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Abstract

The approximate nearest neighbor problem (ǫ-ANN) in high dimensional Euclidean space has
been mainly addressed by Locality Sensitive Hashing (LSH), which has polynomial dependence
in the dimension, sublinear query time, but subquadratic space requirement. In this paper,
we introduce a new definition of “low-quality” embeddings for metric spaces. It requires that,
for some query point q, there exists an approximate nearest neighbor among the pre-images of
the k > 1 approximate nearest neighbors in the target space. Focusing on Euclidean spaces,
we employ random projections in order to reduce the original problem to one in a space of
dimension inversely proportional to k.

The k approximate nearest neighbors can be efficiently retrieved by a data structure such
as BBD-trees. The same approach is applied to the problem of computing an approximate near
neighbor, where we obtain a data structure requiring linear space, and query time in O(dnρ),
for ρ ≈ 1 − ǫ2/ log(1/ǫ). This directly implies a solution for ǫ-ANN, while achieving a better
exponent in the query time than the method based on BBD-trees. Better bounds are obtained
in the case of doubling subsets of ℓ2, by combining our method with r-nets.

We implement our method in C++, and present experimental results in dimension up to
500 and 106 points, which show that performance is better than predicted by the analysis. In
addition, we compare our ANN approach to E2LSH, which implements LSH, and we show that
the theoretical advantages of each method are reflected on their actual performance.

1 Introduction

Nearest neighbor searching is a fundamental computational problem with several applications in
Computer Science and beyond. Let us focus on the Euclidean version of the problem. Let X be
a set of n points in d-dimensional Euclidean space ℓd2. We denote by ‖ · ‖ the inherent Euclidean
norm ‖ · ‖2. The problem consists in building a data structure such that for any query point q, one
may report a point p ∈ X for which ‖p− q‖ ≤ ‖p′− q‖, for all p′ ∈ X; then p is said to be a nearest
neighbor of q. However, an exact solution to high-dimensional nearest neighbor search in sublinear
time requires prohibitively heavy resources. Thus, most approaches focus on the less demanding
and more relevant task of computing the approximate nearest neighbor, or ǫ-ANN. Given a real
parameter ǫ > 0, a (1 + ǫ)-approximate nearest neighbor to a query point q ∈ R

d is a point p in X
such that

‖q − p‖ ≤ (1 + ǫ) · ‖q − p′‖, for all p′ ∈ X.
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Hence, under approximation, the answer can be any point whose distance from q is at most (1 + ǫ)
times larger than the distance between q and its true nearest neighbor.

The corresponding augmented decision problem (with witness) is known as the near neighbor
problem, and is defined as follows. A data structure for the approximate near neighbor problem
((ǫ,R)-ANN) satisfies the following conditions: if there exists some point p in X such that ‖q−p‖ ≤
R, then an algorithm solving this problem reports p′ ∈ X such that ‖q − p′‖ ≤ (1 + ǫ) ·R, whereas
if there is no point p in X such that ‖q − p‖ ≤ (1 + ǫ) ·R, then the algorithm reports “Fail”. It is
known that one can solve not-so-many instances of the decision problem with witness and obtain
a solution for the ǫ-ANN problem.

Our contribution Deterministic space partitioning techniques perform well in solving ǫ-ANN
when the dimension is relatively low, but are affected by the curse of dimensionality. To address this
issue, randomized methods such as Locality Sensitive Hashing (LSH) are more efficient when the
dimension is high. One might try applying the celebrated Johnson-Lindenstrauss Lemma, followed
by standard space partitioning techniques, but the properties of the projected pointset are too
strong for designing an overall efficient ANN search method (cf. Section 2).

We introduce a notion of “low-quality” randomized embeddings and we employ standard random
projections à la Johnson-Lindenstrauss in order to define a mapping to ℓd

′

2 , for

d′ = O(log
n

k
/ǫ2),

such that an approximate nearest neighbor of the query lies among the pre-images of k approximate
nearest neighbors in the projected space. Moreover, an analogous statement can be made for the
augmented decision problem of reporting an (ǫ,R)-ANN, which also implies a solution for the ǫ-
ANN problem thanks to known results. Both of our methods employ optimal space, avoid the
curse of dimensionality and lead to competitive query times. While the first approach is more
straightforward, the second outperforms the first in terms of complexity, due to a simpler auxiliary
data structure. However, reducing ǫ-ANN to (ǫ,R)-ANN is non-trivial and might not lead to fast
methods in practice.

The first method leads to Theorem 11, which offers a new randomized algorithm for approx-
imate nearest neighbor search with the following complexities. Given n points in ℓd2, the data
structure, which is based on Balanced Box-Decomposition (BBD) trees, requires optimal O(dn)
space, and reports an (1+ǫ)3-approximate nearest neighbor with query time in O(dnρ log n), where
function ρ = 1 −Θ(ǫ2/ ln lnn), for ǫ ∈ (0, 1/2], and shall be fully specified in Section 4. The total
preprocessing time is O(dn log n). For each query q ∈ R

d, the preprocessing phase succeeds with
constant probability. The low-quality embedding is extended to finite subsets of ℓ2 with bounded
expansion rate c (see Subsection 4.2 for definitions). The pointset is now mapped to a space of
dimension O(log c), and each query costs roughly O((clog log c)d log n).

The second method applies the same ideas to the augmented decision version of the problem.
This problem is known to be as hard as ǫ-ANN (up to polylogarithmic factors). However, this
simplification allows us to combine the aforementioned randomized embeddings with simpler data
structures in the reduced space. This is the topic of Section 5, and Theorem 20 states that there
exists a randomized data structure with linear space and linear preprocessing time which, for any
query q ∈ R

d, reports an (1+ ǫ)3-approximate near neighbor (or a negative answer) in time O(dnρ),
where ρ = 1 − Θ(ǫ2/log(1/ǫ)). We are able to extend our results to doubling subsets of ℓ2 (see
Subsection 5.2 for definitions) by applying our approach to an r-net of the input pointset. The
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resulting data structure has linear space, preprocessing time which depends on the time required

to compute an r-net, and query time
(

2/ǫ
)O(ddim(X))

, where ddim(X) is the doubling dimension

of X.
We also present experiments, based on synthetic and image datasets, that validate our approach

and our analysis. We implement our low quality embedding method in C++ and present experimen-
tal results in up to 500 dimensions and 106 points. One set of inputs, along with the queries, follows
the “planted nearest neighbor model” which will be specified in Section 6. In another scenario, we
assume that the near neighbors of each query point follow the Gaussian distribution. We also used
the ANN SIFT1M [JDS11] dataset which contains a collection of 1 million vectors in 128 dimen-
sions that represent images. Apart from showing that the embedding has the desired properties
in practice, specifically those of Lemma 10, we also implement our overall approach for computing
ǫ-ANN using the ANN library for BBD-trees, and we compare with an LSH implementation, namely
E2LSH. We show that the theoretical advantages of each method are reflected in practice.

