present in avian 

fecal samples (Sun et al., 2016, Green et al., 2012). Therefore, their presence in water indicates 

possible human or avian fecal pollution. Water samples collected from location 2 (WIW2) and 

3 (WIW3) during winter season showed highest Faecalibacterium abundance (0.038 and 

0.028%). Genus Dorea was detected in 14 out of 45 water samples of Tiaoxi River and highest 

abundance was detected at WIW2 (0.06%) and WIW3 (0.04%) water samples. (Fig.3.7A). 

Dorea spp. are Gram-positive obligately anaerobic bacteria present mainly in human faeces 

(Taras et al., 2002) and presence of this genus indicates possible human fecal contamination. 

Sewage associated genus Macellibacteroides was also detected in some locations (27 out of 45 

samples) of Tiaoxi River (Fig. 3.7B). Macellibacteroides belongs to Bacteroidales and are 

strict anaerobic Gram-negative bacteria mostly isolated from WWTPs (Jabari et al., 2012); 

though these bacteria were detected in goose fecal samples here (Table S3.2). These bacteria 

were frequently detected at locations 4, 5, 6 and 16 in all seasons. The results match with the 

land use pattern as the upstream of Location 6 is active in poultry farming and location 4, 5 and 

16 were reported to have WWTPs (Zheng et al., 2017). A few more human-associated fecal 

bacteria such as Parabacteroides, Bifidobacterium were also detected in low concentrations at 
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different locations (Table S3.3 and S3.4) indicating potential human contaminations in these 

locations. 

 

Figure 3.6 Relative abundance of fecal-associated genera (A) Bacteroides, (B) Prevotella, 

(C) Blautia ((D) Faecalibacterium observed at different sampling locations in Tiaoxi River.  
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Figure 3.7 Relative abundance of fecal and sewage associated genera locations (A) Dorea, 

(B) Macellibacteroides observed at different locations in Tiaoxi River. 

 

3.3.6 Abundance of potentially pathogenic genera in Tiaoxi River water samples 

The sequencing data were analyzed to assess the presence of potentially pathogenic bacterial 

genera in Tiaoxi River water samples by comparing with known pathogenic bacteria from the 

database of Pathosystems Resource Integration Center (PATRIC) (Wattam et al., 2014). In 

total, 14 potential pathogenic bacterial genera were detected in Tiaoxi River water samples 

(Table S3.4). However, only seven groups (Acinetobacter, Aeromonas, Arcobacter, 

Brevundimonas, Enterococcus, Escherichia-Shigella, and Streptococcus) showed relative 

abundance greater than 0.1 at different locations of Tiaoxi River water and these data are 

presented in Table 3.2. 
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Table 3.2 Range (Relative abundance percentage) of potential pathogenic bacterial genera detected in different locations of Tiaoxi River during 

three sampling occasions. 

Location Acinetobacter Aeromonas Arcobacter Brevundimonas Enterococcus Escherichia- 

Shigella 

Streptococcus No. of Potential 

pathogens (>0.1 

abundance) 

L-1 0.01-0.02 0.00-0.02 0.00-0.05 0.00-3.96 0.00-0.01 0.00-0.03 0.00-0.01 1 

L-2 0.02-0.30 0.00-0.03 0.01-0.18 0.00-0.18 0.00-0.28 0.01-0.63 0.00-0.11 6 

L-3 0.01-0.13 0.01-0.11 0.01-0.21 0.00-0.36 0.00-0.40 0.00-0.52 0.00-0.15 7 

L-4 0.01-0.12 0.04-0.16 0.04-0.46 0.00-0.28 0.00-0.13 0.02-0.23 0.00-0.04 6 

L-5 0.02-0.07 0.06-1.33 0.15-0.28 0.00-0.03 0.00-0.05 0.01-0.40 0.00-0.01 3 

L-6 0.01-0.04 0.01-0.06 0.01-0.14 0.00-0.06 0.01-0.12 0.02-0.20 0.01-0.03 3 

L-8 0.01-0.09 0.01-0.05 0.00-0.02 0.01-0.05 0.00-0.05 0.01-0.08 0.00-0.02 0 

L-10 0.01-0.09 0.01-0.08 0.01-0.02 0.00-0.03 0.00-0.03 0.01-0.03 0.00-0.01 0 

L-12 0.01-0.05 0.01-0.31 0.01-1.36 0.00-0.24 0.00-0.03 0.03-0.05 0.01-0.01 3 

L-13 0.01-0.07 0.00-0.07 0.01-0.22 0.00-0.07 0.00-0.01 0.01-0.09 N.D 2 

L-14 0.00-0.06 0.00-0.20 0.00-0.06 0.00-0.24 0.00-0.05 0.01-0.02 0.00-0.01 2 

L-15 0.01-0.17 0.01-0.15 0.00-0.04 0.01-0.10 0.03-0.10 0.01-0.05 0.00-0.01 4 

L-16 0.04-0.05 0.05-0.19 0.15-0.75 0.01-0.43 0.00-0.01 0.01-0.36 0.00-0.01 4 

L-20 0.01-0.07 0.01-0.02 0.00-0.02 0.00-0.01 0.00-0.70 0.00-0.03 N.D 1 

L-21 0.01-0.09 0.01-0.07 0.00-0.11 0.00-0.15 0.01-0.22 0.01-0.05 N.D 3 
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Several species of Acinetobacter and Aeromonas are considered as opportunistic pathogens, 

which cause nosocomial infections and gastroenteritis (Khosravi et al., 2015, Laukova et al., 

2018). The highest Acinetobacter concentration was observed at location 2 and Aeromonas at 

location 5, though these genera were not classified up to species level. As stated earlier, these 

locations have higher levels of human and animal fecal contamination. The genus Arcobacter 

detected in this study showed 97% identity to A. cryaerophilus, which is an emerging 

enteropathogen to human and animals (Fernandez et al., 2015). Arcobacter was one of the most 

frequently (9 out of 15 locations with above 0.1% abundance) detected pathogens in Tiaoxi 

River and the highest abundance (1.3%) was observed at location 12. Brevundimonas was the 

most commonly detected potential pathogen in Tiaoxi River, which was found with higher 

abundance (>0.10) at 10 monitoring locations and the highest abundance (3.9%) was detected 

at location-1 (Taihu Lake) during winter season. The sequences of this genus were identified 

as Brevundimonas alba, B. bullata and B. vesicularis, in which the latter is an opportunistic 

pathogen that causes bacteremia (Zhang et al., 2012). Although Enterococcus and Escherichia-

Shigella were detected with high abundance at several locations and Streptococcus in a few 

locations, they were not reliably classified to species level with 97% similarity cutoff. However, 

all the seven potential pathogens with relative abundance >0.1 were detected at location 3 and 

six of these potential pathogens with higher abundance was observed at location 2 and 4 

emphasizing that these locations could be of potential human health risk.  

3.3.7 Relationship between environmental parameters and bacterial community 

composition 

RDA analysis was carried out to find out the relationship between environment parameters (pH, 

temperature, conductivity, TN, TP, NO2-N, NH4-N) on the bacterial community composition 

observed at different locations and seasons.  RDA1 and RDA2 explained 26.92% and 14.72% 

of the total variations observed in autumn 2014, respectively (Fig. 3.8A). The RDA biplot 
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indicated that the parameters temperature, conductivity, pH, TP and TN variations altered the 

bacterial community composition. In particular, the pH, conductivity and TP influenced the 

community composition in the locations 3 and 12. In winter 2015, the pattern was different. 

The RDA1 and RDA2 contributed 44.7% and 16.43% to the total variations, respectively (Fig. 

3.8B).  The pH and conductivity were found to be major factors influencing the bacterial 

community composition. The RDA biplot pattern was entirely different in the samples 

collected during summer 2015 (Fig. 3.8C).  The RDA1 and RDA2 contributed 41.9% and 

10.2%, respectively to the total variations, respectively.  The parameters such as temperature, 

conductivity, pH, NH4-N and NO2-N were found to be influenced the community composition.  

The overall analysis indicated that pH, conductivity, temperature and some of the nutrients 

were the main environmental factors that showed strong influence on the bacterial community 

composition.  

3.4 Discussion 

Recent advances in NGS technologies coupled with reduced cost has increased the application 

of microbial community analysis in different fields of research such as monitoring microbial 

quality and diversity in aquatic environment and studying the microflora associated with fecal 

samples (Ley et al., 2008, Thomas et al., 2012). Vierheilig et al. (2015) used NGS based 16S 

rRNA gene sequencing for water quality monitoring by studying the bacterial community 

composition in water, feces, soil and sediment samples, and the results revealed that this 

approach can be used for monitoring bacterial contamination and re-growth in the 

environmental waters. Newton et al. (2011) assessed human fecal pollution in urban harbor by 

16S rRNA targeted pyrosequencing. Marti et al. (2017) assessed the microbial contamination 

in benthic and hyporheic sediments in a peri-urban River by MST and 16S rRNA sequencing 

and the study concluded that the NGS enabled detection of bacterial contamination in water 

and that the NGS based method was sensitive to track community changes as compared to MST
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Figure 3.8 Redundancy analysis (RDA) showing a correlation of physico-chemical parameters with microbial community composition at 

different locations during three seasons; (A) Autumn 2014, (B) Winter 2015 and (C) Summer 2015.
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markers. In this study, bacterial communities of water, fecal and wastewater samples were 

studied by Illumina sequencing by targeting V3-V4 hypervariable region of the 16S rRNA gene. 

The average read length generated by Illumina sequencing after trimming was about 250bps 

and reads were processed for assigning taxonomy. 

The diversity indices for bacterial community associated with chicken, dog, duck and human 

fecal samples were less compared to other fecal, wastewater and Tiaoxi River samples (Table 

3.1) and this could be due to dominance/abundance of relatively small number of taxa (Jeong 

et al., 2011). In chicken and duck fecal samples, Proteobacteria and Firmicutes were dominant 

which represented >90% of taxa; in dog and human fecal samples, Bacteroidetes and 

Firmicutes accounted for 90% of bacterial taxa.  Ley et al. (2008) also reported the dominance 

of these bacterial taxa in fecal samples and indicated that diet influences the gut flora leading 

to less diversity or the presence of a small number of dominant taxa. They also reported that 

carnivores and omnivores (human, dog, duck and chicken) have less diverse gut microbiomes 

compared to herbivores. High diversity values were observed in wastewater samples here are 

consistent with previous studies (Newton et al., 2013, Shanks et al., 2013). Higher diversity in 

wastewater samples could be due to presence of mixed bacterial communities such as bacteria 

from human feces (collected from large number of people) releasing into wastewater and from 

environmental samples releasing into WWTP streams (Newton et al., 2013). Moreover, the 

wastewater contains high amount of nutrients, which support the growth of diverse microbial 

populations (McLellan et al., 2013, Arfken et al., 2015). The bacterial diversity observed in 

this study can be different from other studies and several factors could contribute to the 

difference in intestinal microflora caused by dietary habits of livestock and humans (Ley et al., 

2008, Dowd et al., 2008a, Dowd et al., 2008b). Other factors include  the nature of gene marker 

and hypervariable region selected for sequencing, number of reads analyzed, variance in 

similarity cutoff values for determining OTUs, and difference in DNA isolation procedure or 
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kits employed (Gihring et al., 2012). Although the hierarchal cluster analysis results indicated 

that human fecal samples are closely related to dog fecal samples (Fig. 3.3B, C and D), the 

Venn diagram of human fecal samples with pig and chicken fecal samples (as they are common 

livestock’s of study area) revealed that human fecal samples harbor microbes that are closely 

related to pig fecal samples (Fig. 3.5D). This could be due to more shared OTUs from genera 

Bacteroides and Prevotella present in these samples (Dick et al., 2005).  

Many species of genera Bacteroides, Prevotella and Blautia are abundant in the mammalian 

gut and were advocated as fecal indicators (Savichtcheva and Okabe, 2006, Newton et al., 

2011). Newton et al. (2011) studied the bacterial community in sewage samples by NGS based 

16S rRNA gene sequencing and the results revealed the presence of human feces associated 

Blautia sequences in the samples. Species of Bacteroides have host specificity and limited 

survival in environment, making them ideal indicators of recent fecal contamination and are 

often used for microbial source tracking (MST) (Bernhard and Field, 2000b, Layton et al., 

2006). In the present study, the Bacteroides detected in Tiaoxi River water samples were 

classified to species level; Bacteroides plebeius, B. propionicifaciens, B. massiliensis, B. 

graminisolvens,   B. nordii, B. stercoris, B. caccae, and B. paurosaccharolyticus. B. caccae 

and B. plebeius were mainly isolated from human feces (Wei et al., 2001, Kitahara et al., 2005) 

and presence of these bacterial species in the environment indicates human fecal contamination. 

These species were frequently detected with high concentration (OTUs) at location 2 and 3 of 

Tiaoxi River (Table S3.3) and highest concentrations were observed in the samples collected 

during winter (WIW2 and WIW3 samples). During winter sampling (Jan/Feb 2015), the 

rainfall was relatively less than autumn winter sampling and considered as a dry period (only 

66mm precipitation, NBSC (2016) and fecal contamination at these locations could be due to 

direct discharge of sewer and septic waste but not merely through runoff (Ohad et al., 2015). 

The samples collected at location 3 were close to a fishing village where people live on the 
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boats without proper sanitation facilities. The high Bacteroides concentration could be 

associated with entry of sewage at this location and based on land use pattern, the presence of 

higher Bacteroides concentration at location 2 could be associated with the transport of these 

bacteria from location 3 (Marti et al., 2013). The presence of Parabacteroides merdae, which 

was mainly identified from human feces, at locations 2 and 3 also confirms the potential human 

fecal contamination at these locations (McLuskey et al., 2016). In the present study, B. 

propionicifaciens was detected only in goose and duck fecal samples however; it was detected 

frequently at location 6 of the Tiaoxi River water samples indicating avian fecal contamination 

at this location.  The presence of B. massiliensis, B. nordii and B. stercoris with high 

concentrations at location 2 and 3 point to potential human risks, as these species are associated 

with anaerobic bacteremia and abdominal infections (Song et al., 2004, Fenner et al., 2005, 

Otte et al., 2017). B. graminisolvens and B. paurosaccharolyticus were frequently detected at 

location 4, 5, 15 and 16  which are located close to WWTPs (Zheng et al., 2017). The results 

obtained in this study are in agreement with previous studies, which reported that the above 

Bacteroides species are isolated from effluents of WWTPs (Nishiyama et al., 2009, Ueki et al., 

2011). However, they were also detected in goose fecal samples in the current study. Overall, 

the species level identification of Bacteroides are matching with the land use pattern in the 

current study (Table   S3.3). The remaining fecal indicator bacterial genera such as Prevotella, 

Blautia, Faecalibacterium and Dorea detected in this study were not reliably classified to 

species level indicating the limitations of using short reads of 16S rRNA generated by NGS 

(Nguyen et al., 2016). However, Prevotella was detected at locations 4, 5, 6, 12, 14, 16 and 21 

in three seasons (Fig. 3.5B) indicating these locations are potentially polluted with human or 

animal fecal contamination (Lee et al., 2011). Locations 4, 5 and 16 are situated near WWTPs 

(Zheng et al., 2017) and at location 6 and 21, several household backyard and commercial 

farms for poultry and pigs were observed during sampling. Locations 12 and 14 are urban or 
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suburban areas and the presence of Prevotella at these locations could be due sewage entry or 

transport of bacteria from upstream locations such as location 13 where poultry and pigs farms 

are observed (Table 2.1; S5.2). While studying the fecal contaminations in an urban River, 

Newton et al. (2011) noticed an increased in fecal indicators and human-associated sequences 

after the heavy rainfall and combined sewer overflows (CSOs). The fecal indicator bacteria 

Blautia, Faecalibacterium and Dorea are significantly higher at locations 2 and 3 during winter 

season, highlighting the presence of fecal contamination at these locations again. Overall, the 

presence of fecal indicator bacteria at different locations of Tiaoxi River water stresses the 

application of MST techniques to determine the source of fecal pollution at Tiaoxi River. 

As fecal indicator bacteria were observed at several locations, further analysis was performed 

to detect potential pathogenic bacteria, which revealed that seven potential pathogenic bacterial 

genera (Acinetobacter, Aeromonas, Arcobacter, Brevundimonas, Enterococcus, Escherichia-

Shigella, and Streptococcus) were present in Tiaoxi River water (Table 3.2). Most of these 

potential pathogenic bacterial genera were detected with higher concentration (>0.1 abundance) 

at locations 2, 3 and 4, which were highly contaminated with feces. However, most of these 

potential pathogenic bacteria are opportunistic pathogens as an example, Acinetobacter, an 

emerging opportunistic pathogen comprises more than 20 species and only three species are 

considered as pathogens (Shamsizadeh et al., 2017). Similarly, Aeromonas has 21 species but 

only three species are mainly considered as pathogens (Janda and Abbott, 2010). Therefore, 

the sequencing data was carefully examined again to check the pathogenic species of these 

genera. Only two species level classified pathogenic bacterial genera were identified: A. 

cryaerophilus and B. vesicularis. A. cryaerophilus that causes acute to chronic diarrhoea in 

human was frequently detected at locations 12 and 16, demonstrating potential health risk 

associated with water samples at these locations. However, Arcobacter genus, which was 

included in Campylobacter genus earlier, was created or reclassified recently and often 
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confused with Campylobacter species due to their phylogenetic similarity (Collado and 

Figueras, 2011). In the case of A. cryaerophilus, they are often confused with C. jejuni and 

therefore unambiguous monitoring methods such as virulence gene detection or quantification 

of these bacteria are required for accurate identification (Figueras et al., 2014). With respect to 

B. vesicularis, very few OTUs were observed in Tiaoxi River water (Table   S3.3) and the 

remaining potential pathogenic genera such as Enterococcus, Escherichia-Shigella, and 

Streptococcus were not classified to species level with 97% similarity and this could be due to 

limitation of short sequence reads or the low resolution of hyperviable region V4 in classifying 

pathogens using NGS method (Janda and Abbott, 2007, Nguyen et al., 2016). However, NGS 

could be useful as a screening method to assess a wide-range of fecal and potential pathogenic 

bacteria, which could be further verified by sensitive methods such as qPCR to determine the 

potential human health risk.  

3.5 Conclusions: 

 A total of 20 different phyla were observed in most of the water samples of Tiaoxi River 

and wastewater samples, while only 16 phyla were detected in fecal samples.  

 Hierarchical cluster analysis and PCoA performed for fecal, wastewater and water 

samples showed that fecal and wastewater samples clustered separately from water 

indicating the bacterial compositions were different in these samples. 

 Venn diagrams revealed that chicken fecal samples (9.8%) shared the highest number 

of OTUs with total water samples, followed by pig (7.1%), and human samples (4.5%) 

indicating the presence of avian, pig and human fecal contamination in Tiaoxi River.  

 Five bacterial genera associated with fecal sources (Bacteroides, Prevotella, Blautia, 

Faecalibacterium, and Dorea) were present at several locations indicating possible 

human and animal fecal contamination in these locations.  
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 Seven potential pathogenic bacteria (Acinetobacter, Aeromonas, Arcobacter, 

Brevundimonas, Enterococcus, Escherichia-Shigella, and Streptococcus) were 

observed in several locations at abundances >0.1 and more specific PCR assays are 

needed for accurate detection and quantification of these genera. 

 Overall, the results indicate that NGS could be a valuable tool to screen for a wide 

variety of bacteria including fecal and pathogenic in nature as an initial step to identify 

human health risk and to prioritize sites for further assessment using more specific 

methods such as quantitative PCR.  
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Abstract 

The aim of this chapter was to evaluate the performance of existing universal, human and 

animal associated microbial source tracking (MST) qPCR assays for their applicability to 

ascertain host-associated fecal pollution in Taihu watershed, China. Ten MST qPCR assays 

were evaluated using DNA extracts from sewage and fecal DNA extracts from human, chicken, 

cow, duck, goose, dog and pig. The BacUni and GenBac3 (universal Bacteroidales markers) 

amplified all DNA samples from fecal and sewage sources but higher abundance was obtained 

with BacUni. The four human-associated Bacteroidales assays (HF183 Taqman, BacHum, 

HF183 SYBR, and Hum2) exhibited a sensitivity of 53-80% and had cross-reactivity with 

chicken (40-70%) and dog (10-20%) fecal DNA samples. However, the HF183 Taqman assay 

did not show any cross-reactivity with either pig or cow fecal DNA and it quantified the target 

in all DNA samples from sewage. Pig-2-Bac assay showed high sensitivity (90%) with pig 

fecal DNA, low cross-reactivity (20%) with cow fecal DNA, and no amplification of human 

fecal DNA. BacCow, which was tested as a livestock/domestic animals associated assay, 

amplified only cattle (100%), pig (20%) and chicken (40%) fecal DNA but not all 

livestock/domestic animal fecal DNA samples. Among the avian associated markers tested, 

GFD showed less sensitivity (70%) than AV4143 (90%) but it did not cross-react with human 

fecal DNA, suggesting that this assay could be used to differentiate between chicken and 

human fecal contaminations. This validation study demonstrates that BacUni, HF183 Taqman, 

Pig-2-2Bac and GFD assays are the most suitable for differentially identifying and monitoring 

human and animal fecal contamination in Taihu watershed.  
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4.1 Introduction 

Fecal pollution of watercourses leads to eutrophication and is a serious threat to human health 

by disseminating pathogenic microorganisms (Wade et al., 2003, Lapointe et al., 2015). 

Although pathogen detection methods and wastewater treatment technologies have improved 

significantly, waterborne disease outbreaks have been reported frequently in several countries 

(Brookes et al., 2004, Ahmed et al., 2015b, Unno et al., 2012). The World Health Organization 

(WHO) reported that diarrheal disease leads to the death of around 525,000 children (<5 years 

old) each year in the world and a significant portion of this diarrheal disease was due to the 

consumption of poorly sanitized water (WHO, 2017). Although human health risk is the main 

concern, pathogen contamination can also lead to substantial economic loss due to the closure 

of water bodies used for fisheries or recreational activities (Mitch et al., 2010). In China, rapid 

industrialization and urbanization combined with inadequate water treatment regimes has led 

to severe water pollution;  one report stated that more than half of the populations in rural China 

consume water polluted with animal and human feces (Hagedorn and Liang, 2011). In China, 

as elsewhere, microbial quality of surface waters is evaluated using fecal indicator bacteria 

(FIB), as suggested in the Surface Water Criteria (GB3838-2002) by the Ministry of Ecology 

and Environmental Protection (MEP), People’s Republic of China. FIB in water can originate 

directly from human or animal feces inputs, but also from sewage; simple detection and 

enumeration of FIB by traditional culture-based methods provides no evidence on the specific 

source of the contamination. Furthermore, previous studies indicated the occurrence of non-

fecal FIB in environmental waters (Byappanahalli et al., 2003, Yamahara et al., 2007). 

As human health risks vary with the type of host fecal source exposure, understanding the 

origin of fecal sources and their impact on water quality is very important for effective 

management of a watershed and to enable appropriate remedial action (Soller et al., 2010). In 

this regard, microbial source tracking (MST) techniques emerged as promising approaches to 
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distinguish human from other animal sources of fecal contamination. Initially, several library 

dependent MST methods were developed that rely on comparison of genetic or phenotypic 

traits between reference fecal sources (known) and environmental samples (unknown) to 

ascertain the origin of fecal pollution (Parveen et al., 1999, Harwood et al., 2000); however, 

these methods are time-consuming and not very cost effective.  For this reason, library 

independent MST (LI-MST) methods targeting host-associated genetic markers were 

developed as alternative indicators to distinguish human fecal sources from other fecal sources 

(Scott et al., 2002, Kildare et al., 2007, Green et al., 2014, Shanks et al., 2009, Seurinck et al., 

2005). 

LI-MST methods focused on Bacteroidales 16S rRNA gene markers associated with a specific 

host have given promising results, although some studies reported cross-reactivity of these 

markers (Roslev and Bukh, 2011, Layton et al., 2013, Reischer et al., 2013, Boehm et al., 2016, 

Harris et al., 2016). Bacteroidales is an order of anaerobic bacteria universally found in the 

mammalian intestinal tract at high concentrations, but at lower abundances in avian species, 

such as chicken, goose, and gull (Wexler, 2007, Lu et al., 2008, Jeter et al., 2009). Several 

methods targeting Bacteroidales 16S rRNA gene makers have been developed worldwide to 

differentiate human fecal sources from other feces such as a ruminant, swine, dog, and birds 

(Kildare et al., 2007, Green et al., 2014, Mieszkin et al., 2010, Mieszkin et al., 2009, Gourmelon 

et al., 2010). However, it was reported recently that avian fecal markers could be better 

distinguished from other fecal sources by targeting bacterial taxonomic groups such as 

Helicobacter spp. rather than Bacteroidales 16S rRNA gene (Green et al., 2012). 

