
HAL Id: hal-01657259
https://hal.archives-ouvertes.fr/hal-01657259v2

Submitted on 16 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Usuba, Optimizing & Trustworthy Bitslicing Compiler
Darius Mercadier, Pierre-Évariste Dagand, Lionel Lacassagne, Gilles Muller

To cite this version:
Darius Mercadier, Pierre-Évariste Dagand, Lionel Lacassagne, Gilles Muller. Usuba, Optimizing &
Trustworthy Bitslicing Compiler. WPMVP’18 - Workshop on Programming Models for SIMD/Vector
Processing, Feb 2018, Vienna, Austria. �10.1145/3178433.3178437�. �hal-01657259v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162996206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01657259v2
https://hal.archives-ouvertes.fr

Usuba

Optimizing & Trustworthy Bitslicing Compiler

Darius Mercadier Pierre-Évariste Dagand Lionel Lacassagne Gilles Muller
firstname.name@lip6.fr

Sorbonne Université, CNRS, Inria, LIP6, F-75005 Paris, France

Abstract

Bitslicing is a programming technique commonly used in
cryptography that consists in implementing a combinational
circuit in software. It results in a massively parallel program
immune to cache-timing attacks by design.

However, writing a program in bitsliced form requires ex-
treme minutia. This paper introduces Usuba, a synchronous
dataflow language producing bitsliced C code. Usuba is both
a domain-specific language – providing syntactic support for
the implementation of cryptographic algorithms – as well
as a domain-specific compiler – taking advantage of well-
defined semantics invariants to perform various optimiza-
tions before handing the generated code to an (optimizing)
C compiler.
On the Data Encryption Standard (DES) algorithm, we

show thatUsuba outperforms a reference, hand-tuned imple-
mentation by 15% (using Intel’s 64 bits general-purpose regis-
ters and depending on the underlying C compiler) whilst our
implementation also transparently supports modern SIMD
extensions (SSE, AVX, AVX-512), other architectures (ARM
Neon, IBM Altivec) as well as multicore processors through
an OpenMP backend.

1 Introduction

Most symmetric cryptographic algorithms rely on S-boxes to
implement non-linear (yet reversible) transformations that
obscure the relationship between the key and the cyphertext.
For example, the third S-box of the Serpent cipher [2] takes
4 bits of input and produces 4 bits of output. To implement
this S-box in C, we would typically write:

int SBox3 = { 8, 6, 7, 9, 3, 12, 10, 15,

13, 1, 14, 4, 0, 11, 5, 2 };

int lookup(int index, int[] sbox) {

return sbox[index & 0b1111];

}

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
WPMVP’18 , February 24–28, 2018, Vienna, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5646-6/18/02. . . $15.00
https://doi.org/10.1145/3178433.3178437

For example, on input 0110b = 6d, this function returns the
seventh (note the 0-indexing) element of the table, which is
10d = 1010b.

This implementation suffers from two problems. First, it
wastes register space: a priori, the input will consume a
register of at least 32 bits, leaving 28 bits unused, which
means that the full potential of the CPU is not exploited.
Second, it is vulnerable to cache-timing attacks [5]: due to
cache effects, repeated data-dependent access to a lookup
table can leak information on the data being encrypted.

However, it is possible, for example using Karnaugh maps,
to compute a logical circuit that implements such a function.
The resulting circuit will – by construction – run in constant
time regardless of the inputs. For instance, the third S-box
of Serpent amounts to the following circuit

node sbox (a,b,c,d:bool) return (w,x,y,z:bool)

vars t01,t02,t03,t04,t05,t06,t07,

t08,t09,t10,t11,t12,t13,t14: bool

let

t01 = a | c; t02 = a ^ b; t03 = d ^ t01;

w = t02 ^ t03; t05 = c ^ w; t06 = b ^ t05;

t07 = b | t05; t08 = t01 & t06; t09 = t03 ^ t07;

t10 = t02 | t09; x = t10 ^ t08; t12 = a | d;

t13 = t09 ^ x; t14 = b ^ t13; z = ~t09;

y = t12 ^ t14;

tel

where the four inputs are a, b, c and d, the four outputs are
w, x, y and z, and the remaining variables are temporaries.
Seen as a software artefact, it amounts to a function of type
bool4 → bool4: given an input of 4 Booleans, it computes 4
Booleans corresponding to the output of the S-box. For in-
stance, feeding this circuit with (0, 1, 1, 0) = 0110b = 6d, will
produce the outputs (1, 0, 1, 0) = 1010b = 10d, as before. Here,
only variables of Boolean type are used, but the same pro-
gram could manipulate uint64_t values. Conceptually, this
would amount to executing 64 such circuits in parallel: one
circuit applied to the bits of rank 0 of the registers, another
to the bits of rank 1, etc. This works because only bitwise
operations are used (AND, OR, XOR and NOT), which means
that the bits of each rank of the registers are independently
modified.
Bitslicing consists in reducing an algorithm to bitwise

operations (AND, OR, XOR, NOT, etc.), at which point we can
run the algorithm with bit-level parallelism, viewing a n-bits
register as n 1-bit registers, and a bitwise AND as n-parallel
AND operators. To execute such circuit, the inputs must be

https://doi.org/10.1145/3178433.3178437

WPMVP’18 , February 24–28, 2018, Vienna, Austria Mercadier et al.

converted: the i-th bit of the j-th input become the j-th bit of
the i-th register. This operation amounts to a matrix trans-
position transforming n m-bit inputs intom n-bit registers.