The notation of key quantities is the same throughout the paper.
The paper extends and improves ideas from [AEP15], except for Section 5 which is entirely new,

which achieves better complexity bounds with a conceptually simpler data structure.

Paper organization The next section offers a survey of existing techniques. Section 3 introduces
our embeddings to dimension lower than predicted by the Johnson-Linderstrauss Lemma. Section 4
states our main results about ǫ-ANN search in ℓ2 and for points with bounded expansion rate.
Section 5 extends our ideas to the (ǫ,R)-ANN problem in ℓ2 and in doubling subsets of ℓ2. Section 6
presents experiments to validate our approach. We conclude with open questions.

2 Existing work

This section details the relevant results that existed prior to this work.
As mentioned above, an exact solution to high-dimensional nearest neighbor search, in sublinear

time, requires heavy resources. One notable approach to the problem [Mei93] shows that nearest
neighbor queries can be answered in O(d5 log n) time, using O(nd+δ) space, for arbitrary δ > 0.

In [AMN+98], they introduced the Balanced Box-Decomposition (BBD) trees. The BBD-trees
data structure achieves query time O(c log n) with c ≤ d/2⌈1 + 6d/ǫ⌉d, using space in O(dn), and
preprocessing time in O(dn log n). BBD-trees can be used to retrieve the k ≥ 1 approximate
nearest-neighbors at an extra cost of O(d log n) per neighbor. BBD-trees have proved to be very
practical, as well, and have been implemented in software library ANN.

Another relevant data structure is the Approximate Voronoi Diagrams (AVD). They are shown
to establish a tradeoff between the space complexity of the data structure and the query time it

supports [AMM09]. With a tradeoff parameter 2 ≤ γ ≤ 1
ǫ , the query time is O(log(nγ)+1/(ǫγ)

d−1

2 )
and the space is O(nγd−1 log 1

ǫ ). They are implemented on a hierarchical quadtree-based subdivision
of space into cells, each storing a number of representative points, such that for any query point
lying in the cell, at least one of the representatives is an approximate nearest neighbor. Further
improvements to the space-time trade offs for ANN are obtained in [AdFM11].

One might apply the Johnson-Lindenstrauss Lemma and map the points to O(ǫ−2log n) dimen-
sions with distortion equal to 1 + ǫ aiming at improving complexity. In particular, AVD combined
with the Johnson-Lindenstrauss Lemma have query time polynomial in log n, d and 1/ǫ but require
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nO(log(1/ǫ)/ǫ2) space, which is prohibitive if ǫ ≪ 1. Notice that we relate the approximation error
with the distortion for simplicity. Our approach (Theorem 20) requires O(dn) space and has query
time O(dnρ), where ρ ≈ 1− ǫ2/log(1/ǫ).

In high dimensional spaces, classic space partitioning data structures are affected by the curse
of dimensionality, as illustrated above. This means that, when the dimension increases, either
the query time or the required space increases exponentially. An important method conceived for
high dimensional data is locality sensitive hashing (LSH). LSH induces a data independent random
partition and is dynamic, since it supports insertions and deletions. It relies on the existence of
locality sensitive hash functions, which are more likely to map similar objects to the same bucket.
The existence of such functions depends on the metric space. In general, LSH requires roughly
O(dn1+ρ) space and O(dnρ) query time for some parameter ρ ∈ (0, 1). In [AI08] they show that in
the Euclidean case, one can have ρ = 1

(1+ǫ)2
which matches the lower bound of hashing algorithms

proved in [OWZ14]. Lately, it was shown that it is possible to overcome this limitation by switching
to a data-dependent scheme which achieves ρ = 1

2(1+ǫ)2−1
+ o(1) [AR15]. One different approach

[Pan06] focuses on using near linear space but with query time proportional to dnO(1/(1+ǫ)) which
is sublinear only when ǫ is large enough. The query time was later improved [AI08] to dnO(1/(1+ǫ)2)

which is also sublinear only for large enough ǫ. For comparison, in Theorem 20 we show that it
is possible to use near linear space, with query time roughly O(dnρ), where ρ ≈ 1 − ǫ2/log(1/ǫ),
achieving sublinear query time even for small values of ǫ.

Exploiting the structure of the input is an important way to improve the complexity of ANN.
In particular, significant amount of work has been done for pointsets with low doubling dimen-
sion. In [HPM05], they provide an algorithm with expected preprocessing time O(2dim(X)n log n),
space usage O(2dim(X)n) and query time O(2dim(X) log n+ ǫ−O(dim(X))) for any finite metric space
X of doubling dimension dim(X). In [IN07] they provide randomized embeddings that preserve
nearest neighbor with constant probability, for points lying on low doubling dimension manifolds
in Euclidean settings. Naturally, such an approach can be easily combined with any known data
structure for ǫ-ANN.

In [DF08] they present random projection trees which adapt to pointsets of low doubling di-
mension. Like kd-trees, every split partitions the pointset into subsets of roughly equal cardinality.
Unlike kd-trees, the space is split with respect to a random direction, not necessarily parallel to
the coordinate axes. Classic kd-trees also adapt to the doubling dimension of randomly rotated
data [Vem12]. However, for both techniques, no related theoretical arguments about the efficiency
of ǫ-ANN search were given.

In [KR02], they introduce a different notion of intrinsic dimension for an arbitrary metric space,
namely its expansion rate c; it is formally defined in Subsection 4.2. The doubling dimension
is a more general notion of intrinsic dimension in the sense that, when a finite metric space has
bounded expansion rate, then it also has bounded doubling dimension, but the converse does
not hold [GKL03]. Several efficient solutions are known for metrics with bounded expansion rate,
including for the problem of exact nearest neighbor. In [KL04], they present a data structure which
requires cO(1)n space and answers queries in cO(1) lnn. Cover Trees [BKL06] require O(n) space
and each query costs O(c12 log n) time for exact nearest neighbors. In Theorem 14, we provide a
data structure for the ǫ-ANN problem with linear space and roughly O((clog(log c/ǫ))d · log n)) query
time. The result concerns pointsets in d-dimensional Euclidean space.

4



3 Low Quality Randomized Embeddings

This section examines standard dimensionality reduction techniques and extends them to approxi-
mate embeddings optimized to our setting. In the following, we denote by ‖ · ‖ the Euclidean norm
and by | · | the cardinality of a set.

An embedding is oblivious when it can be computed for any point of a dataset or query set,
without knowledge of any other point in these sets.