Previous reports specified that geographical differences could significantly affect the 

performance of these MST methods and recommended proper assessment prior to field 

application at new study areas (Reischer et al., 2013, Odagiri et al., 2015, Boehm et al., 2016).  
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Most of these MST methods were developed in North America, Europe, Australia, or New 

Zealand and their performance and applicability in Asia, particularly in China, has been little 

studied (Jia et al., 2014, He et al., 2016a, Fan et al., 2017). In China, studies on qPCR based 

MST assays to monitor fecal pollution are very limited. He et al. (2016a) validated five MST 

and four mitochondrial DNA fecal source tracking (FST) markers for their applicability to 

study fecal pollution in Taihu Lake watershed. They reported that mitochondrial DNA based 

human FST methods were superior (but slight cross-reactivity was observed with pig fecal 

samples which are the major livestock at Taihu watershed) over those Bacteroidales based 

MST (BacH, HF183 SYBR) assays tested; the most widely used MST makers such as HF183 

Taqman and BacHum qPCR assays were not included. They also reported that Pig-2-Bac assay 

(Bacteroidales based) showed higher accuracy than other mitochondrial DNA markers. Jia et 

al. (2014) used swine specific Bacteroidales assay (Pig-2-Bac) to assess the levels of swine 

fecal pollution in Hongqi River  and Fan et al. (2017) developed two new assays based on a 

genome fragment enrichment (GFE) method targeting Bacteroidales-like sequence present in 

pig fecal samples (Fan et al., 2017).   

This study report the results of a detailed and comprehensive study to determine the sensitivity 

and specificity of a range of existing general and host-specific MST qPCR markers, using fecal 

samples collected from the Taihu watershed region, China in order to identify the most suitable 

MST qPCR assays for detecting host associated fecal pollution across this large and important 

water catchment. 

4.2 Materials and Method 

4.2.1 Overview of study area and selection of MST qPCR assay for evaluation 

The current evaluation study was carried out at the Taihu watershed region located in Jiangsu 

and Zhejiang province, People’s Republic of China (PRC). The samples were primarily 

collected from rural and urban areas of Tiaoxi River region. Tiaoxi River is the main inlet River 
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connected to Taihu Lake and it serves as water source for drinking, industrial and agricultural 

activities for many cities located in Zhejiang Province (Tang et al., 2012). The preliminary 

selection of MST assays for this study was based on the identity of the livestock population in 

Zhejiang province and as per the data released by the National Bureau of Statistics, PRC in 

2015 (NBSC, 2015). Pigs predominate in this province accounting for more than 90% of the 

livestock population in this region excluding poultry (NBSC, 2015). Cattle, goats, sheep, and 

buffalos are rare and together constitute less than 10% of the total livestock population. China 

is the major consumer and producer of poultry in the world (Sun et al., 2016) and poultry 

production is the common livestock in Zhejiang province, which often leads to issues 

concerning the disposal of poultry waste (Zheijiang, 2016). MST assays developed and 

designed elsewhere were selected to validate their applicability; the details of the MST assays 

are provided in Table 4.1.  

4.2.2 Collection and processing of fecal samples  

To determine the specificity and sensitivity of host-associated MST qPCR markers, individual 

and composite fecal and wastewater samples were used as target sources (Ahmed et al., 2016b). 

In total, 61 fresh individual and composite fecal samples from various hosts were collected in 

Huzhou (Zhejiang province) and Suzhou (Jiangsu province) areas and tested. Further details of 

fecal and wastewater sample collection along with composite fecal samples preparation is 

provided in Supplementary note S4.1. Fresh fecal samples collected in sterile containers were 

provided by healthy human volunteers (n=10) aged between 16 and 40 years. Safety guidelines 

were provided and consent for use of the samples in this study was obtained. Ethical approval 

was acquired from XJTLU Research Ethics Committee for handling fecal and sewage samples 

in this study.  Individual fecal samples from animal hosts representing pig, chicken, dog, and 

cow (n=10 for each) and composite fecal source from duck and goose (n=3 pooled samples) 

were collected from farms, pet stores and backyards of households located near the Taihu Lake
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Table 4.1 List of primers and probes used for validation of MST qPCR assays in samples collected from the Taihu watershed region. 

Assay Primer/probe Concentration Oligonucleotide sequence (5’–3’) 

Annealing 

temperature 

(oC) 

Reference 

BacUni BacUni- 520F 400nM CGTTATCCGGATTTATTGGGTTTA 60 Kildare et al. 2007 

(Taqman) BacUni-690R1 400nM CAATCGGAGTTCTTCGTGATATCTA   

 BacUni-656P 80nM FAM-TGGTGTAGCGGTGAAA-MGB   

GenBac3 GenBacF3 1000nM GGGGTTCTGAGAGGAAGGT 60 Siefring et al. 2008 

(Taqman) GenBac4R 1000nM CCGTCATCCTTCACGCTACT   

 GenBact2P 80nM FAM-CAATATTCCTCACTGCTGCCTCCCGTA-TAMRA   

HF183 HF183F 1000nM ATCATGAGTTCACATGTCCG 60 Green et al. 2014 

(TaqMan) BacR287R 1000nM CTTCCTCTCAGAACCCCTATCC   

 BacP234P 80nM FAM-CTAATGGAACGCATCCC-MGB   

BacHum BacHum-160F 400nM TGAGTTCACATGTCCGCATGA 60 Kildare et al. 2007 

(Taqman) BacHum-241R 400nM CGTTACCCCGCCTACTATCTAATG   

 BacHum-193P 80nM 6-FAM-TCCGGTAGACGATGGGGATGCGTT-TAMRA   

HF183 HF183F 100nM ATCATGAGTTCACATGTCCG 53 Seurinck et al. 2005 

(SYBR Green) Bac242R 100nM TACCCCGCCTACTATCTAATG   

HumM2 Hum2F 400nM CGTCAGGTTTGTTTCGGTATTG 60 Shanks et al. 2009 

(Taqman) Hum2R 400nM TCATCACGTAACTTATTTATATGCATTAGC   

 HumM2P 80nM FAM-TATCGAAAATCTCACGGATTAACTCTTGTGTACGC-TAMRA   

Pig-2-Bac Pig-2-Bac41F 300nM GCATGAATTTAGCTTGCTAAATTTGAT 60 Mieszkin et al. 2009 

(Taqman) Pig-2-Bac163R 300nM ACCTCATACGGTATTAATCCGC   

 Pig-2-Bac113P 200nM VIC-TCCACGGGATAGCC-MGB   

BacCow BacCow-128F 400nM CCAACYTTCCCGWTACTC 60 Kildare et al. 2007 

(Taqman) BacCow-305R 400nM GGACCGTGTCTCAGTTCCAGTG   

 BacCow-257P 80nM 6-FAM-TAGGGGTTCTGAGAGGAAGGTCCCCC- TAMRA   

AV4143 Av4143F 500nM TGCAAGTCGAACGAGGATTTCT 60 Ohad et al. 2016 

(Taqman) Av4143R 500nM TCACCTTGGTAGGCCGTTACC   

 Av4143P 250nM FAM-AGGTGGTTTTGCTATCGCTTT-BHQplus   

GFD GFD-F 100nM TCGGCTGAGCACTCTAGGG 57 Green et al. 2012 

(SYBR Green) GFD-R 100nM GCGTCTCTTTGTACATCCCA   
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watershed region in the Huzhou area. Fresh fecal dropping from animals were collected in 

sterile containers. All fecal samples were brought to the laboratory on ice and were stored at -

20 oC within 6 hours of collection. Primary effluents (500 mL; n=6) were collected from a 

wastewater treatment plant (WWTP) situated in Suzhou and brought to the laboratory on ice. 

Biomass from primary influents was collected by centrifugation at 4000×g for 10 min at 4oC 

and DNA was extracted immediately.  

4.2.3 Extraction of Genomic DNA  

DNA extraction from the fecal/sewage samples was performed using the PowerFecal® DNA 

isolation kit that uses Inhibitor Removal Technology® (IRT) (MoBio, Carlsbad, CA USA), 

following manufacturer’s instructions. About 250 mg of individual fecal/raw sewage samples 

were used for DNA extraction from all the host fecal sources except avian fecal samples for 

which only 0.10g was used. To avoid any cross contamination with other hosts, DNA extraction 

was conducted from each type of fecal source separately. Blanks with no fecal samples were 

also performed simultaneously in each batch. The quality and quantity of extracted DNA were 

confirmed by spectrophotometry (NanoDrop ND 2000C, Thermo Fisher Scientific., 

Wilmington, USA) and extracts were stored at -20oC until further analysis. 

4.2.4 Preparation of DNA standards for qPCR assays 

Plasmid DNA standards were used for all qPCR assays and prepared by amplifying the target 

genes for each assay with the respective primer set using the fecal DNA extracts. The amplified 

products were purified using a PCR purification kit (Axygen Biosciences, CA, USA), ligated 

to pMD 19 vector (Takara, Bio Inc., Shiga, Japan) (Supplementary Figure S4.1) and 

transformed into competent E. coli cells (Tiangen Biotech, China). Plasmid DNA was extracted 

from the positive clones using QIAprep Spin Miniprep Kit (Qiagen, Mississauga, ON), and the 

extracted plasmids were sequenced using respective primers (Sangon Biotech, China). Plasmid 
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DNA standards were quantified using NanoDrop ND 2000C spectrophotometer and these 

concentrations were used for calculation of gene copy numbers. Standard curves for each assay 

were developed using tenfold serial diluted plasmid standards containing the respective target 

gene (108-101 copies/µl for each reaction).  

4.2.5 Quality assurance for DNA samples and qPCR assay conditions  

The DNA extracts were evaluated for the absence of PCR inhibitors and for the presence of 

amplifiable fecal DNA using the Bac-Uni qPCR assay (Odagiri et al., 2015) which detects 

universal Bacteroidales 16S rRNA genes. Two dilutions of DNA extracts (1:10 and 1:100) 

were assayed and the DNA extract was judged as free from PCR inhibitors if the two sample 

dilutions gave matching concentrations of Bac-Uni amplification products (Odagiri et al., 2015, 

Reischer et al., 2013).   

All the qPCR reactions were performed in triplicates with 20μl final reaction volume. The 

reaction mixture for all Taqman chemistry based qPCR assays includes 10 μl of TaqMan 

Environmental Master Mix 2.0 (Applied Biosystems, California, USA), 2 μl of the 

probe/primer set with a final concentration as given in Table.1 and 8μl of 10-fold diluted target 

DNA template. For the two SYBR Green chemistry based qPCR assays (HF183 SYBR and 

GFD), the reaction mixture contained 10μl of SYBR Green Master Mix 2.0 (Thermo Scientific, 

USA), 2 μl of primer mixture (Table 4.1) and 8μl of 10-fold diluted target DNA templates as 

stated earlier. The correct amplification products for these SYBR Green assays were chosen 

based on the melting curve analysis as described by the publisher (Green et al., 2012, Seurinck 

et al., 2005). The annealing temperature of all assays is provided in Table 4.1 and all the assays 

were performed using the Applied Biosystems amplification system (ABI 7500fast, CA) with 

StepOnePlus software.  
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4.2.6 qPCR performance characteristics and data analysis  

For each MST assay, the lower limit of quantification (LLOQ) was determined from the 

standard curve and the lowest concentration of standard gene copies that can be confidently 

detected in all triplicates was considered as the LLOQ (Schriewer et al., 2013, Ahmed et al., 

2016a). All the qPCR results were normalized to gene copies/ng of DNA and the samples 

considered positive if the concentrations were above LLOQ. The qPCR assay results 

interpretation was as stated in previous studies (Nshimyimana et al., 2017, Ahmed et al., 2016b). 

Sensitivity and specificity of all qPCR assays were determined by the formulae below (Ahmed 

et al., 2013). To determine human-associated assay sensitivity, human fecal and sewage 

samples were considered as target samples.  

Sensitivity= a/ (a+b) where, a and b represent true positives and false negatives, respectively.  

Specificity =c/ (c+d) where c and d represent true negatives and false positives respectively.  

The statistical and qPCR data analyses were carried out using either Microsoft Excel or SPSS 

version 22.0. The linear regression analysis was performed using Microsoft Excel; the 

statistical significance in the abundance of Bac-Uni and GenBac3 markers of fecal and sewage 

samples was done using SPSS 22.0 (IBM Inc., Chicago, IL, USA).  

4.3 Results  

4.3.1 Assessment of qPCR inhibitors and quality assurance of fecal DNA samples 

Reliable quantification and specific detection of genetic markers by qPCR poses many 

challenges. The qPCR assays should be carefully designed and optimized to obtain maximum 

achievable specificity and sensitivity (Bustin et al., 2009).  In the current study, BacUni qPCR 

assay was carried out to test the presence of amplifiable DNA in feces/sewage samples and to 

ensure that the DNA extracts were free of PCR inhibitors. The Ct mean values for the BacUni 
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marker in 1:10 and 1:100 diluted human fecal samples are given in Supplementary Table S4.1. 

All the fecal/sewage DNA samples (n=61) showed matching concentrations of BacUni markers 

in the two different dilutions tested (1:10 and 1:100) indicating the absence or negligible 

amounts of PCR inhibitors, and the presence of amplifiable DNA.  All further assays were 

performed with 1:10 diluted DNA extracts.  

4.3.2 Performance characteristics and LLOQ of MST qPCR assays 

The amplification efficiencies of all MST qPCR assays tested were in the range 86% to 102% 

and the correlation coefficient (r2) values were ≥0.98. The detailed performance characteristics 

of all the qPCR assays are provided in Supplementary Table S4.2; all of the values were within 

the limits recommended in the Minimum Information for Publication of Quantitative Real-

Time PCR Experiments (MIQE) guidelines (Bustin et al., 2009).  All of the qPCR standards 

were reanalyzed to determine the master standard curve with standardized slope, amplification 

efficiencies, and correlation coefficient (r2) values. The details of master standard curves and 

LLOQ for each tested MST assays are presented in Table 4.2 (Fig. S4.1A-D).  

4.3.3 Performance of universal Bacteroidales assays  

Both BacUni and GenBac3 assays, targeting universal/ general Bacteroidales, exhibited 100% 

sensitivity to fecal and sewage samples as they amplified DNA from all the samples (n=61). 

The mean concentration of these markers in fecal and sewage samples is given in Table 4.3. 

Comparatively, BacUni showed slightly higher total Bacteroidales concentrations (copies per 

nanogram (ng) of DNA) than GenBac3 assay in all of the tested samples. The normalized qPCR 

results for BacUni and GenBac3 assays were given in Supplementary Table S4.3A & B.  
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Table 4.2 Performance characteristics of MST qPCR assays tested using fecal and sewage samples 

Assay Slope y-intercept R2 Efficiency LLOQ* (cp/rxn) 

      

BacUni -3.32 43.3 0.99 100.0 24.5 

      

GenBac3 -3.27 40.3 0.99 101.8 14.1 

      

BacHum -3.26 38.4 0.99 102 36.8 

      

HF183 Taqman -3.37 39.6 0.99 99.7 11.5 

      

HumM2 -3.34 42.2 0.99 98.9 75 

      

HF183 SYBR -3.3 36.2 0.99 100.9 10 

      

Pig-2-Bac -3.27 41.1 0.99 102 30 

      

BacCow -3.31 41.6 0.99 100.3 100 

      

AV4143 -3.5 43 0.99 93 10 

      

GFD -3.41 36.9 0.99 96 11.3 

* Lower limit of Quantification 

4.3.4 Performance of human-associated Bacteroidales assays  

The specificity and sensitivity of the four human-associated assays on human and animal fecal 

and sewage samples were compared in order to select the most suitable assay for the Taihu 

watershed. The HF183 SYBR marker was the most sensitive marker among human-associated 

assays, though it showed high cross-reactivity. It was found in 80% of human origin samples 

(7/10 human feces and 5/5 sewage samples) at an average concentration of 2.72 log10 gene 

copies per ng of DNA and showed cross reactivity with chicken (7/10), cow (3/10), duck (1/3), 

dog (2/10) and goose (1/3) fecal DNA samples making it least specific (69.5%) (Table 4.4).
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Table 4.3 Performance of universal/general Bacteriodales MST assays on fecal and sewage samples 

Source No. of samples tested 

Bac-Uni GenBac3 

No. of positive 

samples 

Mean (±SD) Concentration 

Log10 gene copies per ng 

No. of positive 

samples 

Mean (±SD) Concentration 

Log10 gene copies per ng 

      
Human 10 10 6.95 (0.41) 10 5.91 (0.35) 

Sewage 5 5 5.36 (0.82) 5 4.19 (1.30) 

Pig 10 10 5.39 (0.67) 10 4.44 (0.79) 

Chicken 10 10 3.86 (0.12) 10 2.85 (0.27) 

Cow 10 10 5.31 (0.90) 10 4.80 (0.94) 

Dog 10 10 4.25 (0.32) 10 3.82 (0.49) 

Duck* 3 3 4.12 (0.31) - - 

Goose* 3 3 5.81 (0.12) - - 

Average 

  

5.19 (1.52) 

 

4.37 (1.56) 

Sensitivity  100%  100%  

*composite fecal samples. 
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Table 4.4 Performance of human-associated Bacteroidales MST assays on fecal and sewage samples 

Source 

No. of 

samples 

tested 

BacHum HF183 Taqman HF183 SYBR Hum2 

  
No. of 

positive 

Mean 

Concentration 

No. of 

positive 

Mean 

Concentration 

No. of 

positive 

Mean 

Concentration 

No. of 

positive 

Mean 

Concentration 

  samples 
(Log10 gene 

copies per ng) 
samples 

(Log10 gene 

copies per ng) 
samples 

(Log10 gene 

copies per ng) 
samples 

(Log10 gene 

copies per ng) 

          
Human 10 6 3.98 6 4.51 7 3.99 7 3.28 

Sewage 5 5 2.41 5 2.73 5 1.46 1 1.76 

Pig 10 0 0 0 0 0 0 2 2.46 

Chicken 10 6 2.53 7 3.22 7 2.08 4 2.03 

Cow 10 1 1 0 0 3 1.39 2 2.12 

Dog 10 2 2.1 2 1.28 2 1.39 1 2.24 

Duck* 3 0 0 0 0 1 1.41 0 0 

Goose* 3 0 0 0 0 1 1.68 1 1.97 

Target  3.19  3.63  2.72  2.52 

Non-Target   2.22  1.5  1.62  2.16 

Sensitivity 73.3%  73.3%  80%  53.3%  

Specificity 80.4%  80.4%  69.5%  78.2%  

*Composite fecal samples 
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The BacHum maker was the highly specific marker (80.4%) among tested human-associated 

markers, along with HF183 Taqman. It had a sensitivity of 73.3% (6/10 human feces and 5/5 

sewage samples) at an average concentration of 3.19 log10 copies per ng of DNA and was 

detected (above LLOQ) in three different host fecal DNA samples; chicken (6/10), cow (1/10) 

and dog (2/10). Similar to BacHum, the HF183 Taqman marker was highly specific (80%) 

among human-associated assays and was found in 73% of target source (6/10 human feces and 

5/5 sewage samples) at an average concentration of 3.63 log10 copies per ng of DNA. However, 

HF183 Taqman marker was found in only two different host fecal DNA samples, chicken (7/10) 

and dog (2/10). The final human-associated assay, Hum2 was the least sensitive marker and 

was detected in only 53% samples of human origin (7/10 human feces and 1/5 sewage samples) 

at an average concentration of 2.52 log10 copies per ng of DNA. It was also detected in chicken 

(4/10), cow (2/10), pig (2/10), dog (1/10) and goose (1/3) fecal DNA samples, making it less 

specific (78%). In general, chicken (40 to 70%) and dog fecal samples (10 to 20%) had cross-

reactivity with all of the human-associated assays. Overall, HF183 Taqman was the only assay 

that did not exhibit any cross-reactivity with cattle or swine fecal DNA samples, while HF183 

SYBR, Hum2, and BacHum showed cross-reactivity with either cattle or swine fecal DNA 

samples. The normalized qPCR results for HF183 Taqman and BacHum assays were given in 

Supplementary Table S4.3A & B. 

4.3.5 Performance of swine and ruminant associated Bacteroidales assays  

The performance of the swine associated assay (Pig-2-Bac) was evaluated with 10 pig fecal 

samples and the target was found in 90% of pig fecal samples (9/10) at an average concentration 

of 2.81 log10 copies per ng of DNA (Table 4.5). The Pig-2-Bac marker was highly specific 

(95%) and it had a low level of cross-reactivity with cow fecal samples (2/10). The normalized 

qPCR results for Pig-2-Bac assay are given in Supplementary Table S4.5. 
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Table 4.5 Performance of animal associated MST assays on fecal samples 

Source 

No. of 

samples 

tested 

Pig-2-Bac BacCow AV4143 GFD 

  
No. of 

positive 

Mean 

Concentration 

No. of 

positive 

Mean 

Concentration 

No. of 

positive 

Mean 

Concentration 

No. of 

positive 

Mean 

Concentration 

  samples 
(Log10 gene 

copies per ng) 
samples 

(Log10 gene 

copies per ng) 
samples 

(Log10 gene 

copies per ng) 
samples 

(Log10 gene 

copies per ng) 

           

Human 10 0 0 0 0 1 1.7 0 0  

Pig 10 9 3.03 2 2.52 0 0 0 0  

Chicken 10 0 0 2 2.32 10 4.13 7 2.16  

Cow 10 2 1.75 10 4.3 2 1.3 1 1.2  

Dog 10 0   0 0 0 3 1.4  

Target average  2.81  4.3  4.13  2.16  

Non-Target average  0.87  1.39  1.5  1.3  

Sensitivity 90%  100%  100%  70%   

Specificity 95%  77.5%  95%  92.50%   
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BacCow marker was found in 100% of cattle fecal samples (10/10) at an average concentration 

of 2.81 log10 copies per ng of DNA (Table 4.5). However, the BacCow marker showed some 

cross-reactivity with pig (2/10) and chicken (2/10) fecal DNA samples but was not found in 

any of the human fecal DNA samples at above LLOQ levels, resulting in 90% specificity. 

4.3.6 Performance of avian associated MST assays 

The avian associated MST assays performed very distinctively on the tested fecal DNA 

samples (Table 4.5). The AV4143 marker was found in 100% of chicken fecal samples but was 

also detected in human (1/10) and cow (2/10) fecal DNA. The mean concentration of AV4143 

marker was 4.13 log10 copies per ng of DNA in chicken feces. Those human and cow samples 

for which there was cross reactivity comprised ca. 3 log-fold fewer gene copies than chicken 

faeces.  

The GFD markers were only detected in 7 of the 10 chicken faeces samples and cross-reacted 

with dog fecal DNA samples (3/10). The mean concentration of GFD markers was 2.16 log10 

copies per ng of fecal DNA sample, so ca. 100-fold less than AV4143. The normalized qPCR 

results for GFD assay was given in Supplementary Table S4.6.  

4.4 Discussion 

4.4.1 Assessment of universal Bacteroidales assays for their applicability at Taihu 

watershed 

The high sensitivity of the BacUni (Universal Bacteroidales) marker for human and animal 

feces, excepting poultry, has been frequently reported in Asian countries such as India (Odagiri 

et al., 2015) and Singapore (Nshimyimana et al., 2017), and also in the USA (Kildare et al., 

2007), and Kenya (Jenkins et al., 2009). The GenBac3 general Bacteroidales assay is the most 

widely used assay in the USA to quantify Bacteroidales in environmental samples (Shanks et 

al., 2009, Ervin et al., 2013). In our study, both BacUni and GenBac3 showed 100% sensitivity 
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to fecal samples but the BacUni assay amplified higher copies per ng of DNA than GenBac3 

assay in all of the tested samples. We conclude that the BacUni assay is more suitable for 

quantification of total Bacteroidales in the Taihu watershed, China; Odagiri et al. (2015) also 

reported that the BacUni marker quantified higher copy numbers than GenBac3 in fecal DNA 

samples tested in Odisha, India. 

