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S U M M A R Y
We present an extension of the nodal discontinuous Galerkin method for elastic wave propaga-
tion to high interpolation orders and arbitrary heterogeneous media. The high-order lagrangian
interpolation is based on a set of nodes with excellent interpolation properties in the standard
triangular element. In order to take into account highly variable geological media, another
set of suitable quadrature points is used where the physical and mechanical properties of the
medium are defined. We implement the methodology in a 2-D discontinuous Galerkin solver.
First, a convergence study confirms the hp-convergence of the method in a smoothly varying
elastic medium. Then, we show the advantages of the present methodology, compared to the
classical one with constant properties within the elements, in terms of the complexity of the
mesh generation process by analysing the seismic amplification of a soft layer over an elastic
half-space. Finally, to verify the proposed methodology in a more complex and realistic con-
figuration, we compare the simulation results with the ones obtained by the spectral element
method for a sedimentary basin with a realistic gradient velocity profile. Satisfactory results
are obtained even for the case where the computational mesh does not honour the strong
impedance contrast between the basin bottom and the bedrock.

Key words: Earthquake ground motions; Computational seismology; Wave propagation.

1 I N T RO D U C T I O N

In the recent years, advances in computer architectures render large-
scale seismic wave propagation simulations feasible in 3-D highly
heterogeneous media. Several numerical methods are available and
the final choice is clearly problem dependant. The reader is referred
to Wu et al. (2007), Robertsson et al. (2007), Virieux et al. (2012)
and Moczo et al. (2014) for thorough reviews of the many different
techniques currently available for seismic modelling.

Among them, the methodologies based on the variational for-
mulation of elastodynamics allow for accurate implementation of
boundary conditions through structured or unstructured meshes.
They can be grouped into two main categories: (1) those which
impose the continuity of the solution field between neighbouring
elements, what are known as the finite (low-order) or spectral (high-
order) element methods (Seriani & Priolo 1994; Bao et al. 1998;
Komatitsch & Vilotte 1998; Karniadakis & Sherwin 1999) and (2)
those which do not impose the continuity but instead allow dis-
continuities of the field between neighbouring elements, which are
named discontinuous Galerkin (DG) finite element methods (DG-
FEM; Käser & Dumbser 2006; De Basabe & Sen 2007; Delcourte
et al. 2009; Etienne et al. 2010; Tago et al. 2012). Both method-
ologies have been successfully applied to simulate fault rupture

dynamics (Käser et al. 2007b; Olsen et al. 2008; Benjemaa et al.
2009; Stupazzini et al. 2009; Tago et al. 2012), seismic wave prop-
agation (Dumbser et al. 2007; Etienne et al. 2010; De Martin 2011;
Peter et al. 2011; Cupillard et al. 2012; Mazzieri et al. 2013) and
site effects studies (Bielak et al. 2003; Xu et al. 2003; Taborda et al.
2012; Peyrusse et al. 2014). In this work, we place ourselves in the
DG framework, although we note that the proposed methodology
to handle arbitrary heterogeneous media is independent of how the
communication between elements is established. In fact, it is in-
spired by the multidimensional lagrangian interpolation combined
with high-order integration rules currently used in many finite ele-
ment techniques (Karniadakis & Sherwin 1999; Pasquetti & Rapetti
2006; De Basabe et al. 2008; Seriani & Su 2012; Lazar et al. 2013;
Mazzieri et al. 2013).

High-order finite element methods in unstructured triangular
meshes have been applied to solve seismic wave propagation (Cohen
et al. 2001; Komatitsch et al. 2001; Mercerat et al. 2006; Mazzieri &
Rapetti 2012). Recently, their dispersion characteristics have been
shown to be very similar to their hexahedral counterpart (Mercerat
et al. 2006; De Basabe et al. 2008; Liu et al. 2012; Mazzieri &
Rapetti 2012) when the mass matrix is analytically calculated. The
main caveat of these methodologies lies on the inefficiency linked
to the global mass matrix inversion at each time step, when an
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explicit time-scheme is used to solve the semi-discrete problem,
as is common practice in computational seismology. For this rea-
son, the DG method happens to be a valuable alternative, as all
calculations are done at the local level (i.e. no global mass matrix
assembling). On the contrary, the fluxes between neighbouring el-
ements must be accounted for and many different strategies have
been studied in the literature (Cockburn et al. 2000; Hesthaven &
Warburton 2008).

Since the numerous papers on the DG method applied to seismic
waves modelling (Käser & Dumbser 2006; de la Puente et al. 2007;
Dumbser et al. 2007; Hermann et al. 2011), the modal approach
has become quite popular. It consists of the expansion of the solu-
tion field on the hierarchical basis of orthogonal polynomials in the
standard elements (triangles in 2-D, tetrahedra in 3-D) and also the
analytical calculation of local mass and stiffness matrices. In most
of these studies, the discretization is based on the assumption of
constant material properties inside mesh elements. Although, in or-
der to account for variable physical properties within the elements,
additional terms and a new set of stiffness matrices must be con-
sidered (Castro et al. 2010). On the contrary, the nodal DG method
(Hesthaven & Warburton 2008) lies on the lagrangian interpolation
of the solution field within each element of the mesh and the integra-
tion of local matrices, either analytically (Delcourte et al. 2009) or
by quadrature rules in the general case. Thus, a suitable set of inter-
polation and quadrature nodes are required. The polynomial basis
is no longer hierarchical, but it provides readable expressions of the
numerical fluxes calculated on the element edges (lines in 2-D and
triangular facets in 3-D domains). The cardinality property of the
nodal basis allows to use information just along the element edges
to compute the integrals needed for flux calculations. In 3-D sim-
ulations, this implies a complexity of O(N 2) for the nodal, instead
of O(N 3) for the modal approach (Hesthaven & Warburton 2008).
Nodal DG-FEMs have been already applied for elastic waves mod-
elling by Delcourte et al. (2009), Etienne et al. (2010), Delcourte
& Glinsky (2015) and by Peyrusse et al. (2014) for viscoelastic
media, though restricted to low interpolation orders. Nevertheless,
it should be stressed that for low or moderate interpolation orders
(less than 6), as is common practice in computational seismology,
the differences in computational cost between the modal and the
nodal approaches are less significant. A thorough study, specially
in large-scale 3-D simulations, is still missing.

High-order methods allow, in principle, to introduce element sizes
much longer than the minimum propagated wavelength. As classi-
cal in SEM, a typical element of moderate degree (order 4 or 5)
must be of the order of the minimum propagated wavelength to
obtain an acceptable solution (Faccioli et al. 1997; Komatitsch &
Vilotte 1998; Basabe & Sen 2007; Seriani & Oliveira 2008). Similar
element sizes are preconized in the modal DG approach (Dumbser
& Käser 2006; Wenk et al. 2013). However, the need to correctly
sampling strongly heterogeneous media (specially near the surface)
may require meshes with elements on the order of metres, or even
less. This is clearly not feasible with methods based of the hypoth-
esis of constant material properties per element. The question also
arises in collocated methods, such as classical SEM, about the effect
of a strong impedance contrast inside an element on the accuracy
of the final seismograms. The recent study by Seriani & Su (2012)
proposes a poly-grid methodology to take into consideration sharp
velocity contrasts within the elements of the mesh. In some way, we
follow a similar strategy here using two different grids: one for the
interpolation and other for the numerical integration, that can have
in principle as many degrees of freedom as necessary to correctly
represent an arbitrary medium.

