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1 Université de Lorraine, CNRS, Inria, LORIA, France
2 TU Wien, Austria

Abstract. Recently, many tools have been proposed for automatically analysing,
in symbolic models, equivalence of security protocols. Equivalence is a property
needed to state privacy properties or game-based properties like strong secrecy.
Tools for a bounded number of sessions can decide equivalence but typically suffer
from efficiency issues. Tools for an unbounded number of sessions like Tamarin
or ProVerif prove a stronger notion of equivalence (diff-equivalence) that does not
properly handle protocols with else branches.
Building upon a recent approach, we propose a type system for reasoning about
branching protocols and dynamic keys. We prove our type system to entail equiv-
alence, for all the standard primitives. Our type system has been implemented
and shows a significant speedup compared to the tools for a bounded number of
sessions, and compares similarly to ProVerif for an unbounded number of sessions.
Moreover, we can also prove security of protocols that require a mix of bounded
and unbounded number of sessions, which ProVerif cannot properly handle.

1 Introduction

Formal methods provide a rigorous and convenient framework for analysing security
protocols. In particular, mature push-button analysis tools have emerged and have been
successfully applied to many protocols from the literature in the context of trace proper-
ties such as authentication or confidentiality. These tools employ a variety of analysis
techniques, such as model checking (e.g., Avispa [7] and Scyther [31]), Horn clause
resolution (e.g., ProVerif [14]), term rewriting (e.g., Scyther [31] and Tamarin [38]), and
type systems [37,20,21,22,13,36,17,34,18,8,19].

In the recent years, attention has been given also to equivalence properties, which
are crucial to model privacy properties such as vote privacy [9,33], unlikability [6], or
anonymity [10]. For example, consider an authentication protocol Ppass embedded in a
biometric passport. Ppass preserves anonymity of passport holders if an attacker cannot
distinguish an execution with Alice from an execution with Bob. This can be expressed
by the equivalence Ppass(Alice) ≈t Ppass(Bob). Equivalence is also used to express
properties closer to cryptographic games like strong secrecy.

Two main classes of tools have been developed for equivalence. First, in the case of
an unbounded number of sessions (when the protocol is executed arbitrarily many times),
equivalence is undecidable. Instead, the tools ProVerif [14,16] and Tamarin [38,12]
try to prove a stronger property, namely diff-equivalence, that may be too strong e.g.
in the context of voting. Tamarin covers a larger class of protocols but may require



some guidance from the user. Maude-NPA [35,40] also proves diff-equivalence but may
have non-termination issues. Another class of tools aim at deciding equivalence, for
bounded number of sessions. This is the case in particular of SPEC [32], APTE [24],
Akiss [23], and SatEquiv [27]. SPEC, APTE, and Akiss suffer from efficiency issues and
can typically not handle more than 3-4 sessions. SatEquiv is much more efficient but is
limited to symmetric encryption and requires protocols to be well-typed, which often
assumes some additional tagging of the protocol.

Our contribution. Following the approach of [28], we propose a novel technique
for proving equivalence properties for a bounded number of sessions as well as an
unbounded number of sessions (or a mix of both), based on typing. [28] proposes a
first type system that entails trace equivalence P ≈t Q, provided protocols use fixed
(long-term) keys, identical in P and Q. In this paper, we target a larger class of protocols,
that includes in particular key-exchange protocols and protocols whose security relies
on branching on the secret. This is the case e.g. of the private authentication protocol [3],
where agent B returns a true answer to A, encrypted with A’s public key if A is one of
his friends, and sends a decoy message (encrypted with a dummy key) otherwise.

We devise a new type system for reasoning about keys. In particular, we introduce
bikeys to cover behaviours where keys in P differ from the keys in Q. We design
new typing rules to reason about protocols that may branch differently (in P and
Q), depending on the input. Following the approach of [28], our type system collects
sent messages into constraints that are required to be consistent. Intuitively, the type
system guarantees that any execution of P can be matched by an execution of Q, while
consistency imposes that the resulting sequences of messages are indistinguishable for
an attacker. We had to entirely revisit the approach of [28] and prove a finer invariant in
order to cope with the case where keys are used as variables. Specifically, most of the
rules for encryption, signature, and decryption had to be adapted to accommodate the
flexible usage of keys. For messages, we had to modify the rules for keys and encryption,
in order to encrypt messages with keys of different type (bi-key type), instead of only
fixed keys. We show that our type system entails equivalence for the standard notion of
trace equivalence [25] and we devise a procedure for proving consistency. This yields an
efficient approach for proving equivalence of protocols for a bounded and an unbounded
number of sessions (or a combination of both).

We implemented a prototype of our type-checker that we evaluate on a set of
examples, that includes private authentication, the BAC protocol (of the biometric
passport), as well as Helios together with the setup phase. Our tool requires a light type
annotation that specifies which keys and names are likely to be secret or public and the
form of the messages encrypted by a given key. This can be easily inferred from the
structure of the protocol. Our type-checker outperforms even the most efficient existing
tools for a bounded number of sessions by two (for examples with few processes) to three
(for examples with more processes) orders of magnitude. Note however that these tools
decide equivalence while our type system is incomplete. In the case of an unbounded
number of sessions, on our examples, the performance is comparable to ProVerif, one of
the most popular tools. We consider in particular vote privacy in the Helios protocol, in
the case of a dishonest ballot board, with no revote (as the protocol is insecure otherwise).
ProVerif fails to handle this case as it cannot (faithfully) consider a mix of bounded and



unbounded number of sessions. Compared to [28], our analysis includes the setup phase
(where voters receive the election key), which could not be considered before.

2 High-level description

2.1 Background

Trace equivalence of two processes is a property that guarantees that an attacker observ-
ing the execution of either of the two processes cannot decide which one it is. Previous
work [28] has shown how trace equivalence can be proved statically using a type system
combined with a constraint checking procedure. The type system consists of typing rules
of the form Γ ` P ∼ Q→ C, meaning that in an environment Γ two processes P andQ
are equivalent if the produced set of constraints C, encoding the attacker observables, is
consistent.

The typing environment Γ is a mapping from nonces, keys, and variables to types.
Nonces are assigned security labels with a confidentiality and an integrity component,
e.g. HL for high confidentiality and low integrity. Key types are of the form keyl(T )
where l is the security label of the key and T is the type of the payload. Key types are
crucial to convey typing information from one process to another one. Normally, we
cannot make any assumptions about values received from the network – they might
possibly originate from the attacker. If we however successfully decrypt a message using
a secret symmetric key, we know that the result is of the key’s payload type. This is
enforced on the sender side, whenever outputting an encryption.

A core assumption of virtually any efficient static analysis for equivalence is uniform
execution, meaning that the two processes of interest always take the same branch in a
branching statement. For instance, this means that all decryptions must always succeed or
fail equally in the two processes. For this reason, previous work introduced a restriction
to allow only encryption and decryption with keys whose equality could be statically
proved.

2.2 Limitation

There are however protocols that require non-uniform execution for a proof of trace
equivalence, e.g., the private authentication protocol [3]. The protocol aims at authenti-
cating B to A, anonymously w.r.t. other agents. More specifically, agent B may refuse
to communicate with agent A but a third agent D should not learn whether B declines
communication with A or not. The protocol can be informally described as follows,
where pk(k) denotes the public key associated to key k, and aenc(M, pk(k)) denotes
the asymmetric encryption of message M with this public key.

A → B : aenc(〈Na, pk(ka)〉, pk(kb))

B → A :

{
aenc(〈Na, 〈Nb, pk(kb)〉〉, pk(ka)) if B accepts A’s request
aenc(Nb, pk(k)) if B declines A’s request

IfB declines to communicate withA, he sends a decoy message aenc(Nb, pk(k)) where
pk(k) is a decoy key (no one knows the private key k).



Γ (kb, kb) = keyHH(HL ∗ LL) initial message uses same key on both sides
Γ (ka, k) = keyHH(HL) authentication succeeded on the left, failed on the right
Γ (k, kc) = keyHH(HL) authentication succeeded on the right, failed on the left
Γ (ka, kc) = keyHH(HL) authentication succeeded on both sides
Γ (k, k) = keyHH(HL) authentication failed on both sides

Fig. 1. Key types for the private authentication protocol

2.3 Encrypting with different keys

Let Pa(ka, pk(kb)) model agent A willing to talk with B, and Pb(kb, pk(ka)) model
agent B willing to talk with A (and declining requests from other agents). We model the
protocol as:

Pa(ka, pkb) = new Na.out(aenc(〈Na, pk(ka)〉, pkb)). in(z)
Pb(kb, pka) = new Nb. in(x).

let y = adec(x, kb) in let y1 = π1(y) in let y2 = π2(y) in
if y2 = pka then
out(aenc(〈y1, 〈Nb, pk(kb)〉〉, pka))

else out(aenc(Nb, pk(k)))

where adec(M,k) denotes asymmetric decryption of message M with private key k.
We model anonymity as the following equivalence, intuitively stating that an attacker
should not be able to tell whether B accepts requests from the agent A or C:

Pa(ka, pk(kb)) | Pb(kb, pk(ka)) ≈t Pa(ka, pk(kb)) | Pb(kb, pk(kc))

We now show how we can type the protocol in order to show trace equivalence. The
initiator Pa is trivially executing uniformly, since it does not contain any branching
operations. We hence focus on typing the responder Pb.

The beginning of the responder protocol can be typed using standard techniques.
Then however, we perform the test y2 = pk(ka) on the left side and y2 = pk(kc)
on the right side. Since we cannot statically determine the result of the two equality
checks – and thus guarantee uniform execution – we have to typecheck the four possible
combinations of then and else branches. This means we have to typecheck outputs of
encryptions that use different keys on the left and the right side.

To deal with this we do not assign types to single keys, but rather to pairs of keys
(k, k′) – which we call bikeys – where k is the key used in the left process and k′ is the
key used in the right process. The key types used for typing are presented in Fig. 1.

As an example, we consider the combination of the then branch on the left with the
else branch on the right. This combination occurs when A is successfully authenticated
on the left side, while being rejected on the right side. We then have to typecheckB’s pos-
itive answer together with the decoy message: Γ ` aenc(〈y1, 〈Nb, pk(kb)〉〉, pk(ka)) ∼
aenc(Nb, pk(k)) : LL. For this we need the type for the bikey (ka, k).



2.4 Decrypting non-uniformly

When decrypting a ciphertext that was potentially generated using two different keys
on the left and the right side, we have to take all possibilities into account. Consider the
following extension of the process Pa where agent A decrypts B’s message.

Pa(ka, pkb) = new Na.out(aenc(〈Na, pk(ka)〉, pkb)). in(z).
let z′ = adec(z, ka) in out(1)
else out(0)

In the decryption, there are the following possible cases:

– The message is a valid encryption supplied by the attacker (using the public key
pk(ka)), so we check the then branch on both sides with Γ (z′) = LL.

– The message is not a valid encryption supplied by the attacker so we check the else
branch on both sides.

– The message is a valid response from B. The keys used on the left and the right are
then one of the four possible combinations (ka, k), (ka, kc), (k, kc) and (k, k).
• In the first two cases the decryption will succeed on the left and fail on the

right. We hence check the then branch on the left with Γ (z′) = HL with the
else branch on the right. If the type Γ (ka, k) were different from Γ (ka, kc),
we would check this combination twice, using the two different payload types.
• In the remaining two cases the decryption will fail on both sides. We hence

would have to check the two else branches (which however we already did).

While checking the then branch together with the else branch, we have to check
Γ ` 1 ∼ 0 : LL, which rightly fails, as the protocol does not guarantee trace equivalence.

3 Model

In symbolic models, security protocols are typically modelled as processes of a process
algebra, such as the applied pi-calculus [2]. We present here a calculus used in [28]
and inspired from the calculus underlying the ProVerif tool [15]. This section is mostly
an excerpt of [28], recalled here for the sake of completeness, and illustrated with the
private authentication protocol.

3.1 Terms

Messages are modelled as terms. We assume an infinite set of names N for nonces,
further partitioned into the set FN of free nonces (created by the attacker) and the set
BN of bound nonces (created by the protocol parties), an infinite set of names K for
keys similarly split into FK and BK, and an infinite set of variables V . Cryptographic
primitives are modelled through a signature F , that is, a set of function symbols, given
with their arity (i.e. the number of arguments). Here, we consider the following signature:

Fc = {pk, vk, enc, aenc, sign, 〈·, ·〉, h}



that models respectively public and verification key, symmetric and asymmetric encryp-
tion, concatenation and hash. The companion primitives (symmetric and asymmetric
decryption, signature check, and projections) are represented by the following signature:

Fd = {dec, adec, checksign, π1, π2}

We also consider a set C of (public) constants (used as agent names for instance). Given
a signature F , a set of names N , and a set of variables V , the set of terms T (F ,V,N )
is the set inductively defined by applying functions to variables in V and names in N .
We denote by names(t) (resp. vars(t)) the set of names (resp. variables) occurring in t.
A term is ground if it does not contain variables.

We consider the set T (Fc∪Fd∪C,V,N ∪K) of cryptographic terms, simply called
terms. Messages are terms with constructors from T (Fc ∪ C,V,N ∪ K). We assume
the set of variables to be split into two subsets V = X ] AX where X are variables
used in processes while AX are variables used to store messages. An attacker term is a
term from T (Fc ∪ Fd ∪ C,AX ,FN ∪ FK). In particular, an attacker term cannot use
nonces and keys created by the protocol’s parties.

A substitution σ = {M1/x1, . . . ,Mk/xk} is a mapping from variables x1, . . . , xk ∈
V to messages M1, . . . ,Mk. We let dom(σ) = {x1, . . . , xk}. We say that σ is ground
if all messages M1, . . . ,Mk are ground. We let names(σ) =

⋃
1≤i≤k names(Mi). The

application of a substitution σ to a term t is denoted tσ and is defined as usual.
The evaluation of a term t, denoted t ↓, corresponds to the bottom-up application of

the cryptographic primitives and is recursively defined as follows.

u ↓ = u if u ∈ N ∪ V ∪ K ∪ C
pk(t) ↓ = pk(t ↓) if t ↓∈ K
vk(t) ↓ = vk(t ↓) if t ↓∈ K
h(t) ↓ = h(t ↓) if t ↓6= ⊥

〈t1, t2〉 ↓ = 〈t1 ↓, t2 ↓〉 if t1 ↓6= ⊥ and t2 ↓6= ⊥
enc(t1, t2) ↓ = enc(t1 ↓, t2 ↓) if t1 ↓6= ⊥ and t2 ↓∈ K

sign(t1, t2) ↓ = sign(t1 ↓, t2 ↓) if t1 ↓6= ⊥ and t2 ↓∈ K
aenc(t1, t2) ↓ = aenc(t1 ↓, t2 ↓) if t1 ↓6= ⊥ and t2 ↓= pk(k)

for some k ∈ K

π1(t) ↓ = t1 if t ↓= 〈t1, t2〉
π2(t) ↓ = t2 if t ↓= 〈t1, t2〉

dec(t1, t2) ↓ = t3 if t1 ↓= enc(t3, t4) and t4 = t2 ↓
adec(t1, t2) ↓ = t3 if t1 ↓= aenc(t3, pk(t4)) and t4 = t2 ↓

checksign(t1, t2) ↓ = t3 if t1 ↓= sign(t3, t4) and t2 ↓= vk(t4)
t ↓ = ⊥ otherwise

Note that the evaluation of term t succeeds only if the underlying keys are atomic
and always returns a message or ⊥. For example we have π1(〈a, b〉) ↓= a, while
dec(enc(a, 〈b, b〉), 〈b, b〉) ↓= ⊥, because the key is non atomic. We write t =↓ t′ if
t ↓= t′ ↓.



Destructors used in processes:

d ::= dec(x, t) | adec(x, t) | checksign(x, t′) | π1(x) | π2(x)

where x ∈ X , t ∈ K ∪ X , t′ ∈ {vk(k)|k ∈ K} ∪ X .

Processes:

P,Q ::= 0 | new n.P | out(M).P | in(x).P | (P | Q) | !P
| let x = d in P else Q | ifM = N then P else Q

where n ∈ BN ∪ BK, x ∈ X , and M,N are messages.

Fig. 2. Syntax for processes.

3.2 Processes

Security protocols describe how messages should be exchanged between participants.
We model them through a process algebra, whose syntax is displayed in Fig. 2. We
identify processes up to α-renaming, i.e., avoiding substitution of bound names and
variables, which are defined as usual. Furthermore, we assume that all bound names,
keys, and variables in the process are distinct.

A configuration of the system is a tuple (P;φ;σ) where:

– P is a multiset of processes that represents the current active processes;
– φ is a substitution with dom(φ) ⊆ AX and for any x ∈ dom(φ), φ(x) (also denoted
xφ) is a message that only contains variables in dom(σ). φ represents the terms that
have been sent;

– σ is a ground substitution.

The semantics of processes is given through a transition relation α−−→, defined in
Figure 3 (τ denotes a silent action). The relation w−−→∗ is defined as the reflexive transitive
closure of α−−→, where w is the concatenation of all actions. We also write equality up to
silent actions =τ .

Intuitively, process new n.P creates a fresh nonce or key, and behaves like P . Process
out(M).P emits M and behaves like P , provided that the evaluation of M is successful.
The corresponding message is stored in the frame φ, corresponding to the attacker
knowledge. A process may input any message that an attacker can forge (rule IN) from
her knowledge φ, using a recipe R to compute a new message from φ. Note that all
names are initially assumed to be secret. Process P | Q corresponds to the parallel
composition of P and Q. Process let x = d in P else Q behaves like P in which
x is replaced by d if d can be successfully evaluated and behaves like Q otherwise.
Process if M = N then P else Q behaves like P if M and N correspond to two
equal messages and behaves like Q otherwise. The replicated process !P behaves as an
unbounded number of copies of P .

A trace of a process P is any possible sequence of transitions in the presence of an
attacker that may read, forge, and send messages. Formally, the set of traces trace(P ) is
defined as follows.

trace(P ) = {(w, φ, σ)|({P}; ∅; ∅) w−−→∗ (P;φ;σ)}



({P1 | P2} ∪ P;φ;σ)
τ−−→ ({P1, P2} ∪ P;φ;σ) PAR

({0} ∪ P;φ;σ) τ−−→ (P;φ;σ) ZERO

({new n.P} ∪ P;φ;σ) τ−−→ ({P} ∪ P;φ;σ) NEW

({new k.P} ∪ P;φ;σ) τ−−→ ({P} ∪ P;φ;σ) NEWKEY

({out(t).P} ∪ P;φ;σ) new axn.out(axn)−−−−−−−−−−−−→({P} ∪ P;φ ∪ {t/axn};σ) OUT

if tσ is a ground term, (tσ) ↓6= ⊥, axn ∈ AX and n = |φ|+ 1

({in(x).P} ∪ P;φ;σ) in(R)−−−−→({P} ∪ P;φ;σ ∪ {(Rφσ) ↓ /x}) IN

if R is an attacker term such that vars(R) ⊆ dom(φ),
and(Rφσ) ↓6= ⊥

({let x = d in P else Q} ∪ P;φ;σ) τ−−→ ({P} ∪ P;φ;σ ∪ {(dσ) ↓ /x}) LET-IN

if dσ is ground and (dσ) ↓6= ⊥
({let x = d in P else Q} ∪ P;φ;σ) τ−−→ ({Q} ∪ P;φ;σ) LET-ELSE

if dσ is ground and (dσ) ↓= ⊥, i.e. d fails
({ifM = N then P else Q} ∪ P;φ;σ) τ−−→ ({P} ∪ P;φ;σ) IF-THEN

if M , N are messages such that Mσ, Nσ are ground,
(Mσ) ↓6= ⊥, (Nσ) ↓6= ⊥, and Mσ = Nσ

({ifM = N then P else Q} ∪ P;φ;σ) τ−−→ ({Q} ∪ P;φ;σ) IF-ELSE

if M , N are messages such that Mσ, Nσ are ground
and (Mσ) ↓= ⊥ or (Nσ) ↓= ⊥ or Mσ 6= Nσ

({!P} ∪ P;φ;σ) τ−−→ ({P, !P} ∪ P;φ;σ) REPL

Fig. 3. Semantics

Example 1. Consider the private authentication protocol (PA) presented in Section 2.
The process Pb(kb, pk(ka)) corresponding to responder B answering a request from A
has already been defined in Section 2.3. The process Pa(ka, pk(kb)) corresponding A
willing to talk to B is:

Pa(ka, pkb) = new Na.out(aenc(〈Na, pk(ka)〉, pkb)). in(z)

Altogether, a session between A and B is represented by the process:

Pa(ka, pk(kb)) | Pb(kb, pk(ka))

where ka, kb ∈ BK, which models that the attacker initially does not know ka, kb.
An example of a trace describing an "honest" execution, where the attacker does not

interfere with the intended run of the protocol, can be written as (tr, φ) where

tr =τ new x1.out(x1).in(x1).new x2.out(x2).in(x2)

and

φ = {x1 7→ aenc(〈Na, pk(ka)〉, pk(kb)), x2 7→ aenc(〈Na, 〈Nb, pk(kb)〉〉, pk(ka))}.

The trace tr describes A outputting the first message of the protocol, which is
stored in φ(x1). The attacker then simply forwards φ(x1) to B. B then performs several
silent actions (decrypting the message, comparing its content to pk(ka)), and outputs a
response, which is stored in φ(x2) and forwarded to A by the attacker.



l ::= LL | HL | HH
KT ::= keyl(T ) | eqkeyl(T ) | seskeyl,a(T ) with a ∈ {1,∞}
T ::= l | T ∗ T | T ∨ T | Jτ l,an ; τ l

′,a
m K with a ∈ {1,∞}

| KT | pkey(KT ) | vkey(KT ) | (T )T | {T}T

Fig. 4. Types for terms

3.3 Equivalence

When processes evolve, sent messages are stored in a substitution φ while the values of
variables are stored in σ. A frame is simply a substitution ψ where dom(ψ) ⊆ AX . It
represents the knowledge of an attacker. In what follows, we will typically consider φσ.

Intuitively, two sequences of messages are indistinguishable to an attacker if he
cannot perform any test that could distinguish them. This is typically modelled as static
equivalence [2]. Here, we consider of variant of [2] where the attacker is also given the
ability to observe when the evaluation of a term fails, as defined for example in [26].

Definition 1 (Static Equivalence). Two ground frames φ and φ′ are statically equiv-
alent if and only if they have the same domain, and for all attacker terms R,S with
variables in dom(φ) = dom(φ′), we have

(Rφ =↓ Sφ) ⇐⇒ (Rφ′ =↓ Sφ
′)

Then two processes P and Q are in equivalence if no matter how the adversary
interacts with P , a similar interaction may happen with Q, with equivalent resulting
frames.

Definition 2 (Trace Equivalence). Let P , Q be two processes. We write P vt Q if for
all (s, φ, σ) ∈ trace(P ), there exists (s′, φ′, σ′) ∈ trace(Q) such that s =τ s′ and φσ
and φ′σ′ are statically equivalent. We say that P and Q are trace equivalent, and we
write P ≈t Q, if P vt Q and Q vt P .

Note that this definition already includes the attacker’s behaviour, since processes
may input any message forged by the attacker.

Example 2. As explained in Section 2, anonymity is modelled as an equivalence property.
Intuitively, an attacker should not be able to know which agents are executing the
protocol. In the case of protocol PA, presented in Example 1, the anonymity property
can be modelled by the following equivalence:

Pa(ka, pk(kb)) | Pb(kb, pk(ka)) ≈t Pa(ka, pk(kb)) | Pb(kb, pk(kc))

4 A type system for dynamic keys

Types In our type system we give types to pairs of messages – one from the left process
and one from the right one. We store the types of nonces, variables, and keys in a
typing environment Γ . While we store a type for a single nonce or variable occurring



eqkeyl(T ) <: keyl(T )
(SEQKEY)

seskeyl,a(T ) <: eqkeyl(T )
(SSESKEY)

keyl(T ) <: l
(SKEY)

T <: eqkeyl(T ′)

pkey(T ) <: LL
(SPUBKEY)

T <: eqkeyl(T ′)

vkey(T ) <: LL
(SVKEY)

T <: T ′

(T )T ′′ <: (T ′)T ′′
(SENC)

T <: T ′

{T}T ′′ <: {T ′}T ′′
(SAENC)

Fig. 5. Selected subtyping rules

in both processes, we assign a potentially different type to every different combination
of keys (k, k′) used in the left and right process – so called bikeys. This is an important
non-standard feature that enables us to type protocols using different encryption and
decryption keys.

The types for messages are defined in Fig. 4 and explained below. Selected subtyping
rules are given in Fig. 5. We assume three security labels HH, HL and LL, ranged over by
l, whose first (resp. second) component denotes the confidentiality (resp. integrity) level.
Intuitively, values of high confidentiality may never be output to the network in plain,
and values of high integrity are guaranteed not to originate from the attacker. Pair types
T ∗ T ′ describe the type of their components and the type T ∨ T ′ is given to messages
that can have type T or type T ′.

The type τ l,an describes nonces and constants of security level l: the label a ranges
over {∞, 1}, denoting whether the nonce is bound within a replication or not (constants
are always typed with a = 1). We assume a different identifier n for each constant and
restriction in the process. The type τ l,1n is populated by a single name, (i.e., n describes a
constant or a non-replicated nonce) and τ l,∞n is a special type, that is instantiated to τ l,1nj
in the jth replication of the process. Type Jτ l,an ; τ l

′,a
m K is a refinement type that restricts

the set of possible values of a message to values of type τ l,an on the left and type τ l
′,a
m on

the right. For a refinement type Jτ l,an ; τ l,an K with equal types on both sides we write τ l,an .
Keys can have three different types ranged over by KT , ordered by a subtyping

relation (SEQKEY, SSESKEY): seskeyl,a(T ) <: eqkeyl(T ) <: keyl(T ). For all three
types, l denotes the security label (SKEY) of the key and T is the type of the payload that
can be encrypted or signed with these keys. This allows us to transfer typing information
from one process to another one: e.g. when encrypting, we check that the payload type is
respected, so that we can be sure to get a value of the payload type upon decryption. The
three different types encode different relations between the left and the right component
of a bikey (k, k′). While type keyl(T ) can be given to bikeys with different components
k 6= k′, type eqkeyl(T ) ensures that the keys are equal on both sides in the specific typed
instruction. Type seskeyl,a(T ) additionally guarantees that the key is always the same
on the left and the right throughout the whole process. We allow for dynamic generation
of keys of type seskeyl,a(T ) and use a label a to denote whether the key is generated
under replication or not – just like for nonce types.

For a key of type T , we use types pkey(T ) and vkey(T ) for the corresponding public
key and verification key, and types (T ′)T and {T ′}T for symmetric and asymmetric
encryptions of messages of type T ′ with this key. Public keys and verification keys can



Γ (n) = τ l,an Γ (m) = τ l,am l ∈ {HH, HL}
Γ ` n ∼ m : l→ ∅

(TNONCE)
Γ (n) = τ LL,an

Γ ` n ∼ n : LL→ ∅
(TNONCEL)

Γ (x) = T

Γ ` x ∼ x : T → ∅
(TVAR)

Γ `M ∼ N : T ′ → c T ′ <: T

Γ `M ∼ N : T → c
(TSUB)

Γ `M ∼ N : T → c Γ `M ′ ∼ N ′ : T ′ → c′

Γ ` 〈M,M ′〉 ∼ 〈N,N ′〉 : T ∗ T ′ → c ∪ c′
(TPAIR)

M,N well formed

Γ `M ∼ N : HL→ ∅
(THIGH)

Γ (k, k′) = T

Γ ` k ∼ k′ : T → ∅
(TKEY)

k ∈ keys(Γ ) ∪ FK
Γ ` pk(k) ∼ pk(k) : LL→ ∅

(TPUBKEYL)

Γ `M ∼ N : T → ∅ ∃T ′, l.T <: keyl(T ′)

Γ ` pk(M) ∼ pk(N) : pkey(T )→ ∅
(TPUBKEY)

Γ `M ∼ N : T → c Γ `M ′ ∼ N ′ : T ′ → c′

T ′ = LL ∨ (∃T ′′, T ′′′, l.T ′ = pkey(T ′′) ∧ T ′′ <: keyl(T ′′′))

Γ ` aenc(M,M ′) ∼ aenc(N,N ′) : {T}T ′ → c ∪ c′
(TAENC)

Γ `M ∼ N : {T}pkey(T ′) → c T ′ <: keyHH(T )

Γ `M ∼ N : LL→ c ∪ {M ∼ N}
(TAENCH)

Γ `M ∼ N : {LL}T → c (T = pkey(T ′) ∧ T ′ <: eqkeyl(T ′′)) or T = LL

Γ `M ∼ N : LL→ c
(TAENCL)

Fig. 6. Selected rules for messages

be treated as LL if the corresponding keys are equal (SPUBKEY,SVKEY) and subtyping
on encryptions is directly induced by subtyping of the payload types (SENC, SAENC).

Constraints When typing messages, we generate constraints of the form (M ∼ N),
meaning that the attacker may see M and N in the left and right process, respectively,
and these two messages are thus required to be indistinguishable.

Due to space reasons we only present a few selected rules that are characteristic of
the typing of branching protocols. The omitted rules are similar in spirit to the presented
ones or are standard rules for equivalence typing [28].

4.1 Typing messages

The typing judgement for messages is of the form Γ ` M ∼ N : T → c which reads
as follows: under the environment Γ , M and N are of type T and either this is a high
confidentiality type (i.e., M and N are not disclosed to the attacker) or M and N are
indistinguishable for the attacker assuming the set of constraints c is consistent.

Confidential nonces can be given their label from the typing environment in rule
TNONCE. Since their label prevents them from being released in clear, the attacker cannot



observe them and we do not need to add constraints for them. They can however be
output in encrypted form and will then appear in the constraints of the encryption. Public
nonces (labeled as LL) can be typed if they are equal on both sides (rule TNONCEL).
These are standard rules, as well as the rules TVAR, TSUB, TPAIR and THIGH [28].

A non-standard rule that is crucial for the typing of branching protocols is rule TKEY.
As the typing environment contains types for bikeys (k, k′) this rule allows us to type
two potentially different keys with their type from the environment. With the standard
rule TPUBKEYL we can only type a public key of the same keys on both sides, while
rule TPUBKEY allows us to type different public keys pk(M), pk(N), provided we can
show that there exists a valid key type for the terms M and N . This highlights another
important technical contribution of this work, as compared to existing type systems for
equivalence: we do not only support a fixed set of keys, but also allow for the usage of
keys in variables, that have been received from the network.

To show that a message is of type {T}T ′ – a message of type T encrypted asymmet-
rically with a key of type T ′, we have to show that the corresponding terms have exactly
these types in rule TAENC. The generated constraints are simply propagated. In addition
we need to show that T ′ is a valid type for a public key, or LL, which models untrusted
keys received from the network. Note, that this rule allows us to encrypt messages with
different keys in the two processes. For encryptions with honest keys (label HH) we can
use rule TAENC to give type LL to the messages, if we can show that the payload type is
respected. In this case we add the entire encryptions to the constraints, since the attacker
can check different encryptions for equality, even if he cannot obtain the plaintext. Rule
TAENCL allows us to give type LL to encryptions even if we do not respect the payload
type, or if the key is corrupted. However, we then have to type the plaintexts with type LL
since we cannot guarantee their confidentiality. Additionally, we have to ensure that the
same key is used in both processes, because the attacker might possess the corresponding
private keys and test which decryption succeeds. Since we already add constraints for
giving type LL to the plaintext, we do not need to add any additional constraints.

4.2 Typing processes

From now on, we assume that processes assign a type to freshly generated nonces
and keys. That is, new n.P is now of the form new n : T. P . This requires a (very
light) type annotation from the user. The typing judgement for processes is of the form
Γ ` P ∼ Q→ C and can be interpreted as follows: If two processes P and Q can be
typed in Γ and if the generated constraint set C is consistent, then P and Q are trace
equivalent. We present selected rules in Fig. 7.

Rule POUT states that we can output messages to the network if we can type them
with type LL, i.e., they are indistinguishable to the attacker, provided that the generated
set c of constraints is consistent. The constraints of c are then added to all constraints in
the constraint set C. We define C∪∀c′ := {(c ∪ c′, Γ ) | (c, Γ ) ∈ C}. This rule, as well
as the rules PZERO, PIN, PNEW, PPAR, and PLET, are standard rules [28].

Rule PNEWKEY allows us to generate new session keys at runtime, which models
security protocols more faithfully. It also allows us to generate infinitely many keys, by
introducing new keys under replication.



Γ ` P ∼ Q→ C Γ `M ∼ N : LL→ c

Γ ` out(M).P ∼ out(N).Q→ C∪∀c
(POUT)

Γ ` � Γ does not contain union types

Γ ` 0 ∼ 0→ (∅, Γ )
(PZERO)

Γ, x : LL ` P ∼ Q→ C

Γ ` in(x).P ∼ in(x).Q→ C
(PIN)

Γ, n : τ l,an ` P ∼ Q→ C

Γ ` new n : τ l,an .P ∼ new n : τ l,an .Q→ C
(PNEW)

Γ, (k, k) : seskeyl,a(T ) ` P ∼ Q→ C

Γ ` new k : seskeyl,a(T ).P ∼ new k : seskeyl,a(T ).Q→ C
(PNEWKEY)

Γ ` P ∼ Q→ C Γ ` P ′ ∼ Q′ → C′

Γ ` P | P ′ ∼ Q | Q′ → C∪×C′
(PPAR)

Γ `d t ∼ t′ : T Γ, x : T ` P ∼ Q→ C Γ ` P ′ ∼ Q′ → C′

Γ ` let x = t in P else P ′ ∼ let x = t′ in Q else Q′ → C ∪ C′
(PLET)

(PLETADECSAME)
Γ (y) = LL Γ (k, k) <: keyHH(T )

Γ, x : T ` P ∼ Q→ C Γ, x : LL ` P ∼ Q→ C′ Γ ` P ′ ∼ Q′ → C′′

(∀T ′.∀k′ 6= k. Γ (k, k′) <: keyHH(T ′)⇒ Γ, x : T ′ ` P ∼ Q′ → Ck′)

(∀T ′.∀k′ 6= k. Γ (k′, k) <: keyHH(T ′)⇒ Γ, x : T ′ ` P ′ ∼ Q→ C′k′)

Γ ` let x = adec(y, k) in P else P ′ ∼ let x = adec(y, k) in Q else Q′

→ C ∪ C′ ∪ C′′ ∪ (
⋃
k′

Ck′) ∪ (
⋃
k′

C′k′)

Γ ` P ∼ Q→ C1

Γ ` P ∼ Q′ → C2 Γ ` P ′ ∼ Q→ C3 Γ ` P ′ ∼ Q′ → C4

Γ ` ifM =M ′ then P else P ′ ∼ if N = N ′ then Q else Q′

→ C1 ∪ C2 ∪ C3 ∪ C4

(PIFALL)

Fig. 7. Selected rules for processes

Rule PLETADECSAME treats asymmetric decryptions where we use the same fixed
honest key (label HH) for decryptions in both processes. Standard type systems for equiv-
alence have a simplifying (and restrictive) invariant that guarantees that encryptions are
always performed using the same keys in both processes and hence guarantee that both
processes always take the same branch in decryption (compare rule PLET). In our system
however, we allow encryptions with potentially different keys, which requires cross-case
validation in order to retain soundness. Still, the number of possible combinations of
encryption keys is limited by the assignments in the typing environment Γ . To cover all
the possibilities, we type the following combinations of continuation processes:

– Both then branches: In this case we know that key k was used for encryption on
both sides. Because of Γ (k, k) = keyHH(T ), we know that in this case the payload
type is T and we type the continuation with Γ, x : T .
Because the message may also originate from the attacker (who also has access to
the public key), we have to type the two then branches also with Γ, x : LL.



Γ (k, k) <: keyLL(T ) Γ (x) = LL

Γ `d adec(x, k) ∼ adec(x, k) : LL
(DADECL)

Γ (y) = seskeyHH,a(T ) Γ (x) = LL

Γ `d adec(x, y) ∼ adec(x, y) : T ∨ LL
(DADECH’)

(Γ (y) = seskeyLL,a(T ) ∨ Γ (y) = LL) Γ (x) = LL

Γ `d adec(x, y) ∼ adec(x, y) : LL
(DADECL’)

Γ (k, k) = seskeyl,a(T ′) Γ (x) = {T}pkey(seskeyl,a(T ′))
Γ `d adec(x, k) ∼ adec(x, k) : T

(DADECT)

Γ (y) = seskeyl,a(T ′) Γ (x) = {T}pkey(seskeyl,a(T ′))
Γ `d adec(x, y) ∼ adec(x, y) : T

(DADECT’)

Fig. 8. Selected destructor rules

– Both else branches: If decryption fails on both sides, we type the two else branches
without introducing any new variables.

– Left then, right else: The encryption may have been created with key k on the left
side and another key k′ on the right side. Hence, for each k′ 6= k, such that Γ (k, k′)
maps to a key type with label HH and payload type T ′, we have to typecheck the left
then branch and the right else branch with Γ, x : T ′.

– Left else, right then: This case is analogous to the previous one.

The generated set of constraints is simply the union of all generated constraints for the
subprocesses. Rule PIFALL lets us typecheck any conditional by simply checking the
four possible branch combinations. In contrast to the other rules for conditionals that we
present in Appendix A, this rule does not require any other preconditions or checks on
the terms M,M ′, N,N ′.

Destructor Rules The rule PLET requires that a destructor application succeeds or fails
equally in the two processes. To ensure this property, it relies on additional rules for
destructors. We present selected rules in Fig. 8. Rule DADECL is a standard rule that
states that a decryption of a variable of type LL with an untrusted key (label LL) yields
a result of type LL. Decryption with a trusted (label HH) session key gives us a value
of the key’s payload type or type LL in case the encryption was created by the attacker
using the public key. Here it is important that the key is of type seskeyHH,a(T ), since
this guarantees that the key is never used in combination with a different key and hence
decryption will always equally succeed or fail in both processes. Rule DADECL’ is
similar to rule DADECL except it uses a variable for decryption instead of a fixed key.
Rule DADECT treats the case in which we know that the variable x is an asymmetric
encryption of a specific type. If the type of the key used for decryption matches the key
type used for encryption, we know the exact type of the result of a successful decryption.
DADECT’ is similar to DADECT, with a variable as key. In Appendix A we present
similar rules for symmetric decryption and verification of signatures.



* =
〈y1, 〈Nb, pk(kb)〉〉, Nb well formed

Γ ` 〈y1, 〈Nb, pk(kb)〉〉 ∼ Nb : HL→ ∅
THIGH

∗

Γ (ka, k) = keyHH(HL)

Γ ` ka ∼ k : keyHH(HL)→ ∅
TKEY

Γ ` pk(ka) ∼ pk(k) : pkey(keyHH(HL))→ ∅
TPUBKEY

Γ ` aenc(〈y1, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nb, pk(k)) : {HL}pkey(keyHH(HL)) → ∅
TAENC

Γ ` aenc(〈y1, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nb, pk(k)) : LL→ C
TAENCH

where C = {aenc(〈y1, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nb, pk(k))}.

Fig. 9. Type derivation for the response to A and the decoy message

4.3 Typing the private authentication protocol

We now show how our type system can be applied to type the Private Authentication
protocol presented in section 2.3, by showing the most interesting parts of the derivation.
We type the protocol using the initial environment Γ presented in Fig. 1.

We focus on the responder process Pb and start with the asymmetric decryption. As
we use the same key kb in both processes, we apply rule PLETADECSAME. We have
Γ (x) = LL by rule PIN and Γ (kb, kb) = keyHH(HH, LL). We do not have any other entry
using key kb in Γ . We hence typecheck the two then branches once with Γ, y : (HH∗LL)
and once with Γ, y : LL, as well as the two else branches (which are just 0 in this case).

Typing the let expressions is straightforward using rule PLET. In the conditional we
check y2 = pk(ka) in the left process and y2 = pk(kc) in the right process. Since we
cannot guarantee which branches are taken or even if the same branch is taken in the two
processes, we use rule PIFALL to typecheck all four possible combinations of branches.
We now focus on the case where A is successfully authenticated in the left process and is
rejected in the right process. We then have to typecheckB’s positive answer together with
the decoy message: Γ ` aenc(〈y1, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nc, pk(k)) : LL.

Fig. 9 presents the type derivation for this example. We apply rule TAENC to give
type LL to the two terms, adding the two encryptions to the constraint set. Using rule
TAENCH we can show that the encryptions are well-typed with type {HL}pkey(keyHH(HL)).
The type of the payload is trivially shown with rule THIGH. To type the public key,
we use rule TPUBKEY followed by rule TKEY, which looks up the type for the bikey
(ka, k) in the typing environment Γ .

5 Consistency

Our type system collects constraints that intuitively correspond to (symbolic) messages
that the attacker may see (or deduce). Therefore, two processes are in trace equivalence
only if the collected constraints are in static equivalence for any plausible instantiation.

However, checking static equivalence of symbolic frames for any instantiation cor-
responding to a real execution may be as hard as checking trace equivalence [25].
Conversely, checking static equivalence for any instantiation may be too strong and may
prevent proving equivalence of processes. Instead, we use again the typing information



gathered by our type system and we consider only instantiations that comply with the
type. Actually, we even restrict our attention to instantiations where variables of type LL
are only replaced by deducible terms. This last part is a key ingredient for considering
processes with dynamic keys. Hence, we define a constraint to be consistent if the
corresponding two frames are in static equivalence for any instantiation that can be typed
and produces constraints that are included in the original constraint.

Formally, we first introduce the following ingredients:

– φl(c) and φr(c) denote the frames that are composed of the left and the right terms
of the constraints respectively (in the same order).

– φΓLL denotes the frame that is composed of all low confidentiality nonces and keys
in Γ , as well as all public encryption keys and verification keys in Γ . This intuitively
corresponds to the initial knowledge of the attacker.

– Two ground substitutions σ, σ′ are well-typed in Γ with constraint cσ if they preserve
the types for variables in Γ , i.e., for all x, Γ ` σ(x) ∼ σ′(x) : Γ (x) → cx, and
cσ =

⋃
x∈dom(Γ ) cx.

The instantiation of a constraint is defined as expected. If c is a set of constraints, and σ,
σ′ are two substitutions, let JcKσ,σ′ be the instantiation of c by σ on the left and σ′ on
the right, that is, JcKσ,σ′ = {Mσ ∼ Nσ′ |M ∼ N ∈ c}.

Definition 3 (Consistency). A set of constraints c is consistent in an environment Γ if
for all substitutions σ,σ′ well-typed in Γ with a constraint cσ such that cσ ⊆ JcKσ,σ′ , the
frames φΓLL ∪ φl(c)σ and φΓLL ∪ φr(c)σ

′ are statically equivalent. We say that (c, Γ ) is
consistent if c is consistent in Γ and that a constraint set C is consistent in Γ if each
element (c, Γ ) ∈ C is consistent.

Compared to [28], we now require cσ ⊆ JcKσ,σ′ . This means that instead of considering
any (well typed) instantiations, we only consider instantiations that use fragments of
the constraints. For example, this now imposes that low variables are instantiated by
terms deducible from the constraint. This refinement of consistency provides a tighter
definition and is needed for non fixed keys, as explained in the next section.

6 Soundness

In this section, we provide our main results. First, soundness of our type system: when-
ever two processes can be typed with consistent constraints, then they are in trace
equivalence. Then we show how to automatically prove consistency. Finally, we explain
how to lift these two first results from finite processes to processes with replication.
But first, we discuss why we cannot directly apply the results from [28] developed for
processes with long term keys.

6.1 Example

Consider the following example, typical for a key-exchange protocol: Alice receives
some key and uses it to encrypt, e.g. a nonce. Here, we consider a semi-honest session,



where an honest agent A is receiving a key from a dishonest agent D. Such sessions are
typically considered in combination with honest sessions.

C → A : aenc(〈k,C〉, pk(A))
A→ C : aenc(n, k)

The process modelling the role of Alice is as follows.

PA = in(x). let x′ = adec(x, kA) in let y = π1(x
′) in let z = π2(x

′) in
if z = C then new n. out(enc(n, y))

When type-checking PA ∼ PA (as part as a more general process with honest sessions),
we would collect the constraint enc(n, y) ∼ enc(n, y) where y comes from the adver-
sary and is therefore a low variable (that is, of type LL). The approach of [28] consisted
in opening messages as much as possible. In this example, this would yield the constraint
y ∼ y which typically renders the constraint inconsistent, as exemplified below.

When typechecking the private authentication protocol, we obtain constraints con-
taining aenc(〈y1, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nb, pk(k)) (as seen in Fig. 9), where
y1 has type HL. Assume now that the constraint also contains y ∼ y for some variable y
of type LL and consider the following instantiations of y and y1: σ(y1) = σ′(y1) = a for
some constant a and σ(y) = σ′(y) = aenc(Nb, pk(k)). Note that such an instantiation
complies with the type since Γ ` σ(y) ∼ σ′(y) : LL → c for some constraint c. The
instantiated constraint would then contain

{aenc(〈a, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nb, pk(k)),

aenc(Nb, pk(k)) ∼ aenc(Nb, pk(k))}

and the corresponding frames are not statically equivalent, which makes the constraint
inconsistent for the consistency definition of [28] .

Therefore, our first idea consists in proving that we only collect constraints that
are saturated w.r.t. deduction: any deducible subterm can already be constructed from
the terms of the constraint. Second, we show that for any execution, low variables are
instantiated by terms deducible from the constraints. This guarantees that our new notion
of consistency is sound. The two results are reflected in the next section.

6.2 Soundness

Our type system, together with consistency, implies trace equivalence.

Theorem 1 (Typing implies trace equivalence). For all P , Q, and C, for all Γ con-
taining only keys, if Γ ` P ∼ Q→ C and C is consistent, then P ≈t Q.

Example 3. We can typecheck PA, that is

Γ ` Pa(ka, pk(kb)) | Pb(kb, pk(ka)) ∼ Pa(ka, pk(kb)) | Pb(kb, pk(kc))→ CPA

where Γ has been defined in Fig. 1 and assuming that nonce Na of process Pa has been
annotated with type τ HH,1Na

and nonce Nb of Pb has been annotated with type τ HH,1Nb
. The



constraint set CPA can be proved to be consistent using the procedure presented in the
next section. Therefore, we can conclude that

Pa(ka, pk(kb)) | Pb(kb, pk(ka)) ≈t Pa(ka, pk(kb)) | Pb(kb, pk(kc))

which shows anonymity of the private authentication protocol.

The first key ingredient in the proof of Theorem 1 is the fact that any well-typed low
term is deducible from the constraint generated when typing it.

Lemma 1 (Low terms are recipes on their constraints). For all ground messages M ,
N , for all Γ , c, if Γ `M ∼ N : LL→ c then there exists an attacker recipe R without
destructors such that M = R(φl(c) ∪ φΓLL) and N = R(φr(c) ∪ φΓLL).

The second key ingredient is a finer invariant on protocol executions: for any typable
pair of processes P,Q, any execution of P can be mimicked by an execution of Q such
that low variables are instantiated by well-typed terms constructible from the constraint.

Lemma 2. For all processes P , Q, for all φ, σ, for all multisets of processes P , con-
straint setsC, sequences s of actions, for all Γ containing only keys, if Γ ` P ∼ Q→ C,
C is consistent, and ({P}, ∅, ∅) s−→∗ (P, φ, σ), then there exist a sequence s′ of actions,
a multiset Q, a frame φ′, a substitution σ′, an environment Γ ′, a constraint c such that:

– ({Q}, ∅, ∅) s′−−→∗ (Q, φ′, σ′), with s =τ s′

– Γ ′ ` φσ ∼ φ′σ′ : LL → c, and for all x ∈ dom(σ) ∩ dom(σ′), there exists cx such
that Γ ′ ` σ(x) ∼ σ(x) : Γ ′(x)→ cx and cx ⊆ c.

Note that this finer invariant guarantees that we can restrict our attention to the
instantiations considered for defining consistency.

As a by-product, we obtain a finer type system for equivalence, even for processes
with long term keys (as in [28]). For example, we can now prove equivalence of processes
where some agent signs a low message that comes from the adversary. In such a case, we
collect sign(x, k) ∼ sign(x, k) in the constraint, where x has type LL, which we can
now prove to be consistent (depending on how x is used in the rest of the constraint).

6.3 Procedure for consistency

We devise a procedure check_const(C) for checking consistency of a constraint C,
depicted in Figure 10. Compared to [28], the procedure is actually simplified. Thanks to
Lemmas 1 and 2, there is no need to open constraints anymore. The rest is very similar
and works as follows:

– First, variables of refined type Jτ l,1m ; τ l
′,1
n K are replaced by m on the left-hand-side

of the constraint and n on the right-hand-side.
– Second, we check that terms have the same shape (encryption, signature, hash)

on the left and on the right and that asymmetric encryption and hashes cannot be
reconstructed by the adversary (that is, they contain some fresh nonce).

– The most important step consists in checking that the terms on the left satisfy the
same equalities than the ones on the right. Whenever two left terms M and N are
unifiable, their corresponding right terms M ′ and N ′ should be equal after applying
a similar instantiation.



step1Γ (c) := (JcKσF ,σ′F , Γ
′), with

F := {x ∈ dom(Γ ) | ∃m,n, l, l′. Γ (x) = Jτ l,1m ; τ l
′,1
n K}

and σF , σ′F defined by{
• dom(σF ) = dom(σ′F ) = F

• ∀x ∈ F. ∀m,n, l, l′.Γ (x) = Jτ l,1m ; τ l
′,1
n K⇒ σF (x) = m ∧ σ′F (x) = n

and Γ ′ is Γ |dom(Γ )\F extended with Γ ′(n) = τ l,1n for all nonce n such that τ l,1n occurs in
Γ .

step2Γ (c) := check that for all M ∼ N ∈ c, M and N are both

– enc(M ′,M ′′), enc(N ′, N ′′) where M ′′, N ′′ are either
• keys k, k′ where ∃T.Γ (k, k′) <: keyHH(T );
• or a variable x such that ∃T.Γ (x) <: keyHH(T );

– or encryptions aenc(M ′,M ′′), aenc(N ′, N ′′) where
• M ′ and N ′ contain directly under pairs a nonce n such that Γ (n) = τ HH,an or a

secret key k such that ∃T, k′.Γ (k, k′) <: keyHH(T ) or Γ (k′, k) <: keyHH(T ), or
a variable x such that ∃m,n, a.Γ (x) = Jτ HH,am ; τ HH,an K, or a variable x such that
∃T.Γ (x) <: keyHH(T );

• M ′′ and N ′′ are either
∗ public keys pk(k), pk(k′) where ∃T.Γ (k, k′) <: keyHH(T );
∗ or public keys pk(x), pk(x) where ∃T.Γ (x) <: keyHH(T );
∗ or a variable x such that ∃T, T ′.Γ (x) = pkey(T ) and T <: keyHH(T ′);

– or hashes h(M ′), h(N ′), where M ′, N ′ similarly contain a secret value under pairs;
– or signatures sign(M ′,M ′′), sign(N ′,M ′′) where M ′′, N ′′ are either
• keys k, k′ where ∃T.Γ (k, k′) <: keyHH(T );
• or a variable x such that ∃T.Γ (x) <: keyHH(T );

step3Γ (c) := If for all M ∼ M ′ and N ∼ N ′ ∈ c such that M , N are unifiable with a
most general unifier µ, and such that

∀x ∈ dom(µ).∃l, l′,m, p. (Γ (x) = Jτ l,∞m ; τ l
′,∞
p K)⇒ (xµ ∈ X ∨ ∃i. xµ = mi)

we have
M ′αθ = N ′αθ

where

∀x ∈ dom(µ).∀l, l′,m, p, i.(Γ (x) = Jτ l,∞m ; τ l
′,∞
p K ∧ µ(x) = mi)⇒ θ(x) = pi

and α is the restriction of µ to {x ∈ dom(µ) | Γ (x) = LL ∧ µ(x) ∈ N};
and if the symmetric condition for the case where M ′, N ′ are unifiable holds as well, then
return true.

check_const(C) := for all (c, Γ ) ∈ C, let (c1, Γ1) := step1Γ (c) and check that
step2Γ1

(c1) = true and step3Γ1
(c1) = true.

