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Abstract	

Chemicals pose every day a continuous hazard to both human health and environment. 

Unfortunately, Information about chemicals Mode of Action (MoA) for most of these compounds 

is limited. Development of approaches able to elucidate chemicals mechanisms of action is 

needed in order to improve risk assessment. Environmental omics aims to provide tools and 

methodologies to address these goals. Omics technologies in combination with system biology 

approaches have the potential to provide a powerful toolbox for understanding chemicals mode 

of action and consequently the outcomes these compounds trigger.  

The work presented in this thesis demonstrates the effectiveness of such approach in the context 

of environmentally relevant species. More specifically I focused on characterization of single 

chemical and chemical class toxicity mechanism in zebrafish embryos (Danio rerio) and in a fish 

gill cell line (Rainbow trout) and I demonstrated that the transcriptional state of an in vitro system 

exposed to a panel of environmentally relevant chemicals can be used as a biosensor to predict 

toxicity in an in vivo system. I also developed a computational model of ovary development in 

Largemouth bass (Micropterus salmoides) and used this to successfully identify chemical 

compounds with the ability to affect reproduction. Lastly, I developed a method to identify novel 

endocrine disrupting compounds in Daphnia magna supporting the use of this species for rapid 

screening in risk assessment.  

My results demonstrated the potential of system biology and data-driven science in identifying 

novel mechanisms of environmental toxicity and to develop a set of biomarkers for monitoring 

purposes. Further development building on these findings could potentially lead to 

improvements in risk assessment. 
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Chapter	1: Introduction	and	Background	

1.1 A	revolution	in	biology:	towards	a	holistic	understanding	of	

complex	biological	systems	

Traditional research in molecular biology has always been driven by a reductionist approach 

focusing on the mere characterization of the components of an organism. Reductionists analyse 

biological systems by breaking it down into its smaller components and determining the 

connection between the parts. The underlying key concept is that the individual components (i.e. 

the molecules and their structures) have enough explanatory power to provide an understanding 

of the whole system1,2. However, biological systems are extremely complex and their properties 

cannot be fully understood by simply looking at their individual components. Cellular and 

organismal constituents interact in many ways, including negative feed-back and feed-forward 

controls, hence their structures and dynamics might be investigated in intact cells and organisms. 

The last decade or so has witnessed the development of a more holistic approach embraced by 

the rise of System Biology2,3. As defined by Garcia-Reyero and Perkins4, System Biology is “the 

study of an organism as interacting networks with the goal of understanding and predicting 

properties”. More specifically, the goal of System Biology is to depict the interaction between 

genes, proteins and biochemical reactions in terms of interacting networks and to characterize 

the flow of information that links these elements to a biological process5.  

The shift from a reductionist approach to a holistic one along with the development of System 

Biology it has been made possible by the development of new technologies with the ability to 

enable a rapid and broad characterization of many different levels of biological organization. 

These functional genomics technologies, as transcriptomics, proteomics and metabolomics, 

allow measuring the expression of tens of thousands of genes, proteins and metabolites in single 
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experiments providing an overview of the molecular state of a given cell, tissue or even entire 

organs at a given time point6,7. Martyniuk et al.8, applied a transcriptome-based approach to 

characterized molecular pathways and temporal gene expression patterns underlying oocyte 

maturation in wild largemouth bass (Micropterus salmoides). Using a proteomic approach, Chen 

et al., identified 361 proteins to be differentially expressed between mature and immature 

sperm in the catfish Cranoglanis bouderius9. They were involved in 235 pathways of which the 

tricarboxylic acid (TCA) and the EABB played an important role in the energy metabolism of 

sperm and the spermatogenesis, respectively. Metabolomics was used by Ali et al. to identify a 

panel of 19 metabolites able to discriminate between segment-elevation myocardial infarction 

(STEMI) and both unstable angina (UA) and healthy patients10. They identified hydrogen sulphide 

(H2S), an endogenous gasotransmitter with profound effect on the heart, as promising predictive 

biomarker that will potentially allow for an earlier medical intervention. 