Bitslicing is thus able to increase performance by exploit-
ing data-parallelism, while improving security by disabling
cache-timing attacks. Historically, bitslicing is a manual pro-
cess. For instance, here is a snippet of a bitsliced implemen-
tation of the Data Encryption Standard (DES) by Kwan [17]:

s1 (r31^k[47], r0^k[11], r1^k[26], r2^k[3],

r3^k[13], r4^k[41], &l8, &l16, &l22, &l30);

s2 (r3^k[27], r4^k[6], r5^k[54], r6^k[48],

r7^k[39], r8^k[19], &l12, &l27, &l1, &l17);

s3 (r7^k[53], r8^k[25], r9^k[33], r10^k[34],

r11^k[17], r12^k[5], &l23, &l15, &l29, &l5);

The full implementation consists of hundreds of lines in the
same, tedious style. Debugging and maintaining such code
is hard at best, and optimizing it even more so. Furthermore,
this code shows its age by failing to exploit modern vector
extensions.

Observing that a bitsliced algorithm is fundamentally a cir-
cuit written in software, we designed Usuba, a synchronous
dataflow programming language for implementing circuits
in software. This paper makes the following contributions:

– We have designed Usuba, a synchronous dataflow lan-
guage targeting cryptographical and high-performance
applications. While its syntax and semantics (Section
2) are inspired by Lustre [13], it has been specialized
to address cryptographical needs (lookup tables, per-
mutations, binary tuples, arrays).

– We have implemented a compiler, Usubac, fromUsuba
to C (Section 3). It applies standard dataflow compila-
tion techniques [6] as well as domain-specific trans-
formations, such as handling bitvectors, expanding
permutations and lookup tables.

– We have implemented several optimizations (Section
4). This includes standard transformations such as in-
lining, constant folding, common subexpression elimi-
nation (CSE) and copy propagation, aswell as a domain-
specific instruction scheduling algorithm. The latter
is tailored to handle the unusual structure of our pro-
grams (large number of live variables, absence of con-
trol structures), for which C compilers have a hard
time generating efficient code.

– We evaluate the end-to-end performance of an Usuba
program, namely DES, on several SIMD architectures
and measure the impact of our optimizations (Sec-
tion 5). At equivalent word size, our Usuba imple-
mentation is 15% faster than a functionally-equivalent,
hand-tuned implementation of DES [17]. Besides, the
same Usuba program can also be compiled to manip-
ulate larger wordsizes (such as those offered by the
AVX-512 extensions), yielding a 350% improvement
over the hand-tuned, fixed wordsize implementation.

⟨nd⟩ ::= node f (⟨tv⟩+) returns (⟨tv⟩+)
vars ⟨tv⟩+ let ⟨eqs⟩ tel

⟨tv⟩ ::= x : ⟨typ⟩
⟨typ⟩ ::= bool | ⟨typ⟩[n]
⟨eqs⟩ ::= ⟨eq⟩ | ⟨eqs⟩; ⟨eqs⟩
⟨eq⟩ ::= ⟨lhs⟩ = ⟨expr⟩

| forall i in [⟨aexpr⟩, ⟨aexpr⟩], ⟨eqs⟩
⟨lhs⟩ ::= ⟨var⟩ | (⟨var⟩ ⟨var⟩+)
⟨var⟩ ::= x | x [⟨aexpr⟩+]

| x [⟨aexpr⟩...⟨aexpr⟩]
⟨expr⟩ ::= x | n | (⟨expr⟩⟨expr⟩+)

| ⟨unop⟩⟨expr⟩ | ⟨expr⟩ ⟨binop⟩ ⟨expr⟩
| f(⟨expr⟩+)

⟨unop⟩ ::= ~ ⟨binop⟩ ::= & | | | ^
⟨aexpr⟩ ::= i | n | ⟨aexpr⟩ ⟨abinop⟩ ⟨aexpr⟩
⟨abinop⟩ ::= + | - | / | %

Figure 1. Usuba grammar

Usuba is also trustworthy: we apply translation valida-
tion [21] whereby each run of the compiler is followed by
a verification pass that checks the semantics equivalence
of the source program with the generated code. The same
mechanism can also be used to validate an optimized Usuba
program (provided by the user) with respect to a naiveUsuba
implementation (playing the role of a specification, also pro-
vided by the user). We shall not dwell on these techniques
in the present paper, the description of the formal seman-
tics and the evaluation of the verification framework being
beyond the scope of the workshop.