In [ABC+05], they consider non-oblivious embeddings from finite metric spaces with small di-
mension and distortion, while allowing a constant fraction of all distances to be arbitrarily distorted.
In [BRS11], they present non-oblivious embeddings for the ℓ2 case, which preserve distances in local
neighborhoods. In [GK15], they provide a non-oblivious embedding which preserves distances up
to a given scale and the target dimension mainly depends on ddim(X) with no dependence on |X|.
In general, embeddings based on probabilistic partitions are not oblivious. In [BG15], they solve
ANN in ℓp spaces, for 2 < p <∞, by oblivious embeddings to ℓ∞ or ℓ2.

But, it is not obvious how to use a non-oblivious embedding in the scenario in which we pre-
process a dataset and we expect a query to arrive. Therefore we focus on oblivious embeddings.

Let us now revisit the classic Johnson-Lindenstrauss Lemma:

Proposition 1. [JL84] For any set X ⊂ R
d, ǫ ∈ (0, 1) there exists a distribution over linear

mappings f : Rd −→ R
d′ , where d′ = O(log |X|/ǫ2), such that for any p, q ∈ X,

(1− ǫ)‖p − q‖2 ≤ ‖f(p)− f(q)‖2 ≤ (1 + ǫ)‖p − q‖2.

In the initial proof [JL84], they show that this can be achieved by orthogonally projecting the
pointset on a random linear subspace of dimension d′. In [DG03], they provide a proof based on
elementary probabilistic techniques, see also Lemma 6. In [IM98], they prove that it suffices to apply
a gaussian matrix G on the pointset. G is a d×d′ matrix with each of its entries independent random
variables given by the standard normal distribution N(0, 1). Instead of a gaussian matrix, we can
even apply a matrix whose entries are independent random variables with uniformly distributed
values in {−1, 1} [Ach03].

However, it has been realized that this notion of randomized embedding is stronger than what
is required for ANN searching. The following definition has been introduced in [IN07] and focuses
only on the distortion of the nearest neighbor.

Definition 2. Let (Y, dY ), (Z, dZ ) be metric spaces and X ⊆ Y . A distribution over mappings
f : Y → Z is a nearest-neighbor preserving embedding with distortion D ≥ 1 and probability of
correctness P ∈ [0, 1] if, ∀ǫ ≥ 0 and ∀q ∈ Y , with probability at least P , when x ∈ X is such that
f(x) is an ǫ-ANN of f(q) in f(X), then x is a (D · (1 + ǫ))-approximate nearest neighbor of q in
X.

Let us now consider a closely related problem. While in the ANN problem we search one point
which is approximately nearest, in the k approximate nearest neighbors problem (ǫ-kANNs) we
seek an approximation of the k nearest points, in the following sense. Let X be a set of n points in
R
d, let q ∈ R

d and 1 ≤ k ≤ n. The problem consists in reporting a sequence S = {p1, . . . , pk} of k
distinct points such that the i-th point pi is an (1 + ǫ)-approximation to the i-th nearest neighbor
of q. Furthermore, the following assumption is satisfied by the search routine of certain tree-based
data structures, such as BBD-trees.

5



Assumption 3. Let S′ ⊆ X be the set of points visited by the ǫ-kANNs search such that S =
{p1, . . . , pk} ⊆ S′ is the set of points which are the k nearest points to the query point q among the
points in S′. Moreover, S is ordered w.r.t. distance from q, hence pk is farthest. We assume that
∀x ∈ X \ S′, d(x, q) > d(pk, q)/(1 + ǫ).

Assuming the existence of a data structure which solves ǫ-kANNs and satisfies Assumption 3,
we propose to weaken Definition 2 as in the following definition.

Definition 4. Let (Y, dY ), (Z, dZ ) be metric spaces and X ⊆ Y . A distribution over mappings
f : Y → Z is a locality preserving embedding with distortion D ≥ 1, probability of correctness
P ∈ [0, 1] and locality parameter k if, ∀ǫ ≥ 0 and ∀q ∈ Y , with probability at least P , when
S = {f(p1), . . . , f(pk)} is a solution to ǫ-kANNs for q under Assumption 3, then there exists
f(x) ∈ S such that x is a (D · (1 + ǫ))-approximate nearest neighbor of q in X.

According to this definition we can reduce the problem of ǫ-ANN in dimension d to the problem
of computing k approximate nearest neighbors in dimension d′ < d.

We employ the Johnson-Lindenstrauss dimensionality reduction technique and, more specifically,
the proof in [DG03].

Remark 5. In the statements of our results, we use the term (1 + ǫ)2 or (1 + ǫ)3 for the sake of
simplicity. Notice that we can replace (1+ǫ′)2 by 1+ǫ just by rescaling ǫ′ ← ǫ/4 =⇒ (1+ǫ′)2 ≤ 1+ǫ.

Lemma 6. [DG03] There exists a distribution over linear maps A : Rd → R
d′ s.t., for any p ∈ R

d

with ‖p‖ = 1:

• if β2 < 1 then Pr[‖Ap‖2 ≤ β2 · d′d ] ≤ exp(d
′

2 (1− β2 + 2 ln β)),

• if β2 > 1 then Pr[‖Ap‖2 ≥ β2 · d′d ] ≤ exp(d
′

2 (1− β2 + 2 ln β)).

Now, a simple calculation shows the following.

Corollary 7. If β2 < 1 then Pr[‖Ap‖2 ≤ β2 · d′d ] ≤ (eβ2)d
′/2.

Proof. By Lemma 6,

Pr[‖Ap‖2 ≤ β2 · d
′

d
] ≤ (e−β2+1+2 lnβ)d

′/2 ≤ (e1+2 lnβ)d
′/2.

The following inequality shall be useful.

Lemma 8. For all i ∈ N, ǫ ∈ (0, 1/2], the following holds:

1

(1 + ǫ)2
− 2 ln

1

1 + ǫ
− 1 > ǫ2.

Proof. Let f(ǫ) = 1
(1+ǫ)2 −2 ln 1

(1+ǫ) −1− ǫ2, which is continuous in (0, 1/2]. It suffices to show that

f(ǫ) > 0, for ǫ ∈ (0, 1/2]. Then we examine its derivative:

f ′(ǫ) = 2ǫ
( 2 + ǫ

(1 + ǫ)3
− 1

)

.
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Since ǫ > 0, we need to examine 2+ǫ
(1+ǫ)3

− 1. We have,

2 + ǫ

(1 + ǫ)3
− 1 ≥ 0 ⇐⇒ 2 + ǫ ≥ (1 + ǫ)3 ⇐⇒ ǫ3 + 3ǫ2 + 2ǫ− 1 ≤ 0.