In this study, we extend the nodal DG-FEM presented by
Delcourte et al. (2009) to arbitrary interpolation orders and highly
heterogeneous media in 2-D. The initial approach lies on the analyt-
ical integration of the mass and stiffness matrices on the reference
element, implicitly assuming constant physical properties within
each element of the mesh (Delcourte et al. 2009). Therefore, the
construction of the numerical mesh to solve realistic problems in
seismology becomes an extremely hard task [see for example Eti-
enne et al. (2010) for the Volvi sedimentary basin and Wenk et al.
(2013) for regional wave propagation]. In this work, we show that
this restriction can be avoided by allowing changes in material prop-
erties inside the mesh elements. For this we propose a completely
different approach from that proposed by Castro et al. (2010) which
results in additional terms in the numerical scheme. Instead, we
introduce another set of quadrature points for the material approx-
imation and calculate the integrals by, precise enough, quadratures
rules, thus avoiding strong modifications of the numerical scheme.
We restrict to elastic heterogeneous media, though the method can
be extended to anelastic and anisotropic elastic media provided the
pseudo-conservative formulation is abandoned. The extension to
3-D media is straightforward and it will be published elsewhere.

The paper is structured as follows. After a brief introduction of
the elastodynamic equations in Section 2, the numerical scheme is
proposed, in Section 3, with emphasis on the pseudo-conservative
formulation used by Delcourte et al. (2009) or Etienne et al. (2010).
Then, the discrete problem is derived with two sets of nodes within
the triangular elements for interpolation and numerical integration
by appropriate quadrature rules. Numerical applications are pre-
sented in Section 4. To test the accuracy of the method, a classical
hp-convergence study on smoothly varying media is performed.
Next, we study the effect of a strong discontinuity in material prop-
erties within the triangular elements on the numerical simulations
with respect to the accuracy of the quadrature rule. We end with an
interesting example of a 2-D sedimentary basin with linear gradient
velocity profile which illustrates the interest of this new method.

2 E L A S T O DY NA M I C E Q UAT I O N S

We consider an isotropic, linearly elastic 2-D medium and solve the
first-order hyperbolic system of elastodynamics (Virieux 1986),

ρ∂t �V = ∇ · σ ,

∂tσ = λ(∇ · �V )I + μ[∇ �V + (∇ �V )t ], (1)

where �V and σ are respectively the velocity vector and the stress

tensor, I is the identity matrix, ρ the density of the medium and λ

and μ are the Lamé parameters. As the stress tensor is symmetric,
let �W = ( �V , �σ )t contain the velocity vector �V = (vx , vy)t and the
stress components �σ = (σxx , σyy, σxy)t , then, the system (1) can be
rewritten in vector form as

∂t �W + Ax (ρ, λ, μ) ∂x �W + Ay (ρ, λ, μ) ∂y �W = 0 , (2)

with matrices Ax and Ay explicitly dependant on the medium pa-
rameters. The detailed expressions of these matrices can be found
in Käser & Dumbser (2006) or Peyrusse et al. (2014).

Using this formulation, Käser & Dumbser (2006) derive a modal
DG approach that has been extended for anisotropic (de la Puente
et al. 2007) and viscoelastic media (Käser et al. 2007a). Castro
et al. (2010) investigate the extension of the ADER-DG methodol-
ogy to subcell resolution, allowing for variable material properties
within the elements. This method uses the same basis functions

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/201/2/1101/570995 by guest on 16 O

ctober 2018



Nodal DG method in heterogeneous media 1103

for the material expansion and, as a consequence, the variational
formulation requires the calculation of additional terms and a new
set of stiffness matrices to account for the spatial variation of the
material properties. Contrary to the standard ADER-DG method,
the stiffness matrices are now third-order tensors. To avoid comput-
ing and storing these extra terms, we choose a completely different
approach. Following Benjemaa et al. (2007) and Delcourte et al.
(2009), we introduce a change of variables on the stress compo-
nents �σ = (σxx , σyy, σxy)t → �̃σ , with

�̃σ =
(

1

2
(σxx + σyy),

1

2
(σxx − σyy), σxy

)t

, (3)

which allows writing the system (2) in the pseudo-conservative form

in the vector variable �̃W = ( �V , �̃σ )t as,

� (ρ, λ, μ) ∂t
�̃W + Ãx∂x

�̃W + Ãy∂y
�̃W = 0 , (4)

where the matrices Ãx and Ãy do not depend anymore on the mate-
rial properties. But they are gathered in the diagonal matrix � given
by,

� (ρ, λ, μ) = diag

(
ρ, ρ,

1

λ + μ
,

1

μ
,

1

μ

)
. (5)

To simplify notation, we will omit the ˜[.] notation on the transformed
variables from hereon.

3 N U M E R I C A L S C H E M E

We consider a bounded polyhedral domain � ∈ R
2 discretized by

non-overlapping, conforming and straight-sided triangular elements
Te. Associated with the triangulation, let us consider the affine
mapping Fe from an arbitrary triangular element Te to the reference
simplex � = {(r, s): (r, s) > −1; r + s ≤ 0}, and the approximation
space Pp , the finite dimensional subspace of polynomials of degree

less or equal p defined on �. Considering a basis of Pp ,
{
� j

}N

j=1
, the

piecewise polynomial approximation of �W is defined locally on each
element, through the affine mapping Fe, as a linear combination of
time-dependent fields,

�W e (x, y, t) =
N∑

j=1

�̂W ej (t)� j [Fe(x, y)] , (6)

where N = (p + 1)(p + 2)/2 is the number of degrees of freedom
in �, that is the dimension of the approximation space Pp .

As classical in the Galerkin method, the system (4) is multiplied
by a test function �r ∈ Pp and integrated over each element Te.
Note that the introduction of non-constant material properties inside
a triangle Te is simply accounted by the calculation of a modified
local mass matrix Me term depending on the material properties,

Me ∂t �W e =
∫

Te

�t
r � (ρ, λ, μ) ∂t �W e d�. (7)

The other terms in eq. (4), that is the ones containing spatial deriva-
tives of the solution field and the fluxes between neighbouring el-
ements, remain unchanged. The procedure avoids the calculation
of additional terms but, in contrast, needs storing the inverse of
Me, whose size is N × N, for each element of the mesh and each
component of �, three in number. This is done once during the
simulation, in a pre-processing stage. Up to this point, the method
is independent of the choice of the polynomial basis

{
� j

}N

j=1
in the

expansion of eq. (6). We then adopt the nodal form of the DG-FEM
(Hesthaven & Warburton 2008) based on a multidimensional la-
grangian interpolation, centred fluxes and a second-order leap-frog

time integration scheme. The reader is referred to Delcourte et al.
(2009) for the complete construction of the numerical scheme. Note
that the solution of system (4), where the matrices Ãx and Ãy do
not depend on the material properties, is greatly simplified by the
use of centred fluxes that do not require matrix diagonalization.

Three types of boundary conditions are applied: free-surface and
absorbing boundary conditions which have already been detailed by
Delcourte et al. (2009), and periodical boundary conditions that can
be found in Peyrusse et al. (2014). The time step of a simulation is
calculated using a formula slightly more restrictive as the standard
one (Käser & Dumbser 2006) to account for the choice of non-
equispaced interpolation nodes, as explained later in the document.
From experiments, the time step writes

	t = min
Te

	te 	te = 1

3 p

he

vP|e
, (8)

where 	te is the local time step in the element Te which depends on
he, the smallest height of Te, vP|e the maximum value of vP in the
element, and p the spatial interpolation degree.

3.1 Lagrangian interpolation

In the context of the FEM on simplicial meshes, the orthonor-
mal basis of Pp known as the Dubiner–Koorwinder basis (Proriol
1957; Koorwinder 1975; Dubiner 1991) has interesting properties
in terms of matrix conditioning and spectral accuracy (Owens 1998;
Sherwin & Karniadakis 1995). Moreover, it is readily calculated by
a Gram-Schmidt orthogonalization procedure, what leads to explicit
formulas for high-order interpolation and derivation. Even if the or-
thogonality of the previous basis is attractive, the impact of using
such spectral expansion in a DG-FEM is that all modes are needed to
evaluate �W i pointwise, and therefore to calculate the fluxes between
contiguous elements (Hesthaven & Warburton 2008).