This unprecedented technological development in Biology has been responsible for an explosion 

of multivariate molecular data, which in turn has stimulated the development of a data-driven 

approach to understanding biological systems. Data-driven Biology, differently from hypothesis-

driven Biology, doesn’t require the formulation of a hypothesis to be tested beforehand but it 

just uses omics technologies to generate thousands of data that will be mined to generate useful 

and specific leads for further study and validation. Given the large amount of data generated and 

the little knowledge about the way biomolecules interact with each other, the key question is 

whether we can improve our understanding of biological systems from high-throughput data. 

Clearly, there is a need to develop sophisticated computational tools able to integrate genome-

wide measurements across different levels of biological organization, to identify key features of 

the biological system able to drive a specific biological function and to statistically infer the way 

these features works in concert to generate a given biological response11. 
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1.2 The	role	of	omics	technologies	in	environmental	biology	

The application of high-throughput technologies to environmental biology and environmental 

ecotoxicology field stimulated the emergence of a new field of study called “Environmental 

OMICS”. As defined by Ge et al. “Environmental omics is the application of OMICS technologies 

to better understand the environmental and genetic factors, toxicity mechanisms, and modes of 

action in response to both acute and chronic exposure to environmental chemicals and, in the 

long-term, development of diseases caused or influenced by these exposures”12.  Environmental 

omics contributes to the understanding of chemical toxicity mechanisms, to develop biomarkers 

for environmental risk assessment and to predict effects on human health. In a longer term these 

tools are expected to result in a better understanding of ecological functions. Genomics and 

transcriptomics are probably the most widespread omics technologies. There are several 

examples of the application of these approaches in the field of environmental toxicology. 

Examples are, the identification of chemical Modes of Action (MoA), the definition of the specific 

molecular initiating events (MIE)13 that trigger a physiological adverse outcome and for 

understanding the effects of chemical mixtures14.  

In a recent study, Brander et al. showed that bifentrhin exposure to an estuarine fish (Menidia 

beryllina) have the potential to alter metabolic processes and endocrine signalling and to 

decrease offspring15. Uren Webster and Santos investigated the potential toxicity effects of 

exposure in brown trout (Salmo trutta) to glyphosate and roundup, two herbicides used 

worldwide, and identify a similar mechanism of action through oxidative stress for 

environmentally relevant concentrations16. Kumar and Denslow provide a good overview of 

transcriptomic responses to chemical exposures in a variety of fish species and highlight future 

directions17. 
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Galland et al. showed that PAHs/PCBs exposures in the European flounder (Platichthys flesus) 

resulted in the deregulation of proteins involved in oxidative stress and glutathione metabolism 

as well as betaine demethylation pathway and the methionine cycle18. Peng et al., investigated 

the effects of methamidophos, a worldwide used pesticide, on the brain tissue of the flounder 

(Paralichthys olivaceus) and find out that proteomic changes were associated with pathways 

involved in immunity and stress with HSP90 and GzmK protein to play a crucial role19.   

Yan et al., demonstrated that exposure of zebrafish embryos to the widely used pesticide fipronil 

resulted in the identification of 26 differential metabolites involved in 5 different biological 

pathways revealing new insight into fipronil toxicity20.  

However, transcriptomics, proteomics or metabolomics taken alone, do not always reflect 

relevant biological responses associated with toxicological effects. Important biological changes 

in proteins and metabolites are not detected by simply investigating the levels of mRNA. Hence, 

the need of integrating transcriptomics, proteomics and metabolomics towards multi-omics 

approaches able to give a better overview of the real changes undergoing in a cell or tissue as a 

result of chemical exposures. Qiao et al. investigated the effect of hepatotoxic exposures to 

depict the sexual dimorphism in adult medaka fish using a multi-omic approach21. Norris et al., 

successfully developed a high-throughput multi-omics platform to investigate cisplatin-induced 

molecular changes and cisplatin resistance22. 

Nowadays, many challenges in the field of environmental toxicology still need to be addressed. 