4.4.2 Assessment of human-associated Bacteroidales assays for their applicability at Taihu 

watershed 

The ability of human-associated markers to identify human fecal sources as distinct from other 

sources in an aquatic environment is vital to the MST approach. Variation, due for example to 

the impact of dietary pattern on gut microbiomes (Wu et al., 2011) or geographical population 

differences (Yatsunenko et al., 2012), could significantly affect the performance of MST assays 

and this has been supported by several validation studies across different countries in recent 

years (Jenkins et al., 2009, Ahmed et al., 2009a, Reischer et al., 2013, Odagiri et al., 2015, 

Boehm et al., 2016, He et al., 2016b, Nshimyimana et al., 2017, Malla et al., 2018). Therefore, 

it is important that the performance of these different human faecal markers be validated in 

context. Here, with the exception of the HF183 SYBR assay, all of the human-associated assays 

showed lower sensitivity (53 to 73%) than expected (81% to 100%). This reduced sensitivity 

range could well be due to the geographical variability in human gut microbiomes (Yatsunenko 

et al., 2012). The HF183 SYBR assay which performed well in Bangladesh (Ahmed et al., 

2010) and in Singapore as a human sewage indicator (Nshimyimana et al., 2014), showed less 

specificity in our study. Our results on the specificity of this assay are more in line with 

previous studies conducted in India (Odagiri et al., 2015) and Nepal (Malla et al., 2018). 

Although the remaining three assays are less sensitive compared to HF183 SYBR, they are 

more specific. The BacHum and HF183 Taqman assays showed relatively more specificity 

(80.4%), followed by Hum2 with 72.5% specificity. All of the human target assays gave some 
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level of cross-reactivity with other faecal samples, with the highest levels recorded in chickens 

(Table 4.4). The high cross-reactivity with chicken fecal samples by human-associated markers 

(HumM2, HF183 Taqman, and HF183 SYBR) has been described in earlier studies directed in 

South Asia (Odagiri et al., 2015, Nshimyimana et al., 2017). The occurrence of the HF183 

marker in dogs and chicken has also been reported previously, with the HF183 forward primers 

with Bac708 reverse primer picking up a target sequence in chicken fecal samples (Ahmed et 

al., 2012, Balleste et al., 2010, Gourmelon et al., 2007). The BacHum assay’s cross-reactivity 

with chicken fecal DNA has also been indicated previously in several studies (Reischer et al., 

2013, Odagiri et al., 2015, Nshimyimana et al., 2017). With the exception of HumM2, none of 

the markers exhibited cross-reactivity with pig fecal DNA, which is encouraging as pigs are 

major livestock animals in Zhejiang province (Taihu watershed region). An assay that showed 

zero cross-reactivity to pig fecal DNA and highly sensitive to sewage samples would be 

considered as very suitable for source tracking in the Taihu watershed region. In this study, 

HF183 Taqman and BacHum assays showed the same accuracy, but HF183 Taqman was found   

to be the more suitable human-associated fecal maker than BacHum as it amplified DNA from 

all of the sewage samples with higher abundance and did not show any cross-reactivity with 

pig and cattle fecal samples (Table 4.4). The HF183 Taqman’s cross-reactivity to chicken fecal 

samples can be negated by employing avian associated assays, such as GFD assay, in tandem 

to verify the existence of true human fecal pollution. An evaluation study carried out in 

Singapore (Nshimyimana et al., 2017) indicated similar sensitivity and specificity for HF183 

Taqman to that reported here, though that study recommended another human-associated assay, 

B. theta (Taqman), for source tracking of human fecal and sewage in Singapore. The 

inconsistencies in the performance of Bacteroidales assays in regions other than the original 

has been reported elsewhere (Reischer et al., 2013, Layton et al., 2013, Boehm et al., 2016, 

Harris et al., 2016). As indicated previously, this could be due to geographical differences, 
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therefore location validation is highly recommended prior to application in a new region 

(Wuertz et al., 2011); here, that validation is recognized for HF183 Taqman.  

4.4.3 Assessment of swine and ruminant-associated Bacteroidales assays for their 

applicability at Taihu watershed 

The Swine associated marker Pig-2-Bac has been broadly evaluated and used for MST studies 

across different countries, including China and Nepal (Marti et al., 2011, Pisanic et al., 2015, 

Arfken et al., 2015, Jia et al., 2014, Malla et al., 2018, He et al., 2016a). He et al. (2016a) 

validated the Pig-2-Bac assay on target and non-target fecal samples of Taihu watershed region 

and reported that it was more sensitive and specific than mitochondrial DNA based swine 

markers. They have also applied the Pig-2-Bac marker for identifying swine fecal pollution in 

the Taige River of Taihu watershed. Jia et al. (2014) used Pig-2-Bac assay for quantification 

of swine fecal markers in Hongqi River, Yongan River, and Taige River. The results of the 

swine associated assay in our study are in complete agreement with the findings of He et al. 

(2016a),  and the suitability of the Pig-2-Bac assay for identifying contamination by pig fecal 

sources at Taihu watershed is confirmed. 

The BacCow marker, which was originally developed to detect fecal sources of cow or cattle 

origin (Kildare et al., 2007), has shown cross-reactivity with fecal samples collected from other 

ruminants (e.g. deer) and non-ruminants such as horse, pig, dog, and chicken in a California 

based validation study leading to its reclassification as ruminant-associated marker (Raith et 

al., 2013). Similar findings were reported in evaluation studies conducted in Australia and 

Europe, indicating that this assay had cross-reactivity with non-targets such as chicken, goose, 

dog, pig and duck (Ahmed et al., 2013, Reischer et al., 2013). In a validation study conducted 

in India, BacCow markers were reported to be found in all types of composite 

livestock/domestic animal feces (cow, buffalo, goat, sheep, dog, and chicken) but not in tested 

human samples and it was recommended that the BacCow assay could be used to detect fecal 
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pollution by livestock/domestic animals (Odagiri et al., 2015). More recently, BacCow was 

detected in all fecal samples tested including human origin (composite sewage) in a validation 

study conducted in Nepal (Malla et al., 2018). In order to check the true specificity and 

sensitivity of BacCow, our study was conducted with individual fecal samples instead of 

composite fecal samples. Here, we detected BacCow in all of the cattle fecal samples tested 

but found some cross-reactivity with pig (2/10) and chicken (2/10) samples in agreement with 

the findings of Ahmed et al (2013) and Reischer et al (2013). Since the BacCow marker was 

not identified in all of the livestock/domestic fecal samples tested, it is not applicable in the 

Taihu watershed as a livestock/domestic animal fecal source-tracking marker.  

4.4.4 Assessment of avian associated assays for their applicability at Taihu watershed 

The ability to draw conclusions on the microbial flora in avian fecal samples is still ambiguous 

worldwide, making it difficult to develop reliable and specific qPCR assays for specific 

detection of avian fecal contaminations (Ohad et al., 2016). This could be due to variation in 

food intake by the avian sources regionally and seasonally (Ahmed et al., 2016a). Though 

Bacteroides and its closely related organisms are commonly used for identifying the source of 

fecal contamination for human and animals (Kildare et al., 2007, Bernhard and Field, 2000b, 

Layton et al., 2006), previous studies reveal that Bacteroides are rarely present in avian sources 

(Lu et al., 2009). The phylum level mapping of avian fecal samples showed that Firmicutes, 

Proteobacteria, and Fusobacteria are the main phyla (Lu et al., 2009, Dick et al., 2005). 

Bacteroidales members were not frequently reported in avian gut or excreta and they were 

found to be nearly absent in a few studies (Zhu et al., 2002) or they were identified in varying 

frequencies in other studies (Scupham et al., 2008). Therefore, MST markers targeting avian 

fecal markers are still limited (Fremaux et al., 2010, Green et al., 2012, Ohad et al., 2016). In 

the current study, AV4143 assay targeting Lactobacillus showed higher sensitivity and 

specificity than the GFD assay targeting Helicobacter spp. However, GFD markers were not 
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detected in human fecal samples making this assay very suitable for application in the Taihu 

watershed as it can reliably differentiate chicken and human fecal samples. The GFD assay was 

similarly validated in Australia, New Zealand, and North America with similar results for 

sensitivity and specificity (Ahmed et al., 2016b).  

4.5 Conclusions 

 Both BacUni and GenBac3 markers were highly sensitive to fecal and sewage samples 

and BacUni markers were comparatively more abundant than the other markers.  

 HF183 Taqman was found to be a more suitable assay among human associated assays 

as it is highly specific and did not show any cross reactivity with pig and cow fecal 

samples.  

 The swine associated assay, Pig-2-Bac was highly specific and sensitive which could 

be a potential marker for tracking swine fecal pollution.  

 BacCow marker was not detected in all animal samples tested; therefore, it is not 

recommended for detecting total livestock fecal contamination.  

 GFD marker was highly specific and did not cross-react with human fecal samples, 

indicating its efficiency to discriminate avian from human fecal sources.  
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CHAPTER-5 

Quantification of Microbial Source Tracking Markers and Pathogenic 

Bacterial Genes in Water and Sediment of Taihu Watershed 
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Abstract: 

This chapter was aimed at investigating the fecal pollution and the presence of pathogenic 

bacteria in water and sediments of Tiaoxi River by qPCR assays to assess the human health 

risks. Samples collected from 15 locations in the Tiaoxi River during three seasons in 2014-

2015 were used for quantification of MST markers comprising total, human and swine 

associated Bacteroidales genes together with avian associated markers, and specific gene 

markers for several pathogenic bacterial species. The total Bacteroidales markers were 

detected in all water and sediment samples at an average concentration of 6.22-log10 gene 

copies/100ml and 6.11-log10 gene copies/gram, respectively however, host-associated MST 

marker detection varied. The human (97%) and avian (89%) markers were the most frequently 

detected host-associated markers in water samples with a mean concentration of 6.22 and 2.70 

log10 gene copies/100ml, respectively. However, in sediment samples, human-associated 

markers were detected more often (86%) than swine and avian markers with a mean 

concentration of 3.91 log10 gene copies/gram. Swine associated markers were frequently 

detected in water and sediment samples collected from two locations that correlated with the 

presence of pig farms nearby. Among the five bacterial pathogens tested, Shigella spp. and 

Campylobacter jejuni were the most frequently detected pathogens in water (60% and 62%, 

respectively) and sediment samples (91% and 53%, respectively). Shiga toxin-producing E.coli 

(STEC) and pathogenic Leptospira spp. were less frequently detected in water (55% and 33%, 

respectively) and sediment samples (51% and 13%, respectively) whereas E.coli O157: H7 was 

detected in sediment samples only (11%). Overall, the higher prevalence and concentrations of 

Campylobacter, Shigella spp. and STEC along with MST markers at several locations of Tiaoxi 

River indicates poor water quality and significant human health risk at those locations. The 

data generated here would be valuable to water quality monitoring authorities to minimize 

health risk associated with pathogens 



 

103 
 

5.1 Introduction 

Fecal contamination of drinking water sources, shellfish harvest, and recreational waters is a 

major concern to public health as it promotes human exposure to pathogenic microorganisms 

(Napier et al., 2017). Therefore, continuous monitoring and proper protection of these waters 

are required. Traditionally, fecal indicator bacteria (FIB) are used to monitor pollution in 

environmental waters and to assess the associated public health risks (Griffith et al., 2009). 

However, there are several limitations of using FIB for microbial water quality monitoring, as 

these bacteria can persist and replicate outside of the host making it difficult to predict identify 

recent water contamination (Byappanahalli et al., 2003, Jamieson et al., 2005) and poor 

correlation of FIB and pathogen presence (Ahmed et al., 2013, McQuaig et al., 2012). The 

major limiting factor is that FIB detection does not indicate the source or origin of fecal 

contamination (Field and Samadpour, 2007), which is very important in order to characterize 

the public health risk potential (Santo Domingo et al., 2007), implement remediation measures 

and prevent further contamination. Therefore, microbial source tracking (MST) techniques 

have been developed over the last decade to unequivocally identify the sources and origins of 

fecal pollution.  

Both library-dependent (LD-MST) and library-independent MST (LI-MST) methods were 

developed for identifying the sources of fecal pollution, though LD-MST methods have several 

limitations in correctly assigning fecal contamination of host-specific sources (Field and 

Samadpour, 2007, Harwood et al., 2003). However, quantitative PCR (qPCR) based LI-MST 

techniques have proven to be widely applicable to study fecal contamination in environmental 

waters as they can accurately quantify the host-specific MST target sequences (Layton et al., 

2006, Reischer et al., 2007, Kildare et al., 2007). Among the LI-MST methods, Bacteroidales 

are often used as target organism as they are obligate anaerobic bacteria found in the human 

and animal gut at higher levels than facultatively anaerobic E. coli (Bernhard and Field, 2000b); 
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host-associated Bacteroidales 16S rRNA gene markers have been developed for different hosts 

to discriminate human feces from other animal feces detected in the environment (Bernhard 

and Field, 2000a). Specifically, several host-associated Bacteroidales markers are available to 

identify human (Kildare et al., 2007, Green et al., 2014), ruminant (Raith et al., 2013), cow 

(Shanks et al., 2008), and pig fecal sources (Mieszkin et al., 2009). Avian fecal markers that 

target bacterial taxonomic groups such as Helicobacter spp. (Green et al., 2012) have also been 

developed. 

Although MST methods provide information on the sources of fecal pollution, these methods 

do not provide evidence or confirm the presence of bacterial pathogens and the associated 

public health risk. Determining the correlation between MST data and direct pathogen 

detection has been addressed in a relatively few cases (Ridley et al., 2014, Bradshaw et al., 

2016). The correlation of MST markers with pathogen presence in environmental samples has 

given mixed results in the MST (Tambalo et al., 2012, Marti et al., 2013). Field studies to 

evaluate the correlation of MST marker and pathogen presence along with the probability of 

pathogens to cause illness at a watershed are more important than normal fecal monitoring by 

FC enumeration or MST methods in terms of public health risk. A study of this nature has not 

previously been carried out on the Taihu watershed region and the results generated here will 

also inform water quality monitoring management at other watersheds in Asia, and beyond.  

Therefore, this study was aimed at assessing the presence and abundance of MST markers and 

genes of bacterial pathogens at Tiaoxi River water and sediments. The specific objectives were  

1) to assess the abundance of universal and host-associated MST markers and genes of bacterial 

pathogens at Tiaoxi River, and 2) to determine whether any correlation exists between the MST 

markers and host-associated bacterial pathogens tested, and also to assess the potential human 

health risk associated with quantified pathogen based on lowest infectious dose.  
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5.2 Materials and Method 

5.2.1 Overview of the study area 

As described earlier, Tiaoxi River flows in northern Zhejiang province covering upstream 

agricultural areas and downstream urban cities of northern Zhejiang Province. It has been 

estimated that the River collects water from one million inhabitants residing in the moderately 

sized cities of Zhejiang Province (Zhang et al. 2016). Poultry is a common livestock resource 

in Zhejiang province, and waste disposal is an issue (Zheijiang, 2016). Excluding poultry, pigs 

comprise more than 90% of the remaining livestock population in this region (NBSC, 2015).  

5.2.2 Sample collection and processing  

As mentioned in previous Chapter(s), 15 out of 25 sampling locations in the Tiaoxi River were 

identified as hotspots of fecal contamination, and samples collected from those locations were 

used further studies. The details of land use type around the selected sampling locations are 

given in Table 2.1 (Chapter-2). Sampling was carried out at these locations on three occasions: 

autumn 2014, winter 2015 and summer 2015. Water samples were collected in sterile 5L 

polypropylene containers and sediment was collected using a sediment sampler; the samples 

in triplicate were transferred to sterile 50mL tubes. The water and sediment samples were 

transported to the laboratory on ice and were processed immediately. Sediment samples were 

frozen at -20oC and the water samples (250 ml) were filtered through 0.22 µm polycarbonate 

membrane filters (Millipore, UK) and stored at -20oC prior to DNA extraction.  

5.2.3 Enumeration of fecal coliforms 

The culture based microbiological assessment data of the Tiaoxi River were reported earlier in 

chapter-2 and the fecal coliforms data were used to evaluate the correlation between FIB, MST 

markers and pathogenic bacterial genes. The enumeration of fecal coliforms (FC) was carried 

out by standard membrane filtration technique (APHA, 2005) using mFC agar (Difco, 

Germany) according to manufacturer’s instructions. Water samples were filtered through 0.45 
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µm nitrocellulose filters (Millipore, UK) in duplicates and the filters were placed on mFC agar 

and incubated at 44.5 °C for 24 h. Colonies exhibiting any shade of blue color were counted 

and expressed as CFU/100 ml (APHA, 2005).  

5.2.4 Molecular analysis 

5.2.4.1 DNA Extraction 

DNA was extracted from membrane filters (water samples) and sediment samples using 

PowerSoil DNA Isolation Kit (MoBio Inc., Carlsbad, CA). The membrane filters were cut into 

pieces, and placed into the PowerBead tubes aseptically for DNA extraction. Sediment samples 

were centrifuged initially for 20 min at 3000×g to remove excess water and 0.25g of sediment 

was transferred to a PowerBead tube and the DNA was extracted from sediments and 

membrane filters as per the manufacturer’s instructions. The quality and quantity of DNA were 

analyzed using NanoDrop ND 1000UV spectrophotometer (Thermo Fisher Scientific., Vienna, 

Austria). The DNA extracts were stored at -20oC until further analysis. 

5.2.4.2 Plasmid DNA standards for qPCR assays 

Plasmid DNA standards were prepared for both MST markers and genes of pathogenic bacteria 

and used for qPCR assays. The plasmid DNA standards for MST markers were prepared as 

mentioned in Chapter-4 (section 4.2.4). For pathogenic bacterial genes, the target gene of 

pathogenic bacteria were PCR-amplified from respective genomic DNA of target organisms 

(Campylobacter jejuni sub sp. jejuni ATCC 29428, Shigella sonnei ATCC 9290, Leptospira 

borgpetersenii serovar Hardjo ATCC 14028 and Escherichia coli ATCC 35150) using the 

primers designed elsewhere (Table 5.1). The amplified PCR products were purified using a 

QIAquick PCR purification kit (Qiagen, GmbH, Germany) following manufacturer's 

instructions. The purified PCR products were cloned separately into a pGEM-T Vector 

(Promega, Madison, WI), followed by transformation of the recombinant plasmid into E. coli 

JM109 competent cells. The plasmid DNA was extracted from positive clones using QIAprep 
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Spin Miniprep Kit (Qiagen, GmbH, Germany) and target gene presence in the recombinant 

plasmid was confirmed by PCR and sequencing (GATC, Germany). Plasmid DNA was 

quantified with a NanoDrop ND-1000 UV spectrophotometer to analyze the purity and 

concentration for calculating the gene copy number using the formula mentioned in Oster et al. 

(2014). The sequencing results for pathogenic bacterial genes was given in Supplementary 

Note S1 and schematic representation of pGEM®-T Easy cloning vector with restriction sites 

was given in Supplementary Figure S5.1. 

5.2.4.3 Quantitative PCR 

A seven-point 10-fold serial diluted recombinant plasmid DNA with target sequence was used 

to generate standard curve (with a range 101 to 107 copies/reaction) in each qPCR assay. All 

qPCR reactions were run in triplicates with a final reaction volume of 20 μL. The sequences of 

the primers and probes along with concentrations used in the current study are presented in 

Table 5.1. Prior to the quantification, the absence of PCR inhibitors was analyzed in at least 

10% of DNA samples by applying BacUni qPCR assay that amplifies the 16S rRNA gene of 

Bacteroidales (Odagiri et al., 2015). PCR inhibition was evaluated by determining the BacUni 

marker concentrations in the undiluted and 1:4 diluted DNA samples. The undiluted DNA 

samples were judged as free from PCR inhibitors if the BacUni markers concentrations were 

matching in the two dilutions (undiluted and 1:4 diluted) (Odagiri et al., 2015, Reischer et al., 

2013). The accuracy and efficiency of the standard curve were determined by including a 

positive control of 103 copies of plasmid standard as unknown in each assay (Oster et al., 2014).   

Four previously designed qPCR assays targeting total, human, swine, and avian associated 

fecal source were selected for MST study at Taihu watershed region (Kildare et al., 2007, Green 

et al., 2014, Mieszkin et al., 2009, Green et al., 2012). Three TaqMan assays (BacUni, HF183 

Taqman and Pig-2-Bac) were selected for detection of total, human and swine associated  
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Table 5.1 List of primers and probes used for quantification of MST markers and genes of pathogenic bacteria. 

Target source/ 

organism 
Assay Primer/probe Concentration Oligonucleotide sequence (5’–3’) 

Annealing 

temperature (oC) 
Reference 

       

Total Bacteroidales BacUni BacUni- 520F 400nM CGTTATCCGGATTTATTGGGTTTA 60 Kildare et al. 2007 

  BacUni-690R1 400nM CAATCGGAGTTCTTCGTGATATCTA   

  BacUni656P 80nM FAM-TGGTGTAGCGGTGAAA-MGB   

Human associated 

Bacteroidales 
HF183 HF183F 1000nM ATCATGAGTTCACATGTCCG 60 Green et al. 2014 

  BacR287R 1000nM CTTCCTCTCAGAACCCCTATCC   

  BacP234P 80nM FAM-CTAATGGAACGCATCCC-MGB   

Swine associated 

Bacteroidales 
Pig-2-Bac Pig-2-Bac41F 300nM GCATGAATTTAGCTTGCTAAATTTGAT 60 

Mieszkin et al. 

2009 

  Pig-2-Bac163R 300nM ACCTCATACGGTATTAATCCGC   

  Pig-2-Bac113P 200nM VIC-TCCACGGGATAGCC-MGB   

Avian associated 

Marker 
GFD GFD-F 100nM TCGGCTGAGCACTCTAGGG 57 Green et al. 2012 

  GFD-R 100nM GCGTCTCTTTGTACATCCCA   

C. jejuni mapA mapA F 400nM CTGGTGGTTTTGAAGCAAAGATT 60 Best et al., 2003 

  mapA R 400nM CAATACCAGTGTCTAAAGTGCGTTTAT   

  mapA P 80nM 
FAM-TTGAATTCCAACATCGCTAATGTATAAAAGCCCTTT-

TAMRA 
  

Pathogenic 

Leptospira spp. 
LipL32 LipL32F 300nM AAG CAT TAC CGC TTG TGG TG 60 

Stoddard et al., 

2009 

  LipL32R 300nM GAA CTC CCA TTT CAG CGA TT   

  LipL32P 200nM FAM-AAAGCCAGGACAAGCGCCG-BHQ1   

Shigella spp. ipaH ipaH F 400nM CTTGACCGCCTTTCCGATA 64 Oster et al., 2014 

  ipaH R 400nM AGCGAAAGACTGCTGTCGAAG-   

  ipaH P 80nM FAM-AAC AGG TCG CTG CAT GGC TGG AA-TAMRA   

E.coli (STEC) Stx2 Stx2F 200nM CAGGCAGATACAGAGAGAATTTCG 61 Beutin et al., 2008 

  Stx2R 200nM CCGGCGTCATCGTATACACA   

E.coli O157:H7 eae eae-F 200nM GTAAGTTACACTATAAAAGCACCGTCG 56 Ibekwe et al. 2002 

  eae-R 200nM TCTGTGTGGATGGTAATAAATTTTTG   
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Bacteroidales and one SYBR green- GFD assay was selected for detection of avian associated 

fecal markers, as validated in our previous study for Taihu watershed region (Unpublished data; 

the details of the assays and limit of detection (LOD) are given in the supplementary Table 

S5.1). Five qPCR assays targeting stx2, eae, LipL32, ipaH, and mapA genes of pathogenic 

bacteria were selected for this study. Two qPCR assays targeting eae gene specific for E. coli 

O157: H7 (Ibekwe et al., 2002) and stx2 gene specific for Shiga toxin producing E. coli (Beutin 

et al., 2008) were applied using SYBR Green chemistry. Three assays targeting LipL32 gene 

specific for pathogenic Leptospira sp. (Stoddard et al., 2009), ipaH gene specific for Shigella 

spp. (Wang et al., 2007a) and mapA gene specific for Campylobacter jejuni (Best et al., 2003) 

used TaqMan chemistry.  

The Taqman qPCR assays (20 μl of master mix), contained 10μl of TaqMan Environmental 

Master Mix 2.0 (Applied Biosystems, UK), 2μL of template DNA, 6μl nuclease-free water and 

2μL of primers and probes with the final concentrations as shown in Table 1. SYBR Green 

assays (20 μl of master mix), contained 10μl of SYBR Green PCR Master Mix (Thermofisher 

Technologies,  Foster City, CA), 7.0 μL nuclease-free water, 2 μL of template DNA and 1μL 

of primer mixture with a final concentration as shown in Table 1. 