Fig. 10. Procedure for checking consistency.



For constraint sets without infinite nonce types, check_const entails consistency.

Theorem 2. Let C be a set of constraints such that

∀(c, Γ ) ∈ C. ∀l, l′,m, p. Γ (x) 6= Jτ l,∞m ; τ l
′,∞
p K.

If check_const(C) = true, then C is consistent.

Example 4. Continuing Example 3, typechecking the PA protocol yields the set CPA of
constraint sets. CPA contains in particular the set

{ aenc(〈Na, pk(ka)〉, pk(kb)) ∼ aenc(〈Na, pk(ka)〉, pk(kb)),
aenc(〈y1, 〈Nb, pk(kb)〉〉, pk(ka)) ∼ aenc(Nb, pk(k)) }

where variable y1 has type HL (we also have the same constraint but where y1 has type
LL). The other constraint sets of CPA are similar and correspond to the various cases
(else branch of Pa with then branch of Pb, etc.). The procedure check_const returns
true since no two terms can be unified, which proves consistency. Similarly, the other
constraints generated for PA can be proved to be consistent applying check_const.

6.4 From finite to replicated processes

The previous results apply to processes without replication only. In the spirit of [28], we
lift our results to replicated processes. We proceed in two steps.

1. Whenever Γ ` P ∼ Q→ C, we show that:
[ Γ ]1∪· · ·∪[ Γ ]n` [ P ]1| . . . |[ P ]n ∼ [Q ]1| . . . |[Q ]n → [ C ]1∪× · · · ∪×[ C ]n,
where [ Γ ]i is intuitively a copy of Γ , where variables x have been replaced by xi,
and nonces or keys n of infinite type τ l,∞n (or seskeyl,∞(T )) have been replaced by
ni. The copies [ P ]i, [Q ]i, and [ C ]i are defined similarly.

2. We cannot directly check consistency of infinitely many constraints of the form
[ C ]1∪× · · · ∪×[ C ]n. Instead, we show that it is sufficient to check consistency of
two copies [ C ]1∪×[ C ]2 only. The reason why we need two copies (and not just
one) is to detect when messages from different sessions may become equal.

Formally, we can prove trace equivalence of replicated processes.

Theorem 3. Consider P , Q, P ′ ,Q′, C, C ′, such that P , Q and P ′, Q′ do not share any
variable. Consider Γ , containing only keys and nonces with finite types.

Assume that P and Q only bind nonces and keys with infinite nonce types, i.e.
using new m : τ l,∞m and new k : seskeyl,∞(T ) for some label l and type T ; while
P ′ and Q′ only bind nonces and keys with finite types, i.e. using new m : τ l,1m and
new k : seskeyl,1(T ).

Let us abbreviate by new n the sequence of declarations of each nonce m ∈ dom(Γ )
and session key k such that Γ (k, k) = seskeyl,1(T ) for some l, T . If

– Γ ` P ∼ Q→ C,
– Γ ` P ′ ∼ Q′ → C ′,



– check_const([ C ]1∪×[ C ]2∪×[ C ′ ]1) = true,

then new n. ((!P ) | P ′) ≈t new n. ((!Q) | Q′).

The proof, together with fully precise definitions, can be found in Appendices A
and B.Interestingly, Theorem 3 allows to consider a mix of finite and replicated pro-
cesses.

7 Experimental results

We implemented our typechecker as well as our procedure for consistency in a prototype
tool TypeEq. We adapted the original prototype of [28] to implement additional cases
corresponding to the new typing rules. This also required to design new heuristics w.r.t.
the order in which typing rules should be applied. Of course, we also had to support
for the new bikey types, and for arbitrary terms as keys. This represented a change of
about 40% of the code of the software. We ran our experiments on a single Intel Xeon
E5-2687Wv3 3.10GHz core, with 378GB of RAM (shared with the 19 other cores).
Actually, our own prototype does not require a large amount of RAM. However, some of
the other tools we consider use more than 64GB of RAM on some examples (at which
point we stopped the experiment). More precise figures about our tool are provided in
the table of Figure 11. The corresponding files can be found at [5].

We tested TypeEq on two symmetric key protocols that include a handshake on
the key (Yahalom-Lowe and Needham-Schroeder symmetric key protocols). In both
cases, we prove key usability of the exchanged key. Intuitively, we show that an attacker
cannot distinguish between two encryptions of public constants: P.out(enc(a, k)) ≈t
P.out(enc(b, k)). We also consider one standard asymmetric key protocol (Needham-
Schroeder-Lowe protocol), showing strong secrecy of the exchanged nonce.

Helios [4] is a well known voting protocol. We show ballot privacy, in the presence of
a dishonest board, assuming that voters do not revote (otherwise the protocol is subject to
a copy attack [39], a variant of [30]). We consider a more precise model than the previous
Helios models which assume that voters initially know the election public key. Here,
we model the fact that voters actually receive the (signed) freshly generated election
public key from the network. The BAC protocol is one of the protocols embedded in
the biometric passport [1]. We show anonymity of the passport holder P (A) ≈t P (B).
Actually, the only data that distinguish P (A) from P (B) are the private keys. Therefore
we consider an additional step where the passport sends the identity of the agent to the
reader, encrypted with the exchanged key. Finally, we consider the private authentication
protocol, as described in this paper.

7.1 Bounded number of sessions

We first compare TypeEq with the tools for a bounded number of sessions. Namely,
we consider Akiss [23], APTE [24] as well as its optimised variant with partial order
reduction APTE-POR [11], SPEC [32], and SatEquiv [27]. We step by step increase the
number of sessions until we reach a “complete” scenario where each role is instantiated
by A talking to B, A talking to C, B talking to A, and B talking to C, where A,B



Protocols (# sessions) Akiss APTE APTE-POR Spec Sat-Eq
TypeEq

Time Memory
Needham - 3 4.2s 0.39s 0.086s 59.3s 0.14s 0.006s 4.0 MB
Schroeder 6 TO TO 9m22s TO 0.53s 0.009s 4.7 MB

(symmetric) 10 SO 3.7s 0.012s 5.0 MB
14 18s 0.015s 6.9 MB
3 1.0s 2.9s 0.095s 10s 0.063s 0.006s 3.8 MB

Yahalom - 6 MO TO 11m20s MO 0.26s 0.017s 4.9 MB
Lowe 10 SO 3.0s 0.015s 4.9 MB

14 18s 0.019s 5.0 MB
Needham- 2 0.10s 3.8s 0.06s 28s x 0.004s 3.1 MB
Schroeder- 4 1m8s BUG BUG TO 0.004s 3.4 MB

Lowe 8 TO 0.007s 4.7 MB
Private 2 0.19s 1.2s 0.034s x x 0.004s 3.2 MB

Authentication 4 99m TO 24.6s 0.013s 4.9 MB
8 MO TO 1s 37 MB

Helios 3 MO BUG BUG x x 0.005s 3.5 MB

BAC

2 4.0s 0.20s 0.032s x x 0.004s 2.9 MB
3 SO 185m 2.6s 0.004s 3.1 MB
5 TO 107m 0.005s 3.4 MB
7 TO 0.005s 3.8 MB

TO: Time Out (>12h) MO: Memory Overflow (>64GB) SO: Stack Overflow

Fig. 11. Experimental results for the bounded case

are honest while C is dishonest. This yields 14 sessions for symmetric-key protocols
with two agents and one server, and 8 sessions for a protocol with two agents. In some
cases, we further increase the number of sessions (replicating identical scenarios) to
better compare tools performance. The results of our experiments are reported in Fig. 11.
Note that SatEquiv fails to cover several cases because it does not handle asymmetric
encryption nor else branches.

7.2 Unbounded number of sessions

We then compare TypeEq with Proverif. As shown in Fig. 12, the performances are
similar except that ProVerif cannot prove Helios. The reason lies in the fact that Helios
is actually subject to a copy attack if voters revote and ProVerif cannot properly handle
processes that are executed only once. Similarly, Tamarin cannot properly handle the else
branch of Helios (which models that the ballot box rejects duplicated ballots). Tamarin
fails to prove that the underlying check either succeeds or fails on both sides.

8 Conclusion and discussion

We devise a new type system to reason about keys in the context of equivalence properties.
Our new type system significantly enhances the preliminary work of [28], covering a



Protocols ProVerif TypeEq
Helios x 0.005s

Needham-Schroeder (sym) 0.23s 0.016s
Needham-Schroeder-Lowe 0.08s 0.008s

Yahalom-Lowe 0.48s 0.020s
Private Authentication 0.034s 0.008s

BAC 0.038s 0.005s

Fig. 12. Experimental results for an unbounded number of sessions

larger class of protocols that includes key-exchange protocols, protocols with setup
phases, as well as protocols that branch differently depending on the decryption key.

Our type system requires a light type annotation that can be directly inferred from the
structure of the messages. As future work, we plan to develop an automatic type inference
system. In our case study, the only intricate case is the Helios protocol where the user
has to write a refined type that corresponds to an over-approximation of any encrypted
message. We plan to explore whether such types could be inferred automatically.

We also plan to study how to add phases to our framework, in order to cover more
properties (such as unlinkability). This would require to generalize our type system to
account for the fact that the type of a key may depend on the phase in which it is used.

Another limitation of our type system is that it does not address processes with too
dissimilar structure. While our type system goes beyond diff-equivalence, e.g. allow-
ing else branches to be matched with then branches, we cannot prove equivalence of
processes where traces of P are dynamically mapped to traces of Q, depending on the
attacker’s behaviour. Such cases occur for example when proving unlinkability of the
biometric passport. We plan to explore how to enrich our type system with additional
rules that could cover such cases, taking advantage of the modularity of the type system.

Conversely, the fact that our type system discards processes that are in equivalence
shows that our type system proves something stronger than trace equivalence. Indeed,
processes P and Q have to follow some form of uniformity. We could exploit this to
prove stronger properties like oblivious execution, probably further restricting our typing
rules, in order to prove e.g. the absence of side-channels of a certain form.
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A Typing rules and definitions

We give on Figures 13, 14, 15, 16, 17, 18 and 19 a complete version of our types and typing rules, as well as the
formal definition of the well-formedness judgement for typing environments.

l ::= LL | HL | HH
KT ::= keyl(T ) | eqkeyl(T ) | seskeyl,a(T ) with a ∈ {1,∞}
T ::= l | T ∗ T |KT | pkey(KT ) | vkey(KT )

| (T )T | {T}T
| Jτ l,an ; τ l

′,a
m K with a ∈ {1,∞} | T ∨ T

Fig. 13. Types for terms

We denote the sets of all keys in Γ by:

keys(Γ ) = {k ∈ K | ∃k′ ∈ K. (k, k′) ∈ dom(Γ ) ∨ (k′, k) ∈ dom(Γ )}.

We denote the set of all session keys in Γ by:

seskeys(Γ ) = {k ∈ K | ∃l, a, T. Γ (k, k) = seskeyl,a(T )}.

[] ` � (GNIL)
Γ ` � n ∈ BN n /∈ dom(Γ )

Γ, n : τ l,an ` �
(GNONCE)

Γ ` � x /∈ dom(Γ )

Γ, x : T ` �
(GVAR)

Γ ` � k, k′ ∈ BK (k, k′) /∈ dom(Γ ) k /∈ seskeys(Γ ) k′ /∈ seskeys(Γ )

(∀l, T ′. Γ (k, k) = eqkeyl(T ′) ⇒ l = HH) (∀l, T ′. Γ (k′, k′) = eqkeyl(T ′) ⇒ l = HH)

Γ, (k, k′) : keyHH(T ) ` �
(GKEY)

Γ ` � k ∈ BK (k, k) /∈ dom(Γ )

(∀k′, l′, T ′. Γ (k, k′) <: keyl(T ′) ⇒ l = l′) (∀k′, l′, T ′. Γ (k′, k) <: keyl(T ′) ⇒ l = l′)

Γ, (k, k) : eqkeyl(T ) ` �
(GEQKEY)

Γ ` � k ∈ BK ∀k′ 6= k.(k, k′) /∈ dom(Γ ) ∧ (k′, k) /∈ dom(Γ )

Γ, (k, k) : seskeyl,a(T ) ` �
(GSESKEY)

Fig. 14. Well-formedness of the typing environment

In this section, we also provide additional definitions (or more precise versions of previous definitions)
regarding constraints, and especially their consistency, that the proofs require.



Γ (n) = τ l,an Γ (m) = τ l,am l ∈ {HH, HL}
Γ ` n ∼ m : l→ ∅

(TNONCE)

Γ (n) = τ LL,an

Γ ` n ∼ n : LL→ ∅
(TNONCEL)

a ∈ C ∪ FN ∪ FK
Γ ` a ∼ a : LL→ ∅

(TCSTFN)

Γ `M ∼ N : T → ∅ ∃T ′, l.T <: keyl(T ′)

Γ ` pk(M) ∼ pk(N) : pkey(T )→ ∅
(TPUBKEY)

k ∈ keys(Γ ) ∪ FK
Γ ` pk(k) ∼ pk(k) : LL→ ∅

(TPUBKEYL)

Γ `M ∼ N : T → ∅ ∃T ′, l.T <: keyl(T ′)

Γ ` vk(M) ∼ vk(N) : vkey(T )→ ∅
(TVKEY)

k ∈ keys(Γ ) ∪ FK
Γ ` vk(k) ∼ vk(k) : LL→ ∅

(TVKEYL)

Γ (k, k′) = T

Γ ` k ∼ k′ : T → ∅
(TKEY)

Γ (x) = T

Γ ` x ∼ x : T → ∅
(TVAR)

Γ `M ∼ N : T → c Γ `M ′ ∼ N ′ : T ′ → c′

Γ ` 〈M,M ′〉 ∼ 〈N,N ′〉 : T ∗ T ′ → c ∪ c′
(TPAIR)

Γ `M ∼ N : T → c Γ `M ′ ∼ N ′ : T ′ → c′ T ′ = LL ∨ (∃T ′′, l.T ′ <: keyl(T ′′))

Γ ` enc(M,M ′) ∼ enc(N,N ′) : (T )T ′ → c ∪ c′
(TENC)

Γ `M ∼ N : (T )T ′ → c T ′ <: keyHH(T )

Γ `M ∼ N : LL→ c ∪ {M ∼ N}
(TENCH)

Γ `M ∼ N : (LL)T → c T <: keyLL(T ′) or T = LL

Γ `M ∼ N : LL→ c
(TENCL)

Γ `M ∼ N : T → c Γ `M ′ ∼ N ′ : T ′ → c′ T ′ = LL ∨ (∃T ′′, T ′′′, l.T ′ = pkey(T ′′) ∧ T ′′ <: keyl(T ′′′))

Γ ` aenc(M,M ′) ∼ aenc(N,N ′) : {T}T ′ → c ∪ c′
(TAENC)

Γ `M ∼ N : {T}pkey(T ′) → c T ′ <: keyHH(T )

Γ `M ∼ N : LL→ c ∪ {M ∼ N}
(TAENCH)

Γ `M ∼ N : {LL}T → c (T = pkey(T ′) ∧ T ′ <: eqkeyl(T ′′)) or T = LL

Γ `M ∼ N : LL→ c
(TAENCL)

Γ `M ∼ N : T → c Γ `M ∼ N : LL→ c′ Γ `M ′ ∼ N ′ : eqkeyHH(T )→ ∅
Γ ` sign(M,M ′) ∼ sign(N,N ′) : LL→ c ∪ c′ ∪ {sign(M,M ′) ∼ sign(N,N ′)}

(TSIGNH)

Γ `M ∼ N : LL→ c Γ `M ′ ∼ N ′ : LL→ c′

Γ ` sign(M,M ′) ∼ sign(N,N ′) : LL→ c ∪ c′
(TSIGNL)

Γ `M ∼ N : HL→ ∅
Γ ` h(M) ∼ h(N) : LL→ {h(M) ∼ h(N)}

(THASH)
Γ `M ∼ N : LL→ c

Γ ` h(M) ∼ h(N) : LL→ c
(THASHL)

M ↓6= ⊥ N ↓6= ⊥
names(M) ∪ names(N) ∪ vars(M) ∪ vars(N) ∪ keys(M) ∪ keys(N) ⊆

dom(Γ ) ∪ keys(Γ ) ∪ FN ∪ FK
Γ `M ∼ N : HL→ ∅

(THIGH)

Γ `M ∼ N : T ′ → c T ′ <: T

Γ `M ∼ N : T → c
(TSUB)

Γ `M ∼ N : T → c

Γ `M ∼ N : T ∨ T ′ → c
(TOR)

Γ (m) = τ l,1m or m ∈ FN ∪ C ∧ l = LL

Γ (n) = τ l
′,1
n or n ∈ FN ∪ C ∧ l′ = LL

Γ ` m ∼ n : Jτ l,1m ; τ l
′,1
n K→ ∅

(TLR1)
Γ (m) = τ l,∞m Γ (n) = τ l

′,∞
n

Γ ` m ∼ n : Jτ l,∞m ; τ l
′,∞
n K→ ∅

(TLR∞)

Γ `M ∼ N : Jτ l,am ; τ l,an K→ c l ∈ {HL, HH}
Γ `M ∼ N : l→ c

(TLR’)
Γ `M ∼ N : Jτ LL,an ; τ LL,an K→ c

Γ `M ∼ N : LL→ c
(TLRL’)

Γ ` x ∼ x : Jτ l,1m ; τ l
′,1
n K→ ∅ Γ ` y ∼ y : Jτ l

′′,1
m′ ; τ l

′′′,1
n′ K→ ∅

Γ ` x ∼ y : Jτ l,1m ; τ l
′′′,1
n′ K→ ∅

(TLRVAR)

Fig. 15. Rules for Messages



T <: T
(SREFL)

T <: HL
(SHIGH)

T <: T ′ T ′ <: T ′′

T <: T ′′
(STRANS)

LL ∗ LL <: LL
(SPAIRL)

T1 <: T ′1 T2 <: T ′2

T1 ∗ T2 <: T ′1 ∗ T ′2
(SPAIR)

HH ∗ T <: HH
(SPAIRS)

T ∗ HH <: HH
(SPAIRS’)

keyl(T ) <: l
(SKEY)

eqkeyl(T ) <: keyl(T )
(SEQKEY)

seskeyl,a(T ) <: eqkeyl(T )
(SSESKEY)

T <: eqkeyl(T ′)

pkey(T ) <: LL
(SPUBKEY)

T <: eqkeyl(T ′)

vkey(T ) <: LL
(SVKEY)

T <: T ′

(T )T ′′ <: (T ′)T ′′
(SENC)

T <: T ′

{T}T ′′ <: {T ′}T ′′
(SAENC)

Fig. 16. Subtyping Rules

Definition 4 (Constraint). A constraint is defined as a couple of messages, separated by the symbol ∼:

u ∼ v

We will consider sets of constraints, which we usually denote c. We will also consider couples (c, Γ )
composed of such a set, and a typing environment Γ . Finally we will denote sets of such tuples C, and call them
constraint sets.

Definition 5 (Compatible environments). We say that two typing environments Γ , Γ ′ are compatible if they
are equal on the intersection of their domains, i.e. if

∀x ∈ dom(Γ ) ∩ dom(Γ ′). Γ (x) = Γ ′(x)

Definition 6 (Union of environments). Let Γ , Γ ′ be two compatible environments. Their union Γ ∪ Γ ′ is
defined by

– dom(Γ ∪ Γ ′) = dom(Γ ) ∪ dom(Γ ′)
– ∀x ∈ dom(Γ ). (Γ ∪ Γ ′)(x) = Γ (x)
– ∀x ∈ dom(Γ ′). (Γ ∪ Γ ′)(x) = Γ ′(x)

Note that this function is well defined since Γ and Γ ′ are assumed to be compatible.

Definition 7 (Operations on constraint sets). We define two operations on constraints.

– the product union of constraint sets:

C∪×C ′ := {(c ∪ c′, Γ ∪ Γ ′) |
(c, Γ ) ∈ C ∧ (c′, Γ ′) ∈ C ′ ∧ Γ, Γ ′ are compatible}

– the addition of a set of constraints c′ to all elements of a constraint set C:

C∪∀c′ :=C∪×{(c′, ∅)}
= {(c ∪ c′, Γ ) | (c, Γ ) ∈ C}



Γ ` � branches(Γ ) = {Γ}
Γ ` 0 ∼ 0→ (∅, Γ )

(PZERO)

Γ ` P ∼ Q→ C Γ `M ∼ N : LL→ c

Γ ` out(M).P ∼ out(N).Q→ C∪∀c
(POUT)

Γ, x : LL ` P ∼ Q→ C

Γ ` in(x).P ∼ in(x).Q→ C
(PIN)

Γ, n : τ l,an ` P ∼ Q→ C

Γ ` new n : τ l,an .P ∼ new n : τ l,an .Q→ C
(PNEW)

Γ, (k, k) : seskeyl,a(T ) ` P ∼ Q→ C

Γ ` new k : seskeyl,a(T ).P ∼ new k : seskeyl,a(T ).Q→ C
(PNEWKEY)

Γ ` P ∼ Q→ C Γ ` P ′ ∼ Q′ → C
′

Γ ` P | P ′ ∼ Q |Q′ → C∪×C′
(PPAR)

Γ, x : T ` P ∼ Q→ C Γ, x : T
′ ` P ∼ Q→ C

′

Γ, x : T ∨ T ′ ` P ∼ Q→ C ∪ C′
(POR)

Γ `d t ∼ t′ : T Γ, x : T ` P ∼ Q→ C Γ ` P ′ ∼ Q′ → C′

Γ ` let x = t in P else P ′ ∼ let x = t′ in Q else Q′ → C ∪ C′
(PLET)

Γ (y) = LL Γ (k1, k2) <: keyHH(T )
Γ, x : T ` P ∼ Q→ C Γ ` P ′ ∼ Q′ → C′

(∀T ′.∀k3 6= k2. Γ (k1, k3) <: keyHH(T ′)⇒ Γ, x : T ′ ` P ∼ Q′ → Ck3)

(∀T ′.∀k3 6= k1. Γ (k3, k2) <: keyHH(T ′)⇒ Γ, x : T ′ ` P ′ ∼ Q→ C′k3)

Γ ` let x = dec(y, k1) in P else P ′ ∼ let x = dec(y, k2) in Q else Q′ →
C ∪ C′ ∪ (

⋃
k3

Ck3) ∪ (
⋃
k3

C′k3)

(PLETDEC)

Γ (y) = LL Γ (k, k) <: keyHH(T ) Γ, x : T ` P ∼ Q→ C
Γ, x : LL ` P ∼ Q→ C′ Γ ` P ′ ∼ Q′ → C′′

(∀T ′.∀k3 6= k. Γ (k, k3) <: keyHH(T ′)⇒ Γ, x : T ′ ` P ∼ Q′ → Ck3)

(∀T ′.∀k3 6= k. Γ (k3, k) <: keyHH(T ′)⇒ Γ, x : T ′ ` P ′ ∼ Q→ C′k3)

Γ ` let x = adec(y, k) in P else P ′ ∼ let x = adec(y, k) in Q else Q′ →
C ∪ C′ ∪ C′′ ∪ (

⋃
k3

Ck3) ∪ (
⋃
k3

C′k3)

(PLETADECSAME)

k1 6= k2 Γ (y) = LL Γ (k1, k2) <: keyHH(T )
Γ, x : T ` P ∼ Q→ C Γ, x : LL ` P ∼ Q′ → C′

Γ, x : LL ` P ′ ∼ Q→ C′′ Γ ` P ′ ∼ Q′ → C′′′

(∀T ′.∀k3 6= k2. Γ (k1, k3) <: keyHH(T ′)⇒ Γ, x : T ′ ` P ∼ Q′ → Ck3)

(∀T ′.∀k3 6= k1. Γ (k3, k2) <: keyHH(T ′)⇒ Γ, x : T ′ ` P ′ ∼ Q→ C′k3)

Γ ` let x = adec(y, k1) in P else P ′ ∼ let x = adec(y, k2) in Q else Q′ →
C ∪ C′ ∪ C′′ ∪ C′′′ ∪ (

⋃
k3

Ck3) ∪ (
⋃
k3

C′k3)

(PLETADECDIFF)

Γ (y) = Jτ l,an ; τ l
′,a
m K ∨ Γ (y) <: keyl(T ) Γ ` P ′ ∼ Q′ → C′

Γ ` let x = d(y) in P else P ′ ∼ let x = d(y) in Q else Q′ → C′
(PLETLRK)

Fig. 17. Rules for processes (1)



Γ ` P ∼ Q→ C Γ ` P ′ ∼ Q′ → C′ Γ `M ∼ N : LL→ c Γ `M ′ ∼ N ′ : LL→ c′

Γ ` ifM =M ′ then P else P ′ ∼ if N = N ′ then Q else Q′ →
(
C ∪ C′

)
∪∀(c ∪ c′)

(PIFL)

Γ `M1 ∼ N1 : Jτ l,1m ; τ l
′,1
n K→ ∅ Γ `M2 ∼ N2 : Jτ l

′′,1
m′ ; τ l

′′′,1
n′ K→ ∅

b = (τ l,1m
?
= τ l

′′,1
m′ ) b′ = (τ l

′,1
n

?
= τ l

′′′,1
n′ ) Γ ` Pb ∼ Qb′ → C

Γ ` ifM1 =M2 then P> else P⊥ ∼ if N1 = N2 then Q> else Q⊥ → C
(PIFLR)

Γ ` P ′ ∼ Q′ → C′ Γ `M ∼ N : LL→ c Γ `M ′ ∼ N ′ : HH→ c′

Γ ` ifM =M ′ then P else P ′ ∼ if N = N ′ then Q else Q′ → C′
(PIFS)

Γ `M1 ∼ N1 : Jτ l,∞m ; τ l
′,∞
n K→ ∅ Γ `M2 ∼ N2 : Jτ l,∞m ; τ l

′,∞
n K→ ∅

Γ ` P ∼ Q→ C Γ ` P ′ ∼ Q′ → C′

Γ ` ifM1 =M2 then P else P ′ ∼ if N1 = N2 then Q else Q′ → C ∪ C′
(PIFLR*)

Γ ` P ∼ Q→ C Γ ` P ′ ∼ Q′ → C′

Γ `M ∼ N : LL→ c Γ ` t ∼ t : LL→ c′ t ∈ K ∪N ∪ C
Γ ` ifM = t then P else P ′ ∼ if N = t then Q else Q′ → C ∪ C′

(PIFP)

Γ ` P ′ ∼ Q′ → C′ Γ `M ∼ N : T ∗ T ′ → c Γ `M ′ ∼ N ′ : Jτ l,am ; τ l
′,a
n K→ ∅

Γ ` ifM =M ′ then P else P ′ ∼ if N = N ′ then Q else Q′ → C′
(PIFI)

Γ `M1 ∼ N1 : Jτ l,am ; τ l
′,a
n K→ ∅ Γ `M2 ∼ N2 : Jτ l

′′,a′

m′ ; τ l
′′′,a′

n′ K→ ∅
τ l,am 6= τ l

′′,a′

m′ , τ l
′,a
n 6= τ l

′′′,a′

n′ Γ ` P ′ ∼ Q′ → C

Γ ` ifM1 =M2 then P else P ′ ∼ if N1 = N2 then Q else Q′ → C
(PIFLR’*)

Γ ` P ∼ Q→ C1 Γ ` P ∼ Q′ → C2 Γ ` P ′ ∼ Q→ C3 Γ ` P ′ ∼ Q′ → C4

Γ ` ifM =M ′ then P else P ′ ∼ if N = N ′ then Q else Q′ → C1 ∪ C2 ∪ C3 ∪ C4

(PIFALL)

Fig. 18. Rules for processes (2)



Γ (k, k) <: keyLL(T ) Γ (x) = LL

Γ `d dec(x, k) ∼ dec(x, k) : LL
(DDECL)

Γ (k, k) = seskeyl,a(T ′) Γ (x) = (T )seskeyl,a(T ′)

Γ `d dec(x, k) ∼ dec(x, k) : T
(DDECT)

Γ (y) = seskeyl,a(T ′) Γ (x) = (T )seskeyl,a(T ′)

Γ `d dec(x, y) ∼ dec(x, y) : T
(DDECT’)

Γ (y) = seskeyHH,a(T ) Γ (x) = LL

Γ `d dec(x, y) ∼ dec(x, y) : T
(DDECH’)

(Γ (y) = seskeyLL,a(T ) ∨ Γ (y) = LL) Γ (x) = LL

Γ `d dec(x, y) ∼ dec(x, y) : LL
(DDECL’)

Γ (k, k) <: keyLL(T ) Γ (x) = LL

Γ `d adec(x, k) ∼ adec(x, k) : LL
(DADECL’)

Γ (y) = seskeyHH,a(T ) Γ (x) = LL

Γ `d adec(x, y) ∼ adec(x, y) : T ∨ LL
(DADECH’)

(Γ (y) = seskeyLL,a(T ) ∨ Γ (y) = LL) Γ (x) = LL

Γ `d adec(x, y) ∼ adec(x, y) : LL
(DADECL’)

Γ (k, k) = seskeyl,a(T ′) Γ (x) = {T}pkey(seskeyl,a(T ′))
Γ `d adec(x, k) ∼ adec(x, k) : T

(DADECT)

Γ (y) = seskeyl,a(T ′) Γ (x) = {T}pkey(seskeyl,a(T ′))
Γ `d adec(x, y) ∼ adec(x, y) : T

(DADECT’)

Γ (k, k) <: keyHH(T ) Γ (x) = LL

Γ `d checksign(x, vk(k)) ∼ checksign(x, vk(k)) : T
(DCHECKH)

Γ (k, k) <: keyLL(T ) Γ (x) = LL

Γ `d checksign(x, vk(k)) ∼ checksign(x, vk(k)) : LL
(DCHECKL)

Γ (y) = vkey(T ) T <: eqkeyHH(T ′) Γ (x) = LL

Γ `d checksign(x, y) ∼ checksign(x, y) : T ′
(DCHECKH’)

(Γ (y) = vkey(T ) ∧ T <: eqkeyLL(T ′)) or Γ (y) = LL Γ (x) = LL

Γ `d checksign(x, y) ∼ checksign(x, y) : LL
(DCHECKL’)

Γ (x) = T ∗ T ′

Γ `d π1(x) ∼ π1(x) : T
(DFST)

Γ (x) = T ∗ T ′

Γ `d π2(x) ∼ π2(x) : T
′ (DSND)

Γ (x) = LL

Γ `d π1(x) ∼ π1(x) : LL
(DFSTL)

Γ (x) = LL

Γ `d π2(x) ∼ π2(x) : LL
(DSNDL)

Fig. 19. Destructor Rules



Definition 8. For any typing environment Γ , we denote by ΓX its restriction to variables, and by ΓN ,K its
restriction to names and key couples.

Definition 9 (Well-typed substitutions). Let Γ be a typing environment, θ, θ′ two substitutions, and c a set of
constraints. We say that θ, θ′ are well-typed in Γ , and write ΓN ,K ` θ ∼ θ′ : ΓX → c, if they are ground and

– dom(θ) = dom(θ′) = dom(ΓX ),
– and

∀x ∈ dom(ΓX ), ΓN ,K ` θ(x) ∼ θ′(x) : Γ (x)→ cx

for some cx such that c =
⋃
x∈dom(ΓX ) cx.

Definition 10 (LL substitutions). Let Γ be an environment, φ, φ′ two substitutions and c a set of constraints.
We say that φ, φ′ have type LL in Γ with constraint c, and write Γ ` φ ∼ φ′ : LL→ c if

– dom(φ) = dom(φ′);
– for all x ∈ dom(φ) there exists cx such that Γ ` φ(x) ∼ φ′(x) : LL→ cx and c =

⋃
x∈dom(φ) cx.

Definition 11 (Frames associated to a set of constraints). If c is a set of constraints, let φl(c) and φr(c) be
the frames composed of the terms respectively on the left and on the right of the ∼ symbol in the constraints of c
(in the same order).

Definition 12 (Instantiation of constraints). If c is a set of constraints, and σ, σ′ are two substitutions, let
JcKσ,σ′ be the instantiation of c by σ on the left and σ′ on the right, i.e.

JcKσ,σ′ = {Mσ ∼ Nσ′ |M ∼ N ∈ c}.

Similarly we write for a constraint set C

JCKσ,σ′ = {(JcKσ,σ′ , Γ ) | (c, Γ ) ∈ C}.

Definition 13 (Frames associated to environments). If Γ is a typing environment, we denote φΓLL the frame
containing all the keys k such that Γ (k, k) <: keyLL(T ) for some T , all the public keys pk(k) and vk(k) for
k ∈ keys(Γ ), and all the nonces n such that Γ (n) = τ LL,an (for a ∈ {∞, 1}).

Definition 14 (Branches of a type). If T is a type, we write branches(T ) the set of all types T ′ such that T ′ is
not a union type, and either

– T = T ′;
– or there exist types T1,. . . ,Tk,T ′1,. . . ,T ′k′ such that

T = T1 ∨ . . . ∨ Tk ∨ T ∨ T ′1 ∨ . . . ∨ T ′k′

Definition 15 (Branches of an environment). For a typing environment Γ , we write branches(Γ ) the sets of
all environments Γ ′ such that

– dom(Γ ′) = dom(Γ )
– ∀x ∈ dom(Γ ). Γ ′(x) ∈ branches(Γ (x)).

Definition 16 (Consistency). We say that c is consistent in a typing environment Γ , if for all subsets c′ ⊆ c and
Γ ′ ⊆ Γ such that Γ ′N ,K = ΓN ,K and vars(c′) ⊆ dom(Γ ′), for all ground substitutions σ, σ′, if there exists a
constraint cσ such that (Γ ′)N ,K ` σ ∼ σ′ : (Γ ′)X → cσ and cσ ⊆ Jc′Kσ,σ′ , then the frames φΓLL ∪ φl(c

′)σ and
φΓLL ∪ φr(c

′)σ′ are statically equivalent.
We say that (c, Γ ) is consistent if c is consistent in Γ .
We say that a constraint set C is consistent if each element (c, Γ ) ∈ C is consistent.



B Proofs

In this section, we provide the detailed proofs to all of our theorems.
Unless specified otherwise, the environments Γ considered in the lemmas are implicitly assumed to be

well-formed.

B.1 General results and soundness

In this subsection, we prove soundness for non replicated processes, as well as several results regarding the type
system that this proof uses.

Lemma 3 (Subtyping properties). The following properties of subtyping hold:

1. ∀T. HL <: T =⇒ T = HL

2. ∀T. LL <: T =⇒ T = LL ∨ T = HL

3. ∀T. HH <: T =⇒ T = HH ∨ T = HL

4. ∀T1, T2, T3. T1 ∗ T2 <: T3 =⇒ T3 = LL ∨ T3 = HL ∨ T3 = HH ∨ (∃T4, T5. T3 = T4 ∗ T5) i.e. T3
is LL, HL, HH or a pair type.

5. ∀T, T1, T2. T <: T1 ∗ T2 =⇒ (∃T ′1, T ′2. T = T ′1 ∗ T ′2 ∧ T ′1 <: T1 ∧ T ′2 <: T2)
6. ∀T1, T2. T1 ∗ T2 <: LL =⇒ T1 <: LL ∧ T2 <: LL
7. ∀T1, T2. T1 ∗ T2 <: HH =⇒ T1 <: HH ∨ T2 <: HH
8. ∀T1, T2, T3. T1 <: (T2)T3

=⇒ (∃T4 <: T2. T1 = (T4)T3
)

9. ∀T1, T2, T3. T1 <: {T2}T3
=⇒ (∃T4 <: T2. T1 = {T4}T3

)
10. ∀T1, T2, T3. (T1)T2

<: T3 =⇒ T3 = HL ∨ T3 = LL ∨ (∃T4.T1 <: T4 ∧ T3 = (T4)T2
)

11. ∀T1, T2, T3. {T1}T2
<: T3 =⇒ T3 = HL ∨ T3 = LL ∨ (∃T4.T1 <: T4 ∧ T3 = {T4}T2

)

12. ∀T1, T2. (T1)T2
<: LL =⇒ T1 <: LL ∧ (T2 = LL ∨ (∃T3.T2 <: keyLL(T3))

13. ∀T1, T2. {T1}T2
<: LL =⇒ T1 <: LL ∧ (T2 = LL ∨ (∃T3, T4, l.T2 = pkey(T3) ∧ T3 <: eqkeyl(T4))

14. ∀T,m, n, l, l′. T <: Jτ l,am ; τ l
′,a
n K =⇒ T = Jτ l,am ; τ l

′,a
n K

15. ∀T,m, n, l, l′. Jτ l,am ; τ l
′,a
n K <: T =⇒ T = HL ∨ T = Jτ l,am ; τ l

′,a
n K

16. ∀T1, T2. T1 <: T2 =⇒ neither T1 nor T2 are union types unless T2 = HL or T1 = T2.
17. ∀T, l, T ′. T <: keyl(T ′) =⇒ T = keyl(T ′) ∨ T = eqkeyl(T ′) ∨ ∃a.T = seskeyl,a(T ′).
18. ∀T, l, T ′. T <: eqkeyl(T ′) =⇒ T = eqkeyl(T ′) ∨ T = seskeyl,a(T ′).
19. ∀T, l, a, T ′. T <: seskeyl,a(T ′) =⇒ T = seskeyl,a(T ′).
20. ∀T, T ′. T <: pkey(T ′) =⇒ T = pkey(T ′).
21. ∀T, T ′. T <: vkey(T ′) =⇒ T = vkey(T ′).
22. ∀T1, T2, l. keyl(T1) <: T2 =⇒ T2 = l ∨ T2 = HL ∨ T2 = keyl(T ).
23. ∀T1, T2, l. eqkeyl(T1) <: T2 =⇒ T2 = l ∨ T2 = HL ∨ T2 = keyl(T ) ∨ T2 = eqkeyl(T ).
24. ∀T1, T2, l. seskeyl,a(T1) <: T2 =⇒ T2 = l ∨ T2 = HL ∨ T2 = keyl(T ) ∨ T2 = eqkeyl(T ) ∨ T2 =

seskeyl,a(T ).
25. ∀T1, T2. pkey(T1) <: T2 =⇒ T2 = HL ∨ T2 = LL ∨ T2 = pkey(T1).
26. ∀T1. pkey(T1) <: LL =⇒ ∃T3, l. T1 <: eqkeyl(T3).
27. ∀T1, T2. vkey(T1) <: T2 =⇒ T2 = HL ∨ T2 = LL ∨ T2 = vkey(T1).
28. ∀T1. vkey(T1) <: LL =⇒ ∃T3, l. T1 <: eqkeyl(T3).
29. ∀T. T <: LL =⇒ T is a pair type ∨ (∃T ′, T ′′. T = (T ′)T ′′) ∨ (∃T ′, T ′′. T = {T ′}T ′′) ∨

(∃T ′. T <: keyLL(T ′)) ∨ (∃l, T ′. T = pkey(T ′)) ∨ (∃l, T ′. T = vkey(T ′)) ∨ T = LL.
30. ∀T. T <: HH =⇒ T is a pair type ∨ (∃T ′. T <: keyHH(T ′)) ∨ T = HH.

Proof. All these properties have simple proofs by induction on the subtyping derivation.



Lemma 4 (Terms of type T ∨ T ′). For all Γ , T , T ′, for all ground terms t, t′, for all c, if

Γ ` t ∼ t′ : T ∨ T ′ → c

then
Γ ` t ∼ t′ : T → c or Γ ` t ∼ t′ : T ′ → c

Proof. We prove this property by induction on the derivation of Γ ` t ∼ t′ : T ∨ T ′ → c.
The last rule of the derivation cannot be TNONCE, TNONCEL, TCSTFN, TPUBKEY, TPUBKEYL, TVKEY,

TVKEYL, TPAIR, TKEY, TPAIR, TENC, TENCH, TENCL, TAENC, TAENCH, TAENCL, TSIGNH, TSIGNL,
THASH, THASHL, THIGH, TLR1, TLR∞, TLRVAR, TLR’, or TLRL’ since the type in their conclusion cannot
be T ∨ T ′. It cannot be TVAR since t, t′ are ground.

In the TSUB case we know that Γ ` t ∼ t′ : T ′′ → c (with a shorter derivation) for some T ′′ <: T ∨ T ′;
thus, by Lemma 3, T ′′ = T ∨ T ′, and the claim holds by the induction hypothesis.

Finally in the TOR case, the premise of the rule directly proves the claim.

Lemma 5 (Terms and branch types). For all Γ , T , c, for all ground terms t, t′, if

Γ ` t ∼ t′ : T → c

then there exists T ′ ∈ branches(T ) such that

Γ ` t ∼ t′ : T ′ → c

Proof. This property is a corollary of Lemma 4. We indeed prove it by successively applying this lemma to
Γ ` t ∼ t′ : T → c until T is not a union type.

Lemma 6 (Substitutions type in a branch). For all Γ , c, for all ground substitutions σ, σ′, if

ΓN ,K ` σ ∼ σ′ : ΓX → c

then there exists Γ ′ ∈ branches(Γ ) such that

Γ ′N ,K ` σ ∼ σ′ : Γ ′X → c

Proof. This property follows from Lemma 5. Indeed, by definition, c =
⋃
x∈dom(ΓX ) cx for some cx such that

for all x ∈ dom(ΓX )(= dom(σ) = dom(σ′)),

Γ ` σ(x) ∼ σ′(x) : Γ (x)→ cx

Hence by applying Lemma 5 we obtain a type Tx ∈ branches(Γ (x)) such that

Γ ` σ(x) ∼ σ′(x) : Tx → cx

Thus if we denote Γ ′′ by ∀x ∈ dom(ΓX ).Γ
′′(x) = Tx, and Γ ′ = ΓN ,K ∪ Γ ′′, we have Γ ′ ∈ branches(Γ ) and

Γ ′N ,K ` σ ∼ σ′ : Γ ′X → c.

Lemma 7 (Typing terms in branches). For all Γ , T , c, for all terms t, t′, for all Γ ′ ∈ branches(Γ ), if
Γ ` t ∼ t′ : T → c then Γ ′ ` t ∼ t′ : T → c.

Corollary: in that case, there exists T ′ ∈ branches(T ) such that Γ ′ ` t ∼ t′ : T ′ → c.



Proof. We prove this property by induction on the derivation of Γ ` t ∼ t′ : T → c. In most cases for the last
rule applied, Γ (x) is not directly involved in the premises, for any variable x. Rather, Γ appears only in other
typing judgements, or is used in Γ (k, k′) or Γ (n) for some keys k, k′ or nonce n, and keys or nonces cannot
have union types. Hence, since the typing rules for terms do not change Γ , the claim directly follows from the
induction hypothesis. For instance in the TPAIR case, we have t = 〈t1, t2〉, t′ = 〈t′1, t′2〉, T = T1∗T2, c = c1∪c2,
Γ ` t1 ∼ t′1 : T1 → c1, and Γ ` t2 ∼ t′2 : T2 → c2. Thus by the induction hypothesis, Γ ′ ` t1 ∼ t′1 : T1 → c1,
and Γ ′ ` t2 ∼ t′2 : T2 → c2; and therefore by rule TPAIR, Γ ′ ` t ∼ t′ : T → c. The cases of rules TPUBKEY,
TVKEY, TKEY, TENC, TENCH, TENCL, TAENC, TAENCH, TAENCL, THASHL, TSIGNH, TSIGNL, TLR’,
TLRL’, TLRVAR, TSUB, TOR are similar.

The cases of rules TNONCE, TNONCEL, TCSTFN, TPUBKEYL, TVKEYL, THASH, THIGH, TLR1, and
TLR∞ are immediate since these rules use neither Γ nor another typing judgement in their premise.

Finally, in the TVAR case, t = t′ = x for some variable x such that Γ (x) = T , and c = ∅. Rule TVAR also
proves that Γ ′ ` x ∼ x : Γ ′(x)→ ∅. Since Γ ′(x) ∈ branches(Γ (x)), by applying rule TOR as many times as
necessary, we have Γ ′ ` x ∼ x : Γ (x)→ ∅, i.e. Γ ′ ` x ∼ x : T → ∅, which proves the claim.

The corollary then follows, again by induction on the typing derivation. If T is not a union type, branches(T ) =
{T} and the claim is directly the previous property. Otherwise, the last rule applied in the typing derivation can
only be TVAR, TSUB, or TOR. The TSUB case follows trivially from the induction hypothesis; since T is a union
type, it is its own only subtype. In the TVAR case, t = t′ = x for some variable x such that Γ (x) = T . Hence, by
definition, Γ ′(x) ∈ branches(T ), and by rule TVAR we have Γ ′ ` t ∼ t′ : Γ ′(x)→ c. Finally, in the TOR case,
we have T = T1 ∨ T2 for some T1, T2 such that Γ ` t ∼ t′ : T1 → c. By the induction hypothesis, there exists
T ′1 ∈ branches(T1) such that Γ ′ ` t ∼ t′ : T ′1 → c. Since, by definition, branches(T1) ⊆ branches(T1 ∨ T2),
this proves the claim.

Lemma 8 (Typing destructors in branches). For all Γ , T , t, t′, x, for all Γ ′ ∈ branches(Γ ), if Γ `d t ∼ t′ : T
then Γ ′ `d t ∼ t′ : T .

Proof. This property is immediate by examining the typing rules for destructors. Indeed, Γ and Γ ′ only differ
on variables, and the rules for destructors only involve Γ (x) for x ∈ X in conditions of the form Γ (x) = T for
some type T which is not a union type.

Hence in these cases Γ ′(x) is also T , and the same rule can be applied to Γ ′ to prove the claim.

Lemma 9 (Typing processes in branches). For all Γ , C, for all processes P , Q, for all Γ ′ ∈ branches(Γ ), if
Γ ` P ∼ Q→ C then there exists C ′ ⊆ C such that Γ ′ ` P ∼ Q→ C ′.

Proof. We prove this lemma by induction on the derivation of Γ ` P ∼ Q→ C. In all the cases for the last rule
applied in this derivation, we can show that the conditions of this rule still hold in Γ ′ (instead of Γ ) using

– Lemma 7 for the conditions of the form Γ `M ∼ N : T → c;
– Lemma 8 for the conditions of the form Γ `d d(y) ∼ d′(y) : T ;
– the fact that if Γ (x) is not a union type, then Γ ′(x) = Γ (x), for conditions such as "Γ (x) = LL",

"Γ (x) = Jτ l,am ; τ l
′,a
n K" or "Γ (x) <: keyl(T )" (in the PLETLRK case);

– the induction hypothesis for the conditions of the form Γ ` P ′ ∼ Q′ → C ′′. In this case, the induction
hypothesis produces a C ′′′ ⊆ C ′′, which can then be used to show C ′ ⊆ C, since C ′ and C are usually
respectively C ′′′ and C ′′ with some terms added.

We detail here the cases of rules POUT, PPAR, and POR. The other cases are similar, as explained above.
If the last rule is POUT, then we have P = out(M).P ′, Q = out(N).Q′, C = C ′′∪∀c for some P ′,

Q′, M , N , C ′′, c, such that Γ ` P ′ ∼ Q′ → C ′′ and Γ ` M ∼ N : LL → c. Hence by Lemma 7,



Γ ′ `M ∼ N : LL→ c, and by the induction hypothesis applied to P ′, Q′, Γ ′ ` P ′ ∼ Q′ → C ′′′ for some C ′′′

such that C ′′′ ⊆ C ′′. Therefore by rule POUT, Γ ′ ` P ∼ Q → C ′′′∪∀c, and since C ′′′∪∀c ⊆ C ′′∪∀c(= C),
this proves the claim.

If the last rule is PPAR, then we have P = P1 | P2, Q = Q1 | Q2, C = C1∪×C2 for some P1, P2, Q1, Q2,
C1, C2 such that Γ ` P1 ∼ Q1 → C1 and Γ ` P2 ∼ Q2 → C2. Thus by applying the induction hypothesis
twice, we have Γ ′ ` P1 ∼ Q1 → C ′1 and Γ ′ ` P2 ∼ Q2 → C ′2 with C ′1 ⊆ C1 and C ′2 ⊆ C2. Therefore by rule
PPAR, Γ ′ ` P1 | P2 ∼ Q1 | Q2 → C ′1∪×C ′2, and since C ′1∪×C ′2 ⊆ C1∪×C2(= C), this proves the claim.

If the last rule is POR, then there exist Γ ′′, x, T1, T2, C1 and C2 such that Γ = Γ ′′, x : T1 ∨ T2,
C = C1 ∪ C2, Γ ′′, x : T1 ` P ∼ Q → C1 and Γ ′′, x : T2 ` P ∼ Q → C2. By definition of branches, it is
clear that branches(Γ ) = branches(Γ ′′, x : T1 ∨ T2) = branches(Γ ′′, x : T1) ∪ branches(Γ ′′, x : T2). Thus,
since Γ ′ ∈ branches(Γ ), we know that Γ ′ ∈ branches(Γ ′′, x : T1) or Γ ′ ∈ branches(Γ ′′, x : T2). We write
the proof for the case where Γ ′ ∈ branches(Γ ′′, x : T1), the other case is analogous. By applying the induction
hypothesis to Γ ′′, x : T1 ` P ∼ Q→ C1, there exists C ′1 ⊆ C1 such that Γ ′ ` P ∼ Q→ C ′1. Since C1 ⊆ C,
this proves the claim.

Lemma 10 (Environments in the constraints). For all Γ , C, for all processes P , Q, if

Γ ` P ∼ Q→ C

then for all (c, Γ ′) ∈ C,

dom(Γ ′) ⊆ dom(Γ ) ∪ bvars(P ) ∪ bvars(Q) ∪ nnames(P ) ∪ nnames(Q) ∪ (nkeys(P ) ∪ nkeys(Q))2

(where bvars(P ), nnames(P ), nkeys(P ) respectively denote the sets of bound variables, names, and key names
in P ).

Proof. We prove this lemma by induction on the typing derivation of Γ ` P ∼ Q→ C.
If the last rule applied in this derivation is PZERO, we have C = {(∅, Γ )}, and the claim clearly holds.

In the PPAR case, we have P = P1 | P2, Q = Q1 | Q2, and C = C1∪×C2 for some P1, P2, Q1, Q2, C1, C2

such that Γ ` P1 ∼ Q1 → C1 and Γ ` P2 ∼ Q2 → C2. Thus any element of C is of the form (c1 ∪ c2, Γ1 ∪Γ2)
where (c1, Γ1) ∈ C1, (c2, Γ2) ∈ C2, and Γ1, Γ2 are compatible. By the induction hypothesis,

dom(Γ1) ⊆ dom(Γ ) ∪ bvars(P1) ∪ bvars(Q1) ∪ nnames(P1) ∪ nnames(Q1) ∪ (nkeys(P1) ∪ nkeys(Q1))
2

⊆ dom(Γ ) ∪ bvars(P ) ∪ bvars(Q) ∪ nnames(P ) ∪ nnames(Q) ∪ (nkeys(P ) ∪ nkeys(Q))2,

and similarly for Γ2. Therefore, since dom(Γ1 ∪ Γ2) = dom(Γ1) ∪ dom(Γ2) (by definition), the claim holds.