One of them is linked with the analysis of exposure to chemical mixtures. In the natural 

environment, we are exposed to multiple chemicals. Although approaches aiming to unravel 

mechanisms of toxicity of single chemicals have been successfully applied, they cannot be used 

to investigate chemical mixtures. The main reason is because synergistic effects are usually found 
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in chemical mixtures. Omics technologies offers the potential to overcome these limitations since 

they enable high-throughput analysis and are able to screen multiple molecular targets and 

environmental responses simultaneously which is critical to understand the components that 

cause toxicity in a mixture. Moreover, Omics technologies allow the identification and 

prioritization of chemical mixtures. Many different studies have already been performed aiming 

to characterize molecular effects of chemical mixtures. Wang et al. have recently demonstrated 

that coho salmon (Oncorhynchus kisutch) exposures to mixture of pesticides resulted in the 

disruption of cellular pathways underlying olfactory system23. Oliveira et al. showed that 

exposure to a mixture of benzo(a)pyrene, dichlorodiphenyltrichloroethane and tributyltin is 

more toxic than exposures to the single chemicals in silver fish (Rhamdia quelen)24. 

Another challenge lies in the combined analysis of multi-omics data (e.g. genomics, proteomics 

and metabolomics) and the integration with classical toxicological endpoints which would allow 

the detection of health adverse effects and the identification of biomarkers. This challenge is also 

linked with the lack of a well annotated genome sequence for many environmentally relevant 

species. However, with cost of sequencing steadily decreasing more genomes of non-model 

species are sequenced, providing new insights into toxicity mechanisms of action and risk 

assessment. 

1.3 The	Adverse	Outcome	Pathway	(AOP)	framework	

In 2012, the Organisation for Economic Co-operation and Development (OECD)25 launched a new 

program on the development of Adverse Outcome Pathway (AOP), first proposed by Ankley et 

al.26. An AOP is a conceptual framework that describes the sequential chain of causally connected 

Key Events (KEs) between two anchor points, a Molecular Initiating Event (MIE) and an Adverse 

Outcome (AO) that occur at a level of biological organization relevant to risk assessment (fig. 
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1.1). The goal of an AOP is to provide the framework to describe the KEs that lead from MIE to 

AO.  

 

Figure 1.1: Conceptual framework of an AOP. A Molecular Initiating Event (MIE) is characterized by the interaction 
of the chemical with its target. A series of Key Events (KE) lead to an Adverse Outcome (AO) at organism or 
population level. Picture taken from Ankley et al.26. 

 

KEs have to be measurable and quantifiable and are used to test AOP hypothesis. Developing a 

robust, testable and functional AOP requires the generation of data within the laboratory. In vivo 

tests do not represent a good method for generating the data. In vivo endpoints are not 

amenable for direct prediction by in silico methods and In vivo effects are the result of the 

interaction between several different factors contrarily to In vitro tests which usually just 

measure one or very few of these factors27. Pathways information, crucial for the development 

of AOPs, will be inferred using the data generated. Depending on the final use of the AOP, the 

knowledge required will vary. For example, qualitative relationships are adequate for hypothesis 

generation but quantitative relationships will be needed for risk assessment. Studies aiming to 

develop AOPs are currently increasing. Recently, Song et al. proposed the first invertebrate ED-
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AOP investigating the effects of endocrine disrupting chemicals (EDs) on arthropod molting28.  

Perkins et al., review four case studies to explore the degree of scientific confidence required for 

an AOP to be useful in regulatory applications29. Lee et al., demonstrated the usefulness of AOPs 

in biomarker-based Environmental Risk Assessment (ERA)30. 

1.4 Biological	systems	of	relevance	

Animal-based tests have always been the standard for assessing biological response either during 

diseases or chemical exposures. Especially in toxicology, testing is carried out by exposing the 

animal to a given chemical compound. Adverse effects triggered by these compounds can be 

displayed as result of acute (less than 1 month), sub-chronic (between 1 and 3 months) or chronic 

exposure (more than 3 months). Most of these tests examine specific types of adverse effect, 

known as endpoints, such as death, developmental abnormalities, behavioural changes, etc. 