5.2.5 Data processing and statistical analyses 

All the assays with R2 values of above 0.95 and efficiencies between 80 and 110% were 

considered as acceptable for detection and quantification of target markers in environmental 

samples and if these criteria were not met by any assay, the samples were tested again. The 

details of the limit of detection (LOD), limit of quantification (LOQ) and final assessment of 

qPCR results for each MST and pathogen quantification assays are provided as supplementary 

materials (Table S5.1). The MST qPCR results for each assay of this study was processed based 

on LOD as mentioned in supplementary Table S5.1 and for genes of pathogenic bacteria as 
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described by Oster et al 2014 (Oster et al., 2014) (Table S5.1). For statistical analysis, the 

concentrations of FC, MST markers, and genes of pathogenic bacteria were log transformed 

and non-detects were assigned as 0 (Bradshaw et al., 2016). The data were not normally 

distributed (based on Kolmogorov- Smirnov test) after transformation, therefore,  Kruskal-

Wallis non-parametric ANOVA with Dunn’s post-test was used for determining statistical 

significance among different sampling locations. The correlation among FC, MST markers and 

genes of pathogenic bacteria in water samples was analyzed by Spearman’s coefficient 

correlation. The correlation analysis was not carried out for sediment samples, as most of the 

genes of pathogenic bacteria and some of the MST markers were not quantifiable in the tested 

samples.  

5.3 Results 

In total, 138 samples (69 water and 69 sediment) were collected from 25 sampling locations in 

three different seasons (Autumn 2014, Winter and Summer 2015) were investigated for the 

presence and abundance of fecal coliforms, MST markers and bacterial pathogens in the Tiaoxi 

River.  

5.3.1 Enumeration of fecal coliforms in water samples 

Fecal coliform (FC) counts data was used for initial assessment of fecal contamination in 

sampling locations and the detail results were presented in Table S2.1. Fecal indicator bacteria 

guidelines suggested by Ministry of Environmental Protection (MEP), China for surface water 

includes both Total coliforms and FC, therefore FC count observed in the present study was 

compared to USEPA standards (USEPA, 2012). Elevated levels of FC (>250CFU/100ml) were 

observed in fifteen locations (1-6, 8, 10, 12-16, 20 and 21) on one or more occasions (Chapter-

2, Fig. 2.4C). In general, the FC counts were high during summer, which could be linked to the 

warm (optimal) weather that could support FC bacteria to acclimatize to those conditions and 

a rainfall event that occurred the day before the sampling might increase the transport of fecal 
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matter and proliferation of FC bacteria (Muirhead et al., 2004, Heaney et al., 2015). Based on 

the elevated levels of FC count, only 15 locations were considered as preliminary hotspots of 

fecal contamination and were selected for quantification of MST fecal markers and genes of 

pathogenic bacteria in DNA extracted from water and sediment samples.  

5.3.2 Quality assurance of extracted DNA and performance of qPCR assays  

DNA samples tested for PCR inhibition did not show any major difference between the mean 

CT values obtained for undiluted and 1:4 diluted DNA extracts, indicating that the samples 

were free from potential PCR inhibitors. Therefore, all the qPCR assays were conducted using 

undiluted DNA samples. The amplification efficiency and linear range of quantification (R2) 

for all the qPCR assays were determined using standard curves generated by serial dilutions of 

known copy numbers. The qPCR amplification efficiencies for MST fecal markers and 

pathogenic bacterial genes ranged from 83 to 105.8%, with R2 values between 0.97 and 0.99. 

The compiled amplification efficiencies and linear range of quantification for all qPCR assays 

carried out are provided in the Supplementary Table S5.1. The average Ct values for all 

negative controls (NTC) was > 38 and samples were tested again if average Ct value of NTCs 

were <38. 

5.3.3 Detection frequency and concentration of MST markers in water and sediment 

samples 

The presence and distribution of MST markers in water and sediment samples at 15 sampling 

locations determined by qPCR is shown in Table 5.2. Since the monitoring locations selected 

for MST study are presumed hot spots of fecal contamination based on FC count, the total 

Bacteroidales marker was detected in all water and sediment samples at the 15 locations. In 

water samples, the mean concentration of total Bacteroidales marker was 6.22-log10 gene 

copies/100ml with concentrations ranging from 4.62 to 7.63-log10 gene copies/100ml 
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(Fig.5.1A). For sediment, the mean concentration was 6.11-log10 gene copies/gram and 

concentrations were ranged from 4.37 to 7.82 log10 gene copies/ gram (Fig.5.2A). Significant 

statistical variation in total Bacteroidales concentration among different location was observed 

in both water (P<0.015) and sediment samples (P<0.003). In relative terms, the total 

Bacteroidales concentration was high during winter for both water and sediment samples. 

Based on the quantification of total Bacteroidales, the water samples from location 16 and 

sediment samples from location 15 were found to be most fecally polluted, regardless of the 

fecal source (human versus animal species). 

For the host associated MST marker analysis in water samples, human-associated markers 

(97%) are the most frequently detected, followed by avian (89%) and swine (84%). In sediment 

samples, human-associated MST marker was detected more (86%), followed by swine (64%). 

The avian marker was positive for several sediment samples but they were below the limit of 

quantification. The human-associated marker, HF183 Taqman was detectable at most of the 

locations tested in water samples (44/45) in all three seasons with a mean concentration of 

3.75-log10 gene copies/100ml and the concentrations were ranged from 2.91 to 5.6 log10 gene 

copies/100ml (Fig.5.1B). For sediment samples, the HF183 Taqman marker was detected with 

high frequency (39/45) at concentrations ranging from 3.8 to 5.6-log10 gene copies/gram with 

an average of 3.91 log10 gene copies/gram (Fig.5.2B). During the summer, human-associated 

markers were detected at a higher prevalence in water and sediment samples, probably due to 

the runoff water received from heavy rainfall (349 and 268 mm in July and August 2015) that 

occurred before summer sampling (NBSC, 2016). There was a significant statistical difference 

in prevalence of human markers in sediment samples (P<0.004) but not for water samples. 

Based on HF183 Taqman assay, water samples collected from locations 12 and 16 and 

sediment samples collected from location 15 had the highest concentration of human-

associated marker during three seasons. Location 12 is very close to Huzhou city and as stated  
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Table 5.2 Detection frequencies of MST markers in water and sediment samples of Tiaoxi River, Taihu watershed (2014-2015). 

Sample 

type 

No. of 

samples 

tested (n) 

No. of positive samples (%) a 

Total 

Bacteroidales 

Human associated 

markers 

Swine associated 

markers 

Avian associated 

markers 

Water 

Autumn 

Winter 

Summer 

 

15 

15 

15 

 

15 (100%) 

15 (100%) 

15 (100%) 

 

15 (100%) 

15 (100%) 

14 (93%) 

 

10 (66%) 

13 (86%) 

15 (100%) 

 

13 (86%) 

15 (100%) 

12 (86%) 

Total 45 45 (100%) 44 (97%) 38 (84%) 40 (89%) 

Sediment 

Autumn 

Winter 

Summer 

 

15 

15 

15 

 

15 (100%) 

15 (100%) 

15 (100%) 

 

13 (86%) 

11 (73%) 

15 (100%) 

 

6 (40%) 

8 (53%) 

15 (100%) 

 

DNQ 

DNQ 

4 

Total 45 45 (100%) 39 (86%) 29 (64%) 4 (8.8%) 

 

*DNQ=Detected but not quantifiable. *a DNQs as negative.
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Figure 5.1 Concentration of MST fecal markers quantified in water samples at different 

sampling locations of Tiaoxi River. A) Total Bacteroidales; B) Human associated 

Bacteroidales; C) Swine associated Bacteroidales and D) Avian associated MST marker.  
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Figure 5.2 Concentration of MST markers quantified in sediment samples in different 

sampling locations in Tiaoxi River. A) Total Bacteroidales; B) Human associated 

Bacteroidales; C) Swine associated Bacteroidales and D) Avian associated MST marker. 
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earlier, the locations 15 and 16 are suburban areas close to a WWTP and the sampling was 

carried out at the junction of Tiaoxi River and a canal that enters Taihu Lake (Table. 2.1 of 

Chapter-2).  

With respect to swine fecal contamination, swine associated marker was detected less often in 

water (38/45) and sediment samples (29/45) than human markers. The mean concentration of 

swine marker in water samples was 2.96-log10 gene copies/100ml and concentrations were 

ranged from 2.77 to 5.56-log10 gene copies/100ml of the water sample (Fig. 5.1C). The mean 

concentration of swine markers in sediment samples was 2.75-log10 gene copies/gram and 

concentrations were ranged from 3.6 to 4.7 log10 gene copies/ gram (Fig.5.2C). The variation 

in the concentration of swine markers detected in water (P> 0.001) and sediment samples 

(P>0.001) was statistically significant. Higher concentration of swine associated marker was 

observed in water samples at location 1 during summer and in sediment samples at location 10 

during summer. The samples at Location 1 were collected 1km inside the Taihu Lake from the 

junction between Tiaoxi River and Taihu Lake and runoff during the summer was probably a 

contributory factor. Location 10 was close to a rural area where agricultural input to the River 

upstream was likely to enhance the swine marker content. Location 10 was close to a rural area 

where agricultural input to the River upstream was likely to enhance the swine marker content. 

The avian associated fecal pollution was found to be the second dominant host associated fecal 

pollution in Tiaoxi River water samples. The avian markers were detected in 89% of water 

samples (40/45) at a concentrations ranging from 2.30 to 5.56-log10 gene copies/100ml at an 

average of 2.70 log10 gene copies/100ml (Fig.5.1D). In case of sediment samples, the avian 

markers were detected only in 4 of the 15 samples collected in the summer season. During 

autumn and winter seasons, though some samples were positive to the avian MST assay, they 

were below the quantification limits. The positive samples were tested again to confirm their 

presence but the results were not reproducible. The highest avian marker concentration was 
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observed at location 6 for water and sediment samples. Location 6 is in suburban area near 

Qijia village, where several swine and poultry farms are present (Supplementary Figure S5.2).  

5.3.4 Concentration of pathogenic bacterial genes in water and sediment samples 

The presence and distribution of gene markers for five bacterial pathogens is presented in Table 

5.3.  Considering detected not quantifiable (DNQs) as positive samples, the most commonly 

detected pathogens in water and sediment samples respectively were Campylobacter jejuni (62% 

and 53%) and Shigella spp. (60% and 88%), followed by STEC (55% and 51%) and pathogenic 

Leptospira spp. (33% and 13%). The E.coli O157: H7 was detected only in sediment samples 

(11%). The concentrations of genes of bacterial pathogens detected in water and sediment 

samples at each location are given in Table 5.4. Using the limit of quantification (LOQ) as 

selection criteria, Campylobacter jejuni (mapA) was present in quantifiable range in 20 out of 

45 water samples (2.31 to 2.88-log10 gene copies/100ml) and 12 of 45 sediment samples (3.30 

to 3.86-log10 gene copies/gram (Fig.5.3). The highest mapA gene concentration was observed 

in water samples collected at Location 16 and in sediment samples collected at location 20 

(Table 4). In case of Shigella spp. although ipaH gene was detected in several water samples, 

it was quantified only in 2 out of 45 samples (locations 3 and 12) with concentrations of 2.32 

and 2.35 log10 gene copies/100ml respectively. In sediments, the ipaH gene was quantified in 

14 samples with a concentrations ranging 3.32-to 3.47 log10 gene copies/gram (Fig.5.3) and 

highest concentration was observed at location 12. Similarly, the stx2 (Shiga toxin-producing 

E.coli) was quantified only in 2 out of 45 water samples (locations 5 and 2) with a concentration 

of 2.31 and 2.42 log10 gene copies/100ml respectively. In sediment, it was quantified in 13 out 

of 45 samples with a concentration range of 3.32 to 3.65-log10 gene copies/gram (Fig.5.3) and 

highest concentration of stx2 gene was observed at location-14. The LipL32 gene (Pathogenic 

Leptospira spp.) was quantified in 15 out of 45 water samples with the concentration ranged 

from 2.43 to 3.13 log10 gene copies/100ml with highest levels at location-21. LipL32 gene was 
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quantified in 6 (out of 45) sediment samples with a concentration of 3.32 to 3.65-log10 gene 

copies/gram (Fig.5.3) and highest concentration was observed at location 20. The eae gene of 

Escherichia coli O157: H7 was quantified only in 3 sediment samples collected in autumn 2014 

with a concentration of 3.32-to 4.03 log10 gene copies/gram and highest concentration was 

observed at location 20. 

Figure 5.3 Concentrations (mean and standard deviations) of marker genes for bacterial 

pathogens detected in water (A) and sediment samples (B) of Tiaoxi River. 



 

119 
 

Table 5.3 Detection frequencies of pathogenic bacterial marker genes in water and sediment samples of Tiaoxi River, Taihu watershed (2014-

2015). 

Sample type 

No. of 

samples 

tested (n) 

No. of positive samples a 

Leptospira 

(LipL32) 

Campylobacter 

(mapA) 

Shigella 

(ipaH) 

STEC 

(stx2) 

EHEC O157:H7 

(eae) 

Water 

Autumn 

Winter 

Summer 

 

15 

15 

15 

 

5 (33%)  

10 (66%) 

0 

 

4 (26.6) 

9 (60%) 

15 (100%) 

 

15 (100%) 

8 (53%) 

4 (26.6) 

 

0 

12 (80%) 

12 (80%) 

 

0 

0 

0 

Total 45 15 (33%) 28 (62%) 27 (60%) 25 (55%) 0 

Sediment 

Autumn 

Winter 

Summer 

 

15 

15 

15 

 

0 

6 

0 

 

6 (40%) 

10 (66%) 

8 (53%) 

 

 15 (100%) 

 11 (73%) 

 14 (97%) 

 

11 (73%) 

3 (20%) 

9 (60%) 

 

5 (33%) 

0 

0 

Total 45 6 (13%) 24 (53%)   40 (88%)  23 (51%) 5 (11%) 

*
a
 Considering DNQ’s (Detected Not Quantifiable) as positive samples. 
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Table 5.4 Concentration of pathogenic bacterial marker genes in Tiaoxi River water and sediment samples 

Campylobacter jejuni 

 Water (log10 gene copies/100ml) Sediment (log10 gene copies/gram) 

Location 
Autumn 2014 Winter 2015 Summer 2015 Autumn 2014 Winter 2015 Summer 2015 

L-1 DNQ N.D 2.76 N.D 3.75 DNQ 

L-2 N.D N.D 2.66 N.D DNQ DNQ 

L-3 N.D DNQ 2.77 N.D N.D 3.31 

L-4 N.D 2.49 2.52 3.37 3.71 DNQ 

L-5 DNQ N.D 2.63 N.D 3.52 3.31 

L-6 2.32 N.D 2.72 DNQ DNQ DNQ 

L-8 N.D 2.38 2.60 N.D 3.58 3.32 

L-10 N.D DNQ 2.76 DNQ N.D N.D 

L-12 N.D 2.38 2.81 N.D N.D DNQ 

L-13 N.D 2.31 2.72 N.D 3.46 DNQ 

L-14 N.D DNQ 2.87 DNQ N.D 3.34 

L-15 N.D N.D 2.79 DNQ 3.46 N.D 

L-16 DNQ DNQ 2.88 N.D DNQ N.D 

L-20 N.D DNQ 2.81 3.86 N.D N.D 

L-21 N.D N.D 2.75 N.D 3.47 DNQ 

DNQ: Detected not Quantifiable, ND: Not Detected. 
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Leptospira spp. 

 Water (log10 gene copies/100ml) Sediment (log10 gene copies/gram) 

Location 
Autumn 2014 Winter 2015 Summer 2015 Autumn 2014 Winter 2015 Summer 2015 

L-1 2.46 2.54 N.D N.D N.D N.D 

L-2 2.59 2.67 N.D N.D 3.33 N.D 

L-3 N.D N.D N.D N.D N.D N.D 

L-4 N.D 2.52 N.D N.D N.D N.D 

L-5 N.D 2.61 N.D N.D 3.52 N.D 

L-6 N.D 3.00 N.D N.D N.D N.D 

L-8 N.D N.D N.D N.D N.D N.D 

L-10 2.49 2.44 N.D N.D N.D N.D 

L-12 N.D N.D N.D N.D N.D N.D 

L-13 N.D 2.44 N.D N.D N.D N.D 

L-14 N.D N.D N.D N.D 3.47 N.D 

L-15 N.D N.D N.D N.D 3.38 N.D 

L-16 N.D 2.54 N.D N.D 3.45 N.D 

L-20 2.55 2.82 N.D N.D 3.65 N.D 

L-21 2.44 3.13 N.D N.D N.D N.D 
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Shigella spp. 

 Water (log10 gene copies/100ml) Sediment (log10 gene copies/gram) 

Location Autumn 2014 Winter 2015 Summer 2015 Autumn 2014 Winter 2015 Summer 2015 

L-1 DNQ N.D N.D 3.33 DNQ DNQ 

L-2 DNQ N.D N.D 3.39 DNQ DNQ 

L-3 2.33 N.D N.D 3.34 DNQ DNQ 

L-4 DNQ N.D N.D 3.40 DNQ DNQ 

L-5 N.D N.D N.D DNQ DNQ N.D 

L-6 DNQ N.D N.D 3.33 DNQ DNQ 

L-8 DNQ N.D DNQ 3.40 N.D DNQ 

L-10 DNQ DNQ N.D 3.36 DNQ DNQ 

L-12 2.35 DNQ N.D 3.48 N.D DNQ 

L-13 DNQ DNQ N.D 3.41 DNQ DNQ 

L-14 DNQ DNQ N.D 3.42 N.D DNQ 

L-15 DNQ DNQ DNQ 3.43 N.D DNQ 

L-16 DNQ DNQ N.D 3.44 DNQ DNQ 

L-20 DNQ DNQ N.D 3.43 DNQ DNQ 

L-21 DNQ DNQ DNQ 3.40 DNQ DNQ 
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Shiga toxin-producing E.coli 

 Water (log10 gene copies/100ml) Sediment (log10 gene copies/gram) 

Location Autumn 2014 Winter 2015 Summer 2015 Autumn 2014 Winter 2015 Summer 2015 

L-1 N.D DNQ N.D N.D DNQ DNQ 

L-2 N.D DNQ DNQ DNQ N.D N.D 

L-3 N.D DNQ DNQ 3.46 N.D N.D 

L-4 N.D DNQ DNQ 5.35 N.D DNQ 

L-5 N.D 2.31 DNQ 5.12 N.D N.D 

L-6 N.D N.D DNQ 5.32 DNQ 3.36 

L-8 N.D N.D DNQ 4.90 DNQ DNQ 

L-10 N.D N.D DNQ 5.02 N.D N.D 

L-12 N.D DNQ DNQ 4.97 N.D N.D 

L-13 N.D DNQ N.D 4.76 N.D N.D 

L-14 N.D DNQ N.D 5.90 DNQ DNQ 

L-15 N.D DNQ DNQ 5.65 DNQ 3.41 

L-16 N.D DNQ DNQ N.D DNQ DNQ 

L-20 N.D DNQ DNQ 5.43 DNQ 3.33 

L-21 N.D 2.42 DNQ N.D DNQ DNQ 
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Escherichia coli O157: H7 

 Water (log10 gene copies/100ml) Sediment (log10 gene copies/gram) 

Location 
Autumn 2014 Winter 2015 Summer 2015 Autumn 2014 Winter 2015 Summer 2015 

L-1 N.D N.D N.D N.D N.D N.D 

L-2 N.D N.D N.D N.D N.D N.D 

L-3 N.D N.D N.D N.D N.D N.D 

L-4 N.D N.D N.D N.D N.D N.D 

L-5 N.D N.D N.D N.D N.D N.D 

L-6 N.D N.D N.D N.D N.D N.D 

L-8 N.D N.D N.D N.D N.D N.D 

L-10 N.D N.D N.D N.D N.D N.D 

L-12 N.D N.D N.D DNQ N.D N.D 

L-13 N.D N.D N.D 3.32 N.D N.D 

L-14 N.D N.D N.D 3.45 N.D N.D 

L-15 N.D N.D N.D DNQ N.D N.D 

L-16 N.D N.D N.D N.D N.D N.D 

L-20 N.D N.D N.D 4.03 N.D N.D 

L-21 N.D N.D N.D N.D N.D N.D 
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5.3.5 Correlation between FC, MST markers and genes of bacterial pathogens  

All the correlations in this study were considered as significant only when Rho(r) and p values 

were > 0.5 and < 0.05, respectively. The concentrations of FC were positively correlated with 

BacUni (r= 0.667 and p < 0.01) and HF183 Taqman (r= 0.572 and p < 0.05) but not with Pig-

2-Bac and GFD markers (Table 5.5), indicating the common source of fecal pollution such as 

effluents from WWTP or human waste entry into the River. The FC did not show correlation 

with any of the genes of bacterial pathogens tested in this study, in agreement with the previous 

studies (Bradshaw et al., 2016, Zhang et al., 2016a); FC points to the potential risk of exposure 

to pathogens but does not demonstrate their specific presence. The BacUni marker showed 

strong positive correlation with HF183Taqman (r= 0.832 and p < 0.01), suggesting human 

source could be a major contributor to total Bacteroidales content. BacUni also showed 

positive correlation with stx2 gene (r= 0.6 and p < 0.05). HF183 Taqman showed negative 

correlation with GFD marker (r= -0.582 and p < 0.05) and positive correlation with stx2 gene 

(r= 0.593 and p < 0.05). Since there are multiple fecal sources (such as pig, cow, and poultry) 

of stx2 gene presence in the environment, it is difficult to draw conclusions on stx2 gene 

correlation with BacUni and HF183 Taqman. No significant correlation was observed for Pig-

2-Bac and GFD markers with the marker genes of bacterial pathogens addressed in this study.  

5.4 Discussion 

Fecal pollution of surface waters is a serious concern to the aquatic ecosystem and human 

health. Fecal bacteria can enter into the environment through several sources such as effluents 

from wastewater treatment plants, septic leaks, urban and storm runoff water (Marsalek and 

Rochfort, 2004, Kapoor et al., 2015). In this study, fecal coliforms present in surface water 

collected were enumerated from 25 sampling locations to enable identification of locations for 

further investigation. Fecal coliform counts were higher than suggested limits at the fifteen 
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Table 5.5 Correlation between FC, MST markers and pathogenic bacterial marker genes. 

Correlation coefficient 

 FC BacUni HF183Taq Pig-2-Bac GFD LipL32 mapA ipaH stx2 

FC 1 .667** .572* -0.234 -0.27 -0.248 0.095 -0.361 0.397 

BacUni  1 .832** -0.036 -0.396 -0.04 -0.018 -0.168 .600* 

HF183Taq   1 -0.061 -.582* -0.265 0.1 -0.121 .593* 

Pig-2-Bac    1 -0.268 0.346 0.5 0.068 -0.421 

GFD     1 -0.095 0 0.057 -0.275 

LipL32      1 -0.251 -0.225 0.207 

mapA       1 0.379 -0.286 

ipaH        1 -0.018 

stx2         1 

**. Correlation is significant at 0.01 level (2-tailed). 

*. Correlation is significant at 0.05 level (2-tailed). 
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locations and increased concentrations were observed during summer. Acclimatization of 

existing FC bacteria to warm temperatures or entry of fresh feces from different sources such 

as human, animal or sewage into the surface water due to runoff from rainfall event occurred 

before sampling could have elevated the levels of FC during summer (Sidhu et al., 2012). 

Therefore, MST was conducted to assess the presence of fresh fecal pollution in the Tiaoxi 

River and to determine the fecal sources at these locations.  