In the PIN, PLET, PLETDEC, PLETADECSAME, and PLETADECDIFF cases, the typing judgement appearing
in the condition of the rule uses Γ extended with an additional variable, which is bound in P and Q. We detail
the PIN case, the other cases are similar. We have P = in(x).P ′, Q = in(x).Q′ for some x, P ′, Q′ such that
x /∈ dom(Γ ) and Γ, x : LL ` P ′ ∼ Q′ → C. Hence by the induction hypothesis, if (c, Γ ′) ∈ C, then

dom(Γ ′) ⊆ dom(Γ, x : LL)∪bvars(P ′)∪bvars(Q′)∪nnames(P ′)∪nnames(Q′)∪(nkeys(P ′)∪nkeys(Q′))2.

Since bvars(P ) = {x} ∪ bvars(P ′) and bvars(Q) = {x} ∪ bvars(Q′), this proves the claim.

The cases of rules PNEW and PNEWKEY are similar, extending Γ with a nonce or key instead of a variable.



In the POUT case, there exist P ′,Q′,M ,N , C ′, c such that P = out(M).P ′,Q = out(N).Q′, C = C ′∪∀c,
Γ ` M ∼ N : LL → c and Γ ` P ′ ∼ Q′ → C ′. If (c′, Γ ′) ∈ C, by definition of ∪∀ there exists c′′ such that
(c′′, Γ ′) ∈ C ′ and c′ = c ∪ c′′. By the induction hypothesis, we thus have

dom(Γ ′) ⊆ dom(Γ ) ∪ bvars(P ′) ∪ bvars(Q′) ∪ nnames(P ′) ∪ nnames(Q′)

and since bvars(P ′) = bvars(P ), nnames(P ′) = nnames(P ), and similarly for Q, this proves the claim.

In the PIFL case, there exist P ′, P ′′, Q′, Q′′, M , N , M ′, N ′, C ′, C ′′, c, c′ such that P = if M =
M ′ then P ′ else P ′′,Q = if N = N ′ then Q′ else Q′′, C = (C ′∪C ′′)∪∀(c∪c′), Γ `M ∼ N : LL→ c,
Γ ` M ′ ∼ N ′ : LL → c′, Γ ` P ′ ∼ Q′ → C ′, and Γ ` P ′′ ∼ Q′′ → C ′′. If (c′′, Γ ′) ∈ C, by definition of
∪∀ there exist c′′′, such that (c′′′, Γ ′) ∈ C ′ ∪ C ′′ and c′′ = c′′′ ∪ c ∪ c′. We write the proof for the case where
(c′′′, Γ ′) ∈ C ′, the other case is analogous. By the induction hypothesis, we thus have

dom(Γ ′) ⊆ dom(Γ ) ∪ bvars(P ′) ∪ bvars(Q′) ∪ nnames(P ′) ∪ nnames(Q′) ∪ (nkeys(P ′) ∪ nkeys(Q′))2

and since bvars(P ′) ⊆ bvars(P ), nnames(P ′) ⊆ nnames(P ), and similarly for Q, this proves the claim.

The cases of rules POR, PLETLRK, PIFLR, PIFS, PIFLR*, PIFP, PIFI, PIFLR’*, and PIFALL remain. All
these cases are similar, we write the proof for the PIFLR* case. In this case, there exist P ′, P ′′, Q′, Q′′, M , N ,
M ′, N ′, C ′, C ′′, l, l′, m, n such that

– P = ifM =M ′ then P ′ else P ′′,
– Q = if N = N ′ then Q′ else Q′′,
– C = C ′ ∪ C ′′,
– Γ `M ∼ N : Jτ l,∞m ; τ l

′,∞
n K→ ∅,

– Γ `M ′ ∼ N ′ : Jτ l,∞m ; τ l
′,∞
n K→ ∅,

– Γ ` P ′ ∼ Q′ → C ′,
– and Γ ` P ′′ ∼ Q′′ → C ′′.

If (c, Γ ′) ∈ C, we thus know that (c, Γ ′) ∈ C ′ or (c, Γ ′) ∈ C ′′. We write the proof for the case where
(c, Γ ′) ∈ C ′, the other case is analogous. By the induction hypothesis, we thus have

dom(Γ ′) ⊆ dom(Γ ) ∪ bvars(P ′) ∪ bvars(Q′) ∪ nnames(P ′) ∪ nnames(Q′) ∪ (nkeys(P ′) ∪ nkeys(Q′))2

and since bvars(P ′) ⊆ bvars(P ), nnames(P ′) ⊆ nnames(P ), and similarly for Q, this proves the claim.

Lemma 11 (Environments in the constraints do not contain union types). For all Γ , C, for all processes P ,
Q, if

Γ ` P ∼ Q→ C

then for all (c, Γ ′) ∈ C,
branches(Γ ′) = {Γ ′}

i.e. for all x ∈ dom(Γ ′), Γ ′(x) is not a union type.

Proof. This property is immediate by induction on the typing derivation.

Lemma 12 (Typing is preserved by extending the environment). For all Γ , Γ ′, P , Q, C, c, t, t′, T , c, if
Γ ` � and Γ ∪ Γ ′ ` � (we do not require that Γ ′ is well-formed):

– if dom(Γ ) ∩ dom(Γ ′) = ∅, and if Γ ` t ∼ t′ : T → c, then Γ ∪ Γ ′ ` t ∼ t′ : T → c.
– if dom(Γ ) ∩ dom(Γ ′) = ∅, and if Γ `d d(y) : T , then Γ ∪ Γ ′ `d d(y) : T .



– if (dom(Γ )∪bvars(P )∪bvars(Q)∪nnames(P )∪nnames(Q))∩dom(Γ ′) = ∅, and keys(Γ ′)∩(keys(Γ )∪
nkeys(P ) ∪ nkeys(Q)) = ∅, and Γ ` P ∼ Q → C, then Γ ∪ Γ ′ ` P ∼ Q → C ′. where C ′ =
{(c, Γc ∪ Γ ′′)|(c, Γc) ∈ C ∧ Γ ′′ ∈ branches(Γ ′)} (note that the union is well defined, i.e. Γc and Γ ′′ are
compatible, thanks to Lemma 10)

Proof. – The first point is immediate by induction on the type derivation.
– The second point is immediate by examining the typing rules for destructors.
– The third point is immediate by induction on the type derivation of the processes. In the PZERO case, to

satisfy the condition that the environment is its own only branch, rule POR needs to be applied first, in order
to split all the union types in Γ ′, which yields the environments branches(Γ ∪ Γ ′) in the constraints.

Lemma 13 (Consistency for Subsets). The following statements about constraints hold:

1. If (c, Γ ) is consistent, and c′ ⊆ c then (c′, Γ ) is consistent.
2. Let C be a consistent constraint set. Then every subset C ′ ⊆ C is also consistent.
3. If C∪∀c′ is consistent then C also is.
4. If C1 ⊆ C2 and C ′1 ⊆ C ′2, then C1∪×C ′1 ⊆ C2∪×C ′2.
5. J·Kσ,σ′ commutes with ∪, ∪×, ∪∀, i.e. for all C, C ′, σ, σ′, JC∪×C ′Kσ,σ′ = JCKσ,σ′∪×JC ′Kσ,σ′ and similarly

for ∪, ∪∀.
6. If σ1 and σ′1 are ground and have disjoint domains, as well as σ2 and σ′2, then for all c,

r
JcKσ1,σ2

z

σ′1,σ
′
2

=

JcKσ1∪σ′1,σ2∪σ′2
7. if σ, σ′ are ground and ΓN ,K ` σ ∼ σ′ : ΓX → c for some c, if C∪∀c is consistent, and if for all

(c′, Γ ′) ∈ C, Γ ⊆ Γ ′, then JCKσ,σ′ is consistent.

Proof. Points 1 and 2 follow immediately from the definition of consistency and of static equivalence.
Point 3 follows from point 1: for every (c, Γ ) ∈ C, (c∪ c′, Γ ) is in C∪∀c′, and is therefore consistent. Hence

(c, Γ ) also is by point 1.
Point 4 follows from the definition of ∪×. If (c, Γ ) ∈ C1∪×C ′1, there exists (c1, Γ1) ∈ C1, (c′1, Γ

′
1) ∈ C ′1

such that (c, Γ ) = (c1 ∪ c′1, Γ1 ∪ Γ ′1) (and Γ1, Γ ′1 are compatible). Since C1 ⊆ C2, (c1, Γ1) ∈ C2. Similarly,
(c′1, Γ

′
1) ∈ C ′2. Therefore (c, Γ ) ∈ C2∪×C ′2.

Points 5 and 6 follow from the definitions of J·Kσ,σ′ , ∪×, ∪∀.

Point 7 follows from the definitions of J·Kσ,σ′ , and of consistency. Indeed, let (c′, Γ ′) ∈ JCKσ,σ′ . There
exists c′′ such that c′ = Jc′′Kσ,σ′ , and (c′′, Γ ′) ∈ C. Let c1 ⊆ c′, and Γ1 ⊆ Γ ′ such that Γ1N ,K = Γ ′N ,K and
vars(c1) ⊆ dom(Γ1). Let θ, θ′, cθ be such that (Γ1)N ,K ` θ ∼ θ′ : (Γ1)X → cθ, and cθ ⊆ Jc1Kθ,θ′ .

Note that since σ, σ′ are ground, c is also ground.
Since c′ = Jc′′Kσ,σ′ , there exists c2 ⊆ c′′ such that c1 = Jc2Kσ,σ′ . If we show that there exists c3 such that

ΓN ,K ` σθ ∼ σ′θ′ : ΓX → c3 and c3 ⊆ Jc2 ∪ cKσθ,σ′θ′ , then it will follow from the consistency of C∪∀c that
φΓ2
LL ∪ φl(c2 ∪ c)σθ and φΓ2

LL ∪ φr(c2 ∪ c)σ′θ′ are statically equivalent, where Γ2 = Γ1 ∪ Γ ⊆ Γ ′′.
Since Γ1N ,K = Γ ′′N ,K and Γ ⊆ Γ ′′, we have φΓ2

LL = φΓ1
LL . Hence φΓ1

LL ∪ φl(c1 ∪ c)θ and φΓ1
LL ∪ φr(c1 ∪ c)θ′

will be statically equivalent.
Therefore, φΓ1

LL ∪ φl(c1)θ and φΓ1
LL ∪ φr(c1)θ

′ will also be statically equivalent, which proves the consistency
of JCKσ,σ′ .

It only remains to be proved that there exists c3 such that ΓN ,K ` σθ ∼ σ′θ′ : ΓX → c3 and c3 ⊆
Jc2 ∪ cKσθ,σ′θ′ .

Since σ is ground, σθ = σ ∪ θ|dom(Γ1)\dom(Γ ), and similarly for σ′θ′. By assumption, ΓN ,K ` σ ∼ σ′ :
ΓX → c and (Γ1)N ,K ` θ ∼ θ′ : (Γ1)X → cθ. Hence there exists c3 ⊆ c ∪ cθ such that (Γ2)N ,K ` σθ ∼ σ′θ′ :
(Γ2)X → c3.



Since cθ ⊆ Jc1Kθ,θ′ , and c is ground, we have

c3 ⊆ c ∪ Jc1Kθ,θ′

= c ∪ Jc2Kσθ,σ′θ′

= Jc2 ∪ cKσθ,σ′θ′

which concludes the proof.

Lemma 14 (Environments in constraints contain a branch of the typing environment). For all Γ , C, for
all processes P , Q, if Γ ` P ∼ Q → C then for all (c, Γ ′) ∈ C, there exists Γ ′′ ∈ branches(Γ ) such that
Γ ′′ ⊆ Γ ′.

Proof. We prove this property by induction on the type derivation of Γ ` P ∼ Q → C. In the PZERO case,
C = {(∅, Γ )}, and by assumption branches(Γ ) = {Γ}, hence the claim trivially holds.

In the PPAR case, we have P = P1 | P2, Q = Q1 | Q2, and C = C1∪×C2 for some P1, P2, Q1, Q2, C1, C2

such that Γ ` P1 ∼ Q1 → C1 and Γ ` P2 ∼ Q2 → C2. Thus any element of C is of the form (c1 ∪ c2, Γ1 ∪Γ2)
where (c1, Γ1) ∈ C1, (c2, Γ2) ∈ C2, and Γ1, Γ2 are compatible. By the induction hypothesis, both C1 and C2

contain a branch of Γ . The claim holds, as these are necessarily the same branch, since Γ1 and Γ2 are compatible.

In the POR case, we have Γ = Γ ′′, x : T1 ∨ T2 for some x, Γ ′′, T1, T2 such that Γ ′′, x : T1 ` P ∼ Q→ C1

and Γ ′′, x : T2 ` P ∼ Q → C2, and C = C1 ∪ C2. Thus by the induction hypothesis, if (c, Γ ′) ∈ Ci (for
i ∈ {1, 2}), then Γ ′ contains some Γ ′′′ ∈ branches(Γ ′′, x : Ti) ⊆ branches(Γ ), and the claim holds.

In the POUT case, there exist P ′,Q′,M ,N , C ′, c such that P = out(M).P ′,Q = out(N).Q′, C = C ′∪∀c,
Γ ` M ∼ N : LL → c and Γ ` P ′ ∼ Q′ → C ′. If (c′, Γ ′) ∈ C, by definition of ∪∀ there exists c′′ such that
(c′′, Γ ′) ∈ C ′ and c′ = c ∪ c′′. Hence by applying the induction hypothesis to Γ ` P ′ ∼ Q′ → C ′, there exists
Γ ′′ ∈ branches(Γ ) such that Γ ′′ ⊆ Γ ′.

In the PIFL case, there exist P ′, P ′′, Q′, Q′′, M , N , M ′, N ′, C ′, C ′′, c, c′ such that P = if M =
M ′ then P ′ else P ′′,Q = if N = N ′ then Q′ else Q′′, C = (C ′∪C ′′)∪∀(c∪c′), Γ `M ∼ N : LL→ c,
Γ ` M ′ ∼ N ′ : LL → c′, Γ ` P ′ ∼ Q′ → C ′, and Γ ` P ′′ ∼ Q′′ → C ′′. If (c′′, Γ ′) ∈ C, by definition of
∪∀ there exist c′′′, such that (c′′′, Γ ′) ∈ C ′ ∪ C ′′ and c′′ = c′′′ ∪ c ∪ c′. We write the proof for the case where
(c′′′, Γ ′) ∈ C ′, the other case is analogous. By applying the induction hypothesis to Γ ` P ′ ∼ Q′ → C ′, there
exists Γ ′′ ∈ branches(Γ ) such that Γ ′′ ⊆ Γ ′, which proves the claim.

All remaining cases are similar. We write the proof for the PIFLR* case. In this case, there exist P ′, P ′′,
Q′, Q′′, M , N , M ′, N ′, C ′, C ′′, l, l′, m, n such that P = if M = M ′ then P ′ else P ′′, Q = if N =
N ′ then Q′ else Q′′, C = C ′ ∪ C ′′, Γ `M ∼ N : Jτ l,∞m ; τ l

′,∞
n K→ ∅, Γ `M ′ ∼ N ′ : Jτ l,∞m ; τ l

′,∞
n K→ ∅,

Γ ` P ′ ∼ Q′ → C ′, and Γ ` P ′′ ∼ Q′′ → C ′′. If (c, Γ ′) ∈ C, we thus know that (c, Γ ′) ∈ C ′ or (c, Γ ′) ∈ C ′′.
We write the proof for the case where (c, Γ ′) ∈ C ′, the other case is analogous. By applying the induction
hypothesis to Γ ` P ′ ∼ Q′ → C ′, there exists Γ ′′ ∈ branches(Γ ) such that Γ ′′ ⊆ Γ ′, which proves the claim.

Lemma 15 (All branches are represented in the constraints). For all Γ , C, for all processes P , Q, if Γ `
P ∼ Q→ C then for all Γ ′ ∈ branches(Γ ), there exists (c, Γ ′′) ∈ C, such that Γ ′ ⊆ Γ ′′.

Proof. We prove this property by induction on the type derivation of Γ ` P ∼ Q → C. In the PZERO case,
C = {(∅, Γ )}, and by assumption branches(Γ ) = {Γ}, hence the claim trivially holds.

In the PPAR case, we have P = P1 | P2, Q = Q1 | Q2, and C = C1∪×C2 for some P1, P2, Q1, Q2,
C1, C2 such that Γ ` P1 ∼ Q1 → C1 and Γ ` P2 ∼ Q2 → C2. By the induction hypothesis, there exists



(c1, Γ1) ∈ C1 and (c2, Γ2) ∈ C2 such that Γ ′ ⊆ Γ1 and Γ ′ ⊆ Γ2. By Lemma 10, dom(Γ1) and dom(Γ2) only
contain dom(Γ )(= dom(Γ ′)) and variables and names in

bvars(P1) ∪ bvars(Q1) ∪ nnames(P1) ∪ nnames(Q1) ∪ (nkeys(P1) ∪ nkeys(Q1))
2

and
bvars(P2) ∪ bvars(Q2) ∪ nnames(P2) ∪ nnames(Q2) ∪ (nkeys(P2) ∪ nkeys(Q2))

2

respectively. We have Γ1(x) = Γ2(x) = Γ ′(x) for all x ∈ dom(Γ ′), and the sets

bvars(P1) ∪ bvars(Q1) ∪ nnames(P1) ∪ nnames(Q1) ∪ (nkeys(P1) ∪ nkeys(Q1))
2

and
bvars(P2) ∪ bvars(Q2) ∪ nnames(P2) ∪ nnames(Q2) ∪ (nkeys(P2) ∪ nkeys(Q2))

2

are disjoint by well formedness of the processes P1 | P2 and Q1 | Q2. Thus Γ1 and Γ2 are compatible. Therefore
(c1 ∪ c2, Γ1 ∪ Γ2) ∈ C1∪×C2(= C), and the claim holds since Γ ′ ⊆ Γ1 ∪ Γ2.

In the POR case, we have Γ = Γ ′′, x : T1 ∨ T2 for some x, Γ ′′, T1, T2 such that Γ ′′, x : T1 ` P ∼ Q→ C1

and Γ ′′, x : T2 ` P ∼ Q → C2, and C = C1 ∪ C2. Since branches(Γ ) = branches(Γ ′′, x : T1) ∪
branches(Γ ′′, x : T2), we know that Γ ′ ∈ branches(Γ ′′, x : Ti) for some i. We conclude this case directly by
applying the induction hypothesis to Γ ′′, x : Ti ` P ∼ Q→ Ci.

In the POUT case, there exist P ′,Q′,M ,N , C ′, c such that P = out(M).P ′,Q = out(N).Q′, C = C ′∪∀c,
Γ `M ∼ N : LL→ c and Γ ` P ′ ∼ Q′ → C ′. By applying the induction hypothesis to Γ ` P ′ ∼ Q′ → C ′,
there exists (c′′, Γ ′′) ∈ C ′ such that Γ ′ ⊆ Γ ′′. By definition of ∪∀, (c′′ ∪ c, Γ ′′) ∈ C, which proves the claim.

In the PIFL case, there exist P ′, P ′′, Q′, Q′′, M , N , M ′, N ′, C ′, C ′′, c, c′ such that P = if M =
M ′ then P ′ else P ′′,Q = if N = N ′ then Q′ else Q′′, C = (C ′∪C ′′)∪∀(c∪c′), Γ `M ∼ N : LL→ c,
Γ `M ′ ∼ N ′ : LL→ c′, Γ ` P ′ ∼ Q′ → C ′, and Γ ` P ′′ ∼ Q′′ → C ′′. By applying the induction hypothesis
to Γ ` P ′ ∼ Q′ → C ′, there exists (c′′, Γ ′′) ∈ C ′ such that Γ ′ ⊆ Γ ′′. By definition of ∪∀, (c′′∪c∪c′, Γ ′′) ∈ C,
which proves the claim.

All remaining cases are similar. We write the proof for the PIFLR* case. In this case, there exist P ′, P ′′,
Q′, Q′′, M , N , M ′, N ′, C ′, C ′′, l, l′, m, n such that P = if M = M ′ then P ′ else P ′′, Q = if N =
N ′ then Q′ else Q′′, C = C ′ ∪ C ′′, Γ `M ∼ N : Jτ l,∞m ; τ l

′,∞
n K→ ∅, Γ `M ′ ∼ N ′ : Jτ l,∞m ; τ l

′,∞
n K→ ∅,

Γ ` P ′ ∼ Q′ → C ′, and Γ ` P ′′ ∼ Q′′ → C ′′. By applying the induction hypothesis to Γ ` P ′ ∼ Q′ → C ′,
there exists (c′′, Γ ′′) ∈ C ′ such that Γ ′ ⊆ Γ ′′.

If (c, Γ ′) ∈ C, we thus know that (c, Γ ′) ∈ C ′ or (c, Γ ′) ∈ C ′′. We write the proof for the case where
(c, Γ ′) ∈ C ′, the other case is analogous. By applying the induction hypothesis to Γ ` P ′ ∼ Q′ → C ′, there
exists Γ ′′ ∈ branches(Γ ) such that Γ ′′ ⊆ Γ ′, which proves the claim.

Lemma 16 (Refinement types). For all Γ , for all terms t, t′, for all m, n, a, l, l′, c, if Γ ` t ∼ t′ :
Jτ l,am ; τ l

′,a
n K→ c then c = ∅ and

– either t = m, t′ = n, a =∞ and Γ (m) = τ l,am and Γ (n) = τ l
′,a
n ;

– or t = m, t′ = n, a = 1, and (Γ (m) = τ l,am ) ∨ (m ∈ FN ∪ C ∧ l = LL), and (Γ (n) = τ l
′,a
n ) ∨ (n ∈

FN ∪ C ∧ l′ = LL);
– or t and t′ are variables x, y ∈ X and there exist labels l′′, l′′′, and names m′, n′ such that Γ (x) =

Jτ l,am ; τ l
′′,a
n′ K and Γ (y) = Jτ l

′′′,a
m′ ; τ l

′,a
n K.

In particular if t, t′ are ground then the last case cannot occur.



Proof. The proof of this property is immediate by induction on the typing derivation for the terms. Indeed,
because of the form of the type, and by well-formedness of Γ , the only rules which can lead to Γ ` t ∼ t′ :
Jτ l,am ; τ l

′,a
n K→ c are TVAR, TLR1, TLR∞, TLRVAR, and TSUB.

In the TVAR, TLR1, TLR∞ cases the claim directly follows from the premises of the rule.
In the TLRVAR case, t and t′ are necessarily variables, and their types in Γ are obtained directly by applying

the induction hypothesis to the premises of the rule.
Finally in the TSUB case, Γ ` t ∼ t′ : T → c and T <: Jτ l,am ; τ l

′,a
n K. By Lemma 3, T = Jτ l,am ; τ l

′,a
n K and

we conclude by the induction hypothesis.

Lemma 17 (Encryption types). For all environment Γ , types T , T ′, messages M , N , M1, M2 and set of
constraints c:

1. If Γ `M ∼ N : (T )T ′ → c then
– either there existM1,M2,N1,N2, c1, c2 such thatM = enc(M1,M2),N = enc(N1, N2), c = c1∪c2,
Γ ` M1 ∼ N1 : T → c1, and Γ ` M2 ∼ N2 : T ′ → c2, both with shorter derivations (than the one
for Γ `M ∼ N : (T )T ′ → c);

– or M and N are variables.
2. If Γ `M ∼ N : {T}T ′ → c then

– either there exist M1, M2, N1, N2, c1, c2 such that M = aenc(M1,M2), N = aenc(N1, N2),
c = c1 ∪ c2, Γ ` M1 ∼ N1 : T → c1 and Γ ` M2 ∼ N2 : T ′ → c2, both with shorter derivations
(than the one for Γ `M ∼ N : {T}T ′ → c);

– or M and N are variables.
3. If T <: LL and Γ ` enc(M1,M2) ∼ N : T → c then T = LL.
4. If T <: LL and Γ ` aenc(M1,M2) ∼ N : T → c then T = LL.
5. If Γ ` enc(M1,M2) ∼ N : LL→ c then there exist N1, N2 such that N = enc(N1, N2), and

– either there exist T ′, c1, c2 such that Γ ` M2 ∼ N2 : keyHH(T ′) → c2, c = {enc(M1,M2) ∼
N} ∪ c1 ∪ c2, and Γ `M1 ∼ N1 : T ′ → c1;

– or there exist c1, c2 such that c = c1 ∪ c2, Γ `M2 ∼ N2 : LL→ c2 and Γ `M1 ∼ N1 : LL→ c1.
6. If Γ ` aenc(M1,M2) ∼ N : LL→ c then there exist N1, N2 such that N = aenc(N1, N2), and

– either there exist T ′, T ′′, c1, c2 such that T ′ <: keyHH(T ′′), Γ ` M2 ∼ N2 : pkey(T ′) → c2,
c = {aenc(M1,M2) ∼ N} ∪ c1 ∪ c2, and Γ `M1 ∼ N1 : T ′′ → c1;

– or there exist c1, c2 such that c = c1 ∪ c2, Γ `M2 ∼ N2 : LL→ c2, and Γ `M1 ∼ N1 : LL→ c1.
7. The symmetric properties to the previous four points, i.e. when the term on the right is an encryption, also

hold.

Proof. We prove point 1 by induction on the derivation of Γ `M ∼ N : (T )T ′ → c. Because of the form of the
type, and by well-formedness of Γ , the only possibilities for the last rule applied are TVAR, TENC, and TSUB.
The claim clearly holds in the TVAR and TENC cases. In the TSUB case, we have Γ `M ∼ N : T ′′ → c for
some T ′′ <: (T )T ′ . Hence by Lemma 3, there exists T ′′′ <: T such that T ′′ = (T ′′′)T ′ . Therefore, by applying
the induction hypothesis to Γ `M ∼ N : T ′′ → c

– either M and N are two variables, and the claim holds;
– or there exist M1, M2, N1, N2, c1, c2 such that M = enc(M1,M2), N = enc(N1, N2), c = c1 ∪ c2,
Γ ` M1 ∼ N1 : T ′′′ → c1, and Γ ` M2 ∼ N2 : T ′ → c2, both with shorter derivations than the one for
Γ `M ∼ N : T ′′ → c. Thus by subtyping (rule TSUB), Γ `M1 ∼ N1 : T → c1 with a shorter derivation
that Γ `M ∼ N : (T )T ′ → c, which proves the property.



Point 2 has a similar proof to point 1.

We now prove point 3 by induction on the proof of Γ ` enc(M1,M2) ∼ N : T → c. Because of the form of
the terms, the last rule applied can only be THIGH, TOR, TENC, TENCH, TENCL, TAENCH, TAENCL, TLR’,
TLRL’ or TSUB.

The THIGH, TLR’, TOR, TENC cases are actually impossible by Lemma 3, since T <: LL. In the TSUB
case, we have Γ ` enc(M1,M2) ∼ N : T ′ → c for some T ′ such that T ′ <: T . By transitivity of <:, T ′ <: LL,
and the induction hypothesis proves the claim. In all other cases, T = LL and the claim holds.

Point 4 has a similar proof to point 3.

We prove point 5 by induction on the proof of Γ ` enc(M1,M2) ∼ N : LL→ c. Because of the form of the
terms and of the type (i.e. LL) the last rule applied can only be TENCH, TENCL, TAENCH, TAENCL, TLRL’ or
TSUB.

The TLRL’ case is impossible, since by Lemma 16 it would imply that enc(M1,M2) is either a variable or
a nonce.

In the TSUB case, we have Γ ` enc(M1,M2) ∼ N : T ′ → c for some T ′ such that T ′ <: LL. By point 3,
T ′ = LL, and the premise of the rule thus gives a shorter derivation of Γ ` enc(M1,M2) ∼ N : LL→ c. The
induction hypothesis applied to this shorter derivation proves the claim.

The TAENCH and TAENCL cases are impossible, since the condition of the rule would then imply Γ `
enc(M1,M2) ∼ N : {T}T ′ → c′ for some T , T ′, c′, which is not possible by point 2.

In the TENCH case, there exist T , T ′, c′ such that c = {enc(M1,M2) ∼ N} ∪ c′, T ′ <: keyHH(T ), and
Γ ` enc(M1,M2) ∼ N : (T )T ′ → c′. By point 1, since enc(M1,M2) is not a variable, there exist N1, N2, c1,
c2 such that N = enc(N1, N2), c′ = c1 ∪ c2, Γ ` M1 ∼ N1 : T → c1, and Γ ` M2 ∼ N2 : T ′ → c2. Hence
by subtyping, Γ `M2 ∼ N2 : keyHH(T )→ c2.

Finally in the TENCL case, there similarly exist T , T ′ such that T <: keyLL(T ′) or T = LL, and Γ `
enc(M1,M2) ∼ N : (LL)T → c. Hence by point 1, there exist N1, N2, c1, c2 such that N = enc(N1, N2),
c = c1 ∪ c2 Γ ` M1 ∼ N1 : LL → c1, and Γ ` M2 ∼ N2 : T → c2. Hence in any case (potentially using
subtyping), Γ `M2 ∼ N2 : LL→ c2, which proves the claim.

Point 6 has a similar proof to point 5.

The symmetric properties, as described in point 7, have analogous proofs.

Lemma 18 (Signature types). For all environment Γ , type T , messages M1, M2, N , and set of constraints c:

1. If T <: LL and Γ ` sign(M1,M2) ∼ N : T → c then T = LL.
2. If Γ ` sign(M1,M2) ∼ N : LL→ c then there exist N1, N2 such that N = sign(N1, N2), and

– either there exist T , c′ and c′′ such that Γ ` M2 ∼ N2 : eqkeyHH(T ) → ∅, c = {sign(M1,M2) ∼
N} ∪ c′ ∪ c′′, Γ `M1 ∼ N1 : T → c′, and Γ `M1 ∼ N1 : LL→ c′′;

– or there exists c1, c2 such that c = c1 ∪ c2, Γ `M2 ∼ N2 : LL→ c2 and Γ `M1 ∼ N1 : LL→ c1.
3. The symmetric properties to the previous points, i.e. when the term on the right is a signature, also hold.

Proof. We prove point 1 by induction on the proof of Γ ` sign(M,k) ∼ N : T → c. Because of the form of
the terms, the last rule applied can only be THIGH, TOR, TENCH, TENCL, TAENCH, TAENCL, TSIGNH,
TSIGNL, TLR’, TLRL’ or TSUB.

The THIGH, TLR’, TOR cases are actually impossible by Lemma 3, since T <: LL. In the TSUB case, we
have Γ ` sign(M1,M2) ∼ N : T ′ → c for some T ′ such that T ′ <: T . By transitivity of <:, T ′ <: LL, and
the induction hypothesis proves the claim. In all other cases, T = LL and the claim holds.



We prove point 2 by induction on the proof of Γ ` sign(M1,M2) ∼ N : LL → c. Because of the form
of the terms and of the type (i.e. LL) the last rule applied can only be TENCH, TENCL, TAENCH, TAENCL,
TSIGNH, TSIGNL, TLRL’ or TSUB.

The TLRL’ case is impossible, since by Lemma 16 it would imply that sign(M1,M2) is a variable or a
nonce.

In the TSUB case, we have Γ ` sign(M1,M2) ∼ N : T → c for some T such that T <: LL. By point 1,
T = LL, and the premise of the rule thus gives a shorter derivation of Γ ` sign(M1,M2) ∼ N : LL→ c. The
induction hypothesis applied to this shorter derivation proves the claim.

The TENCH, TENCL, TAENCH and TAENCL cases are impossible, since the condition of the rule would
then imply Γ ` sign(M1,M2) ∼ N : (T )T ′ → c′ (or {T}T ′) for some T , T ′, c′, which is not possible by
Lemma 17.

Finally, in the TSIGNH and TSIGNL cases, the premises of the rule directly proves the claim.

The symmetric properties, as described in point 3, have analogous proofs.

Lemma 19 (Pair types). For all environment Γ , for all M , N , T , c:

1. For all T1, T2, if Γ `M ∼ N : T1 ∗ T2 → c then
– either there exist M1, M2, N1, N2, c1, c2 such that M = 〈M1,M2〉, N = 〈N1, N2〉, c = c1 ∪ c2, and
Γ `M1 ∼ N1 : T1 → c1 and Γ `M2 ∼ N2 : T2 → c2;

– or M and N are variables.
2. For all M1, M2, if T <: LL and Γ ` 〈M1,M2〉 ∼ N : T → c then either T = LL or there exists T1, T2

such that T = T1 ∗ T2.
3. For all M1, M2, if Γ ` 〈M1,M2〉 ∼ N : LL → c then there exist N1, N2, c1, c2, such that c = c1 ∪ c2,
N = 〈N1, N2〉, Γ `M1 ∼ N1 : LL→ c1 and Γ `M2 ∼ N2 : LL→ c2.

4. The symmetric properties to the previous two points (i.e. when the term on the right is a pair) also hold.

Proof. Let us prove point 1 by induction on the typing derivation Γ `M ∼ N : T1 ∗ T2 → c. Because of the
form of the type, and by well-formedness of Γ , the only possibilities for the last rule applied are TVAR, TPAIR,
and TSUB.

The claim clearly holds in the TVAR and TPAIR cases.
In the TSUB case, Γ ` M ∼ N : T ′ → c for some T ′ <: T1 ∗ T2, and by Lemma 3, T ′ = T ′1 ∗ T ′2

for some T ′1, T ′2 such that T ′1 <: T1 and T ′2 <: T2. Therefore, by applying the induction hypothesis to
Γ ` M ∼ N : T ′1 ∗ T ′2 → c, M and N are either two variables, and the claim holds; or two pairs, i.e. there
exist M1, M2, N1, N2, c1, c2 such that M = 〈M1,M2〉, N = 〈N1, N2〉, c = c1 ∪ c2, and for i ∈ {1, 2},
Γ `Mi ∼ Ni : T ′i → ci. Hence, by subtyping, Γ `Mi ∼ Ni : Ti → ci, and the claim holds.

We now prove point 2 by induction on the proof of Γ ` 〈M1,M2〉 ∼ N : T → c. Because of the form of the
terms, the last rule applied can only be THIGH, TOR, TPAIR, TENCH, TENCL, TAENCH, TAENCL, TLR’,
TLRL’ or TSUB.

The THIGH, TLR’, and TOR cases are actually impossible by Lemma 3, since T <: LL.
The TLRL’ and case is also impossible, since by Lemma 16 it would imply that 〈M1,M2〉 is either a variable

or a nonce.
The TENCH, TENCL, TAENCH, TAENCL cases are impossible, since the condition of the rule would then

imply Γ ` 〈M1,M2〉 ∼ N : (T )T ′ → c′ (or {T}T ′ ) for some T , T ′, c′, which is not possible by Lemma 17.
In the TPAIR case, the claim clearly holds.
Finally, in the TSUB case, we have Γ ` 〈M1,M2〉 ∼ N : T ′ → c for some T ′ such that T ′ <: T . By

transitivity of <:, T ′ <: LL, and we may apply the induction hypothesis to Γ ` 〈M1,M2〉 ∼ N : T ′ → c. Hence



either T ′ = LL or T ′ = T ′1 ∗ T ′2 for some T ′1, T ′2. By Lemma 3, this implies in the first case that T = LL and in
the second case that T = LL or T is also a pair type (T 6= HL and T 6= HH in both cases, since we already know
that T <: LL).

We prove point 3 as a consequence of the first two points, by induction on the derivation of Γ ` 〈M1,M2〉 ∼
N : LL→ c. The last rule in this derivation can only be TENCH, TENCL, TAENCH, TAENCL, TLR’, TLRL’
or TSUB by the form of the types and terms, but similarly to the previous point TENCH, TENCL, TAENCH,
TAENCL, TLR’ and TLRL’ are actually not possible.

Hence the last rule of the derivation is TSUB. We have Γ ` 〈M1,M2〉 ∼ N : T → c for some T such
that T <: LL. By point 2, either T = LL or there exist T1, T2 such that T = T1 ∗ T2. If T = LL, we have a
shorter proof of Γ ` 〈M1,M2〉 ∼ N : LL→ c and we conclude by the induction hypothesis. Otherwise, since
T <: LL, by Lemma 3, T1 <: LL and T2 <: LL. Moreover by the first property, there exist N1, N2, c1, c2 such
that N = 〈N1, N2〉, c = c1 ∪ c2, Γ `M1 ∼ N1 : T1 → c1, and Γ `M2 ∼ N2 : T2 → c2.

Thus by subtyping, Γ `M1 ∼ N1 : LL→ c1 and Γ `M2 ∼ N2 : LL→ c2, which proves the claim.

The symmetric properties, as described in point 4, have analogous proofs.

Lemma 20 (Type for keys, nonces and constants). For all well-formed environment Γ , for all messages M ,
N , for all key k ∈ K, for all nonce or constant n ∈ N ∪ C, for all c, l, the following properties hold:

1. For all T , T ′, if Γ ` M ∼ N : T → c and T <: keyl(T ′), then c = ∅; and either M , N are in BK and
Γ (M,N) <: T ; or M and N are variables.

2. If Γ ` M ∼ N : pkey(T ) → c, then c = ∅; and either ∃M ′, N ′.M = pk(M ′) ∧ N = pk(N ′) ∧ Γ `
M ′ ∼ N ′ : T → ∅; or M , N are variables.

3. If Γ ` M ∼ N : vkey(T ) → c, then c = ∅; and either ∃M ′, N ′.M = vk(M ′) ∧ N = vk(N ′) ∧ Γ `
M ′ ∼ N ′ : T → ∅; or M , N are variables.

4. If l ∈ {LL, HH}, and Γ ` k ∼ N : l→ c, then N ∈ K, c = ∅, and either k,N ∈ BK and there exists T such
that Γ (k,N) <: keyl(T ), or l = LL, and k = N ∈ FK.

5. If Γ ` pk(M ′) ∼ N : LL → c, then c = ∅, ∃N ′.N = pk(N ′), and either ∃l, T ′.T <: eqkeyl(T ′) ∧ Γ `
M ′ ∼ N ′ : T → ∅, or ∃k ∈ keys(Γ ) ∪ FK.M ′ = N ′ = k.

6. If Γ ` vk(M ′) ∼ N : LL → c, then c = ∅, ∃N ′.N = vk(N ′), and either ∃l, T ′.T <: eqkeyl(T ′) ∧ Γ `
M ′ ∼ N ′ : T → ∅, or ∃k ∈ keys(Γ ) ∪ FK.M ′ = N ′ = k.

7. If Γ ` n ∼ N : HH→ c, then n ∈ BN , c = ∅ and either Γ (n) = τ HH,1n or τ HH,∞n .
8. If Γ ` n ∼ N : LL→ c, then N = n, c = ∅, and either there exists a ∈ {1,∞} such that Γ (n) = τ LL,an , or
n ∈ FN ∪ C.

9. The symmetric properties to points 4 to 8 (i.e. with k (resp. pk(M ′), vk(M ′), n) on the right) also hold.

Proof. Point 1 is easily proved by induction on the derivation of Γ ` M ∼ N : T → c. Indeed, by the form
of the type, using Lemma 3, the last rule can only be TKEY, TVAR, or TSUB. In the TKEY and TVAR cases
the claim clearly holds. In the TSUB case, we have T ′′ <: T such that Γ ` M ∼ N : T ′ → c with a shorter
derivation. By transitivity, T ′′ <: keyl(T ′). Thus by applying by the induction hypothesis, either M , N are
variables, or they are keys and Γ (M,N) <: T ′′ <: T , and in both cases the claim holds.

Similarly, we prove point 2 by induction on the derivation of Γ ` M ∼ N : pkey(T ) → c. Indeed, by
the form of the type, and since Γ is well-formed, the last rule can only be TPUBKEY, TVAR, or TSUB. In
the TPUBKEY and TVAR cases the claim clearly holds. In the TSUB case, we have T ′ <: pkey(T ) such that
Γ ` M ∼ N : T ′ → c with a shorter derivation. By Lemma 3, T ′ = pkey(T ). We conclude the proof by
applying by the induction hypothesis to the shorter derivation of Γ `M ∼ N : T ′ → c.



Point 3 has a similar proof to point 2.

We prove point 4 by induction on the derivation of Γ ` k ∼ N : l → c. Because of the form of the terms
and type, and by well-formedness of Γ , the last rule applied can only be TCSTFN, TENCH, TENCL, TAENCH,
TAENCL, TLR’, TLRL’ or TSUB.

In the TCSTFN case, k = N ∈ FK and the claim holds.
The TENCH, TENCL, TAENCH, TAENCL cases are impossible since they would imply that Γ ` k ∼ N :

(T ′)k′,k′′ → c′ (or {T ′}k′,k′′ ) for some T ′, k′, k′′, c′, which is impossible by Lemma 17.

The TLR’ and TLRL’ cases are impossible. Indeed in these cases, we have Γ ` k ∼ N : Jτ l,am ; τ l
′,a
n K→ ∅

for some m, n. Lemma 16 then implies that m = k (and n = N ), which is contradictory.
Finally, in the TSUB case, we have Γ ` k ∼ N : T → c for some T such that T <: l. By Lemma 3, this

implies that T is either a pair type, an encryption type, a public or verification key type, a key type, or l. The pair,
encryption, public and verification key cases are impossible, respectively by Lemma 19, Lemma 17, and point 2,
since k ∈ K. The last case is trivial by the induction hypothesis. Only the case where T <: keyl(T ′) (for some
T ′) remains. By point 1, in that case, since k is not a variable, we have N ∈ K and Γ (k,N) <: keyl(T ′), and
therefore the claim holds.

Similarly, we prove point 5 by induction on the derivation of Γ ` pk(M ′) ∼ N : LL→ c. Because of the
form of the terms and type, and by well-formedness of Γ , the last rule applied can only be TENCH, TENCL,
TAENCH, TAENCL, TLRL’, TPUBKEYL or TSUB.

The TENCH, TENCL, TAENCH, TAENCL cases are impossible since they would imply that Γ ` pk(M ′) ∼
N : (T ′)k → c′ (or {T ′}k′ ) for some T ′, k, c′, which is impossible by Lemma 17.

The TLRL’ case is also impossible. Indeed in this case, we have Γ ` pk(M ′) ∼ N : Jτ l,am ; τ l
′,a
n K→ ∅ for

some m, n. Lemma 16 then implies that m = pk(M ′) (and n = N ), which is contradictory.
In the TSUB case, we have Γ ` pk(M ′) ∼ N : T → c for some T such that T <: LL. By Lemma 3, this

implies that T is either a pair type, an encryption type, a public or verification key type, a key type, or LL. Just
as in the previous point, the pair, encryption, verification key, and key cases are impossible. If T = LL, the
claim trivially holds by the induction hypothesis. The case where T = pkey(T ′) (for some T ′) remains. Since
Γ ` pk(M ′) ∼ N : T → c, by point 2 we have N = pk(N ′) for some N ′, c = ∅ and Γ `M ′ ∼ N ′ : T ′ → ∅.
In addition, by Lemma 3, since T <: LL, there exist l, T ′′ such that T ′ <: eqkeyl(T ′′), and the claim holds.

Finally in the TPUBKEYL case, the claim clearly holds.

Point 6 has a similar proof to point 5.

The remaining properties have similar proofs to point 4. For point 7, i.e. if Γ ` n ∼ t : HH → c, only the
TNONCE, TSUB, and TLR’ cases are possible. The claim clearly holds in the TNONCE case.

In the TLR’ case, we have Γ ` n ∼ t : Jτ HH,am ; τ HH,ap K → ∅ for some m, p. Lemma 16 then implies that
m = n, and p = t, and Γ (n) = τ HH,am , and Γ (p) = τ HH,ap , which proves the claim.

In the TSUB case, Γ ` n ∼ t : T → c for some T <: HH, thus by Lemma 3, T is either a pair type
(impossible by Lemma 19), an encryption type (impossible by Lemma 17), a public key, verification key, or key
type (impossible by points 1 to 3), or HH (and we conclude by the induction hypothesis).

For point 8, similarly, only the TNONCEL, TCSTFN, TSUB, TLRL’ cases are possible. The TSUB case
is proved in the same way as for the third property. The TLRL’ case is proved similarly to the previous point.
Finally the claim clearly holds in the TNONCEL and TCSTFN cases.

The symmetric properties, as described in point 9, have analogous proofs.



Lemma 21 (Application of destructors). For all Γ , for all t, t′, T , c, for all ground substitutions σ, σ′ such
that dom(σ) = dom(σ′) = vars(t) ∪ vars(t′), if Γ `d t ∼ t′ : T and Γ ′N ,K ` σ ∼ σ′ : Γ ′X → c, where
Γ ′ = ΓN ,K ∪ Γ |dom(σ), then:

1. We have:
(tσ) ↓= ⊥ ⇐⇒ (t′σ′) ↓= ⊥

2. And if (tσ) ↓6= ⊥ then there exists c′ ⊆ c such that

ΓN ,K ` (tσ) ↓∼ (t′σ′) ↓: T → c′

Proof. Since Γ `d t ∼ t′ : T , by examining the typing rules for destructors, we can distinguish four cases for t,
t′.

– t = dec(x,M) and t′ = dec(x,M), for some variable x ∈ X , and some M ∈ X ∪ K. We know that
Γ `d t ∼ t′ : T , which can be proved using the rule DDECL, DDECT, DDECT’, DDECH’, or DDECL’. In
the DDECL, DDECH’, DDECL’ cases, Γ (x) = LL, and in the DDECT and DDECT’ cases Γ (x) = (T )T ′
for some T ′. By assumption we have ΓN ,K ` σ(x) ∼ σ′(x) : Γ (x)→ cx for some cx ⊆ c.
• Let us prove 1) by contraposition. Assume tσ ↓6= ⊥. Hence, σ(x) = enc(M ′,Mσ) for some M ′, and
Mσ is a key k ∈ K. We will now show that Mσ′ =Mσ = k. It is clear if M ∈ K. Otherwise, M ∈ X ,
and:
∗ In the DDECL and DDECL’ cases, Γ ` M ∼ M : LL → ∅. Since σ, σ′ are well-typed, we

have ΓN ,K ` Mσ ∼ Mσ′ : LL → c′′ for some c′′, i.e. ΓN ,K ` k ∼ Mσ′ : LL → c′′. Thus by
Lemma 20, either Mσ′ = k ∈ FK; or Mσ′ ∈ BK and Γ (k,Mσ′) <: keyLL(T ′′′) for some T ′′′.
Hence, in either case (using the well-formedness of Γ in the second case), Mσ′ = k.

∗ In the DDECH’, DDECT, DDECT’ cases, Γ (M) = seskeyl,a(T ′′′) for some l, T ′′′. Hence, ΓN ,K `
Mσ ∼ Mσ′ : seskeyl,a(T ′′′) → c′′ for some c′′. Therefore, by Lemma 20 (and since Mσ, Mσ′

are ground), Mσ′ ∈ K, and Γ (k,Mσ′) <: seskeyl,a(T ′′′). Thus, by Lemma 3, Γ (k,Mσ′) =
seskeyl,a(T ′′′), and since Γ is well-formed, Mσ′ = k.

Let us now show that there exists a ground message N ′ such that σ′(x) = enc(N ′, k).
∗ In the DDECL, DDECH’ and DDECL’ cases, Γ (x) = LL. Since σ, σ′ are well-typed, we have
ΓN ,K ` σ(x) ∼ σ′(x) : LL→ c′′ for some c′′, i.e. ΓN ,K ` enc(M ′, k) ∼ σ′(x) : LL→ c′′. Thus
by Lemma 17, there exist N , N ′ such that σ′(x) = enc(N ′, N). In addition:
· either ΓN ,K ` k ∼ N : keyHH(T ′′′) → c′′′ for some T ′′′, c′′′: in that case, by Lemma 20,
N ∈ K and Γ (k,N) <: keyHH(T ′′′). We have already shown that Γ (k, k) is either a subtype
of LL, or seskeyl,a(T ′′′′) for some l, T ′′′′. By well-formedness of Γ , only the second case is
possible, and it implies that N = k.
· or ΓN ,K ` k ∼ N : LL→ c′′′ for some c′′′: in that case, by Lemma 20, N = k.

In any case we have σ′(x) = enc(N ′, k).
∗ In the DDECT and DDECT’ cases, Γ (x) = (T )seskeyl,a(T ′′) and Γ `M ∼M : seskeyl,a(T ′′)→
∅ for some l, T ′′. Hence we have ΓN ,K ` σ(x) ∼ σ′(x) : (T )seskeyl,a(T ′′) → c′′ for some c′′,
i.e. ΓN ,K ` enc(M ′, k) ∼ σ′(x) : (T )seskeyl,a(T ′′) → c′′. Therefore, by Lemma 17, there exist

N , N ′ such that σ′(x) = enc(N ′, N), and ΓN ,K ` k ∼ N : seskeyl,a(T ′′) → ∅. Thus, by
Lemma 20, N ∈ K and Γ (k,N) = seskeyl,a(T ′′). By well-formedness of Γ , this implies that
N = k. Therefore σ′(x) = enc(N ′, k).

Hence, in any case, t′σ′ = dec(enc(N ′, k), k). By assumption, σ, σ′ are well-typed, and σ(x) ↓6= ⊥.
Thus by Lemma 22 σ′(x) ↓6= ⊥. Then N ′ ↓6= ⊥. Therefore we have t′σ′ ↓= N ′ ↓6= ⊥, which proves
the first direction of 1). The other direction is analogous.



• Moreover, still assuming tσ ↓6= ⊥, and keeping the notations from the previous point, we have tσ ↓=M ′

and t′σ′ ↓= N ′. The destructor typing rule applied to prove Γ `d t ∼ t′ : T can be DDECT, DDECT’,
DDECL, DDECH’, or DDECL’.
∗ In the DDECT and DDECT’ cases, we have ΓN ,K ` σ(x) ∼ σ′(x) : (T )seskeyl,a(T ′′) → c′′ for

some c′′ ⊆ c, i.e. ΓN ,K ` enc(M ′, k) ∼ enc(N ′, k) : (T )seskeyl,a(T ′′) → c′′. Thus, by Lemma 17,
we have ΓN ,K `M ′ ∼ N ′ : T → c′′′ for some c′′′ ⊆ c′′, and the claim holds.
∗ In the DDECL and DDECL’ cases, we have T = LL, and ΓN ,K ` σ(x) ∼ σ′(x) : LL → c′′ for

some c′′ ⊆ c, i.e. ΓN ,K ` enc(M ′, k) ∼ enc(N ′, k) : LL → c′′. In addition we have Γ ` M ∼
M : LL → ∅, and thus Γ ` k ∼ k : LL → c′′′ for some c′′′. Therefore, by Lemma 17, we have
ΓN ,K `M ′ ∼ N ′ : LL→ c′′′ for some c′′′ ⊆ c′′ (the case where Γ ` k ∼ k : keyHH(T ′′)→ c′′′ is
impossible by Lemma 20, since Γ ` k ∼ k : LL→ c′′′), and the claim holds.

∗ In the DDECH’ case, we have ΓN ,K ` σ(x) ∼ σ′(x) : LL → c′′ for some c′′ ⊆ c, i.e. ΓN ,K `
enc(M ′, k) ∼ enc(N ′, k) : LL → c′′. In addition we have Γ ` M ∼ M : seskeyHH,a(T ) → ∅,
and thus Γ ` k ∼ k : seskeyHH,a(T ) → c′′′ for some c′′′. Therefore, by Lemma 17, there exists
c′′′′ ⊆ c′′ such that ΓN ,K ` M ′ ∼ N ′ : T → c′′′′ (the case where Γ ` k ∼ k : LL → c′′′′ is
impossible by Lemma 20, since Γ ` k ∼ k : seskeyHH,a(T )→ c′′′), and the claim holds.