Most of the toxicity assessments, especially in human, have been conducted using rats (Rattus 

norvegicus) or mice (Mus musculus). In the field of environmental toxicology Danio rerio 

(zebrafish), Xenopus laevis and Daphnia magna are of particular importance. In the next sections 

I will outline species that have been the bases of the work described in this thesis. 

1.4.1 Danio	rerio	

The freshwater fish zebrafish (Danio rerio) is one of the most used model organisms in scientific 

research. As a model species presents advantages which makes it suitable in many different field 

of study. First of all, it has a rapid rate of reproduction: females usually lay hundreds of eggs each 

week which will reach adulthood in about three months. This is quite useful when introducing 

novel genetic modifications as several generations are required to achieve a stable modification. 

Moreover, zebrafish is a cost-effective species: a small amount of space for individual is needed, 

it is relatively inexpensive to feed and it is straightforward to ship samples across laboratories.   
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The zebrafish genome has been fully sequenced which is an important point for model organisms 

nowadays. This effort has showed that 70% of human genes have a zebrafish equivalent (84% 

when considering human disease-causing genes)31. These discoveries make the zebrafish a really 

suitable model for human disease investigation32,33. Zebrafish embryos are relatively large and 

transparent during early stages which makes their manipulation straightforward. This feature 

allows scientists to easily alter embryo properties, for example through the CRISPR-Cas9 

technique which allow rapid phenotyping assessment of gene silencing in embryos34,35. 

Moreover, embryos are permeable to many environmentally relevant chemicals and drugs which 

makes them particularly suitable for screening a large number of toxicological samples or drugs 

candidates36,37. Particularly, the high sensitivity of zebrafish aids in monitoring environmental 

contaminants38,39. In May 2013, the use of zebrafish embryo for acute toxicity testing (FET assay) 

has been approved by the Working Group of the National Coordinators (WNT) of the OECD Test 

Guideline Program and published as OECD test guideline (TG) no. 236 on July 26, 201340. Given 

its excellent correlation with conventional in vivo fish testing41–43, the test is now accepted as a 

full replacement for the acute fish test44. 

1.4.2 Daphnia	magna	

The freshwater water flea Daphnia magna is one of the oldest system used in biological 

research45. D. magna is a small planktonic crustacean that grows up to 5 mm and inhabits a wide 

range of freshwater environments. They occur in a highly diverse set of habitats ranging from 

freshwater lakes to saline ponds.  As a result, they manifest extensive phenotypic diversity 

providing ample raw material to study gene function and genome by environmental 

interactions46. The phylogenetic position of Daphnia is ideal for comparative genomics.  The 

number of model systems available for understanding genome function and evolution is rapidly 

expanding.  This rapid growth is particularly noticeable in insect taxa.  The close relationship of 
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the crustacean and insects is clearly supported by both molecular and morphological studies 

making D. magna a valuable outgroup for comparative genomic studies47,48. D. magna are an 

exceptional model for studying developmental and disease processes since they are transparent 

throughout life allowing for studies of tissue-specific gene expression at any life stage and direct 

observation of parasites and pathogens49. The reproductive cycle of D. magna is ideal for 

experimental genetics.  Generation time in the lab rivals that of almost all other model eukaryotic 

systems. D. magna are easily cultured and maturation is reached within 5 - 10 

days.  Reproduction is normally clonal (allowing the maintenance of genetic lineages), but sexual 

one can be induced environmentally (allowing the production of inbred or outbred 

lineages).  The clonal nature of the organism provides an exceptional opportunity to study 

genetic responses to environmental stimuli in a defined and constant genetic background with 

unlimited replication50. Moreover, Daphnia-based assays have been widely used for 

biomonitoring water quality. Le et al., provided a good overview of using D. magna in aquatic 

toxicological monitoring depending on omic approaches51. The Daphnia Genomic Consortium 