Overall, the distribution of MST markers among different locations correlated well with the 

land use pattern and results indicated that there was a mixed input of fecal pollution at several 

locations. Presence of Total Bacteroidales markers with high frequency in water and sediment 

samples at all locations (Fig. 5.1A & 5.2A) shows possible fresh fecal source entry and 

transportation to other locations within the study area (Marti et al., 2013). With respect to host-

associated markers, human-associated markers were consistently identified (in both water and 

sediment) in most of the sampling locations during three occasions (Fig. 5.1B & 5.2B). Except 

for summer season (July/August 2015) where rainfall event (~349/268mm) took place, autumn 

(Oct 2014) and winter (Jan/Feb 2015) were dry seasons (with only 32 & 66mm precipitation) 

indicating that fecal contamination at these locations might not be merely through runoff but 

could be due to direct discharge of sewer and septic waste (Ohad et al., 2015). The detection 

of Shigella spp. that solely originates from human fecal sources at several locations also points 

out to the human fecal contamination in the studied area. High levels of human-associated 

markers were frequently observed in water samples at location-3, 5, 12 and 16 and in sediment 

samples at location- 15 on one or more occasions. The higher levels of human-associated 

markers observed in water samples at location 5 and 16 and sediment samples at 15 could be 

associated with effluents from WWTP located near these locations (Zheng et al., 2017). The 

higher levels of human-associated markers in water samples at Location 3 (rural area)  and 12 

(urban area) (Table 2.1 of chapter-2) that do not have agricultural or effluent influx from 
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WWTP, indicates that the major source of human-associated markers at these location could 

be due to sewage (Kapoor et al., 2015). Swine farming is the dominant livestock-based 

agricultural activity in Zhejiang province. The swine associated marker was frequently detected 

in water samples collected at locations 6, 12, 13, 20 and 21 and sediment samples collected in 

location 13 and 21. The results obtained are consistent with land use pattern as these locations 

have active pig-farming operations (Fig. 5.1C & 5.2C). Location 6 is near Qijia village (Table 

2.1 of chapter-2 and Fig.S5.1) where commercial and household backyard pig and poultry 

farms were observed during the sampling. On the upstream side of Location 13, WWTP and 

active pig farming (Table S5.2) were found near to this location (Zheng et al., 2017). Location 

20 and 21 were close to changxing port, which has several farms for pigs and poultry (Table. 

S5.2). The only possible explanation for consistent detection of swine associated markers at 

location 12 is transport of fecal bacteria from location 13, as the distance between two locations 

is ~1km. In China, both backyard and commercial based poultry farming are common and 

existence of such farms nearby leads to release of poultry feces into the watershed (Zhuang et 

al., 2017). The provincial government of Zhejiang had concerns over the illegal discharge of 

poultry wastes into the watershed and has recently initiated monitoring control measures 

recently (Zheijiang, 2016). The avian associated marker quantification results prove that 

poultry fecal pollution was high in the study area as markers were detected in 89 % of water 

samples (40/45) (Fig. 5.1D). Based on GFD assay, water samples collected at location 6, 15, 

20 and 21 (Fig. 5.1D) and sediments (summer season) collected at locations 6 and 20 (Table 

S5.3) had high levels of avian markers. Active commercial and backyard poultry farming near 

locations 6, 20 and 21 was observed (Table S5.2 and Fig.S5.1) and results correlate well with 

the land use pattern. Overall, MST results indicate potential occurrence of pathogens at these 

locations, which was followed up with in-depth monitoring of host-associated pathogens. 
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Although Quantitative Microbial Risk Assessment (QMRA) tools can identify the probability 

of infection or illness more appropriately by utilizing pathogen concentration data, hypothetical 

water consumption or contact volume and hydrological data of watershed (Schmidt and 

Emelko, 2011), it should be noted that it is impossible to determine the lowest infection dose 

of pathogen for an individual or population since immunity of a person plays an import role 

(Fullerton et al., 2012). However, a comparison of cell count or gene copies concentration data 

of bacterial pathogens for water or environmental samples with lowest infection dose could 

provide initial assessment of human health risk (Ahmed et al., 2009b). Currently, 

Campylobacter jejuni was found to be most frequently detected pathogen in the study area 

(Table 5.3). C. jejuni originates primarily from chicken and other avian feces (Lund et al., 

2004). High frequency of C.jejuni detected could be due to high avian fecal contamination, 

although this organism can survive up to 4 months in the environment (Murphy et al., 2006). 

As mapA gene marker is a single copy gene for C. jejuni, the gene copy number can be 

converted to cell counts to assess human health risk (Ahmed et al., 2009b). Although C. jejuni 

was frequently detected in water and sediment samples at location-4, 6, 8 and 13, the 

concentrations exceeded the lowest infectious dose of 500 organisms (Ahmed et al., 2009b) 

only at location 6 and 13 in one or more occasions indicating these locations could pose 

significant health risks. Globally, Shigella spp. is one among the major bacterial cause of 

diarrhea. It is considered as one of the top four pathogens that causes moderate to severe 

diarrhea to the children of Africa and South Asia (Huynh et al., 2015). Shigella sonnei is the 

most commonly recovered species in infected patients from United States, while in Asia and 

developing countries, S. dysenteriae and S. flexneri were the major causative species (Wu et 

al., 2009). Humans are considered as the common and natural reservoirs for Shigella (Ishii et 

al., 2013) and presence of these bacteria indicates human fecal contamination (Oster et al., 

2014). The lowest infectious dose of Shigella spp. to cause diarrhea is 10-200 organisms, 
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though it differs from person to person and species to species of this genus (Aragon et al., 2007). 

For instance, S. flexneri requires <140 organisms or cells while S. dysenteriae it is <100 cells 

and for some virulent strains it is <10 cells (Aragon et al., 2007). In the present study, ipaH 

gene was detected in 68 out of 90 water and sediment samples tested (Table 5.3). As ipaH gene 

occurs in 5 to 10 copies in plasmid and genomic DNA of Shigella spp. (Greenberg et al., 2010), 

the Shigella spp. detected in water and sediment samples at location-3 and 12 could pose a 

human health risk. The monitoring of Shigella and Campylobacter is a useful tool for watershed 

managers/monitoring agencies as these organisms are associated with specific sources (host 

associated). Shiga toxin-producing E. coli (STEC) can cause gastrointestinal disease leading to 

mild or severe bloody diarrhea (Haack et al., 2015). The infectious dose for some STEC strains 

to cause infection is <100 organisms (Thorpe, 2004). Here, although STEC was detected in 

nearly 50% of water samples tested in the study area (Table 3), only samples collected from 

locations 5 and 21 could pose significant health risk. STEC may originate from multiple 

reservoirs or sources (Beutin et al., 2008). Pathogenic Leptospira species cause leptospirosis 

by colonization of the renal tubules of infected reservoir hosts such as dogs, rats, and cattle and 

enters into the environment via urine (Monahan et al., 2008). Pathogenic Leptospira spp. 

detection frequency was comparatively lower than STEC, Campylobacter and Shigella spp.  

Pathogenic Leptospira spp. requires high bacterial count to cause infection due to the acid 

sensitivity of the bacteria. Although the exact low infection dose of pathogenic Leptospira spp. 

for human is unknown, it is considered that >500 cells are required for infection (Ganoza et al., 

2010). Therefore, the pathogenic Leptospira quantified in the present study were not 

considered as significant human health risk. E. coli O157: H7 (eae gene) was not detected in 

any of the water samples, but detected at low frequency (33%) in sediment samples (autumn 

season) (Fig. 5). It has been reported that cattle are the main reservoir for E. coli O157 (Ahmed 

et al., 2009b) and the results presented here are consistent with the paucity of cattle farming in 
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the watershed area (NBSC, 2015). Overall, the quantification of the genes of bacterial 

pathogens in water and sediment samples indicate that C. jejuni and STEC are the major 

concerns for human health risk in a few locations of the study area and direct contact with water 

or sediment samples at these locations could cause illness to the human population.  

5.5 Conclusions 

 The human-associated marker was frequently detected in high concentrations at 

locations 3, 5, 12 and 16 indicating high human fecal pollution in those locations.  

 Swine associated marker was frequently detected in samples from locations 13 and 21 

and the avian associated marker was detected in high concentrations at locations 6, 15, 

20 and 21, matching with the land use pattern and pointing to the entry of pig and avian 

fecal sources into Tiaoxi River. 

 Campylobacter jejuni was detected in exceeding levels of lowest infection dose at 

location 6 and 13. Similarly, Shigella spp. were detected exceeding levels of lowest 

infection dose at location 3 and 12, and Shiga toxin producing E.coli (STEC) at location 

5 and 21. 

 The bacterial pathogen quantification results correlate with the findings of host 

associated fecal markers and demonstrating the potential of MST in predicting the 

presence of host associated pathogenic organisms. 

 Overall, the results of MST and bacterial pathogen quantification indicate severe fecal 

contamination in the Tiaoxi River.  
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6.1 Summary 

The overall goal of this PhD thesis was to apply LI-MST techniques to characterize fecal 

pollution and to identify the abundance of specific bacterial pathogens in the Tiaoxi River 

(Taihu watershed) to determine human health risk. This thesis comprised of: analysis of the 

physico-chemical and microbiological parameters of Tiaoxi River water to assess the 

preliminary hotspots of fecal contamination; determination of the microbial community in 

water samples collected from these preliminary hotspots by Illumina sequencing (NGS) to 

characterize the diversity of bacteria and to demonstrate the presence of fecal and potentially 

pathogenic bacteria; validation of the performance of existing universal, human and animal 

associated MST qPCR assays for their applicability to detect host-associated fecal pollution at 

Taihu watershed; and finally, investigation of  the presence and abundance of MST markers 

and genes of bacterial pathogens at Tiaoxi River. 

In Chapter 2, a detailed physico-chemical and microbiological analysis was carried out to 

assess the quality of Tiaoxi River water. Fourteen water quality parameters including multiple 

nutrients and indicator bacteria were analysed in the water samples collected from 25 locations 

across the Tiaoxi River in three seasons (autumn 2014, winter  and summer 2015), and the data 

were analyzed by multivariate statistical analyses. The results indicated that TN, TP, NO2-N, 

and NH4-N were the major nutrients that contributed to pollution in this River. The 

concentration of multiple nutrients and bacterial counts varied with the type of land-use and 

the locations where non-point sources possibly entered the Tiaoxi River. The entry of wastes 

into this River from non-point sources was observed in several locations during the sampling 

events and these wastes negatively affect the Tiaoxi River and water quality. The elevated 

levels of nutrients contribute to eutrophication and this is evident from the presence of high 

concentrations of Chl a, particularly in location 1 (Taihu Lake) due to algal blooms in the Lake. 

Chl a levels were comparatively high in the samples collected during the summer season, as 
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expected. The total coliform and fecal coliform counts were higher in urban/semi-urban 

locations where wastes from non-point sources entered into the River. The microbiological 

results also indicated that fecal pollution was high in 15 locations, suggesting the entry of 

human or animal fecal matter. Cluster analysis showed that the sampling locations can be 

grouped into three clusters based on the land use patterns and physico-chemical and 

microbiological data, and these three clusters can be classified as relatively low, moderate and 

high pollution areas. The PCA of the entire dataset reduced the parameters to four principal 

components that explain 83% of the total variance. The four components that contribute 

significant variation in water can be classified as natural, nutrient, microbial and organic type 

of pollutants. The overall physico-chemical and microbiological results indicate the possibility 

of fecal source entry into the River through various sources, and a microbial source tracking 

study is needed to identify the fecal sources. 

In Chapter 3, a comprehensive study to identify the diversity and composition of bacterial 

communities in water and fecal samples was conducted using the Illumina MiseqPE250 

platform. Forty five water samples (from 15 locations in three seasons) were analyzed with 

duplicates of 7 fecal hosts and sewage samples as reference. About 20 different phyla were 

observed in Tiaoxi River water, fecal and wastewater samples, though their relative abundance 

varied with the type of samples. Proteobacteria, Actinobacteria, Bacteroidetes, and 

Cyanobacteria were the dominant phyla accounting for 90% of bacterial abundance in most of 

the water samples. The phyla Bacteroidetes, Firmicutes, and Proteobacteria were abundant in 

fecal samples, whereas wastewater samples had Proteobacteria, Bacteroidetes, and Chloroflexi 

as the dominant phyla. Hierarchical cluster analysis and PCoA showed that fecal and 

wastewater samples clustered separately from water samples. Comparison of OTU data from 

individual fecal sources (Venn diagram analysis) with total water samples specified that 

chicken fecal samples (9.8%) shared the highest number of OTUs with total water samples, 
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followed by pig (7.1%), and human samples (4.5%) indicating the presence of avian, pig and 

human fecal contamination. When sequence data were further analyzed at the genus level, the 

results indicated that five fecal related genera (Bacteroides, Prevotella, Blautia, 

Faecalibacterium and Dorea) were present at several locations, with Bacteroides detected in 

most of the samples tested (39/45) indicating the presence of fecal contamination. The presence 

of Dorea (14 out of 45 samples) and Bacteroides species (B. caccae and B. plebeius) points to 

potential human fecal contamination at these locations. Examination of the sequence data of 

water samples also revealed the presence of seven potential pathogenic bacterial genera 

(Acinetobacter, Aeromonas, Arcobacter, Brevundimonas, Enterococcus, Escherichia-Shigella, 

and Streptococcus) with high abundance (>0.1); only sequences of two genera could be 

classified to species level with high sequence similarity (97%),  A. cryaerophilus (formerly 

Campylobacter cryaerophilus) and Brevundimonas vesicularis. However, as Arcobacter and 

Campylobacter species are genotypically similar, more specific PCR assays are needed for 

differentiation and identification. Overall, Illumina sequencing results indicated the presence 

of fecal contamination and potentially pathogenic bacteria at Tiaoxi River, demanding a MST 

study to determine the major fecal source, and application of more specific qPCR assays to 

detect the presence of pathogens.  

In Chapter 4, validation of two universal/general Bacteroidales (BacUni and GenBac3), four 

human-associated (HF183 SYBR, HF183 Taqman, BacHum and Hum2), one swine associated 

(Pig-2-Bac), one livestock/domestic animal associated (BacCow) and two avian associated 

MST qPCR assays (GFD and AV4143) using sewage, human and animal fecal samples was 

carried out to determine the suitable MST assays for identifying fecal pollution sources at Taihu 

watershed. Results indicated that BacUni and GenBac3 markers (universal/general 

Bacteroidales assay) were highly sensitive (100%) to fecal and sewage samples, with the 

BacUni marker yielding comparatively higher abundance data. All of the four human-
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associated assays showed cross reactivity with chicken and dog-fecal samples; HF183 Taqman 

and BacHum were the more specific of these. However, HF183 Taqman is a more suitable 

assay at this geographical region as it did not show any cross reactivity with pig and cow fecal 

samples. The swine associated assay, Pig-2-Bac, was highly specific and sensitive 

demonstrating its potential in tracking swine fecal pollution. BacCow marker 

(Livestock/domestic animal associated assay) was not detected in all animal samples tested 

indicating that it cannot be applicable for detecting total livestock fecal contamination at this 

geographical location. Among the avian associated assays, although the GFD marker was 

relatively less sensitive compared to AV4143 it was highly specific and did not cross-react 

with human fecal samples, indicating its ability to discriminate avian and human fecal sources. 

Therefore, BacUni, HF183 Taqman, Pig-2-Bac and GFD markers are recommended as a suite 

of marker assays for tracking total and host-associated fecal contamination at Taihu watershed 

region. The data also reinforce the importance of conducting regional MST validation studies 

prior to their application in any new geographical region. 

In Chapter 5, the above MST markers were quantified in water and sediment samples collected 

from 15 locations in  Tiaoxi River, along with five pathogenic bacterial genes to assess the 

human health risks. The total Bacteroidales marker was detected in all the water and sediment 

samples of 15 monitoring locations, suggesting the presence of fecal contamination. Although 

human-associated markers were detected frequently at several locations, location-3, 12 and 16 

had high concentrations on one or more occasions indicating that they are major human fecal 

contaminated sites of the Tiaoxi River region. Swine associated marker was detected in all 

water and sediment samples from location 13 and 21, correlating with the land use pattern and 

pointing to the entry of pig fecal source into Tiaoxi River. The avian associated marker was 

detected at high concentrations in all water samples at locations- 6, 15, 20 and 21, which also 

correlates well with the land use pattern at these locations. Among bacterial pathogens 
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monitored, Campylobacter jejuni was frequently detected in water and sediment samples at 

locations 4, 6, 8 and 13, with concentrations exceeding the lower limit of infection dose at 

location 6 and 13 (on one or more occasions) indicating that these waters are unsafe for human 

contact or consumption. Shigella spp. detected in water and sediment samples at locations 3 

and 12 and STEC detected at locations 5 and 21 water and sediment samples also show that 

these sites are unsafe for human contact or consumption. 

In summary, this thesis has demonstrated the geographical and regional applicability of a group 

of MST qPCR assays and pointed out the presence of multiple fecal sources in water and 

sediment of Tiaoxi River. The MST data generated here could be of significant importance for 

water quality managers/engineers of Tiaoxi River watershed to take appropriate actions. 

Furthermore, the pathogen quantification data are useful for the Tiaoxi River water quality 

managers to assess additional human health threats using microbial risk assessment tools in 

combination with their access to complete information on the Tiaoxi River watershed.   

6.2 Future directions 

 The findings in this thesis have opened up several potential opportunities for future 

research. The sequence data from fecal sources in this study revealed that the genus 

Faecalibacterium is abundantly present in human samples, as opposed to Bacteroides that are 

abundant in both humans and animals, suggesting that Faecalibacterium would be a useful 

target for the design of human-specific MST markers. A recent study (Sun et al., 2016) also 

provided initial evidence for this and supported the use of Faecalibacterium as a human-

specific MST marker. Therefore, development of a Taqman based MST qPCR assay could 

provide a more specific human-associated MST assay.  

The microbial community analysis study revealed the presence of several pathogenic genera 

such as Acinetobacter, Aeromonas, Arcobacter and Enterococcus with high concentrations at 

several locations of Tiaoxi River. Therefore, further research is required to identify their 
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pathogenicity by applying more specific PCR assays and assess human health risk associated 

with these bacteria.  

Recent developments in metagenomic studies such as NGS-based MST methods coupled with 

SourceTracker software have gained much attention due to the ability to characterize rare 

members of the fecal biome that can act as alternative indicators of fecal contamination in 

environmental samples, though this method requires optimization and validation before 

applying to environmental samples (Unno et al., 2018, Staley et al., 2018). The fecal libraries 

constructed in this PhD project could be valuable for future studies that use NGS-based MST 

methods using SourceTracker software at Taihu watershed, as this method requires site-

specific larger libraries for accurate identification of fecal sources. If sufficient funds are 

available, application of SourceTracker (NGS) based MST methods along with qPCR based 

MST as a toolbox may provide more data that are robust.  
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Table S2.1 Range, mean and standard deviation of different water quality parameters measured at different locations in Taihu watershed during 2014-2015. 

Locations TN (mg/L) TP (µg/L) NO3-N (mg/L) NO2-N (mg/L) PO4-P (µg/L) 

 Range Mean S.D Range Mean S.D Range Mean S.D Range Mean S.D Range Mean S.D 

Location 1 1.31-2.95 2.06 0.83 68.88-102.61 84.76 16.95 0.37-2.44 1.42 1.04 0.01-0.10 0.07 0.06 2.46-23.58 9.77 11.97 

Location 2 1.58-3.06 2.30 0.74 64.6-118.04 91.96 26.74 0.53-2.59 1.59 1.03 0.01-0.11 0.06 0.05 5.70-30/28 15.40 13.08 

Location 3 1.90-3.47 2.50 0.85 66.29-113.6 91.31 23.77 0.55-2.96 1.67 1.22 0.01-0.16 0.08 0.08 7.45-30.24 17.97 11.50 

Location 4 2.40-3.50 3.06 0.58 74.89-110.24 95.23 18.27 1.71-3.34 2.45 0.83 0.05-0.08 0.07 0.02 21.52-23.67 25.81 5.67 

Location 5 2.50-3.50 3.16 0.57 81.27-109.4 94.40 14.16 1.85-3.08 2.67 0.71 0.04-0.08 0.06 0.02 14.13-29.75 21.77 7.82 

Location 6 2.41-3.64 3.15 0.65 67.43-87.09 77.73 9.86 1.78-3.33 2.71 0.82 0.05-0.08 0.06 0.02 9.01-29.39 19.43 10.20 

Location 7 2.45-3.20 2.92 0.41 63.94-95.78 78.42 16.11 1.96-2.91 2.57 0.53 0.04-0.07 0.06 0.02 10.36-27.94 19.61 8.83 

Location 8 2.59-3.25 2.97 0.34 57.63-108.64 79.69 26.20 1.99-2.87 2.53 0.47 0.04-0.07 0.06 0.02 11.86-29.23 21.18 8.76 

Location 9 2.44-3.27 2.95 0.44 55.76-87.27 70.58 15.84 1.99-2.82 2.53 0.47 0.04-0.07 0.06 0.02 12.37-28.60 21.48 8.29 

Location 10 2.33-3.07 2.76 0.38 53.42-86.25 68.74 16.52 1.90-2.83 2.46 0.50 0.03-0.08 0.06 0.02 10.87-29.11 20.66 9.19 

Location 11 2.25-3.02 2.76 0.44 59.31-88.12 71.80 14.78 1.75-2.75 2.39 0.55 0.03-0.07 0.05 0.02 11.64-29.11 20.41 8.69 

Location 12 1.77-3.25 2.40 0.77 88.33-94.32 92.09 3.27 0.82-2.5 1.67 0.89 0.01-0.07 0.05 0.03 2.52-33.28 19.50 15.63 

Location 13 2.73-3.69 2.85 0.79 77.06-112.64 92.97 18.09 1.82-3.51 2.54 0.87 0.04-0.06 0.06 0.01 10.08-30.71 18.16 11.02 

Location 14 2.13-3.31 2.57 0.65 80.45-115.82 94.68 18.67 1.49-2.41 1.95 0.46 0.03-0.11 0.06 0.04 2.79-29.45 19.79 14.76 

Location 15 2.51-3.74 2.96 0.68 79.76-129.68 103.47 25.05 2.03-2.97 2.37 0.53 0.03-0.17 0.08 0.08 3.51-28.15 18.54 13.18 

Location 16 2.92-3.27 3.10 0.18 135.26-187.42 166.09 27.35 0.96-1.88 1.48 0.47 0.01-0.18 0.08 0.09 12.47-51.91 34.48 20.11 

Location 17 2.27-3.34 2.84 0.54 69.24-100.27 83.58 15.65 2.02-3.09 2.59 0.54 0.04-0.07 0.06 0.02 12.47-28.14 19.96 7.91 

Location 18 2.33-4.13 3.23 1.27 58.83-103.63 81.23 31.68 1.20-3.86 2.54 1.88 0.04-0.11 0.08 0.05 16.54-19.85 18.20 2.34 

Location 19 2.12-2.95 2.54 0.59 92.1-94.86 93.48 1.95 1.07-2.44 1.76 0.97 0.06-0.09 0.08 0.02 24.02-25.88 24.95 1.31 

Location 20 2.03-4.02 2.83 1.06 93.3-140.48 115.07 23.80 1.19-3.42 2.06 1.20 0.02-0.14 0.09 0.06 20.44-37.60 26.79 9.41 

Location 21 1.88-3.18 2.52 0.65 75.31-117.14 102.15 23.30 1.45-2.29 1.65 0.57 0.02-0.04 0.06 0.04 13.75-36.85 22.89 12.28 

Location 22 2.11-2.38 2.25 0.19 116.25-142.74 129.50 18.73 1.17-1.36 1.27 0.13 0.01-0.05 0.03 0.03 14.63-38.26 26.45 16.71 

Location 23 1.87-3.24 2.56 0.97 85.34-149.96 117.65 45.69 1.17-1.70 1.44 0.37 0.02-0.04 0.04 0.02 2.40-6.80 4.60 3.11 

Location 24 2.29-3.70 3.00 1.00 95.78-144.62 120.20 34.54 1.68-2.71 2.20 0.73 0.04-0.04 0.04 0.00 26.51-35.24 30.88 6.17 

Location 25 2.60-2.98 2.79 0.27 72.97-119.81 96.39 33.12 1.71-2.85 2.28 0.80 0.03-0.12 0.08 0.06 13.60-41.13 27.37 19.47 
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Locations NH4-N (mg/L) TOC (mg/L) Chl a (µg/L) TVC ( x 103 CFU/mL) TC ( x 102 CFU/mL) FC ( x 102 CFU/100mL) 
 

Range Mean S.D Range Mean S.D Range Mea

n 

S.D Range Mean S.D Range Mean S.D Range Mean S.D 

Location 1 0.05-0.06 0.08 0.03 3.83-8.45 5.44 2.62 80.3-102.3 91.33 11.1 1.15-15.50 8.15 7.18 2.25-12.40 7.66 5.11 1.50-7.00 4.25 3.89 