2 Usuba

Usuba is a synchronous dataflow language akin to a hard-
ware description language (HDL). It enables the concise and
high-level description of software circuits that are then com-
piled into a bitsliced implementation. The benefits of Usuba
are twofold. First and by design, any software circuit spec-
ified in Usuba admits a bitsliced (and therefore efficient)
implementation. Second, the informal description of symmet-
ric cryptographical algorithms (by means of pseudo-circuits,
such as inMenezes et al. [19]) directly translates intoUsuba’s
formalism: as a result, one can effectively reason about and
then run the specification. In this section, we present the
syntax and semantics of Usuba.

2.1 Syntax

An Usuba program is composed of a list of node declarations,
permutations and lookup tables.

Nodes correspond to the encapsulating blocks in circuit
diagrams. A node (Fig. 1, ⟨nd⟩) specifies its input, output and
lexical typed variables as well as a list of equations ⟨eqs⟩.
Types ⟨typ⟩ can be Booleans or arrays of size n (for a fixed
n ∈ N∗, known at compile-time). For convenience, we also

Usuba WPMVP’18 , February 24–28, 2018, Vienna, Austria

plaintext

initial permutation

round 1

. . .

round 16

final permutation

ciphertext

key

roundkey 1

. . .

roundkey 16

. . .

(a) Informal specification [19, p.254]

node des (plaintext: u64, key: u64)

returns (ciphered: u64)

vars des: u64[17], left: u32, right: u32

let

// Initial permutation

des[0] = init_p(plaintext);

// 16 rounds

forall i in [1,16] {

des[i] = des_round(des[i-1], roundkey[i-1](key));

}

// Final permutation

(left,right) = des[16];

ciphered = final_p(right,left)

tel

(b) Usuba implementation

Figure 2. DES encryption algorithm

offer a type un, which (concisely) stands for bool[n]. An
equation ⟨eq⟩ is either a single assignment or a quantified
(but statically bounded) definition of a group of equations.
A formal variable ⟨var⟩ is either the identifier of a variable,
some elements of an array (e.g., x[2, 4, 7] or even x[3])
or a contiguous slice of an array (e.g., x[2..7]). Expressions
⟨expr⟩ are either variables, unsigned integer constants, tu-
ples, unary or binary bitwise operations or node calls. Unary
and binary operators (⟨unop⟩ and ⟨binop⟩) correspond ex-
actly to the corresponding C operators. Arithmetic expres-
sions ⟨aexpr⟩ are evaluated at compile time when a group of
equations (defined by a forall) is unfolded into a sequence
of standard equations. An arithmetic expression is thus ei-
ther an unsigned integer constant, a variable introduced by
an enclosing forall or an arithmetic operation between two
arithmetic expressions.
Figure 2 shows both the textbook description of the DES

encryption algorithm and its (almost literal) translation in
Usuba. DES takes two inputs, a 64 bit block of plaintext and
a 64 bit key, applies an initial permutation (encapsulated in
a node initial_p) to the plaintext, followed by 16 rounds
(encapsulated in a node des_round) that take as input the
round key and the output of the previous round, concluding
with a final permutation (encapsulated in a node final_p)
that produces the ciphertext. An Usuba program can thus be
understood as a merely textual representation of a dataflow
graph.

Permutations are commonly used in cryptographic algo-
rithm to provide diffusion. Usuba offers syntactic support
for declaring permutations. For instance, the initial permuta-
tion of DES amounts to the following declaration specifying
which bit of the input bitvector should be routed to the cor-
responding position of the output bitvector:

perm init_p (input:u64) returns (out:u64) {

58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28,

20, 12, 4, 62, 54, 46, 38, 30, 22, 14, 6, 64, 56,

48, 40, 32, 24, 16, 8, 57, 49, 41, 33, 25, 17, 9,

1 , 59, 51, 43, 35, 27, 19, 11, 3, 61, 53, 45, 37,

29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7 }

The direct bitsliced translation of this permutation is a
function of 64 Boolean inputs and 64 Boolean outputs, which
consists of simple assignments. After copy propagation, a
permutation is thus no more than a (static) renaming of
variables.

Lookup tables are, in particular, used to specify S-boxes.
The first S-box of DES is thus specified by:

table sbox_1 (input:u6) returns (out:u4) {

14, 0, 4, 15, 13, 7, 1, 4, 2, 14, 15, 2, 11,

13, 8, 1, 3, 10, 10, 6, 6, 12, 12, 11, 5, 9,

9, 5, 0, 3, 7, 8, 4, 15, 1, 12, 14, 8, 8,

2, 13, 4, 6, 9, 2, 1, 11, 7, 15, 5, 12, 11,

9, 3, 7, 14, 3, 10, 10, 0, 5, 6, 0, 13 }

The input 000111b = 7d produces the output 000100b =
4d, which is the 8th element of the array. Such a declaration
is then converted to a circuit by either looking up a database
of known circuits or, failing to find one, compiling it using
binary decision diagrams (BDDs).