(DGC)52 has already released the genome of Daphnia pulex53, a close relative of D. magna. The 

study identified around 30,000 genes in the small D. pulex genome (only 200 megabases) as a 

result of an elevated rate of gene duplication and many of them are attributed to lineage-specific 

gene families. Moreover, more than a third of the genes have no detectable homologs in any 

other species. A genome draft of D. magna has been also released and it is publicly available in 

the interactive Daphnia genome database at wFleaBase.org54. Studies investigating 

transcriptomic response as a result of exposure to environmentally relevant compounds have 

already been performed55.  
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1.4.3 Micropterus	salmoides	

The largemouth bass (LMB) (Micropterus salmoides) is widely distributed along the U.S.A. east 

coast and it has an important economic value due to its popularity as a sport fish and it is also 

ecologically relevant due to its trophic position in the freshwater environment as apex predator. 

For this reason, it has been often used as sentinel species for assessing chemical toxicity56,57. 

Moreover, it has been widely cultured in the world, especially in China where it has a rapid 

production growth58. Recently, the muscle transcriptome of LMB has been assembled to 

investigate genes and SNPs associated with growth traits59. Byadgi et al.60, assembled a 

transcriptome starting from spleen tissue to investigate the molecular response of LMB when 

hosting a bacterial infection by Nocardia seriolae. Most of the studies however have been 

addressing questions linked to ovary development and the effects chemical compounds exert on 

it. Dominguez et al. demonstrated the expression of the VTG receptor to be stage-specific and to 

be controlled by insulin and sex steroids61. Martyniuk at al.62, identified genes related to 

reproduction (granulosa function and oocyte development), endocrine function (steroid 

metabolism and hormone biosynthesis) and immune function (T cell suppression and leukocyte 

accumulation) to be differentially expressed in female LMB sampled from a highly polluted site. 

Collì-Dulà et al.63, investigated the effects of perfluorinated chemicals (PFASs) in the liver and 

testis of male LMB and found out genes related to lipid metabolism, energy production, RNA 

processing, protein production/degradation and contaminant detoxification to be modulated by 

high concentrations of PFASs. The work presented in chapter 4 uses part of the data coming from 

Martyniuk et al, where they investigated the gene expression network underlying Largemouth 

bass ovarian development characterizing the molecular pathways involved in oocyte 

maturation8. 
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1.4.4 Other	commonly	used	species	

In addition to the species outlined above, many other are frequently used for toxicity testing. In 

ecotoxicology different species of fish are used worldwide to investigate chemicals impact in 

their natural environment. The European flounder (Platichthys flesus) has been used by Williams 

et al. to successfully characterize chronic molecular responses to environmental mixtures64. 

The stickleback (Gasterosteus aculeatus) was successfully used by Petersen et al. to investigate 

the effect of the perchlorate on the embryonic androgen synthesis and more in general on 

reproductive development65.  

Another frequently used organism in the ecotoxicology field is the fathead minnow (Pimephales 

promelas). Cavallin et al, demonstrated endocrine disrupting chemicals coming from wastewater 

treatment plants (WWTP) to affect fathead minnow reproduction in a dose-dependent 

manner66. 

1.4.5 Alternatives	to	animal	testing	

One of the biggest challenges the toxicology community is trying to address is the reduction of 

toxicity testing using whole animals67. Each year, more than 100 million animals are killed in U.S. 

laboratories for biology lessons, medical training, curiosity-driven experimentation, and 

chemical, drug, food, and cosmetics testing. In the UK, Home Office statistics shows that 2.08 

million experimental procedure were undertaken in 2015. In Canada, the Canadian Council of 

Animal Care (CCAC) reported a total of 3.57 million experimental procedures in 2015. The 

amount of animals used for toxicity testing is not compatible with the Registration, Evaluation, 

Authorisation and Restriction of Chemicals (REACH) legislation managed by the European 

Chemicals Agency (ECHA)68 which is trying to address the issue linked to chemical impact on both 

human health and environment by reducing the use of whole animal experimental procedures. 
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The agreement signed in 2009 by United Nations, Canada, Japan and the European Union posed 

the basis for the development of alternative methods to assess the safety of industrial chemicals, 

consumer products and pharmaceuticals. The shared goal is summarized by the principles of the 

