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Solving high-frequency time-harmonic scattering problems using finite element techniques is chal-lenging, as such problems lead to very large, complex and indefinite linear systems. Optimized Schwarzdomain decomposition methods (DDMs) are currently a very promising approach, where subproblemsof smaller sizes are solved in parallel using direct solvers, and are combined in an iterative procedure.It is well-known that the convergence rate of these methods strongly depends on the transmissioncondition enforced on the interfaces between the subdomains. Local transmission conditions based onhigh-order absorbing boundary conditions (HABCs) have provedwell suited [1, 2]. They represent a goodcompromise betweenbasic impedance conditions (which lead to suboptimal convergence) and the exactDirichlet-to-Neumann (DtN) map related to the complementary of the subdomain (which is expensiveto compute). However, a direct application of this approach for domain decomposition configurationswith cross-points, where more than two subdomains meet, does not provide satisfactory results.We present an improved DDM that efficiently addresses configurations with cross points. Notingthat these points actually are corners for the subdomains, our strategy consists in incorporating a cornertreatment developed for HABCs into the DDM procedure. After a presentation of the key aspects of themethods, the effectiveness of our approach is discussed with two-dimensional finite element results.

1. Helmholtz problem with HABC and corner treatment

In order to solve scattering problems set on infinite or very large domains by finite element methods,a common strategy consists in computing the numerical solution only on a truncated computationaldomain, and using a non-reflecting treatment at the artificial boundary, such as a HABC or a perfectlymatched layer (PML). To describe our approach, we consider a two-dimensional Helmholtz problemdefined on a rectangular computational domain Ω:{
∆u+ k2u = s, in Ω,

∂n f u+Bu = 0, on Γ f , ( f = 1 . . .4)
(1)

where k(x) is the wavenumber, s(x) is a source term, Γ f is an edge of the rectangular domain, ∂n f isthe exterior normal derivative on Γ f ⊂ ∂Ω, and B is a non-reflecting boundary operator. Following [3],we use a Padé-type HABC, which is obtained by approximating to exact DtN operator for the half-spaceproblem, with constant k and s = 0 outside. It corresponds to using, for each edge Γ f ,
Bu =−ıkαu− 2ıαk

M

N

∑
i=1

ci(u f ,i +u), on Γ f ,

and introducing N auxiliary fields {u f ,i}N
i=1 governed by the auxiliary equations

∂
2
ττu f ,i + k2((α2ci +1)u f ,i +α

2(ci +1)u
)
= 0, on Γ f , (i = 1 . . .N) (2)
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where ∂2
ττ is the second-order tangent derivative, α = eıφ/2, ci = tan2(iπ/M) and M = 2N + 1. Theaccuracy of the numerical solution at the boundary depends on the number N and the angle φ [3].Because of the spatial derivative in equation (2), additional boundary conditions must be prescribedon the auxiliary fields at the boundary of the edges (i.e. at the corner of the domain) to close the sys-tem. Following [4], we introduce new relations that ensure the compatibility of the system without anysupplementary approximation. With these relations, the auxiliary fields defined on adjacent edges arecoupled at the common corner. For the fields {u f ,i}N

i=1 defined on Γ f , having an adjacent edge Γ f ′ , theboundary conditions at the corner Pf ,c = Γ f ∩Γ f ′ can be written as
∂n f ,cu f ,i +Du f ,i = 0, on Pf ,c, (i = 1 . . .N) (3)

with
Du f ,i =−ıkαu f ,i−

2ıαk
M

N

∑
j=1

c j
(α2ci +1−α2)u f ,i−α2(ci +1)u f ′, j

α2ci +α2c j +1
= 0, on Pf ,c, (i = 1 . . .N)

where ∂n f ,c is the exterior normal derivative at Pf ,c ⊂ ∂Γ f , and {u f ′, j}N
j=1 are the auxiliary fields definedon Γ f ′ . Finally, the problem consists in solving the main field u(x) on the domain with boundary con-ditions on the edges (equation (1)) and N auxiliary fields on each edge with boundary conditions at thecorners (equations (2)-(3)). See [4] for a three-dimensional version of this strategy.

2. A non-overlapping DDM with cross-point treatment

The Helmholtz problem defined on Ω is decomposed into subproblems defined on non-overlappingsubdomains ΩI (I = 1 . . .Ndom), with Ω =
⋃

I ΩI and ΩI
⋂

ΩJ = /0 if I 6= J. We consider here a structureddecomposition of a rectangular domain Ω into an array of rectangular subdomains (see figure 1). Theedges of each subdomainΩI are denoted ΓI, f ( f = 1 . . .4). Each edge could be an interface edge (if thereis a neighboring subdomain beyond the edge) or a boundary edge (if it belongs to the boundary of Ω).
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Figure 1: Example of domain decom-position (2 × 2 configuration) withthe transmission variables.