2.2 Static & dynamic semantics

Usuba is a statically-typed synchronous dataflow language.
Its type and clock system are unsurprising and largely bor-
rowed from earlier synchronous languages, such as Lus-
tre [13]. We refer to Biernacki et al. [6] for a formal as well
as algorithmic presentation of type and clock checking. Our
treatment of arrays is reminiscent of LustreV4 arrays, which

WPMVP’18 , February 24–28, 2018, Vienna, Austria Mercadier et al.

were coincidentally introduced as part of an effort to compile
Lustre programs to hardware circuits.
From a semantics standpoint, an Usuba program textu-

ally embodies a dataflow graph: an unordered set of equa-
tions declaratively describe the “wiring” from input variables
to output variables. For instance, the following Usuba pro-
grams, which contains the same equations in a different
order, are semantically equivalent:

x1 = ~a.4;

x2 = ~a.1;

x3 = a.4 ^ a.3;

x4 = x3 ^ x2;

�

x4 = x3 ^ x2;

x2 = ~a.1;

x1 = ~a.4;

x3 = a.4 ^ a.3;

This equational approach offers referential transparency:
any subterm of the program can be hoisted as a new equa-
tion with a fresh variable and the subterm replaced by that
variable. The compiler backend eventually produces a valid
scheduling, which consists in finding an ordering of the
equations for which sequential execution of the instructions
preserves the intended semantics. These particularities of
the dataflow model make it extremely convenient for imple-
menting and proving the correctness of compilation passes:
new equations can be introduced at any point, term can be
inlined or hoisted, and the scheduling pass eventually takes
care of ordering them so as to generate efficient code.
As a result of our design, every Usuba program can be

compiled to an efficient bitsliced C program. The resulting
imperative code is immune to cache-timing attacks since it
cannot perform any input-dependent access to memory.

3 Compilation

This section presents Usuba’s compiler, Usubac, and the
generation of C from Usuba. Usuba programs are first sim-
plified to a proper subset of Usuba (Section 3.1). Several
optimizations are then applied on the program (Section 4),
before generating C code (Section 3.2).

3.1 Usuba0

The high-level constructs offered by Usuba boil down to a
strict subset of the language, which we call Usuba0. Usuba0
can be understood as a core calculus for bitsliced algorithms
(from a foundational perspective) or as a dataflow assembly
language amenable to bitslicing (from a practical perspec-
tive). In Usuba0, variables are only of Boolean type. Equa-
tions assign a single variable, unless they perform a func-
tion call in which case they assign a fully-expanded tuple of
Boolean variables. Expressions consist only of bitwise oper-
ations and the only constants are of Boolean type, i.e. 1 and
0. The front-end of the Usuba compiler transforms Usuba
programs into (semantically-equivalent) Usuba0 programs
by converting lookup tables to boolean circuits, unfolding
array definitions, expanding non-Boolean constants, and
inlining permutation tables, operators and tuples. The result-
ing Usuba0 program can then be optimized (Section 4) and
eventually compiled to C (Section 3.2).

3.2 Generation of C code

Generating C code from Usuba0 is straightforward, assum-
ing that the equations have been scheduled according to
their data-dependencies. Each node is compiled into a func-
tion, with return values passed by pointers. Booleans are
transformed to either int or vector types (depending on the
underlying architecture). Equations are converted into as-
signments. Expressions are translated to the corresponding
C expressions. Function calls are converted to standard C
function calls, where the left-hand side of the equation is
passed by reference to the function. Generating C code tar-
geting a specific SIMD extension, such as Intel’s SSE, AVX
and AVX-512, ARM’s Neon or IBM’s AltiVec, only requires
using the bitwise instructions specific to the vector exten-
sion, and embedding in the runtime an efficient transposition
algorithm adapted to the architecture.

4 Optimizations

Cryptographic applications put high requirements on the
performance of the generated code. The C compiler will
optimize the code produced by Usuba but our experiments
have shown that some optimizations produce better results
when done by Usuba’s compiler itself. This is due to the
unusual structure of our code: bitsliced programs tend to
exhibit hundreds of live variables at any point, which is
much more than what C compilers are used to deal with.
Optimizing Usuba0 code offers several advantages. Variables
are assigned only once and there is no control structure,
which means that the code is in single static assignment
(SSA) form with no φ node. Moreover, information from
the original Usuba program is still available, which can be
exploited to guide instruction scheduling for example.

This section describes our optimizations and their impact
on the performance of the DES implementation presented
in Section 2.1. The C compilers we used are Clang 3.8.0, ICC
17.0.2 and GCC 5.4.0. The measurement were carried on an
Ubuntu 16.04 machine with a CPU Intel Core i5-6500
(3.20 GHz). Unless specified otherwise, the flags passed to
the C compilers are -march=native -O3. We compare our
implementation with Kwan [17]’s bitsliced implementation
of DES for 64 bits registers. We refer to it as manual imple-
mentation or Kwan’s implementation.

Constant folding Recall that the only operations left in
Usuba0 are bitwise operations, function calls and binary con-
stants. Bitwise operations involving constants are simplified,
following standard Boolean algebra. Doing this optimization
in Usuba produces slightly smaller C files, and guarantees
that they are performed, irrespective of the level of optimiza-
tion at which the C code is compiled.