3Rs framework proposed by the UK National Centre for the Replacement, Refinement and 

Reduction of Animal in Research (NC3Rs)69 aiming to advocate scientific ingenuity to Replace, 

Reduce and Refine the use of animal (3Rs)  without compromising scientific rigour70. Two main 

strategies were adopted for addressing this need: the development of in vitro system (i.e. cell 

culture) as a type of non-animal testing and the development of in silico methodologies able to 

generate toxicological prediction based on chemical properties (i. e. QSAR – Quantitative 

Structure-Activity Relationship). Sewell et al., provide a good outline of current and future 

opportunities to apply the 3Rs in safety assessment programs for pharmaceuticals and potential 

benefits to the industry71. The use of in vitro cell based system and in silico approaches is an 

active area of research in many different fields of study and their use as alternative to animal 

testing by pharmaceutical industries is fast developing72. In environmental toxicology, the use of 

fish cell lines (i.e. fish gill cell line) is increasing since they have many potential applications73. 

Tanneberger et al. assessed the toxicity of 35 chemical compounds and found out a good 

agreement between in vivo and in vitro effective concentrations74. Yazdani et al., showed that 

BPA exposures were able to induce oxidative stress and immune-related dysfunctions on the 

Atlantic salmon kidney cell-line75. A good overview of alternatives to animal testing is given by 

Scholz et al.76. In chapter 2 and 3 we present a work based on a trout fish gill cell line77. In-silico 

methods aims to complement existing toxicity tests to predict toxicity, prioritize chemicals and 

guide toxicity tests. Sangion and Gramatica recently developed QSAR models to predict acute 

toxicity of Active Pharmaceutical Ingredients (APIs) in key organisms belonging to different 
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aquatic trophic levels78. A comprehensive overview, explaining and comparing the strength and 

the weakness of the existing in silico methods for toxicity prediction is given by Raies and Bajic79. 

A good overview of the full scope of the 3Rs framework is given by Burden et al. which present 

examples of short, medium and long-term approaches to enable the uptake of the 3Rs across 

regulatory toxicity testing80. 

1.5 Omics	technologies	

The advent of omics technologies has revolutionized the way research is done. Differently from 

traditional studies which are purely hypothesis-driven, omics experiments are hypothesis-

generating where all data are acquired and needed to define a hypothesis that can be further 

validated. Omics technologies span from genome sequence (Genomics) to expression 

(Transcriptomics, Proteomics and Metabolomics) and its regulation (Epigenomics, Cistromics and 

miRNAomics). These high-throughput technologies can simultaneously measure thousands of 

features in a single experiment and have many different applications (fig.1.2).  
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Figure 1.2: Omics technologies are rapidly evolving providing scientist with a wide range of technologies to carry 
out multi-level studies. Picture adapted from  Weaver et al.81. 

 

As the amount of data generated is considerable, data analysis is really challenging and a lot of 

effort have been put into the development of suitable tools that help in the extrapolation of 

biological insight from quantitative measurements. Here we describe the main functional 

genomics technologies and review the most important approaches for data analysis, including 

data-driven pathway inference algorithms. 

1.5.1 Transcriptomics	

The transcriptome is defined as the collection of all mature RNAs in a given cell. The analysis of 

the transcriptome can help unravelling underlining processes within a cell. The early 

development of microarray technologies and then later of mRNA sequencing has made possible 
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to measure the whole transcriptome of a cell or a tissue in a single experiment. Most of the data 

available in the public domain has been developed using microarray technologies but mRNA 

sequencing is now the technology of choice for transcriptomics profiling. 

Microarray Technologies 

Most of the transcriptomics data available in the public domain has been generated with either 

Agilent or Affymetrix technology platforms. The general principle behind microarray technology 

is hybridization between two strands of DNA or RNA. Each array is a collection of microscopic 

spots, called features, containing thousands of copies of specific probes (gene sequences), 

usually representing the full or partial transcriptome of a given organism, attached to a solid 

surface. Fluorophore-labelled cDNA samples hybridize with the probes and their hybridization is 

then detected and quantified to determine relative abundance of nucleic acid sequences in the 

target.  