The last inequality holds when ǫ ≤ z, where z ≈ 0.32. while f ′(ǫ) < 0 for ǫ ∈ (z, 1/2]. Hence, f(ǫ)
is an increasing function when ǫ ∈ (0, z] and decreasing in [z, 1/2]. Now, in the interval ǫ ∈ (0, z]
we obtain f(ǫ) > f(0) = 0 and in ǫ ∈ [z, 1/2] we obtain f(ǫ) ≥ f(1/2) > 0.005.

We are now ready to prove the main theorem of this section.

Theorem 9. Under the notation of Definition 4, there exists a randomized mapping f : Rd → R
d′

which satisfies Definition 4 for d′ = O(log n
k /ǫ

2), ǫ ∈ (0, 1/2], distortion D = (1+ǫ)2 and probability
of success 2/3.

Proof. Let X be a set of n points in R
d and consider map

f : Rd → R
d′ : v 7→

√

d/d′ · A v,

where A is a matrix chosen from a distribution as in Lemma 6. Without loss of generality the
query point q lies at the origin and its nearest neighbor u lies at distance 1 from q. We denote by
c ≥ 1 the approximation ratio guaranteed by the assumed data structure (see Assumption 3). That
is, the assumed data structure solves the (c − 1)-kANNs problem. Let N be the random variable
whose value indicates the number of “bad” candidates, that is

N = | {x ∈ X : ‖x‖ > γ ∧ ‖f(x)‖ ≤ β} |,

where we define β = c(1 + ǫ), γ = c(1 + ǫ)2. Hence, by Lemma 6 and Lemma 8,

E[N ] ≤ n · exp(d
′

2
(1− β2

γ2
+ 2 ln

β

γ
)) ≤ n · exp(−d′ · ǫ2/2).

The event of failure is defined as the disjunction of two events:

N ≥ k ∨ ‖f(u)‖ ≥ (β/c), (1)

and its probability is at most equal to

Pr[N ≥ k] + exp(
d′

2
(1− (β/c)2 + 2 ln(β/c))),

by applying again Lemma 6. Now, we set d′ ≥ 2 ln(6nk )/ǫ2 and we bound these two terms. By
Markov’s inequality,

Pr[N ≥ k] ≤ n

k
· exp(−d′ · ǫ2/2) ≤ 1

6
.

In addition,

exp(
d′

2
(1− (β/c)2 + 2 ln(β/c)))≤

( k

6n

)2−2ǫ/3
<

1

6
.

7



Hence, there exists d′ such that

d′ = O(log
n

k
/ǫ2)

and with probability at least 2/3, the following two events occur:

‖f(q)− f(u)‖ ≤ (1 + ǫ)‖u− q‖,

|{p ∈ X|‖p − q‖ > c(1 + ǫ)2‖u− q‖ =⇒ ‖f(q)− f(p)‖ ≤ c(1 + ǫ)‖u− q‖}| < k.

Let us consider the case when the random experiment succeeds, and let S = {f(p1), . . . , f(pk)}
be a solution of the (c−1)-kANNs problem in the projected space, given by a data-structure which
satisfies Assumption 3. It holds that ∀f(x) ∈ f(X) \ S′, ‖f(x)− f(q)‖ > ‖f(pk)− f(q)‖/c, where
S′ is the set of all points visited by the search routine.

If f(u) ∈ S, then S contains the projection of the nearest neighbor. If f(u) /∈ S, then if
f(u) /∈ S′ we have the following:

‖f(u)− f(q)‖ > ‖f(pk)− f(q)‖/c =⇒ ‖f(pk)− f(q)‖ < c(1 + ǫ)‖u− q‖,

which means that there exists at least one point f(p∗) ∈ S s.t. ‖q − p∗‖ ≤ c(1 + ǫ)‖u− q‖. Finally,
if f(u) /∈ S but f(u) ∈ S′ then

‖f(pk)− f(q)‖ ≤ ‖f(u)− f(q)‖ =⇒ ‖f(pk)− f(q)‖ ≤ (1 + ǫ)‖u− q‖,

which means that there exists at least one point f(p∗) ∈ S s.t. ‖q − p∗‖ ≤ c(1 + ǫ)2‖u− q‖.
Hence, f satisfies Definition 4 for D = (1 + ǫ)2 and the theorem is established.

4 Approximate Nearest Neighbor Search

This section combines tree-based data structures which solve ǫ-kANNs with the results of Section 3,
in order to obtain an efficient randomized data structure which solves ǫ-ANN.

4.1 Finite subsets of ℓ2

This subsection examines the general case of finite subsets of ℓ2.
BBD-trees [AMN+98] require O(dn) space, and allow computing k points, which are (1 + ǫ)-

approximate nearest neighbors, in time O((⌈1 + 6d
ǫ ⌉d + k)d log n). The preprocessing time is

O(dn log n). Notice, that BBD-trees satisfy Assumption 3.
The algorithm for the ǫ-kANNs search visits cells in increasing order with respect to their

distance from the query point q. If the current cell lies at distance more than rk/c, where rk is
the current distance to the kth nearest neighbor, the search terminates. We apply the random
projection for distortion D = 1+ǫ, thus relating approximation error to the allowed distortion; this
is not required but simplifies the analysis.

Moreover, k = nρ; the formula for ρ < 1 is determined below. Our analysis then focuses on the
asymptotic behavior of the term O(⌈1 + 6d′

ǫ ⌉d
′

+ k).

Lemma 10. With the above notation, there exists k > 0 s.t., for fixed ǫ ∈ (0, 1), it holds that
⌈1 + 6d′

ǫ ⌉d
′

+ k = O(nρ), where ρ = 1−Θ(ǫ2/(ǫ2 + log(max{1ǫ , log n}))) < 1.
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Proof. Recall that d′ ≤ c̃
ǫ2
ln n

k for some appropriate constant c̃ > 0. Since (d
′

ǫ )
d′ is a decreasing

function of k, we need to choose k s.t. (d
′

ǫ )
d′ = Θ(k). Let k = nρ. It is easy to see that ⌈1+6d′

ǫ ⌉d
′ ≤

(c′ d
′

ǫ )
d′ , for some appropriate constant c′ ∈ (1, 7). Then, by substituting d′, k we obtain:

ln(c′
d′

ǫ
)d

′

=
c̃(1− ρ)

ǫ2
ln(

c̃c′(1− ρ) ln n

ǫ3
) lnn. (2)

We assume ǫ ∈ (0, 1) is a fixed constant. Hence, it is reasonable to assume that 1
ǫ < n. We

consider two cases when comparing lnn to ǫ:

• 1
ǫ ≤ lnn. Substituting ρ = 1− ǫ2

2c̃(ǫ2+ln(c′ lnn))
into equation (2), the exponent of n is bounded

as follows:
c̃(1− ρ)

ǫ2
ln(

c̃c′(1− ρ) ln n

ǫ3
) =

=
c̃

2c̃(ǫ2 + ln(c′ lnn))
·
(

ln(c′ lnn) + ln
1

ǫ
− ln (2ǫ2 + 2 ln(c′ lnn))

)

< ρ.