Common subexpression elimination and copy propaga-
tion (CSE-CP) Common subexpression elimination con-
sists in replacing several instances of the same expression
by a temporary variable holding the result of this expres-
sion. Similarly, copy propagation aims at avoiding useless

Usuba WPMVP’18 , February 24–28, 2018, Vienna, Austria

CC without with speedup

Clang 1.23 1.36 × 1.11
ICC 1.17 1.35 × 1.15
GCC 1.00 1.07 × 1.07

(a) CSE-CP

inlining speedup code size (B)

(1) Usuba × 2.14 91544
(2) Clang × 1.13 91576
(3) without × 1.00 87480

(b) Inlining

CC without with speedup

ICC 1.08 1.41 × 1.31
Clang 1.12 1.26 × 1.13
GCC 1.00 1.11 × 1.11

(c) Scheduling

CC without with speedup

ICC 1.26 1.41 × 1.12
Clang 1.16 1.40 × 1.21
GCC 1.00 1.01 × 1.01

(d) Explicit spilling

Table 1. Normalized performance impact of the optimization passes

assignments by removing direct assignments x = y (where
x and y are both variables) and using y instead of x in the
subsequent expressions. This optimization is essential since
a powerful feature of Usuba is the ability to do tuple as-
signments to split arrays (like (left,right) = des[16] in
DES’s code, Figure 2), that are then compiled away by the
copy propagation.

Table 1a compares the effect of performing the CSE-CP in
Usubac with the effect of letting the C compiler do it. The
tests were done onDES, and the results have been normalized
with GCC’s throughput without CSE-CP equal to 1. At -O3
optimization level, the C compilers perform CSE-CP, but
doing it in Usuba increases throughput by 7 to 15%. We
conjecture that the C compilers are unable to detect the
commonalities due to the sheer amount of code produced.

Inlining Inlining enables further optimizations, as it may
open opportunities for more CSE or copy propagation. Also,
it saves the need to push and pop arguments on the stack,
which has a significant impact when dealing with function
with many parameters. Unlike C compilers, Usuba agres-
sively inlines every function, exploiting the fact that sidestep-
ping the call-stack outweighs the cost of executing a larger
binary. The user is granted additional control through the
Usuba attributes _inline and _no_inline, which can be
used to manually force a node to be inlined or not.

Table 1b shows the effect of inlining on DES’s code: it com-
pares the code without inlining ((3), “without”) from neither
Usuba nor Clang, with Clang’s inlining ((2), “Clang”) and
with Usuba’s inlining ((1), “Usuba”). In all cases, constant
folding and CSE are active. Without any inlining done by
Usubac (3), Clang chooses to only inline the S-boxes (2), thus
gaining 10% performance, but fails to inline the round func-
tion. However, Usubac inlines every functions, thus increas-
ing the throughput by more than 110% (2). This is mainly
due to the fact that the round function takes in and returns
a lot of variables, which causes unnecessary assignments
through the stack. The code without inlining is not the small-
est, as shown in column “Code size”, because it contains the
round function and the numerous assignments related to its
arguments.

Scheduling Usually, C compilers do a good job at sched-
uling instructions. However, Usuba0’s code has an unusual
structure as it is organized in chunks of instructions, each
chunk originating from the unfolding of tuples. For example,
the Usuba operation x = a & b – where x, a and b are of type
u64 – normalizes to 64 AND instructions, but the 64 results of
this computation are unlikely to be all needed at the same
time. This causes too many variables to be live at the same
time, more than there are available registers, which means
that most of them have to be spilled. On the other hand, if
those computations were done right before their result is
needed, we would reduce its lifespan and thus avoid spilling.
Our scheduling algorithm identifies precisely those variables
with structurally short lifespans, exploiting the structure of
the input Usuba program. For instance, on the naive DES
code, the inputs of the S-boxes are computed all at once, but
are only used 6 by 6. Therefore, our algorithm schedules
those instructions right before they are used, thus removing
the need to spill their results.

This algorithm improves performance, as shown in Table
1c: using Usubac’s scheduler instead of relying solely on
that of the C compiler increases the performance by 10 to
30% on DES. The C compilers struggle to keep the spilling
low: from half to two thirds of the assembly instructions
are moves. Using Usubac algorithm reduces the number of
moves generated by the C compilers by 19% (Clang) to 43%
(GCC).

Explicit spilling Conversely, some variables have an in-
herently long lifespan and will inevitably be spilled. To help
the C compiler perform register allocation, we explicitely
spill such variables by storing them in arrays. On DES, those
variables are typically the outputs of each round, which are
potentially not used until the call to the 8th S-box of the
next round. This reduces the register pressure, and allows
the C compiler to find a better register allocation (with less
spilling) for the variables exhibiting a shorter lifespan.

Table 1d shows the performance impact of explicitly spilling
variables on DES. This optimization heavily depends on the
C scheduler and register allocator, which leads to a speedup

WPMVP’18 , February 24–28, 2018, Vienna, Austria Mercadier et al.