In all cases, point 2) holds, which concludes this case.
– t = adec(x,M) and t′ = adec(x,M), for some variable x ∈ X , and some M ∈ X ∪ K. We know that
Γ `d t ∼ t′ : T , which can be proved using the rule DADECL, DADECT, DADECT’, DADECH’, or
DADECL’. In the DADECL, DADECH’, DADECL’ cases, Γ (x) = LL, and in the DADECT and DADECT’
cases Γ (x) = {T}T ′ for some T ′. By assumption we have ΓN ,K ` σ(x) ∼ σ′(x) : Γ (x) → cx for some
cx ⊆ c.
• Let us prove 1) by contraposition. Assume tσ ↓6= ⊥. Hence, σ(x) = aenc(M ′, pk(Mσ)) for some M ′,

and Mσ is a key k ∈ K. We will now show that Mσ′ = Mσ = k. It is clear if M ∈ K. Otherwise,
M ∈ X , and:
∗ In the DADECL and DADECL’ cases, Γ ` M ∼ M : LL → ∅. Since σ, σ′ are well-typed, we

have ΓN ,K ` Mσ ∼ Mσ′ : LL → c′′ for some c′′, i.e. ΓN ,K ` k ∼ Mσ′ : LL → c′′. Thus by
Lemma 20, either Mσ′ = k ∈ FK; or Mσ′ ∈ BK, and Γ (k,Mσ′) <: keyLL(T ′′′) for some T ′′′.
Hence, in any case (by well-formedness of Γ in the case where Mσ′ ∈ BK), Mσ′ = k.

∗ In the DADECH’, DADECT, DADECT’ cases, Γ (M) = seskeyl,a(T ′′′) for some l, T ′′′. Hence,
ΓN ,K `Mσ ∼Mσ′ : seskeyl,a(T ′′′)→ c′′ for some c′′. Therefore, by Lemma 20 (and since Mσ,
Mσ′ are ground), Mσ′ ∈ K, and Γ (k,Mσ′) <: seskeyl,a(T ′′′). Thus, by Lemma 3, Γ (k,Mσ′) =
seskeyl,a(T ′′′), and since Γ is well-formed, Mσ′ = k.

Let us now show that there exists a ground message N ′ such that σ′(x) = aenc(N ′, pk(k)).
∗ In the DADECL, DADECH’ and DADECL’ cases, Γ (x) = LL. Since σ, σ′ are well-typed, we have
ΓN ,K ` σ(x) ∼ σ′(x) : LL→ c′′ for some c′′, i.e. ΓN ,K ` aenc(M ′, pk(k)) ∼ σ′(x) : LL→ c′′.
Thus by Lemma 17, there exist N , N ′ such that σ′(x) = aenc(N ′, N). In addition:
· either ΓN ,K ` pk(k) ∼ N : pkey(T ′′′)→ c′′′ and T ′′′ <: keyHH(T ′′′′) for some T ′′′, T ′′′′, c′′′:

in that case, by Lemma 20, N = pk(k′) for some key k′ ∈ K such that Γ (k, k′) <: keyHH(T ′′′).
We have already shown that Γ (k, k) is either a subtype of LL, or seskeyl,a(T ′′′′) for some l,
T ′′′′. By well-formedness of Γ , only the second case is possible, and it implies that k′ = k.
· or ΓN ,K ` pk(k) ∼ N : LL→ c′′′ for some c′′′: in that case, by Lemma 20, N = pk(k).

In any case we have σ′(x) = aenc(N ′, pk(k)).
∗ In the DADECT and DADECT’ cases, we have Γ (x) = {T}pkey(seskeyl,a(T ′′)) as well as Γ `M ∼
M : seskeyl,a(T ′′)→ ∅ for some l, T ′′. Hence we have

ΓN ,K ` σ(x) ∼ σ′(x) : {T}pkey(seskeyl,a(T ′′)) → c′′



for some c′′, i.e. ΓN ,K ` aenc(M ′, pk(k)) ∼ σ′(x) : {T}pkey(seskeyl,a(T ′′)) → c′′. Therefore,
by Lemma 17, there exist N , N ′, c′′′ such that σ′(x) = aenc(N ′, N), and ΓN ,K ` pk(k) ∼
N : pkey(seskeyl,a(T ′′)) → c′′′. Thus, by Lemma 20, N = pk(k′) for some key k′ ∈ K
and Γ (k, k′) = seskeyl,a(T ′′). By well-formedness of Γ , this implies that k′ = k. Therefore
σ′(x) = aenc(N ′, pk(k)).

Hence, in any case, t′σ′ = adec(aenc(N ′, pk(k)), k), By assumption, σ, σ′ are well-typed, and
σ(x) ↓6= ⊥. Thus by Lemma 22 σ′(x) ↓6= ⊥. Then N ′ ↓6= ⊥. Therefore we have t′σ′ ↓= N ′ ↓6= ⊥,
which proves the first direction of 1). The other direction is analogous.
• Moreover, still assuming tσ ↓6= ⊥, and keeping the notations from the previous point, we have tσ ↓=M ′

and t′σ′ ↓= N ′. The destructor typing rule applied to prove Γ `d t ∼ t′ : T can be DADECT, DADECT’,
DADECL, DADECH’, or DADECL’.
∗ In the DADECT and DADECT’ cases, we have

ΓN ,K ` σ(x) ∼ σ′(x) : {T}pkey(seskeyl,a(T ′′)) → c′′

for some c′′ ⊆ c, i.e.

ΓN ,K ` aenc(M ′, pk(k)) ∼ aenc(N ′, pk(k)) : {T}pkey(seskeyl,a(T ′′)) → c′′.

Thus, by Lemma 17, we have ΓN ,K `M ′ ∼ N ′ : T → c′′′ for some c′′′ ⊆ c′′, and the claim holds.
∗ In the DADECL and DADECL’ cases, we have T = LL, and ΓN ,K ` σ(x) ∼ σ′(x) : LL→ c′′ for

some c′′ ⊆ c, i.e. ΓN ,K ` aenc(M ′, pk(k)) ∼ aenc(N ′, pk(k)) : LL → c′′. In addition we have
Γ `M ∼M : LL→ ∅, and thus Γ ` k ∼ k : LL→ c′′′ for some c′′′. Therefore, by Lemma 17, we
have ΓN ,K `M ′ ∼ N ′ : LL→ c′′′′ for some c′′′′ ⊆ c′′ (the case where Γ ` k ∼ k : keyHH(T ′′)→
c′′′′ is impossible by Lemma 20, since we already know that Γ ` k ∼ k : LL→ c′′′), and the claim
holds.

∗ In the DADECH’ case, we have T = T ′ ∨ LL for some type T ′. In addition we know that ΓN ,K `
σ(x) ∼ σ′(x) : LL→ c′′ for some c′′ ⊆ c, i.e.

ΓN ,K ` aenc(M ′, pk(k)) ∼ aenc(N ′, pk(k)) : LL→ c′′.

In addition, Γ ` M ∼ M : seskeyHH,a(T ′) → ∅, and thus Γ ` k ∼ k : seskeyHH,a(T ′) → c′′′ for
some c′′′. Therefore, by Lemma 17, we know that
· either there exist types T ′′, T ′′′, and constraints c′′′′, c′′′′′ ⊆ c′′ such that T ′′ is a subtype of
keyHH(T ′′′), Γ ` pk(k) ∼ pk(k) : pkey(T ′′) → c′′′′′, and Γ ` M ′ ∼ N ′ : T ′′′ → c′′′′.
Since Γ ` pk(k) ∼ pk(k) : pkey(T ′′) → ∅, by Lemma 20, we have Γ (k, k) <: keyHH(T ′′′).
As we already know that Γ ` k ∼ k : seskeyHH,a(T ′) → c′′′, by the same lemma and
Lemma 3, we have T ′′′ = T ′. Thus Γ ` M ′ ∼ N ′ : T ′ → c′′′′, and by rule TOR, we have
Γ `M ′ ∼ N ′ : T ′ ∨ LL→ c′′′′.
· or Γ `M ′ ∼ N ′ : LL→ c′′, and by rule TOR we have Γ `M ′ ∼ N ′ : T ′ ∨ LL→ c′′′′.

In all cases, Γ `M ′ ∼ N ′ : T → c′′′′ for some c′′′′ ⊂ c′′, and point 2) holds, which concludes this
case.

– t = t′ = checksign(x,M). We know that Γ `d t ∼ t′ : T , which can be proved using either DCHECKH,
DCHECKH’, DCHECKL, or DCHECKL’. In both cases, Γ (x) = LL. M is either a verification key or a
variable. By assumption we have ΓN ,K ` σ(x) ∼ σ′(x) : LL→ cx for some cx ⊆ c.
• Let us prove 1) by contraposition. Assume tσ ↓6= ⊥. Hence, σ(x) = sign(M ′,M ′′σ) for some M ′,
M ′′, and M ′′σ is a key k ∈ K such that Mσ = vk(k).



We will now show that Mσ′ =Mσ = vk(k). It is clear if M is a verification key. Otherwise, M ∈ X ,
which means the rule applied to prove Γ `d t ∼ t′ : T is DCHECKL’ or DCHECKH’. In either case,
from the form of the rule we have Γ ` M ∼ M : LL → ∅, Since σ, σ′ are well-typed, we have
ΓN ,K ` Mσ ∼ Mσ′ : LL → c′′ for some c′′, i.e. ΓN ,K ` vk(k) ∼ Mσ′ : LL → c′′. Thus by
Lemma 20, and since Γ is well-formed, Mσ′ = vk(k).
In addition, we know that ΓN ,K ` σ(x) ∼ σ′(x) : LL→ cx, i.e.

ΓN ,K ` sign(M ′, k) ∼ σ′(x) : LL→ cx.

Hence Lemma 18 guarantees that there exist N ′, N ′′ such that σ′(x) = sign(N ′, N ′′), and either
Γ ` k ∼ N ′′ : eqkeyHH(T ′) → ∅ for some T ′ or Γ ` k ∼ N ′′ : LL → c′′ for some c′′. In both cases,
Lemma 20 implies that N ′′ = k. Thus we have σ′(x) = sign(N ′, k).
Hence, t′σ′ = checksign(sign(N ′, k), vk(k)), By assumption, σ, σ′ are well-typed, and σ(x) ↓6= ⊥.
Thus by Lemma 22 σ′(x) ↓6= ⊥. Then N ′ ↓6= ⊥. Therefore we have t′σ′ ↓= N ′ ↓6= ⊥, which proves
the first direction of 1). The other direction is analogous.
• Moreover, still assuming tσ ↓6= ⊥, and keeping the notations from the previous point, we have
tσ ↓= M ′ and t′σ′ ↓= N ′. The destructor typing rule applied to prove Γ `d t ∼ t′ : T can be
DCHECKH, DCHECKH’, DCHECKL, or DCHECKL’.
∗ In the DCHECKH and DCHECKH’ cases we have ΓN ,K ` σ(x) ∼ σ′(x) : LL → cx for cx ⊆ c,

i.e. ΓN ,K ` sign(M ′, k) ∼ sign(N ′, k) : LL→ cx. In both cases we have Γ ` vk(k) ∼ vk(k) :
vkey(T ′)→ c′′ for some c′′ and some T ′ <: keyHH(T ). Hence by Lemma 20, Γ (k, k) <: keyHH(T ).
By Lemma 18, we know that there exist c′ ⊆ cx such that Γ ` M ′ ∼ N ′ : T → c′ (the case
where Γ ` k ∼ k : LL → c′′ is impossible by Lemma 20 since Γ (k, k) <: keyHH(T ) and Γ is
well-formed). This proves point 2).
∗ In the DCHECKL and DCHECKL’ cases we have T = LL, and ΓN ,K ` σ(x) ∼ σ′(x) : LL → cx

for cx ⊆ c, i.e. ΓN ,K ` sign(M ′, k) ∼ sign(N ′, k) : LL → cx. By Lemma 18, we know that
there exist c′ ⊆ cx such that Γ `M ′ ∼ N ′ : LL→ c′. This proves point 2).

In all cases, point 2) holds, which concludes this case.

– t = t′ = π1(x). We know that Γ `d t : t′T , which can be proved using either rule DFST or DFSTL. In the
first case, Γ (x) = T1 ∗ T2 is a pair type, and in the second case Γ (x) = LL.

• We prove 1) by contraposition. Assume tσ ↓6= ⊥. Hence, σ(x) = 〈M1,M2〉 for some M1,M2. By
assumption σ, σ′ are well-typed. Thus Γ ` σ(x) ∼ σ′(x) : Γ (x) → cx, for some cx ⊆ c. Thus, by
applying Lemma 19, in any case we know that there exist N1, N2 such that N = 〈N1, N2〉. Since, σ,
σ′ are well-typed, and σ(x) ↓6= ⊥, by Lemma 22, σ′(x) ↓6= ⊥. Then N1 ↓6= ⊥. Therefore we have
t′σ′ ↓= N1 ↓6= ⊥, which proves the first direction of 1). The other direction is analogous.
• Moreover, still assuming tσ ↓6= ⊥, and keeping the notations from the previous point, we have tσ ↓=M1

and t′σ′ ↓= N1. In addition, we know that Γ `d t : t′T , which can be proved using either rule DFST or
DFSTL. Lemma 19, which we applied in the previous point, also implies that there exist c1, c2, such that
c = c1 ∪ c2 and for i ∈ {1, 2}, Γ `Mi ∼ Ni : Ti → ci (in the DFST case) or Γ `Mi ∼ Ni : LL→ ci
(in the DFSTL case).
We distinguish two cases for the rule applied to prove Γ `d t : t′T .
∗ DFST: Then Γ (x) = T ∗ T2 for some T2, and Γ `M1 ∼ N1 : T → c1(⊆ c) proves 2).
∗ DFSTL: Then T = Γ (x) = LL, and Γ `M1 ∼ N1 : LL→ c1(⊆ c) proves 2).

In both cases, point 2) holds, which concludes this case.

– t = t′ = π2(x). This case is similar to the previous one.



Lemma 22 (Typable messages either reduce on both sides, or fail on both sides). For all (well-formed) Γ ,
for all messages M , M ′, for all T , c, if

Γ `M ∼ N : T → c,

then
M ↓= ⊥ ⇐⇒ N ↓= ⊥.

Proof. Note that since messages do not contain destructors, it is clear that for any message M , either M ↓=M
or M ↓= ⊥.

We prove the lemma by induction on the type derivation for Γ `M ∼ N : T → c.
In the TNONCE, TNONCEL, TCSTFN, TPUBKEYL, TVKEYL, TKEY, TVAR, TLR1, TLR∞, TLRVAR, it

is clear that M ↓=M 6= ⊥ and N ↓= N 6= ⊥.

In the THIGH case, the premise of the rule implies that M ↓6= ⊥ and N ↓6= ⊥.

In the TLR’ and TLRL’ cases, there exist l, l′, a, m, n, c such that Γ ` M ∼ N : Jτ l,am ; τ l
′,a
n K → c.

Hence by Lemma 16, either M , N are variables, or M = m and N = n. Either way, M ↓= M 6= ⊥ and
N ↓= N 6= ⊥.

The TENC case is more involved. In that case, there exist M ′, M ′′, N ′, N ′′, T ′, T ′′ such that M =
enc(M ′,M ′′), N = enc(N ′, N ′′), and T = (T ′)T ′′ . Let us show that M ↓6= ⊥ ⇒ N ↓6= ⊥ (the other
direction has a similar proof). Since M ↓6= ⊥, we have M ′ ↓6= ⊥. Hence, as Γ `M ′ ∼ N ′ : T ′ → c′ for some
c′, by the induction hypothesis, N ′ ↓6= ⊥. Since M ↓6= ⊥, we also have M ′′ ↓∈ K, i.e. by the previous remark,
M ′′ ∈ K. In addition, Γ `M ′′ ∼ N ′′ : T ′′ → c′′ for some c′′, and either T ′′ = LL or ∃l, T ′′′.T ′′ <: keyl(T ′′′).
Hence, by Lemma 20, either M ′′, N ′′ ∈ K, or M ′′, N ′′ ∈ X . The second case is impossible since M ′′ ∈ K. We
thus have N ′ ↓6= ⊥ and N ′′ ↓∈ K. Therefore, N ↓6= ⊥ and the claim holds.

The TAENC, TPUBKEY, TVKEY, TSIGNH, TSIGNL cases are similar to the TENC case.

In the remaining cases, i.e. TPAIR, TENCH, TENCL, TAENCH, TAENCL, THASH, THASHL, TSUB, and
TOR, the claim directly follows from the induction hypothesis. We write the proof for the TPAIR case. In that
case there exist M ′, M ′′, N ′, N ′′, T ′, T ′′ such that M = 〈M ′,M ′′〉, N = 〈N ′, N ′′〉, and T = T ′ ∗ T ′′. Since
Γ ` M ′ ∼ N ′ : T ′ → c′ for some c′, by the induction hypothesis, M ′ ↓= ⊥ ⇐⇒ N ′ ↓= ⊥. Similarly,
M ′′ ↓= ⊥ ⇐⇒ N ′′ ↓= ⊥. Therefore, M ↓= ⊥ ⇐⇒ N ↓= ⊥, and the claim holds.

Lemma 23 (LL type is preserved by attacker terms). For all (well-formed) Γ , for all frames φ and φ′ with
Γ ` φ ∼ φ′ : LL→ c, for all attacker term R such that vars(R) ⊆ dom(φ),
either there exists c′ ⊆ c such that

Γ ` Rφ ↓∼ Rφ′ ↓: LL→ c′

or
Rφ ↓= Rφ′ ↓= ⊥.

Proof. We show this property by induction over the attacker term R.
Induction Hypothesis: the statement holds for all subterms of R.

There are several cases for R. The base cases are the cases where R is a variable, a name in FN or a constant
in C.

1. R = x Since vars(R) ⊆ dom(φ), we have x ∈ dom(φ) = dom(φ′), hence Rφ = φ(x). By assumption,
there exists c′ ⊆ c such that Γ ` φ(x) ∼ φ′(x) : LL→ c′. Thus, by Lemma 22, either φ(x) = φ′(x) = ⊥, or
φ(x) ↓= φ(x) and φ′(x) ↓= φ′(x). In the first case the claim clearly holds. In the second case, Rφ ↓= φ(x)
and Rφ′ ↓= φ′(x). Since Γ ` φ(x) ∼ φ′(x) : LL→ c′ ⊆ c, the claim also holds.



2. R = awith a ∈ C∪FN ∪FK. ThenRφ ↓= Rφ′ ↓= a and by rule TCSTFN, we have Γ ` a ∼ a : LL→ ∅.
Hence the claim holds.

3. R = pk(K) We apply the induction hypothesis to K and distinguish three cases.
(a) If Kφ ↓= ⊥ then Kφ′ ↓= ⊥, hence Rφ ↓= Rφ′ ↓= ⊥.
(b) If Kφ ↓6= ⊥ and is not a key then Kφ′ ↓6= ⊥ (by IH), and by IH we have Γ ` Kφ ↓∼ Kφ′ ↓: LL→ c′

for some c′ ⊆ c. Then by Lemma 20, Kφ′ ↓ is not a key either. Hence Rφ ↓= Rφ′ ↓= ⊥.
(c) If Kφ ↓ is a key, then by IH there exists c′ ⊆ c such that Γ ` Kφ ↓∼ Kφ′ ↓: LL → c′. Hence by

Lemma 20 (and since Γ is well-formed) Kφ′ ↓= Kφ′ ↓∈ K, and either Γ (Kφ ↓,Kφ′ ↓) <: keyLL(T )
for some T , or Kφ′ ↓∈ FK. Therefore by rule TPUBKEYL, Γ ` Rφ ↓∼ Rφ′ ↓: LL→ ∅, and the claim
holds.

4. R = vk(K) This case is analogous to the pk case.
5. R = 〈R1, R2〉 where R1 and R2 are also attacker terms. We then apply the induction hypothesis to the same

frames and R1, R2. We distinguish two cases:
(a) R1φ ↓= ⊥ ∨R2φ ↓= ⊥ In this case we also have R1φ

′ ↓= ⊥ ∨ R2φ
′ ↓= ⊥ and therefore Rφ ↓=

Rφ′ ↓= ⊥.
(b) R1φ ↓6= ⊥ ∧R2φ ↓6= ⊥ In this case, by the induction hypothesis, we also have R1φ

′ ↓6= ⊥∧R2φ
′ ↓6=

⊥, and we also know that there exist c1 ⊆ c and c2 ⊆ c such that Γ ` R1φ ↓∼ R1φ
′ ↓: LL→ c1 and

Γ ` R2φ ↓∼ R2φ
′ ↓: LL→ c2.

Thus, by the rule TPAIR followed by TSUB, Γ ` Rφ ↓∼ Rφ′ ↓: LL→ c1 ∪ c2. Since c1 ∪ c2 ⊆ c, this
proves the case.

6. R = enc(S,K) We apply the induction hypothesis to K and distinguish three cases.
(a) If Kφ ↓= ⊥ then Kφ′ ↓= ⊥, hence Rφ ↓= Rφ′ ↓= ⊥.
(b) If Kφ ↓6= ⊥ and is not a key then Kφ′ ↓6= ⊥ (by IH), and by IH we have Γ ` Kφ ↓∼ Kφ′ ↓: LL→ c′

for some c′ ⊆ c. Then, by Lemma 20, Kφ′ ↓ is not a key either. Hence Rφ ↓= Rφ′ ↓= ⊥.
(c) If Kφ ↓ is a key, then by IH there exists c′ ⊆ c such that Γ ` Kφ ↓∼ Kφ′ ↓: LL → c′. Hence, by

Lemma 20 (and since Γ is well-formed), Kφ′ ↓= Kφ ↓∈ K, and either Γ (Kφ ↓,Kφ′ ↓) <: keyLL(T )
for some T , or Kφ ↓∈ FK. Thus, in each case, by rules TKEY and TSUB or TCSTFN, Γ ` Kφ ↓∼
Kφ′ ↓: LL→ ∅. We then apply the IH to S, and either Sφ ↓= Sφ′ ↓= ⊥, in which caseRφ ↓= Rφ′ ↓=
⊥; or there exists c′′ ⊆ c such that Γ ` Sφ ↓∼ Sφ′ ↓: LL→ c′′. Since Rφ ↓= enc(Sφ ↓,Kφ ↓), and
similarly for φ′, by rule TENC, we have Γ ` Rφ ↓∼ Rφ′ ↓: (LL)LL → c′′, and then by rule TENCL,
Γ ` Rφ ↓∼ Rφ′ ↓: LL→ c′′.

7. R = aenc(S,K) We apply the induction hypothesis to K and distinguish three cases.
(a) If Kφ ↓= ⊥ then Kφ′ ↓= ⊥, hence Rφ ↓= Rφ′ ↓= ⊥.
(b) If Kφ ↓6= ⊥ and is not pk(k) for some k ∈ K then Kφ′ ↓6= ⊥ (by IH), and by IH there exists c′ ⊆ c

such that Γ ` Kφ ↓∼ Kφ′ ↓: LL→ c′. Then, by Lemma 20, Kφ′ ↓ is not a public key either. Hence
Rφ ↓= Rφ′ ↓= ⊥.

(c) If Kφ ↓= pk(k) for some k ∈ K, then by IH there exists c′ ⊆ c such that Γ ` pk(k) ∼ Kφ′ ↓: LL→
c′. Thus, by Lemma 20, Kφ′ ↓= pk(N) for some N such that either N = k ∈ keys(Γ ) ∪ FK;
or Γ ` k ∼ N : eqkeyl(T ) → c′′ for some l, T , c′′. In the second case, the same lemma and
the well-formedness of Γ also imply that N = k and k ∈ keys(Γ ). Thus, by rule TPUBKEYL,
Γ ` pk(k) ∼ pk(k) : LL→ ∅. We then apply the IH to S, and either Sφ ↓= Sφ′ ↓= ⊥, in which case
Rφ ↓= Rφ′ ↓= ⊥; or there exists c′′′ ⊆ c such that Γ ` Sφ ↓∼ Sφ′ ↓: LL→ c′′′. Therefore, by rule
TAENC, Γ ` Rφ ↓∼ Rφ′ ↓: {LL}LL → c′′, and by rule TAENCL we have Γ ` Rφ ↓∼ Rφ′ ↓: LL→ c′′.

8. R = sign(S,K) We apply the induction hypothesis to K and distinguish three cases.
(a) If Kφ ↓= ⊥ then Kφ′ ↓= ⊥, hence Rφ ↓= Rφ′ ↓= ⊥.
(b) If Kφ ↓6= ⊥ and is not a key k ∈ K then Kφ′ ↓6= ⊥ (by IH), and by IH we have Γ ` Kφ ↓∼ Kφ′ ↓:

LL→ c′ for some c′ ⊆ c. Then, by Lemma 20, Kφ′ ↓ is not a key either. Hence Rφ ↓= Rφ′ ↓= ⊥.



(c) If Kφ ↓= k for some k ∈ K, then by IH there exists c′ ⊆ c such that Γ ` Kφ ↓∼ Kφ′ ↓: LL → c′.
Hence by Lemma 20, (and since Γ is well-formed) Kφ′ ↓= k ∈ K and either Γ (k, k) <: keyLL(T ) for
some T , or k ∈ FK. Thus, in either case, by rules TKEY, TSUB, and TCSTFN, Γ ` Kφ ↓∼ Kφ′ ↓:
LL → ∅. We then apply the IH to S, and either Sφ ↓= Sφ′ ↓= ⊥, in which case Rφ ↓= Rφ′ ↓= ⊥;
or there exists c′′ ⊆ c such that Γ ` Sφ ↓∼ Sφ′ ↓: LL→ c′′. Therefore by rule TSIGNL, Γ ` Rφ ↓∼
Rφ′ ↓: LL→ c′′.

9. R = h(S) We apply the induction hypothesis to S. We distinguish two cases:
(a) Sφ ↓= ⊥ In this case we also have Sφ′ ↓= ⊥ and therefore Rφ ↓= Rφ′ ↓= ⊥.
(b) Sφ ↓6= ⊥ In this case, by the induction hypothesis, we also have Sφ′ ↓6= ⊥, and we also know that

there exists c′ ⊆ c such that Γ ` Sφ ↓∼ Sφ′ ↓: LL→ c′ Thus, by rule THASHL, Γ ` Rφ ↓∼ Rφ′ ↓:
LL→ c′, which proves this case.

10. R = π1(S) We apply the induction hypothesis to S and distinguish three cases.
(a) Sφ ↓= ⊥ Then Sφ′ ↓= ⊥ (by IH), hence Rφ ↓= Rφ′ ↓= ⊥.
(b) Sφ ↓6= ⊥ and is not a pair Then by IH there exists c′ ⊆ c such that Γ ` Sφ ↓∼ Sφ′ ↓: LL→ c′, which

implies that Rφ′ ↓ and is not a pair either by Lemma 19. Hence Rφ ↓= Rφ′ ↓= ⊥.
(c) Sφ ↓= 〈M1,M2〉 is a pair Then by IH there exists c′ ⊆ c such that Γ ` Sφ ↓∼ Sφ′ ↓: LL→ c′. This

implies, by Lemma 19, that Sφ′ ↓= 〈M ′1,M ′2〉 is also a pair, and that Γ ` M1 ∼ M ′1 : LL → c′′ for
some c′′ ⊆ c′. Since Rφ ↓=M1 and Rφ′ ↓=M ′1, this proves the case.

11. R = π2(S) This case is analogous to the case 10.
12. R = dec(S,K) We apply the induction hypothesis to K and, similarly to the case 6, we distinguish several

cases.
(a) If Kφ ↓= ⊥ or is not a key then, as in case 6, Rφ ↓= Rφ′ ↓= ⊥.
(b) If Kφ ↓ is a key, then similarly to case 6 we can show that Kφ ↓= Kφ′ ↓, and either Γ (Kφ ↓,Kφ′ ↓

) <: keyLL(T ) for some T , or Kφ ↓∈ FK. We then apply the IH to S, which creates two cases. Either
Sφ ↓= Sφ′ ↓= ⊥, or there exists c′ ⊆ c such that Γ ` Sφ ↓∼ Sφ′ ↓: LL → c′. In the first case, the
claim holds, since Rφ ↓= Rφ′ ↓= ⊥. In the second case, by Lemmas 17 and 20, and since Γ is well-
formed, we know that Sφ ↓ is a message encrypted with Kφ ↓ if and only if Sφ′ ↓ also is an encryption
by this key. Consequently, if Sφ ↓ is not an encryption by Kφ ↓ (= Kφ′ ↓), then it is the same for
Sφ′ ↓; and Rφ ↓= Rφ′ ↓= ⊥. Otherwise, Sφ ↓= enc(M,Kφ ↓) and Sφ′ ↓= enc(N,Kφ′ ↓) for
some M , N . In that case, by IH, we have Γ ` enc(M,Kφ ↓) ∼ enc(N,Kφ′ ↓) : LL→ c′. Therefore,
by Lemma 17, Γ `M ∼ N : LL→ c′, which is to say Γ ` Rφ ↓∼ Rφ′ ↓: LL→ c′. Hence the claim
holds in this case.

13. R = adec(S,K) We apply the induction hypothesis to K and, similarly to the case 6, we distinguish several
cases.
(a) If Kφ ↓= ⊥ or is not a key then, as in case 6, Rφ ↓= Rφ′ ↓= ⊥.
(b) If Kφ ↓ is a key, then similarly to case 6 we can show that Kφ ↓= Kφ′ ↓, and either Γ (Kφ ↓,Kφ′ ↓

) <: keyLL(T ) for some T , or Kφ ↓∈ FK. We then apply the IH to S, which creates two cases. Either
Sφ ↓= Sφ′ ↓= ⊥, or there exists c′ ⊆ c such that Γ ` Sφ ↓∼ Sφ′ ↓: LL → c′. In the first case,
the claim holds, since Rφ ↓= Rφ′ ↓= ⊥. In the second case, by Lemmas 17 and 20, and since Γ
is well-formed, we know that Sφ ↓ is a message asymmetrically encrypted by pk(Kφ ↓) if and only
if Sφ′ ↓ also is an asymmetric encryption by this key. Consequently, if Sφ ↓ is not an encryption
by pk(Kφ ↓) (= pk(Kφ′ ↓)), then it is the same for Sφ′ ↓, and Rφ ↓= Rφ′ ↓= ⊥. Otherwise,
Sφ ↓= aenc(M, pk(Kφ ↓)) and Sφ′ ↓= aenc(N, pk(Kφ′ ↓)) for some M , N . Thus by IH we have
Γ ` aenc(M, pk(Kφ ↓)) ∼ aenc(N, pk(Kφ′ ↓)) : LL → c′. Therefore, by Lemma 17 (point 6), we
know that Γ `M ∼ N : LL→ c′, which is to say Γ ` Rφ ↓∼ Rφ′ ↓: LL→ c′. Hence the claim holds
in this case.



14. R = checksign(S,K) We apply the induction hypothesis to K and, similarly to the case 7, we distinguish
several cases.
(a) If Kφ ↓= ⊥ or is not a verification key then, as in case 7, we can show that Rφ ↓= Rφ′ ↓= ⊥.
(b) If Kφ ↓ is a verification key vk(k) for some k ∈ K, then similarly to case 7 we can show that Kφ ↓=

Kφ′ ↓, and k ∈ keys(Γ ) ∪ FK. We then apply the IH to S, which creates two cases. Either Sφ ↓=
Sφ′ ↓= ⊥, or there exists c′ ⊆ c such that Γ ` Sφ ↓∼ Sφ′ ↓: LL→ c′. In the first case, the claim holds,
sinceRφ ↓= Rφ′ ↓= ⊥. In the second case, by Lemmas 18 and 20, and since Γ is well-formed, we know
that Sφ ↓ is a signature by k(= Kφ ↓) if and only if Sφ′ ↓ also is a signature by this key. Consequently,
if Sφ ↓ is not signed by k, then neither is Sφ′ ↓, and Rφ ↓= Rφ′ ↓= ⊥. Otherwise, Sφ ↓= sign(M,k)
and Sφ′ ↓= sign(N, k) for some M , N . Thus by IH we have Γ ` sign(t, k) ∼ sign(t′, k) : LL→ c′.
Therefore, by Lemma 18 (point 2), we know that there exists c′′ ⊆ c′ such that Γ `M ∼ N : LL→ c′′.
That is to say Γ ` Rφ ↓∼ Rφ′ ↓: LL→ c′′. Hence the claim holds in this case.

Lemma 24 (Substitution preserves typing). For all Γ , Γ ′, such that Γ ∪ Γ ′ ` �, (we do not require that Γ ′ is
well-formed), for all M , N , T , cσ , c, for all ground substitutions σ, σ′, if

– Γ ′ only contains variables;
– Γ and Γ ′ have disjoint domains;
– for all x ∈ dom(Γ ), Γ (x) is not of the form Jτ l,1m ; τ l

′,1
n K,

– for all x ∈ dom(σ), σ(x) ↓= σ(x), and similarly for σ′,
– (ΓN ,K ∪ Γ ′)N ,K ` σ ∼ σ

′ : (ΓN ,K ∪ Γ ′)X → cσ ,
– and Γ ∪ Γ ′ `M ∼ N : T → c

then there exists c′ such that JcKσ,σ′ ⊆ c′ ⊆ JcKσ,σ′ ∪ cσ and

Γ `Mσ ∼ Nσ′ : T → c′.

In particular, if we have Γ ′ = Γ ′′′X and Γ = Γ ′′′N ,K for some Γ ′′′, then the first three conditions trivially
hold.

Proof. Note that Γ ′N ,K = ∅, and Γ ′X = Γ ′.
This proof is done by induction on the typing derivation for the terms. The claim clearly holds in the TNONCE,

TNONCEL, TCSTFN, TPUBKEYL, TVKEYL, TKEY, TLR1, TLR∞ since their conditions do not use Γ (x)
(for any variable x) or another type judgement, and they still apply to the messages Mσ and Nσ′.

In the THIGH case, we have

names(σ) ∪ names(σ′) ∪ vars(σ) ∪ vars(σ′) ∪ keys(σ) ∪ keys(σ′) ⊆ dom(Γ ) ∪ keys(Γ ) ∪ FN ∪ FK,

and

names(M)∪names(N)∪vars(M)∪vars(N)∪keys(M)∪keys(N) ⊆ dom(Γ )∪dom(σ)∪keys(Γ )∪FN∪FK,

therefore

names(Mσ)∪names(Nσ′)∪vars(Mσ)∪vars(Nσ′)∪keys(Mσ)∪keys(Nσ′) ⊆ dom(Γ )∪keys(Γ )∪FN∪FK.

In addition, since M ↓6= ⊥, and ∀x ∈ dom(σ), σ(x) ↓= σ(x), we have Mσ ↓6= ⊥. Similarly, Nσ′ ↓6= ⊥.
Therefore, rule THIGH may be applied to obtain Γ `Mσ ∼ Nσ′ : HL→ ∅.



The claim follows directly from the induction hypothesis in all other cases except the TVAR and TLRVAR
cases, which are the base cases.

In the TVAR case, the claim also holds, since M = N = x for some variable x ∈ dom(Γ ) ∪ dom(Γ ′). If
x ∈ dom(Γ ), then xσ = xσ′ = x, and T = Γ (x). Thus, by rule TVAR, Γ ∪Γ ′ ` xσ ∼ xσ′ : Γ (x)→ ∅ and the
claim holds. If x ∈ dom(Γ ′), then T = Γ ′(x), and, since by hypothesis the substitutions are well-typed, there
exists cx ⊆ cσ,σ′ such that (Γ ∪ Γ ′)N ,K ` σ(x) ∼ σ′(x) : Γ ′(x) → cx. Thus, since (Γ ∪ Γ ′′)N ,K = ΓN ,K,
and by applying Lemma 12 to Γ , Γ ` σ(x) ∼ σ′(x) : Γ ′(x)→ cx and the claim holds.

Finally, in the TLRVAR case, there exist two variables x, y, and types τ l,1m , τ l
′,1
n , τ l

′′,1
m′ , τ l

′′′,1
n′ , such that

M = x, N = y, c = ∅, Γ ∪ Γ ′ ` x ∼ x : Jτ l,1m ; τ l
′,1
n K → ∅, Γ ∪ Γ ′ ` y ∼ y : Jτ l

′′,1
m′ ; τ l

′′′,1
n′ K → ∅, and

T = Jτ l,1m ; τ l
′′′,1
n′ K.

By Lemma 16, this implies that (Γ ∪ Γ ′)(x) = Jτ l,1m ; τ l
′,1
n K and (Γ ∪ Γ ′)(y) = J l′′ ; 1Km′l′′′1n′. Hence,

since by hypothesis Γ does not contain such types, x ∈ dom(Γ ′) and y ∈ dom(Γ ′).
Moreover, by the induction hypothesis, there exist c′, c′′ ⊆ cσ such that Γ ` xσ ∼ xσ′ : Jτ l,1m ; τ l

′,1
n K→ c′,

and Γ ` yσ ∼ yσ′ : Jτ l
′′,1
m′ ; τ l

′′′,1
n′ K → c′′. That is to say, since x, y ∈ dom(Γ ′) = dom(σ) = dom(σ′), that

Γ ` σ(x) ∼ σ′(x) : Jτ l,1m ; τ l
′,1
n K → c′, and Γ ` σ(y) ∼ σ′(y) : Jτ l

′′,1
m′ ; τ l

′′′,1
n′ K → c′′. Hence, by Lemma 16,

and since σ, σ′ are ground, we have σ(x) = m, σ′(x) = n, σ(y) = m′, and σ′(y) = n′, and Γ (m) = τ l,1m and
Γ (n′) = τ l

′′′,1
n′ .

Thus, by rule TLR1, Γ ` σ(x) ∼ σ′(y) : Jτ l,1m ; τ l
′′′,1
n′ K→ ∅, which proves the claim.

Lemma 25 (Types LL and HH are disjoint). For all well-formed Γ , for all ground terms M , M ′, N , N ′, for all
sets of constraints c, c′, if Γ `M ∼ N : LL→ c and Γ `M ′ ∼ N ′ : HH→ c′ then M 6=M ′ and N 6= N ′.

Proof. First, it is easy to see by induction on the type derivation that for all ground terms M , N , for all c, if
Γ `M ∼ N : HH→ c then either

– M is a nonce m ∈ N such that Γ (m) = τ HH,am for some a ∈ {∞, 1};
– or M is a key and there exist k ∈ K and T such that Γ (M,k) <: keyHH(T );
– or Γ `M ∼ N : HH ∗ T → c′ for some T , c′;
– or Γ `M ∼ N : T ∗ HH→ c′ for some T , c′.

Indeed, (as Γ is well-formed) the only possible cases are TNONCE, TSUB, and TLR’. In the TNONCE case
the claim clearly holds. In the TSUB case we use Lemma 3 followed by Lemma 20. In the TLR’ case we apply
Lemma 16 and the claim directly follows.

Let us now show that for all M , N , N ′ ground, for all c, c′, Γ ` M ∼ N : LL → c and Γ ` M ∼ N ′ :
HH→ c′ cannot both hold. (This corresponds, with the notations of the statement of the lemma, to proving by
contradiction that M 6=M ′. The proof that N 6= N ′ is analogous.)

We show this property by induction on the size of M .
Since Γ `M ∼ N ′ : HH→ c′, by the property stated in the beginning of this proof, we can distinguish four

cases.

– If M is a nonce and Γ (M) = τ HH,aM : then this contradicts Lemma 20. Indeed, this lemma (point 5) implies
that M ∈ BN , but also (by point 6), since Γ ` M ∼ N : LL → c, that either Γ (M) = τ LL,aM for some
a ∈ {1,∞}, or M ∈ FN ∪ C.



– If M is a key and Γ (M,k) <: keyHH(T ) for some T , k: then by Lemma 20, since Γ ` M ∼ N : LL → c,
there exists T ′, k′ such that Γ (M,k′) <: keyLL(T ′) or k, k′ ∈ FK. Since Γ is well-formed, and by Lemma 3,
this contradicts Γ (M) <: keyHH(T ).

– If Γ `M ∼ N ′ : HH ∗ T → c′′ for some T , c′′: then by Lemma 19, since M , N ′ are ground, there exist M1,
M2, N ′1, N ′2, c′1 such that M = 〈M1,M2〉, N ′ = 〈N ′1, N ′2〉, and Γ ` M1 ∼ N ′1 : HH → c′1. Moreover,
since Γ ` M ∼ N : LL → c, also by Lemma 19, there exist N1, N2, c1 such that N = 〈N1, N2〉 and
Γ ` M1 ∼ N1 : LL → c1. However, by the induction hypothesis, Γ ` M1 ∼ N ′1 : HH → c′1 and
Γ `M1 ∼ N1 : LL→ c1 is impossible.

– If Γ `M ∼ N ′ : T ∗ HH→ c′′ for some T , c′′: this case is similar to the previous one.

The next Lemma corresponds to Lemma 1.

Lemma 26 (Low terms are recipes on their constraints). For all ground messages M , N , for all T <: LL,
for all Γ , c, if Γ ` M ∼ N : T → c then there exists an attacker recipe R without destructors such that
M = R(φl(c) ∪ φΓLL) and N = R(φr(c) ∪ φΓLL).

Proof. We prove this lemma by induction on the typing derivation of Γ ` M ∼ N : T → c. We distinguish
several cases for the last rule in this derivation.

– TNONCE, THIGH, TOR, TLR1, TLR∞, TLR’, TLRVAR: these cases are not possible, since the type they
give to terms is never a subtype of LL by Lemma 3.

– TVAR: this case is not possible since M , N are ground.
– TSUB: this case is directly proved by applying the induction hypothesis to the judgement Γ ` M ∼ N :
T ′ → c where T ′ <: T <: LL, which appears in the conditions of this rule, and has a shorter derivation.

– TLRL’: in this case, Γ `M ∼ N : Jτ LL,an ; τ LL,an K→ c′ for some nonce n, some a ∈ {∞, 1}, some c′, and
c = ∅. By Lemma 16, this implies that M = N = n, and Γ (n) = τ LL,an . Thus, by definition, there exists x
such that φΓLL(x) = n and the claim holds with R = x.

– TNONCEL: in this case M = N = n for some n ∈ N such that Γ (n) = τ LL,an for some a ∈ {1,∞}. Hence,
by definition, there exists x such that φΓLL(x) = n and the claim holds with R = x.

– TCSTFN: then M = N = a ∈ C ∪ FN ∪ FK, and the claim holds with R = a.
– TKEY: then by well-formedness of Γ ,M = N = k ∈ K and there exists T ′ such that Γ (k, k) <: keyLL(T ′).

By definition, there exists x such that φΓLL(x) = k and the claim holds with R = x.
– TPUBKEYL, TVKEYL: then M = N = pk(k) (resp. vk(k)) for some k ∈ keys(Γ )∪FK. If k ∈ keys(Γ ),

by definition, there exists x such that φΓLL(x) = pk(k) (resp. vk(k)) and the claim holds with R = x. If
k ∈ FK, the claim holds with R = pk(k).

– TPUBKEY, TVKEY: these two cases are similar, we write the proof for the TPUBKEY case. The form of
this rule application is:

Π

Γ `M ∼ N : T → ∅
Γ ` pk(M) ∼ pk(N) : pkey(T )→ ∅

for some T such that pkey(T ) <: LL. By Lemma 3, this implies that there exist T ′, l such that T <:
eqkeyl(T ′). Thus, Γ ` M ∼ N : eqkeyl(T ′) → ∅. By Lemma 20, this implies M = N = k ∈ keys(Γ ).
By definition, there exists x such that φΓLL(x) = pk(k), and the claim holds with R = x.

– TPAIR, THASHL: these cases are similar. We detail the TPAIR case. In that case, T = T1 ∗ T2 for some
T1, T2. By Lemma 3, T1, T2 are subtypes of LL. In addition, there exist M1, M2, N1, N2, c1, c2 such
that Γ ` Mi ∼ Ni : Ti → ci (for i ∈ {1, 2}). By applying the induction hypothesis to these two
judgements (which have shorter proofs), we obtain R1, R2 such that for all i, Mi = Ri(φl(ci) ∪ φΓLL) and
Ni = Ri(φr(ci) ∪ φΓLL). Therefore the claim holds with R = 〈R1, R2〉.



– TENCH, TAENCH, THASH, TSIGNH: these four cases are similar. In each case, by the form of the typing
rule, we have c = {M ∼ N} ∪ c′ for some c′. Therefore by definition of φl(c), φr(c), there exists x such
that φl(c)(x) =M and φr(c)(N) = N . The claim holds with R = x.

– TENCL, TAENCL: these two cases are similar, we write the proof for the TENCL case. The form of this
rule application is:

Π

Γ `M ∼ N : (LL)T → c

Γ `M ∼ N : LL→ c

for some T such that T = LL or T <: keyLL(T ′) for some T ′. In both cases T <: LL. By Lemma 17,
there exist M ′, N ′, M ′′, N ′′, c′, c′′ such that M = enc(M ′,M ′′), N = enc(N ′, N ′′), c = c′ ∪ c′′,
Γ ` M ′ ∼ N ′ : LL → c′ and Γ ` M ′′ ∼ N ′′ : T → c′′, both with a proof shorter that Π . Thus by
applying the induction hypothesis to these judgements, there exist R, R′ such that M ′ = R(φl(c

′) ∪ φΓLL),
N ′ = R(φr(c

′) ∪ φΓLL), M ′′ = R′(φl(c
′′) ∪ φΓLL), and N ′′ = R′(φr(c

′′) ∪ φΓLL).
Therefore, the claim holds with the recipe enc(R,R′).

– TENC, TAENC: these two cases are similar, we write the proof for the TENC case. The form of this rule
application is:

Π

Γ `M ∼ N : T → c

Π ′

Γ `M ′ ∼ N ′ : T ′ → c′

Γ ` enc(M,M ′) ∼ enc(N,N ′) : (T )T ′ → c ∪ c′

for some T , T ′ such that (T )T ′ <: LL. By Lemma 3, T <: LL and T ′ <: LL. We conclude the proof of this
case similarly to the TENCL case.

– TSIGNL: the form of this rule application is:

Π

Γ `M ′ ∼ N ′ : LL→ c

Π

Γ `M ′′ ∼ N ′′ : LL→ c′

Γ ` sign(M ′,M ′′) ∼ sign(N ′,M ′′) : LL→ c ∪ c′

with M = sign(M ′,M ′′), N = sign(N ′, N ′′). Thus by applying the induction hypothesis to the two
hypotheses of the rule, i.e. Γ ` M ′ ∼ N ′ : LL → c and Γ ` M ′′ ∼ N ′′ : LL → c′ there exist R, R′ such
that M ′ = R(φl(c) ∪ φΓLL), N ′ = R(φr(c) ∪ φΓLL), M ′′ = R′(φl(c

′) ∪ φΓLL), and N ′′ = R′(φr(c
′) ∪ φΓLL).

Therefore, the claim holds with the recipe sign(R,R′).

Lemma 27 (Low frames with consistent constraints are statically equivalent). For all ground φ, φ′, for all
c, Γ , if

– Γ ` φ ∼ φ′ : LL→ c
– and c is consistent in ΓN ,K,

then φ and φ′ are statically equivalent.

Proof. We can first notice that since φ and φ′ are ground, so is c (this is easy to see by examining the typing
rules for terms). Let R, R′ be two attacker recipes, such that vars(R) ∪ vars(R′) ⊆ dom(φ)(= dom(φ′)).

For all x ∈ dom(φ)(= dom(φ′)), by assumption, there exists cx ⊆ c such that Γ ` φ(x) ∼ φ′(x) : LL→ cx.
By Lemma 26, there exists a recipe Rx such that φ(x) = Rx(φl(cx) ∪ φΓLL) and φ′(x) = Rx(φr(cx) ∪ φΓLL).

Since cx ⊆ c, we also have φ(x) = Rx(φl(c) ∪ φΓLL) and φ′(x) = Rx(φr(c) ∪ φΓLL).
Let R and R

′
be the recipes obtained by replacing every occurence of x with Rx in respectively R and R′,

for all variable x ∈ dom(φ)(= dom(φ′)).



We then have Rφ = R(φl(c) ∪ φΓLL) and R′φ = R
′
(φl(c) ∪ φΓLL); and similarly Rφ′ = R(φr(c) ∪ φΓLL) and

R′φ′ = R
′
(φr(c) ∪ φΓLL).

Since c is ground, and consistent in ΓN ,K, by definition of consistency, the frames φl(c)∪φΓLL and φr(c)∪φΓLL
are statically equivalent. Hence, by definition of static equivalence,

R(φl(c) ∪ φΓLL) = R
′
(φl(c) ∪ φΓLL) ⇐⇒ R(φr(c) ∪ φΓLL) = R

′
(φr(c) ∪ φΓLL)

i.e.
Rφ = R′φ ⇐⇒ Rφ′ = R′φ′

Therefore, φ and .φ′ are statically equivalent.

We now prove the following invariant, which corresponds to Lemma 2.

Lemma 28 (Invariant). For all Γ , φP , φ′P , φQ, σ1
P , σ2

P , σ1
Q,cφ, cσ, for all multisets of processes P , P ′, Q,

where the processes in P , P ′, Q are noted {Pi}, {P ′i}, {Qi}; for all constraint sets {Ci}, if:

– |P| = |Q|
– dom(φP ) = dom(φQ)
– ∀i, there is a derivation Πi of Γ ` Pi ∼ Qi → Ci,
– Γ ` φP ∼ φQ : LL→ cφ
– for all i 6= j, the sets of bound variables in Pi and Pj (resp. Qi and Qj) are disjoint, and similarly for the

names
– σ1

P , σ1
Q are ground, and there exist ground σP ⊇ σ1

P , σQ ⊇ σ1
Q such that

• (dom(σP )\dom(σ1
P )) ∩ (vars(P) ∪ vars(φP )) = ∅,

• (dom(σQ)\dom(σ1
Q)) ∩ (vars(Q) ∪ vars(φQ)) = ∅, and

• ΓN ,K ` σP ∼ σQ : ΓX → cσ ,
• for all x ∈ dom(σP ), σP (x) ↓= σP (x), and similarly for σQ,

– cσ ⊆ JcφKσ1
P ,σ

1
Q

,

– J(∪×iCi)∪∀cφKσ1
P ,σ

1
Q

is consistent,

– (P, φP , σ1
P )

α−−→ (P ′, φ′P , σ2
P ),

then there exist a word w, a multiset Q′ = {Q′i}, constraint sets {C ′i}, a frame φ′Q, a substitution σ′Q, an
environment Γ ′, constraints c′φ, and c′σ such that:

– w =τ α
– |P ′| = |Q′|
– for all i 6= j, the sets of bound variables in P ′i and P ′j (resp. Q′i and Q′j) are disjoint, and similarly for the

bound names;
– fvars(P ′) ∪ fvars(φ′P ) ⊆ dom(σ2

P ) and fvars(Q′) ∪ fvars(φ′Q) ⊆ dom(σ2
Q)

– Γ ′ ` φ′P ∼ φ′Q : LL→ c′φ
– (Q, φQ, σ1

Q)
w−−→∗ (Q′, φ′Q, σ2

Q),
– ∀i, Γ ′ ` P ′i ∼ Q′i → C ′i,
– σ2

P , σ2
Q are ground and there exist σ′P ⊇ σ2

P , and σ′Q ⊇ σ2
Q, such that

• (dom(σ′P )\dom(σ2
P )) ∩ (vars(P ′) ∪ vars(φ′P )) = ∅,

• (dom(σ′Q)\dom(σ2
Q)) ∩ (vars(Q′) ∪ vars(φ′Q)) = ∅, and

• Γ ′N ,K ` σ′P ∼ σ′Q : Γ ′X → c′σ ,
• for all x ∈ dom(σ′P ), σ

′
P (x) ↓= σ′P (x), and similarly for σ′Q,

– dom(φ′P ) = dom(φ′Q),



– c′σ ⊆
r
c′φ

z

σ2
P ,σ

2
Q

,

–
r
(∪×iC ′i)∪∀c′φ

z

σ2
P ,σ

2
Q

is consistent.