Another possibility is to resort, like in classical FEM (Hesthaven
& Teng 2000; Taylor et al. 2000; Warburton et al. 2000; Hesthaven
& Warburton 2008), to a multidimensional lagrangian interpolation
basis of Pp , associated with an appropriate set of nodes (ri, si), i = 1,
N defined inside and on the edges of the reference simplex, which
satisfies 
k(ri, si) = δki (cardinality condition). Then, we can also
write eq. (6) in the standard triangle as

�W (r, s, t) =
N∑

j=1

�̂W j (t)� j (r, s) =
N∑

k=1

�W k(t)
k(r, s). (9)

Using the generalized Vandermonde matrix Vij =�j(ri, si), i.e. the
matrix whose columns are the Dubiner–Koorwinder basis evaluated
at the set of points {(ri, si)}, the relation between modal and nodal
expansions reads,

�W i (t) =
N∑

j=1

Vi j
�̂W j (t) and 
k(r, s) =

N∑
j=1

V −T
k j � j (r, s). (10)

The choice of the nodal set is crucial for a stable and efficient
method. The reader is referred to Pasquetti & Rapetti (2010) for
a compilation of different nodal sets with good interpolation and
integration properties within the standard simplex. In a DG-FEM
methodology, the choice appears less crucial than in classical SEM
where the continuity between elements is required and the global
mass matrix is preferably diagonal for an efficient application of
explicit time-schemes (Mercerat et al. 2006). As stated by Pasquetti
& Rapetti (2010) ‘for reasonable values of polynomial order (less
than 10), simplicity in the construction should prevail’. In the context
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Figure 1. (a) Interpolation points in the standard triangle for P3. (b) Quadrature points in the standard triangle (Dunavant – order 8). (c) Both set of points
plotted in the standard triangle.

Table 1. Dunavant formulas for the standard triangle
and their accuracy order (i.e. maximum polynomial
order that is exactly integrated by the quadrature rule).

Number of points 6 12 16 25 33 42
Order 4 6 8 10 12 14

of seismic wave modelling with the triangular spectral element
method (TSEM), Mazzieri & Rapetti (2012) have recently shown
that even equidistant interpolation nodes in the standard triangle
perform satisfactorily (i.e. similar dispersion characteristics than
other set of nodes) for moderate interpolation orders.

In this work, we adopt the set of nodes presented by Warburton
(2006) and coined ‘warp & blend’. Their calculation is straight-
forward and they present excellent properties in � for high-order
interpolation. The nodal set for P3 is shown in Fig. 1(a).

3.2 Mass matrix calculation

In order to calculate the local mass matrix expressed by eq. (7),
we make use of Gauss-type quadrature rules within the standard
triangle published by Dunavant (1985). The quadrature points need
not to coincide with the nodal set used for interpolation, and they
are generally more than N to acquire enough precision (see next
section). We use here the Dunavant (1985) sets whose properties are
summarized in Table 1. An example of a degree 8 rule of 16 points,
that is a rule that integrates exactly a polynomial of degree 8, is
shown in Fig. 1(b). For the edge integrals related to flux calculations,
uni-dimensional Gauss points can be used along each edge.

Let define V ∗
i j = � j (ξi , ηi ) with {(ξ i, ηi)} the chosen Nq quadra-

ture points (Nq > N). Then, we use the lagrangian expansions of the
test function 
r, the solution vector �W e and c(r, s) for the material
property in eq. (5). After transformation to �, the integral in eq. (7)
reads

Me ∂t �W e = Je

∫
	


r (r, s)T c(r, s) ∂t �W (r, s) dr ds,

≈ Je

Nq∑
q=1

ωq

⎡
⎣
r (ξq , ηq )T c(ξq , ηq )

N∑
j=1

∂t �W j
 j (ξq , ηq )

⎤
⎦

= Je

Nq∑
q=1

ωq

(
N∑

k=1

V −1
rk �k(ξq , ηq )

)T

c(ξq , ηq )

N∑
j=1

∂t �W j

(
N∑

k=1

V −1
jk �k(ξq , ηq )

)
. (11)

The rj-component of the local mass matrix is then given by

(Me)r j = Je

Nq∑
q=1

HT
qr ωq c(ξq , ηq ) H jq (12)

with ωq the quadrature weights, Je the (constant) jacobian of the
affine transformation, and H = V −T V ∗T a rectangular matrix of
dimension N × Nq. In matrix form, the local mass matrix reads
Me = H�e HT , with �e = Je diag[ωq c(ξq , ηq )] the Nq × Nq di-
agonal matrix containing the product of the quadrature weight and
the material property (e.g. density or inverse of Lame’s constants)
as defined by eq. (5) evaluated at each quadrature point.

In the case of constant material properties within an element, the
integrals are calculated analytically using the generalized Vander-
monde matrix (i.e. no quadrature rule is needed) and scaled by the
product of the Jacobian and the material property of each element
(Mercerat et al. 2006; Pasquetti & Rapetti 2006). We recall that the
elementary mass matrices corresponding to each material constant
have dimension N × N. Therefore, they are easily inverted in a
pre-processing stage before simulation starts for each element of
the mesh. At each time step, they are applied to solve the system of
equations (4).

4 N U M E R I C A L E X A M P L E S

4.1 hp-Convergence study

In this section, we propose a first verification of the method when
applied to smoothly varying materials. For this, we perform a nu-
merical convergence study which consists in measuring the error
between the numerical solution and a reference exact solution of
the problem, for a series of refined meshes and different polynomial
approximations. In a preliminary step, it seems interesting to us to
recall the intrinsic properties of the high-order DG method based on
centred fluxes and a leap-frog time integration scheme by consid-
ering an homogeneous medium. Thereafter, the new DG extension
is applied to a heterogeneous medium following the approach pro-
posed by Castro et al. (2010).

We consider the propagation of plane sinusoidal P and S waves
along the diagonal direction �n = (1, 1)t . The computation domain is
the square [−1, 1] × [−1, 1] and periodicity conditions are applied
at its boundaries. The exact plane wave is defined by

�W ex
(x, y, t) = �RS SS + �RP SP , (13)

where

SS = sin( �k · �X + vS ‖�k‖ t) , SP = sin( �k · �X − vP ‖�k‖ t) , (14)
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�k = (2 π, 2 π )t is the wavenumber and �X = (x, y)t . According to
the change of variables (3) and the corresponding set of unknowns,
the vectors �RS and �RP write, respectively

�RS =
(√

2

2
vS, −

√
2

2
vS, 0, μ, 0

)t

and

�RP =
(√

2

2
vP ,

√
2

2
vP , −(λ + 2μ), 0, −μ

)t

. (15)

For the first application, the material properties are set constant
and equal to ρ = 1 kg m−3, λ = 2 kg m−1 s2 and μ = 1 kg m−1

s2 implying that vP = 2 m s−1 and vS = 1 m s−1. It can easily
be checked that �W ex

is solution of the pseudo-conservative system
(4). Initialization of the leap-frog scheme requires evaluating the
velocity components at time t = 0 and the stress components at
t = 	t

2 thanks to (13). Simulations are performed until time tend =
2
√

2 s, insuring that P and S waves have travelled one and two
wavelengths, respectively. Series of uniform meshes with different
refinement levels have been constructed by dividing the domain in
square cells which are split in two triangles, as illustrated in the
example of Fig. 3. The mesh length h refers to the smallest edge (or
height) of the corresponding discretization. In order to cover a wide
range of values for h but avoid making too many calculations, h is
chosen so that 1/h is a multiple of 4. For each mesh, we calculate
a global L2-error that covers the entire computational domain and
for all components, at tend, between �W ex

and the solution of the
numerical scheme. At time t = n 	t, this error writes

errn
L2 =

⎡
⎣ NT∑

i=1

∫
Ti

⎧⎨
⎩

2∑
j=1

(
W ex

j (x, y, n 	t) − W n
j,i

)2

+
5∑

j=3

(
W ex

j

(
x, y,

(
n+ 1

2

)
	t

)
− W n+1/2

j,i

)2
⎫⎬
⎭ d�

⎤
⎦

1/2

,

(16)

where the index j refers to components of �W and Wj, i repre-
sents the computed value of the jth component of �W in the
element Ti.