• 1
ǫ > lnn. Substituting ρ = 1− ǫ2

2c̃(ǫ2+ln c′

ǫ
)
into equation (2), the exponent of n is bounded as

follows:
c̃(1− ρ)

ǫ2
ln(

c̃c′(1− ρ) ln n

ǫ3
) =

=
c̃

2c̃(ǫ2 + ln c′

ǫ )
·
(

ln lnn+ ln
c′

ǫ
− ln (2ǫ2 + 2 ln

c′

ǫ
)
)

< ρ.

Notice that in both cases

d′ = O(
log n

ǫ2 + log log n
).

Combining Theorem 9 with Lemma 10 yields the following main theorem.

Theorem 11. Given n points in R
d, there exists a randomized data structure which requires O(dn)

space and reports an (1 + ǫ)3-approximate nearest neighbor in time

O(dnρ log n), where ρ ≤ 1−Θ(ǫ2/(ǫ2 + log(max{1
ǫ
, log n})) < 1

The preprocessing time is O(dn log n). For each query q ∈ R
d, the preprocessing phase succeeds

with any constant probability.

Proof. The space required to store the dataset is O(dn). The space used by BBD-trees is O(d′n)
where d′ is defined in Lemma 10. We also need O(dd′) space for the matrix A as specified in
Theorem 9. Hence, since d′ < d and d′ < n, the total space usage is bounded above by O(dn).

The preprocessing consists of building the BBD-tree which costs O(d′n log n) time and sampling
A. Notice that we can sample a d′-dimensional random subspace in time O(dd′2) as follows. First,
we sample in time O(dd′), a d × d′ matrix where its elements are independent random variables
with the standard normal distribution N(0, 1). Then, we orthonormalize using Gram-Schmidt in
time O(dd′2). Since d′ = O(log n), the total preprocessing time is bounded by O(dn log n).
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For each query we use A to project the point in time O(dd′). Next, we compute its k = nρ

approximate nearest neighbors in time O(d′nρ log n) and we check these neighbors with their d-
dimensional coordinates in time O(dnρ). Hence, each query costs O(d log n + d′nρ log n + dnρ) =
O(dnρ log n) because d′ = O(log n), d′ = O(d). Thus, the query time is dominated by the time
required for ǫ-kANNs search and the time to check the returned sequence of k approximate nearest
neighbors.

To be more precise, the probability of success, which is the probability that the random projec-
tion succeeds according to Theorem. 9, is at least constant and can be amplified to high probability
of success with repetition. Notice that the preprocessing time for BBD-trees has no dependence on
ǫ.

4.2 Finite subsets of ℓ2 with bounded expansion rate

This subsection models some structure that the data points may have so as to obtain tighter bounds.
The bound on the dimension d′ obtained in Theorem 9 is quite pessimistic. We expect that,

in practice, the space dimension needed in order to have a sufficiently good projection is less than
what Theorem 9 guarantees. Intuitively, we do not expect to have instances where all points in X,
which are not approximate nearest neighbors of q, lie at distance ≈ (1 + ǫ)d(q,X). To this end, we
consider the case of pointsets with bounded expansion rate.

Definition 12. Let M be a metric space and X ⊆ M be a finite pointset and let Bp(r) ⊆ X
denote the points of X lying in the closed ball centered at p with radius r. We say that X has
(τ, c)-expansion rate if and only if, ∀p ∈M and r > 0,

|Bp(r)| ≥ τ =⇒ |Bp(2r)| ≤ c · |Bp(r)|.

Theorem 13. Under the notation of Definition 4, there exists a randomized mapping f : Rd → R
d′

which satisfies Definition 4 for dimension d′ = O(log c), distortion D = (1 + ǫ)2 and constant
probability of success, for pointsets with (τ, c)-expansion rate.

Proof. We proceed in the same spirit as in the proof of Theorem 9.
Let X be a set of n points in R

d and consider map

f : Rd → R
d′ : v 7→

√

d/d′ · A v,

where A is a matrix chosen from a distribution as in Lemma 6. Without loss of generality the query
point q lies at the origin and its nearest neighbor u lies at distance 1 from q. Let r0 be the distance
to the τ−th nearest neighbor, excluding neighbors at distance ≤ (1+ ǫ)2. For i > 0, let ri = 2 · ri−1

and set r0 = (1 + ǫ)2 (since, r0 ≥ (1 + ǫ)2).
We distinguish the set of bad candidates according to whether they correspond to “close” of

“far” points in the initial space. More precisely,

Nclose = | {x ∈ X : ‖x‖ ∈ [r0, r1) ∧ ‖f(x)‖ ≤ β} |,

Nfar = | {x ∈ X : ‖x‖ ≥ r1 ∧ ‖f(x)‖ ≤ β} |,
where β = 1 + ǫ. Clearly, by Lemma 8, and for d′ ≥ ln c+ 1,

10



E[Nclose] ≤ c · τ · exp(−d′ · ǫ2/2) = O(c · τ),
and similarly by Corollary 7,

E[Nfar] ≤
∞
∑

i=1

ci+1τ ·
(e(1 + ǫ)2

r2i

)d′/2
≤

∞
∑

i=1

ci+1τ ·
( e

22i

)d′/2
= ed

′/2 · τ · c
∞
∑

i=1

ci
( 1

2i

)d′

= O(τ · c2).

Finally, using Markov’s inequality, we obtain constant probability of success.

Employing Theorem 13 we obtain a result analogous to Theorem 11 which is weaker than those
in [KL04, BKL06] but underlines the fact that our scheme shall be sensitive to structure in the
input data, for real world assumptions.

Theorem 14. Given n points in ℓd2 with (τ, c)-expansion rate, for some constant c, there exists a
randomized data structure which requires O(dn) space and reports an (1 + ǫ)3-approximate nearest
neighbor in time

O((clog(log c/ǫ) + τ · c2 ) d log n)).

The preprocessing time is O(dn log n). For each query q ∈ R
d, the preprocessing phase succeeds

with constant probability.

Proof. We combine the embedding of Theorem 13 with the BBD-trees. Then,

O
((

√
d′

ǫ

)d′)

= O
(( log c

ǫ

)log c)

and the number of approximate nearest neighbors in the projected space is

k = O(τ · c2).

This proves the result.

5 Approximate Near Neighbor

This section combines the ideas developed in Section 3 with a simple, auxiliary data structure,
namely the grid, yielding an efficient solution for the (ǫ,R)-ANN problem.