Proof. Note that the assumption that σP (resp. σQ) extends σ1
P (resp. σ1

Q) only with variables not appearing
in P or φP (resp. Q or φQ) implies that J(∪×iCi)∪∀cφKσ1

P ,σ
1
Q

= J(∪×iCi)∪∀cφKσP ,σQ . Similarly, we have
r
(∪×iC ′i)∪∀c′φ

z

σ2
P ,σ

2
Q

=
r
(∪×iC ′i)∪∀c′φ

z

σ′P ,σ
′
Q

, JcφKσ1
P ,σ

1
Q
= JcφKσP ,σQ , and

r
c′φ

z

σ2
P ,σ

2
Q

=
r
c′φ

z

σ′P ,σ
′
Q

.

First, we show that it is sufficient to prove this lemma in the case where Γ does not contain any union types.
Indeed, assume we know the property holds in that case. Let us show that the lemma then also holds in the
other case, i.e. if Γ contains union types. By hypothesis, σP , σQ are ground, and ΓN ,K ` σP ∼ σQ : ΓX → cσ .
Hence we know by Lemma 6 that there exists a branch Γ ′′ ∈ branches(Γ ) (thus Γ ′′ does not contain union
types), such that (Γ ′′)N ,K ` σP ∼ σQ : (Γ ′′)X → cσ .

Moreover, by Lemma 9, ∀i, Γ ′′ ` Pi ∼ Qi → C ′′i ⊆ Ci; and by Lemma 7, Γ ′′ ` φP ∼ φQ : LL→ cφ. In
addition by Lemma 13, J(∪×iC ′′i )∪∀cφKσP ,σQ is a subset of J(∪×iCi)∪∀cφKσP ,σQ and is therefore consistent.
Thus, if the lemma holds when the environment does not contain union types, it can be applied to the same
processes, frames, substitutions and to Γ ′′, which directly concludes the proof.

Therefore, we may assume that Γ does not contain any union types.
Note that, since by assumption cσ ⊆ JcφKσP ,σQ , we have

J(∪×iCi)∪∀cφKσP ,σQ = J(∪×iC
′′
i )∪∀cφKσP ,σQ∪∀cσ.

Hence, by Lemma 13, (∪×iJCiKσP ,σQ∪∀cσ) is consistent. Thus the assumption on the disjointness of the sets of
bound variables (and names) in the processes implies, using Lemma 10, that each of the JCiKσP ,σQ∪∀cσ is also
consistent. Moreover, this disjointness property for P ′ and Q′ follows from the other points, as it is easily proved
by examining the reduction rules that it is preserved by reduction.

By hypothesis, (P, φP , σ1
P ) reduces to (P ′, φ′P , σ2

P ) We know from the form of the reduction rules that
exactly one process Pi ∈ P is reduced, while the others are unchanged. By the assumptions, there is a
corresponding process Qi ∈ Q and a derivation Πi of Γ ` Pi ∼ Qi → Ci.

We continue the proof by a case disjunction on the last rule of Πi. Let us first consider the cases of the rules
PZERO, PPAR, PNEW, and POR.

– PZERO: then Pi = Qi = 0. Hence, the reduction rule applied to P is Zero, and P ′ = P\{Pi}, φ′P = φP ,
and σ2

P = σ1
P . The same reduction can be performed in Q:

(Q, φQ, σ1
Q)

τ−→ (Q\{Qi}, φQ, σ1
Q)

Since the other processes, the frames, environments and substitutions do not change in this reduction, all the
claims clearly hold in this case (with σ′P = σP , σ′Q = σQ, c′φ = cφ, c′σ = cσ). In particular, the consistency
of the constraints follows from the consistency hypothesis. Indeed,

(∪×j 6=iCj)∪×Ci∪∀cφ = (∪×j 6=iCj)∪×{(∅, Γ )}∪∀cφ
= (∪×j 6=iCj)∪∀cφ,

since Γ is already contained in the environments appearing in each Cj (by Lemma 14). Thus
r
(∪×jC

′
j)∪∀c′φ

z

σ′P ,σ
′
Q

=
r
(∪×jCj)∪∀cφ

z

σP ,σQ



– PPAR: then Pi = P 1
i | P 2

i , Qi = Q1
i | Q2

i . Hence, the reduction rule applied to P is Par:

(P, φP , σ1
P )

τ−→ (P\{Pi} ∪ {P 1
i , P

2
i }, φP , σ1

P ).

We choose Γ ′ = Γ .
In addition

Πi =

Π1

Γ ` P 1
i ∼ Q1

i → C1
i

Π2

Γ ` P 2
i ∼ Q2

i → C2
i

Γ ` Pi ∼ Qi → Ci = C1
i ∪×C2

i

.

The same reduction rule can be applied to Q:

(Q, φQ, σ1
Q)

τ−→ (Q\{Qi} ∪ {Q1
i , Q

2
i }, φQ, σ1

Q)

In this case again, the claims on the substitutions and frames, as well as the claim that c′σ ⊆
r
c′φ

z

σ2
P ,σ

2
Q

, hold

since they do not change in the reduction. Moreover the processes in P ′ and Q′ are still pairwise typably
equivalent. Indeed, all the processes from P and Q are unchanged, except for Pi and Qi which are reduced
to P 1

i , P 2
i , Q1

i , Q2
i , and those are typably equivalent using Π1 and Π2.

Finally the constraint set is still consistent, since:
r
(∪×jC

′
j)∪∀c′φ

z

σ′P ,σ
′
Q

=
r
(∪×j 6=iCj)∪×C

1
i ∪×C2

i ∪∀cφ
z

σP ,σQ

=
r
(∪×jCj)∪∀cφ

z

σP ,σQ

– PNEW: then Pi = new n : τ l,an .P ′i and Qi = new n : τ l,an .Q′i. Pi is reduced to P ′i by rule New:

(P, φP , σ1
P )

τ−→ (P\{Pi} ∪ {P ′i}, φP , σ1
P ).

In addition

Πi =

Π ′i

Γ, n : τ l,an ` P ′i ∼ Q′i → Ci

Γ ` Pi ∼ Qi → Ci
.

We choose Γ ′ = Γ, n : τ l,an .
The same reduction rule can be applied to Q:

(Q, φQ, σ1
Q)

τ−→ (Q\{Qi} ∪ {Q′i}, φQ, σ1
Q)

The claim clearly holds. Indeed the processes are still pairwise typable:
• using Π ′i in the case of P ′i and Q′i;
• using Πj , for j 6= i, as well as Lemma 12, for the other processes, since n does not appear in these

processes by assumption.
In addition, all the frames, substitutions, and constraints are unchanged; and σ, σ′ are well-typed in Γ ′ if and
only if they are well-typed in Γ .

– PNEWKEY: This case is analogous to the PNEW case.
– POr: this case is not possible, since we have already eliminated the case where Γ contains union types.



In all the other cases for the last rule in Πi, we know that the head symbol of Pi is not | , 0 or new.
Hence, the form of the reduction rules implies that Pi ∈ P is reduced to exactly one process P ′i ∈ P ′, while

the other processes in P do not change (i.e. P ′j = Pj for j 6= i). If we show in each case that the same reduction
rule that is applied to Pi can be applied to reduce Q to a multiset Q′ by reducing process Qi into Q′i, we will
also have Q′j = Qj for j 6= i. Therefore the claim on the cardinality of the processes multisets will hold.

Since Pi, Qi can be typed and the head symbol of Pi is not new, it is clear by examining the typing rules that
the head symbol of Qi is not new either. Hence, we will choose a Γ ′ containing the same nonces and keys as Γ .

The proofs for theses cases follow the same structure:

– The typing rule gives us information on the form of Pi and Qi.
– The form of Pi gives us information on which reduction rule was applied to P .
– The form of Qi is the same as Pi. Hence (additional conditions may need to be checked depending on the

rule) Qi can be reduced to some process Q′i by applying the same reduction rule that was applied to Pi (or at
least, a reduction rule with the same action).

– thusQ can be reduced too, with the same actions as P . We then check the additional conditions on the typing
of the processes, frames and substitutions, and the consistency condition.

First, let us consider the POUT case.

– POUT: then Pi = out(M).P ′i and reduces to P ′i via the Out rule, and Qi = out(N).Q′i for some N and
Q′i. Since the Out rule can be applied to Pi, Mσ1

P ↓6= ⊥, i.e. Mσ1
P ↓=Mσ1

P . In addition

Πi =

Π

Γ ` P ′i ∼ Q′i → C ′i

Π ′

Γ `M ∼ N : LL→ c

Γ ` Pi ∼ Qi → Ci = C ′i∪∀c
.

We have σ2
P = σ1

P , φ′P = φP ∪ {M/axn}, and α = new axn.out(axn).
Since Γ `M ∼ N : LL→ c and ΓN ,K ` σP ∼ σQ : ΓX → cσ, by Lemma 24, we have ΓN ,K `MσP ∼
NσQ : LL → c′ for some c′. That is to say ΓN ,K ` Mσ1

P ∼ Nσ1
Q : LL → c′. Since we also know that

Mσ1
P ↓6= ⊥, by Lemma 22, we also have Nσ1

Q ↓6= ⊥.
Hence, the same reduction rule Out can be applied to reduce the process Qi into Q′i, and the claim on the
reduction of Q holds. We choose Γ ′ = Γ . We have σ2

Q = σ1
Q, and φ′Q = φQ ∪ {N/axn}. We also choose

σ′P = σP , σ′Q = σQ, c′φ = cφ ∪ c and c′σ = cσ . The substitutions σ1
P , σ1

Q are not extended by the reduction,
and the typing environment does not change, which trivially proves the claim regarding the substitutions.
In addition, since by assumption cσ ⊆ JcφKσ1

P ,σ
1
Q

, and since cφ ⊆ c′φ, we have c′σ ⊆
r
c′φ

z

σ2
P ,σ

2
Q

.

Moreover, since only M and N are added to the frames in the reduction, Π ′ suffices to prove the claim that
Γ ` φ′P ∼ φ′Q : LL→ c′φ. Since all processes other that Pi andQi are unchanged by the reduction (and since
the typing environment is also unchanged), Π suffices to proves the claim that ∀j. Γ ′ ` P ′j ∼ Q′j → C ′j
(with C ′j = Cj for j 6= i).

Thus, in this case, it only remains to be proved that
r
(∪×jC ′j)∪∀c′φ

z

σ′P ,σ
′
Q

is consistent. This constraint set

is equal to r
(∪×j 6=iCj)∪×C

′
i∪∀(cφ ∪ c)

z

σP ,σQ

i.e. to r
(∪×j 6=iCj)∪×(C

′
i∪∀c)∪∀cφ

z

σP ,σQ



i.e. r
(∪×jCj)∪∀cφ

z

σP ,σQ

which is consistent by hypothesis. Hence the claim holds in this case.

In the remaining cases, from the form of the typing rules for processes, the head symbol of neither Pi nor Qi
is out. Thus, the reduction applied to Pi (from the assumption), as well as the one applied to Qi (which, as we
will show, has the same action as the rule for Pi), cannot be Out. Therefore no new term is output on either side,
and φ′P = φP and φ′Q = φQ. Hence the claim on the domains of the frames holds by assumption. Moreover, as
we will see, in all cases Γ ′ is either Γ , or Γ, x : T where x is a variable bound in (the head of) Pi and Qi, and T
is not a union type.

We choose c′φ = cφ. The claim that Γ ′ ` φ′P ∼ φ′Q : LL→ c′φ is then actually that Γ ′ ` φP ∼ φQ : LL→ cφ,
which is true by Lemma 12, since by hypothesis Γ ` φP ∼ φQ : LL→ cφ.

Besides, in the cases where we choose Γ ′ = Γ then it is true (by hypothesis) that for j 6= i, Γ ′ ` P ′j ∼
Q′j → Cj . In the cases where we choose Γ ′ = Γ, x : T , where x is bound in Pi and Qi, then, since the
processes are assumed to use different variable names, x does not appear in Pj or Qj (for j 6= i). Hence, if
j 6= i, using the assumption that Γ ` Pj ∼ Qj → Cj , by Lemma 12, we have Γ ′ ` P ′j ∼ Q′j → C ′j , where
C ′j = {(c, Γc ∪ {x : T})|(c, Γc) ∈ Cj}.

Hence, for each remaining possible last rule of Πi, we only have to show that:

a) The same reduction rule can be applied to Qi as to Pi, with the same action. (Except in the case of the rule
PIFLR, as we will see, where rule If-Then may be applied on one side while rule If-Else is applied on the
other side, but this has no influence on the argument, as these two rules both represent a silent action, and
have a very similar form.)

b) there exist σ′P and σ′Q ground, and containing σ2
P and σ2

Q respectively, that satisfy the conditions on the
domains, contain only messages that do not reduce to ⊥, and such that Γ ′N ,K ` σ′P ∼ σ′Q : Γ ′X → c′σ
for some set of constraints c′σ. Since at most one variable x is added to the substitutions in the reduction,
we will show in each case that we can choose these substitutions such that either σ′P = σP and σ′Q = σQ;
or σ′P = σP ∪ {M/x} and σ′Q = σQ ∪ {N/x} for some messages M , N . In all cases, it is clear from the
reduction rules that M ↓6= ⊥ and N ↓6= ⊥. We will then only need to check the well-typedness condition
on variable x, i.e. Γ ′N ,K ` σ′P (x) ∼ σ′Q(x) : Γ ′(x)→ cx for some cx. We can then choose c′σ = cσ ∪ cx.
As we will see in the proof, we will always have cx ⊆ JcφKσP ,σQ ∪ cσ .

In addition, c′φ = cφ, and by assumption, x cannot appear in cφ, thus
r
c′φ

z

σ′P ,σ
′
Q

= JcφKσP ,σQ . Therefore,

since by assumption cσ ⊆ JcφKσP ,σQ , the claim that c′σ ⊆
r
c′φ

z

σ′P ,σ
′
Q

will always hold.

c) the new processes obtained by reducing Pi and Qi are typably equivalent in Γ ′, with a constraint C ′i, such
that

r
(∪×j 6=iCj)∪×C

′
i∪∀cφ

z

σP ,σQ

is consistent.

The actual claim, from the statement of the lemma, is that
r
(∪×j 6=iC

′
j)∪×C ′i∪∀cφ

z

σ′P ,σ
′
Q

is consistent, but we can show that the previous condition is sufficient.



In the case where Γ = Γ ′, we have σ′P = σP , σ′Q = σQ, C ′j = Cj for j 6= i, and c′σ = cσ. Thus the
proposed condition is clearly sufficient (it is even necessary in this case).
In the case where Γ ′ = Γ, x : T for some T which is not a union type, and the substitutions σ′P , σ′Q are σP ,
σQ extended with a term associated to x, the proof that the condition is sufficient is more involved. First, we
show that (∪×j 6=iC ′j)∪×C ′i = (∪×j 6=iCj)∪×C ′i. Indeed, if S denotes the set (∪×j 6=iC ′j)∪×C ′i, we have

S = {(
⋃
j

c′j ,
⋃
j

Γ ′j) | ∀j. (c′j , Γ ′j) ∈ C ′j ∧ ∀j, j′. Γ ′j and Γ ′j′ are compatible)}

= {(c′i ∪
⋃
j 6=i

cj , Γ
′
i ∪

⋃
j 6=i

(Γj , x : T ) | (c′i, Γ ′i ) ∈ C ′i ∧ (∀j 6= i. (cj , Γj) ∈ Cj) ∧

(∀j 6= i, j′ 6= i. (Γj , x : T ) and (Γj′ , x : T ) are compatible) ∧
(∀j 6= i. Γ ′i and (Γj , x : T ) are compatible))}

since we already know that for j 6= i, C ′j = {(c, Γc ∪ {x : T})|(c, Γc) ∈ Cj}. Assuming we show that
Γ, x : T ` P ′i ∼ Q′i → C ′i, by Lemma 14, we will also have that all the Γ ′i appearing in the elements of C ′i
contain x : T (since T is not a union type). Hence:

S = {(c′i ∪
⋃
j 6=i

cj , Γ
′
i ∪ (

⋃
j 6=i

Γj) | (c′i, Γ ′i ) ∈ C ′i ∧ (∀j 6= i. (cj , Γj) ∈ Cj) ∧

(∀j 6= i, j′ 6= i. Γj and Γj′ are compatible) ∧ (∀j 6= i. Γ ′i and Γj are compatible))}
= (∪×j 6=iCj)∪×C

′
i

It is thus sufficient to ensure the consistency of JS∪∀cφKσ′P ,σ′Q . Since σ′P = σP ∪ {σ′P (x)/x} (and similarly

for Q), it then suffices to show the consistency of
r
JS∪∀cφKσP ,σQ

z

σ′P (x)/x,σ′Q(x)/x
.

The substitutions σ′P (x) and σ′Q(x) are ground, and ΓN ,K ` σ′P (x) ∼ σ′Q(x) : T → cx (which we
will show for each case as point b)). Hence by Lemma 13, if JS∪∀cφKσP ,σQ∪∀cx is consistent, then
r
JS∪∀cφKσP ,σQ

z

σ′P (x)/x,σ′Q(x)/x
is consistent. Moreover, as explained in point b), we will show in each

case that cx ⊆ JcφKσP ,σQ . Thus JS∪∀cφKσP ,σQ∪∀cx = JS∪∀cφKσP ,σQ .
Therefore, by the previous implication, it is sufficient to prove that JS∪∀cφKσP ,σQ is consistent, to ensure

that
r
JS∪∀cφKσP ,σQ

z

σ′P (x)/x,σ′Q(x)/x
is consistent. This is the condition stated at the beginning of this point,

since S = (∪×j 6=iCj)∪×C ′i.

We can now prove the remaining cases for the last rule of Πi, that is to say the cases of the rules PIN,
PLET, PLETDEC, PLETADECSAME, PLETADECDIFF, PLETLRK, PIFL, PIFLR, PIFS, PIFLR*, PIFP, PIFI,
PIFLR’*, and PIFALL.

– PIN: then Pi = in(x).P ′i and reduces to P ′i via the In rule, and Qi = in(x).Q′i for some Q′i. In addition

Πi =

Π

Γ, x : LL ` P ′i ∼ Q′i → C ′i
Γ ` Pi ∼ Qi → Ci = C ′i

.



We have α = in(R) for some attacker recipe R such that vars(R) ⊆ dom(φP ), and RφPσ
1
P ↓=

RφPσP ↓6= ⊥. We also have σ2
P = σ1

P ∪ {RφPσ1
P ↓ /x}, φ′P = φP .

The same reduction rule In can be applied to reduce the process Qi into Q′. Indeed,
• vars(R) ⊆ dom(φQ) since dom(φQ) = dom(φP ) by hypothesis;
• RφQσ1

Q ↓= RφQσQ ↓6= ⊥. This follows from Lemma 23, using the fact that by Lemma 24, ΓN ,K `
φPσP ∼ φQσQ : LL→ c, for some c ⊆ JcφKσP ,σQ ∪ cσ .

Therefore point a) holds.
We choose Γ ′ = Γ, x : LL. We have σ2

Q = σ1
Q ∪ {RφQσ1

Q ↓ /x}. We choose σ′P = σP ∪ {RφPσ1
P ↓ /x}

and σ′Q = σQ ∪ {RφQσ1
Q ↓ /x}.

Lemmas 24 and 23, previously evoked, guarantee that

ΓN ,K ` RφPσP ↓∼ RφQσQ ↓: LL→ c′

for some c′ ⊆ JcφKσP ,σQ ∪ cσ . This proves point b).
Moreover, Π and the fact that

r
(∪×j 6=iCj)∪×C

′
i∪∀cφ

z

σP ,σQ
=

r
(∪×jCj)∪∀cφ

z

σP ,σQ

which is consistent by hypothesis, prove point c) and conclude this case.
– PLET: then Pi = let x = t in P ′i else P

′′
i and Qi = let x = t′ in Q′i else Q

′′
i for some P ′i , P

′′
i , Q′i,

Q′′i , t, t′. Pi reduces to either P ′i via the Let-In rule, or P ′′i via the Let-Else rule. In addition

Πi =
x /∈ dom(Γ )

Π

Γ `d t ∼ t′ : T
Π ′

Γ, x : T ` P ′i ∼ Q′i → C ′i

Π ′′

Γ ` P ′′i ∼ Q′′i → C ′′i
Γ ` Pi ∼ Qi → Ci = C ′i ∪ C ′′i

.

We have α = τ .
Let σ = σP |vars(t)∪vars(t′), σ′ = σQ|vars(t)∪vars(t′), and Γ ′′ = ΓN ,K ∪ (Γ |vars(t)∪vars(t′)). Since by
assumption ΓN ,K ` σP ∼ σQ : ΓX → cσ, we have Γ ′′N ,K ` σ ∼ σ′ : Γ ′′X → c′′ for some c′′ ⊂ cσ.
Hence, by Lemma 21, using Π , we have:

tσ ↓6= ⊥ ⇐⇒ t′σ′ ↓6= ⊥

i.e.
tσ1
P ↓6= ⊥ ⇐⇒ t′σ1

Q ↓6= ⊥

Therefore, if rule Let-In is applied to Pi then it can also be applied to reduce Qi into Q′i, and if the rule
applied to Pi is Let-Else then it can also be applied to reduce Qi into Q′′i . This proves point a). We prove
here the Let-In case. The Let-Else case is similar (although slightly easier, since no new variable is added to
the substitutions).
In this case we have σ2

P = σ1
P ∪ {tσ1

P ↓ /x} and σ2
Q = σ1

Q ∪ {t′σ1
Q ↓ /x}.

In addition, by hypothesis, tσP = tσ1
P = tσ and t′σQ = t′σ1

Q = t′σ′.
By Lemma 21, we know in this case that there exists c ⊆ c′′ such that ΓN ,K ` tσP ↓∼ t′σQ ↓: T → c.
Thus, by Lemma 4, there exists T ′ ∈ branches(T ) such that ΓN ,K ` tσP ↓∼ t′σQ ↓: T ′ → c.
We choose Γ ′ = Γ, x : T ′, σ′P = σP ∪ {tσP ↓ /x} and σ′Q = σQ ∪ {t′σQ ↓ /x}. Since Γ does not contain
union types, Γ ′ ∈ branches(Γ, x : T ).
Since c ⊆ c′′ ⊆ cσ and ΓN ,K ` tσP ↓∼ t′σQ ↓: T ′ → c, point b) holds.
We now prove that point c) holds. Using Π ′, we have Γ, x : T ` P ′i ∼ Q′i → C ′i. Hence, by Lemma 9, there
exists C ′′′i ⊆ C ′i(⊆ Ci) such that Γ ′ ` P ′i ∼ Q′i → C ′′′i .



Since C ′′′i ⊆ Ci, we have

r
(∪×j 6=iCj)∪×C

′′′
i ∪∀cφ

z

σP ,σQ
⊆

r
(∪×jCj)∪∀cφ

z

σP ,σQ
.

This last constraint set is consistent by hypothesis.

Hence, by Lemma 13,
r
(∪×j 6=iCj)∪×C ′′′i ∪∀cφ

z

σP ,σQ
is also consistent. This proves point c) and concludes

this case.
– PLETDEC: then there exist y, P ′i , P

′′
i , Q′i, Q

′′
i such that Pi = let x = dec(y, k1) in P

′
i else P

′′
i , and

Qi = let x = dec(y, k2) in Q
′
i else Q

′′
i , and Γ (y) = LL. Pi reduces to either P ′i via the Let-In rule, or

P ′′i via the Let-Else rule. In addition

Πi =

Γ (y) = LL Γ (k1, k2) = keyHH(T )

Π ′i
Γ, x : T ` P ′i ∼ Q′i → C ′i

Π ′′i
Γ ` P ′′i ∼ Q′′i → C ′′i

(∀T ′.∀k3 6= k2. Γ (k1, k3) = keyHH(T ′)⇒
Π1,k3
i

Γ, x : T ′ ` P ′i ∼ Q′′i → Ck3
)

(∀T ′.∀k3 6= k2. Γ (k3, k2) = keyHH(T ′)⇒
Π2,k3
i

Γ, x : T ′ ` P ′′i ∼ Q′i → C ′k3
)

Γ ` let x = dec(y, k1) in P
′
i else P

′′
i ∼ let x = dec(y, k2) in Q

′
i else Q

′′
i →

C ′i ∪ C ′′i ∪ (
⋃
k3

Ck3) ∪ (
⋃
k3

C ′k3)

We have α = τ . In addition, by hypothesis, σP (y) = σ1
P (y) and σQ(y) = σ1

Q(y).
We consider two cases.

• If dec(yσP , k1) ↓6= ⊥ then the reduction applied to Pi is Let-In, and Pi is reduced to P ′i . This also
implies that there exists M such that yσP = enc(M,k1). Since Γ (y) = LL, we know by assumption
that ΓN ,K ` yσP ∼ yσQ : LL→ c for some constraint c ⊆ cσ . Hence, by Lemma 17, there exist N , k,
T ′, c′ ⊆ cσ such that yσQ = enc(N, k), Γ (k1, k) = keyHH(T ), and ΓN ,K `M ∼ N : T ′ → c′. Thus,
by Lemma 4, there exists T ′′ ∈ branches(T ′) such that ΓN ,K `M ∼ N : T ′′ → c′.
Two cases are possible.
∗ If k = k2, then dec(yσQ, k2) ↓= N , and rule Let-In can be applied to reduce Qi into Q′i, which

proves point a). In this case we have σ2
P = σ1

P ∪ {M/x} and σ2
Q = σ1

Q ∪ {N/x}.
We choose Γ ′ = Γ, x : T ′, σ′P = σP ∪ {M/x} and σ′Q = σQ ∪ {N/x} Since Γ does not contain
union types, Γ ′ ∈ branches(Γ, x : T ).
Since c′ ⊆ cσ and ΓN ,K `M ∼ N : T ′′ → c′, point b) holds.
We now prove that point c) holds. Using Π ′i , we have Γ, x : T ` P ′i ∼ Q′i → C ′i. Hence, by
Lemma 9, there exists C ′′′i ⊆ C ′i(⊆ Ci) such that Γ ′ ` P ′i ∼ Q′i → C ′′′i .
Since C ′′′i ⊆ Ci, we have

r
(∪×j 6=iCj)∪×C

′′′
i ∪∀cφ

z

σP ,σQ
⊆

r
(∪×jCj)∪∀cφ

z

σP ,σQ
.

This last constraint set is consistent by hypothesis.
Hence, by Lemma 13,

r
(∪×j 6=iCj)∪×C ′′′i ∪∀cφ

z

σP ,σQ
is also consistent. This proves point c) and

concludes this case.



∗ If k 6= k2, then dec(yσQ, k2) ↓= ⊥, and rule Let-Else can be applied to reduce Qi into Q′′i , which
proves point a). In this case we have σ2

P = σ1
P ∪ {M/x} and σ′2Q = σ1

Q.
We choose Γ ′ = Γ, x : T ′, σ′P = σP ∪ {M/x} and σ′Q = σQ ∪ {N/x} (by well-formedness of the
processes, x does not appear inQ′′i ). Since Γ does not contain union types, Γ ′ ∈ branches(Γ, x : T ).
Since c′ ⊆ cσ and ΓN ,K `M ∼ N : T ′′ → c′, point b) holds.
We now prove that point c) holds. Using Π1,k

i , we have Γ, x : T ` P ′i ∼ Q′′i → Ck. Hence, by
Lemma 9, there exists C ′′′i ⊆ Ck(⊆ Ci) such that Γ ′ ` P ′i ∼ Q′′i → C ′′′i .
Since C ′′′i ⊆ Ci, we have

r
(∪×j 6=iCj)∪×C

′′′
i ∪∀cφ

z

σP ,σQ
⊆

r
(∪×jCj)∪∀cφ

z

σP ,σQ
.

This last constraint set is consistent by hypothesis.
Hence, by Lemma 13,

r
(∪×j 6=iCj)∪×C ′′′i ∪∀cφ

z

σP ,σQ
is also consistent. This proves point c) and

concludes this case.
• If dec(yσP , k1) ↓= ⊥ then the reduction applied to Pi is Let-Else, and Pi is reduced to P ′′i . Again we

distinguish two cases.
∗ If dec(yσQ, k2) ↓6= ⊥ then rule Let-In can be applied to reduce Qi into Q′i. This also implies

that there exists N such that yσQ = enc(N, k2). Since Γ (y) = LL, we know by assumption that
ΓN ,K ` yσP ∼ yσQ : LL→ c for some constraint c ⊆ cσ . Hence, by Lemma 17, there exist M , k,
T ′, c′ ⊆ cσ such that yσP = enc(M,k), Γ (k, k2) = keyHH(T ), and ΓN ,K ` M ∼ N : T ′ → c′.
Thus, by Lemma 4, there exists T ′′ ∈ branches(T ′) such that ΓN ,K `M ∼ N : T ′′ → c′.
In this case we have σ2

P = σ1
P and σ′2Q = σ1

Q ∪ {N/x}. We choose Γ ′ = Γ, x : T ′, σ′P =
σP ∪ {M/x} and σ′Q = σQ ∪ {N/x} (by well-formedness of the processes, x does not appear in
P ′′i ). Since Γ does not contain union types, Γ ′ ∈ branches(Γ, x : T ).
Since c′ ⊆ cσ and ΓN ,K `M ∼ N : T ′′ → c′, point b) holds.
We now prove that point c) holds. Using Π2,k

i , we have Γ, x : T ` P ′′i ∼ Q′i → C ′k. Hence, by
Lemma 9, there exists C ′′′i ⊆ C ′k(⊆ Ci) such that Γ ′ ` P ′′i ∼ Q′i → C ′′′i .
Since C ′′′i ⊆ Ci, we have

r
(∪×j 6=iCj)∪×C

′′′
i ∪∀cφ

z

σP ,σQ
⊆

r
(∪×jCj)∪∀cφ

z

σP ,σQ
.

This last constraint set is consistent by hypothesis.
Hence, by Lemma 13,

r
(∪×j 6=iCj)∪×C ′′′i ∪∀cφ

z

σP ,σQ
is also consistent. This proves point c) and

concludes this case.
∗ If dec(yσQ, k2) ↓= ⊥ then rule Let-Else can be applied to reduce Qi into Q′′i . In this case we have
σ2
P = σ1

P and σ′2Q = σ1
Q. We choose Γ ′ = Γ , σ′P = σP and σ′Q = σQ. Since the substitutions and

environments do not change, point b) clearly holds.
We now prove that point c) holds. Using Π ′′i , we have Γ ` P ′′i ∼ Q′′i → C ′′i .
Since C ′′i ⊆ Ci, we have

r
(∪×j 6=iCj)∪×C

′′
i ∪∀cφ

z

σP ,σQ
⊆

r
(∪×jCj)∪∀cφ

z

σP ,σQ
.

This last constraint set is consistent by hypothesis.
Hence, by Lemma 13,

r
(∪×j 6=iCj)∪×C ′′i ∪∀cφ

z

σP ,σQ
is also consistent. This proves point c) and

concludes this case.



– PLETADECSAME and PLETADECDIFF: these two cases are similar to the PLETDEC case.
– PLETLRK: then Pi = let x = d(y) in P ′i else P

′′
i and Qi = let x = d(y) in Q′i else Q

′′
i for some

P ′i , P
′′
i , Q′i, Q

′′
i .

Pi reduces to either P ′i via the Let-In rule, or P ′′i via the Let-Else rule.
In addition

Πi =
x /∈ dom(Γ ) Γ (y) = Jτ l,am ; τ l

′,a
n K ∨ Γ (y) <: keyl

′
(T )

Π ′′

Γ ` P ′′i ∼ Q′′i → C ′′i
Γ ` Pi ∼ Qi → Ci(= C ′′i )

.

We have α = τ . By assumption we also have σP (y) = σ1
P (y) and σQ(y) = σ1

Q(y).
By hypothesis, σP , σQ are ground and ΓN ,K ` σP ∼ σQ : ΓX → cσ. Hence, by definition of the well-
typedness of substitutions, there exists cy ⊆ cσ such that ΓN ,K ` σP (y) ∼ σQ(y) : Jτ l,am ; τ l

′,a
n K→ cy, or

ΓN ,K ` σP (y) ∼ σQ(y) : keyl
′
(T )→ cy In the first case by Lemma 16, σP (y) = m and σQ(y) = n. Since

m, n are nonces, d(m) ↓= d(n) ↓= ⊥, and we thus have d(σP (y)) ↓= d(σQ(y)) ↓= ⊥. Similarly, in the
second case, by Lemma 20, σP (y) and σQ(y) are both keys in K, and thus d(σP (y)) ↓= d(σQ(y)) ↓= ⊥.
Therefore the reduction rule applied to Pi can only be Let-Else, and Pi is reduced to P ′′i . Since we also have
d(σQ(y)) ↓= ⊥, this rule can also be applied to reduce Qi into Q′′i . This proves point a).
We therefore have σ2

P = σ1
P and σ2

Q = σ1
Q. We choose Γ ′ = Γ .

Since the substitutions and typing environments are unchanged by the reduction, point b) clearly holds.
Moreover, Π ′′, and the fact that

r
(∪×j 6=iCj)∪×C

′′
i ∪∀cφ

z

σP ,σQ
=

r
(∪×jCj)∪∀cφ

z

σP ,σQ

which is consistent by hypothesis, prove point c) and conclude this case.
– PIFL: then Pi = if M = M ′ then P>i else P⊥i and Qi = if N = N ′ then Q>i else Q⊥i for some
Q>i , Q⊥i . Pi reduces to P ′i which is either P>i via the If-Then rule, or P⊥i via the If-Else rule. In addition

Πi =

Π>

Γ ` P>i ∼ Q>i → C>i

Π⊥

Γ ` P⊥i ∼ Q⊥i → C⊥i
Π

Γ `M ∼ N : LL→ c

Π ′

Γ `M ′ ∼ N ′ : LL→ c′

Γ ` Pi ∼ Qi → Ci = (C>i ∪ C⊥i )∪∀(c ∪ c′)

We have α = τ . In addition, by hypothesis, tσP = tσ1
P for t ∈ {M,M ′} and t′σQ = t′σ1

Q for t′ ∈ {N,N ′}.
Since Γ ` M ∼ N : LL → c, by Lemma 24, there exists c′′ ⊆ JcKσP ,σQ ∪ cσ such that ΓN ,K ` MσP ∼
NσQ : LL→ c′′. Similarly, there exists c′′′ ⊆ Jc′KσP ,σQ ∪ cσ such that ΓN ,K `M ′σP ∼ N ′σQ : LL→ c′′′.
Hence, by Lemma 22, either MσP ↓= NσQ ↓= ⊥; or MσP ↓= MσP 6= ⊥ and NσQ ↓= NσQ 6= ⊥.
Similarly, either M ′σP ↓= N ′σQ ↓= ⊥; or M ′σP ↓=M ′σP 6= ⊥ and N ′σQ ↓= N ′σQ 6= ⊥.
Let us first consider the case where MσP ↓6= ⊥, M ′σP ↓6= ⊥, NσQ ↓6= ⊥ and N ′σQ ↓6= ⊥.
Let φ = {MσP /x,M

′σP /y} and φ′ = {NσQ/x,N ′σQ/y}. We then have ΓN ,K ` φ ∼ φ′ : LL→ c′′∪c′′′.
Let us prove that c ∪ c′′′ is consistent in some typing environment. By hypothesis, σP , σQ are ground
and ΓN ,K ` σP ∼ σQ : ΓX → cσ. Hence, by Lemma 6, there exists Γ ′′ ∈ branches(Γ ) such that
Γ ′′N ,K ` σP ∼ σQ : Γ ′′X → cσ. By Lemma 15, there exists (c1, Γ ′′′) ∈ Ci such that Γ ′′ ⊆ Γ ′′′. Since
Ci = (C>i ∪ C⊥i )∪∀(c ∪ c′), c1 is of the form c2 ∪ c ∪ c′ for some c2.
As we noted previously, JCiKσP ,σQ∪∀cσ is consistent. Therefore, by Lemma 13, {(Jc ∪ c′KσP ,σQ ∪cσ, Γ

′′′)}
is consistent. Hence, by the same Lemma, c′′ ∪ c′′′ is also consistent in Γ ′′′.



Thus, by Lemma 27, φ and φ′ are statically equivalent. Hence, in particular, MσP =M ′σP ⇐⇒ NσQ =
N ′σQ.
Therefore, if rule If-Then is applied to Pi then it can also be applied to reduce Qi into Q>i , and if the rule
applied to Pi is If-Else then it can also be applied to reduce Qi into Q⊥i . This proves point a). We prove here
the If-Then case. The If-Else case is similar.
We choose Γ ′ = Γ . We have σ2

P = σ1
P and σ2

Q = σ1
Q.

Since the substitutions and environments do not change in this reduction, point b) trivially holds.
Moreover, by hypothesis,

r
(∪×j 6=iCj)∪×(C

>
i ∪ C⊥i )∪∀(c ∪ c′ ∪ cφ)

z

σP ,σQ

is consistent. Thus by Lemma 13,
r
(∪×j 6=iCj)∪×(C

>
i ∪ C⊥i )∪∀cφ

z

σP ,σQ

is also consistent. Since, using C ′i = C>i and Ci = (C>i ∪ C⊥i )∪∀(c ∪ c′),
r
(∪×j 6=iCj)∪×C

′
i∪∀cφ

z

σP ,σQ
⊆

r
(∪×j 6=iCj)∪×(C

>
i ∪ C⊥i )∪∀cφ

z

σP ,σQ
,

we have by Lemma 13 that
r
(∪×j 6=iCj)∪×C ′i∪∀cφ

z

σP ,σQ
is consistent. Π> and this fact prove point c)

and conclude this case.

The case where MσP ↓= NσQ ↓= ⊥ or M ′σP ↓= N ′σQ ↓= ⊥ remains. In that case, the rule applied to
Pi is necessarily If − Else, and this rule can also be applied to Qi. We conclude the proof similarly to the
previous case.

– PIFLR: then Pi = if M1 = M2 then P>i else P⊥i and Qi = if N1 = N2 then Q>i else Q⊥i for
some Q>i , Q⊥i . Pi reduces to P ′i which is either P>i via the If-Then rule, or P⊥i via the If-Else rule. In
addition

Πi =

Π

Γ `M1 ∼ N1 : Jτ l,1m ; τ l
′,1
n K→ ∅

Π ′

Γ `M2 ∼ N2 : Jτ l
′′,1
m′ ; τ l

′′′,1
n′ K→ c′

b = (τ l,1m
?
= τ l

′′,1
m′ ) b′ = (τ l

′,1
n

?
= τ l

′′′,1
n′ )

Π ′′

Γ ` P bi ∼ Qb
′

i → C ′i
Γ ` Pi ∼ Qi → Ci = C ′i

We have α = τ in any case. In addition, by assumption, tσP = tσ1
P for t ∈ {M1,M2} and t′σQ = t′σ1

Q for
t′ ∈ {N1, N2}.
By hypothesis, σP , σQ are ground and ΓN ,K ` σP ∼ σQ : ΓX → cσ . Hence, by Lemma 24, using Π , there
exists c′′ such that ΓN ,K `M1σP ∼ N1σQ : Jτ l,1m ; τ l

′,1
n K→ c′′. Therefore by Lemma 16, M1σP = m and

N1σQ = n. Similarly we can show that M2σP = m′ and N2σQ = n′.
There are four cases for b and b′, which are all similar. We write the proof for the case where b = > and
b′ = ⊥, i.e. τ l,1m = τ l

′′,1
m′ and τ l

′,1
n 6= τ l

′′′,1
n′ .

Thus the reduction rule applied to Pi is If-Then and P ′i = P>i . On the other hand, rule If-Else can be applied
to reduce Qi into Q′i = Q⊥i . This proves point a) (these rules both correspond to silent actions).
We choose Γ ′ = Γ . We have σ′P = σP and σ′Q = σQ.



Since the substitutions and environments do not change in this reduction, point b) trivially holds.
Moreover, Π ′′ and the fact that

r
(∪×j 6=iCj)∪×C

′
i∪∀cφ

z

σP ,σQ
=

r
(∪×jCj)∪∀cφ

z

σP ,σQ

prove point c) and conclude this case.
– PIFS: then Pi = if M = M ′ then P>i else P⊥i and Qi = if N = N ′ then Q>i else Q⊥i for some
Q>i , Q⊥i . Pi reduces to P ′i which is either P>i via the If-Then rule, or P⊥i via the If-Else rule. In addition

Πi =

Π⊥

Γ ` P⊥i ∼ Q⊥i → C ′i

Π

Γ `M ∼ N : LL→ c

Π ′

Γ `M ′ ∼ N ′ : HH→ c′

Γ ` Pi ∼ Qi → Ci = C ′i

We have α = τ in any case. In addition, by hypothesis, tσP = tσ1
P for t ∈ {M,M ′} and t′σQ = t′σ1

Q for
t′ ∈ {N,N ′}.
By hypothesis, σP , σQ are ground and ΓN ,K ` σP ∼ σQ : ΓX → cσ . Hence, by Lemma 24, using Π , there
exists c′′ such that ΓN ,K `MσP ∼ NσQ : LL→ c′′. Similarly we can show that ΓN ,K `M ′σP ∼ N ′σQ :
HH→ c′′′ for some c′′′.
Hence, by Lemma 22, either MσP ↓= NσQ ↓= ⊥; or MσP ↓= MσP 6= ⊥ and NσQ ↓= NσQ 6= ⊥.
Similarly, either M ′σP ↓= N ′σQ ↓= ⊥; or M ′σP ↓=M ′σP 6= ⊥ and N ′σQ ↓= N ′σQ 6= ⊥.
Let us first consider the case where MσP ↓6= ⊥, M ′σP ↓6= ⊥, NσQ ↓6= ⊥ and N ′σQ ↓6= ⊥.
Therefore by Lemma 25, MσP 6= M ′σP and NσQ 6= N ′σQ. Hence the reduction for Pi is necessarily
If-Else, which is also applicable to reduce Qi to Q⊥i . This proves point a).
We choose Γ ′ = Γ . We have σ2

P = σ1
P and σ2

Q = σ1
Q.

Since the substitutions and typing environments do not change in this reduction, point b) trivially holds.
Moreover, Π ′′ and the fact that

r
(∪×j 6=iCj)∪×C

′
i∪∀cφ

z

σP ,σQ
=

r
(∪×jCj)∪∀cφ

z

σP ,σQ

prove point c) and conclude this case.

The case where MσP ↓= NσQ ↓= ⊥ or M ′σP ↓= N ′σQ ↓= ⊥ remains. In that case, the rule applied to
Pi is necessarily If − Else, and this rule can also be applied to Qi. We conclude the proof similarly to the
previous case.

– PIFI: then Pi = if M = M ′ then P>i else P⊥i and Qi = if N = N ′ then Q>i else Q⊥i for some
Q>i , Q⊥i . This case is similar to the PIFS case: the incompatibility of the types of M , N and M ′, N ′ ensures
that the processes can only follow the else branch.
Pi reduces to P ′i which is either P>i via the If-Then rule, or P⊥i via the If-Else rule. In addition

Πi =

Π⊥

Γ ` P⊥i ∼ Q⊥i → C ′i

Π

Γ `M ∼ N : T ∗ T ′ → c

Π ′

Γ `M ′ ∼ N ′ : Jτ l,am ; τ l
′,a
n K→ c′

Γ ` Pi ∼ Qi → Ci = C ′i

We have α = τ in any case. In addition, by hypothesis, tσP = tσ1
P for t ∈ {M,M ′} and t′σQ = t′σ1

Q for
t′ ∈ {N,N ′}.
By hypothesis, σP , σQ are ground and ΓN ,K ` σP ∼ σQ : ΓX → cσ . Hence, by Lemma 24, using Π , there
exists c′′ such that ΓN ,K `MσP ∼ NσQ : T ∗ T ′ → c′′.



Hence, by Lemma 22, either MσP ↓= NσQ ↓= ⊥; or MσP ↓=MσP 6= ⊥ and NσQ ↓= NσQ 6= ⊥. Let
us first consider the case where MσP ↓6= ⊥, and NσQ ↓6= ⊥.
By Lemma 19, MσP and NσQ both are pairs. Similarly we can show that ΓN ,K ` M ′σP ∼ N ′σQ :

Jτ l,am ; τ l
′,a
n K→ c′′′ for some c′′′. By Lemma 16, this implies that M ′σP = m and N ′σQ = n. Thus neither

of these two terms are pairs.
Therefore MσP 6=M ′σP and NσQ 6= N ′σQ. The end of the proof for this case is then the same as for the
PIFS case.

The case where MσP ↓= NσQ ↓= ⊥ or M ′σP ↓= N ′σQ ↓= ⊥ remains. In that case, the rule applied to
Pi is necessarily If − Else, and this rule can also be applied to Qi. We conclude the proof similarly to the
previous case.

– PIFP: then Pi = if M = t then P>i else P⊥i and Qi = if N = t then Q>i else Q⊥i for some Q>i ,
Q⊥i , some messages M , N , and some t ∈ C ∪ K ∪N . Pi reduces to P ′i which is either P>i via the If-Then
rule, or P⊥i via the If-Else rule. In addition

Πi =

Π>

Γ ` P>i ∼ Q>i → C>i

Π⊥

Γ ` P⊥i ∼ Q⊥i → C⊥i
Π

Γ `M ∼ N : LL→ c

Π ′

Γ ` t ∼ t : LL→ c′ t ∈ C ∪ K ∪N
Γ ` Pi ∼ Qi → Ci = C>i ∪ C⊥i

We have in any case α = τ . In addition, by assumption, t′σP = t′σ1
P for t′ ∈ {M,M ′} and t′σQ = t′σ1

Q

for t′ ∈ {N,N ′}.
By hypothesis, σP , σQ are ground and ΓN ,K ` σP ∼ σQ : ΓX → cσ . Hence, by Lemma 24, using Π , there
exists c′′ ⊆ JcKσP ,σQ ∪ cσ such that ΓN ,K `MσP ∼ NσQ : LL→ c′′.
Hence, by Lemma 22, either MσP ↓= NσQ ↓= ⊥; or MσP ↓= MσP 6= ⊥ and NσQ ↓= NσQ 6= ⊥.
Similarly, either t ↓= ⊥ or t ↓= t 6= ⊥.
Let us first consider the case where MσP ↓6= ⊥, M ′σP ↓6= ⊥, and t ↓6= ⊥.
We then show that MσP = t if and only if NσQ = t (note that since t is ground, t = tσP = tσQ). If
MσP = t, then ΓN ,K ` t ∼ NσQ : LL → c′′. In all possible cases for t, i.e. t ∈ K, t ∈ N , and t ∈ C,
Lemma 20 implies that NσQ = t. This proves the first direction of the equivalence, the other direction is
similar.
Therefore, if rule If-Then is applied to Pi then it can also be applied to reduce Qi into Q>i , and if the rule
applied to Pi is If-Else then it can also be applied to reduce Qi into Q⊥i . This proves point a). We prove here
the If-Then case. The If-Else case is similar.
We choose Γ ′ = Γ . We have σ2

P = σ1
P and σ2

Q = σ1
Q.

Since the substitutions and typing environments do not change in this reduction, point b) trivially holds.
Moreover, by hypothesis, r

(∪×j 6=iCj)∪×(C
>
i ∪ C⊥i )∪∀cφ

z

σP ,σQ

is consistent. Since, using C ′i = C>i and Ci = (C>i ∪ C⊥i ), we have
r
(∪×j 6=iCj)∪×C

′
i∪∀cφ

z

σP ,σQ
⊆

r
(∪×j 6=iCj)∪×(C

>
i ∪ C⊥i )∪∀cφ

z

σP ,σQ
,

we have by Lemma 13 that
r
(∪×j 6=iCj)∪×C ′i∪∀cφ

z

σP ,σQ
is consistent. This fact proves point c) and

concludes this case.



The case where MσP ↓= NσQ ↓= ⊥ or t ↓= ⊥ remains. In that case, the rule applied to Pi is necessarily
If − Else, and this rule can also be applied to Qi. We conclude the proof similarly to the previous case.

– PIFLR*: then Pi = if M1 = M2 then P>i else P⊥i and Qi = if N1 = N2 then Q>i else Q⊥i for
some Q>i , Q⊥i . Pi reduces to P ′i which is either P>i via the If-Then rule, or P⊥i via the If-Else rule. In
addition

Πi =

Π

Γ `M1 ∼ N1 : Jτ l,∞m ; τ l
′,∞
n K→ c1

Π ′

Γ `M2 ∼ N2 : Jτ l,∞m ; τ l
′,∞
n K→ c2

Π>

Γ ` P>i ∼ Q>i → C>i

Π⊥

Γ ` P⊥i ∼ Q⊥i → C⊥i

Γ ` Pi ∼ Qi → Ci = C>i ∪ C⊥i

We have α = τ in any case. In addition, by assumption, tσP = tσ1
P for t ∈ {M1,M2} and t′σQ = t′σ1

Q for
t′ ∈ {N1, N2}.
By hypothesis, σP , σQ are ground and ΓN ,K ` σP ∼ σQ : ΓX → cσ . Hence, by Lemma 24, using Π , there
exists c′′ such that ΓN ,K ` M1σP ∼ N1σQ : Jτ l,∞m ; τ l

′,∞
m K→ c′′. Therefore by Lemma 16, M1σP = m

and N1σQ = n. Similarly we can show that M2σP = m and N2σQ = n.
Hence M ′1 =M ′2 and N ′1 = N ′2.
Thus the reduction rule applied to Pi is If-Then and P ′i = P>i . On the other hand, rule If-Then can also be
applied to reduce Qi into Q′i = Q>i . This proves point a).
Note that we still need to type the other branch, even though it is not used here, as when replicating the
process this test may fail if M1, N1 and M2, N2 are nonces from different sessions.
We choose Γ ′ = Γ . We have σ2

P = σ1
P and σ2

Q = σ1
Q.

Since the substitutions and environments do not change in this reduction, point b) trivially holds.
Moreover, Π ′′ and the fact that, with C ′i = C>i ,

r
(∪×j 6=iCj)∪×C

′
i∪∀cφ

z

σP ,σQ
⊆

r
(∪×j 6=iCj)∪×(C

>
i ∪ C⊥i )∪∀cφ

z

σP ,σQ

=
r
(∪×jCj)∪∀cφ

z

σP ,σQ

prove point c) and conclude this case.
– PIfLR’*: then Pi = if M1 = M2 then P>i else P⊥i and Qi = if N1 = N2 then Q>i else Q⊥i for

some Q>i , Q⊥i . Pi reduces to P ′i which is either P>i via the If-Then rule, or P⊥i via the If-Else rule. In
addition

Πi =

Π

Γ `M1 ∼ N1 : Jτ l,am ; τ l
′,a
n K→ c1

Π ′

Γ `M2 ∼ N2 : Jτ l
′′,a
m′ ; τ l

′′′,a
n′ K→ c2 τ l,am 6= τ l

′′,a
m′ τ l

′,a
n 6= τ l

′′′,a
n′

Π ′′

Γ ` P⊥i ∼ Q⊥i → C ′i
Γ ` Pi ∼ Qi → Ci = C ′i

We have α = τ in any case. In addition, by assumption, tσP = tσ1
P for t ∈ {M1,M2} and t′σQ = t′σ1

Q for
t′ ∈ {N1, N2}.
By hypothesis, σP , σQ are ground and ΓN ,K ` σP ∼ σQ : ΓX → cσ . Hence, by Lemma 24, using Π , there
exists c′′ such that ΓN ,K `M1σP ∼ N1σQ : Jτ l,am ; τ l

′,a
n K→ c′′. Therefore by Lemma 16, M1σP = m and

N1σQ = n. Similarly, using Lemma 16, we can show that M2σP = m′ and N2σQ = n′.



Moreover, since τ l,am 6= τ l
′′,a
m′ , we know that m 6= m′ (by well-formedness of the processes), and similarly

n 6= n′.
Hence, M1σP 6=M2σP and N1σQ 6= N2σQ.
Thus the reduction rule applied to Pi is If-Else and P ′i = P⊥i . On the other hand, rule If-Else can also be
applied to reduce Qi into Q′i = Q⊥i . This proves point a).
We choose Γ ′ = Γ . We have σ2

P = σ1
P and σ2

Q = σ1
Q.