 0

 500

 1000

 1500

 2000

 2500

GP-64
(manual)

GP-64 SSE-128 AVX-256 AVX-512

T
h
ro

u
g

h
p

u
t

(M
iB

/s
)

Implementation

Manual
Usuba

429 481

886

1632

2140

(a) DES without transposition

 0

 200

 400

 600

 800

 1000

 1200

Standard GP-64 SSE-128 AVX-256 AVX-512

T
h
ro

u
g

h
p

u
t

(M
iB

/s
)

Implementation

Non-bitsliced
Usuba

75

262

484

841

1132

(b) Standard DES with transposition

Figure 3. DES throughput on Intel’s Skylake i9-7900X

varying from 0 to 20% depending on the compiler. The assem-
bly code for DES generated by Clang (resp. ICC) contains
1222 (resp. 1413) fewer move instructions when explicitly
spilling some variables, which is directly reflected by the
speedup.

5 Evaluation

We evaluate our compiler using our implementation of DES
presented in Section 2. While DES is outdated and should
not be used for cryptographic purposes, it provides an in-
teresting experimental platform. First, it was not designed
with bitslicing in mind, which puts the expressivity of Usuba
to the test: our implementation of DES is an almost literal
translation of the DES specification, unencumbered by bit-
slicing details. Second, there exist several, publicly-available
implementations of DES, both in standard and bitsliced form
for 64 bit architectures. We chose Kwan’s implementation
because it is well-known and written in C, enabling us to
compare our results across compilers.

5.1 Bitsliced DES without transposition

To isolate the cost of encrypting data from the cost of con-
verting data to a bitsliced format, we first evaluate our im-
plementation of DES without performing transposition of
the data. Figure 3a shows the throughput of such an imple-
mentation (compiled with ICC 17.0.2 and running an Intel
Skylake i9-7900X), depending on the type of registers used,
general purpose 64-bit registers (GP-64), or SIMD registers:
SSE on 128 bits, AVX on 256 bits, and AVX-512 on 512 bits.
We report the throughput of Kwan’s implementation of DES
with the label “manual”. For a fair comparison, our imple-
mentation uses the same S-boxes as Kwan (whereas smaller
versions have been discovered since [20]): we are therefore
comparing algorithmically equivalent programs.

The scaling of our code on vector extensions is slightly
sublinear. While the C codes of the scalar and vector pro-
grams are very close, there are significant differences be-
tween the assembly codes: the scalar code is composed of
about 12900 instructions and has an arithmetic intensity of
1.85, while the vector codes are composed of about 10400
instructions and have an arithmetic intensity around 4. The
main difference between the two codes is the number of
move instructions, which directly come from the amount of
spilling. This is due to the fact that the vector codes use
three-operand instructions while the scalar code only uses
destructive two-operand instructions. One might then ex-
pect the vector codes to run faster than the scalar code, but
this is not the case because Skylake CPUs have 4 scalar ALU
ports, and only 3 vector ALU ports. Furthermore, most mem-
ory operations can be performed at the same time as some
arithmetic operations because they use 3 different ports (2
for loads and 1 for stores). It is worth pointing out that the
vector codes are computation bound since their arithmetic
intensity is 4, and the vast majority of their memory access
are spill-related, and therefore in the L1 cache. Hence, the
memory is not the cause of the sublinear scaling on vector
extensions. Intel® VTune™ Amplifier reveals that the front-
end, and in particular the Micro Instruction Translation Unit
(MITE), is limiting the scaling on SSE and even more on
AVX. The instruction fetcher can only retrieve 16 bytes of
instructions each cycle, which correspond to 4 instructions
in the scalar code (whose sizes are around 3.7 bytes) but
around 2 or 3 vector instructions, whose sizes are around
4.7 bytes. This is why the vector programs are executed at
about 2.6 instructions per cycle (IPC), while the theoretical
maximum is above 3.5. The MITE is not an issue in standard
vector codes, whose hotsopts are small loops (unlike our
code, which is fully unrolled), and therefore benefit from the
loopback buffer, which can issue up to 4 micro-operations
per cycle.

Usuba WPMVP’18 , February 24–28, 2018, Vienna, Austria

 0

 1

 2

 3

 4

 5

ARMv7 PowerPC KBL SKL-X

S
p
e
e
d
u
p

Architecture

32-bits
64-bits

128-bits
256-bits
512-bits

(a) Speedup per wordsize

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80

sp
e
e
d

u
p

 f
a
ct

o
r

cores

experimental speedup
ideal speedup

(b) Speedup per core

Figure 4. Scaling of Usuba’s DES

5.2 Transposition

As mentioned in Section 1, in bitslicing, a word of size m
must be transposed to occupy 1 bit in m registers, rather
than m bits in 1 register, and more generally, n words of
size m become m registers of size n. We used a standard
algorithm to do so [12, 22]. We adapted it to the SIMD ex-
tensions we are targetting, which do not support shifts of
arbitrary length, but offer special permutation instructions
(e.g. blend, vec_perm) that can be used instead of masks
and shifts. The complexity of the algorithm is O (n loд(n))
for an n × n matrix. Figure 5 shows the number of cycles
needed to transpose 1 bit of input, depending on the register
type. The throughput on an Intel Skylake i9-7900X (using
code produced by ICC 17.0.2) follows the expected sublinear
asymptotic complexity. Similar speedup are obtained with
ARM’s Neon and PowerPC’s Altivec extensions.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