At each iteration of the DDM algorithm, the subproblems aresolved in parallel, and data are exchanged at the interfaces betweenthe subdomains to synchronize the solutions. The additive SchwarzDDM can be described as follows, at iteration `+1:
• For all subdomain ΩI , compute u`+1

I solution to{
∆u`+1

I + k2u`+1
I = s, in ΩI,

∂nI, f u
`+1
I +Bu`+1

I = g`I, f , on ΓI, f , ( f = 1 . . .4)

where g`I, f is a transmission variable if ΓI, f is an interfaceedge, or it is set to zero if ΓI, f is a boundary edge.
• For all interface between neighboring subdomainsΩI andΩJ ,update the transmission variables g`+1

I, f and g`+1
J,g according to

g`+1
I, f =−g`J,g +2Bu`+1

J , on ΓJ,g,

g`+1
J,g =−g`I, f +2Bu`+1

I , on ΓI, f ,

where ΓI, f = ΓJ,g is the common interface edge.
The convergence of this algorithm is accelerated by using an iterative Krylov method (GMRES) on thetop of the procedure for updating the transmission variables. See e.g. [1] for more details.Because the HABC is used as transmission operator (on the interface edges) and as boundary op-erator (on the boundary edges), the description of the DDM algorithm is incomplete. It should includethe auxiliary fields defined on the edges and, since these fields are governed by equation (2), additionalconditions should be prescribed at the boundary of the edges. The boundary points of each edge ΓI, fare denoted PI, f ,c (c = 1,2). Each point could be a cross point (at the cross of two interface edges), a
corner point (at the cross of two boundary edges) or a boundary point (at the cross of one interface edgeand one boundary edge). They are represented with the symbols ◦, • and ∗ on figure 1.
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At iteration `+1 of the DDM algorithm, we have the additional operations:
• For all boundary/interface edge ΓI, f , compute the auxiliary field u`+1

I, f ,i solution to{
∂

2
ττu`+1

I, f ,i + k2((α2ci +1)u`+1
I, f ,i +α

2(ci +1)u`+1
I

)
= 0, on ΓI, f ,

∂nI, f ,cu
`+1
I, f ,i +Du`+1

I, f ,i = g`I, f ,c,i, at PI, f ,c, (c = 1,2)

where g`I, f ,c,i is a transmission variable if the adjacent edge of ΓI, f at the boundary point PI, f ,c isan interface edge, or it is set to zero if the adjacent edge is a boundary edge.
• For all boundary/cross point shared by the edges ΓI, f and ΓJ, f of neighboring subdomains ΩI and

ΩJ , update the transmission variables g`I, f ,c,i and g`J, f ,d,i according to:
g`+1

I, f ,c,i =−g`J, f ,d,i +2Du`+1
J, f ,i, on PJ, f ,d ,

g`+1
J, f ,d,i =−g`I, f ,c,i +2Du`+1

I, f ,i, on PI, f ,c,

where PI, f ,c = PJ, f ,d is the common point.
The auxiliary fields of two adjacent edges of one subdomain are coupled by the operator D at the com-mon corner. All these operations are rather naturally included in the DDM algorithm. A GMRES is usedfor updating all the transmission variables, which are now associated to shared edges and shared points.

3. Preliminary finite element results

In order to verify and to analyze the efficiency of the proposed DDM, we present finite element resultsobtained with two 2D benchmarks. The numerical scheme is based on a Galerkin method adapted from[1], with meshes made of triangles, nodal finite elements, and second-degree basis functions. The sim-ulations are made with the GetDP and GetDDM environments [5].In the first benchmark, we consider the scattering of an incident plane wave by a disk. The scatteredfield is computed on a rectangular domain Ω, which is partitioned into six subdomains (figure 2a). ANeumann condition is prescribed on the boundary of the disk, and the HABC with the corner treatmentis used on the exterior boundary. In the DDM algorithm, transmission operators based on an optimizedimpedance condition [2] and the HABC are tested. In the former case, a specific treatment ensures thecompatibility between the impedance condition (on the interface edges) and theHABC (on the boundaryedges) at the boundary points. The effect of the boundary/cross-point treatments is analyzed by keepingor removing the corresponding terms in the finite element scheme.
(a) Solution (b) Relative residual (c) Relative L2−error
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Figure 2: Scattering benchmark: Configuration and solution (a). History of residual (b) and L2−error (b) for trans-mission operators based on the basic impedance condition (red lines) or the HABC (black lines) with/without pointtreatments. Parameters: N = 4 and φ = π/3
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(a) Velocity model

(b) Domain 1×45

(c) Domain 3×15

(d) Domain 5×9

(e) Number of iterations for different configurations
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Figure 3: Marmousi benchmark: Velocity model (a) and solution with three kinds of domain partition (b)-(d). TheHABC is used both as boundary condition and transmission operator. The point treatments are enabled. Thenumber of iterations to reach the relative residual 10−6 is plotted as a function of the number of subdomains forthe three kinds of domain partition (e).

For both kinds of transmission operator, the boundary-point treatment is required for convergingtowards the good solution. Indeed, without this treatment, the residual decreases with the iterationnumber, but the error stagnates (figures 2b and 2c, respectively). By contrast, the error decreases cor-rectly when the boundary-point treatment is enabled. In that case, the convergence is faster with thetransmission operator based on the HABC, and it is even faster with the cross-point treatment.We finally address a more challenging benchmark with a heterogeneous medium: the Marmousimodel, which represents a realistic geological structure (figure 3a). Although the HABC was initially de-rived by assuming a constant wavenumber, it provides good accuracy for problems with heterogeneousmedia [4], and we have observed that it accelerates the convergences of the DDM for the Marmousibenchmark (results not shown here). On figure 3, the convergence of the method is compared for dif-ferent domain partitions. For a larger number of subdomains (which is required to solve large prob-lems), the DDM converges significantly faster with a multi-dimensional partition than with the mono-dimensional partition, which confirms the efficiency and the interest of our approach.
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