Problem Definition Building a data structure for the Approximate Nearest Neighbor Problem
reduces to building several data structures for the (ǫ,R)-ANN Problem. For completeness, we
include the corresponding theorem.

Theorem 15. [HIM12, Thm 2.9] Let P be a given set of n points in a metric space, and let
c = 1 + ǫ > 1, f ∈ (0, 1), and γ ∈ (1/n, 1) be prescribed parameters. Assume that we are given
a data structure for the (c, r)-approximate near neighbor that uses space S(n, c, f), has query time
Q(n, c, f), and has failure probability f . Then there exists a data structure for answering c(1 +
O(γ))-NN queries in time O(log n)Q(n, c, f) with failure probability O(f log n). The resulting data
structure uses O(S(n, c, f)/γ · log2 n) space.

11



In the following, the Õ notation hides factors polynomial in 1/ǫ and log n. When the dimension
is high the problem has been solved efficiently by randomized methods based on the notion of LSH.

Definition 16 ((c,R)-ANN Problem (as studied in the high dimensional case)). Let X ⊆ R
d and

|X| = n. Given ǫ > 0, r > 0, build a data structure which for any query q ∈ R
d the probability that

the building phase of the data structure succeeds for q is at least constant.

A natural generalization of the (ǫ,R)-ANN problem is the k-Approximate Near Neighbors Prob-
lem ((ǫ,R)-kANNs).

Definition 17 ((ǫ,R)-kANNs Problem). Let X ⊂ R
d and |X| = n. Given ǫ > 0, R > 0, build a

data structure which, for any query q ∈ R
d:

• if |{p ∈ X | ‖q − p‖ ≤ R}| ≥ k, then report S ⊆ {p ∈ X | ‖q − p‖ ≤ (1 + ǫ)R} s.t. |S| = k,

• if |{p ∈ X | ‖q − p‖ ≤ R}| < k, then report S ⊆ {p ∈ X | ‖q − p‖ ≤ (1 + ǫ)R} s.t.
|{p ∈ X | ‖q − p‖ ≤ R}| ≤ |S| ≤ k.

The following algorithm is essentially the bucketing method which is described in [HIM12] and
concerns the case k = 1. Impose a uniform grid of side length ǫ/

√
d on R

d. Clearly, the distance
between any two points belonging to one grid cell is at most ǫ. Assume r = 1. For each ball
Bq = {x ∈ R

d | ‖x− q‖ ≤ r}, q ∈ R
d, let Bq be the set of grid cells that intersect Bq.

In [HIM12], they show that |Bq| ≤ (C/ǫ)d. Hence, the query time is the time to compute the
hash function, retrieve near cells and report the k neighbors:

O(d+ k + (C/ǫ)d).

The required space usage is O(dn).
Furthermore, we are interested in optimizing this constant C. The bound on |Bq| follows from

the following fact:
|Bq| ≤ V d

2 (R),

where V d
2 (R) is the volume of the ball with radius R in ℓd2, and R = 2

√
d

ǫ . Now,

V d
2 (R) ≤ 2πd/2

d · Γ(d/2)R
d =

2πd/2

d(d/2 − 1)!
Rd ≤ 2πd/2

(d/2)!
Rd ≤ 2πd/2

e(d/(2e))d/2
Rd ≤ 2d+1(18)d/2

ǫde
≤ 9d

ǫd
.

Hence, C ≤ 9.

Theorem 18. There exists a data structure for the Problem 17 with required space O(dn) and
query time O(d+ k + (Cǫ )

d)), for C ≤ 9.

The following theorem is an analogue of Theorem 9 for the Approximate Near Neighbor Problem.

Theorem 19. The ((1 + ǫ)2c,R)-ANN problem in R
d reduces to checking the solution set of the

(c, (1 + ǫ)R)-kANNs problem in R
d′, where d′ = O(log(nk )/ǫ

2), by a randomized algorithm which
succeeds with constant probability. The delay in query time is proportional to d · k.
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Proof. The theorem can be seen as a direct implication of Theorem 9. The proof is indeed the
same.

Let X be a set of n points in R
d and consider map

f : Rd → R
d′ : v 7→

√

d/d′ · A v,

where A is a matrix chosen from a distribution as in Lemma 6. Let u ∈ X a point at distance 1
from q and assume without loss of generality that lies at the origin. Let N be the random variable
whose value indicates the number of “bad” candidates, that is

N = | {x ∈ X : ‖x‖ > γ ∧ ‖f(x)‖ ≤ β} |,

where we define β = c(1 + ǫ), γ = c(1 + ǫ)2. Hence, by Lemma 6 and Lemma 8,

E[N ] ≤ n · exp(d
′

2
(1− β2

γ2
+ 2 ln

β

γ
)) ≤ n · exp(−d′ · ǫ2/2).

The probability of failure is at most equal to

Pr[N ≥ k] + exp(
d′

2
(1− (β/c)2 + 2 ln(β/c))),

by applying again Lemma 6. Now, we bound these two terms. By Markov’s inequality,

Pr[N ≥ k] ≤ n

k
· exp(−d′ · ǫ2/2)

d′≥2 ln( 6n
k
)/ǫ2

≤ 1

6
.

In addition,

exp(
d′

2
(1− (β/c)2 + 2 ln(β/c)))

d′≥2 ln( 6n
k
)/ǫ2

≤
( k

6n

)2−2ǫ/3
<

1

6

Hence, there exists d′ such that

d′ = O(log
n

k
/ǫ2)

and with probability at least 2/3, these two events occur:

• ‖f(q)− f(u)‖ ≤ (1 + ǫ).

• |{p ∈ X|‖p − q‖ > c(1 + ǫ)2 =⇒ ‖f(q)− f(p)‖ ≤ c(1 + ǫ)}| < k.

5.1 Finite subsets of ℓ2

We are about to show what Theorem 20 implies for the data structure from Theorem 18.

Theorem 20. There exists a data structure for the Problem 16 with O(dn) required space and
preprocessing time, and query time Õ(dnρ) , where ρ = 1−Θ(ǫ2/(log(1/ǫ) + ǫ2)) < 1.
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Proof.
(

C

ǫ

)d′

≤
(

C

ǫ

)20 ln 20n

k
/ǫ2

=

(

20n

k

)20 ln C

ǫ
/ǫ2

and for

k ≥ 20n1−ǫ2/(20 ln(C/ǫ)+ǫ2) =⇒
(

C

ǫ

)d′

≤ n1−ǫ2/(20 ln(C/ǫ)+ǫ2).

Since, the data structure succeeds only with probability 9/10, it suffices to build it O(log n)
times in order to achieve high probability of success.

5.2 The case of doubling subsets of ℓ2

In this section, we generalize the idea from [AEP15] for pointsets with bounded doubling dimension
to obtain non-linear randomized embeddings for the (ǫ,R)-ANN problem.