Different polynomials orders have been used, from hereon the
notation Pp refers to the DG method based on a polynomial ap-
proximation of degree p. We present, in Fig. 2(a), the L2-error at
tend with respect to the mesh size h for polynomial degrees p ranging
from 1 to 5. The figure proves a second-order convergence of the
DG method, whatever the value of p ≥ 2, even if the error levels are
much lower as the polynomial order of the spatial approximation
increases. Delcourte & Glinsky (2015) proved that the theoretical
order of convergence is O(	t2 + h p) = O(α2h2 + h p) [from eq.
(8), 	t is proportional to h, i.e. 	t = α h] which implies that, except
for p = 1 for which a first-order convergence is expected, the global
convergence rate is dominated by the time discretization. Table 2
contains the values of the L2-error for some mesh sizes and the
corresponding convergence orders, defined by

OL2 (hi ) = log[errL2 (hi+1)/errL2 (hi )]

log(hi+1/hi )
,

which confirms the expected convergence results. Note that the DG
P1 method produces slightly better results than the theory for this
case, probably thanks to the time scheme which is second-order
accurate. A way to improve the convergence results is to remove
the limitation due to the time-scheme by using higher (even)-order

leap-frog schemes as proposed by Young (2001) and applied to
elastodynamic equations by Delcourte & Glinsky (2015). In this
paper, we limit ourselves to the standard 2nd order leap-frog method
and keep the extension to higher-order time schemes for a further
study. Despite the limitation due to the temporal approximation,
the methods based on high-order spatial discretizations allow a
noticeable error reduction, and we will emphasize their interest in
the remainder of this paper.

To focus on the properties of the spatial discretization method,
we reproduce this convergence study by fixing for each Pp method
the time step to a very small value 	tp, the same for all mesh
sizes h, forcing the error to mainly depend on the spatial discretiza-
tion. For each polynomial order, this time step is set to the value
from eq. (8) corresponding to a ‘fictitious’ hp = 2.0 × 10−3 m,
ensuring comparable conditions for each interpolation order. The
values of 	tp can be found in Table 3. Here we limit ourselves
to smaller values for 1/h, simply for reasons of computing time.
The corresponding convergence curves are presented in Fig. 2(b).
We clearly notice that, once the influence of the second-order time
discretization is reduced, the convergence increases with the de-
gree of the polynomial interpolation. Moreover, we prove the cor-
rectness of the spatial discretization since the expected conver-
gence in O(	t2

p + h p) = O(α2 h2
p + h p) � O(h p) (since hp � h)

is achieved as confirmed by the convergence orders of Table 3. We
notice that, for even values of p, the convergence rate is better than
expected, that is the convergence order is closer to p + 1 than to p.
Such behaviour is observed for other systems, for instance for
Maxwell’s equations, when central fluxes are used, as explained
by Hesthaven & Warburton (2008) referring to an even-odd pattern.
Note that for all other numerical applications presented in this paper,
the optimal time step is used in order to minimize the computation
time.

Now in a second stage, we test the new methodology for a
smoothly varying medium defined by λ(x, y) = 2 + 0.5 sin (2πx +
2πy), ρ and μ keeping the same constant values as for the ho-
mogeneous case. We choose to introduce variations only on λ,
unlike Castro et al. (2010) which also include similar sinusoidal
perturbations for ρ and μ, without loosing the interest and com-
plexity of the test-case. In both studies, vS remains constant equal
to 1 m s−1 but our assumption greatly simplifies the calculation of
the additional terms, as we shall see in the following. We then have
vP = [4 + 0.5 sin (2πx + 2πy)]1/2 whose variations are plotted in
the square domain in Fig. 3. We follow exactly the same approach
for the convergence study, except that, in order to ensure that �W ex

is
still an exact solution of the heterogeneous problem, we need to add
corrective source terms to the pseudo-conservative system. These
corrective terms, detailed in Appendix A, depend on the spatial
derivatives of λ and vP. To include these terms in a manner which
is consistent with the leap-frog time scheme, the components cor-
responding to velocity equations (respectively stress equations) are
taken at an intermediate time, that is at (n + 1/2)	t [respectively
(n + 1)	t].

Different quadrature formulas can be used to account for the intra-
element material variations. In a first trial, the material properties
are approximated by second-degree polynomials. Therefore, for
a polynomial interpolation of degree p, we choose a quadrature
formula of order 2 p + 2 for the calculation of the modified mass
matrices.

We present, in Fig. 4, the L2-error at tend with respect to the mesh
size h, for values of p from 1 to 5. We notice that the results are
relatively different from the homogeneous case for which a second-
order convergence is obtained for all values of p. By studying more
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1106 E.D. Mercerat and N. Glinsky

Figure 2. Convergence study for a homogeneous medium: error as a function of the mesh spacing h for different methods Pp (a) using the optimal time step
determined by the condition (8), (b) with a fixed tiny time step 	tp in order to appreciate the convergence of the spatial integration.

Table 2. Results for the hp-convergence study; case of a homogeneous medium. Global error of eq. (16) as a function of h for the DG Pp

method. Optimal 	t from the condition (8).

P1 P2 P3 P4 P5

1/h errL2 OL2 | 1/h errL2 OL2 errL2 OL2 errL2 OL2 errL2 OL2

12 5.87 × 10−1 – | 4 5.89 × 10−1 – 3.41 × 10−1 – 1.89 × 10−1 – 1.21 × 10−1 –
16 3.57 × 10−1 1.72 | 8 1.89 × 10−1 1.63 8.43 × 10−2 2.01 4.74 × 10−2 1.99 3.03 × 10−2 1.99
20 2.38 × 10−1 1.81 | 12 8.44 × 10−2 1.98 3.72 × 10−2 2.01 2.10 × 10−2 2.00 1.34 × 10−2 2.01
24 1.63 × 10−1 2.07 | 16 4.74 × 10−2 2.00 2.10 × 10−2 1.98 1.18 × 10−2 2.00 7.58 × 10−3 1.98
28 1.22 × 10−1 1.87 | 20 3.03 × 10−2 2.00 1.34 × 10−2 2.01 7.58 × 10−3 1.98 4.85 × 10−3 2.00
32 9.54 × 10−2 1.84 | 24 2.10 × 10−2 2.00 9.36 × 10−3 1.96 5.26 × 10−3 2.00 3.36 × 10−3 2.01

precisely the error values in Table 4, we observe much higher error
values for the coarser meshes, which gives the illusion of a better
convergence. If we except the few highest values of h, the error levels
of the methods Pp with p ≥ 2 are comparable (even slightly lower)

than for the homogeneous case. For p = 4 and 5, the convergence
order quickly reaches values equal to 2. For p = 2 and 3, the value of
OL2 decreases more slowly from values between 3 and 4 but second-
order convergence will probably be reached when h continues to
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Table 3. Results for the hp-convergence study for the homogeneous medium. Global error (16) as a function of h for the DG Pp method.
Influence of the spatial discretization, time step set constant to a very small value 	tp = αhp.