Since the substitutions and environments do not change in this reduction, point b) trivially holds.
Moreover, Π ′′ and the fact that

r
(∪×j 6=iCj)∪×C

′
i∪∀cφ

z

σP ,σQ
=

r
(∪×jCj)∪∀cφ

z

σP ,σQ

prove point c) and conclude this case.
– PIFALL: then Pi = ifM =M ′ then P>i else P⊥i and Qi = if N = N ′ then Q>i else Q⊥i for some
Q>i , Q⊥i . Pi reduces to P ′i which is either P>i via the If-Then rule, or P⊥i via the If-Else rule. In addition

Πi =

Π>,>

Γ ` P>i ∼ Q>i → C>,>i

Π>,⊥

Γ ` P>i ∼ Q⊥i → C>,⊥i

Π⊥,>

Γ ` P⊥i ∼ Q>i → C⊥,>i

Π⊥,⊥

Γ ` P⊥i ∼ Q⊥i → C⊥,⊥i

Γ ` ifM =M ′ then P>i else P⊥i ∼ if N = N ′ then Q>i else Q⊥i →
Ci = C>,>i ∪ C>,⊥i ∪ C⊥,>i ∪ C⊥,⊥i

In addition, by hypothesis, tσP = tσ1
P for t ∈ {M,M ′} and t′σQ = t′σ1

Q for t′ ∈ {N,N ′}.
Four cases are possible:
• MσP ↓6= ⊥, M ′σP ↓6= ⊥, NσQ ↓6= ⊥, N ′σQ ↓6= ⊥, MσP =M ′σP and NσQ = N ′σQ;
• or MσP ↓6= ⊥, M ′σP ↓6= ⊥, MσP =M ′σP and (NσQ 6= N ′σQ or NσQ ↓= ⊥ or N ′σQ ↓= ⊥);
• or NσQ ↓6= ⊥, N ′σQ ↓6= ⊥, NσQ = N ′σQ and (MσP 6=M ′σP or MσP ↓= ⊥ or M ′σP ↓= ⊥);
• or (MσP 6= M ′σP or MσP ↓= ⊥ or M ′σP ↓= ⊥) and (NσQ 6= N ′σQ or NσQ ↓= ⊥ or N ′σQ ↓=
⊥).

In any case, we have α = τ . These four cases are similar, we detail the proof for the second case, where
MσP =M ′σP and NσQ 6= N ′σQ.
Since MσP =M ′σP , M ′σP ↓6= ⊥, and MσP =M ′σP , the reduction applied to Pi can only be If-Then,
and Pi is reduced to P>i . Since NσQ 6= N ′σQ, NσQ ↓= ⊥, or N ′σQ ↓= ⊥, rule If-Else can be applied to
reduce Qi into Q⊥i . This proves point a).
We choose Γ ′ = Γ . We have σ2

P = σ1
P and σ2

Q = σ1
Q.

Since the substitutions and environments do not change in this reduction, point b) trivially holds.
Moreover, by hypothesis,

r
(∪×j 6=iCj)∪×(C

>,>
i ∪ C>,⊥i ∪ C⊥,>i ∪ C⊥,⊥i )∪∀cφ

z

σP ,σQ

is consistent. Since, using C ′i = C>,⊥i ,
r
(∪×j 6=iCj)∪×C

′
i∪∀cφ

z

σP ,σQ
⊆

r
(∪×j 6=iCj)∪×(C

>,>
i ∪ C>,⊥i ∪ C⊥,>i ∪ C⊥,⊥i )∪∀cφ

z

σP ,σQ
,

we have by Lemma 13 that
r
(∪×j 6=iCj)∪×C ′i∪∀cφ

z

σP ,σQ
is consistent. Π>,⊥ and this fact prove point c)

and conclude this case.



Theorem 4 (Typing implies trace inclusion). For all processes P , Q, for all φP , φQ, σP , σQ, for all multisets
of processes P , Q for all constraints C, for all sequence s of actions, for all Γ containing only keys, if

Γ ` P ∼ Q→ C,

and if C is consistent, then
P vt Q

that is, if
({P}, ∅, ∅) s−→∗ (P, φP , σP ),

then there exists a sequence s′ of actions, a multiset Q, a frame φQ, a substitution σQ, such that

– s =τ s
′

– ({Q}, ∅, ∅) s′−−→∗ (Q, φQ, σQ),
– φPσP and φQσQ are statically equivalent.

Proof. We successively apply Lemma 28 to each of the reduction steps in the reduction

({P}, ∅, ∅) s−→∗ (P, φP , σP ).

The lemma can indeed be applied successively. At each reduction step of P we obtain a sequence of reduction
steps for Q with the same actions, and the conclusions the lemma provides imply the conditions needed for its
next application.

It is clear, for the first application, that all the hypotheses of this lemma are satisfied.
In the end, we know that there exist Γ ′, some constraint sets Ci, some cφ, cσ , and a reduction

({Q}, ∅, ∅) s′−−→∗ (Q, φQ, σQ)

with s =τ s′, such that (among other conclusions)

– σP , σQ are ground, and there exist ground σ′P ⊇ σP , σ′Q ⊇ σQ such that
• (dom(σ′P )\dom(σP )) ∩ (vars(P) ∪ vars(φP )) = ∅,
• (dom(σ′Q)\dom(σQ)) ∩ (vars(Q) ∪ vars(φQ)) = ∅, and
• ΓN ,K ` σ′P ∼ σ′Q : ΓX → cσ ,
• for all x ∈ dom(σ′P ), σ

′
P (x) ↓= σ′P (x), and similarly for σ′Q,

– cσ ⊆ JcφKσP ,σQ ,
– Γ ′ ` φP ∼ φQ : LL→ cφ,
– dom(φP ) = dom(φQ),
– ∀i, Γ ′ ` Pi ∼ Qi → Ci,
– for all i 6= j, the sets of bound variables in Pi and Pj (resp. Qi and Qj) are disjoint, and similarly for the

bound names;
– J(∪×iCi)∪∀cφKσP ,σQ is consistent.

To prove the claim, it is then sufficient to show that φPσP and φQσQ are statically equivalent.
Note that since σP ⊆ σ′P and (dom(σ′P )\dom(σP ))∩ (vars(P)∪vars(φP )) = ∅, we have φPσP = φPσ

′
P .

Similarly φQσQ = φQσ
′
Q. In addition we also know that JcφKσP ,σQ = JcφKσ′P ,σ′Q .

We have Γ ′ ` φP ∼ φQ : LL→ cφ and Γ ′N ,K ` σ′P ∼ σ′Q : Γ ′X → cσ . Hence, by Lemma 24, there exists
c ⊆ JcφKσ′P ,σ′Q ∪ cσ (i.e. such that c ⊆ JcφKσ′P ,σ′Q ) such that Γ ′N ,K ` φPσ′P ∼ φQσ′Q : LL→ c.



We will now show that (c, Γ ′N ,K) is consistent.
Let Γ ′′ ∈ branches(Γ ′). By Lemma 14, for all i, since Γ ′ ` Pi ∼ Qi → Ci, there exists (ci, Γ ′′′i ) ∈ Ci

such that Γ ′′ ⊆ Γ ′′i . The disjointness condition on the bound variables implies by Lemma 10 that for all i, j,

Γ ′′′i and Γ ′′′j are compatible. Thus ∪×iCi contains (c′, Γ ′′′) def=(
⋃
i ci,

⋃
i Γ
′′′
i ). We have Γ ′′ ⊆ Γ ′′′. Therefore

J(∪×iCi)∪∀cφKσP ,σQ , which is consistent, contains (Jc′ ∪ cφKσP ,σQ , Γ
′′′). Therefore, as c ⊆ JcφKσP ,σQ , by

Lemma 13, (c, Γ ′′′) is consistent. Since c is ground, it follows from the definition of consistency that (c, Γ ′′′N ,K)
is also consistent. Moreover, we know that Γ ′′ ⊆ Γ ′′′, and Γ ′′ is a branch of Γ ′. It is then clear that Γ ′N ,K ⊆ Γ ′′′.
Hence, by Lemma 12, since Γ ′N ,K ` φPσP ∼ φQσQ : LL→ c, we have Γ ′′′ ` φPσP ∼ φQσQ : LL→ c.

Hence, we have Γ ′′′ ` φPσP ∼ φQσQ : LL→ c with (c, Γ ′′′N ,K) consistent.
Moreover, φPσP and φQσQ are ground (by well-formedness of the processes).
Therefore, by Lemma 27, the frames φPσP and φQσQ are statically equivalent.

This theorem corresponds to Theorem 1.

Theorem 5 (Typing implies trace equivalence). For all Γ containing only keys, for all P and Q, if

Γ ` P ∼ Q→ C

and C is consistent, then
P ≈t Q.

Proof. Theorem 4 proves that under these assumptions, P vt Q. This is sufficient to prove the theorem. Indeed,
it is clear from the typing rules for processes and terms that

Γ ` P ∼ Q→ C ⇔ Γ ′ ` Q ∼ P → C ′

where C ′ is the constraint obtained from C by swapping the left and right hand sides of all of its elements, and
Γ ′ is the environment obtained from Γ by swapping the left and right types in all refinement types, as well as
swapping all pairs of keys in its domain. Clearly from the definition of consistency, C is consistent if and only if
C ′ is. Therefore, by symmetry, proving that the assumptions imply P vt Q also proves that they imply Q vt P ,
and thus P ≈t Q.

B.2 Typing replicated processes

In this subsection, we prove the soundness result for replicated processes.
In this subsection, as well as the following ones, without loss of generality we assume, for each infinite nonce

type τ l,∞m appearing in the processes we consider, that N contains an infinite number of fresh names which we
will denote by {mi | i ∈ N}; such that the mi do not appear in the processes or environments considered. We
will denote by N0 the set of unindexed names and by Ni the set of indexed names. We similarly assume that for
all the variables x appearing in the processes, the set X of all variables also contains variables {xi | i ∈ N}. We
denote X0 the set of unindexed variables, and Xi the set of indexed variables. Finally, we assume for all key k
declared in the processes with type seskeyl,∞(T ) that the set BK contains keys {ki | i ∈ N}.

Definition 17 (Renaming of a term). We denote by [ t ]
Γ
i , the term t in which names n such that Γ (n) = τ l,∞n

for some l are replaced by ni, keys k such that Γ (k, k) = seskeyl,∞(T ) for some l, T are replaced by ki, and
variables x are replaced by xi.



Definition 18 (Expansion of a type). given a type T , we define its expansion to n sessions, denoted [ T ]
n, as

follows.
[ l ]

n
= l

[ T ∗ T ′ ]n = [ T ]
n ∗ [ T ′ ]n[

keyl(T )
]n

= keyl([ T ]
n
)[

eqkeyl(T )
]n

= eqkeyl([ T ]
n
)[

seskeyl,a(T )
]n

= seskeyl,1([ T ]
n
)

[ pkey(T ) ]
n
= pkey([ T ]

n
)

[ vkey(T ) ]
n
= vkey([ T ]

n
)

[ (T )T ′ ]
n
= ([ T ]

n
)[ T ′ ]n

[ {T}T ′ ]
n
= {[ T ]

n}[ T ′ ]n
[ T ∨ T ′ ]n = [ T ]

n ∨ [ T ′ ]
n[

Jτ l,1m ; τ l
′,1
p K

]n
= Jτ l,1m ; τ l

′,1
p K[

Jτ l,∞m ; τ l
′,∞
p K

]n
=
∨n
j=1Jτ

l,1
mj ; τ

l′,1
pj K

where l, l′ ∈ {LL, HH, HL}, k ∈ K. Note that the size of the expanded type [ T ]
n depends on n.

Definition 19 (Renaming of a process). For all process P , for all i ∈ N, for all environment Γ , we define
[ P ]

Γ
i , the renaming of P for session i with respect to Γ , as the process obtained from P by:

– for each nonce n declared in P by new n : τ l,∞n , and each nonce n such that Γ (n) = τ l,∞n for some l,
replacing every occurrence of n with ni, and the declaration new n : τ l,∞n with new ni : τ

l,1
ni ;

– for each key k declared in P by new k : seskeyl,∞(T ), and each key k such that Γ (k, k) = seskeyl,∞(T )
for some l, T replacing every occurrence of k with ki, and the declaration new k : seskeyl,∞(T ) with
new ki : seskey

l,1([ T ]
n
);

– replacing every occurence of a variable x with xi.

Definition 20 (Renaming and expansion of typing environments). For any typing environment Γ , we define
its renaming for session i as:

[ Γ ]i = {xi : T | Γ (x) = T}
∪ {(k, k′) : T | Γ (k, k′) = T ∧ ∀l, T ′.T 6= seskeyl,∞(T ′)}
∪ {(ki, ki) : seskeyl,1(T ) | Γ (k, k) = seskeyl,∞(T )

∪ {m : τ l,1m | Γ (m) = τ l,1m }
∪ {mi : τ

l,1
mi | Γ (m) = τ l,∞m }.

and then its expansion to n sessions as

[ Γ ]
n
i = {xi : [ T ]

n | [ Γ ]i(xi) = T} ∪ {k : [ T ]
n | [ Γ ]i(k) = T}

∪ {m : τ l,1m | [ Γ ]i(m) = τ l,1m }.

Note that in [ Γ ]
n
i , due to the expansion, the size of the types depends on n.

Definition 21 (Renaming and expansion of constraints). Given a set of constraints c, and an environment Γ ,
we define the renaming of c for session i in Γ as [ c ]Γi = {[ u ]

Γ
i ∼ [ v ]

Γ
i | u ∼ v ∈ c}.

This is propagated to constraint sets as follows: the renaming ofC for session i is [ C ]i = {([ c ]
Γ
i , [ Γ ]i) | (c, Γ ) ∈

C} and its expansion to n sessions is [ C ]
n
i = {([ c ]Γi , Γ ′) | ∃Γ. (c, Γ ) ∈ C ∧ Γ ′ ∈ branches([ Γ ]

n
i )}.



Lemma 29 (Typing terms with replicated names). For all Γ , M , N , T and c, if

Γ `M ∼ N : T → c

then for all i, n ∈ N such that 1 ≤ i ≤ n, for all Γ ′ ∈ branches([ Γ ]
n
i ),

Γ ′ ` [M ]
Γ
i ∼ [N ]

Γ
i : [ T ]

n → [ c ]
Γ
i

Proof. Let Γ , M , N , T , c be such as assumed in the statement of the lemma. Let i, n ∈ N such that 1 ≤ i ≤ n.
Let Γ ′ ∈ branches([ Γ ]

n
i ).

We prove this property by induction on the proof Π of

Γ `M ∼ N : T → c.

There are several possible cases for the last rule applied in Π .

– TNONCE: then M = m and N = p for some m, p ∈ N , T = l for some l ∈ {HH, HL}, and

Π =
Γ (m) = τ l,am Γ (p) = τ l,ap

Γ ` m ∼ p : l→ ∅
.

It is clear from the definition of [ Γ ]
n
i that [ Γ ]

n
i ([m ]

Γ
i ) = τ l,1

[m ]Γi
, and that [ Γ ]

n
i ([ p ]

Γ
i ) = τ l,1

[ p ]Γi
. Hence,

Γ ′([m ]
Γ
i ) = τ l,1

[m ]Γi
and Γ ′([ p ]Γi ) = τ l,1

[ p ]Γi
. Then, by rule TNONCE, we have Γ ′ ` [M ]

Γ
i ∼ [N ]

Γ
i : l→

∅ and the claim holds.
– TNONCEL, TCSTFN, TKEY, TPUBKEYL, TVKEYL, THIGH, TLR1: Similarly to the TNONCE case, the

claim follows directly from the definition of [ Γ ]
n
i , [M ]

Γ
i , [N ]

Γ
i , [ T ]

n and [ c ]
Γ
i in these cases.

– TENCH: then T = LL and there exist T ′, k, c′ such that

Π =

Π ′

Γ `M ∼ N : (T ′)T ′′ → c′ T ′′ <: keyHH(T ′)

Γ `M ∼ N : LL→ c = c′ ∪ {M ∼ N}
.

By applying the induction hypothesis to Π ′, since [ (T ′)T ′′ ]
n
= ([ T ′ ]

n
)[ T ′′ ]n , there exists a proof Π ′′ of

Γ ′ ` [M ]
Γ
i ∼ [N ]

Γ
i : ([ T ′ ]

n
)[ T ′′ ]n → [ c′ ]

Γ
i

In addition it is clear by definition of [ · ]n and Lemma 3 that since T ′′ <: keyHH(T ′) we have [ T ′′ ]
n
<:

keyHH([ T ′ ]
n
).

Therefore by rule TENCH, we have

Γ ′ ` [M ]
Γ
i ∼ [N ]

Γ
i : LL→ [ c′ ]

Γ
i ∪ {[M ]

Γ
i ∼ [N ]

Γ
i } = [ c ]

Γ
i

– TPAIR, TPUBKEY, TVKEY, TENC, TENCL, TAENC, TAENCH, TAENCL, TSIGNH, TSIGNL as well as
TOR,THASH, THASHL: Similarly to the TENCH case, the claim is proved directly by applying the induction
hypothesis to the type judgement appearing in the conditions of the last rule in these cases.

– TVAR: then M = N = x for some x ∈ X , and

Π =
Γ (x) = T

Γ ` x ∼ x : T → ∅
.

We have [M ]
Γ
i = [N ]

Γ
i = xi.



Since Γ ′ ∈ branches([ Γ ]
n
i ), we have Γ ′(xi) ∈ branches([ T ]

n
).

Hence by rule TVAR, Γ ′ ` xi ∼ xi : Γ ′(xi)→ ∅. Therefore, by rule TOR, we have

Γ ′ ` xi ∼ xi : [ T ]
n → ∅

which proves the claim.
– TLR’ (the TLRL’ case is similar): then there exist m, p, l such that T = l, and

Π =

Π ′

Γ `M ∼ N : Jτ l,am ; τ l,ap K→ c

Γ `M ∼ N : l→ c
.

Let us distinguish the case where a is 1 from the case where a is∞.
If a is 1: by applying the induction hypothesis to Π ′, since

[
Jτ l,am ; τ l,ap K

]n
= Jτ l,1m ; τ l,1p K, we have

Γ ′ ` [M ]
Γ
i ∼ [N ]

Γ
i : Jτ l,am ; τ l,ap K→ [ c ]

Γ
i .

Thus by rule TLR’, we have
[ Γ ]

n
i ` [M ]

Γ
i ∼ [N ]

Γ
i : l→ [ c ]

Γ
i .

If a is∞: by applying the induction hypothesis to Π ′, since[
Jτ l,am ; τ l,ap K

]n
=

∨
1≤j≤n

Jτ l,1mj ; τ
l,1
pj K,

we have
Γ ′ ` [M ]

Γ
i ∼ [N ]

Γ
i :

∨
1≤j≤n

Jτ l,1mj ; τ
l,1
pj K→ [ c ]

Γ
i .

Thus, by Lemma 7, there exists j ∈ J1, nK and a proof Π ′′ of

Γ ′ ` [M ]
Γ
i ∼ [N ]

Γ
i : Jτ l,1mj ; τ

l,1
pj K→ [ c ]

Γ
i .

Thus, by rule TLR’,
Γ ′ ` [M ]

Γ
i ∼ [N ]

Γ
i : l→ [ c ]

Γ
i ,

which proves the claim.
– TLRVAR: this case is similar to the TLR’ case, but only the case where a is 1 is possible.
– TSUB: then there exists T ′ <: T such that

Π =

Π ′

Γ `M ∼ N : T ′ → c T ′ <: T

Γ `M ∼ N : T → c
.

By applying the induction hypothesis to Π ′, we have

Γ ′ ` [M ]
Γ
i ∼ [N ]

Γ
i : [ T ′ ]

n → [ c ]
Γ
i .

Since it is clear by induction on the subtyping rules that T ′ <: T implies that [ T ′ ]n <: [ T ]
n, the TSUB

rule can be applied and proves the claim.



– TLR∞: then M = m, N = p, c = ∅, and T = Jτ l,∞m ; τ l
′,∞
p K for some m, p ∈ N , c = ∅, and

Π =
Γ (m) = τ l,∞m Γ (p) = τ l

′,∞
p

Γ ` m ∼ p : Jτ l,∞m ; τ l
′,∞
p K→ ∅

.

We have by definition [M ]
Γ
i = mi and [N ]

Γ
i = pi, and [ Γ ]

n
i (mi) = τ l,1mi , and [ Γ ]

n
i (pi) = τ l

′,1
pi . Thus

Γ ′(mi) = τ l,1mi , and Γ ′(pi) = τ l
′,1
pi . Hence by rule TLR1, we have Γ ′ ` [M ]

Γ
i ∼ [N ]

Γ
i : Jτ l,1mi ; τ

l′,1
pi K→

∅.
In addition,

[
Jτ l,∞m ; τ l

′,∞
p K

]n
=
∨

1≤j≤nJτ
l,1
mj ; τ

l′,1
pj K. Therefore, by applying rule TOR, we have

Γ ′ ` [M ]
Γ
i ∼ [N ]

Γ
i :
[

Jτ l,∞m ; τ l
′,∞
p K

]n
→ ∅

which proves the claim.

Lemma 30 (Typing destructors with replicated names). For all Γ , t, t′, T , if

Γ `d t ∼ t′ : T

then for all i, n ∈ N such that 1 ≤ i ≤ n,

[ Γ ]
n
i `d [ t ]

Γ
i ∼ [ t′ ]

Γ
i : [ T ]

n

Proof. Immediate by examining the typing rules for destructors.

Lemma 31 (Branches and expansion).

– For all T , ⋃
T ′∈branches(T )

branches([ T ′ ]
n
) = branches([ T ]

n
)

– For all Γ for all i, n ∈ N, ⋃
Γ ′∈branches(Γ )

branches([ Γ ′ ]
n
i ) = branches([ Γ ]

n
i )

Proof. The first point is proved by induction on T .
If T = T ′ ∨ T ′′ for some T ′, T ′′, then

branches([ T ]
n
) = branches([ T ′ ]

n
) ∪ branches([ T ′′ ]

n
)

= (
⋃
T ′′′∈branches(T ′) branches([ T

′′′ ]
n
)) ∪ (

⋃
T ′′′∈branches(T ′′) branches([ T

′′′ ]
n
))

by the induction hypothesis. Since branches(T ) = branches(T ′) ∪ branches(T ′′), this proves the claim.
Otherwise, branches(T ) = {T} and the claim trivially holds.

The second point directly follows from the first point, using the definition of [ Γ ]
n
i .

Lemma 32 (Typing processes in all branches). For all P , Q, Γ , {CΓ ′}Γ ′∈branches(Γ ), if

∀Γ ′ ∈ branches(Γ ). Γ ′ ` P ∼ Q→ CΓ ′



then
Γ ` P ∼ Q→

⋃
Γ ′∈branches(Γ )

CΓ ′ .

Consequently if for some C, CΓ ′ ⊆ C for all Γ ′, then there exists C ′ ⊆ C such that

Γ ` P ∼ Q→ C ′.

Proof. The first point is easily proved by successive applications of rule POR.
The second point is a direct consequence of the first point.

Lemma 33 (Expansion and union).

– For all C, C ′, such that ∀(c, Γ ) ∈ C ∪ C ′. branches(Γ ) = {Γ}, i.e. such that Γ does not contain union
types, and names(c) ⊆ dom(Γ )∪FN , and Γ only nonce types with names fromN0 (i.e. unindexed names),
we have

[ C∪×C ′ ]
n
i = [ C ]

n
i ∪×[ C

′ ]
n
i

– For all C, c, Γ , such that names(c) ⊆ dom(Γ ) and ∀(c, Γ ′) ∈ C. ΓN ,K ⊆ Γ ′, we have

[ C∪∀c ]ni = [ C ]
n
i ∪∀[ c ]

Γ
i

Proof. The first point follows from the definition of [ · ]ni and ∪×. Indeed, if C, C ′ are as assumed in the claim,
we have:

[ C∪×C ′ ]ni = {([ c ]Γi , Γ ′)|∃Γ. (c, Γ ) ∈ C∪×C ′ ∧ Γ ′ ∈ branches([ Γ ]
n
i )}

= {([ c1 ∪ c2 ]Γ1∪Γ2

i , Γ ′)|∃Γ1Γ2. (c1, Γ1) ∈ C ∧ (c2, Γ2) ∈ C ′ ∧ Γ1, Γ2 are compatible ∧
Γ ′ ∈ branches([ Γ1 ∪ Γ2 ]

n
i )}

= {([ c1 ]Γ1

i ∪ [ c2 ]
Γ2

i , Γ
′)|∃Γ1Γ2. (c1, Γ1) ∈ C ∧ (c2, Γ2) ∈ C ′ ∧ Γ1, Γ2 are compatible ∧

Γ ′ ∈ branches([ Γ1 ]
n
i ∪ [ Γ2 ]

n
i )}

= {([ c1 ]Γ1

i ∪ [ c2 ]
Γ2

i , Γ ∪ Γ ′)|∃Γ1Γ2. (c1, Γ1) ∈ C ∧ (c2, Γ2) ∈ C ′ ∧ Γ1, Γ2 are compatible ∧
Γ ∈ branches([ Γ1 ]

n
i ) ∧ Γ ′ ∈ branches([ Γ2 ]

n
i ) ∧ Γ, Γ ′ are compatible}

The last step is proved by directly showing both inclusions.
On the other hand we have:

[ C ]
n
i ∪×[ C ′ ]

n
i = {(c ∪ c′, Γ ∪ Γ ′)|(c, Γ ) ∈ [ C ]

n
i ∧ (c′, Γ ′) ∈ [ C ′ ]

n
i ∧ Γ, Γ ′ are compatible}

= {([ c1 ]Γ1

i ∪ [ c2 ]
Γ2

i , Γ ∪ Γ ′)|∃Γ1Γ2. (c1, Γ1) ∈ C ∧ (c2, Γ2) ∈ C ′ ∧
Γ ∈ branches([ Γ1 ]

n
i ) ∧ Γ ′ ∈ branches([ Γ2 ]

n
i ) ∧ Γ, Γ ′ are compatible}

= {([ c1 ]Γ1

i ∪ [ c2 ]
Γ2

i , Γ ∪ Γ ′)|∃Γ1Γ2. (c1, Γ1) ∈ C ∧ (c2, Γ2) ∈ C ′ ∧
Γ ∈ branches([ Γ1 ]

n
i ) ∧ Γ ′ ∈ branches([ Γ2 ]

n
i ) ∧

Γ, Γ ′ are compatible ∧ Γ1, Γ2 are compatible}

This last step comes from the fact that if (c1, Γ1) ∈ C and (c2, Γ2) ∈ C ′, then by assumption Γ1 and Γ2 do
not contain union types. This implies that if Γ ∈ branches([ Γ1 ]

n
i ) and Γ ′ ∈ branches([ Γ2 ]

n
i ) are compatible,

then Γ1 and Γ2 are compatible. Indeed, let x ∈ dom(Γ1) ∩ dom(Γ2). Hence xi ∈ dom(Γ ) ∩ dom(Γ ′),
and since they are compatible, Γ (xi) = Γ ′(xi). That is to say that there exists T ∈ branches([ Γ1(x) ]

n
) ∩

branches([ Γ2(x) ]
n
).

If Γ1(x) = Jτ l,∞m ; τ l
′,∞
p K (for some m, p, l, l′), then [ Γ1(x) ]

n
=
∨

1≤j≤nJτ
l,1
mj ; τ

l′,1
pj K, and thus there exists

j ∈ J1, nK such that T = Jτ l,1mj ; τ
l′,1
pj K. Hence, Jτ l,1mj ; τ

l′,1
pj K ∈ branches([ Γ2(x) ]

n
). Because of the definition



of [ · ]n, and since Γ2(x) is not a union type (by assumption), this implies that Γ2(x) = Jτ l,∞m ; τ l
′,∞
p K, and

therefore Γ1(x) = Γ2(x).
If Γ1(x) is not of the form Jτ l,∞m ; τ l

′,∞
p K (for some m, p, l, l′), then neither is Γ2(x) (by contraposition,

following the same reasoning as in the previous case). Γ1(x) and Γ2(x) are not of the form T ′ ∨ T ′′ either,
by assumption. Therefore, neither [ Γ1(x) ]

n nor [ Γ2(x) ]
n are union types (from the definition of [ · ]n). This

implies that T = [ Γ1(x) ]
n
= [ Γ2(x) ]

n, which implies Γ1(x) = Γ2(x).
In both cases Γ1(x) = Γ2(x), and Γ1, Γ2 are therefore compatible.
Hence [ C ]

n
i ∪×[ C ′ ]

n
i = [ C∪×C ′ ]ni , which proves the claim.

The second point directly follows from the definition of [ · ]ni and ∪∀. Indeed, for all C, c, Γ satisfying the
assumptions, we have:

[ C∪∀c ]ni = {([ c′ ]Γ
′

i , Γ
′′)|∃Γ ′. (c′, Γ ′) ∈ C∪∀c ∧ Γ ′′ ∈ branches([ Γ ′ ]

n
i )}

= {([ c′′ ∪ c ]Γ
′

i , Γ
′′)|∃Γ ′. (c′′, Γ ′) ∈ C ∧ Γ ′′ ∈ branches([ Γ ′ ]

n
i )}

= {([ c′′ ]Γ
′

i ∪ [ c ]
Γ ′

i , Γ
′′)|∃Γ ′. (c′′, Γ ′) ∈ C ∧ Γ ′′ ∈ branches([ Γ ′ ]

n
i )}

= {([ c′′ ]Γ
′

i ∪ [ c ]
Γ
i , Γ

′′)|∃Γ ′. (c′′, Γ ′) ∈ C ∧ Γ ′′ ∈ branches([ Γ ′ ]
n
i )}

(since Γ , Γ ′ give the same types to names and keys)
= {([ c′ ]Γ

′

i , Γ
′′)|∃Γ ′. (c′, Γ ′) ∈ C ∧ Γ ′′ ∈ branches([ Γ ′ ]

n
i )}∪∀[ c ]

Γ
i

= [ C ]
n
i ∪∀[ c ]

Γ
i

Theorem 6 (Typing processes with expanded types). For all Γ , P , Q and C, if

Γ ` P ∼ Q→ C

then for all i, n ∈ N such that 1 ≤ i ≤ n, there exists C ′ ⊆ [ C ]
n
i such that

[ Γ ]
n
i ` [ P ]

Γ
i ∼ [Q ]

Γ
i → C ′

Proof. We prove this theorem by induction on the derivation Π of Γ ` P ∼ Q → C. We distinguish several
cases for the last rule applied in this derivation.

– PZERO: then P = Q = [ P ]
Γ
i = [Q ]

Γ
i = 0, and C = {(∅, Γ )}. Hence

[ C ]
n
i = {(∅, Γ ′) | Γ ′ ∈ branches([ Γ ]

n
i )}

Thus, by applying rule POR as many times as necessary to split [ Γ ]
n
i into all of its branches, followed by

rule PZERO, we have [ Γ ]
n
i ` [ P ]

Γ
i ∼ [Q ]

Γ
i → [ C ]

n
i .

– POUT: then P = out(M).P ′, Q = out(N).Q′ for some messages M , N and some processes P ′, Q′, and

Π =

Π ′

Γ ` P ′ ∼ Q′ → C ′
Π ′′

Γ `M ∼ N : LL→ c

Γ ` P ∼ Q→ C = C ′∪∀c
.

By applying the induction hypothesis to Π ′, there exists C ′′ ⊆ [ C ′ ]
n
i and a proof Π ′′′ of [ Γ ]

n
i ` [ P ′ ]

Γ
i ∼

[Q′ ]
Γ
i → C ′′.

Hence, by Lemma 9, for all Γ ′ ∈ branches([ Γ ]
n
i ), there existCΓ ′ ⊆ C ′′ and a proofΠΓ ′ of Γ ′ ` [ P ′ ]

Γ
i ∼

[Q′ ]
Γ
i → CΓ ′ .



Moreover, by Lemma 29, for all Γ ′ ∈ branches([ Γ ]
n
i ), there exists a proof Π ′Γ ′ of Γ ′ ` [M ]

Γ
i ∼ [N ]

Γ
i :

LL→ [ c ]
Γ
i .

In addition, [ P ]
Γ
i = [ out(M).P ′ ]

Γ
i = out([M ]

Γ
i ).[ P

′ ]
Γ
i . Similarly, [Q ]

Γ
i = out([N ]

Γ
i ).[Q

′ ]
Γ
i .

Therefore, using ΠΓ ′ , Π ′Γ ′ and rule POUT, we have for all Γ ′ ∈ branches([ Γ ]
n
i ) that Γ ′ ` [ P ]

Γ
i ∼

[Q ]
Γ
i → CΓ ′∪∀[ c ]Γi ⊆ C ′′∪∀[ c ]

Γ
i .

Thus by Lemma 32, there exists C1 ⊆ C ′′∪∀[ c ]Γi such that

[ Γ ]
n
i ` [ P ]

Γ
i ∼ [Q ]

Γ
i → C1.

Finally, [ C ]
n
i = [ C ′∪∀c ]ni = [ C ′ ]

n
i ∪∀[ c ]

Γ
i (by Lemma 33, whose conditions are satisfied, by Lemma 14).

Hence C ′′∪∀[ c ]Γi ⊆ [ C ]
n
i , which proves the claim.

– PIN: then P = in(x).P ′, Q = in(x).Q′ for some variable x and some processes P ′, Q′, and

Π =

Π ′

Γ, x : LL ` P ′ ∼ Q′ → C

Γ ` P ∼ Q→ C
.

Since
[ Γ, x : LL ]

n
i = [ Γ ]

n
i , xi : [ LL ]

n
= [ Γ ]

n
i , xi : LL,

by applying the induction hypothesis to Π ′, there exists C ′ ⊆ [ C ]
n
i and a proof Π ′′ of [ Γ ]

n
i , x : LL `

[ P ′ ]
Γ,x:LL
i ∼ [Q′ ]

Γ,x:LL
i → C ′.

In addition, [ P ]
Γ
i = [ in(x).P ′ ]

Γ
i = in(xi).[ P

′ ]
Γ
i = in(xi).[ P

′ ]
Γ,x:LL
i . Similarly, we have [Q ]

Γ
i =

in(xi).[Q
′ ]
Γ,x:LL
i .

Therefore, using Π ′′ and rule PIN, we have [ Γ ]
n
i ` [ P ]

Γ
i ∼ [Q ]

Γ
i → C ′ ⊆ [ C ]

n
i .

– PNEW: then P = new m : τ l,am .P ′, Q = new m : τ l,am .Q′ for some m, l, a and some processes P ′, Q′, and

Π =

Π ′

Γ,m : τ l,am ` P ′ ∼ Q′ → C

Γ ` P ∼ Q→ C
.

• If a = 1:
Since [

Γ,m : τ l,1m
]n
i
= [ Γ ]

n
i ,m : τ l,1m ,

by applying the induction hypothesis to Π ′, there exists C ′ ⊆ [ C ]
n
i and a proof Π ′′ of [ Γ ]

n
i ,m :

τ l,1m ` [ P ′ ]
Γ,m:τ l,1m
i ∼ [Q′ ]

Γ,m:τ l,1m
i → C ′.

In addition [ P ]
Γ
i = [ new m.P ′ ]

Γ
i = new m : τ l,1m .[ P ′ ]

Γ
i = new m : τ l,1m .[ P ′ ]

Γ,m:τ l,1m
i ; and similarly

for Q. Therefore, using Π ′′ and rule PNEW, we have [ Γ ]
n
i ` [ P ]

Γ
i ∼ [Q ]

Γ
i → C ′ ⊆ [ C ]

n
i .

• If a =∞: Since [
Γ,m : τ l,∞m

]n
i
= [ Γ ]

n
i ,mi : τ

l,1
mi ,

by applying the induction hypothesis to Π ′, there exists C ′ ⊆ [ C ]
n
i and a proof Π ′′ of [ Γ ]

n
i ,mi :

τ l,1mi ` [ P ′ ]
Γ,m:τ l,∞m
i ∼ [Q′ ]

Γ,m:τ l,∞m
i → C ′.

In addition [ P ]
Γ
i = [ new m.P ′ ]

Γ
i = new mi : τ

l,1
mi .[ P

′[mi/m] ]
Γ
i = new mi : τ

l,1
mi .[ P

′ ]
Γ,m:τ l,∞m
i ;

and similarly for Q. Therefore, using Π ′′ and rule PNEW, we have [ Γ ]
n
i ` [ P ]

Γ
i ∼ [Q ]

Γ
i → C ′ ⊆

[ C ]
n
i .



– PNEWKEY: this case is similar to the PNEW case.
– PPAR: then P = P ′ | P ′′, Q = Q′ | Q′′ for some processes P ′, Q′, P ′′, Q′′, and

Π =

Π ′

Γ ` P ′ ∼ Q′ → C ′
Π ′′

Γ ` P ′′ ∼ Q′′ → C ′′

Γ ` P ∼ Q→ C = C ′∪×C ′′
.

By applying the induction hypothesis to Π ′, there exists C ′′′ ⊆ [ C ′ ]
n
i and a proof Π ′′′ of [ Γ ]

n
i ` [ P ′ ]

Γ
i ∼

[Q′ ]
Γ
i → C ′′′. Similarly, by applying the induction hypothesis to Π ′′, there exists C ′′′′ ⊆ [ C ′′ ]

n
i and a

proof Π ′′′′ of [ Γ ]
n
i ` [ P ′′ ]

Γ
i ∼ [Q′′ ]

Γ
i → C ′′′′.

In addition, [ P ]
Γ
i = [ P ′ | P ′′ ]Γi = [ P ′ ]

Γ
i | [ P ′′ ]

Γ
i . Similarly, [Q ]

Γ
i = [Q′ | Q′′ ]Γi = [Q′ ]

Γ
i | [Q′′ ]

Γ
i .

Finally, [ C ]
n
i = [ C ′∪×C ′′ ]ni = [ C ′ ]

n
i ∪×[ C ′′ ]

n
i , by Lemma 33 (using Lemma 11 to ensure the condition

that the environments do not contain union types).
Therefore, using Π ′′′, Π ′′′′ and rule PPAR, we have [ Γ ]

n
i ` [ P ]

Γ
i ∼ [Q ]

Γ
i → C ′′′∪×C ′′′′ ⊆ [ C ]

n
i .

– POR: then Γ = Γ ′, x : T ∨ T ′ for some Γ ′, some x ∈ X and some types T , T ′, and

Π =

ΠT

Γ ′, x : T ` P ∼ Q→ C ′
ΠT ′

Γ ′, x : T ′ ` P ∼ Q→ C ′′

Γ ` P ∼ Q→ C = C ′ ∪ C ′′
.

By applying the induction hypothesis to ΠT , there exist C1 ⊆ [ C ′ ]
n
i and a proof Π1 of [ Γ ′ ]

n
i , xi :

[ T ]
n ` [ P ]

Γ ′,x:T
i ∼ [Q ]

Γ ′,x:T
i → C1. Similarly with ΠT ′ , there exist C2 ⊆ [ C ′′ ]

n
i and a proof Π2 of

[ Γ ′ ]
n
i , xi : [ T

′ ]
n ` [ P ]

Γ ′,x:T ′

i ∼ [Q ]
Γ ′,x:T ′

i → C2.
In addition [ P ]

Γ
i = [ P ]

Γ ′,x:T
i = [ P ]

Γ ′,x:T ′

i , and similarly for Q.
Thus by rule POR, we have

[ Γ ′ ]
n
i , xi : [ T ]

n ∨ [ T ′ ]
n ` [ P ]

Γ
i ∼ [Q ]

Γ
i → C1 ∪ C2 ⊆ [ C ′ ]

n
i ∪ [ C ′′ ]

n
i = [ C ]

n
i .

Since [ Γ ]
n
i = [ Γ ′, x : T ∨ T ′ ]ni = [ Γ ′ ]

n
i , xi : [ T ]

n ∨ [ T ′ ]
n, this proves the claim in this case.

– PLET: then P = let x = t in P ′ else P ′′, Q = let x = t′ in Q′ else Q′′ for some variable x and
some processes P ′, Q′, P ′′, Q′′, and

Π =

Πd

Γ `d t ∼ t′ : T
Π ′

Γ, x : T ` P ′ ∼ Q′ → C ′
Π ′′

Γ ` P ′′ ∼ Q′′ → C ′′

Γ ` P ∼ Q→ C = C ′ ∪ C ′′
.

Since
[ Γ, x : T ]

n
i = [ Γ ]

n
i , xi : [ T ]

n
,

by applying the induction hypothesis to Π ′, there exist C ′′′ ⊆ [ C ′ ]
n
i and a proof Π ′′′ of [ Γ ]

n
i , xi :

[ T ]
n ` [ P ′ ]

Γ,x:T
i ∼ [Q′ ]

Γ,x:T
i → C ′′′. Similarly, there exist C ′′′′ ⊆ [ C ′′ ]

n
i and a proof Π ′′′′ of

[ Γ ]
n
i ` [ P ′′ ]

Γ
i ∼ [Q′′ ]

Γ
i → C ′′′′.

By Lemma 30 applied to Πd, we also have

[ Γ ]
n
i `d [ t ]

Γ
i ∼ [ t′ ]

Γ
i : [ T ]

n

In addition, [ P ]
Γ
i = [ let x = t in P ′ else P ′′ ]

Γ
i = let xi = [ t ]

Γ
i in [ P ′ ]

Γ
i else [ P ′′ ]

Γ
i =

let xi = [ t ]
Γ
i in [ P ′ ]

Γ,x:T
i else [ P ′′ ]

Γ
i . Similarly, [Q ]

Γ
i = let xi = [ t′ ]

Γ
i in [Q′ ]

Γ,x:T
i else [Q′′ ]

Γ
i .

Therefore, using Π ′′ and rule PLET, we have [ Γ ]
n
i ` [ P ]

Γ
i ∼ [Q ]

Γ
i → C ′′′ ∪ C ′′′′ ⊆ [ C ]

n
i .



– PLETDEC: then P = let x = dec(y, k1) in P
′ else P ′′, Q = let x = dec(y, k2) in Q

′ else Q′′ for
some variable x, some keys k1, k2, and some processes P ′, Q′, P ′′, Q′′, and

Π =

Γ (y) = LL Γ (k1, k2) <: keyHH(T )

Π ′

Γ, x : T ` P ′ ∼ Q′ → C′
Π ′′

Γ ` P ′′ ∼ Q′′ → C′′

(∀T ′.∀k3 6= k2. Γ (k1, k3) <: keyHH(T ′)⇒
Π1,k3

Γ, x : T ′ ` P ′ ∼ Q′′ → Ck3
)

(∀T ′.∀k3 6= k2. Γ (k3, k2) <: keyHH(T ′)⇒
Π2,k3

Γ, x : T ′ ` P ′′ ∼ Q′ → C′k3
)

Γ ` let x = dec(y, k1) in P
′
else P ′′ ∼ let x = dec(y, k2) in Q

′
else Q′′ →

C′ ∪ C′′ ∪ (
⋃
k3

Ck3) ∪ (
⋃
k3

C′k3)

Let us write the proof for the case where Γ (k1, k2) 6= seskeyHH,∞(T ). The other case is similar, although
the keys are renamed, and slightly easier, since by well-formedness of Γ there are no k3 satisfying the
assumptions of the last two premises.
We thus have [ k1 ]

Γ
i = k1, [ k2 ]

Γ
i = k2, and for any k3 satisfying the assumptions of either of the last two

premises, [ k3 ]
Γ
i = k3.

Since
[ Γ, x : T ]

n
i = [ Γ ]

n
i , xi : [ T ]

n
,

by applying the induction hypothesis to Π ′, there exist C ′1 ⊆ [ C ′ ]
n
i and a proof Π ′1 of

[ Γ ]
n
i , xi : [ T ]

n ` [ P ′ ]
Γ,x:T
i ∼ [Q′ ]

Γ,x:T
i → C ′1.

Similarly, there exist C ′′1 ⊆ [ C ′′ ]
n
i and a proof Π ′′1 of

[ Γ ]
n
i ` [ P ′′ ]

Γ
i ∼ [Q′′ ]

Γ
i → C ′′1 .

Similarly, for each k3 6= k2 such that Γ (k1, k3) = keyHH(T ′) for some T ′, there exist Ck3,1 ⊆ [ Ck3 ]
n
i and

a proof Π1,k3
1 of

[ Γ ]
n
i , xi : [ T

′ ]
n ` [ P ′ ]

Γ
i ∼ [Q′′ ]

Γ
i → Ck3,1.

Similarly, for each k3 6= k1 such that Γ (k3, k2) = keyHH(T ′) for some T ′, there exist C ′k3,1 ⊆
[
C ′k3

]n
i

and
a proof Π2,k3

1 of
[ Γ ]

n
i , xi : [ T

′ ]
n ` [ P ′′ ]

Γ
i ∼ [Q′ ]

Γ
i → C ′k3,1.

Moreover, by definition, [ Γ ]
n
i (yi) = LL, and for all l, T , and all keys k, k′ that are either k1, k2, or a k3

such as in the premises of the rule, if Γ (k, k′) <: keyl(T ) then [ Γ ]
n
i (k, k

′) <: keyl([ T ]
n
).

In addition,

[ P ]
Γ
i = [ let x = dec(y, k1) in P

′ else P ′′ ]
Γ
i = let xi = dec(yi, k1) in [ P ′ ]

Γ
i else [ P ′′ ]

Γ
i ,

i.e.
[ P ]

Γ
i = let xi = dec(yi, k1) in [ P ′ ]

Γ,x:T
i else [ P ′′ ]

Γ
i .

Similarly, [Q ]
Γ
i = let xi = dec(yi, k2) in [Q′ ]

Γ,x:T
i else [Q′′ ]

Γ
i .

Therefore, using Π ′1, Π ′′1 , the Π1,k3
1 and Π2,k3

1 , and rule PLETDEC, we have [ Γ ]
n
i ` [ P ]

Γ
i ∼ [Q ]

Γ
i →

C ′1 ∪ C ′′1 ∪ (
⋃
k3
Ck3,1) ∪ (

⋃
k3
C ′k3,1) ⊆ [ C ]

n
i .



– PLETADECSAME, PLETADECDIFF: these cases are similar to the PLETDEC case.
– PLETLRK: then P = let x = d(y) in P ′ else P ′′, Q = let x = d(y) in Q′ else Q′′ for some

variable x ∈ X and some processes P ′, Q′, P ′′, Q′′, and

Π =
Γ (y) = Jτ l,am ; τ l

′,a
p K ∨ Γ (y) <: keyl(T )

Π ′

Γ ` P ′′ ∼ Q′′ → C

Γ ` P ∼ Q→ C

for some m, p.
By applying the induction hypothesis to Π ′, there exists C ′ ⊆ [ C ]

n
i and a proof Π ′′ of [ Γ ]

n
i ` [ P ′′ ]

Γ
i ∼

[Q′′ ]
Γ
i → C ′.

We have [ P ]
Γ
i = [ let x = d(y) in P ′ else P ′′ ]

Γ
i = let xi = d(yi) in [ P ′ ]

Γ
i else [ P ′′ ]

Γ
i . Similarly,

[Q ]
Γ
i = let xi = d(yi) in [Q′ ]

Γ
i else [Q′′ ]

Γ
i .

Let us first prove the case where Γ (y) = Jτ l,am ; τ l
′,a
p K.

We distinguish two cases, depending on whether the types in the refinement Jτ l,am ; τ l
′,a
p K are finite nonce

types or infinite nonce types, i.e. whether a is 1 or∞.
• If a is 1: Then by definition of [ Γ ]

n
i , we have [ Γ ]

n
i (yi) = Jτ l,1m ; τ l

′,1
p K.

Therefore, using Π ′′ and rule PLETLRK, we have [ Γ ]
n
i ` [ P ]

Γ
i ∼ [Q ]

Γ
i → C ′ ⊆ [ C ]

n
i .

• If a is∞: Then by definition of [ Γ ]
n
i , we have [ Γ ]

n
i (yi) =

∨
1≤j≤nJτ

l,1
mj ; τ

l′,1
pj K.

Let Γ ′ ∈ branches([ Γ ]
n
i ). By definition, there exists j ∈ J1, nK, such that Γ ′(yi) = Jτ l,1mj ; τ

l′,1
pj K.

Using Π ′′ and Lemma 9, there exist C ′Γ ′ ⊆ [ C ]
n
i and a derivation Π ′′Γ ′ of Γ ′ ` [ P ′′ ]

Γ
i ∼ [Q′′ ]

Γ
i →

C ′Γ ′ . Therefore, using rule PLETLRK, we have, for all Γ ′ ∈ branches([ Γ ]
n
i ), Γ

′ ` [ P ]
Γ
i ∼ [Q ]

Γ
i →

C ′Γ ′ ⊆ [ C ]
n
i . Thus, by Lemma 32, we have

[ Γ ]
n
i ` [ P ]

Γ
i ∼ [Q ]

Γ
i → C ′′,

where C ′′ ⊆ [ C ]
n
i , which proves the claim in this case.

We now prove the case where Γ (y) <: keyl(T ). By Lemma 3, we thus have

Γ (y) ∈ {seskeyl,∞(T ), seskeyl,1(T ), eqkeyl(T ), keyl(T )}.

In all cases we have Γ (yi) <: keyl([ T ]
n
). Hence using Π ′′ and rule PLETLRK, we have [ Γ ]

n
i ` [ P ]

Γ
i ∼

[Q ]
Γ
i → C ′′.

– PIFL: then P = ifM =M ′ then P ′ else P ′′, Q = if N = N ′ then Q′ else Q′′ for some messages
M , N , M ′, N ′, and some processes P ′, Q′, P ′′, Q′′, and

Π =

Π ′

Γ ` P ′ ∼ Q′ → C ′

Π ′′

Γ ` P ′′ ∼ Q′′ → C ′′
Π1

Γ `M ∼ N : LL→ c

Π2

Γ `M ′ ∼ N ′ : LL→ c′

Γ ` P ∼ Q→ C = (C ′ ∪ C ′′)∪∀(c ∪ c′)
.

By applying the induction hypothesis to Π ′, there exists C ′′′ ⊆ [ C ′ ]
n
i and a proof Π ′′′ of [ Γ ]

n
i ` [ P ′ ]

Γ
i ∼

[Q′ ]
Γ
i → C ′′′. Similarly, there exists C ′′′′ ⊆ [ C ′′ ]

n
i and a proof Π ′′′′ of [ Γ ]

n
i ` [ P ′′ ]

Γ
i ∼ [Q′′ ]

Γ
i →

C ′′′′.



Hence, by Lemma 9, for all Γ ′ ∈ branches([ Γ ]
n
i ), there exist CΓ ′ ⊆ C ′′′ and a proof Π1,Γ ′ of Γ ′ `

[ P ′ ]
Γ
i ∼ [Q′ ]

Γ
i → CΓ ′ ; as well as C ′Γ ′ ⊆ C ′′′′ and a proof Π2,Γ ′ of Γ ′ ` [ P ′′ ]

Γ
i ∼ [Q′′ ]

Γ
i → C ′Γ ′ .

Moreover, by Lemma 29, for all Γ ′ ∈ branches([ Γ ]
n
i ), there exists a proof Π ′1,Γ ′ of Γ ′ ` [M ]

Γ
i ∼

[N ]
Γ
i : LL→ [ c ]

Γ
i . Similarly, there exists a proof Π ′2,Γ ′ of Γ ′ ` [M ′ ]

Γ
i ∼ [N ′ ]

Γ
i : LL→ [ c′ ]

Γ
i .