Affymetrix arrays are built using a photolithographic synthesis process82 that produces a high-

density pattern of short oligonucleotide sequences (25 nucleotides in length) . Each of the gene 

transcripts is represented by oligonucleotides complementary to different exonic gene regions. 

Agilent, a Hewlett-Packard (HP) offshoot, developed an innovative ink-jet technology to print 

sequences on a small glass surface. This method simply print nucleotide bases on a glass surface 

with micron precision to synthetize oligonucleotides. These can be up to 120 nucleotides long. 

This design gives the customer the possibility to print custom designed microarrays at no extra 

cost, a particularly useful solution for non-model species.  

Next Generation Sequencing (NGS) technologies 
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Along with these omics technologies, next-generation sequencing technologies have quickly 

developed and cost have significantly decreased making them accessible by most of the 

laboratories worldwide. While the RNA molecules of interest need to be known previously in 

designing microarrays, NGS do not rely on previous knowledge of the RNA molecules. Here DNA 

or RNA molecules are sequenced by reading each base and reconstructing either the genome 

(DNA-seq) or the transcriptome (RNA-seq). Sequencing offers many advantages over microarray 

expression profiling technology83. Microarray gene expression measurements are limited by 

background at the low end and signal saturation at the high end. Sequencing technologies, on 

the other hand, offers a broader dynamic range by quantifying discrete read counts allowing the 

detection of very lowly expressed genes. Moreover, sequencing technology is particularly 

suitable for non-model species allowing the generation of the full transcriptome84. The challenge 

still lies in the analysis of the high amount of data these technologies are able to generate. 

As for microarrays, molecules of mRNA are first reverse-transcribed into cDNA. Those molecules 

are then fragmented into smaller sequences and platform-specific adapters are attached to one 

or both ends. Those modified cDNA molecules are then sequenced and the resulting short 

sequences called “reads” are first assembled into longer fragments and finally aligned against a 

reference transcriptome. For non-model species it is possible to assemble the reads de novo to 

produce a new genome. The number of reads sequenced for each gene sequence reflects the 

abundance of the mRNA molecules in that particular tissue in the given experimental condition. 

1.5.2 Proteomics	

Proteomics is the study of the entire set of proteins produced by an organism. Proteomic studies 

aiming to map out the structure of protein complexes are known as structural proteomics and 

take advantage of X-ray crystallography and nuclear magnetic resonance spectroscopy (NMR). 

On the other hand, the quantitative study of protein expression between samples in different 
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experimental conditions is known as expression proteomics and use technologies as 2D-PAGE 

and mass spectrometry (MS). Proteomics offers the potential to be more informative of the 

molecular state of a particular cell or tissue than mRNA levels as proteins are translated products 

of gene expression and post-transcriptional modifications may reduce the amount of mRNA 

successfully translated into proteins. Proteomics studies have been successfully applied in many 

different fields and a significance contribution has been given to the ecotoxicology one85,86.  

1.5.3 Metabolomics	

Metabolomics provide an overview of the full set of metabolites, intermediate or final product 

of metabolism, present in an organism under a given experimental condition. Differently from 

transcriptomics and proteomics, metabolomics provides information about whether a given 

molecular process has happened. Metabolomics studies can be categorized into untargeted and 

targeted analysis: Untargeted analysis aims to define the metabolic profile of the total 

complement of metabolites (“fingerprint”) in a sample and take advantage of the NMR while 

targeted analysis focuses on the identification and quantification of selected metabolites and 

take advantage of MS.  

NMR spectroscopy can be used with either liquid87, gas phase88 and tissue samples89 and it can 

be used to investigate the chemical and physical properties of molecules such as molecular 

dynamics90 and electron density91. One of the major disadvantages of NMR is its low sensitivity. 