P1 P2 P3 P4 P5

	t (s) 2.34 × 10−4 1.17 × 10−4 7.84 × 10−5 5.88 × 10−5 4.71 × 10−5

1/h errL2 OL2 | 1/h errL2 OL2 errL2 OL2 errL2 OL2 errL2 OL2

8 8.87 × 10−1 – | 3 – – 1.31 × 10−1 2.23 1.66 × 10−2 5.43 8.90 × 10−4 4.96
9 6.92 × 10−1 2.09 | 4 3.88 × 10−1 – 4.51 × 10−2 3.70 2.32 × 10−3 6.86 2.05 × 10−4 5.10
10 5.90 × 10−1 1.52 | 5 1.36 × 10−1 4.69 1.58 × 10−2 5.52 6.76 × 10−4 5.52 6.41 × 10−5 5.20
11 5.21 × 10−1 1.30 | 6 7.48 × 10−2 3.27 8.48 × 10−3 3.41 2.59 × 10−4 5.25 2.59 × 10−5 4.96
12 4.64 × 10−1 1.33 | 7 4.53 × 10−2 3.26 5.06 × 10−3 3.34 1.18 × 10−4 5.11 1.30 × 10−5 4.47
13 4.16 × 10−1 1.36 | 8 3.01 × 10−2 3.06 3.25 × 10−3 3.31 – – – –

Figure 3. Example of uniform triangular mesh (1/h = 4) over the smoothly
varying velocity model used in the hp-convergence test.

decrease. For p = 1, a first-order convergence is obtained which is
consistent with the theoretical value, but slightly less than for the
homogeneous case. This can be explained by the discretization of
the corrective terms for this case, which are simply calculated at the

three interpolation nodes of P1 following the procedure described
in Appendix A. Note however that we are mainly interested in the
convergence of high-order methods.

Finally, to investigate the impact of the order of the quadrature
formula, this convergence study has also been made considering
two other sets of quadrature points: the first one corresponding to
an integration of the modified mass matrix exact until order 2 p
(i.e. no order left for the material variations), and a second one
for which this integration is exact until order 2 p + 4 (i.e. order
4 for the material variations). The convergence results are almost
exactly the same and do not depend on the order of the quadrature
formula used for the calculation of the modified mass matrices. This
proves that it would be enough to use a formula of order 2 p to take
into account a smooth variation in properties within the elements
(i.e. gradient models). This is in accordance to classical SEM in
quadrangles where the Gauss–Lobatto–Legendre quadrature rule
exactly integrates polynomials of order 2p − 1 with p + 1 points
(Canuto et al. 1988), that is leaving no extra degree for intra-element
material variations. As we shall see in the next section, this may not
be the case when the variations in properties are not smooth within
the elements.

As a final remark, we stress that the choice of different sets of
quadrature points has no influence on the CPU time of the simu-
lation. Since the modified mass matrices, of size N × N are cal-
culated, inverted and stored for each triangle of the mesh, only
once in a pre-processing stage, the additional cost due to a higher

Figure 4. Convergence study for a smoothly varying heterogeneous medium: error as a function of the mesh spacing h for different methods Pp .
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1108 E.D. Mercerat and N. Glinsky

Table 4. Numerical convergence results for the DG Pp methods for the smoothly varying heterogeneous medium.

P1 P2 P3 P4 P5

1/h errL2 OL2 1/h errL2 OL2 1/h errL2 OL2 errL2 OL2 errL2 OL2

20 8.54 × 10−1 – 12 3.84−1 – 4 – – 9.04−1 – 5.34 × 10−1 –
24 7.01 × 10−1 1.08 16 1.25−1 3.90 8 1.47 × 10−1 – 6.63−2 3.76 1.43 × 10−2 5.22
28 5.93 × 10−1 1.08 20 5.52−2 3.66 12 4.46 × 10−2 2.94 1.60−2 3.50 5.25 × 10−3 2.47
32 5.13 × 10−1 1.08 24 2.97−2 3.39 16 2.41 × 10−2 2.13 5.64−3 3.62 2.95 × 10−3 2.00
36 4.52 × 10−1 1.07 28 1.82−2 3.17 20 1.36 × 10−2 2.56 3.07−3 2.72 1.88 × 10−3 2.01
40 4.05 × 10−1 1.04 32 1.20−2 3.12 24 8.20 × 10−3 2.77 2.06−3 2.18 – –

number of quadrature points is negligible compared to the total
computational time of the simulation. We come back to this point
in the next section.

4.2 Amplification due to a surface layer

A classical problem in ground motion studies is the reliable evalua-
tion of the lithological site effect, that is the amplification of seismic
motion caused by the soil layers near the ground surface (Bard &
Bouchon 1985). These layers are generally composed of soft mate-
rials with extremely low and highly variable shear wave velocities
(less than 100 m s−1 in some cases). This constitutes the main bot-
tleneck for regional numerical simulations of ground motion as the
size of elements (or the grid size for a finite difference method) must
be small enough to accurately account for the minimum propagated
wavelenghts (e.g. tens of metres) and the strong heterogeneity of
the medium.

We study in this section the amplification due to a superficial
layer of 40-m-thick overlying a half-space. The material properties
are shown in Table 5, where we note the high impedance contrast
between both media (with a velocity ratio greater than 6).

Since this problem is 1-D but studied in two dimensions of space,
the computational domain is 3000 m deep and of variable width 2 h
where h is the mesh size. Uniform triangular meshes are constructed
by considering 3 points in the x-direction whatever the value of h.
Periodicity conditions are applied in the lateral boundaries of the
domain, a free-surface condition at the top and absorbing conditions
at the bottom. The incoming plane wave has a SV polarization
and a Ricker source time function with central frequency of 2 Hz
corresponding to a maximum frequency around fmax = 6 Hz. Then,
the minimum wavelength in the surface layer is vS/fmax = 25 m.
The incident wave is introduced in the bedrock part of the model
through a right-hand side of the horizontal component vx following
the method detailed in Peyrusse et al. (2014).

Table 5. Physical parameters for the soft layer problem
overlying a bedrock.

Half-space Soft layer

S-wave velocity (m s−1) 1000 150
P-wave velocity (m s−1) 2450 365
Density (kg m−3) 2100 1800

According to theory (Kramer 1996), resonant peaks at fn = (2n
− 1)vS/4H = (2n − 1) 0.9375 Hz, n ∈ N, are expected and three
of them, respectively at 0.9375, 2.8125 and 4.6875 Hz, are in
the frequency range of interest. Besides, the amplitude of the
amplification is determined by the impedance contrast between
the soft layer and the half-space which, in this case, is equal to
a = 2 (ρ vS)half-space/(ρ vS)layer = 4.2 × 106/2.7 × 105 � 15.5555.

Several combinations of uniform triangular meshes and quadra-
ture/interpolation points are used in order to illustrate the interest
of high-order methods and the improvements brought by the new
DG formulation. First, we consider a series of meshes honouring
the interface between the media. Then, the mesh size h must be a
divisor of the soft layer depth that is h ∈ {5, 10, 20, 40}. We are
interested in the transfer functions (i.e. spectral ratio between the
waveform recorded at the free-surface and the incident waveform) of
the horizontal velocity component vx and compare the results to the
theoretical values of amplication and associated frequencies in the
frequency range [0, 6] Hz. Time simulations are run until t = 16 s,
all spectra and spectral ratios are calculated with a frequency step
	f = 2.5 × 10−3 Hz. The solutions corresponding to P2, P3 and
P4 methods are presented in Table 6. Here, since the medium do
not vary inside the elements, the number of quadrature points has
no importance as soon as the integration of the mass matrix is exact
until order 2 p. For each method, we choose the ‘optimal’ result, that
is (1) the one corresponding to the maximum value of h for a better
efficiency and (2) for which the relative errors to the theoretical
amplification and frequencies are at most 0.5 per cent.

Optimal solutions are obtained using h = 5 m for the P2 method,
h = 10 m for the P3 method and h = 20 m with the P4 method.
When comparing the CPU times of these three simulations, we
notice that the high-order simulations are definitely more efficient.
Note that, considering the sampling 	f, the frequencies of the first
two peaks are exactly equal to the expected values for the three
methods, the relative errors are then equal to zero. The maximum
error on the amplitude is 0.3 per cent. The most accurate solution
is obtained with the P4 method and h = 20 m, and it is taken as
the reference in the following. The corresponding transfer function
is compared to the theoretical values at the peaks (in solid lines)
in Fig. 5 and the results are in perfect accordance. This proves the
ability of the proposed DG method to accurately take into account
strong contrasts in material properties.