In addition,

[ P ]
Γ
i = [ ifM =M ′ then P ′ else P ′′ ]

Γ
i = if [M ]

Γ
i = [M ′ ]

Γ
i then [ P ′ ]

Γ
i else [ P ′′ ]

Γ
i .

Similarly, [Q ]
Γ
i = if [N ]

Γ
i = [N ′ ]

Γ
i then [Q′ ]

Γ
i else [Q′′ ]

Γ
i .

Therefore, using Π1,Γ ′ , Π2,Γ ′ , Π ′1,Γ ′ , Π
′
2,Γ ′ and rule PIFL, we have

Γ ′ ` [ P ]
Γ
i ∼ [Q ]

Γ
i → (CΓ ′ ∪ C ′Γ ′)∪∀([ c ]

Γ
i ∪ [ c′ ]

Γ
i ) ⊆ (C ′′′ ∪ C ′′′′)∪∀([ c ]Γi ∪ [ c′ ]

Γ
i ).

Thus by Lemma 32, there exists C1 ⊆ (C ′′′ ∪ C ′′′′)∪∀([ c ]Γi ∪ [ c′ ]
Γ
i ) such that

[ Γ ]
n
i ` [ P ]

Γ
i ∼ [Q ]

Γ
i → C1.

Finally, [ C ]
n
i = [ (C ′ ∪ C ′′)∪∀(c ∪ c′) ]ni = ([ C ′ ]

n
i ∪ [ C ′′ ]

n
i )∪∀([ c ]

Γ
i ∪ [ c′ ]

Γ
i ) (by Lemma 33, whose

conditions are satisfied, by Lemma 14). Hence (C ′′′ ∪ C ′′′′)∪∀([ c ]Γi ∪ [ c′ ]
Γ
i ) ⊆ [ C ]

n
i , which proves the

claim.
– PIFP: then P = if M = t then P ′ else P ′′, Q = if N = t then Q′ else Q′′ for some messages M ,
N , some t ∈ K ∪N ∪ C, and some processes P ′, Q′, P ′′, Q′′, and

Π =

Π ′

Γ ` P ′ ∼ Q′ → C ′
Π ′′

Γ ` P ′′ ∼ Q′′ → C ′′
Π1

Γ `M ∼ N : LL→ c

Π2

Γ ` t ∼ t : LL→ c′

Γ ` P ∼ Q→ C = C ′ ∪ C ′′
.

By applying the induction hypothesis to Π ′, there exist C ′′′ ⊆ [ C ′ ]
n
i and a proof Π ′′′ of the judgement

[ Γ ]
n
i ` [ P ′ ]

Γ
i ∼ [Q′ ]

Γ
i → C ′′′. Similarly, there exist C ′′′′ ⊆ [ C ′′ ]

n
i and a proof Π ′′′′ of [ Γ ]

n
i `

[ P ′′ ]
Γ
i ∼ [Q′′ ]

Γ
i → C ′′′′.

Hence, by Lemma 9, for all Γ ′ ∈ branches([ Γ ]
n
i ), there exist CΓ ′ ⊆ C ′′′ and a proof Π1,Γ ′ of the

judgement Γ ′ ` [ P ′ ]
Γ
i ∼ [Q′ ]

Γ
i → CΓ ′ ; as well as C ′Γ ′ ⊆ C ′′′′ and a proof Π2,Γ ′ of Γ ′ ` [ P ′′ ]

Γ
i ∼

[Q′′ ]
Γ
i → C ′Γ ′ .

Moreover, by Lemma 29, for all Γ ′ ∈ branches([ Γ ]
n
i ), there exists a proof Π ′1,Γ ′ of the judgement Γ ′ `

[M ]
Γ
i ∼ [N ]

Γ
i : LL→ [ c ]

Γ
i . Similarly, there exists a proof Π ′2,Γ ′ of Γ ′ ` [ t ]

Γ
i ∼ [ t ]

Γ
i : LL→ [ c′ ]

Γ
i .

Since t ∈ K ∪N ∪ C, we also have [ t ]
Γ
i ∈ K ∪N ∪ C.

In addition,

[ P ]
Γ
i = [ ifM =M ′ then P ′ else P ′′ ]

Γ
i = if [M ]

Γ
i = [M ′ ]

Γ
i then [ P ′ ]

Γ
i else [ P ′′ ]

Γ
i .

Similarly, [Q ]
Γ
i = if [N ]

Γ
i = [N ′ ]

Γ
i then [Q′ ]

Γ
i else [Q′′ ]

Γ
i .

Therefore, using Π1,Γ ′ , Π2,Γ ′ , Π ′1,Γ ′ , Π
′
2,Γ ′ and rule PIFP, we have for all Γ ′ ∈ branches([ Γ ]

n
i )

Γ ′ ` [ P ]
Γ
i ∼ [Q ]

Γ
i → CΓ ′ ∪ C ′Γ ′ ⊆ C ′′′ ∪ C ′′′′.

Thus by Lemma 32, there exists C1 ⊆ (C ′′′ ∪ C ′′′′) such that

[ Γ ]
n
i ` [ P ]

Γ
i ∼ [Q ]

Γ
i → C1.

Finally, [ C ]
n
i = [ C ′ ∪ C ′′ ]ni = [ C ′ ]

n
i ∪ [ C ′′ ]

n
i (by Lemma 33). Hence (C ′′′ ∪ C ′′′′) ⊆ [ C ]

n
i , which

proves the claim.



– PIFLR: then P = if M1 = M2 then P> else P⊥, Q = if N1 = N2 then Q> else Q⊥ for some
messages M1, N1, M2, N2, and some processes P>, Q>, P⊥, Q⊥, and there exist m, p, m′, p′ such that

Π =

Π1

Γ `M1 ∼ N1 : Jτ l,1m ; τ l
′,1
p K→ c

Π2

Γ `M2 ∼ N2 : Jτ l
′′,1
m′ ; τ l

′′′,1
p′ K→ c′

b = (τ l,1m
?
= τ l

′′,1
m′ ) b′ = (τ l

′′,1
p

?
= τ l

′′′,1
p′ )

Π ′

Γ ` Pb ∼ Qb′ → C

Γ ` P ∼ Q→ C
.

By applying the induction hypothesis to Π ′, there exist C ′ ⊆ [ C ]
n
i and a proof Π ′′ of the judgement

[ Γ ]
n
i ` [ Pb ]

Γ
i ∼ [Qb′ ]

Γ
i → C ′.

Hence, by Lemma 9, for all Γ ′ ∈ branches([ Γ ]
n
i ), there existCΓ ′ ⊆ C ′, and a proofΠΓ ′ of Γ ′ ` [ Pb ]

Γ
i ∼

[Qb′ ]
Γ
i → CΓ ′ .

Moreover, by Lemma 29 applied to Π1, for all Γ ′ ∈ branches([ Γ ]
n
i ), there exists a proof Π ′1,Γ ′ of

the judgement Γ ′ ` [M1 ]
Γ
i ∼ [N1 ]

Γ
i : Jτ l,1m ; τ l

′,1
p K → [ c ]

Γ
i . Similarly, there exists a proof Π ′2,Γ ′ of

Γ ′ ` [M2 ]
Γ
i ∼ [N2 ]

Γ
i : Jτ l

′′,1
m′ ; τ l

′′′,1
p′ K→ [ c′ ]

Γ
i .

In addition,

[ P ]
Γ
i = [ ifM1 =M2 then P> else P⊥ ]

Γ
i = if [M1 ]

Γ
i = [M2 ]

Γ
i then [ P> ]

Γ
i else [ P⊥ ]

Γ
i .

Similarly, [Q ]
Γ
i = if [N1 ]

Γ
i = [N2 ]

Γ
i then [Q> ]

Γ
i else [Q⊥ ]

Γ
i .

Therefore, using ΠΓ ′ , Π ′1,Γ ′ , Π
′
2,Γ ′ and rule PIFLR, we have for all Γ ′ ∈ branches([ Γ ]

n
i )

Γ ′ ` [ P ]
Γ
i ∼ [Q ]

Γ
i → CΓ ′ ⊆ C ′ ⊆ [ C ]

n
i .

Thus by Lemma 32, there exists C1 ⊆ [ C ]
n
i such that

[ Γ ]
n
i ` [ P ]

Γ
i ∼ [Q ]

Γ
i → C1,

which proves the claim.
– PIFS: then P = ifM =M ′ then P ′ else P ′′, Q = if N = N ′ then Q′ else Q′′ for some messages
M , N , M ′, N ′, and some processes P ′, Q′, P ′′, Q′′, and

Π =

Π ′

Γ ` P ′′ ∼ Q′′ → C

Π1

Γ `M ∼ N : LL→ c

Π2

Γ `M ′ ∼ N ′ : HH→ c′

Γ ` P ∼ Q→ C
.

By applying the induction hypothesis to Π ′, there exists C ′ ⊆ [ C ]
n
i and a proof Π ′′ of the judgement

[ Γ ]
n
i ` [ P ′′ ]

Γ
i ∼ [Q′′ ]

Γ
i → C ′.

Hence, by Lemma 9, for all Γ ′ ∈ branches([ Γ ]
n
i ), there exist CΓ ′ ⊆ C ′ and a proof ΠΓ ′ of the judgement

Γ ′ ` [ P ′ ]
Γ
i ∼ [Q′ ]

Γ
i → CΓ ′ .

Moreover, by Lemma 29, for all Γ ′ ∈ branches([ Γ ]
n
i ), there exists a proof Π ′1,Γ ′ of the judgement

Γ ′ ` [M ]
Γ
i ∼ [N ]

Γ
i : LL → [ c ]

Γ
i . Similarly, there exists a proof Π ′2,Γ ′ of Γ ′ ` [M ′ ]

Γ
i ∼ [N ′ ]

Γ
i :

HH→ [ c′ ]
Γ
i .

In addition,

[ P ]
Γ
i = [ ifM =M ′ then P ′ else P ′′ ]

Γ
i = if [M ]

Γ
i = [M ′ ]

Γ
i then [ P ′ ]

Γ
i else [ P ′′ ]

Γ
i .



Similarly, [Q ]
Γ
i = if [N ]

Γ
i = [N ′ ]

Γ
i then [Q′ ]

Γ
i else [Q′′ ]

Γ
i .

Therefore, using ΠΓ ′ , Π ′1,Γ ′ , Π
′
2,Γ ′ and rule PIFS, we have for all Γ ′ ∈ branches([ Γ ]

n
i )

Γ ′ ` [ P ]
Γ
i ∼ [Q ]

Γ
i → CΓ ′ ⊆ C ′ ⊆ [ C ]

n
i .

Thus by Lemma 32, there exists C1 ⊆ [ C ]
n
i such that

[ Γ ]
n
i ` [ P ]

Γ
i ∼ [Q ]

Γ
i → C1,

which proves the claim.
– PIFI: then P = if M = M ′ then P ′ else P ′′, Q = if N = N ′ then Q′ else Q′′ for some messages
M , N , M ′, N ′, and some processes P ′, Q′, P ′′, Q′′, and there exist types T , T ′, and names m, p, such that

Π =

Π ′

Γ ` P ′′ ∼ Q′′ → C

Π1

Γ `M ∼ N : T ∗ T ′ → c

Π2

Γ `M ′ ∼ N ′ : Jτ l,am ; τ l
′,a
p K→ c′

Γ ` P ∼ Q→ C
.

By applying the induction hypothesis to Π ′, there exist C ′ ⊆ [ C ]
n
i and a proof Π ′′ of the judgement

[ Γ ]
n
i ` [ P ′′ ]

Γ
i ∼ [Q′′ ]

Γ
i → C ′.

Let Γ ′ ∈ branches([ Γ ]
n
i ). By applying Lemma 9 to Π ′′, there exists CΓ ′ ⊆ C ′, such that there exists a

proof ΠΓ ′ of the judgement Γ ′ ` [ P ′′ ]
Γ
i ∼ [Q′′ ]

Γ
i → CΓ ′ .

Moreover, by Lemma 29 applied to the proof Π1, there exists a proof Π ′1,Γ ′ of the type judgement Γ ′ `
[M ]

Γ
i ∼ [N ]

Γ
i : [ T ]

n ∗ [ T ′ ]n → [ c ]
Γ
i . Similarly, there exists a proof Π ′2,Γ ′ of the judgement Γ ′ `

[M ′ ]
Γ
i ∼ [N ′ ]

Γ
i :
[

Jτ l,am ; τ l
′,a
p K

]n
)→ [ c′ ]

Γ
i .

In addition,

[ P ]
Γ
i = [ ifM =M ′ then P ′ else P ′′ ]

Γ
i = if [M ]

Γ
i = [M ′ ]

Γ
i then [ P ′ ]

Γ
i else [ P ′′ ]

Γ
i .

Similarly, [Q ]
Γ
i = if [N ]

Γ
i = [N ′ ]

Γ
i then [Q′ ]

Γ
i else [Q′′ ]

Γ
i .

We distinguish two cases.

• If a is 1: Then
[

Jτ l,1m ; τ l
′,1
p K

]n
= Jτ l,1m ; τ l

′,1
p K, and using ΠΓ ′ , Π ′1,Γ ′ , Π

′
2,Γ ′ and rule PIFI, we have

for all Γ ′ ∈ branches([ Γ ]
n
i )

Γ ′ ` [ P ]
Γ
i ∼ [Q ]

Γ
i → CΓ ′ ⊆ C ′ ⊆ [ C ]

n
i .

Thus by Lemma 32, there exists C1 ⊆ [ C ]
n
i such that

[ Γ ]
n
i ` [ P ]

Γ
i ∼ [Q ]

Γ
i → C1,

which proves the claim in this case.
• If a is∞: Moreover, by applying Lemma 7 to Π ′2,Γ ′ , there exists a type

T ′′ ∈ branches(
[

Jτ l,∞m ; τ l
′,∞
p K

]n
),

such that there exists a proof Π ′′2,Γ ′ of Γ ′ ` [M ′ ]
Γ
i ∼ [N ′ ]

Γ
i : T ′′ → [ c′ ]

Γ
i .



By definition,
[

Jτ l,∞m ; τ l
′,∞
p K

]n
=
∨

1≤j≤nJτ
l,1
mj ; τ

l′,1
pj K. Therefore, by definition of branches, there

exists j such that T ′′ = Jτ l,1mj ; τ
l′,1
pj K.

Hence, using ΠΓ ′ , Π ′1,Γ ′ , Π
′′
2,Γ ′ , by applying rule PIFI, we have for all Γ ′ ∈ branches([ Γ ]

n
i ) that

Γ ′ ` [ P ]
Γ
i ∼ [Q ]

Γ
i → CΓ ′ ⊆ C ′ ⊆ [ C ]

n
i .

Thus by Lemma 32, there exists C1 ⊆ [ C ]
n
i such that

[ Γ ]
n
i ` [ P ]

Γ
i ∼ [Q ]

Γ
i → C1

which proves the claim in this case.
– PIFLR*: then P = if M1 = M2 then P> else P⊥, Q = if N1 = N2 then Q> else Q⊥ for some

messages M1, N1, M2, N2, and some processes P>, Q>, P⊥, Q⊥, and there exist m, p, l, l′ such that

Π =

Π1

Γ `M1 ∼ N1 : Jτ l,∞m ; τ l
′,∞
p K→ ∅

Π2

Γ `M2 ∼ N2 : Jτ l,∞m ; τ l
′,∞
p′ K→ ∅

Π>

Γ ` P> ∼ Q> → C1

Π⊥

Γ ` P⊥ ∼ Q⊥ → C2

Γ ` P ∼ Q→ C = C1 ∪ C2

.

By applying the induction hypothesis to Π>, there exist C ′ ⊆ [ C1 ]
n
i ⊆ [ C ]

n
i and a proof Π ′ of [ Γ ]

n
i `

[ P> ]
Γ
i ∼ [Q> ]

Γ
i → C ′. Similarly with Π⊥, there exist C ′′ ⊆ [ C2 ]

n
i ⊆ [ C ]

n
i and a proof Π ′′ of

[ Γ ]
n
i ` [ P⊥ ]

Γ
i ∼ [Q⊥ ]

Γ
i → C ′′.

Hence, by Lemma 9, for all Γ ′ ∈ branches([ Γ ]
n
i ), there exist constraint sets C1,Γ ′ ⊆ C ′(⊆ [ C ]

n
i ),

and C2,Γ ′ ⊆ C ′′(⊆ [ C ]
n
i ), and proofs Π>,Γ ′ and Π⊥,Γ ′ of Γ ′ ` [ P> ]

Γ
i ∼ [Q> ]

Γ
i → C1,Γ ′ and

Γ ′ ` [ P⊥ ]
Γ
i ∼ [Q⊥ ]

Γ
i → C2,Γ ′ .

Moreover, by Lemma 29 applied to Π1, for all Γ ′ ∈ branches([ Γ ]
n
i ), there exists a proof Π ′1,Γ ′ of

Γ ′ ` [M1 ]
Γ
i ∼ [N1 ]

Γ
i :

∨
1≤j≤nJτ

l,1
mj ; τ

l′,1
pj K → [ c ]

Γ
i . Similarly, there exists a proof Π ′2,Γ ′ of Γ ′ `

[M2 ]
Γ
i ∼ [N2 ]

Γ
i :
∨

1≤j≤nJτ
l,1
mj ; τ

l′,1
pj K→ [ c′ ]

Γ
i .

Let Γ ′ ∈ branches([ Γ ]
n
i ). By Lemma 7, there exists T ∈ branches(

∨
1≤j≤nJτ

l,1
mj ; τ

l′,1
pj K) such that there

exists a proof Π ′′1,Γ ′ of Γ ′ ` [M1 ]
Γ
i ∼ [N1 ]

Γ
i : T → [ c ]

Γ
i .

Similarly, there exists T ′ ∈ branches(
∨

1≤j≤nJτ
l,1
mj ; τ

l′,1
pj K) such that there exists a proof Π ′′2,Γ ′ of Γ ′ `

[M2 ]
Γ
i ∼ [N2 ]

Γ
i : T ′ → [ c ]

Γ
i .

By definition of branches, there exist j, j′ such that T = Jτ l,1mj ; τ
l′,1
pj K and T ′ = Jτ l,1mj′ ; τ

l′,1
pj′

K.
In addition,

[ P ]
Γ
i = [ ifM1 =M2 then P> else P⊥ ]

Γ
i = if [M1 ]

Γ
i = [M2 ]

Γ
i then [ P> ]

Γ
i else [ P⊥ ]

Γ
i .

Similarly, [Q ]
Γ
i = if [N1 ]

Γ
i = [N2 ]

Γ
i then [Q> ]

Γ
i else [Q⊥ ]

Γ
i .

Therefore, using Π>,Γ ′ , Π⊥,Γ ′ , Π ′′1,Γ ′ , Π
′′
2,Γ ′ and rule PIFLR, either j = j′ and we have

Γ ′ ` [ P ]
Γ
i ∼ [Q ]

Γ
i → C1,Γ ′(⊆ [ C ]

n
i )

or j 6= j′ and we have
Γ ′ ` [ P ]

Γ
i ∼ [Q ]

Γ
i → C2,Γ ′(⊆ [ C ]

n
i ).



This holds for any Γ ′ ∈ branches([ Γ ]
n
i ).

Thus by Lemma 32, there exists C ′ ⊆ [ C ]
n
i such that

[ Γ ]
n
i ` [ P ]

Γ
i ∼ [Q ]

Γ
i → C ′

which proves the claim in this case.
– PIFLR’*: then P = if M1 = M2 then P> else P⊥, Q = if N1 = N2 then Q> else Q⊥ for some

messages M1, N1, M2, N2, and some processes P>, Q>, P⊥, Q⊥, and there exist names m, p,m′, p′ such
that

Π =

Π1

Γ `M1 ∼ N1 : Jτ l,am ; τ l
′,a
p K→ ∅

Π2

Γ `M2 ∼ N2 : Jτ l
′′,a′

m′ ; τ l
′′′,a′

p′ K→ ∅
Π ′

Γ ` P⊥ ∼ Q⊥ → C

Γ ` P ∼ Q→ C
.

By applying the induction hypothesis to Π ′, there exist C ′ ⊆ [ C ]
n
i and a proof Π ′′ of the judgement

[ Γ ]
n
i ` [ P⊥ ]

Γ
i ∼ [Q⊥ ]

Γ
i → C ′.

Hence, by Lemma 9, for all Γ ′ ∈ branches([ Γ ]
n
i ), there exist CΓ ′ ⊆ C ′(⊆ [ C ]

n
i ), and a proof ΠΓ ′ of

Γ ′ ` [ P⊥ ]
Γ
i ∼ [Q⊥ ]

Γ
i → CΓ ′ .

Moreover, by Lemma 29 applied to Π1, for all Γ ′ ∈ branches([ Γ ]
n
i ), there exists a proof Π ′1,Γ ′ of

Γ ′ ` [M1 ]
Γ
i ∼ [N1 ]

Γ
i :

[
Jτ l,am ; τ l

′,a
p K

]n
→ [ c ]

Γ
i . Similarly, there exists a proof Π ′2,Γ ′ of Γ ′ `

[M2 ]
Γ
i ∼ [N2 ]

Γ
i :
[

Jτ l
′′,a′

m′ ; τ l
′′′,a′

p′ K
]n
→ [ c′ ]

Γ
i .

We distinguish several cases, depending on a and a′.
• if a and a′ are both 1: Then this rule is a particular case of rule PIFLR, and the result is proved in a

similar way.
• if a is 1 and a′ is∞: Then

[
Jτ l,am ; τ l

′,a
p K

]n
=
[

Jτ l,1m ; τ l
′,1
p K

]n
, and[

Jτ l
′′,a
m′ ; τ l

′′′,a
p′ K

]n
=

∨
1≤j≤n

Jτ l
′′,1
m′j

; τ l
′′′,1
pj K.

Let Γ ′ ∈ branches([ Γ ]
n
i ).

By Lemma 7, using Π ′2,Γ ′ , there exists j ∈ J1, nK such that there exists a proof Π ′′2,Γ ′ of Γ ′ ` [M2 ]
Γ
i ∼

[N2 ]
Γ
i : Jτ l

′′,1
m′j

; τ l
′′′,1
p′j

K→ [ c′ ]
Γ
i .

In addition,

[ P ]
Γ
i = [ ifM1 =M2 then P> else P⊥ ]

Γ
i = if [M1 ]

Γ
i = [M2 ]

Γ
i then [ P> ]

Γ
i else [ P⊥ ]

Γ
i .

Similarly, [Q ]
Γ
i = if [N1 ]

Γ
i = [N2 ]

Γ
i then [Q> ]

Γ
i else [Q⊥ ]

Γ
i .

For any j ∈ J1, nK, τ l,1m 6= τ l
′′,1
m′j

; and τ l
′,1
p 6= τ l

′′′,1
p′j

.
Therefore, using ΠΓ ′ , Π ′1,Γ ′ , Π

′′
2,Γ ′ and rule PIFLR, we have

Γ ′ ` [ P ]
Γ
i ∼ [Q ]

Γ
i → CΓ ′(⊆ [ C ]

n
i ).

This holds for any Γ ′ ∈ branches([ Γ ]
n
i ).



Thus by Lemma 32, there exists C ′ ⊆ [ C ]
n
i such that

[ Γ ]
n
i ` [ P ]

Γ
i ∼ [Q ]

Γ
i → C ′

which proves the claim in this case.
• if a is∞ and a′ is 1: This case is similar to the symmetric one.
• if a and a′ both are∞: This case is similar to the case where a is 1 and a′ is∞.

– PIFALL: this case is similar to the PIFL case.

The next theorem corresponds to the first step mentioned in Subsection 6.4.

Theorem 7 (Typing n sessions). For all Γ , P , Q and C, such that

Γ ` P ∼ Q→ C

then for all n ≥ 1, there exists C ′ ⊆ ∪×1≤i≤n[ C ]
n
i such that

[ Γ ]
n ` [ P ]

Γ
1 | . . . | [ P ]

Γ
n ∼ [Q ]

Γ
1 | . . . | [Q ]

Γ
n → C ′

where [ Γ ]
n is defined as

⋃
1≤i≤n [ Γ ]

n
i .

Proof. Let us assume Γ , P , Q and C are such that

Γ ` P ∼ Q→ C.

The claim clearly holds (using Theorem 6) if n = 1. Let then n ≥ 2.
Note that the union

⋃
1≤i≤n [ Γ ]

n
i is well-defined, as for i 6= j, dom([ Γ ]

n
i ) ∩ dom([ Γ ]

n
j ) ⊆ K ∪N , and

the types associated to keys and nonces are the same in each [ Γ ]
n
i .

The property follows from Theorem 6. Indeed, this theorem guarantees that for all i ∈ J1, nK, there exists
Ci ⊆ [ C ]

n
i such that

[ Γ ]
n
i ` [ P ]

Γ
i ∼ [Q ]

Γ
i → Ci.

By construction, all variables in dom([ Γ ]
n
i ) are indexed with i, and all keys and nonces are either unindexed

or indexed with i, and as we mentioned earlier, for all i, j, [ Γ ]
n
i and [ Γ ]

n
j have the same values on their common

domain.
Hence we have [ Γ ]

n
= [ Γ ]

n
i ] (

⋃
j 6=i ([ Γ ]

n
j )|dom([ Γ ]nj )\dom([ Γ ]ni )

). Therefore, by Lemma 12, we have
for all i ∈ J1, nK

[ Γ ]
n ` [ P ]

Γ
i ∼ [Q ]

Γ
i → C ′i

where
C ′i = {(c, Γ ′ ∪ Γ ′′)|(c, Γ ′) ∈ Ci ∧ Γ ′′ ∈ branches(

⋃
j 6=i

([ Γ ]
n
j )|di,j )}

and
di,j = dom([ Γ ]

n
j )\dom([ Γ ]

n
i ).

Thus, by applying rule PPAR n− 1 times, we have

[ Γ ]
n ` [ P ]

Γ
1 | . . . | [ P ]

Γ
n ∼ [Q ]

Γ
1 | . . . [Q ]

Γ
n → ∪×1≤i≤nC

′
i.

It only remains to be proved that ∪×1≤i≤nC
′
i ⊆ ∪×1≤i≤n[ C ]

n
i . Since for all i ∈ J1, nK we haveCi ⊆ [ C ]

n
i ,

by Lemma 13 we know that ∪×1≤i≤nCi ⊆ ∪×1≤i≤n[ C ]
n
i .



Hence it suffices to show that ∪×1≤i≤nC
′
i ⊆ ∪×1≤i≤nCi.

Let (c, Γ ′) ∈ ∪×1≤i≤nC
′
i. By definition there exist (c1, Γ1) ∈ C ′1, . . . , (cn, Γn) ∈ C ′n such that c =⋃

1≤i≤n ci, Γ
′ =

⋃
1≤i≤n Γi, and for all i 6= j, Γi and Γj are compatible.

For all i, (ci, Γi) ∈ C ′i. Thus by definition of C ′i there exist Γ ′i and Γ ′′i such that (ci, Γ ′i ) ∈ Ci, Γ ′′i ∈
branches(

⋃
j 6=i ([ Γ ]

n
j )|di,j ), and Γi = Γ ′i ∪ Γ ′′i . Since for all i 6= j, Γi and Γj are compatible, we know that

Γ ′i and Γ ′j also are, as well as Γ ′i and Γ ′′j .
Hence, Γ ′ =

⋃
1≤i≤n Γi =

⋃
1≤i≤n(Γ

′
i ∪ Γ ′′i ) = (

⋃
1≤i≤n Γ

′
i ) ∪ (

⋃
1≤i≤n Γ

′′
i ).

Moreover, (
⋃

1≤i≤n Γ
′′
i ) = (

⋃
1≤i≤n Γ

′
i ). Indeed, they have the same domain, i.e.⋃

i6=j

di,j =
⋃
i 6=j

dom([ Γ ]
n
j )\dom([ Γ ]

n
i ) =

⋃
i

dom([ Γ ]
n
i )

since n ≥ 2, and are compatible since for all i 6= j, Γ ′i and Γ ′′j are compatible.
Thus Γ ′ = (

⋃
1≤i≤n Γ

′
i ), and since the Γ ′i are all pairwise compatible, and for all i, (ci, Γ ′i ) ∈ Ci, we have

(c, Γ ′) ∈ ∪×1≤i≤nCi.
This proves that ∪×1≤i≤nC

′
i ⊆ ∪×1≤i≤nCi, which concludes the proof.

This next theorem, together with Theorem 11, entails Theorem 3:

Theorem 8. Consider P , Q, P ′ ,Q′, C, C ′, such that P , Q and P ′, Q′ do not share any variable. Consider Γ ,
containing only keys and nonces with types of the form τ l,1n .

Assume that P and Q only bind nonces and keys with infinite nonce types, i.e. using new m : τ l,∞m and
new k : seskeyl,∞(T ) for some label l and type T ; while P ′ and Q′ only bind nonces and keys with finite types,
i.e. using new m : τ l,1m and new k : seskeyl,1(T ).

Let us abbreviate by new n the sequence of declarations of each nonce m ∈ dom(Γ ) and session key k such
that Γ (k, k) = seskeyl,1(T ) for some l, T . If

– Γ ` P ∼ Q→ C,
– Γ ` P ′ ∼ Q′ → C ′,
– C ′∪×(∪×1≤i≤n[ C ]

n
i ) is consistent for all n ≥ 1,

then new n. ((!P ) | P ′) ≈t new n. ((!Q) | Q′).

Proof. Note that since Γ only contains keys and nonces with finite types, for all i, [ P ]
Γ
i = [ P ]

∅
i is just P

where all variables and some names have been α-renamed, and similarly for Q. Since P ′, Q′ only contain nonces
with finite types, [ P ′ ]Γ1 and [Q′ ]

Γ
1 are P ′, Q′ where all variables have been α-renamed.

By Theorem 7, we know that for all i, n,

[ Γ ]
n ` [ P ]

Γ
1 | . . . | [ P ]

Γ
n ∼ [Q ]

Γ
1 | . . . | [Q ]

Γ
n → C ′′

where [ Γ ]
n
=
⋃

1≤i≤n [ Γ ]
n
i , and C ′′ ⊆ ∪×1≤i≤n[ C ]

n
i .

By Theorem 6, there also exists C ′′′ ⊆ [ C ′ ]
n
1 , such that

[ Γ ]
n
1 ` [ P ′ ]

Γ
1 ∼ [Q′ ]

Γ
1 → C ′′′.

Therefore, by Lemma 12, we have

[ Γ ]
n ` [ P ′ ]

Γ
1 ∼ [Q′ ]

Γ
1 → C ′′′′



where C ′′′′ is C ′′′ where all the environments have been extended with
⋃

1≤i≤n ([ Γ ]
n
i )N ,K (note that this

environment still only contains nonces and keys).
Therefore, by rules PPAR and PNEW,

Γ ′ ` new n. ([ P ]
Γ
1 | . . . | [ P ]

Γ
n ) | [ P

′ ]
Γ
1 ∼ new n. ([Q ]

Γ
1 | . . . | [Q ]

Γ
n ) | [Q

′ ]
Γ
1 → C ′′∪×C ′′′′

where Γ ′ is the restriction of [ Γ ]
n to keys.

If [ C ′ ]n1∪×(∪×1≤i≤n[ C ]
n
i ) is consistent, similarly to the reasoning in the proof of Theorem 7, C ′′∪×C ′′′′

also is.
Then, by Theorem 5,

new n. ([ P ]
Γ
1 | . . . | [ P ]

Γ
n ) | [ P

′ ]
Γ
1 ≈t new n. ([Q ]

Γ
1 | . . . | [Q ]

Γ
n ) | [Q

′ ]
Γ
1

which implies (since [ P ′ ]
Γ
1 is just a renaming of the variables in P ′) that

new n. ([ P ]
Γ
1 | . . . | [ P ]

Γ
n ) | P

′ ≈t new n. ([Q ]
Γ
1 | . . . | [Q ]

Γ
n ) | Q

′

Since [ P ]
Γ
i and [Q ]

Γ
i are just α-renamings of P , Q, this implies that for all n,

new n. (P1 | . . . | Pn) | P ′ ≈t new n. (Q1 | . . . | Qn) | Q′

where P1 = · · · = Pn = P , and Q1 = · · · = Qn = Q. Therefore

new n. ((!P ) | P ′) ≈t new n. ((!Q) | Q′).

B.3 Checking consistency

In this subsection, we first recall in detail the check_const procedure presented in Section 6.3, which was
described in Section 6.3,and prove its correctness in the non-replicated case.

For a constraint c and an environment Γ , let

step1Γ (c) := (JcKσF ,σ′F , Γ
′),

where
F = {x ∈ dom(Γ ) | ∃m,n, l, l′. Γ (x) = Jτ l,1m ; τ l

′,1
n K},

σF , σ
′
F are the substitutions defined by

– dom(σF ) = dom(σ′F ) = F

– ∀x ∈ F. ∀m,n, l, l′.Γ (x) = Jτ l,1m ; τ l
′,1
n K⇒ σF (x) = m ∧ σ′F (x) = n,

and Γ ′ is the environment obtained by extending the restriction of Γ to dom(Γ )\F with Γ ′(n) = τ l,1n for all
nonce n such that τ l,1n occurs in Γ . This is well defined, since by assumption on the well-formedness of the
processes and by definition of the processes, a name n is always associated with the same label.

We define the condition step2Γ (c) as: check that c only contains elements of the form M ∼ N where M
and N are both

– enc(M ′,M ′′), enc(N ′, N ′′) where M ′′, N ′′ are either



• keys k, k′ where ∃T.Γ (k, k′) <: keyHH(T );
• or a variable x such that ∃T.Γ (x) <: keyHH(T );

– or encryptions aenc(M ′,M ′′), aenc(N ′, N ′′) where
• M ′ and N ′ contain directly under pairs a nonce n such that Γ (n) = τ HH,an or a secret key k such

that ∃T, k′.Γ (k, k′) <: keyHH(T ) or Γ (k′, k) <: keyHH(T ), or a variable x such that ∃m,n, a.Γ (x) =
Jτ HH,am ; τ HH,an K, or a variable x such that ∃T.Γ (x) <: keyHH(T );
• M ′′ and N ′′ are either
∗ public keys pk(k), pk(k′) where ∃T.Γ (k, k′) <: keyHH(T );
∗ or public keys pk(x), pk(x) where ∃T.Γ (x) <: keyHH(T );
∗ or a variable x such that ∃T, T ′.Γ (x) = pkey(T ) and T <: keyHH(T ′);

– or hashes h(M ′), h(N ′), where M ′, N ′ similarly contain a secret value under pairs;
– or signatures sign(M ′,M ′′), sign(N ′,M ′′) where M ′′, N ′′ are either
• keys k, k′ where ∃T.Γ (k, k′) <: keyHH(T );
• or a variable x such that ∃T.Γ (x) <: keyHH(T );

step2Γ (c) returns true if this check succeeds and false otherwise.
We then proceed to step3. We define condition step3Γ (c) as follows. We consider all M ∼M ′ ∈ c and

N ∼ N ′ ∈ c, such that M , N are unifiable with a most general unifier µ, and such that

∀x ∈ dom(µ). ∀l, l′,m, p. (Γ (x) = Jτ l,∞m ; τ l
′,∞
p K)⇒ (xµ ∈ X ∨ ∃i. xµ = mi).

We then define the substitution θ, over all variables x ∈ dom(µ) such that Γ (x) = Jτ l,∞m ; τ l
′,∞
p K by

∀x ∈ dom(µ). ∀l, l′,m, p, i. (Γ (x) = Jτ l,∞m ; τ l
′,∞
p K ∧ µ(x) = mi)⇒ θ(x) = pi

and θ(x) = x otherwise.
Let then α be the restriction of µ to {x ∈ dom(µ) | Γ (x) = LL ∧ µ(x) ∈ N}.
We then check that M ′αθ = N ′αθ.

Similarly, we check that the symmetric condition, when M ′ and N ′ are unifiable, holds for all M ∼M ′ ∈ c
and N ∼ N ′ ∈ c.

If all these checks succeed, step3Γ (c) returns true.

Finally, check_const(C) is computed by considering all (c, Γ ) ∈ C. We let (c, Γ ) = step1Γ (c). We then
check that step2Γ (c) = true and step3Γ (c) = true. If this check succeeds for all (c, Γ ) ∈ C, we say that
check_const(C) = true.

Note that we only consider constraints obtained by typing, and therefore such that Γ is well-formed, and
such that there exists cφ ⊆ c such that Γ ` φl(c) ∼ φr(c) : LL→ cφ.

Indeed, it is clear by induction on the typing rules for terms that:

∀Γ,M,N, T, c. Γ `M ∼ N : T → c =⇒ (∀u ∼ v ∈ c. ∃c′ ⊆ c. Γ ` u ∼ v : LL→ c′).



From this result, and using Lemmas 5 and 14, it follows clearly by induction on the typing rules for processes that

∀Γ, P,Q,C. Γ ` P ∼ Q→ C =⇒ (∀(c, Γ ′) ∈ C. ∀u ∼ v ∈ c. ∃c′ ⊆ c. Γ ′ ` u ∼ v : LL→ c′).

Let us now prove that the procedure is correct for constraints without infinite nonce types, i.e. constraint sets
C such that

∀(c, Γ ) ∈ C. ∀l, l′,m, n. Γ (x) 6= Jτ l,∞m ; τ l
′,∞
n K.

We fix such a constraint set C (obtained by typing).
Let (c, Γ ) ∈ C. Let (c, Γ ) = step1Γ (c). Let us assume that step2Γ (c) = true and step3Γ (c) = true.

Lemma 34. If c is consistent in Γ , then c is consistent in Γ .

Proof. Let c′ be a set of constraints and Γ ′ be a typing environment such that c′ ⊆ c, Γ ′ ⊆ Γ , Γ ′N ,K = ΓN ,K
and vars(c′) ⊆ dom(Γ ′). Let σ, σ′ be two substitutions such that Γ ′N ,K ` σ ∼ σ′ : Γ ′X → cσ (for some set of
constraints cσ ⊆ Jc′Kσ,σ′ ).

To prove the claim, we need to show that the frames φΓLL∪φl(Jc′Kσ,σ′)) and (φΓLL∪φr(Jc′Kσ,σ′)) are statically
equivalent. Let D denote dom(Γ ′X )(= dom(σ) = dom(σ′)).

For all x ∈ F ∩ D, by definition of F , there exist m,n, l, l′ such that Γ (x) = Jτ l,1m ; τ l
′,1
n K. Thus, by

well-typedness of σ, σ′, there exists cx such that Γ ` σ(x) ∼ σ′(x) : Jτ l,1m ; τ l
′,1
n K→ cx. Hence, by Lemma 16,

since σ, σ′ are ground, we have σ(x) = m and σ′(x) = n. Therefore, σ|D∩F = σF |D and σ′|D∩F = σ′F |D.
Let c′′ be the set Jc′Kσ|D∩F ,σ′|D∩F . By Lemma 13, we have Jc′Kσ,σ′ = Jc′′Kσ|D\F ,σ′|D\F . We also have

c′′ = Jc′KσF |D,σ′F |D , which is equal to Jc′KσF ,σ′F since vars(c′) ⊆ D. Hence c′′ ⊆ c.
Let Γ ′′ = Γ ′|dom(Γ ′)\F . We have Γ ′′ ⊆ Γ .
Moreover, since Γ ′N ,K ` σ ∼ σ′ : Γ ′X → cσ, it is clear from the definition of well-typedness for

substitutions that we also have Γ ′′N ,K ` σ|D\F ∼ σ′|D\F : Γ ′′X → c′σ for some c′σ ⊆ cσ. Note that
c′σ ⊆ cσ ⊆ Jc′Kσ,σ′ = Jc′′Kσ|D\F ,σ′|D\F . Finally, vars(c′′) ⊆ vars(c′)\F by definition of instantiation, thus
vars(c′′) ⊆ dom(Γ ′′).

We have established that c′′ ⊆ c, Γ ′′ ⊆ Γ , vars(c′′) ⊆ dom(Γ ′′), Γ ′′N ,K ` σ|D\F ∼ σ′|D\F :

Γ ′′X → c′σ, and c′σ ⊆ Jc′′Kσ|D\F ,σ′|D\F . Therefore, by definition of the consistency of c in Γ , the frames

φΓLL ∪ φl(Jc′′Kσ|D\F ,σ′|D\F ) and φΓLL ∪ φr(Jc′′Kσ|D\F ,σ′|D\F ) are statically equivalent.

Since φΓLL ⊆ φΓLL, that is to say that φΓLL ∪ φl(Jc′Kσ,σ′) and φΓLL ∪ φr(Jc′Kσ,σ′) are statically equivalent. This
proves the consistency of c in Γ .

Lemma 35. For all ground σ, σ′ such that ∃Γ ′ ⊆ Γ . ∃cσ. Γ ′N ,K ` σ ∼ σ′ : Γ ′X → cσ , we have

step2Γ (JcKσ,σ′) = true.

Proof. Let M ∼ N ∈ JcKσ,σ′ . By definition there exist M ′ ∼ N ′ ∈ c such that M = M ′σ and N = N ′σ′.
Since step2Γ (c) = true, there are four cases for M ′ and N ′: they can be symmetric or asymmetric encryptions,
hashes, or signatures. These four cases are similar, we write the proof for the asymmetric encryption case.

In this case, there exist M ′1, M ′2, N ′1, N ′2 such that M ′ = aenc(M ′1,M
′
2) and N ′ = aenc(N ′1, N

′
2). Let us

show that M ′σ ∼ N ′σ′ satisfies the conditions for step2Γ (JcKσ,σ′).
Since step2Γ (c) = true we know that M ′1 and N ′1 contain directly under pairs



– a nonce n such that Γ (n) = τ HH,an

– or a secret key k such that ∃T, k′.Γ (k, k′) <: keyHH(T ) or Γ (k′, k) <: keyHH(T ),
– or a variable x such that ∃m,n, a.Γ (x) = Jτ HH,am ; τ HH,an K,
– or a variable x such that ∃T.Γ (x) <: keyHH(T ).

In the fist two cases, M ′1σ (resp. N ′1σ
′) clearly contains the same nonce or keys under pairs. The last two cases

are similar, we write the proof for the case of a variable x such that Γ (x) = Jτ HH,am ; τ HH,an K. Either x /∈ dom(σ),
and thus x still appears under pairs in M ′1σ; or x ∈ dom(σ). In that case, σ(x) appear directly under pairs in
M ′1σ (resp. σ′(x) in N ′1σ

′). By assumption, there exists c′ such that Γ ` σ(x) ∼ σ′(x) : Jτ HH,am ; τ HH,an K → c′.
Hence, by Lemma 16, σ(x) = m (resp. σ′(x) = n) and Γ (n) = τ HH,an (resp. Γ (m) = τ HH,am ). Therefore, in all
cases, M ′1σ and N ′1σ

′ satisfy the required conditions.
In addition, since step2Γ (c) = true we also know that M ′2 and N ′2 are either

– public keys pk(k), pk(k′) where ∃T.Γ (k, k′) <: keyHH(T );
– or public keys pk(x), pk(x) where ∃T.Γ (x) <: keyHH(T );
– or a variable x such that ∃T, T ′.Γ (x) = pkey(T ) and T <: keyHH(T ′);

In the first case M ′2σ =M ′2 and N ′2σ
′ = N ′2 are still the same public keys. In the two other cases, similarly to

the proof for M ′1 and N ′1, either x /∈ dom(σ), and we also have M ′2σ =M ′2 and N ′2σ
′ = N ′2; or x ∈ dom(σ),

and by well-typedness of σ, σ′ and Lemma 20, M ′2σ and N ′2σ
′ are keys of the right type. Therefore, in all cases,

M ′2σ and N ′2σ
′ satisfy the required conditions.

Thus, M ′σ ∼ N ′σ′ satisfies the conditions for step2Γ (JcKσ,σ′).

Lemma 36. There exists cφ ⊆ c such that Γ ` φΓLL ∪ φl(c) ∼ φΓLL ∪ φr(c) : LL→ cφ.

Proof. As explained previously, there exists c′φ ⊆ c such that Γ ` φl(c) ∼ φr(c) : LL→ c′φ.

Moreover, we have by definition Γ = ΓF ] Γ
′
, where F is defined as in step1 and ΓF is the restriction of

Γ to F , and for some Γ
′ ⊆ Γ . In addition (ΓF )N ,K ` σF ∼ σ′F : (ΓF )X → ∅ using rule TLR1. By definition

of F , and since the refinement types in Γ only contain ground terms by assumption, we also know that Γ does
not contain refinement types. Hence, by Lemma 24, and Lemma 12, there exists cφ ⊆ JcKσF ,σ′F , i.e. cφ ⊆ c such

that Γ ` φl(c)σF ∼ φr(c)σ
′
F : LL→ cφ. Since c = JcKσF ,σ′F , this proves that Γ ` φl(c) ∼ φr(c) : LL→ cφ.

Besides, it is clear from the definition of φΓLL and rules TCSTFN, TNONCEL, TKEY, TPUBKEYL, TVKEYL
that Γ ` φΓLL ∼ φΓLL : LL→ ∅.

These two results prove the lemma.

Lemma 37. For all ground σ, σ′ such that ∃Γ ′ ⊆ Γ . ∃cσ ⊆ JcKσ,σ′ . Γ
′
N ,K ` σ ∼ σ′ : Γ ′X → cσ , there exists

cφ ⊆ JcKσ,σ′ such that Γ ` φΓLL ∪ φl(JcKσ,σ′) ∼ φΓLL ∪ φr(JcKσ,σ′) : LL→ cφ.

Proof. By Lemma 36, there exists c′φ ⊆ c such that Γ ` φΓLL ∪ φl(c) ∼ φΓLL ∪ φr(c) : LL → c′φ. Since
Γ ′N ,K ` σ ∼ σ′ : Γ ′X → cσ, and since (Γ\Γ ′X ) does not contain variables with finite nonce types, by

Lemma 24, there exists cφ ⊆
r
c′φ

z

σ,σ′
∪ cσ such that Γ\Γ ′X ` (φΓLL ∪ φl(c))σ ∼ (φΓLL ∪ φr(c))σ

′ : LL→ cφ.

Hence, by Lemma 12, we have Γ ` φΓLL ∪ φl(c)σ ∼ φΓLL ∪ φr(c)σ
′ : LL→ cφ.

In addition, c′φ ⊆ c and cσ ⊆ JcKσ,σ′ , we have
r
c′φ

z

σ,σ′
∪ cσ ⊆ JcKσ,σ′ . Therefore cφ ⊆ JcKσ,σ′ , which

concludes the proof.

Lemma 38. For all ground σ, σ′, for all recipe R such that



– ∃Γ ′ ⊆ Γ . ∃cσ ⊆ JcKσ,σ′ . Γ
′
N ,K ` σ ∼ σ′ : Γ ′X → cσ ,

– vars(R) ⊆ dom(φΓLL ∪ φl(c)),
– R(φΓLL ∪ φl(JcKσ,σ′)) ↓6= ⊥ and R(φΓLL ∪ φr(JcKσ,σ′)) ↓6= ⊥,
– φl(JcKσ,σ′) and φr(JcKσ,σ′) restricted to vars(R) are ground,

there exists a recipe R′ without destructors, i.e. in which dec, adec, checksign, π1, π2, do not appear, such
that

– vars(R′) ⊆ vars(R),
– R(φΓLL ∪ φl(JcKσ,σ′)) ↓= R′(φΓLL ∪ φl(JcKσ,σ′)),
– R(φΓLL ∪ φr(JcKσ,σ′)) ↓= R′(φΓLL ∪ φr(JcKσ,σ′)).

Proof. We prove the property by induction on R.

– If R = x ∈ AX or R = a ∈ C ∪ FN then the claim holds with R′ = R.
– If the head symbol of R is a constructor,i.e. if there exist R1, R2 such that R = pk(R1) or R = vk(R1) or
R = enc(R1, R2) or R = aenc(R1, R2) or R = sign(R1, R2) or R = 〈R1, R2〉 or R = h(R1), we may
apply the induction hypothesis to R1 (and R2 when it is present). All these case are similar, we write the
proof generically for R = f(R1, R2). By the induction hypothesis, there exist R′1, R′2 such that
• for all i ∈ {1, 2}, vars(R′i) ⊆ vars(Ri),
• for all i ∈ {1, 2}, Ri(φΓLL ∪ φl(JcKσ,σ′)) ↓= R′i(φ

Γ
LL ∪ φl(JcKσ,σ′)),

• for all i ∈ {1, 2}, Ri(φΓLL ∪ φr(JcKσ,σ′)) ↓= R′i(φ
Γ
LL ∪ φr(JcKσ,σ′)).

Let R′ = f(R′1, R
′
2). The first point imply that R′ satisfies the conditions on variables. Since R(φΓLL ∪

φl(JcKσ,σ′)) ↓= f(R1(φ
Γ
LL ∪ φl(JcKσ,σ′)) ↓, R2(φ

Γ
LL ∪ φl(JcKσ,σ′)) ↓), the second point implies that

R(φΓLL∪φl(JcKσ,σ′)) ↓= R′(φΓLL∪φl(JcKσ,σ′)). Similarly, R(φΓLL∪φr(JcKσ,σ′)) ↓= R′(φΓLL∪φr(JcKσ,σ′)),
and the claim holds.

– If R = dec(S,K) for some recipes S, K, then since R(φΓLL ∪ φl(JcKσ,σ′)) ↓6= ⊥, we have

K(φΓLL ∪ φl(JcKσ,σ′)) ↓= k

for some k ∈ K, and S(φΓLL ∪ φl(JcKσ,σ′)) ↓= enc(M,k), where M = R(φΓLL ∪ φl(JcKσ,σ′)) ↓.
Similarly, there exists k′ ∈ K such thatK(φΓLL∪φr(JcKσ,σ′)) ↓= k′ and S(φΓLL∪φr(JcKσ,σ′)) ↓= enc(N, k′),

where N = R(φΓLL ∪ φr(JcKσ,σ′)) ↓.
In addition, by Lemma 37, there exists c′ such that Γ ` φΓLL∪φl(JcKσ,σ′) ∼ φΓLL∪φr(JcKσ,σ′) : LL→ c′. Thus

by Lemma 23, there exists c′′ such that Γ ` K(φΓLL ∪ φl(JcKσ,σ′)) ↓∼ K(φΓLL ∪ φr(JcKσ,σ′)) ↓: LL→ c′′,
which is to say Γ ` k ∼ k′ : LL → c′′. Hence by Lemma 20 and by well-formedness of Γ , k = k′ and
Γ (k, k) <: keyLL(T ) for some type T .
Since S(φΓLL∪φl(JcKσ,σ′)) ↓= enc(M,k) 6= ⊥, and vars(S) ⊆ vars(R), by the induction hypothesis, there

exists S′ such that vars(S′) ⊆ vars(S), S′(φΓLL ∪ φl(JcKσ,σ′)) = S(φΓLL ∪ φl(JcKσ,σ′)) ↓= enc(M,k), and

S′(φΓLL ∪ φr(JcKσ,σ′)) = S(φΓLL ∪ φr(JcKσ,σ′)) ↓= enc(N, k).
It is then clear that either S′ = x for some variable x ∈ AX , or S′ = enc(S′′,K ′) for some S′′, K ′.
We have already shown that Γ (k, k) <: keyLL(T ). In addition, by Lemma 35, step2Γ (JcKσ,σ′) = true.
Hence JcKσ,σ′ only contains messages encrypted with keys k′′ such that Γ (k′′, k′′′) <: keyHH(T ′) or
Γ (k′′′, k′′) <: keyHH(T ′) for some T ′, k′′′. Therefore the first case is not possible.