Location 2 0.11-0.24 0.18 0.06 2.44-12.11 7.48 4.85 75.9-95.9 85.87 10.0 3.74-10.00 5.98 3.49 2.50-20.40 10.30 9.17 13.50-20.50 17.00 4.95 

Location 3 0.06-0.27 0.20 0.11 2.27-15.81 8.47 6.84 47.3-87.5 70.23 20.7 7.05-11.80 8.88 2.56 5.00-21.33 12.91 8.18 25.00-26.00 25.50 0.71 

Location 4 0.04-0.66 0.32 0.32 2.75-16.71 8.70 7.21 40.7-86.7 66.67 23.6 6.12-8.65 7.46 1.27 10.55-13.67 11.66 1.75 10.50-18.50 14.50 5.66 

Location 5 0.06-0.57 0.30 0.26 1.97-14.81 7.79 6.51 53.9-83.2 69.90 14.8 4.19-22.05 14.01 9.06 10.50-20.75 17.08 5.71 28.50-30.50 29.50 1.41 

Location 6 0.12-0.43 0.25 0.16 3.67-11.31 5.79 4.83 53.9-77.4 68.33 12.6 3.04-9.80 6.95 3.50 1.00-9.50 6.05 4.47 7.50-28.00 17.75 14.5 

Location 7 0.11-0.44 0.26 0.17 4.00-11.31 5.25 3.29 37.4-53.4 43.83 8.5 5.43-9.00 6.84 1.90 1.50-15.00 6.67 7.29 1.50-7.50 4.50 4.24 

Location 8 0.12-0.46 0.27 0.18 2.75-10.51 5.58 4.28 37.4-59.8 47.07 11.5 6.45-8.00 7.21 0.78 1.50-12.33 6.19 5.56 2.50-11.25 6.88 6.19 

Location 9 0.12-0.46 0.27 0.17 2.59-4.82 3.96 1.20 36.3-49.1 42.03 6.5 4.80-6.82 5.52 1.13 1.25-8.50 5.92 4.05 3.50-4.00 3.75 0.35 

Location 10 0.08-0.45 0.25 0.19 2.54-4.96 4.11 1.36 36.3-62.3 48.27 13.1 4.20-6.30 5.39 1.08 1.25-6.66 4.25 2.75 3.00-11.50 7.25 6.01 

Location 11 0.05-0.52 0.26 0.24 2.50-5.50 3.92 1.51 44.3-79.6 59.27 18.3 4.00-8.50 6.64 2.35 1.50-4.00 3.02 1.33 2.25-2.59 2.38 0.18 

Location 12 0.14-0.73 0.30 0.38 4.08-5..47 4.92 0.74 76.4-77.4 80.33 6.0 2.75-10.40 6.98 3.89 2.05-17.00 8.02 7.92 2.00-42.00 22.00 28.2 

Location 13 0.04-0.43 0.20 0.21 2.98-3.81 3.50 0.46 29.88-66.3 45.26 18.9 5.20-8.18 6.49 1.53 1.50-6.33 3.59 2.48 1.50-15.50 8.50 9.90 

Location 14 0.03-0.69 0.29 0.35 3.54-5.06 4.38 0.77 32.98-68.9 51.56 18.0 6.40-9.25 7.85 1.43 8.90-14.33 10.74 3.11 4.25-5.00 4.63 0.53 

Location 15 0.07-0.68 0.28 0.35 3.55-5.16 3.94 1.08 41.52-74.3 57.34 16.4 9.60-19.15 13.45 5.04 1.60-33.00 13.70 16.8 4.50-10.00 7.25 3.89 

Location 16 0.81-1.01 0.89 0.10 3.23-4.16 3.70 0.47 37.82-79.6 58.94 20.9 6.50-17.80 11.95 5.66 1.45-41.33 16.01 22.0 12.00-43.25 27.63 22.1 

Location 17 0.04-0.43 0.20 0.21 2.39-2.78 2.59 0.20 29.98-53.6 39.96 12.2 5.22-9.60 7.32 2.20 0.50-27.66 9.97 15.3 1.00-20.75 10.88 13.9 

Location 18 0.01-0.13 0.08 0.08 2.67-7.25 4.96 3.24 45.2-68.6 56.90 16.6 4.75-8.40 6.58 2.58 5.15-10.00 7.58 3.43 1.5 1.50 0.00 

Location 19 0.01-0.22 0.12 0.15 4.46-6.21 5.34 1.24 36.3-62.3 49.30 18.4 5.91-10.40 8.16 3.17 1.66-3.10 2.38 1.02 1.75 1.75 0.00 

Location 20 0.13-0.59 0.30 0.26 5.94-9.68 7.62 1.90 34.4-71.8 47.87 20.8 4.90-9.20 6.73 2.22 1.75-2.95 2.23 0.63 3.25-6.00 4.63 1.94 

Location 21 0.05-0.44 0.27 0.20 5.92-13.76 9.41 3.99 26.8-59.6 40.90 16.9 4.10-10.00 6.78 2.99 2.00-4.05 2.90 1.05 1.50-2.75 2.13 0.88 

Location 22 0.01-0.02 0.02 0.01 2.40-6.08 4.24 2.60 61.6-88.4 75.00 19.0 5.93-9.40 7.67 2.45 2.33-3.55 2.94 0.86 4 4.00 0.00 

Location 23 0.09-0.11 0.10 0.02 3.77-7.79 5.78 2.84 103.-132.6 118.0 20.7 4.35-14.00 9.18 6.82 1.66-4.65 3.16 2.11 0.5 0.50 0.00 

Location 24 0.20-1.02 0.62 0.58 6.12-9.89 8.00 2.67 34.2-67.6 50.90 23.6 6.80-8.45 7.63 1.17 1.00-3.66 2.33 1.88 0.75-2.50 1.63 1.24 

Location 25 0.27-0.55 0.41 0.20 7.25-5.59 6.42 1.17 89.3-94.3 91.80 3.5 9.80-12.65 11.23 2.02 5.00-8.75 6.88 2.65 2.00-10.00 6.00 5.66 
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Figure S3.1A Agarose gel pictures of PCR products generated for DNA samples using 515F and 

807R primers. DL2000: 100bp markers, Serial number 1-48: water or fecal DNA sample tested 

(Sample ID for each serial number indicated in gel is given below). 

 

Figure S3.1B Agarose gel pictures of PCR products generated for DNA samples using 515F and 

807R primers. DL2000: 100bp markers, Serial number 49-61: fecal or wastewater DNA sample tested 

(Sample ID for each serial number indicated in gel is given below). 

Table S3.1 Description and result of quality check for water, fecal and wastewater samples. 

Serial  number Sample ID Description Result 

1 AUW01 Autumn water sample, Location-1 Grade A 

2 AUW02 Autumn water sample, Location-2 Grade A 
3 AUW03 Autumn water sample, Location-3 Grade A 
4 AUW04 Autumn water sample, Location-4 Grade A 
5 AUW05 Autumn water sample, Location-5 Grade A 
6 AUW06 Autumn water sample, Location-6 Grade A 
7 AUW08 Autumn water sample, Location-8 Grade A 
8 AUW10 Autumn water sample, Location-10 Grade A 
9 AUW12 Autumn water sample, Location-12 Grade A 

10 AUW13 Autumn water sample, Location-13 Grade A 
11 AUW14 Autumn water sample, Location-14 Grade A 
12 AUW15 Autumn water sample, Location-15 Grade A 
13 AUW16 Autumn water sample, Location-16 Grade A 
14 AUW20 Autumn water sample, Location-20 Grade A 
15 AUW21 Autumn water sample, Location-21 Grade A 
16 WIW01 Winter water sample, Location-1 Grade A 

17 WIW02 Winter water sample, Location-2 Grade A 

18 WIW03 Winter water sample, Location-3 Grade A 

19 WIW04 Winter water sample, Location-4 Grade A 
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Serial  number Sample ID Description  

20 WIW05 Winter water sample, Location-5 Grade A 

21 WIW06 Winter water sample, Location-6 Grade A 

22 WIW08 Winter water sample, Location-8 Grade A 

23 WIW10 Winter water sample, Location-10 Grade A 

24 WIW12 Winter water sample, Location-12 Grade A 

25 WIW13 Winter water sample, Location-13 Grade A 

26 WIW14 Winter water sample, Location-14 Grade A 

27 WIW15 Winter water sample, Location-15 Grade A 

28 WIW16 Winter water sample, Location-16 Grade A 

29 WIW20 Winter water sample, Location-20 Grade A 

30 WIW21 Winter water sample, Location-21 Grade A 

31 SUW01 Summer water sample, Location-1 Grade A 

32 SUW02 Summer water sample, Location-2 Grade A 

33 SUW03 Summer water sample, Location-3 Grade A 

34 SUW04 Summer water sample, Location-4 Grade A 

35 SUW05 Summer water sample, Location-5 Grade A 

36 SUW06 Summer water sample, Location-6 Grade A 

37 SUW08 Summer water sample, Location-8 Grade A 

38 SUW10 Summer water sample, Location-10 Grade A 

39 SUW12 Summer water sample, Location-12 Grade A 

40 SUW13 Summer water sample, Location-13 Grade A 

41 SUW14 Summer water sample, Location-14 Grade A 

42 SUW15 Summer water sample, Location-15 Grade A 

43 SUW16 Summer water sample, Location-16 Grade A 

44 SUW20 Summer water sample, Location-20 Grade A 

45 SUW21 Summer water sample, Location-21 Grade A 

46 HU-1 Human fecal sample Grade A 

47 HU-2 Human fecal sample Grade A 

48 CW-1 Cow fecal sample Grade A 

49 CW-2 Cow fecal sample Grade A 

50 DG-1 Dog fecal sample Grade A 

51 DG-2 Dog fecal sample Grade A 

52 PG-1 Pig fecal sample Grade A 

53 PG-2 Pig fecal sample Grade A 

54 DU-1 Duck fecal sample Grade A 

55 DU-2 Duck fecal sample Grade A 

56 GO-1 Goose fecal sample Grade A 

57 GO-2 Goose fecal sample Grade A 

58 CK-1 Chicken fecal sample Grade A 

59 CK-2 Chicken fecal sample Grade A 

60 WW-1 Wastewater sample Grade A 

61 WW-2 Wastewater sample Grade A 

 

Grade A: The PCR product size is correct and the concentration is suitable for subsequent experiments. 

Grade B: The PCR product size is correct and the concentration is low, and subsequent experiments can 

be tried.  

Grade C: The PCR product is too weak or not detected, and subsequent experiments cannot be 

performed. 
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Table S3.2 Detailed diversity index values for autumn and winter season water samples. 

Sample ID Reads OTU ace chao1 Shannon Simpson coverage 

AUW01 18640 619 838 837 4.73 0.019 0.989646 

AUW02 18640 686 1194 1034 4.37 0.0419 0.986481 

AUW03 18640 700 1128 981 4.55 0.0354 0.987393 

AUW04 18640 781 1487 1218 4.64 0.0232 0.983423 

AUW05 18640 908 1697 1445 4.84 0.0225 0.980472 

AUW06 18640 931 1855 1521 4.85 0.019 0.979292 

AUW08 18640 811 1462 1233 4.73 0.0192 0.983047 

AUW10 18640 710 1534 1232 4.66 0.0195 0.984174 

AUW12 18640 751 1416 1169 4.32 0.0384 0.984227 

AUW13 18640 949 1628 1383 4.54 0.039 0.980418 

AUW14 18640 937 1738 1529 5.04 0.0146 0.980258 

AUW15 18640 982 1370 1401 5.23 0.0118 0.981921 

AUW16 18640 892 1569 1349 4.45 0.0483 0.981545 

AUW20 18640 891 1826 1475 4.65 0.0269 0.979399 

AUW21 18640 1109 1617 1609 5.11 0.017 0.977843 

WIW01 18640 734 1327 1127 4.54 0.0318 0.984925 

WIW02 18640 564 1095 875 3.46 0.1275 0.987929 

WIW03 18640 696 1195 1017 3.97 0.0869 0.986105 

WIW04 18640 875 1590 1323 4.75 0.0249 0.982082 

WIW05 18640 705 1389 1146 4.15 0.0475 0.984442 

WIW06 18640 999 1788 1487 4.67 0.0394 0.978916 

WIW08 18640 913 1280 1247 4.15 0.083 0.983047 

WIW10 18640 957 1352 1386 4.42 0.0627 0.981652 

WIW12 18640 977 1348 1285 4.94 0.0224 0.982725 

WIW13 18640 1143 1588 1566 5.03 0.0279 0.978916 

WIW14 18640 1049 1543 1605 4.84 0.029 0.978433 

WIW15 18640 965 1451 1444 4.39 0.0508 0.979238 

WIW16 18640 1261 1851 1832 4.58 0.0678 0.973712 

WIW20 18640 1154 1621 1607 5.25 0.0149 0.97838 

WIW21 18640 1292 1839 1807 5.22 0.0194 0.974893 
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Table S3.2 Detailed diversity index values for fecal, wastewater and summer season water 

samples. 

Sample ID Reads OTU ace chao1 Shannon Simpson coverage 

SUW01 18640 763 1269 1118 4.87 0.017 0.985461 

SUW02 18640 905 1843 1598 4.75 0.0215 0.979024 

SUW03 18640 803 1490 1229 4.67 0.0227 0.983101 

SUW04 18640 823 1618 1351 4.64 0.0218 0.981599 

SUW05 18640 798 1448 1199 4.51 0.0288 0.983047 

SUW06 18640 800 1485 1190 4.49 0.0306 0.982833 

SUW08 18640 732 1510 1295 4.42 0.0283 0.982994 

SUW10 18640 700 1355 1104 4.49 0.025 0.984871 

SUW12 18640 703 1355 1063 4.72 0.0178 0.985354 

SUW13 18640 644 1349 1036 4.38 0.0325 0.985891 

SUW14 18640 780 1450 1170 4.72 0.0217 0.983906 

SUW15 18640 1001 1986 1695 4.94 0.0228 0.977629 

SUW16 18640 994 1731 1447 5 0.0216 0.979936 

SUW20 18640 930 1885 1558 4.6 0.033 0.97838 

SUW21 18640 875 1573 1285 4.66 0.0254 0.981545 

CK1 18640 363 486 461 3.44 0.0608 0.993884 

CK2 18640 371 522 490 3.42 0.0647 0.99324 

CW1 18640 646 707 708 5.13 0.0156 0.994957 

CW2 18640 608 663 666 5.12 0.0144 0.995279 

DG1 18640 147 218 189 3.3 0.0614 0.998069 

DG2 18640 138 168 185 3.34 0.0601 0.998337 

DU1 18640 220 287 296 3.05 0.1028 0.996674 

DU2 18640 238 370 324 3.24 0.0816 0.996191 

GO1 18640 450 561 580 4.16 0.0324 0.993509 

GO2 18640 418 528 546 4.09 0.0342 0.993777 

HU1 18640 223 274 284 2.97 0.1533 0.997264 

HU2 18640 224 263 295 3.52 0.0781 0.997586 

PG1 18640 556 628 626 4.38 0.0349 0.994528 

PG2 18640 640 742 770 4.39 0.0388 0.992436 

WW1 18640 1186 1459 1490 5.56 0.011 0.982725 

WW2 18640 1174 1429 1433 5.61 0.0108 0.983906 
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Table S3.3 Relative abundance of important bacterial genera (most abundant, fecal or potential pathogenic) observed in Tiaoxi River water samples.  

Taxon AUW01 AUW02 AUW03 AUW04 AUW05 AUW06 AUW08 AUW10 AUW12 AUW13 AUW14 AUW15 AUW16 AUW20 AUW21 

Acinetobacter 0.003 0.022 0.004 0.057 0.032 0.019 0.034 0.003 0.014 0.005 0.000 0.015 0.047 0.074 0.051 

Aeromonas 0.003 0.022 0.034 0.042 0.062 0.014 0.013 0.003 0.014 0.000 0.000 0.011 0.065 0.014 0.077 

Arcobacter 0.000 0.011 0.008 0.042 0.158 0.139 0.008 0.006 0.018 0.005 0.000 0.000 0.759 0.014 0.000 

Bacteroides 0.000 0.000 0.000 0.042 2.403 1.401 0.382 0.112 0.121 0.381 0.042 0.228 0.307 0.000 0.003 

Bifidobacterium 0.000 0.000 0.000 0.004 0.037 0.053 0.013 0.000 0.000 0.014 0.000 0.004 0.000 0.000 0.000 

Blautia 0.000 0.000 0.000 0.000 0.072 0.086 0.013 0.003 0.004 0.010 0.004 0.011 0.007 0.000 0.000 

Brevundimonas 0.000 0.000 0.000 0.000 0.003 0.024 0.017 0.003 0.000 0.014 0.084 0.106 0.007 0.004 0.003 

CL500-29_marine_group 5.405 14.087 7.488 11.115 3.586 4.971 7.162 5.438 20.898 3.782 4.312 2.418 4.105 5.179 8.159 

Clostridium_sensu_stricto_1 0.003 0.000 0.000 0.008 0.011 0.024 0.004 0.010 0.007 0.010 0.013 0.015 0.018 0.021 0.029 

Comamonadaceae_unclassified 5.278 4.072 3.672 9.513 8.168 8.102 10.081 9.990 3.645 4.096 5.367 3.804 8.889 3.290 3.133 

Corynebacterium_1 0.000 0.000 0.000 0.000 0.003 0.000 0.004 0.000 0.000 0.000 0.000 0.008 0.000 0.000 0.000 

Cyanobacteria_norank 8.442 10.999 12.241 11.414 14.839 11.974 7.275 2.820 19.037 29.487 10.974 9.305 21.528 3.870 1.825 

Dechloromonas 0.003 0.026 0.017 0.379 0.335 0.139 0.021 0.038 0.068 0.033 0.017 0.049 0.723 0.035 0.170 

Dorea 0.000 0.000 0.000 0.000 0.048 0.019 0.004 0.000 0.000 0.005 0.000 0.008 0.000 0.000 0.000 

Enterococcus 0.000 0.000 0.000 0.000 0.051 0.053 0.038 0.013 0.007 0.000 0.000 0.038 0.000 0.081 0.064 

Escherichia-Shigella 0.000 0.007 0.000 0.015 0.407 0.196 0.088 0.032 0.029 0.090 0.004 0.046 0.361 0.000 0.013 

Faecalibacterium 0.000 0.000 0.004 0.000 0.005 0.019 0.000 0.000 0.000 0.000 0.000 0.008 0.011 0.000 0.000 

Flavobacterium 0.499 0.453 0.959 0.103 0.171 0.330 0.470 0.757 0.089 0.504 3.251 5.668 0.614 9.417 3.095 

Fluviicola 0.488 0.281 1.649 2.615 0.731 0.784 1.168 3.388 1.300 0.452 0.897 0.873 1.098 3.884 2.245 

hgcI_clade 12.330 14.397 23.254 16.411 10.268 12.868 11.615 11.635 15.121 12.677 11.393 5.797 21.365 18.449 14.436 

Lactobacillus 0.000 0.000 0.000 0.004 0.016 0.010 0.000 0.000 0.011 0.005 0.000 0.011 0.007 0.000 0.013 

Macellibacteroides 0.000 0.004 0.000 0.004 0.027 0.005 0.000 0.000 0.000 0.005 0.000 0.000 0.043 0.000 0.000 

Microcystis 0.904 0.004 0.013 0.004 0.000 0.000 0.000 0.003 0.257 1.475 1.500 0.847 0.842 0.046 0.000 

Prevotella_9 0.000 0.000 0.000 0.015 0.083 0.014 0.000 0.003 0.007 0.005 0.004 0.000 0.271 0.011 0.006 

Pseudobutyrivibrio 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Roseburia 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Sediminibacterium 1.733 1.250 1.632 1.063 1.504 2.643 3.550 5.450 0.121 1.346 2.187 2.802 0.177 0.794 1.539 

Sporichthyaceae_unclassified 7.100 3.960 6.773 6.833 4.608 5.989 6.876 8.200 1.428 3.953 7.106 5.030 1.257 8.343 7.806 

Streptococcus 0.000 0.000 0.000 0.004 0.013 0.033 0.025 0.000 0.004 0.000 0.004 0.004 0.004 0.000 0.000 

Turicibacter 0.003 0.000 0.000 0.000 0.005 0.000 0.004 0.006 0.004 0.005 0.000 0.004 0.000 0.000 0.003 

Weissella 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 
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Table S3.3 Relative abundance of important bacterial genera (most abundant, fecal or potential pathogenic) observed in Tiaoxi River water samples.  

Taxon WIW01 WIW02 WIW03 WIW04 WIW05 WIW06 WIW08 WIW10 WIW12 WIW13 WIW14 WIW15 WIW16 WIW20 WIW21 

Acinetobacter 0.021 0.096 0.134 0.125 0.074 0.049 0.017 0.036 0.025 0.028 0.062 0.172 0.051 0.010 0.093 

Aeromonas 0.009 0.008 0.018 0.164 1.334 0.066 0.004 0.004 0.057 0.049 0.204 0.159 0.051 0.020 0.075 

Arcobacter 0.027 0.019 0.014 0.210 0.283 0.027 0.004 0.011 0.035 0.017 0.065 0.045 0.159 0.027 0.117 

Bacteroides 0.003 2.669 2.339 1.134 0.129 0.668 0.265 0.167 0.076 0.003 0.023 0.026 0.040 0.000 0.145 

Bifidobacterium 0.000 0.077 0.049 0.036 0.005 0.013 0.004 0.004 0.000 0.000 0.004 0.000 0.004 0.000 0.005 

Blautia 0.000 0.108 0.113 0.029 0.000 0.018 0.000 0.022 0.005 0.000 0.004 0.003 0.004 0.000 0.009 

Brevundimonas 3.968 0.181 0.367 0.285 0.035 0.062 0.058 0.040 0.248 0.073 0.246 0.019 0.438 0.010 0.154 

CL500-29_marine_group 1.754 0.050 0.092 0.699 0.729 0.708 0.682 1.196 0.997 1.749 0.892 1.494 0.152 0.372 0.462 

Clostridium_sensu_stricto_1 0.000 0.054 0.049 0.029 0.020 0.053 0.000 0.022 0.003 0.035 0.012 0.006 0.022 0.060 0.028 

Comamonadaceae_unclassified 13.345 0.861 2.844 12.648 18.488 6.527 6.531 5.629 21.956 6.724 17.684 14.633 15.790 10.780 11.656 

Corynebacterium_1 0.003 0.015 0.007 0.000 0.000 0.004 0.000 0.000 0.000 0.003 0.004 0.000 0.000 0.000 0.000 

Cyanobacteria_norank 2.095 34.286 31.842 23.913 14.487 23.509 29.727 28.183 5.419 17.512 13.503 20.621 26.393 1.456 9.667 

Dechloromonas 0.012 0.000 0.007 0.107 0.228 0.093 0.062 0.051 0.076 0.073 0.150 0.208 0.300 0.402 0.173 

Dorea 0.000 0.065 0.042 0.011 0.005 0.004 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.005 

Enterococcus 0.012 0.285 0.402 0.128 0.045 0.124 0.058 0.033 0.033 0.003 0.046 0.097 0.004 0.000 0.019 

Escherichia-Shigella 0.009 0.635 0.529 0.235 0.040 0.111 0.054 0.025 0.027 0.003 0.027 0.003 0.011 0.007 0.051 

Faecalibacterium 0.000 0.038 0.028 0.014 0.000 0.013 0.000 0.000 0.000 0.003 0.000 0.003 0.007 0.000 0.005 

Flavobacterium 1.883 0.104 0.000 4.865 20.337 3.796 2.126 2.239 4.051 2.524 4.209 3.184 2.290 2.233 3.091 

Fluviicola 5.749 0.761 2.212 1.320 0.550 1.872 0.782 1.221 1.008 1.257 1.246 0.939 0.785 0.670 1.401 

hgcI_clade 5.173 0.400 0.466 2.665 1.919 2.341 2.755 3.180 2.863 6.379 4.824 4.461 2.749 7.978 3.806 

Lactobacillus 0.003 0.027 0.028 0.021 0.005 0.009 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.014 

Macellibacteroides 0.000 0.000 0.000 0.011 0.045 0.004 0.004 0.015 0.005 0.000 0.008 0.003 0.022 0.000 0.009 

Microcystis 1.022 0.462 2.812 2.172 0.015 0.018 0.004 0.004 0.188 0.031 0.919 1.046 0.832 0.285 2.601 

Prevotella_9 0.003 0.015 0.000 0.064 0.020 0.022 0.000 0.004 0.005 0.000 0.092 0.023 0.051 0.000 0.047 

Pseudobutyrivibrio 0.000 0.004 0.004 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.004 0.000 0.005 

Roseburia 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Sediminibacterium 0.066 0.000 0.007 0.121 0.213 0.642 0.418 0.472 0.264 0.698 0.246 0.305 0.130 0.686 0.280 

Sporichthyaceae_unclassified 3.413 0.065 0.123 2.037 1.780 3.704 3.739 4.223 5.779 5.610 3.993 5.305 3.031 8.443 4.236 

Streptococcus 0.000 0.115 0.155 0.039 0.005 0.018 0.000 0.000 0.005 0.000 0.000 0.000 0.007 0.000 0.000 

Turicibacter 0.003 0.027 0.021 0.021 0.005 0.004 0.008 0.004 0.005 0.000 0.000 0.003 0.000 0.007 0.000 

Weissella 0.000 0.004 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Table S3.3 Relative abundance of important bacterial genera (most abundant, fecal or potential pathogenic) observed in Tiaoxi River water samples. 