Table 6. Accuracy of thePp DG methods (2 ≤ p ≤ 4) for transfer functions when the mesh honours the discontinuity between the media. Values of amplification
a(i), corresponding frequency f(i) (in Hz) for i = 1, . . , 3 and relative errors (in per cent) with respect to the theoretical values.

h NT CPU | a(1) erra(1) f(1) errf(1) | a(2) erra(2) f(2) errf(2) | a(3) erra(3) f(3) errf(3)
(m) (s) | (per cent) (Hz) (per cent) | (per cent) (Hz) (per cent) | (per cent) (Hz) (per cent)

P2 5 2400 572 | 15.5340 0.1 0.9375 0.0 | 15.5413 0.1 2.8125 0.0 | 15.5388 0.1 4.6900 0.05
P3 10 1200 455 | 15.5338 0.1 0.9375 0.0 | 15.5270 0.2 2.8125 0.0 | 15.5085 0.3 4.6900 0.05
P4 20 600 326 | 15.5336 0.1 0.9375 0.0 | 15.5336 0.1 2.8125 0.0 | 15.5540 0.01 4.6900 0.05
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Figure 5. Transfer function of the horizontal velocity vx at the surface. Results for the P4 DG method for h = 20 m, the mesh honours the interface between
media.

In a second stage, we apply the new DG formulation to a mesh
with the only constraint to satisfy the sampling of the minimum
wavelength without honouring the interface between the media. We
study the results of the P4 method and the mesh corresponding
to h = 25 m which is the minimimum wavelength propagated in
the soft layer. Four sets of quadrature points have been used (Nq ∈
{16, 25, 33, 42}) for which integration of the modified mass matrix
is exact until orders 8, 10, 12 and 14, respectively.

We present, in Fig. 6, the transfer functions of the horizontal
velocity vx at the surface for the four sets of quadrature points. As
previously, these solutions are compared to the theoretical values
and are completed by relatives errors at the three peaks, given in
Table 7. We first conclude that the solution corresponding to Nq = 16
is of poor quality: the first peak is not too badly approximated, but
the frequencies associated to the two last peaks are overestimated,
with relative errors about 3 per cent. The two following solutions,
obtained using Nq = 25 and 33, are better and a clear improvement
is visible for the two first peaks. For the last peak, the amplification
is too high with Nq = 25 and the frequency is overestimated with
Nq = 33 (both relative errors are about 2 per cent). None of these
solutions are considered as acceptable following our accuracy cri-
teria. Finally, the solution obtained with Nq = 42 is correct. The
three peaks are well captured and all relative errors (on amplitude
and frequency) are lower or equal to 0.5 per cent. This result proves
that, by increasing the number of quadrature points and thus the
accuracy of the modified mass matrices calculation, it is possible to
converge towards the same solution as the initial DG method, but
without the constraint of including the interface between media in
the mesh.

To complete these transfer functions, we present in Fig. 7 the
time evolution of the horizontal velocity for the less and the most
accurate cases. These solutions are compared to the reference solu-
tion, here the value obtained using the P4 method and the mesh size
h = 20 m. First, the solution obtained using Nq = 16 quadrature
points (Fig. 7a) is too imprecise. After the first reflection of the
incident wave at the surface, we notice a net delay (for times greater
than 2.5 s) in comparison to the reference solution which results
from an insufficient approximation of the strong jump in the ma-
terial properties. If a smoothly varying material can be accurately
taken into account without any additional quadrature points com-
pared to the homogeneous case (as seen in the previous section), it
is clear that a strong discontinuity of the material properties needs

more accurate quadrature formulas. A clear improvement appears
in the solution corresponding to Nq = 42 (order 14). The result of
the new DG method is similar to the reference one, for the entire
signal duration.

Contrary to the results presented by Castro et al. (2010) for
a intra-element material discontinuity, we did not encounter any
oscillation when increasing the number of quadrature points. For
the various tests we performed, the use of more accurate quadra-
ture formulas for the calculation of the modified mass matrices
generally leads to improved solutions. The only limitation of this
method comes from the quadrature formulas themselves which are
exact for polynomial functions. It would be interesting to look for
more general integration formulas, applicable to other types of
functions.

Table 7 also presents the CPU times of the simulations. These
times are similar for the four values of Nq which proves that the
number of quadrature points used for the calculation of the modi-
fied mass matrix has no effect on the total CPU time of the simula-
tion. Then, we stress that the achieved accuracy has no extra cost.
Moreover, the use of this mesh (h = 25 m) allows a reduction of
the CPU time of 30 per cent compared to the reference solution (P4

method, h = 20 m) associated to the initial method based on meshes
honouring the interface between media.

This test confirms that the high-order DG method produces ac-
ceptable solutions using four to five interpolation nodes per min-
imum wavelength. Similar results are found for other high-order
methods applied to elastic wave propagation (De Basabe et al.
2008; Seriani & Oliveira 2008; Liu et al. 2012). The new method-
ology, which allows material variations inside elements, signifi-
cantly reduces the constraint during mesh generation. The only
condition to be satisfied concerns the sampling of the minimum
propagated wavelength. Moreover, this example proves that the
method is sufficiently robust to deal with strong jumps on the
material properties. Contrary to the previous case of a smooth
velocity model, high-order quadrature formulas are necessary to
better sample the strong velocity contrast and produce accurate
solutions.

One of the main advantages is that, removing the constraint on
interfaces, the meshes contain less elements, the global time step
is generally increased and this results in a reduction in CPU time.
For this 1-D test case (i.e. refinement made in only one direction)
the gain in CPU time is of the order of 30 per cent. Comparable
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1110 E.D. Mercerat and N. Glinsky

or even better results are to be expected for 2-D and 3-D mesh
configurations.

4.3 2-D sedimentary basin

We now turn to a more complex example of a 2-D sedimentary
basin with variable seismic velocities lying on an homogeneous

Figure 6. Transfer functions of the horizontal velocity vx at the surface.
Results for the P4 DG method for h = 25 m using (a) Nq = 16, (b) Nq = 25,
(c) Nq = 33 and (d) Nq = 42 quadrature points for the calculation of the
modified mass matrix.

substratum. This geometry is prone to generate high seismic ampli-
fications and long-lasting seismograms because of trapped surface
waves inside the basin. An extensive study of the seismic response
of such alluvial basins is beyond the scope of this paper and the
interested reader can be referred to classical works such as Bard
& Bouchon (1980a,b) and Sánchez-Sesma & Luzón (1995). The
main interest here is to illustrate the geometrical flexibility and the
enhanced mesh adaptativity provided by the use of an unstructured
triangulation with non-constant material properties.

In a first step, we concentrate in the approximation of a smoothly
varying velocity model within the basin. Secondly, we test the ca-
pability of the presented methodology to deal with strong jumps in
material properties within the elements of the mesh, as it has been
presented in Section 4.2 for the 1-D-amplification.

The physical domain has a width of 10 km and a depth of 5 km.
The basin bottom is represented by a trapezoidal shape of 4000 m
at the surface, 2800 m at the bottom base located at 300 m depth
(see Fig. 8). The velocity model within the basin consists of a
linear gradient with increasing velocities from vS = 500 m s−1

at the surface down to vS = 900 m s−1 at the basin bottom (we
assume a constant Poisson ratio ν = 0.25) and a constant density
of ρ = 2000 kg m−3. The rock substratum properties are set to
vP = 4000 m s−1, vS = 2600 m s−1 and ρ = 2500 kg m−3. The
discretization is composed of 6835 straight-sided triangles, ranging
from 40 m on top and 80 m at the bottom of the basin, and a
polynomial degree of order 4 is used for the interpolation within
each triangle. This assures accurate simulations up to around 10 Hz
(i.e. minimum wavelength of 50 m at the top of the model). We
use a quadrature rule of order 10 (Nq = 25 quadrature points per
element) accurate enough for the interpolation degree used. The
numerical mesh shown in Fig. 8 has a free surface condition on
the top edge and absorbing boundaries at the left, right and bottom
edges. In order to excitate different waves in the basin, we perturb
the medium with a point (explosive) source located at X = 5027 m,
and Z = 3061 m, modulated in time by a Gaussian wavelet with
central frequency f0 = 4 Hz. Receivers are placed at the top edge of
the model from X = 2500 m to X = 7500 m.