Definition 21. The doubling dimension of a metric space M is the smallest positive integer
ddim(M) such that every set S with diameter DS can be covered by 2ddim(M) (the doubling constant)
sets of diameter DS/2.

Now, let X ⊂ R
d s.t. |X| = n and X has doubling constant λX = 2ddim(X). Consider also

Si ⊆ X with diameter 2ri. Then we need λ
log

8ri

ǫ

X tiny balls bǫ ⊆ X of diameter ǫ/4 in order to cover
Si. We can assume that R = 1, since we can scale X. The idea is that we first compute X ′ ⊆ X
which satisfies the following two properties:

• ∀p, q ∈ X ′ ‖p− q‖ > ǫ/8,

• ∀q ∈ X ∃p ∈ X ′ s.t. ‖p− q‖ ≤ ǫ/8.

This is an r-net for X for r = ǫ/8. The obvious naive algorithm computes X ′ in O(n2) time. Better
algorithms exist for the case of low dimensional Euclidean space [Har04]. Approximate r-nets can
be also computed in time 2O(ddim(X))n log n for doubling metrics [HPM05] , assuming that the
distance can be computed in constant time.

Then, for X ′ we know that each Si ⊆ X ′ contains ≤ λ
log

8ri

ǫ

X points, since X ′ ⊆ X =⇒
ddim(X ′) ≤ ddim(X).

Theorem 22. The ((1 + ǫ)2c,R)-ANN problem in R
d reduces to checking the solution set of the

(c, (1+ ǫ)R)-kANNs problem in R
d′, where d′ = O(ddim(X)) and k = (2/ǫ)O(ddim(X), by a random-

ized algorithm which succeeds with constant probability. Preprocessing costs an additional of O(n2)
time and the delay in query time is proportional to d · k.

Proof. Once again we proceed in the same spirit as in the proof of Theorem 9.
Let X ′ be an ǫ/8-net of X. Let ri = 2i+1(1 + ǫ) for i ≥ 0 and let Bp(r) ⊆ X ′ denote the points

of X ′ lying in the closed ball centered at p with radius r. We assume 0 < ǫ ≤ 1/2. We make use
of Corollary 7.

E[Nfar] ≤
∞
∑

i=2

|Bp(ri)| · (
√
e · (1 + ǫ)

ri−1
)d

′ ≤
∞
∑

i=2

λ
log(8ri/ǫ)
X · (

√
e

2i
)d

′ ≤ λ
1+log(16/ǫ)
X · ed′/2

∞
∑

i=2

λi
X

2i·d′
=
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d′≥1+log λX= 2O(ddim(X) log(2/ǫ)) =
(2

ǫ

)O(ddim(X))

In addition,

E[Nclose] ≤ λ
O(log(1/ǫ))
X · exp(−d′ · ǫ2/20) ≤ λ

O(log(1/ǫ))
X =

(2

ǫ

)O(ddim(X))
.

The number of grid cells of sidewidth ǫ/
√
d′ intersected by a ball of radius 1 in R

d′ is also
(2ǫ )

O(ddim(X)). Notice, that if there exists a point in X which lies at distance 1 from q, then
there exists a point in X ′ which lies at distance 1 + ǫ/8 from q. Finally the probability that the
distance between the query point q and one approximate near neighbor gets arbitrarily expanded

is less than λ
−Θ(ǫ2)
X .

Now using the above ideas we obtain a data structure for the (ǫ,R)-ANN problem.

Theorem 23. There exists a data structure which solves the approximate nearest neighbor problem
which requires space and preprocessing time O(dn) and the query costs

d
(2

ǫ

)O(ddim(X))
.

For fixed q ∈ R
d, the building process of the data structure succeeds with constant probability.
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Figure 1: Plot of k as n increases for the “planted nearest neighbor model” datasets. The highest

line corresponds to
√
n
2 and the dotted line to a function of the form nρ, where ρ = 0.41, 0.39, 0.35

that best fits the data.

6 Experiments

In this section we discuss two experiments we performed with the prototype implementation of our
method for approximate nearest neighbor search described in section 4, to validate the theoretical
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results of our contributions. In the first experiment, we computed the average value of the k
nearest neigbors needed to check in the projected space in order to get an actual nearest neighbor
in the original space in a worst-case dataset for the ANN problem, and we confirmed that it is
indeed sublinear in n. In the second experiment, we made an ANN query time and memory usage
comparison against E2LSH using both artificial and real life datasets.

6.1 Validation of k

In this section we present an experimental verification of our approach. We show that the number
k of nearest neighbors in the projection space that we need to examine in order to find an approx-
imate nearest neighbor in the original space depends sublinearly on n, thus validating in practice
lemma 10.

Datasets We generated our own synthetic datasets and query points. We decided to follow two
different procedures for data generation. First of all, as in [DIIM04], we followed the “planted
nearest neighbor model”. This model guarantees, for each query point q, the existence of a few
approximate nearest neighbors while keeping all others points sufficiently far from q. The benefit
of this approach is that it represents a typical ANN search scenario, where for each point there
exist only a handful approximate nearest neighbors. In contrast, in a uniformly generated dataset,
all points tend to be equidistant to each other in high dimensions, which is quite unrealistic.

In order to generate the dataset, first we create a set Q of query points chosen uniformly at
random in R

d. Then, for each point q ∈ Q, we generate a single point p at distance R from q,
which will be its single (approximate) nearest neighbor. Then, we create more points at distance
≥ (1+ ǫ)R from q, while making sure that they shall not be closer than (1+ ǫ)R to any other query
point q′ ∈ Q, q′ 6= q. This dataset now has the property that every query point has exactly one
approximate nearest neighbor, while all other points are at distance ≥ (1 + ǫ)R.

We fix R = 2, let ǫ ∈ {0.1, 0.2, 0.5}, d = {200, 500} and the total number of points n ∈
{104, 2× 104, . . . , 5× 104, 5.5× 104, 6× 104, 6.5× 104, . . . , 105}. For each combination of the above
we created a dataset X from a set Q of 100 query points where each query coordinate was chosen
uniformly at random in the range [−20, 20].

The second type of datasets consisted again of sets of 100 query points in R
d where each

coordinate was chosen uniformly at random in the range [−20, 20]. Each query point was paired
with a random variable σ2

q uniformly distributed in [15, 25] and together they specified a gaussian

distribution in R
d of mean value µ = q and variance σ2

q per coordinate. For each distribution we
drew n points in the same set as was previously specified.