Taxon SUW01 SUW02 SUW03 SUW04 SUW05 SUW06 SUW08 SUW10 SUW12 SUW13 SUW14 SUW15 SUW16 SUW20 SUW21 

Acinetobacter 0.006 0.302 0.013 0.005 0.025 0.040 0.099 0.099 0.051 0.077 0.027 0.081 0.056 0.019 0.009 

Aeromonas 0.021 0.033 0.118 0.073 0.094 0.020 0.052 0.084 0.319 0.077 0.023 0.044 0.192 0.023 0.018 

Arcobacter 0.058 0.185 0.217 0.462 0.253 0.012 0.016 0.023 1.362 0.230 0.019 0.031 0.424 0.000 0.021 

Bacteroides 0.064 0.062 0.099 0.123 0.076 0.032 0.004 0.000 0.119 0.040 0.016 0.068 0.081 0.109 0.045 

Bifidobacterium 0.000 0.003 0.006 0.000 0.000 0.000 0.000 0.000 0.014 0.003 0.000 0.000 0.006 0.027 0.006 

Blautia 0.000 0.007 0.003 0.000 0.000 0.004 0.000 0.000 0.000 0.003 0.000 0.010 0.017 0.008 0.000 

Brevundimonas 0.006 0.007 0.006 0.005 0.004 0.004 0.008 0.005 0.007 0.003 0.000 0.010 0.008 0.000 0.003 

CL500-29_marine_group 3.428 13.904 4.695 3.346 2.328 5.146 4.079 12.823 8.531 10.194 8.568 8.808 8.559 4.040 2.205 

Clostridium_sensu_stricto_1 0.006 0.010 0.000 0.041 0.014 0.008 0.012 0.000 0.003 0.000 0.012 0.020 0.006 0.016 0.021 

Comamonadaceae_unclassified 13.482 13.351 16.794 17.515 30.012 17.424 22.663 18.233 11.741 9.215 7.203 7.499 7.930 4.714 5.864 

Corynebacterium_1 0.000 0.003 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.003 0.004 0.000 

Cyanobacteria_norank 9.793 3.173 0.927 1.056 0.851 1.814 1.483 1.056 0.414 1.255 6.153 3.946 5.191 3.532 7.641 

Dechloromonas 1.123 1.151 0.809 1.481 2.154 1.005 1.495 0.915 1.389 0.576 0.202 0.448 1.513 0.066 0.107 

Dorea 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.004 0.000 

Enterococcus 0.006 0.003 0.003 0.005 0.000 0.008 0.000 0.000 0.000 0.000 0.000 0.088 0.011 0.709 0.223 

Escherichia-Shigella 0.030 0.010 0.032 0.018 0.014 0.024 0.004 0.005 0.054 0.010 0.008 0.054 0.042 0.031 0.006 

Faecalibacterium 0.000 0.003 0.006 0.000 0.007 0.000 0.000 0.000 0.003 0.000 0.000 0.003 0.000 0.000 0.003 

Flavobacterium 0.107 0.163 0.230 0.206 0.228 0.388 0.123 0.141 0.282 0.077 0.000 0.044 0.170 0.101 0.369 

Fluviicola 2.709 0.254 0.432 0.379 0.463 0.553 0.227 0.225 1.399 0.999 0.953 0.410 1.683 0.733 1.094 

hgcI_clade 13.741 14.225 15.626 13.474 8.506 22.510 16.806 11.843 14.169 24.513 20.909 21.439 15.018 27.283 20.209 

Lactobacillus 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.019 0.003 

Macellibacteroides 0.000 0.013 0.003 0.032 0.022 0.004 0.000 0.000 0.058 0.027 0.004 0.000 0.050 0.004 0.006 

Microcystis 0.356 0.026 0.032 0.023 0.004 0.004 0.000 0.000 0.000 0.003 0.058 0.024 0.011 0.000 0.042 

Prevotella_9 0.003 0.023 0.080 0.032 0.011 0.016 0.004 0.000 0.082 0.010 0.008 0.003 0.045 0.012 0.006 

Pseudobutyrivibrio 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.006 0.004 0.000 

Roseburia 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Sediminibacterium 1.017 1.876 2.757 2.646 2.559 2.559 1.964 1.839 1.841 2.377 1.159 0.590 0.396 1.904 2.178 

Sporichthyaceae_unclassified 4.125 5.718 5.987 7.322 6.921 7.781 6.318 7.263 9.139 10.048 8.564 7.713 4.369 11.491 9.186 

Streptococcus 0.003 0.000 0.000 0.000 0.000 0.004 0.000 0.005 0.010 0.000 0.004 0.007 0.014 0.000 0.000 

Turicibacter 0.000 0.003 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.004 0.000 

Weissella 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Table S3.3 Relative abundance of important bacterial genera (most abundant, fecal or potential pathogenic) observed in fecal and wastewater samples. 

Taxon CK_1 CK_2 CW_1 CW_2 DG_1 DG_2 DU_1 DU_2 GO_1 GO_2 HU_1 HU_2 PG_1 PG_2 WW_1 WW_2 

Acinetobacter 0.094 0.275 0.038 0.000 0.029 0.009 4.294 18.764 3.357 2.516 0.003 0.000 0.000 0.006 0.444 0.713 

Aeromonas 0.000 0.000 0.000 0.000 0.006 0.003 0.000 0.000 0.025 0.016 0.007 0.007 0.000 0.003 1.057 1.418 

Arcobacter 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 2.060 2.302 0.000 0.000 0.000 0.000 3.636 4.962 

Bacteroides 0.114 0.415 2.375 3.259 14.261 11.038 0.034 0.023 8.681 7.602 2.105 2.699 0.160 0.231 1.271 1.604 

Bifidobacterium 0.038 0.033 0.015 0.000 0.586 0.664 0.038 0.051 0.003 0.005 1.222 1.713 0.020 0.044 0.012 0.004 

Blautia 0.080 0.033 0.030 0.024 11.913 12.101 0.004 0.009 0.003 0.000 2.938 5.251 0.210 0.272 0.003 0.023 

Brevundimonas 0.264 0.173 0.000 0.000 0.000 0.000 0.008 0.005 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

CL500-29_marine_group 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.008 

Clostridium_sensu_stricto_1 5.703 3.383 1.684 1.402 2.206 2.613 0.011 0.023 0.092 0.102 0.281 0.425 13.557 14.928 0.015 0.011 

Comamonadaceae_unclassified 1.100 0.748 0.004 0.003 0.000 0.000 0.241 0.138 0.633 0.612 0.000 0.000 0.005 0.003 2.763 2.691 

Corynebacterium_1 0.062 0.132 0.169 0.106 0.006 0.000 0.124 0.777 3.523 3.036 0.000 0.000 0.150 0.219 0.003 0.000 

Cyanobacteria_norank 1.270 4.172 0.068 0.000 0.006 0.000 0.320 0.391 0.184 0.177 0.036 0.018 0.005 2.610 1.385 0.568 

Dechloromonas 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.018 0.016 0.000 0.000 0.000 0.000 5.802 5.660 

Dorea 0.003 0.008 0.143 0.112 0.006 0.000 0.000 0.000 0.000 0.005 0.598 1.198 0.050 0.066 0.009 0.008 

Enterococcus 4.905 2.610 0.474 0.009 2.354 2.355 5.224 4.016 3.923 4.458 0.271 0.079 0.010 0.031 0.012 0.000 

Escherichia-Shigella 9.165 6.486 0.045 0.024 0.386 0.572 1.404 1.021 0.135 0.113 0.775 1.101 0.145 0.353 0.129 0.137 

Faecalibacterium 0.073 0.045 0.008 0.006 0.229 0.327 0.004 0.005 0.015 0.016 2.958 3.444 0.085 0.053 0.055 0.034 

Flavobacterium 0.146 0.107 0.000 0.000 0.000 0.003 0.478 0.446 1.144 1.030 0.000 0.000 0.000 0.003 0.144 0.133 

Fluviicola 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.019 

hgcI_clade 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 

Lactobacillus 42.559 56.131 0.026 0.006 22.158 15.667 0.930 4.182 15.005 12.275 0.007 0.004 10.366 14.179 0.031 0.027 

Macellibacteroides 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 1.153 1.271 0.000 0.000 0.000 0.000 1.161 1.433 

Microcystis 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 

Prevotella_9 0.000 0.012 0.000 0.003 7.002 12.667 0.000 0.000 0.031 0.011 49.289 32.620 1.111 0.481 0.279 0.316 

Pseudobutyrivibrio 0.000 0.000 0.669 0.745 0.000 0.000 0.000 0.000 0.000 0.005 4.128 6.341 0.135 0.231 0.015 0.004 

Roseburia 0.000 0.000 0.154 0.142 0.000 0.000 0.000 0.000 0.000 0.000 1.817 2.991 0.010 0.037 0.003 0.004 

Sporichthyaceae_unclassified 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 

Streptococcus 0.354 0.156 0.004 0.003 2.841 3.437 0.222 0.253 2.469 2.854 0.206 0.320 9.955 10.797 0.012 0.008 

Turicibacter 8.159 5.306 0.395 0.225 0.158 0.151 0.290 0.230 0.098 0.134 0.072 0.122 0.760 0.977 0.003 0.011 

Weissella 0.090 0.115 0.000 0.000 0.000 0.000 0.060 0.051 4.593 4.405 0.029 0.014 0.005 0.000 0.000 0.000 
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Table S3.4 Number of OTUs assigned to fecal associated or potential pathogenic bacteria detected in autumn season water samples using RDP Classifier. 

OTU ID AUW01 AUW02 AUW03 AUW04 AUW05 AUW06 AUW08 AUW10 AUW12 AUW13 AUW14 AUW15 AUW16 AUW20 AUW21 

Arcobacter 

cryaerophilus 

0 1 0 0 12 4 0 0 2 0 0 0 68 1 0 

Bacteroides caccae 0 0 0 0 51 33 7 1 3 12 3 9 2 0 0 

Bacteroides 

graminisolvens 

0 0 0 1 3 0 0 1 1 0 0 0 12 0 1 

Bacteroides 

massiliensis 

0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 

Bacteroides nordii 0 0 0 0 17 12 8 1 1 1 1 2 0 0 0 

Bacteroides 

paurosaccharolyticus 

0 0 0 1 2 0 0 0 0 0 0 0 1 0 0 

Bacteroides plebeius 0 0 0 0 6 5 1 0 1 1 0 2 7 0 0 

Bacteroides 

propionicifaciens 

0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 

Bacteroides stercoris 0 0 0 2 7 4 0 0 1 1 0 1 2 0 0 

Brevundimonas 

vesicularis 

0 0 0 0 1 3 2 0 0 0 0 1 0 0 0 

Parabacteroides 

merdae 

0 0 0 0 17 6 3 2 1 3 1 2 0 0 0 
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Table S3.4 Number of OTUs assigned to fecal associated or potential pathogenic bacteria detected in winter season water samples using RDP Classifier. 

OTU ID WIW01 WIW02 WIW03 WIW04 WIW05 WIW06 WIW08 WIW10 WIW12 WIW13 WIW14 WIW15 WIW16 WIW20 WIW21 

Arcobacter 

cryaerophilus 

0 1 0 5 9 0 0 0 1 1 4 2 10 1 3 

Bacteroides caccae 0 57 51 18 0 14 5 6 0 0 0 1 0 0 4 

Bacteroides 

graminisolvens 

0 1 1 2 2 1 1 0 0 0 1 1 2 0 2 

Bacteroides 

massiliensis 

0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 

Bacteroides nordii 0 26 20 7 0 2 0 4 0 0 0 0 0 0 2 

Bacteroides 

paurosaccharolyticus 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Bacteroides plebeius 0 11 5 6 3 0 2 0 0 0 0 0 1 0 2 

Bacteroides 

propionicifaciens 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Bacteroides stercoris 0 11 4 5 2 2 1 0 1 0 1 2 2 0 5 

Brevundimonas 

vesicularis 

3 3 4 2 0 2 8 6 4 6 2 1 0 0 0 

Parabacteroides 

merdae 

0 21 25 6 1 7 2 1 0 0 0 0 0 0 1 
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Table S3.4 Number of OTUs assigned to fecal associated or potential pathogenic bacteria detected in summer season water samples using RDP Classifier. 

OTU ID SUW01 SUW02 SUW03 SUW04 SUW05 SUW06 SUW08 SUW10 SUW12 SUW13 SUW14 SUW15 SUW16 SUW20 SUW21 

Arcobacter 

cryaerophilus  

2 9 12 17 19 0 0 1 50 21 2 1 27 0 0 

Bacteroides caccae 0 0 2 1 0 1 0 0 0 0 0 1 0 1 0 

Bacteroides 

graminisolvens 

0 1 0 5 5 0 0 0 5 3 1 1 2 0 0 

Bacteroides 

massiliensis 

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 

Bacteroides nordii 0 0 0 0 1 0 1 0 0 0 0 0 0 4 0 

Bacteroides 

paurosaccharolyticus 

0 0 3 1 1 0 0 0 0 1 0 0 1 0 0 

Bacteroides plebeius 1 3 1 2 2 1 0 0 0 1 1 0 1 0 0 

Bacteroides 

propionicifaciens 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Bacteroides stercoris 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 

Brevundimonas 

vesicularis 

0 1 0 1 1 1 0 0 1 1 0 0 1 0 1 

Parabacteroides 

merdae 

1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 

 



 

171 
 

Table S3.4 Number of OTUs assigned to fecal associated or potential pathogenic bacteria detected in fecal or wastewater samples using RDP Classifier. 

OTU ID CK1 CK2 CW1 CW2 DG1 DG2 DU1 DU2 GO1 GO2 HU1 HU2 PG1 PG2 WW1 WW2 

Arcobacter 

cryaerophilus 

0 0 0 0 0 0 0 0 402 429 0 0 0 0 412 552 

Bacteroides caccae 1 7 0 0 0 0 1 0 5 1 11 14 0 5 0 1 

Bacteroides 

graminisolvens 

0 0 0 0 0 0 0 0 1052 926 0 0 0 0 129 179 

Bacteroides 

massiliensis 

0 0 0 0 3 1 0 0 0 0 3 6 0 0 2 3 

Bacteroides nordii 0 3 0 0 0 0 0 2 4 0 1 0 0 3 1 0 

Bacteroides 

paurosaccharolyticus 

0 0 0 0 0 0 0 0 66 39 0 0 0 0 4 12 

Bacteroides plebeius 0 1 0 0 8 7 0 0 1 8 111 175 0 1 9 7 

Bacteroides 

propionicifaciens 

0 0 0 0 0 0 1 1 153 159 0 0 0 0 0 0 

Bacteroides stercoris 1 0 0 0 185 193 0 0 0 0 22 16 0 1 15 6 

Brevundimonas 

vesicularis 

3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Parabacteroides 

merdae 

7 4 0 1 1 0 0 0 2 0 10 21 0 2 4 2 
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Supplementary Note S4.1 Fecal sampling and composite sample preparation: 

Individual pig fecal samples were collected from pig farms located at Changxing Zhicheng 

(N30°59′26.53″; E119°53′24.67″) and Wuxing Daishan (N30°53′24.92″; E120°11′59.15″) 

areas of Zhejiang Province. Individual Dog fecal samples were collected from different pet 

stores located in Hong Qiao (N31°33′45.68″; E120°20′20.19″) of Zhejiang Province. 

Individual chicken, duck and goose samples were collected from poultry farms located at Cao 

Jian Duan Village (N30°54′9.94″; E120°18′40.81″), Baishui (N30°54′19.78″; E119°49′17.86″) 

and Lijiagang (N31°02′18.59″; E119°51′39.48″) areas of Zhejiang province. Individual cow 

fecal samples were collected from slaughterhouses at Changxing Zhicheng (N30°59′26.53″; 

E119°53′24.67″) of Zhejiang Province. Individual human fecal samples were 10 different 

individuals of age 16-40 years. Primary effluents were collected on six different occasions from 

a WWTP located in Suzhou (N31°17′37.54″; E120°34′10.00″), Jiangsu province. For 

preparation of composites for duck and goose samples, approximately 0.5gms of individual 

fecal samples (>11 samples) of a host (Goose or duck) were pooled together to form a 

composite sample of respective host. The composite samples were used for further DNA 

extractions.  
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Figure S4.1 Schematic representation of pMD19 TA cloning vector with restriction sites. Ori: origin 

of replication, AmpR: Ampicillin resistance gene, lacZ: lacZ gene interrupted by T-overhang cloning 

site. 
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Table S4.1 Confirmation for absence of PCR inhibitors in Human fecal samples with BacUni 

assay. 

Samples 
Ct value for 1:10 

dilution 

Ct value for 1:100 

dilution 

Coefficient of 

variation (CV) % 

H-1 18.32 22.30 0.41 

H-2 18.53 21.99 0.16 

H-3 17.84 22.04 0.52 

H-4 23.31 27.69 0.59 

H-5 16.04 20.02 0.41 

H-6 10.44 14.20 0.31 

H-7 13.41 17.27 0.36 

H-8 10.62 14.38 0.31 

H-9 12.26 16.29 0.44 

H-10 20.56 23.98 0.14 

 

 

Table S4.2. The detailed performance characteristics (range) of all the qPCR assays. 

Assay Slope R2 value Efficiency (%) 

BacUni -3.2 to -3.32 0.996 to 0.997 100.0 to 105.8 

GenBac -3.26 to - 3.27 0.994 to 0.996 101.8 to 102.4 

HF183 Taqman -3.32 to -3.35 0.996 to 0.999 98.16 to 99.7 

BacHum -3.25 to -3.29 0.994 to 0.998 101 to 103.9 

HF183 SYBR -3.26 to -3.30 0.997 to 0.999 100.7 to 102.3 

Hum2 -3.22 to -3.36 0.994 to 0.996 98.4 to 105 

Pig-2-Bac -3.27 to -3.35 0.997 to 0.998 98.5 to 102 

BacCow -3.31 to -3.42 0.995 to 0.997 95.9 to 100.3 

AV4143 -3.5 to -3.56 0.99 to 0.998 91.1 to 93.3 

GFD -3.27 to 3.44 0.997 to 0.999 95.2 to 102 
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Fig.S4.1A Standardized master standard curve for MST assays: Universal Bacteroidales (BacUni, GenBac3), Human associated (BacHum, HF183 Taq) assays 
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Fig.S4.1B Standardized master standard curve for MST assays: Human (HF183 SYBR, Hum2), swine (Pig-2-Bac) and livestock associated (BacCow) assays
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Fig.S4.1C Standardized master standard curve for Avian AV4143 MST assays. 

 

 

 

Fig.S4.1D Standardized master standard curve for Avian GFD MST assays. 
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Table S4.3A Normalized qPCR results for BacUni assay: 

Sample-ID Ct value Quantity  Dilution Quantity (GC/ng) 

  (Raw data)  (normalized) 

HF-1 17.87 9969989 10.32 966084.2 

HF-2 18.53 6123175 11.68 524244.4 

HF-3 17.62 11965760 6.4 1869650 

HF-4 23.19 202054.6 2.44 82809.25 

HF-5 16.04 37966246 8.2 4630030 

HF-6 10.44 2.30E+09 61.6 37323397 

HF-7 13.41 2.60E+08 10.92 23844304 

HF-8 10.62 2.01E+09 59.16 33949307 

HF-9 12.26 6.06E+08 53.8 11263160 

HF-10 20.56 1381838 4.24 325905.2 

   Mean 9.11E+06 

   Mean Log10 6.959518 

Sew-1 16.48 27592901 97.2 283877.6 

Sew-2 16.33 30658296 103.64 295815.3 

Sew-3 16.27 32097229 125.52 255714.1 

Sew-4 15.88 42806989 130.2 328778.7 

Sew-5 17.51 12923909 103.88 124411.9 

   Mean 230696 

   Mean Log10 5.363 

     

Dg-1 19.88 2279801 5.8 393069.2 

Dg-2 25.6 34524.9 4.4 7846.567 

Dg-3 28.1 5559.593 1.28 4343.432 

Dg-4 19.54 2915760 8.96 325419.7 

Dg-5 23.81 127945.7 5.12 24989.4 

Dg-6 23.14 209987.2 3.6 58329.78 

Dg-7 24.53 76039.6 2.36 32220.17 

Dg-8 24.54 75469.66 7.56 9982.759 

Dg-9 24.1 103469 5.8 17839.48 

Dg-10 23.02 228438 2.68 85238.04 

   Mean 17782.79 

   Mean Log10 4.25 
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Table S4.3A Normalized qPCR results for BacUni assay: 

Sample-ID Ct value Quantity  Dilution Quantity (GC/ng) 
  (Raw data)  (normalized) 

Pg-1 23.53209 157324.1 6.56 23982.34 

Pg-2 20.36221 1602571 7.64 209760.6 

Pg-3 19.43734 3154466 13.44 234707.3 

Pg-4 18.91039 4639765 16.92 274217.8 

Pg-5 20.12624 1904828 8.84 215478.2 

Pg-6 19.35824 3342564 10.68 312974.1 

Pg-7 19.25645 3601214 13.92 258707.9 

Pg-8 17.50967 12939722 16.48 785177.3 

Pg-9 18.70834 5379574 10.92 492635 

Pg-10 20.187 1821940 8.48 214851.4 
   Mean 245924 
   Mean Log10 5.3908 
     

Cw-1 18.50 6248728 8.56 729991.6 

Cw-2 17.72 11093013 12.96 855942.4 

Cw-3 17.99 9104505 11.12 818750.4 

Cw-4 18.91 4648436 10.84 428822.5 

Cw-5 18.86 4825872 6.76 713886.3 

Cw-6 18.71 5368124 10.88 493393.7 

Cw-7 18.07 8599842 7.72 1113969 

Cw-8 17.50 13001359 12.32 1055305 

Cw-9 19.75 2515858 5.92 424976 

Cw-10 19.46 3109837 8.88 350206.8 
   Mean 302249.2 
   Mean Log10 5.393651 
     

Ck-1 30.93 697.761 3.68 189.609 

Ck-2 26.74 15052.39 2.2 6841.994 

Ck-3 26.58 16904.49 4 4226.122 

Ck-4 31.29 536.1745 2.8 191.4909 

Ck-5 29.90 1489.379 1.68 886.5351 

Ck-6 29.39 2154.077 1.6 1346.298 

Ck-7 30.76 790.3176 3.88 203.6901 

Ck-8 23.37 177101.5 2.6 68115.98 

Ck-9 28.12 5478.404 9.28 590.3453 

Ck-10 29.44 2077.827 2.04 1018.543 
   Mean 7274.3 
   Mean Log10 3.8618 

 

 

 



 

180 
 

Table S4.3A Normalized qPCR results for BacUni assay: 

Sample-ID Ct value Quantity  Dilution Quantity (GC/ng) 

  (Raw data)  (normalized) 

Go-1 17.85 10106566 13.04 775043.4 

Go-2 18.25 7500891 9.12 822466.1 

Go-3 18.3 7279173 17.28 421248.4 

   Mean 672919.3 

   Mean Log10 5.827963 

     

Du-1 24.38 84725.53 2.96 28623.49 

Du-2 23.98 113569.4 25.48 4457.199 

Du-3 23.97 114232.5 6.4 17848.82 

   Mean 16976.5 

   Mean Log10 4.229848 

 

Table S4.3B Normalized qPCR results for GenBac3 assay: 