First of all, we compare the DG solution with a reference
solution calculated by the open-source SPECFEM2D package
(available from http://www.geodynamics.org) based on the spec-
tral element method (SEM) and widely used by the seismologi-
cal community (Komatitsch & Vilotte 1998; Tromp et al. 2008,
and references therein). The spectral element mesh is composed
of 6797 quadrilaterals and respects the boundary of the basin. A
multidimensional lagrangian interpolation of degree 4 is used. This
mesh deliberately oversamples the wavefield for the current veloc-
ity model and a simulation up to 10 Hz maximum frequency. We
run exactly the same simulation and the results can be seen in the
trace panels of Fig. 10. We can hardly see any difference between
the seismograms of the horizontal components calculated by both
methodologies (similar results for the vertical component not shown
here). Therefore we verify that the proposed DG methodology gen-
erates reliable results for a complex wavefield in a smoothly varying
medium.

In a second stage, we evaluate the improvement brought by the
new DG methodology by comparing with the results obtained us-
ing a classical piecewise constant approximation for the velocity
gradient inside the sedimentary basin. In Fig. 9, we can see the
approximation of the velocity gradient in the basin by a piecewise
constant approximation inside each element (a) and by the true
velocity model evaluated at the quadrature points (b). We now com-
pare the DG solution against the reference solution calculated by
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Table 7. Accuracy of the P4 DG method for transfer functions when the mesh does not honour the discontinuity between the media (h = 25 m, mesh contains
480 triangles). Values of amplification a(i), corresponding frequency f(i) (in Hz) for i = 1, . . , 3 and relative errors (in per cent) with respect to the theoretical
values for Nq = 16, 25, 33 and 42.

Nq CPU | a(1) erra(1) f(1) errf(1) | a(2) erra(2) f(2) errf(2) | a(3) erra(3) f(3) errf(3)
(s) | (per cent) (Hz) (per cent) | (per cent) (Hz) (per cent) | (per cent) (Hz) (per cent)

16 236 | 15.2929 1.7 0.9625 2.7 | 15.5315 0.1 2.8925 2.8 | 15.3408 1.4 4.8500 3.5
25 231 | 15.5522 0.02 0.9425 0.5 | 15.7530 1.3 2.8325 0.7 | 15.8394 1.8 4.7500 1.3
33 230 | 15.4594 0.6 0.9475 1.1 | 15.6042 0.3 2.8500 1.3 | 15.3933 1.0 4.6650 1.9
42 230 | 15.5258 0.2 0.9325 0.5 | 15.6119 0.4 2.7974 0.5 | 15.5174 0.2 4.6925 0.1

Figure 7. Time evolution of the horizontal velocity vx at the surface. Results
for the P4 DG method for h = 25 m using (a) Nq = 16 and (b) Nq = 42
quadrature points for the calculation of the modified mass matrix.

the SEM in Fig. 11(a) where we can clearly see the differences, spe-
cially in the surface waves trapped inside the basin. This highlights
the difficulty for the previous constant-by-element DG approach to
accurately reproduce the surface wave dispersion due to the sedi-
mentary basin, unless an extreme refinement of the mesh near the
free-surface of the model and inside the basin is used.

In order to emphasize the previous effect, we run the same exam-
ple but coarsening the mesh as much as possible. We create a mesh
of 5562 straight-sided triangles with an edge size of 50 m on the
top and 100 m at the bottom of the basin for the same gradient ve-
locity model, and we use interpolation polynomials of degree 5. We
then obtain an accurate simulation for wavelengths down to 50 m.
We now consider a quadrature formula of order 12 (Nq = 33) to
take into account the interpolation degree of 5 and also the velocity
variations inside the elements. Again we run two simulations: one
with the current methodology and an other one with the previous
constant-by-element discretization of the velocity model. The dif-
ferences shown in Fig. 11(b) are larger than in the previous case,
as expected because of the coarsening of the mesh. Note however
that this is not caused by an insufficient sampling of the wavefield
(i.e. classical numerical dispersion), but merely due to the limited
representation of the velocity gradient inside the basin. To better
quantify the differences, we show in Fig. 12 the traces from the
surface receiver at X = 3200 m (marked by an arrow in the panels
of Fig. 10). The comparisons are quantified with the time frequency
misfit criteria of Kristeková et al. (2009). First, we confirm that

using the new DG method both meshes accurately reproduce the
reference seismograms calculated by SEM. Moreover, the results
corresponding to the higher degree polynomial interpolation (de-
gree 5) are even better, which proves the interest for high order
interpolations even when associated to the standard leap-frog time
scheme. Secondly, we clearly see that the errors are quite large when
using the constant-by-element velocity discretization, reaching al-
most 50 per cent for the later surface wave arrivals, and becoming
worse with the mesh coarsening.

Lastly and following a reviewer’s suggestion, we decide to test
the capability of the method to reproduce the 2-D complex wave-
field without honouring the geological interface between the basin
bottom and the bedrock. At a first glance, this is not an easy task as
the ratio in material impedance is of the order of 3.6. We create a
mesh which satisfies the sampling criteria of the wavefield with in-
terpolation polynomials of degree 5 and we run two cases: one with
the quadrature formula of order 12 (Nq = 33) and the other with
the quadrature formula of order 14 (Nq = 42). We do not apply any
interface constraint in the mesh generation process, and therefore it
does not match the interface between the basin and the bedrock, as
we can see in Fig. 13. From the trace panels shown in Fig. 14, we can
conclude that even without honouring the bottom of the basin, the
method recovers the material variability with a high enough number
of quadrature points in the elements sharing the sedimentary layer
and the bedrock. We stress however, that a limit will be encountered
when the jump in material properties increases, as the quadrature
formulas are thought to integer smooth (i.e. polynomial) functions.
In Fig. 15, we show the differences of the receiver at X = 3200 m
for just the horizontal component, similar results are found for
the vertical one (not shown here). We clearly appreciate the better
accuracy while increasing the number of quadrature points. The
envelope and phase misfits are lower than 5 per cent. They are rela-
tively higher than those of Fig. 10(b) (lower than 2 per cent) when
the mesh exactly follows the interface between basin and bedrock,
as expected. But they are much lower than those shown in Fig. 11(b)
(higher than 10 per cent) when the gradient velocity model within
the basin was badly represented by the constant-by-element
approach.

5 C O N C LU S I O N S

We present an extension of the high-order nodal DG method based
on centred fluxes and a second-order time scheme to elastic media
with arbitrary heterogeneities. The objective of this extension is to
relax the assumption of constant material properties within the el-
ements of the mesh without loosing the high-order accuracy of the
method, and with only minor modifications to the actual DG scheme.
This is possible by the introduction of a change of variable for the
stress components which allows writing the elastodynamic system
in pseudo-conservative form where the material parameters appear
only as coefficients of the time derivatives. As a consequence, the
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Figure 8. Triangular mesh of the sedimentary basin model of 5562 elements, 50 m minimum edge at the top edge of the model.

Figure 9. Detail of the velocity gradient discretization of the sedimentary basin: (a) classical piecewise constant velocities per triangle and (b) true gradient
velocity model that is evaluated at each quadrature point.

introduction of variable properties inside elements reduces to the
calculation of modified mass matrices. This is done by resorting to
another set of quadrature points, where the material properties need
to be assigned, that is different from the nodal set of interpolation
points. The interconnection between both set of points is established
by generalized Vandermonde matrices evaluated at each nodal set.
We verified first the hp-convergence of the presented methodology
for a smoothly varying media. As the interpolation order increases,
the error decreases with the order of the time scheme, as expected.
Moreover, except for very coarse meshes, the convergence and the
error levels are comparable to the results obtained for a homoge-
neous medium. To obtain satisfactory results for a simulation with
interpolation order p, the order of the quadrature formula needs to
be at least 2p for smoothly varying material properties within the
elements.