GP-16 GP-32 GP-64 SSE-128 AVX-256 AVX-512

C
y
cl

e
/b

it

Implementation

1.10

0.54

0.25

0.16
0.10 0.09

Figure 5. Transposition cost

5.3 Bitsliced DES with transposition

Figure 3b compares the performance of our DES implemen-
tations with transposition at various register sizes. For com-
parison, we also reported the performance of a standard
non-bitsliced implementation of DES (from the Crypto++
library [10]). The latter uses general purpose registers of 32
bits mainly, but cannot have its performances increased by
using wider registers, unlike the bitsliced versions. Our bit-
sliced implementation on AVX-512 has a throughput about
15 times higher than a standard DES. The scaling of our
implementations is sublinear: × 1.81 from general purpose
64-bit registers to SSE, and × 1.75 from SSE to AVX. This is
mainly due to the transposition having sublinear complexity.

Figure 4a shows the speedup obtained by using vector ex-
tensions on several architecture: SKL-x is the Intel Skylake i9-
7900X aforementioned, KBL is an Intel Kaby Lake i7-7500U,
PowerPC is a PPC 970MP, and ARMv7 an ARMv7 Raspberry
Pi3. The speedup obtained on KBL and SKL-x are very similar.
Using PowerPC’s 128-bit Altivec extensions offers a speedup
of 2.36 over the 64-bit general purpose registers, and using
ARM’s 128-bit Neon extensions increases performance by
a factor 3 compared to the 32-bit registers. Note that the
performances for each architecture have been normalized in
order to allow a fair comparison of the speedups.

5.4 OpenMP

Another way to increase throughput is to use several cores,
which gives (virtually) access to more registers. Usuba can
generate code exploiting several cores using OpenMP [9].
We tested the OpenMP code generated by Usuba on a 4x20
cores Intel Xeon E7-8870 v4 (Figure 4b), reporting the speed-
up relatively to the monocore, non-OpenMP version. The
overhead of OpenMP is negligible while the throughput of
DES is almost proportional to the number of cores used.

WPMVP’18 , February 24–28, 2018, Vienna, Austria Mercadier et al.

6 Related Work

Bitslicing existing algorithms. Bitslicing was first used in
cryptography by Biham [7] on DES. Käsper and Schwabe
[15] gave a bitsliced implementation of AES, which runs at
7.59 cycles/byte. Their code, unlike most previous bitsliced
code, uses only a few variables: their AES state is in only 8
SSE registers, which allows them to use SSE2-specific per-
mutation instructions. Recent work on bitslicing, such as the
bitsliced implementations of Prince, LED and Rectangle by
Bao et al. [4], have used similar techniques, by representing
the cipher’s state on only a few registers instead of dozens
or hundreds.

Bitslicing compilers. The only bitslicing compiler we know
of, bsc, was developed by Pornin [22]. bsc inspired the de-
velopment of our compiler: we borrowed its presentation
of permutation tables and lookup tables. Being a proof-of-
concept, the language provided by bsc is less rich than that
of Usuba, and the code generated from it is not optimized
for speed nor size, whereas our goal is to be more efficient
than hand-written code.

SIMD libraries. A flurry of C++ libraries provide a unified
programming model for various SIMD architectures, such
as Boot.SIMD [11], MIPP [8], UME::SIMD [14], Sierra [18] or
VC [16]. These works are complementary to ours: our intent
is to provide a language that (always) compiles to efficient
bitsliced codewhile being amenable to formal verification. To
this end, we have implemented specialized SIMD backends
and could certainly benefit from piggy-backing on those
libraries, much as we currently use OpenMP for multicore
processing.

7 Conclusion & Future Work

Usuba is a synchronous dataflow programming language
we have designed to write bitsliced programs. It contains
specifics constructs to address the specificities of crypto-
graphic algorithms, in particular permutation and lookup
tables (Section 2). We presented the compilation steps to get
from an Usuba program to an efficient C program (Section 3).
The optimizer exploits the dataflow properties of Usuba to
make optimizations that most C compiler do not or cannot
do as efficiently. We have focused our evaluation on DES but
we have also implemented other ciphers such as AES [1],
Camellia [3] and Serpent [2].
In future work, we intend to broaden the range of our

evaluation to these cryptosystems as well as consolidate our
scheduling algorithm across the range of supported architec-
tures.

Acknowledgments

The original idea of a bitslicing compiler was suggested by
Xavier Leroy. We are thankful to Intel France and Francois

Hannebicq for allowing us to run our experiments on one of
their Xeon Skylake Platinium 8168. This work was partially
funded by the Émergence(s) program of Paris and the EDITE
doctoral school.