Hence there exist S′′, K ′ such that S′ = enc(S′′,K ′). Since S′(φΓLL ∪ φl(JcKσ,σ′)) = enc(M,k), we have

S′′(φΓLL ∪ φl(JcKσ,σ′)) = M . Hence R(φΓLL ∪ φl(JcKσ,σ′)) ↓= M = S′′(φΓLL ∪ φl(JcKσ,σ′)), and similarly
for φr(JcKσ,σ′). Moreover, S′′ being a subterm of S′ itd also satisfies the conditions on the domains, and
thus the property holds with R′ = S′′.

– If R = adec(S,K) for some recipes S, K: this case is similar to the symmetric case.

– If R = checksign(S,K) for some recipes S, K: then sinceR(φΓLL∪φl(JcKσ,σ′)) ↓6= ⊥, we haveK(φΓLL∪
φl(JcKσ,σ′)) ↓= vk(k) for some k ∈ K, and S(φΓLL ∪ φl(JcKσ,σ′)) ↓= sign(M,k), where M = R(φΓLL ∪
φl(JcKσ,σ′)) ↓.
Similarly, there exists k′ ∈ K such that K(φΓLL ∪ φr(JcKσ,σ′)) ↓= vk(k′) and S(φΓLL ∪ φr(JcKσ,σ′)) ↓=
sign(N, k′), where N = R(φΓLL ∪ φr(JcKσ,σ′)) ↓.
Since S(φΓLL ∪ φl(JcKσ,σ′)) ↓= sign(M,k) 6= ⊥, by the induction hypothesis, there exists S′ such

that vars(S′) ⊆ vars(S), S′(φΓLL ∪ φl(JcKσ,σ′)) = S(φΓLL ∪ φl(JcKσ,σ′)) ↓= sign(M,k), and S′(φΓLL ∪
φr(JcKσ,σ′)) = S(φΓLL ∪ φr(JcKσ,σ′)) ↓= sign(N, k).

Since S′(φΓLL ∪ φl(JcKσ,σ′)) = sign(M,k), it is clear from the definition of ↓ that either S′ = x for some
x ∈ AX , or S′ = sign(S′′,K ′) for some S′′, K ′.
• In the first case, we therefore have sign(M,k) ∼ sign(N, k′) ∈ JcKσ,σ′ . In addition, by Lemma 37,

there exists c′ ⊆ JcKσ,σ′ such that Γ ` φΓLL ∪ φl(JcKσ,σ′) ∼ φΓLL ∪ φr(JcKσ,σ′) : LL → c′. Thus there
exists c′′ ⊆ c′ such that Γ ` sign(M,k) ∼ sign(N, k′) : LL→ c′′. Hence by Lemma 18, there exists
c′′′ ⊆ c′′ ⊆ c′ such that Γ ` M ∼ N : LL → c′′′. Moreover M , N are ground, since by assumption
φl(JcKσ,σ′) and φr(JcKσ,σ′) restricted to vars(R) are ground. Therefore, by Lemma 26, there exists a

recipe R′ without destructors such that M = R′(φΓLL ∪ φl(c
′′′)) and N = R′(φΓLL ∪ φr(c

′′′)). Since
c′′′ ⊆ JcKσ,σ′ , this proves the claim for this case.

• In the second case, there exist S′′, K ′ such that S′ = sign(S′′,K ′). Since S′(φΓLL ∪ φl(JcKσ,σ′)) =
sign(M,k), we have S′′(φΓLL ∪ φl(JcKσ,σ′)) = M . Hence R(φΓLL ∪ φl(JcKσ,σ′)) ↓= M = S′′(φΓLL ∪
φl(JcKσ,σ′)), and similarly for φr(JcKσ,σ′). Moreover, S′′ being a subterm of S′ it also satisfies the
conditions on the domains, and thus the property holds with R′ = S′′.

– If R = π1(S) for some recipe S then since R(φΓLL ∪ φl(JcKσ,σ′)) ↓6= ⊥, we have S(φΓLL ∪ φl(JcKσ,σ′)) ↓=
〈M1,M2〉, where M1 = R(φΓLL ∪ φl(JcKσ,σ′)) ↓, and M2 is a message.

Similarly, S(φΓLL ∪ φr(JcKσ,σ′)) ↓= 〈N1, N2〉, where N1 = R(φΓLL ∪ φr(JcKσ,σ′)) ↓, and N2 is a message.

Since S(φΓLL ∪ φl(JcKσ,σ′)) ↓= 〈M1,M2〉 6= ⊥, by the induction hypothesis, there exists S′ such that

vars(S′) ⊆ vars(S), S′(φΓLL∪φl(JcKσ,σ′)) = S(φΓLL∪φl(JcKσ,σ′)) ↓= 〈M,k〉, and S′(φΓLL∪φr(JcKσ,σ′)) =
S(φΓLL ∪ φr(JcKσ,σ′)) ↓= 〈N, k〉.
Since S′(φΓLL ∪ φl(JcKσ,σ′)) = 〈M1,M2〉, it is clear from the definition of ↓ that either S′ = x for some
x ∈ AX , or S′ = 〈S1, S2〉 for some S1, S2.
The first case is impossible, since by Lemma 35, step2Γ (JcKσ,σ′) = true, and thus JcKσ,σ′ does not contain
pairs.
In the second case, there exist S1, S2 such that S′ = 〈S1, S2〉. Since S′(φΓLL ∪ φl(JcKσ,σ′)) = 〈M1,M2〉,
we have S1(φ

Γ
LL ∪ φl(JcKσ,σ′)) = M1. Hence R(φΓLL ∪ φl(JcKσ,σ′)) ↓= M1 = S1(φ

Γ
LL ∪ φl(JcKσ,σ′)), and

similarly for φr(JcKσ,σ′). Moreover, S1 being a subterm of S′ it also satisfies the conditions on the domains,
and thus the property holds with R′ = S1.

– If R = π2(S) for some S: this case is similar to the π1 case.



Lemma 39. For all term t and substitution σ containing only messages, if t ↓6= ⊥, then (tσ) ↓= (t ↓)σ.

Proof. This property is easily proved by induction on t. In the base case where t is a variable x, by definition of
↓, since σ(x) is a messages, σ(x) ↓= σ(x) and the claim holds. In the other base cases where t is a name, key
or constant the claim trivially holds. We prove the case where t starts with a constructor other than enc, aenc,
sign generically for t = f(t1, t2). We then have t1σ ↓6= ⊥ and t2σ ↓6= ⊥, and tσ ↓= f(t1σ ↓, t2σ ↓), which,
by the induction hypothesis, is equal to f(t1 ↓ σ, t2 ↓ σ), i.e. to f(t1, t2) ↓ σ. The case where f is enc, aenc or
sign is similar, but we in addition know that t2 ↓ is a key.

Finally if t starts with a destructor, t = d(t1, t2), we know that t1 ↓ starts with the corresponding constructor
f : t1 ↓= f(t3, t4). In the case of encryptions and signatures we know in addition that t4 ↓ and t2 ↓ are the same
key (resp. public key/verification key). We then have t ↓= t3 ↓, and tσ ↓= t3σ ↓ (or t4 in the case of the second
projection π2). Hence by the induction hypothesis, tσ ↓= t3 ↓ σ = t ↓ σ and the claim holds.

Lemma 40. For all ground σ, σ′, for all recipe R such that

– ∃Γ ′ ⊆ Γ . ∃cσ. Γ ′N ,K ` σ ∼ σ′ : Γ ′X → cσ ,
– vars(R) ⊆ dom(φΓLL ∪ φl(c)),
– φl(JcKσ,σ′) and φr(JcKσ,σ′) restricted to vars(R) are ground,

for all x ∈ dom(φΓLL ∪ φl(c)), if R(φΓLL ∪ φl(JcKσ,σ′)) = (φΓLL ∪ φl(JcKσ,σ′))(x) then R is a variable y ∈
dom(φΓLL ∪ φl(c)), or R ∈ C ∪ FN .

Similarly, if R(φΓLL ∪ φr(JcKσ,σ′) = (φΓLL ∪ φr(JcKσ,σ′))(x) then R is a variable y ∈ dom(φΓLL ∪ φr(c)) or
R ∈ C ∪ FN .

Proof. We only detail the proof for φl(JcKσ,σ′), as the proof for φr(JcKσ,σ′) is similar.
We distinguish several cases for R.

– If R = a ∈ C ∪ FN : the claim clearly holds.
– If R = x ∈ AX then the claim trivially holds.
– If R = enc(S,K) or sign(S,K) for some recipes S, K: these two cases are similar, we only detail the

encryption case. (φΓLL ∪ φl(JcKσ,σ′))(x) is then an encrypted message. By Lemma 35, step2Γ (JcKσ,σ′) =
true. Hence there exist k, k′ ∈ K and T such that K(φΓLL ∪ φl(JcKσ,σ′)) = k and Γ (k, k′) <: keyHH(T ).

This is only possible if there exists a variable z such that K = z and (φΓLL ∪ φl(Jc̃Kσ,σ′))(z) = k. Since

step2Γ (c) = true, z can only be in dom(φΓLL). By definition of φΓLL, this implies that Γ (k, k) <: keyLL(T ′)
for some T ′. Since Γ is well-formed, this contradicts Γ (k, k′) <: keyHH(T ): this case is impossible.

– If R = aenc(S,K) or h(S) for some recipes S, K: these two cases are similar, we only detail the encryp-

tion case. (φΓLL ∪ φl(JcKσ,σ′))(x) is then an asymmetrically encrypted message. By Lemma 35, we know

that step2Γ (JcKσ,σ′) = true. Hence S(φΓLL ∪φl(JcKσ,σ′)) contains directly under pairs a nonce n such that
Γ (n) = τ HH,an , or a key k ∈ K such that Γ (k, k′) = keyHH(T ) for some T , k′.
This is only possible if there exists a recipe S′ such that S′(φΓLL ∪ φl(JcKσ,σ′)) = n (resp. k). Since
S′ can only contain names from FN (and no keys), this implies that there exists a variable z such that
(φΓLL∪φl(Jc̃Kσ,σ′))(z) = n (resp. k). As step2Γ (c) = true, z can only be in dom(φΓLL). Thus, by definition

of φΓLL, Γ (n) = τ LL,an for some a (resp. Γ (k, k) <: keyLL(T ′) for some T ′), which is contradictory (as Γ is
well-formed).

– Finally, the head symbol ofR cannot be 〈·, ·〉, dec, adec, checksign, π1, π2 since step2Γ (JcKσ,σ′) = true

by Lemma 35.



Lemma 41. For all ground σ, σ′, for all recipes R, S such that

– ∃Γ ′ ⊆ Γ . ∃cσ ⊆ JcKσ,σ′ . Γ
′
N ,K ` σ ∼ σ′ : Γ ′X → cσ ,

– vars(R) ∪ vars(S) ⊆ dom(φΓLL ∪ φl(c)),
– φl(JcKσ,σ′) and φr(JcKσ,σ′) restricted to vars(R) ∪ vars(S) are ground,

we have

(R(φΓLL∪φl(JcKσ,σ′))) ↓= (S(φΓLL∪φl(JcKσ,σ′))) ↓ ⇐⇒ (R(φΓLL∪φr(JcKσ,σ′))) ↓= (S(φΓLL∪φr(JcKσ,σ′))) ↓ .

Proof. We only detail the proof for the (⇒) direction, as the other direction is similar. We then assume that

(R(φΓLL ∪ φl(JcKσ,σ′))) ↓= (S(φΓLL ∪ φl(JcKσ,σ′))) ↓ .

Let us first note that

(R(φΓLL ∪ φl(JcKσ,σ′))) ↓6= ⊥ ⇐⇒ (R(φΓLL ∪ φr(JcKσ,σ′))) ↓6= ⊥.

This follows from Lemmas 37 and 23.
Similarly, we have

S(φΓLL ∪ φl(JcKσ,σ′)) ↓6= ⊥ ⇐⇒ S(φΓLL ∪ φr(JcKσ,σ′)) ↓6= ⊥.

Therefore, if R(φΓLL ∪ φl(JcKσ,σ′)) ↓= ⊥, then R(φΓLL ∪ φr(JcKσ,σ′)) ↓= ⊥. By assumption, in that case we

also have S(φΓLL ∪ φl(JcKσ,σ′)) ↓= ⊥, and thus S(φΓLL ∪ φr(JcKσ,σ′)) ↓= ⊥, and the claim holds.

Let us now assume that R(φΓLL ∪ φl(JcKσ,σ′)) ↓6= ⊥, i.e., by assumption, that S(φΓLL ∪ φl(JcKσ,σ′)) ↓6= ⊥.

We then have R(φΓLL ∪ φr(JcKσ,σ′)) ↓6= ⊥ and S(φΓLL ∪ φr(JcKσ,σ′)) ↓6= ⊥.
By Lemma 38, there exist recipes R′, S′ without destructors such that

– vars(R′) ∪ vars(S′) ⊆ dom(φΓLL ∪ φl(JcKσ,σ′)),
– R(φΓLL ∪ φl(JcKσ,σ′)) ↓= R′(φΓLL ∪ φl(JcKσ,σ′)),
– R(φΓLL ∪ φr(JcKσ,σ′)) ↓= R′(φΓLL ∪ φr(JcKσ,σ′)).
– S(φΓLL ∪ φl(JcKσ,σ′)) ↓= S′(φΓLL ∪ φl(JcKσ,σ′)),
– S(φΓLL ∪ φr(JcKσ,σ′)) ↓= S′(φΓLL ∪ φr(JcKσ,σ′)).

By the assumption, we have R′(φΓLL ∪ φl(JcKσ,σ′)) = S′(φΓLL ∪ φl(JcKσ,σ′)).
We show that R′(φΓLL ∪ φr(JcKσ,σ′)) = S′(φΓLL ∪ φr(JcKσ,σ′)) by induction on the recipes R′, S′. Since

R′(φΓLL ∪ φl(JcKσ,σ′)) = S′(φΓLL ∪ φl(JcKσ,σ′)), we can distinguish four cases for R′ and S′.

– If they have the same head symbol, either this symbol is a nonce or constant and the claim is trivial, or it is a
variable, and we handle this case later, or it is a constructor. We write the proof for this last case generically
for R′ = f(R′′) and S′ = f(S′′). We have necessarily R′′(φΓLL ∪ φl(JcKσ,σ′)) = S′′(φΓLL ∪ φl(JcKσ,σ′)). It

then follows by applying the induction hypothesis to R′′ and S′′ that R′′(φΓLL ∪ φr(JcKσ,σ′)) = S′′(φΓLL ∪
φr(JcKσ,σ′)). The claim follows by applying f on both sides of this equality.

– If R′ is a variable and not S′: then by Lemma 40, S′ ∈ C ∪ FN . Let us denote R′ = x. By Lemma 37,
there exists cx such that Γ ` (φΓLL ∪ φl(JcKσ,σ′))(x) ∼ (φΓLL ∪ φr(JcKσ,σ′))(x) : LL → cx. Since (φΓLL ∪
φl(JcKσ,σ′))(x) = R′(φΓLL ∪ φl(JcKσ,σ′)) = S′(φΓLL ∪ φl(JcKσ,σ′)) ∈ C ∪ FN , by Lemma 20, we have

(φΓLL ∪ φr(JcKσ,σ′))(x) = S′(φΓLL ∪ φl(JcKσ,σ′)), i.e. R′(φΓLL ∪ φr(c̃)) = S′(φΓLL ∪ φr(c̃)).



– If S′ is a variable and not R′: this case is similar to the previous one.
– If R′, S′ are two variables x and y, we have (φΓLL ∪ φl(JcKσ,σ′))(x) = (φΓLL ∪ φl(JcKσ,σ′))(y). We can then

prove (φΓLL ∪ φr(JcKσ,σ′))(x) = (φΓLL ∪ φr(JcKσ,σ′))(y). Indeed:

• if x, y ∈ dom(φΓLL), this follows from the definition of φΓLL.
• if x ∈ dom(φΓLL) and y ∈ dom(φl(Jc̃Kσ,σ′)): then by definition of φΓLL, R′(φΓLL ∪ φl(JcKσ,σ′)) = φΓLL(x)

is a nonce, key, public key, or verification key. Hence φl(JcKσ,σ′)(y) is also a nonce, key, public key or
verification key. This is not possible, as by Lemma 35, step2Γ (JcKσ,σ′) = true.
• if x, y ∈ dom(φl(JcKσ,σ′)): then there exist M ∼ M ′ ∈ c, N ∼ N ′ ∈ c such that φl(JcKσ,σ′)(x) =
Mσ, φr(JcKσ,σ′)(x) = M ′σ′, φl(JcKσ,σ′)(y) = Nσ, φr(JcKσ,σ′)(y) = N ′σ′. Since Mσ = Nσ, M ,
N are unifiable, let µ be their most general unifier. There exists θ such that σ = µθ.
Let then α be the restriction of µ to {x ∈ vars(M) ∪ vars(N) | Γ (x) = LL ∧ µ(x) ∈ N is a nonce}.
By step3Γ (c), we have M ′α = N ′α.

Note that α and β have disjoint domains. Let x ∈ dom(α) ∩ (vars(M ′) ∪ vars(N ′)). Then µ(x) = n
for some n ∈ N . Thus σ(x) = µ(x)θ = n.
Since, by assumption, ∃Γ ′ ⊆ Γ . ∃cσ. Γ ′N ,K ` σ ∼ σ′ : Γ ′X → cσ, there exists cx such that
Γ ′N ,K ` n ∼ σ′(x) : LL→ cx. Hence by Lemma 20, σ′(x) = n = µ(x) = α(x) = (ασ′)(x).
We have shown that for all x ∈ dom(α) ∩ (vars(M ′) ∪ vars(N ′)), (ασ′)(x) = σ′(x). Thus, on
dom(α) ∩ (vars(M ′) ∪ vars(N ′)), we have ασ′ = σ′.

Therefore, since M ′α = N ′α, we have M ′ασ′ = N ′ασ′, i.e. M ′σ′ = N ′σ′. This proves the claim.

Finally, since R′(φΓLL ∪ φl(JcKσ,σ′)) = S′(φΓLL ∪ φl(JcKσ,σ′)), we have R(φΓLL ∪ φr(JcKσ,σ′)) ↓= S(φΓLL ∪
φr(JcKσ,σ′)) ↓.

This proves the property.

Lemma 42. For all ground σ, σ′, for all Γ ′ ⊆ Γ , and for all c′ ⊆ c, such that

– ∃cσ ⊆ JcKσ,σ′ . Γ
′
N ,K ` σ ∼ σ′ : Γ ′X → cσ ,

– Γ ′N ,K = ΓN ,K and vars(c′) ⊆ dom(Γ ′),

the frames φΓLL ∪ φl(Jc′Kσ,σ′) and φΓLL ∪ φr(Jc′Kσ,σ′) are statically equivalent.

Proof. This is a direct consequence of Lemma 41, by unfolding the definition of static equivalence.

Lemma 43. c is consistent in Γ .

Proof. By Lemma 34, it suffices to show that c is consistent in Γ . This is a direct consequence of Lemma 42, by
unfolding the definition of consistency.

This next theorem corresponds to Theorem 2.

Theorem 9 (Soundness of the procedure). Let C be a constraint set without infinite nonce types, i.e.

∀(c, Γ ) ∈ C. ∀l, l′,m, n.Γ (x) 6= Jτ l,∞m ; τ l
′,∞
n K.

If check_const(C) succeeds, then C is consistent.

Proof. The previous lemmas directly imply that for all (c, Γ ) ∈ C, c is consistent in Γ . This proves the theorem.



B.4 Consistency for replicated processes

In this subsection, we prove the results regarding the procedure when checking consistency in the replicated case.
In this subsection, we only consider constraints obtained by typing processes (with the same key types).

Notably, by the well-formedness assumptions on the processes, this means that a nonce n is always associated
with the same nonce type.

Theorem 10. Let C and C ′ be two constraint sets that

– do not share any common variable, i.e.

∀(c, Γ ) ∈ C. ∀(c′, Γ ′) ∈ C ′. dom(ΓX ) ∩ dom(Γ ′X ) = ∅;

– only share nonces which have the same finite nonce type, i.e.

∀(c, Γ ) ∈ C. ∀(c′, Γ ′) ∈ C ′. ∀m ∈ dom(Γ ) ∩ dom(Γ ′) ∩N . ∃l. Γ (m) = Γ ′(m) = τ l,1m ;

– only share keys which are paired in the same way and have the same types, i.e.

∀(c, Γ ) ∈ C. ∀(c′, Γ ′) ∈ C ′. ∀k ∈ keys(Γ ) ∩ keys(Γ ′).∀k′ ∈ K.
((k, k′) ∈ dom(Γ )⇔ (k, k′) ∈ dom(Γ ′)) ∧ ((k′, k) ∈ dom(Γ )⇔ (k′, k) ∈ dom(Γ ′))

and
∀(c, Γ ) ∈ C. ∀(c′, Γ ′) ∈ C ′. ∀(k, k′) ∈ dom(Γ ) ∩ dom(Γ ′). Γ (k, k′) = Γ ′(k, k′).

For all n ∈ N, if check_const([ C ]
n
1∪×[ C ]

n
2∪×[ C ′ ]

n
1 ) = true, then

check_const(∪×1≤i≤n[ C ]
n
i )∪×[ C

′ ]
n
1 ) = true.

Proof. Let n ∈ N. Let C, C ′ be as defined in the statement of the theorem.
Let (c, Γ ) ∈ (∪×1≤i≤n[ C ]

n
i )∪×[ C ′ ]

n
1 . By definition of ∪×, there exists (c′, Γ ′) ∈ [ C ′ ]

n
1 , and for all

i ∈ J1, nK, there exists (ci, Γi) ∈ [ C ]
n
i , such that

– c = (∪1≤i≤nci) ∪ c′;
– Γ = (

⋃
1≤i≤n Γi) ∪ Γ ′.

Let i ∈ J1, nK. Since (ci, Γi) ∈ [ C ]
n
i , by definition of [ C ]

n
i there exists (c′i, Γ

′
i ) ∈ C such that

– ci = [ c′i ]
Γi
i ;

– Γi ∈ branches([ Γ ′i ]
n
i ).

Note that this implies dom(ΓiX ) only contains variables indexed by i, and, from the assumption that vars(c′i) ⊆
dom(Γ ′iX ), that vars(ci) ⊆ dom(ΓiX ).

For all i ∈ J1, nK, let δ1i denote the function on terms which consists in exchanging all occurrences of the
indices i and 1, i.e. replacing any occurrence of mi (for all nonce m with an infinite nonce type) with m1, any
occurrence of m1 with mi, any occurrence of k1 with ki (for all key k), any occurrence of ki with k1, any
occurrence of xi with x1 (for all variable x), and any occurrence of x1 with xi (also for all variable x).

We extend this function to constraints, types, typing environments and constraint sets. In the case of types we
use it to denote the replacement of nonces appearing in the refinements. In the case of typing environments it
denotes the replacement of nonces appearing in the types, and of nonces, keys and variables in the domain of



the environment, i.e. (δ1i (Γ ))(x1) = δ1i (Γ (xi)). In the case of constraint sets it denotes the application of the
function to each constraint and environment in the constraint set.

Similarly, we denote δ2i the function exchanging indices i and 2.
For all h ∈ J1, nK and all i 6= j ∈ J1, nK, such that i 6= 2 and j 6= 1, let

(ci,jh , Γ
i,j
h ) = (ch, Γh)δ

1
i δ

2
j .

Similarly, for all h ∈ J1, nK and all i ∈ J1, nK, let

(ci,ih , Γ
i,i
h ) = (ch, Γh)δ

1
i .

Finally, for all i ∈ J1, nK, let Γ ′i be the typing environment such that dom(Γ ′
i
) = dom(Γ ′) and ∀x ∈

dom(Γ ′
i
). Γ ′

i
(x) = Γ ′(x)δ1i .

Since (ci, Γi) ∈ [ C ]
n
i , we can show that (ci,ji , Γ

i,j
i ) ∈ [ C ]

n
1 . Indeed, recall that there exists (c′i, Γ

′
i ) ∈ C

such that ci = [ c′i ]
Γi
i and Γi ∈ branches([ Γ ′i ]

n
i ). ci only contains variables, keys and names indexed by

i or unindexed, hence it is clear that ci,ji = [ c′i ]
Γi
1 . Moreover, since Γi ∈ branches([ Γ ′i ]

n
i ), it is clear that

Γ i,ji ∈ branches([ Γ ′i ]
n
i δ

1
i δ

2
j ). By definition, indexed nonces, variables, or keys appear in [ Γ ′i ]

n
i only in its

domain, and as parts of union types of the form Jτ l,1m1
; τ l

′,1
p1 K ∨ . . . ∨ Jτ l,1mn ; τ

l′,1
pn K. This union type is left

unchanged by δ1i δ
2
j : since i 6= j, i 6= 2, and j 6= 1, δ1i δ

2
j is indeed only performing a permutation of the indices.

Hence, [ Γ ′i ]
n
i δ

1
i δ

2
j = [ Γ ′i ]

n
1 . Thus Γ i,ji ∈ branches([ Γ ′i ]

n
1 ). Therefore, (ci,ji , Γ

i,j
i ) ∈ [ C ]

n
1 .

Note that dom(Γ i,ji ) only contains variables indexed by 1; and that, since vars(ci) ⊆ dom(Γi), we have
vars(ci,ji ) ⊆ dom(Γ i,ji ).

Similarly, if j 6= i, i 6= 2 and j 6= 1, (ci,jj , Γ
i,j
j ) ∈ [ C ]

n
2 . Note that dom(Γ i,jj ) only contains variables

indexed by 2; and that vars(ci,jj ) ⊆ dom(Γ i,jj ).
Similarly, we also have (c′, Γ ′

i
) ∈ [ C ′ ]

n
1 .

By assumption, for all (c, Γ ) ∈ C and for all (c′, Γ ′) ∈ C ′, dom(ΓX ) ∩ dom(Γ ′X ) = ∅, and Γ , Γ ′

give the same types to the nonces and keys they have in common. Hence for all (c′′, Γ ′′) ∈ [ C ]
n
1 , and all

(c′′′, Γ ′′′) ∈ [ C ′ ]
n
1 , we know that Γ ′′ and Γ ′′′ are compatible. In particular this applies to all the Γ i,ji and Γ ′ (as

well as Γ i,ji and Γ ′i).
Moreover, for all (c′′, Γ ′′) ∈ [ C ]

n
2 , and all (c′′′, Γ ′′′) ∈ [ C ′ ]

n
1 , since dom(Γ ′′′) ⊆ {x1 | x ∈ X},

and dom(Γ ′′) ⊆ {x2 | x ∈ X}, Γ ′′ and Γ ′′′ are also compatible. This in particular applies to Γ i,jj for all
i 6= j ∈ J1, nK and Γ ′ (as well as Γ i,jj and Γ ′i).

If C is empty, then so is ∪×1≤i≤n[ C ]
n
i and the claim clearly holds. Let us now assume that C is not empty.

Hence for all i ∈ J1, nK, [ C ]
n
i is not empty.

The procedure for c, Γ is as follows:

1. We compute step1Γ (c). Following the notations used in the procedure, we have

F = {x ∈ dom(Γ ) | ∃m,n, l, l′. Γ (x) = Jτ l,1m ; τ l
′,1
n K},

and we write (c, Γ )
def
= step1Γ (c).

For all i ∈ J1, nK, let (ci, Γ i)
def
= step1Γi(ci). Let also (c′, Γ

′
)
def
= step1Γ ′(c

′). We have c = (∪1≤i≤nci)∪
c′, and Γ = (∪1≤i≤nΓ i) ∪ Γ

′
.



For all h, i, j ∈ J1, nK, such that either i 6= j and i 6= 2 and j 6= 1, or i = j, let us also denote
(ci,jh , Γ

i,j

h )
def
= step1Γ i,jh

(ci,jh ). Similarly, for all i ∈ J1, nK, let also (c′
i
, Γ ′

i
)
def
= step1Γ ′i(c

′). Since, for

i 6= j, (ci,jh , Γ
i,j
h ) = (ch, Γh)δ

1
i δ

2
j , it can easily be shown (by induction on the terms) that (ci,jh , Γ

i,j

h ) =

(ch, Γh)δ
1
i δ

2
j . Similarly, (ci,ih , Γ

i,i

h ) = (ch, Γh)δ
1
i . Finally, we similarly also have (c′

i
, Γ ′

i
) = (c′, Γ

′
)δ1p.

2. We check that step2Γ (c) holds, i.e. that eachM ∼ N ∈ c has the correct form (with respect to the definition
of step2).
If M ∼ N ∈ c, either M ∼ N ∈ c′, or there exists i ∈ J1, nK such that M ∼ N ∈ ci.

– In the first case, M ∼ N ∈ c′. By assumption, [ C ]
n
1 and [ C ]

n
2 are not empty. Hence there exist

(c′′, Γ ′′) ∈ [ C ]
n
1 and (c′′′, Γ ′′′) ∈ [ C ]

n
2 . Thus, (c′′∪c′′′∪c′, Γ ′′∪Γ ′′′∪Γ ′) ∈ [ C ]

n
1∪×[ C ]

n
2∪×[ C ′ ]

n
1

(as noted previously, Γ ′′, Γ ′′′, and Γ ′ are compatible). Hence, by assumption, check_const({(c′′ ∪
c′′′ ∪ c′, Γ ′′ ∪ Γ ′′′ ∪ Γ ′)}) succeeds.
If c′′ = fst(step1Γ ′′(c

′′)), and c′′′ = fst(step1Γ ′′′(c
′′′)), then we have

c′′ ∪ c′′′ ∪ c′ = fst(step1Γ ′′∪Γ ′′′∪Γ ′(c
′′ ∪ c′′′ ∪ c′)).

Therefore, step2Γ (c̃
′′ ∪ c̃′′′ ∪ c̃′) = true.

In particular, M ∼ N ∈ c′ has the correct form.
– In the second case, M ∼ N ∈ ci for some i ∈ J1, nK.

Let M ′ =Mδ1i and N ′ = Nδ1i . Since ci,ii = ciδ
1
i , we have M ′ ∼ N ′ ∈ ci,ii .

By assumption, [ C ]
n
2 is not empty, hence there exists (c′′, Γ ′′) ∈ [ C ]

n
2 . Thus, (ci,ii ∪ c′′ ∪ c′, Γ

i,i
i ∪

Γ ′′ ∪ Γ ′) ∈ [ C ]
n
1∪×[ C ]

n
2∪×[ C ′ ]

n
1 (as noted previously, Γ i,ii , Γ ′′, and Γ ′ are compatible). Hence, by

assumption, check_const({(ci,ii ∪ c′′ ∪ c′, Γ
i,i
i ∪ Γ ′′ ∪ Γ ′)}) succeeds. If c′′ = fst(step1Γ ′′(c

′′)),
then ci,ii ∪ c′′ ∪ c′ = fst(step1Γ ′′i,1∪Γ ′′∪Γ ′

(ci,ii ∪ c′′ ∪ c′)). Therefore, step2Γ (c
i,i
i ∪ c′′ ∪ c′) holds.

In particular, M ′ ∼ N ′ ∈ c̃i,ii , has the correct form. By examining all the cases and using the fact that
for all mi, mj , if mi is associated with the type τ l,ami and mj with τ l

′,a
mj then l = l′, and similarly for

keys; it follows that M ∼ N also has the correct form.

Therefore, step2Γ (c) holds.

3. Finally, we check that step3Γ (c) holds. Let M1 ∼ N1 ∈ c and M2 ∼ N2 ∈ c. Let us prove the property
in the case where M1 and M2 are unifiable with a most general unifier µ. The case where N1 and N2 are
unifiable is similar.
Let then α be the restriction of µ to {x ∈ vars(M1) ∪ vars(M2) | Γ (x) = LL ∧ µ(x) ∈ N}.
We have to prove that N1α = N2α.

Since we already have c = (∪1≤i≤nci) ∪ c′, we know that:
– either there exists i ∈ J1, nK such that M1 ∼ N1 ∈ ci;
– or M1 ∼ N1 ∈ c′;

and
– either there exists j ∈ J1, nK such that M2 ∼ N2 ∈ cj ;
– or M2 ∼ N2 ∈ c′.

Let us first prove the case where there exist i, j ∈ J1, nK such that M1 ∼ N1 ∈ ci and M2 ∼ N2 ∈ cj . We
distinguish two cases.



– if i 6= j: The property to prove is symmetric between M1 ∼ N1 ∈ c and M2 ∼ N2 ∈ c. Hence without
loss of generality we may assume that i 6= 2 and j 6= 1.
Let then M ′1 =M1δ

1
i δ

2
j , N ′1 = N1δ

1
i δ

2
j , M ′2 =M2δ

1
i δ

2
j , N ′2 = N2δ

1
i δ

2
j .

Since ci,ji = ciδ
1
i δ

2
j , we have M ′1 ∼ N ′1 ∈ c

i,j
i . Similarly, M ′2 ∼ N ′2 ∈ c

i,j
j .

Since M1 and M2 are unifiable, then so are M ′1 and M ′2, with a most general unifier µ′ which satisfies
µ(x) = t⇔ µ′(xδ1i δ

2
j ) = tδ1i δ

2
j .

Let then α′ be the restriction of µ′ to {x ∈ vars(M ′1) ∪ vars(M ′2) | (Γ
i,j

i ∪ Γ
i,j

j )(x) = LL ∧ µ′(x) ∈
N is a nonce}.
Similarly α′ is such that ∀x ∈ dom(α′).∀n. α(x) = n⇔ α′(xδ1i δ

2
j ) = nδ1i δ

2
j , i.e. δ1i δ

2
jα
′δ1i δ

2
j = α.

By assumption, check_const({(ci,ji ∪c
i,j
j ∪c′, Γ

i,j
i ∪Γ

i,j
j ∪Γ ′)}) succeeds since (ci,ji ∪c

i,j
j ∪c′, Γ

i,j
i ∪

Γ i,jj ∪ Γ ′) ∈ [ C ]
n
1∪×[ C ]

n
2∪×[ C ′ ]

n
1 .

Thus, step3
Γ
i,j
i ∪Γ

i,j
j ∪Γ

′(ci,ji ∪ c
i,j
j ∪ c′) holds, and since {M ′1 ∼ N ′1,M ′2 ∼ N ′2} ⊆ c

i,j
i ∪ c

i,j
j ∪ c′, we

know that since M ′1, M ′2 are unifiable, N ′1α
′ = N ′2α

′.
Thus N ′1α

′δ1i δ
2
j = N ′2α

′δ1i δ
2
j , i.e., since i 6= j, and δ1i δ

2
jα
′δ1i δ

2
j = α, N1α = N2α. Therefore the claim

holds in this case.
– if i = j then let M ′1 = M1δ

1
i , N ′1 = N1δ

1
i , M ′2 = M2δ

1
i , N ′2 = N2δ

1
i . Since ci,ii = ciδ

1
i , we have

M ′1 ∼ N ′1 ∈ c
i,i
i . Similarly, M ′2 ∼ N ′2 ∈ c

i,i
i .

Since M1 and M2 are unifiable, then so are M ′1 and M ′2, with a most general unifier µ′ which satisfies
µ(x) = t⇔ µ′(xδ1i ) = tδ1i .
Let then α′ be the restriction of µ′ to {x ∈ vars(M ′1) ∪ vars(M ′2) | Γ

i,i

i (x) = LL ∧ µ′(x) ∈
N is a nonce}.
Similarly α′ is such that ∀x ∈ dom(α′).∀n. α(x) = n⇔ α′(xδ1i ) = nδ1i , i.e. δ1i α

′δ1i = α.
By assumption, [ C ]

n
2 is not empty, hence there exists (c′′, Γ ′′) ∈ [ C ]

n
2 . Thus, (ci,ii ∪c′′∪c′, Γ

i,i
i ∪Γ ′′∪

Γ ′) ∈ [ C ]
n
1∪×[ C ]

n
2∪×[ C ′ ]

n
1 . Hence, by assumption, check_const({(ci,ii ∪c′′∪c′, Γ

i,i
i ∪Γ ′′∪Γ ′)})

succeeds. If c′′ = fst(step1Γ ′′(c
′′)), then ci,ii ∪ c′′ ∪ c′ = fst(step1Γ i,ii ∪Γ ′′∪Γ ′

(ci,ii ∪ c′′ ∪ c′)).
Thus, step3

Γ
i,i
i ∪Γ

′′∪Γ ′(c
i,i
i ∪ c′′ ∪ c′) holds, and since {M ′1 ∼ N ′1,M

′
2 ∼ N ′2} ⊆ ci,ii ∪ c′′ ∪ c′, we

know that N ′1α
′ = N ′2α

′.
Thus N ′1α

′δ1i = N ′2α
′δ1i , i.e., since δ1i α

′δ1i , N1α = N2α. Therefore the claim holds in this case.

Let us now prove the case where there exists i ∈ J1, nK such that M1 ∼ N1 ∈ ci, and M2 ∼ N2 ∈ c′. The
symmetric case, where M1 ∼ N1 ∈ c′ and there exists j ∈ J1, nK such that M2 ∼ N2 ∈ cj , is similar.
Let then M ′1 =M1δ

1
i , N ′1 = N1δ

1
i , M ′2 =M2δ

1
i , N ′2 = N2δ

1
i . Since ci,ii = ciδ

1
i , we have M ′1 ∼ N ′1 ∈ c

i,i
i .

Similarly, M ′2 ∼ N ′2 ∈ c′
i
.

Since M1 and M2 are unifiable, then so are M ′1 and M ′2, with a most general unifier µ′ which satisfies
µ(x) = t⇔ µ′(xδ1i ) = tδ1i .
Let then α′ be the restriction of µ′ to {x ∈ vars(M ′1) ∪ vars(M ′2) | (Γ

i,i

i ∪ Γ ′
i
)(x) = LL ∧ µ′(x) ∈

N is a nonce}.
Similarly α′ is such that ∀x ∈ dom(α′).∀n. α(x) = n⇔ α′(xδ1i ) = nδ1i , i.e. δ1i α

′δ1i = α.
By assumption, [ C ]

n
2 is not empty, hence there exists (c′′, Γ ′′) ∈ [ C ]

n
2 . Moreover, as noted previously,

(c′, Γ ′
i
) ∈ [ C ′ ]

n
1 . Thus, (ci,ii ∪ c′′ ∪ c′, Γ

i,i
i ∪ Γ ′′ ∪ Γ ′

i
) ∈ [ C ]

n
1∪×[ C ]

n
2∪×[ C ′ ]

n
1 .

Hence, by assumption, check_const({(ci,ii ∪ c′′ ∪ c′, Γ
i,i
i ∪ Γ ′′ ∪ Γ ′

i
)}) succeeds. If we have c′′ =

fst(step1Γ ′′(c
′′)), then ci,ii ∪ c′′ ∪ c′

i
= fst(step1Γ i,ii ∪Γ ′′∪Γ ′i

(ci,ii ∪ c′′ ∪ c′)).

Thus, step3
Γ
i,i
i ∪Γ

′′∪Γ ′i(c
i,i
i ∪ c′′ ∪ c′

i
) holds, and since {M ′1 ∼ N ′1,M ′2 ∼ N ′2} ⊆ c

i,i
i ∪ c′′ ∪ c′

i
, we know

that N ′1α
′ = N ′2α

′.



Thus N ′1α
′δ1i = N ′2α

′δ1i , i.e., since δ1i α
′δ1i = α, N1α = N2α.

Finally, only the case whereM1 ∼ N1 ∈ c′ andM2 ∼ N2 ∈ c′ remains. By assumption, [ C ]
n
1 and [ C ]

n
2 are

not empty, hence there exist (c′′, Γ ′′) ∈ [ C ]
n
1 and (c′′′, Γ ′′′) ∈ [ C ]

n
2 . Thus, (c′′∪c′′′∪c′, Γ ′′∪Γ ′′′∪Γ ′) ∈

[ C ]
n
1∪×[ C ]

n
2∪×[ C ′ ]

n
1 .

Hence, by assumption, check_const({(c′′∪c′′′∪c′, Γ ′′∪Γ ′′′∪Γ ′)}) succeeds. If c′′ = fst(step1Γ ′′(c
′′))

and c′′′ = fst(step1Γ ′′′(c
′′′)), then c′′ ∪ c′′′ ∪ c′ = fst(step1Γ ′′∪Γ ′′′∪Γ ′(c

′′ ∪ c′′′ ∪ c′)).
Thus, step3Γ ′′∪Γ ′′′∪Γ ′(c

′′ ∪ c′′′ ∪ c′) holds, and since {M1 ∼ N1,M2 ∼ N2} ⊆ c′′ ∪ c′′′ ∪ c′, we know
that N1α = N2α.
Therefore the claim holds in this case, which concludes the proof that step3Γ (c) holds.

Therefore, for every (c, Γ ) ∈ (∪×1≤i≤n[ C ]
n
i )∪×[ C ′ ]

n
1 , check_const({(c, Γ )}) succeeds, which proves

the claim.

Lemma 44. For all (c, Γ ) such that vars(c) ⊆ dom(Γ ) which only contains variables indexed by 1 or 2, and
all names and keys in c have finite types, if check_const({(c, Γ )}) succeeds, then for all Γ ′′ ∈ branches(Γ ′),
where

Γ ′ = Γ [
∨

1≤i≤n

Jτ l,1mi ; τ
l′,1
pi K / Jτ l,∞m ; τ l

′,∞
p K]m,p∈N [seskeyl,1(T ) / seskeyl,∞(T )],

check_const({(c, Γ ′′)}) succeeds.

Proof. Let n ∈ N.
Let (c, Γ ) be as defined in the statement of the lemma.
Let us assume that check_const({(c, Γ )}) succeeds. Let

Γ ′ = Γ [
∨

1≤i≤n

Jτ l,1mi ; τ
l′,1
pi K / Jτ l,∞m ; τ l

′,∞
p K]m,p∈N [seskeyl,1(T ) / seskeyl,∞(T )],

and let Γ ′′ ∈ branches(Γ ′).

The procedure check_const({(c, Γ ′′)}) is as follows:

1. We compute (c, Γ
′′
) = step1Γ ′′(c). Following the notations in the procedure, we denote

F = {x ∈ dom(Γ ′′) | ∃m, p, l, l′. Γ ′′(x) = Jτ l,1m ; τ l
′,1
p K}.

Let F ′ = {x ∈ dom(Γ ) | ∃m, p, l, l′. Γ (x) = Jτ l,1m ; τ l
′,1
p K}.

Let also F ′′ = {x ∈ dom(Γ ) | ∃m, p, l, l′. Γ (x) = Jτ l,∞m ; τ l
′,∞
p K}.

It is easily seen from the definition of Γ ′ that F = F ′ ] F ′′.
By definition of step1Γ ′′(c), Γ

′′
contains Γ ′′|dom(Γ ′′)\F .

Let (c′, Γ ) = step1Γ (c).
It is clear from the definitions of Γ ′ and Γ ′′ that for all x ∈ F ′′, there exists i ∈ J1, nK and m, p, l, l′ such
that Γ (x) = Jτ l,∞m ; τ l

′,∞
p K and Γ ′′(x) = Jτ l,1mi ; τ

l′,1
pi K. Let σl and σr be the substitutions defined by

dom(σl) = dom(σr) = F ′′



and

∀x ∈ F ′′.∀m, p ∈ N . ∀l, l′. ∀i ∈ J1, nK. Γ ′′(x) = Jτ l,1mi ; τ
l′,1
pi K⇒ (σl(x) = mi ∧ σr(x) = pi).

It is clear from the definition of c and c′ that c = Jc′Kσl,σr
.

2. We check that step2Γ ′′(c) holds.
Let u ∼ v ∈ c. Since c = Jc′Kσl,σr

, there exists u′ ∼ v′ ∈ c′ such that u = u′σl and v = v′σr.
Since check_const({(c, Γ )}) = true, we know that u′ and v′ have the required form. Note that by
definition of Γ

′′
, the keys which are secret in Γ

′′
, i.e. the keys k ∈ K such that there exist k′, T such that

Γ
′′
(k, k′) <: keyHH(T ) or Γ

′′
(k′, k) <: keyHH(T ), are exactly the keys which are secret in Γ . Similarly,

for all variable x, there exists T such that Γ (x) <: keyHH(T ) if and only if there exists T such that
Γ
′′
(x) <: keyHH(T ); and there exist m, n, a such that Γ (x) = Jτ HH,am ; τ HH,an K if and only if there exist m, n,

a such that Γ
′′
(x) = Jτ HH,am ; τ HH,an K.

It clearly follows, by examining all cases for u′ and v′, that u′σl and v′σr, i.e. u and v, also have the required
form.
Therefore, step2Γ ′′(c) holds.

3. Finally, we check the condition step3Γ ′′(c).
Let M1 ∼ N1 ∈ c and M2 ∼ N2 ∈ c. Since c = Jc′Kσl,σr

, there exist M ′1 ∼ N ′1 ∈ c′ and M ′2 ∼ N ′2 ∈ c′
such that M1 =M ′1σl, N1 = N ′1σr, M2 =M ′2σl, and N2 = N ′2σr.
Let us prove the first direction of the equivalence, i.e. the case where M1, M2 are unifiable. The proof for
the case where N1, N2 are unifiable is similar.
IfM1,M2 are unifiable, let µ be their most general unifier. We haveM1µ =M2µ, i.e. (M ′1σl)µ = (M ′2σl)µ.
Let τ denote the substitution σlµ. Since M ′1τ =M ′2τ , M ′1 and M ′2 are unifiable. Let µ′ be their most general
unifier. There exists θ such that τ = µ′θ.
Let also α be the restriction of µ to {x ∈ vars(M1) ∪ vars(M2) | Γ

′′
(x) = LL ∧ µ(x) ∈ N}.

Note that Γ
′′
(x) = LL⇔ Γ (x) = LL.

We have to prove that N1α = N2α.

Let x ∈ vars(M ′1) ∪ vars(M ′2) such that there exist m, p, l, l′ such that Γ (x) = Jτ l,∞m ; τ l
′,∞
p K, i.e. x ∈ F ′′.

By definition of σl (point 1), there exists i ∈ J1, nK such that xσl = mi (and xσr = pi). Hence, we have

(xµ′)θ = xτ = xσlµ = (xσl)µ = miµ = mi.

Thus, xµ′ can only be either a variable y such that yθ = mi, or the nonce mi.
Therefore, µ′ satisfies the conditions on the most general unifier expressed in step3Γ (c

′).

Let x ∈ vars(M1) ∪ vars(M2) such that Γ
′′
(x) = LL and µ(x) ∈ N . We have (xµ′)θ = xτ = xσlµ =

(xσl)µ = xµ = µ(x) ∈ N . Thus, xµ′ can only be either a variable y (such that yθ = µ(x)), or the nonce
µ(x).
Conversely, let x ∈ vars(M ′1) ∪ vars(M ′2) such that Γ (x) = LL and µ′(x) ∈ N . We have xµ = (xσl)µ =
xτ = (xµ′)θ = µ′(x).

Let then θ′ be the substitution with domain {x ∈ vars(M ′1) ∪ vars(M ′2) | ∃m, p, l, l′.∃i ∈ J1, nK. Γ (x) =
Jτ l,∞m ; τ l

′,∞
p K ∧ µ′(x) = mi} such that ∀x ∈ dom(θ′). θ′(x) = pi if µ′(x) = mi and Γ (x) =

Jτ l,∞m ; τ l
′,∞
p K.

Let also α′ be the restriction of µ′ to {x ∈ vars(M ′1) ∪ vars(M ′2) | Γ (x) = LL ∧ µ′(x) ∈ N}.



Since check_const({(c, Γ )}) = true, we know that step3Γ (c
′) holds. Since M ′1 ∼ N ′1 ∈ c′, and

M ′2 ∼ N ′2 ∈ c′, this implies that N ′1α
′θ′ = N ′2α

′θ′.

As we have just shown, for all x ∈ dom(θ′), there exists i ∈ J1, nK such that xσl = mi and xσr = pi,
and µ′(x) is either mi or a variable. By definition of dom(θ′), only the case where µ′(x) = mi is actually
possible, and we have θ′(x) = pi.
Thus, ∀x ∈ dom(θ′). σr(x) = θ′(x).
It then is clear from the definitions of the domains of θ′ and σr that there exists τ ′ such that σr = θ′τ ′.

Thus, since we have shown that N ′1α
′θ′ = N ′2α

′θ′, we have (N ′1α
′θ′)τ ′ = (N ′2α

′θ′)τ ′, that is to say
N ′1α

′σr = N ′2α
′σr, i.e., since α′ and σr have disjoint domains, and are both ground, N1α

′ = N2α
′.

Moreover, we have shown that for all x ∈ vars(M ′1) ∪ vars(M ′2) such that Γ (x) = LL and µ′(x) ∈ N ,
µ(x) = µ′(x). That is to say that for all x ∈ dom(α′), µ(x) = α′(x).
In addition, it is clear from the definition of σl that

{x ∈ vars(M ′1) ∪ vars(M ′2) | Γ (x) = LL} = {x ∈ vars(M1) ∪ vars(M2) | Γ
′′
(x) = LL}.

Hence

dom(α) = {x ∈ vars(M1) ∪ vars(M2) | Γ
′′
(x) = LL ∧ µ(x) ∈ N}

= {x ∈ vars(M ′1) ∪ vars(M ′2) | Γ (x) = LL ∧ µ(x) ∈ N}
⊇ {x ∈ vars(M ′1) ∪ vars(M ′2) | Γ (x) = LL ∧ µ(x) ∈ N ∧ µ′(x) ∈ N}
= {x ∈ vars(M ′1) ∪ vars(M ′2) | Γ (x) = LL ∧ µ′(x) ∈ N}
= dom(α′).

Therefore, ∀x ∈ dom(α′). x ∈ dom(α) ∧ α′(x) = α(x). Thus there exists α′′ such that α = α′α′′.

Since we already have N1α
′ = N2α

′, this implies that N1α = N2α, which concludes the proof that
step3Γ ′′(c) holds. Hence, check_const({(c, Γ ′′)}) = true.

We can now prove the following theorem, which corresponds to the second step necessary for Theorem 3,
mentioned in Subsection 6.4:

Theorem 11. Let C, and C ′ be two constraint sets without any common variable

check_const([ C ]1∪×[ C ]2∪×[ C
′ ]1) = true ⇒ ∀n. [ C ′ ]n1∪×(∪×1≤i≤n[ C ]

n
i ) is consistent.

Proof. Assume check_const([ C ]1∪×[ C ]2∪×[ C ′ ]1) = true. Let n > 0.
Let us show that [ C ′ ]n1∪×(∪×1≤i≤n[ C ]

n
i ) is consistent.

By Theorem 9, it suffices to show that check_const([ C ′ ]n1∪×(∪×1≤i≤n[ C ]
n
i )) = true.

By Theorem 10, it suffices to show that check_const([ C ]
n
1∪×[ C ]

n
2∪×[ C ′ ]

n
1 ) = true.

By assumption, we know that check_const([ C ]1∪×[ C ]2∪×[ C ′ ]1) = true.
That is to say, for each (c1, Γ1) ∈ C, (c2, Γ2) ∈ C, (c3, Γ3) ∈ C ′, if c′ = [ c1 ]

Γ1

1 ∪ [ c2 ]
Γ2

2 ∪ [ c3 ]
Γ3

1 , and
Γ ′ = [ Γ1 ]1 ∪ [ Γ2 ]2 ∪ [ Γ3 ]1, check_const({(c′, Γ ′)}) = true.

Thus, by Lemma 44, for all (c1, Γ1) ∈ C, (c2, Γ2) ∈ C, (c3, Γ3) ∈ C ′, if c′ = [ c1 ]
Γ1

1 ∪ [ c2 ]
Γ2

2 ∪ [ c3 ]
Γ3

1 ,
and Γ ′ = [ Γ1 ]

n
1 ∪ [ Γ2 ]

n
2 ∪ [ Γ3 ]

n
1 , check_const({(c′, Γ ′)}) = true.

That is to say, check_const([ C ]
n
1∪×[ C ]

n
2∪×[ C ′ ]

n
1 ) = true, which concludes the proof.
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