Scenario We performed the following experiment for the “planted nearest neighbor model”. In
each dataset X, we consider, for every query point q, its unique (approximate) nearest neighbor
p ∈ X. Then we use a random mapping f from R

d to a Euclidean space of lower dimension
d′ = logn

log logn using a gaussian matrix G, where each entry Gij ∼ N(0, 1). This matrix guarantees
a low distortion embedding [IM98]. Then, we perform a range query centered at f(q) with radius
‖f(q)− f(p)‖ in f(X): we denote by rankq(p) the number of points found. Then, exactly rankq(p)
points are needed to be selected in the worst case as k-nearest neighbors of f(q) in order for the
approximate nearest neighbor f(p) to be among them, so k = rankq(p).

For the datasets with the gaussian distributions we compute again the maximum number of
points k needed to visit in the lower-dimensional space in order to find an ǫ-approximate nearest
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Figure 2: Plot of k as n increases for the gaussian datasets. We see how increasing the number of
approximate nearest neighbors in this case decreases the value of k

neighbor of each query point q in the original space. In this case the experiment works as follows:
we find all the ǫ-approximate nearest neighbors of a query point q. Let Sq be the set containing
for each query q its ǫ-kANNs. Next, let pq = argminp∈S ‖f(p)− f(q)‖. Now as before we perform
a range query centered at f(q) with radius ‖f(q)− f(pq)‖. We consider as k the number of points
returned by this query.

Results The “planted nearest neighbor model” datasets constitute a worst-case input for our
approach since every query point has only one approximate nearest neighbor and has many points
lying near the boundary of (1+ ǫ). We expect that the number of k approximate nearest neighbors
needed to consider in this case will be higher than in the case of the gaussian distributions, but
still expect the number to be considerably sublinear.

In Figure 1 we present the average value of k as we increase the number of points n for the
planted nearest neighbor model. We can see that k is indeed significantly smaller than n. The line
corresponding to the averages may not be smooth, which is unavoidable due to the random nature
of the embedding, but it does have an intrinsic concavity, which shows that the dependency of k
on n is sublinear. For comparison we also display the function

√
n/2, as well as a function of the

form nρ, ρ < 1 which was computed by SAGE that best fits the data per plot. The fitting was
performed on the points in the range [50000, 100000] as to better capture the asymptotic behavior.
In Figure 2 we show again the average value of k as we increase the number of points n for the
gaussian distribution datasets. As expected we see that the expected value of k is much smaller
than n and also smaller than the expected value of k in the worst-case scenario, which is the planted
nearest neighbor model.

6.2 ANN experiments

In this section we present a preliminary comparison between our algorithm and the E2LSH [AI05]
implementation of the LSH framework for approximate nearest neighbor queries.
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Experiment Description We projected all the “planted nearest neighbor” datasets, down to
logn

log logn dimensions. We remind the reader that these datasets were created to have a single approx-
imate nearest neighbor for each query at distance R and all other points at distance > (1+ǫ)R. We
then built a BBD-tree data structure on the projected space using the ANN library [Mou10] with the
default settings. Next, we measured the average time needed for each query q to find its ǫ-kANNs,
for k =

√
n, using the BBD-Tree data structure and then to select the first point at distance ≤ R

out of the k in the original space. We compare these times to the average times reported by E2LSH
range queries for R = 2, when used from its default script for probability of success 0.95. The
script first performs an estimation of the best parameters for the dataset and then builds its data
structure using these parameters. We required from the two approaches to have accuracy > 0.90,
which in our case means that in at least 90 out of the 100 queries they would manage to find the
approximate nearest neighbor. We also measured the maximum resident set size of each approach
which translates to the maximum portion of the main memory (RAM) occupied by a process during
its lifetime. This roughly corresponds to the size of the dataset plus the size of the data structure
for the E2LSH implementation and to the size of the dataset plus the size of the embedded dataset
plus the size of the data structure for our approach.

ANN Results It is clear from Figure 3 that E2LSH is faster than our approach by a factor
of 3. However in Figure 4, where we present the memory usage comparison between the two
approaches, it is obvious that E2LSH also requires more space. Figure 4 also validates the linear
space dependency of our embedding method. A few points can be raised here. First of all, we
supplied the appropriate range to the LSH implementation, which gave it an advantage, because
typically that would have to be computed empirically. To counter that, we allowed our algorithm to
stop its search in the original space when it encountered a point that was at distance ≤ R from the
query point. Our approach was simpler and the bottleneck was in the computation of the closest
point out of the k returned from the BBD-Tree. We conjecture that we can choose better values
for our parameters d′ and k. Lastly, the theoretical guarantees for the query time of LSH are better
than ours, but we did perform better in terms of space usage as expected.
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Figure 3: Comparison of average query time of our embedding approach against the E2LSH imple-
mentation.
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Figure 4: Comparison of memory usage of our embedding approach against the E2LSH implemen-
tation.

Real life dataset We also compared the two approaches using the ANN SIFT1M [JDS11] dataset
which contains a collection of 1, 000, 000 vectors in 128 dimensions. This dataset also provides a
query file containing 10, 000 vectors and a groundtruth file, which contains for each query the IDs
of its 100 nearest neighbors. These files allowed us to estimate the accuracy for each approach,
as the fraction #hits/10000 where #hits denotes, for some query, the number of times one of
its 100 nearest neighbors were returned. The parameters of the two implementations were chosen
empirically in order to achieve an accuracy of about 85%. For our approach we set the projection
dimension d′ = 25 and for the BBD-trees we specified 100 points per leaf and ǫ = 0.5 for the
ǫ-kANNs queries. We also used k =

√
n. For the E2LSH implementation we specified the radius

R = 240, k = 18 and L = 250. As before, we measured the average query time and the maximum
resident set size. Our approach required an average of 171.59msec per query, whilst E2LSH required
51.96msec. However our memory footprint was about 1.256 Gbytes and E2LSH used about 4.781
Gbytes.

7 Open questions

The present work has emphasized asymptotic complexity bounds, and showed that rather simple
methods, carefully combined with a new embedding approach, can achieve almost record query
times with optimal space usage. However, it should still be possible to enhance the practical
performance of our method so as to unleash the potential of our approach and fully exploit its
simplicity. This is the topic of future work, along with a detailed comparative study with other
optimized implementations, which is beyond the scope of this paper.

In particular, checking the real distance of the query point to the neighbors, while performing
an ǫ-kANNs search in the projection space, is more efficient in practice than naively scanning the
returned sequence of k-approximate nearest neighbors, and looking for the closest point in the
initial space. Moreover, our algorithm does not exploit the fact that BBD-trees return a sequence
and not simply a set of neighbors.

Our embedding approach probably has further applications. One possible application is in com-
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puting the k-th approximate nearest neighbor. The problem may reduce to computing all neighbors
between the i-th and the j-th nearest neighbors in a space of significantly smaller dimension for
some appropriate values i < k < j. Other possible applications include computing the approximate
minimum spanning tree, or the closest pair of points.
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