In the case of strong impedance contrasts, we show the advantages
of the new DG methodology to calculate the surface amplification

due to a soft layer near the free surface, in terms of reduced com-
plexity in mesh generation and computational efficiency provided
by the high-order interpolation. Very accurate results are obtained
using meshes that do not follow the strong jump between material
properties. In this case, it is essential to increase the number of
quadrature points (using quadrature formulas of order greater than
2p) in order to better sample the discontinuity in material proper-
ties within the elements. Moreover, the method appears to be very
flexible since the number of quadrature points can be increased if
necessary, independently of the set of interpolation nodes. Never-
theless, a limit is readily reached in the integral approximation as the
quadrature formulae used are meant to accurately integrate smooth
functions.

We compare the simulation results against solutions calculated
by the SEM for a more realistic 2-D basin example and prove
the applicability of the DG extension to more complex hetero-
geneous configurations. The results confirm the difficulty for the
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Figure 10. Seismograms of horizontal velocity components. (a) calculated by the new DG method and (b) differences with respect to the SPECFEM2D
calculation (same amplitude scale). Vertical arrow at X = 3200 m indicating the receiver analysed later.

Figure 11. Differences between classical CEl (constant-by-element) DG method and the new methodology (based on modified mass matrices) of horizontal
velocity seismograms for: (a) a mesh of 40 m at the surface, polynomial degree P4, and 25 quadrature points, and (b) a mesh of 50 m at the surface, polynomial
degree P5, and 33 quadrature points.
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Figure 12. Seismograms (horizontal component) of receiver at X = 3200 m comparing differences to the reference SPECFEM2D solution for the classical
CEl (constant-by-element) DG method and the new methodology for: (a) the mesh of 40 m, polynomial degree P4 with constant by element discretization,
(b) the mesh of 40 m, polynomial degree P4 with 25 quadrature points, (c) the mesh of 50 m, polynomial degree P5 with constant by element discretization,
and (d) the mesh of 50 m, polynomial degree P5 with 33 quadrature points. The differences are multiplied by a factor of 2 for the constant-by-element cases
and by a factor of 10 for the new methodology. Time-Frequency misfit criteria shown on top (envelope misfit) and bottom (phase misfit) of each seismogram
(different colourscales for each case).
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Figure 13. Detail of the triangular mesh at the edge of the sedimentary basin (same inset of Fig. 8). Note that the unstructured mesh does not honour the
bottom of the basin (red line).

Figure 14. Differences between two runs of the new methodology (based on modified mass matrices) of horizontal velocity seismograms with respect to the
reference solution of SPECFEM2D for an arbitrary mesh not honouring the basin-bedrock interface with: (a) a polynomial degree P5 and 33 quadrature points,
and (b) the same mesh with a polynomial degree P5 and 42 quadrature points.

initial method, based on constant material properties per element,
to produce accurate solutions for smoothly varying media (such
as gradients) unless using extremely refined meshes. Then, we
propose the following strategy for any ground motion simulation
at the local or regional scales: when the impedance contrasts in
the subsurface are highly pronounced (e.g. at the contact between
the bottom of the basin and the substratum), the computational
mesh should honour the interface as much as possible; on the other
hand, when the impedance contrast are not so pronounced or in the
case of smooth variations, the proposed DG method can be highly
beneficial. It considerably simplifies the mesh generation and al-
lows avoiding small elements that reduce the global time step of
simulations.

In addition to the accuracy and the flexibility of the proposed
extension, a remarkable property is that it does not increase the
computational cost of classical DG schemes with constant ma-
terial properties per element. The heterogeneity of the medium

is only taken into account for the calculation of the modified
mass matrices (with arbitrary levels of detail and integration or-
ders) once in a pre-processing stage of the simulation. There is
however an increase in storage capacity (i.e. the inverse of the
modified mass matrices need to be stored for each element), and
the need to access these matrices at each time step during the
simulation.

Finally, the choice adopted in this work to solving the elastody-
namics system (4) in the pseudo-conservative form is not manda-
tory, and the proposed methodology can be applied to the origi-
nal formulation expressed in eq. (2) to account for anelastic and/or
anisotropic media. In such cases the rigidity matrices and the numer-
ical fluxes will depend on the variable material properties. Therefore
they should also be calculated and stored for each element of the
mesh. The computational costs of such approach must be evaluated,
specially in the 3-D case. These different topics will be the subject
of future research.
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Figure 15. Seismograms (horizontal component) of receiver at X = 3200 m comparing differences to the reference SPECFEM2D solution for an arbitrary
mesh not honouring the basin-bedrock interface with: (a) a polynomial degree P5 and 33 quadrature points, and (b) the same mesh with a polynomial degree
P5 and 42 quadrature points. Time–frequency misfit criteria shown on top (envelope misfit) and bottom (phase misfit) of each seismogram.
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A P P E N D I X A : S O U RC E T E R M S F O R
T H E C O N V E RG E N C E S T U DY I N
H E T E RO G E N E O U S M E D I A

When we consider a smoothly varying medium given by
ρ = 1 kg m−3, λ = 2 + 0.5 sin (2πx + 2πy) kg m−1 s2 and
μ = 2 kg m−1 s2, the plane wave defined by

�W ex
(x, y, t) = �Rs Ss + �Rp Sp (A1)

with

SS = sin(2πx + 2πy + 2
√

2 π vS t) ,

SP = sin(2πx + 2πy − 2
√

2 π vP t) ,

and

�RS =
(√

2

2
vS, −

√
2

2
vS, 0, μ, 0

)t

and

�RP =
[√

2

2
vP ,

√
2

2
vP , −(λ + 2μ), 0, −μ

]t

,

is no more an exact solution of the pseudo-conservative system

� (ρ, λ, μ) ∂t
�̃W + Ãx∂x

�̃W + Ãy∂y
�̃W = �0 . (A2)

As it is not an easy task to establish a solution of the system
including the variations of λ, a classical way consists to solve a
modified set of equations containing corrective source terms, as
done for instance in (Castro et al. 2010),

� (ρ, λ, μ) ∂t
�̃W + Ãx∂x

�̃W + Ãy∂y
�̃W = �S ,

for which �W ex
is still an exact solution. The components of the

corrective source term �S are obtained by injecting the expres-

sion of �W ex
in each line of the system (A2) and collecting the

remaining terms. These terms depend on the derivatives of λ

and vP with respect to x and y which can be gathered in two
terms,

∂λ = ∂xλ = ∂yλ = π cos(2πx + 2πy) ,

∂vP = ∂xvP = ∂yvP = cos(2πx + 2πy)

2 vP
.

Then, each component of �S is calculated

S1 = ρ ∂tvx − ∂x (σ1 + σ2) − ∂yσxy

= ∂λ SP − 2π
√

2 (λ + 2μ) ∂vP t Cp ,

where

CP = cos(2πx + 2πy − 2
√

2 vP t) .

In the same way,

S2 = ρ ∂tvy − ∂xσxy − ∂y(σ1 − σ2)

= ∂λ SP − 2π
√

2 (λ + 2μ) ∂vP t CP = S1 ,

S3 = 1

λ + μ
∂tσ1 − ∂xvx − ∂yvy

= (−√
2 SP + 4 π vP t CP ) ∂vP ,

S4 = 1

μ
∂tσ2 − ∂xvx + ∂yvy = 0 ,

S5 = 1

μ
∂tσxy − ∂xvy − ∂yvx

= (−√
2 SP + 4 π vP t CP ) ∂vP = S3 .
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