References

[1] Specification for the advanced encryption standard (aes). Federal
Information Processin Standards Publication 197, 2001.

[2] R. Anderson, E. Biham, and L. Knudsen. Serpent: A proposal for the
advanced encryption standard. In AES, 1998. doi:10.1.1.86.2107.

[3] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima,
and T. Tokita. Camellia: A 128-bit block cipher suitable for multiple
platforms - design and analysis. In SAC, 2000. doi:10.1007/3-540-44983-
3_4.

[4] Z. Bao, P. Luo, and D. Lin. Bitsliced implementations of the PRINCE,
LED and RECTANGLE block ciphers on AVR 8-bit microcontrollers.
In ICICS, 2015. doi:10.1007/978-3-319-29814-6_3.

[5] D. J. Bernstein. Cache-timing attacks on AES. Technical report, 2005.
URL https://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[6] D. Biernacki, J.-L. Colaço, G. Hamon, and M. Pouzet. Clock-directed
modular code generation for synchronous data-flow languages. LCTES,
2008. doi:10.1145/1379023.1375674.

[7] E. Biham. A fast new DES implementation in software. In FSE, 1997.
doi:10.1007/BFb0052352.

[8] A. Cassagne, B. L. Gal, C. Leroux, O. Aumage, and D. Barthou. An effi-
cient, portable and generic library for successive cancellation decoding
of polar codes. In LCPC, 2015. doi:10.1007/978-3-319-29778-1_19.

[9] L. Dagum and R. Menon. OpenMP: An Industry-Standard API
for Shared-Memory Programming. IEEE Comput. Sci. Eng., 1998.
doi:10.1109/99.660313.

[10] W. Dai. Crypto++ library 5.6. 0, 2009.
[11] P. Estérie, J. Falcou, M. Gaunard, and J. Lapresté. Boost.simd:

generic programming for portable simdization. In WPMVP, 2014.
doi:10.1145/2568058.2568063.

[12] G. Gaubatz and B. Sunar. Leveraging the multiprocessing capabilities
of modern network processors for cryptographic acceleration. In NCA,
2005. doi:10.1109/NCA.2005.28.

[13] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
dataflow programming language Lustre. Proceedings of the IEEE, 1991.
doi:10.1109/5.97300.

[14] P. Karpinski and J. McDonald. A high-performance portable abstract
interface for explicit SIMD vectorization. In PMAM@PPoPP, 2017.
doi:10.1145/3026937.3026939.

[15] E. Käsper and P. Schwabe. Faster and timing-attack resistant AES-
GCM. CHES, 2009. doi:10.1007/978-3-540-74735-2_9.

[16] M. Kretz. Extending C++ for explicit data-parallel programming via
SIMD vector types. PhD thesis, Goethe University Frankfurt am Main,
2015.

[17] M. Kwan. Bitslice DES, 1998. URL http://www.darkside.com.au/
bitslice/.

[18] R. Leißa, I. Haffner, and S. Hack. Sierra: a SIMD extension for C++. In
WPMVP, 2014. doi:10.1145/2568058.2568062.

[19] A. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996. ISBN 0-8493-8523-7.

[20] A. Peslyak and R. Rusakov. John the Ripper 1.7.8: DES speedup, 2011.
URL http://www.openwall.com/lists/john-users/2011/06/22/1.

[21] A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In
TACAS, 1998. doi:10.1007/BFb0054170.

[22] T. Pornin. Implantation et optimisation des primitives cryptographiques.
PhD thesis, Laboratoire d’Informatique de l’École Normale Supérieure,
2001.

http://dx.doi.org/10.1.1.86.2107
http://dx.doi.org/10.1007/3-540-44983-3_4
http://dx.doi.org/10.1007/3-540-44983-3_4
http://dx.doi.org/10.1007/978-3-319-29814-6_3
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://dx.doi.org/10.1145/1379023.1375674
http://dx.doi.org/10.1007/BFb0052352
http://dx.doi.org/10.1007/978-3-319-29778-1_19
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1145/2568058.2568063
http://dx.doi.org/10.1109/NCA.2005.28
http://dx.doi.org/10.1109/5.97300
http://dx.doi.org/10.1145/3026937.3026939
http://dx.doi.org/10.1007/978-3-540-74735-2_9
http://www.darkside.com.au/bitslice/
http://www.darkside.com.au/bitslice/
http://dx.doi.org/10.1145/2568058.2568062
http://www.openwall.com/lists/john-users/2011/06/22/1
http://dx.doi.org/10.1007/BFb0054170

	Abstract
	1 Introduction
	2 Usuba
	2.1 Syntax
	2.2 Static & dynamic semantics

	3 Compilation
	3.1 Usuba0
	3.2 Generation of C code

	4 Optimizations
	5 Evaluation
	5.1 Bitsliced DES without transposition
	5.2 Transposition
	5.3 Bitsliced DES with transposition
	5.4 OpenMP

	6 Related Work
	7 Conclusion & Future Work
	Acknowledgments
	References