Sample-ID Ct value Quantity  Dilution Quantity (GC/ng) 
  (Raw data)  (normalized) 

HF-1 19.91672 993845.6 10.32 91962.77 

HF-2 20.42835 729737.9 11.68 56815.46 

HF-3 20.28812 830992.7 6.4 114371.8 

HF-4 25.6144 18787.86 2.44 7236.282 

HF-5 19.17645 1748803 8.2 194221.3 

HF-6 12.56791 1.69E+08 61.6 2627521 

HF-7 16.1425 17707214 10.92 1217028 

HF-8 12.80404 1.54E+08 59.16 2319451 

HF-9 15.15588 29066762 53.8 492465.5 

HF-10 22.70599 130151.3 4.24 31829.11 
   Mean 715290.2 
   Mean Log10 5.91 
     

Sew-1 19.26651 1738526 97.2 15384.86 

Sew-2 19.28086 1943105 103.64 14284.89 

Sew-3 19.22315 1653461 125.52 12280.49 

Sew-4 19.22266 1618692 130.2 11843.12 

Sew-5 19.25615 1647356 103.88 14500.27 
   Mean 13658.73 
   Mean Log10 4.19 
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Table S4.3B Normalized qPCR results for GenBac3 assay: 

Sample-ID Ct value Quantity  Dilution Quantity (GC/ng) 
  (Raw data)  (normalized) 

PI-1 25.25697 23449.9 6.56 3455.847 

PI-2 22.33795 184647.1 7.64 22849.19 

PI-3 21.46402 387859.2 13.44 23931.97 

PI-4 20.95633 546898.1 16.92 27112.02 

PI-5 22.4407 173693.9 8.84 18378.35 

PI-6 21.27174 351325.8 10.68 34451.05 

PI-7 21.22514 470261.6 13.92 27307.78 

PI-8 19.97712 1040931 16.48 55206.83 

PI-9 20.98568 518555.9 10.92 41155.26 

PI-10 22.25741 190745.1 8.48 21778.57 
   Mean 27562.69 
   Mean Log10 4.440322 
     

CK-1 30.87891 620.6648 3.68 120.8449 

CK-2 28.64624 2449.321 2.2 963.1974 

CK-3 28.96644 1784.459 4 423.4798 

CK-4 30.83603 483.5309 2.8 163.659 

CK-5 30.40692 718.2353 1.68 368.2226 

CK-6 30.26552 738.4081 1.6 426.8157 

CK-7 30.41188 598.7581 3.88 158.8842 

CK-8 26.35772 10165.37 2.6 4038.189 

CK-9 29.80449 1069.376 9.28 101.5844 

CK-10 30.21149 841.5911 2.04 347.6488 
   Mean 711.2526 
   Mean Log10 2.852024 
     

Cw-1 19.88041 3287283 8.56 113722.5 

Cw-2 19.80479 3486195 12.96 79191.78 

Cw-3 20.37262 2269026 11.12 62048.41 

Cw-4 21.10569 1304987 10.84 38121.79 

Cw-5 20.84742 1584392 6.76 73230.29 

Cw-6 20.54687 1993179 10.88 56141.87 

Cw-7 20.79168 1667789 7.72 66672.86 

Cw-8 20.39838 2228350 12.32 55004.73 

Cw-9 21.55309 932113 5.92 51051.24 

Cw-10 21.46426 999421.4 8.88 36215.28 
   Mean 63140.08 
   Mean Log10 4.800305 
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Table S4.3B Normalized qPCR results for GenBac3 assay: 

Sample-ID Ct value Quantity  Dilution Quantity (GC/ng) 

  (Raw data)  (normalized) 

Dg-1 22.80296 362309.6 5.8 21742.72 

Dg-2 28.16595 6331.176 4.4 673.8274 

Dg-3 28.71439 4188.899 1.28 1578.442 

Dg-4 22.7716 372569.6 8.96 14386.59 

Dg-5 25.82025 37204.78 5.12 2986.217 

Dg-6 25.82508 37040.29 3.6 4232.734 

Dg-7 26.20794 27743.21 2.36 4940.113 

Dg-8 24.61798 92351.22 7.56 4688.106 

Dg-9 26.15587 28885.99 5.8 2084.658 

Dg-10 25.10013 63994.72 2.68 9439.658 

   Mean 6675.307 

   Mean Log10 3.824471 
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Table S4.4A Normalized qPCR results for HF183Taqman assay: 

Sample-ID Ct value Quantity  Dilution Quantity (GC/ng) 
  (Raw data)  (normalized) 

H-1 27.70961 4457.197 10.32 431.8989 

H-2 36.67342 10.25684 11.68 0.878154 

H-3 Undetermined 0 6.4 0 

H-4 27.4856 5187.858 2.44 2126.171 

H-5 32.06174 233.4698 8.2 28.47193 

H-6 34.91648 33.73492 61.6  

H-7 21.88154 231347 10.92 21185.62 

H-8 35.6557 20.44224 59.16  

H-9 15.60139 16312183 53.8 303200.4 

H-10 25.9325 14861.6 4.24 3505.094 

   Mean 33047.86 

   Mean Log10 4.519143 

R-1 23.98239 55716.37 97.2 573.2136 

R-2 22.94991 112161.1 103.64 1082.218 

R-3 24.51417 38858.05 125.52 309.5765 

R-4 23.76085 64741.58 130.2 497.2471 

R-5 24.71755 33855.17 103.88 325.9065 

   Mean 557.6324 

   Mean Log10 2.746348 

     

PI-1 Undetermined 0 16.4 0 

PI-2 Undetermined 0 19.1 0 

PI-3 Undetermined 0 33.6 0 

PI-4 36.13846 14.73841 42.3 0.348426 

PI-5 36.46095 11.84518 22.1 0.535981 

PI-6 Undetermined 0 26.7 0 

PI-7 Undetermined 0 34.8 0 

PI-8 Undetermined 0 41.2 0 

PI-9 Undetermined 0 27.3 0 

PI-10 Undetermined 0 21.2 0 
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Table S4.4A Normalized qPCR results for HF183Taqman assay: 

Sample-ID Ct value Quantity  Dilution Quantity (GC/ng) 
  (Raw data)  (normalized) 

CK-1 37.98047 4.230075 3.68 1.14 

CK-2 30.94072 499.0518 2.2 226.84 

CK-3 32.26527 203.3906 4 50.84 

CK-4 38.1917 3.665918 2.8 1.30 

CK-5 25.66446 17821.7 1.68 10608 

CK-6 32.90628 131.7291 1.6 82.33 

CK-7   3.88  

CK-8 31.85766 268.0968 2.6 103.11 

CK-9 29.77588 1098.9 9.28 118.41 

CK-10 32.62491 159.4004 2.04 78.13 
   Mean 1402.43 
   Mean Log10 3.22 
     

Dg-1 Undetermined 22.19253 5.8 0 

Dg-2 35.35321 63.77336 4.4 5.70 

Dg-3 34.82946 31.26203 1.28 27.95 

Dg-4 35.96917 23.4196 8.96 1.84 

Dg-6 34.76284 14.37812 5.12 7.31 

Dg-7 Undetermined 24.63728 3.6 0 

Dg-8 34.56477 32.45933 2.36 18.14 

Dg-8 Undetermined 26.54006 7.56 0 

Dg-9 Undetermined 41.589 5.8 0 

Dg-10 Undetermined 17.62012 2.68 0 
   Mean 19.4587 
   Mean Log10 1.289114 
     

Cw-1 Undetermined 0 8.56 0 

Cw-2 Undetermined 0 12.96 0 

Cw-3 Undetermined 0 11.12 0 

Cw-4 34.98201 32.26967 10.84 2.97 

Cw-5 Undetermined 0 6.76 0 

Cw-6 Undetermined 0 10.88 0 

Cw-7 35.694 19.91851 7.72 2.58 

Cw-8 35.39976 24.31366 12.32 1.97 

Cw-9 36.37638 12.54382 5.92 2.11 

Cw-10 35.32625 25.55555 8.88 2.87 
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Table S4.4A Normalized qPCR results for HF183Taqman assay: 

Sample-ID Ct value Quantity  Dilution Quantity (GC/ng) 
  (Raw data)  (normalized) 

Go-1 35.18 28.21799 13.04 2.16 

Go-2 36.38 12.51313 9.12 1.37 

Go-3 35.88 17.55966 17.28 1.01 
     

Du-1 35.99 16.29833 2.96 5.50 

Du-2 35.26 26.72896 25.48 1.04 

Du-3 35.88 17.55966 6.4 2.74 

 

Table S4.4B Normalized qPCR results for BacHum assay: 

Sample-ID Ct value Quantity Dilution Quantity (GC/ng) 
  (Raw data) (normalized) 

H-1 27.56228 6519.678 10.32 631.751 

H-2 36.1857 58.71541 11.68 5.027 

H-3 36.50873 49.21855 6.4 7.690 

H-4 27.14693 8179.909 2.44 3352.42 

H-5 32.00788 575.0819 8.2 70.131 

H-6 31.85858 623.9417 61.6 10.12 

H-7 22.83475 86217.91 10.92 7895.41 

H-8 29.91566 1803.043 59.16 30.47 

H-9 15.67388 4306813 53.8 80052.28 

H-10 25.9734 15527.77 4.24 3662.20 
   Mean 9571.75 
   Mean Log10 3.980 

R-1 24.70478 31047.46 97.2 319.4183 

R-2 24.6314 32317.05 103.64 311.8202 

R-3 24.78232 29760.08 125.52 237.0944 

R-4 25.09661 25065.96 130.2 192.5189 

R-5 25.04409 25795.4 103.88 248.3192 
   Mean 261.8342 
   Mean Log10 2.418026 
     

P-1 37.49517 28.71749 16.4 1.751066 

P-2 36.68573 44.68326 19.1 2.339438 

P-3 37.2166 33.43666 33.6 0.995139 

P-4 38.0034 21.75678 42.3 0.514345 

P-5 Undetermined  22.1 0 

P-6 Undetermined 0 26.7 0 

P-7 Undetermined 0 34.8 0 

P-8 Undetermined 0 41.2 0 

P-9 Undetermined 0 27.3 0 

P-10 Undetermined 0 21.2 0 
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Table S4.4B Normalized qPCR results for BacHum assay: 

Sample-ID Ct value Quantity Dilution Quantity (GC/ng) 
  (Raw data)  (normalized) 

Ck-1 36.1951 58.41487 3.68 15.87361 

Ck-2 31.93817 597.4026 2.2 271.5466 

Ck-3 31.58739 723.5546 4 180.8887 

Ck-4 35.2 100.5912 2.8 35.92543 

Ck-5 33.98239 195.6036 1.68 116.4307 

Ck-6 32.02557 569.5527 1.6 355.9704 

Ck-7   3.88 0 

Ck-8 28.78822 3337.594 2.6 1283.69 

Ck-9 39.53803 9.409763 9.28 1.013983 

Ck-10 30.2127 1533.021 2.04 751.4808 
   Mean 332.994 
   Mean Log10 2.522436 
     

Cw-1 36.10709 61.29122 8.56 7.160189 

Cw-2 34.76732 127.4064 12.96 9.830737 

Cw-3 33.34525 277.0167 11.12 24.91158 

Cw-4 Undetermined 0 10.84 0 

Cw-5 34.64015 136.5705 6.76 20.20273 

Cw-6 33.42395 265.3616 10.88 24.38985 

Cw-7 34.83159 123.0119 7.72 15.93418 

Cw-8 32.74911 383.6293 12.32 31.13874 

Cw-9 32.80243 372.618 5.92 62.94222 

Cw-10 35.01717 111.1543 8.88 12.51738 
   Mean 62.94222 
   Mean Log10 1.798942 
     

Dg-1 35.59 81.29278 5.8 14.016 

Dg-2 34.98 113.4342 4.4 25.7805 

Dg-3 36.35 53.67598 1.28 41.93436 

Dg-4 32.31 487.6048 8.96 54.42018 

Dg-5 35.71 76.13564 5.12 14.87024 

Dg-6 35.85 70.53099 3.6 19.59194 

Dg-7   2.36 0 

Dg-8 34.61 138.8379 7.56 18.3648 

Dg-9 35.69 76.97186 5.8 13.27101 

Dg-10 34.34 160.8985 2.68 60.03675 
   Mean 101.9711 
   Mean Log10 2.084772 
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Table S4.4B Normalized qPCR results for BacHum assay: 

Sample-ID Ct value Quantity Dilution Quantity (GC/ng) 
  (Raw data)  (normalized) 

Go-1 36.78 42.44084 13.04 3.254666 

Go-2 36.79 42.20967 9.12 4.628254 

Go-3 35.25 97.88136 17.28 5.664431 
     

Du-1 36.19 58.57766 2.96 19.78975 

Du-2 34.36 159.1505 25.48 6.246095 

Du-3 35.94 67.14783 6.4 10.49185 

 

 

Table S4.5 Normalized qPCR results for Pig-2-Bac assay: 

Sample-ID Ct value Quantity Dilution Quantity (GC/ng) 
  (Raw data)  (normalized) 

P-1 29.69927 3383.407 16.4 206.3053 

P-2 28.44808 8195.862 19.1 429.1027 

P-3 25.62132 60491.26 33.6 1800.335 

P-4 24.82464 106255.9 42.3 2511.96 

P-5 32.117 612.1661 22.1 27.69983 

P-6 27.62523 14665.33 26.7 549.2633 

P-7 26.14039 41906.97 34.8 1204.223 

P-8 24.97767 95358.09 41.2 2314.517 

P-9 26.46454 33322.67 27.3 1220.611 

P-10 27.62027 14716.86 21.2 694.1914 
   Mean 1095.821 
   Mean Log10 3.03974 

H-1 34.74931 95.1674 10.32 9.221647 

H-2 37.41711 14.42798 11.68 1.235272 

H-3 37.07684 18.35276 6.4 2.867619 

H-4 37.09207 18.15624 2.44 7.441083 

H-5 38.43076 7.045551 8.2 0.859214 

H-6 37.74312 11.45746 61.6 0.185998 

H-7 Undetermined 0 10.92 0 

H-8 38.27981 7.839186 59.16 0.132508 

H-9 38.00023 9.552753 53.8 0.17756 

H-10 38.09177 8.954006 4.24 2.111794 
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Table S4.5 Normalized qPCR results for Pig-2-Bac assay: 

Sample-ID Ct value Quantity Dilution Quantity (GC/ng) 
  (Raw data)  (normalized) 

Cw-1 Undetermined 0 8.56 0 

Cw-2 Undetermined 0 12.96 0 

Cw-3 32.3634 514.2803 11.12 46.24823 

Cw-4 32.2792 545.8303 10.84 56.35335 

Cw-5 36.18755 34.41941 6.76 5.091628 

Cw-6 35.83752 44.08569 10.88 4.051993 

Cw-7 36.12146 36.06614 7.72 4.671779 

Cw-8 35.32595 63.29957 12.32 5.137952 

Cw-9 Undetermined 0 5.92 0 

Cw-10 Undetermined 0 8.88 0 
   Mean 51.30079 
   Mean Log10 1.710124 

Dg-1 39.49083 3.329401 5.8 0.574035 

Dg-2 Undetermined 0 4.4 0 

Dg-3 39.80171 2.672359 1.28 2.087781 

Dg-4 Undetermined 0 8.96 0 

Dg-5 36.0503 37.92738 5.12 7.407692 

Dg-6 38.36295 7.391593 3.6 2.05322 

Dg-7 Undetermined 0 2.36 0 

Dg-8 Undetermined 0 7.56 0 

Dg-9 Undetermined 0 5.8 0 

Dg-10 36.60196 25.67663 2.68 9.580833 
     

Ck-1 Undetermined 0 3.68 0 

Ck-2 Undetermined 0 2.2 0 

Ck-3 Undetermined 0 4 0 

Ck-4 Undetermined 0 2.8 0 

Ck-5 Undetermined 0 1.68 0 

Ck-6 Undetermined 0 1.6 0 

Ck-7 Undetermined 0 3.88 0 

Ck-8 Undetermined 0 2.6 0 

Ck-9 Undetermined 0 9.28 0 

Ck-10 Undetermined 0 2.04 0 
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Table S4.6 Normalized qPCR results for GFD assay: 

Sample-ID Ct value Quantity Dilution Quantity (GC/ng) 
  (Raw data)  (normalized) 

CK-1 28.34796 143.4526 3.68 38.98167 

CK-2 29.13884 82.33183 2.2 37.42356 

CK-3 23.96371 3115.038 4 778.7596 

CK-4 29.44949 66.19879 2.8 23.64242 

CK-5 33.8944 2.921448 1.68 1.738957 

CK-6 31.99987 11.04688 1.6 6.904299 

CK-7 30.56651 30.21847 3.88 7.788266 

CK-8 28.52854 126.3712 2.6 48.60432 

CK-9 27.11831 340.115 9.28 36.65033 

CK-10 27.08161 348.9934 2.04 171.0752 
   Mean 162.1624 
   Mean Log10 2.20995 
     

H-1 29.39362 68.84706 10.32 6.671227 

H-2 33.83386 3.048284 11.68 0.260983 

H-3 34.24408 2.285488 6.4 0.357108 

H-4 32.48035 7.8839 2.44 3.231107 

H-5 Undetermined 0 8.2 0 

H-6 35.55049 0.91339 61.6 0.014828 

H-7 32.97448 5.572884 10.92 0.510337 

H-8 35.22396 1.14872 59.16 0.019417 

H-9 Undetermined 0 53.8 0 

H-10 Undetermined 0 4.24 0 
     

P-1 33.74834 3.236921 16.4 0.197373 

P-2 36.8093 0.377438 19.1 0.019761 

P-3 33.06635 5.224792 33.6 0.1555 

P-4 33.18999 4.790387 42.3 0.113248 

P-5 32.44208 8.098589 22.1 0.366452 

P-6 33.87931 2.952564 26.7 0.110583 

P-7 31.67419 13.88483 34.8 0.398989 

P-8 33.06524 5.228866 41.2 0.126914 

P-9 31.44464 16.31282 27.3 0.597539 

P-10 Undetermined 0 21.2 0 
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Table S4.6 Normalized qPCR results for GFD assay: 

Sample-ID Ct value Quantity Dilution Quantity (GC/ng) 
  (Raw data)  (normalized) 

Cw-1 32.55093 7.502767 8.56  

Cw-2 30.28869 36.72644 12.96  

Cw-3 30.30537 36.29892 11.12  

Cw-4 30.79982 25.65277 10.84  

Cw-5 31.4771 15.9453 6.76  

Cw-6 30.57813 29.97284 10.88  

Cw-7 31.16508 19.85023 7.72  

Cw-8 31.3578 17.33834 12.32  

Cw-9 30.66953 28.11006 5.92  

Cw-10 28.43083 135.3441 8.88 15.24145 
   Mean 15.24145 
   Mean Log10 1.183026 

Dg-1 30.9276 23.45175 5.8  

Dg-2 30.40531 33.83919 4.4  

Dg-3 30.28034 36.94243 1.28 28.86127 

Dg-4 31.11202 20.60374 8.96  

Dg-5 32.46751 7.955313 5.12  

Dg-6 29.6832 66.18141 3.6 18.38373 

Dg-7 30.51287 31.37807 2.36 13.29579 

Dg-8 30.87511 24.33212 7.56  

Dg-9 30.92163 23.55022 5.8  

Dg-10 32.63765 7.059609 2.68  

   Mean 20.76301 
   Mean Log10 1.36165 
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Figure S5.1 Schematic representation of pGEM®-T Easy cloning vector with restriction sites. Ori: 

origin of replication, AmpR: Ampicillin resistance gene, lacZ: lacZ gene interrupted by T-overhang 

cloning site, MCS: Multiple cloning site, T7 promoter: T7 RNA polymerase promoter, SP6 promoter: 

SP6 RNA polymerase promoter.  

Supplementary Note S5.1:  

Pathogenic bacterial gene sequences used for cloning into pGEM easy vector were given 

below (primer/probe sequences were marked in red).  

1. Campylobacter jejuni mapA gene sequence (96bp): 

CAATACCAGTGTCTAAAGTGCGTTTATTGGCACAACATTGAATTCCAACATCGCTAATGT

ATAAAAGCCCTTTAATCTTTGCTTCAAAACCACCAG 

2. Pathogenic Leptospira LipL32 gene sequence (242bp): 

GAACTCCCATTTCAGCGATTACAGCTGGGATCCAAACATAGAGATAGTATGCTTTTTTGT

TTCCGTCGACTAAACCGTCCGGCGCTTGTCCTGGCTTTACATATCCGTAATAGTTGATCAC

AGATCCATAGGGAAGGAACGTTTTTACGGTTTCGTTTGTTCCTGGAACTGTGCTCTCGCTC

AGAACAAAAGAGCTTTTAAGGCTTGGCAAACCACCGAACGCACCACAAGCGGTAATGCT

T 

 



 

192 
 

3. Shigella sp. ipaH gene sequence (117bp): 

AGCGAAAGACTGCTGTCGAAGCTCCGCAGAGGCACTGAGTTTTTCCAGCCATGCAGCGA

CCTGTTCACGGAATCCGGAGGTATTGCGTGCAGAGACGGTATCGGAAAGGCGGTCAAG 

4. E.coli stx2 gene sequence (68bp): 

CAGGCAGATACAGAGAGAATTTCGTCTGGCACTGTCTGAAACTGCTCCTGTTTATACGAT

GACGCCGG 

5. E.coli O157: H7 eae gene sequence (106bp): 

GTAAGTTACACTATAAAAGCACCGTCGTATATGATAAAAGTGGATAAGCAAGCCTATTA

TGCTGATGCTATGTCCATTTGCAAAAATTTATTACCATCCACACAGA 

 

Table S5.1 Standardized qPCR statistics for pathogen quantifications: 

Assay 
Compiled 

Slope 

Compiled 

Y-intercept 

Compiled 

R2 value 

Compiled 

Efficiency 

LOQ 

(cp/µl) 

LOD 

(cp/µl) 

BacUni -3.32 40.3 0.99 100.0 100a - 

HF183 Taqman -3.37 38.7 0.99 99.7 10 a - 

Pig-2-Bac -3.27 41.1 0.99 102 30 a - 

GFD -3.27 36.9 0.99 96 10 a - 

Leptospira 

(LipL32) 
-3.33 40.06 0.99 99.38 10 b 3 b 

Campylobacter 

(mapA) 
-3.22 39.3 0.99 104 10 b 3 b 

Shigella spp. 

(ipaH) 
-3.16 36.9 0.99 100.08 10 b 3 b 

STEC 

(stx2) 
-3.37 33.6 0.99 102. 10 b 3 b 

E.coli O157: H7 

eae 
-3.34 34.7 0.99 98.9 10 b 3 b 

 

LOD: Limit of Detection, LOQ: Limit of Quantification. 

a Based on MST validation study by our group (Unpublished). 

b Based on Oster et al. 2014. 
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Data Processing: 

For MST assays, The Data were classified as quantifiable if two or more replicates were above 

LOD. 

For Pathogens, The Data were classified as quantifiable (Q), detectable but not quantifiable 

(DNQ), and nondetectable (ND). A sample was classified as Q if two or more replicates were 

above the LOQ, DNQ if two or more replicates were between the LOD and LOQ, and ND if 

two or more replicates were below the LOD. 

Table S5.2 GPS coordinates of some of the Pig and Poultry farms at location 13 and 21. 

 Sampling 

Location 

potential 

source/farm type   

Distance from 

sampling location 

Latitude Longitude 

13 Poultry farms <500mts N30°51′45.67″    E120°04′10.66″ 

13 Pig farms <500mts N30°51′44.25″    E120°04′42.14″    

21 Poultry farms <2kms N30°55′39.67″    E119°54′45.23″ 

21 Pig farms <2kms N30°55'21.0"  E119°54'51.8" 

 

Table S5.3 Normalized qPCR results for summer season GFD assay: 

Sample-ID Ct value Quantity (Log10 copies/ gram) 

L-1 31.898 3.375 

L-2 - 0 

L-3 34.504 DNQ 

L-4 34.273 DNQ 

L-5 34.568 DNQ 

L-6 31.766 3.415 

L-8 34.19 DNQ 

L-10 - 0 

L-12 - 0 

L-13 34.012 DNQ 

L-14 34.136 DNQ 

L-15 32.059 3.326 

L-16  0 

L-20 31.127 3.610 

L-21 - 0 
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Figure S5.2 Household backyard poultry farming near Location 6 and 8. 

 

 