On the other hand, MS is characterized by a high sensitivity and selectivity which make it the best 

analytical platform for profiling metabolites in mixed biological samples. However, one of the 

disadvantages of MS is that different methods have to be used to detect all classes of 

metabolites. A good overview of both the strength and weakness of NMR spectroscopy and MS 

applications in metabolomics research is given by Emwas92. Metabolomics is still in the early 
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stages of development however, it has already started to give relevant insight in different fields 

of research and recently interesting results in the field of ecotoxicology have been achieved93,94.  

1.6 Data	acquisition	

As the projects embedded in this dissertation all uses microarray technologies, I will briefly 

describe a typical sample-to-data workflow using Agilent technology (used throughout this 

thesis).  

Figure 1.3 shows a schematic representation of a typical sample-to-data workflow using Agilent 

technology. Initially, the RNA or mRNA is extracted from the biological sample of interest using 

either the most recent spin column-based method or the more traditional phenol-chloroform 

based one95,96. Next, an oligo-dT primer is used to hybridize with the poly(A) tail of the desired 

RNA molecule. Then, a reverse transcriptase enzyme along with deoxynucleotides are added to 

the mixture allowing the creation of cDNA molecules based on the original sample. This initial 

linear mRNA amplification step reduces the amount of total RNA needed as input to as little as 

25 ng. A T7 RNA polymerase in the presence of fluorescence dyes (Cyanine-5 or Cyanine-3) 

convert cDNA molecules into complimentary RNA (cRNA). The resulting cRNA is fragmented into 

shorter and less structured segments before the hybridization to the array which occurs 

overnight. The fragmentation step allow the reduction of structural effects as secondary and 

tertiary structures can significantly affect the hybridization efficiency97. Given the different 

wavelength emissions of the two dyes, double channel experiments are often used to represent 

the ratio of each gene given a treated and a reference sample. Once the unbound cRNA has been 

washed off, a laser-scanning machine capture the fluorescence signal from the labelled cRNA. 

The amount of fluorescence signal reflects the transcript abundance within the given cell or 

tissue. Finally, an image analysis procedure is used to extract a numeric representation of each 
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probe on the array based on pixel intensities. Once a numeric data table has been acquired, 

downstream analysis can start. 

 

Figure 1.3: Schematic representation of the key steps of a typical sample-to-data workflow with microarray 
technologies. Picture taken by The SCQ98. 
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1.7 Microarray	data	analysis	

Microarray technology allows measurements of thousands of features that require advanced 

computational methodologies to extrapolate biological meaning out of them. In the last decades 

a wide range of computational tools for the analysis of omics data have become available offering 

statistical or visual results that help in the extrapolation of biological insights. Microarray data 

analysis always starts with raw data pre-processing and normalization to make the data ready 

for downstream analysis. Once the dataset has been normalized many different questions can 

be addressed using different approaches, of which differential gene expression analysis, 

exploratory data analysis, functional analysis, network inference and class prediction techniques 

are the most important. 

1.7.1 Data	pre-processing	and	normalization	

The overall aim of microarray data processing is to remove noise and systematic technical 

variability to reveal the true biological differences between samples. RNA extraction, labelling, 

hybridization and scanning can introduce systematic errors. Normalization algorithms are used 

to minimize this variability. Usually, a log2 transformation is applied to the data to remove low 

signal intensity bias. This process is required because the distribution of raw signal intensity 

values is skewed towards the low signal intensity and the process forces values to be spread 

more evenly across the intensity range. Moreover, most of the statistical tests developed are 

parametric and requires the data to follow a normal distribution. Following the transformation, 

a normalization procedure is applied to the data. Many different normalization procedures have 

been developed but they all share the same goal to try to reduce the unwanted variability while 

preserving the biological heterogeneity99. The choice of method is dependent on the design of 

the array probes, the number of channels and the manufacturer. Moreover, normalization 

procedures are usually different for one-color arrays compared to two-color arrays. Two-color 
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arrays usually require a ‘within-array’ normalization to account for dye biases before the 

‘between-array’ normalization. LOESS normalization100 used in chapter 2, is a widely used 

method for two-color array normalization likely due to it being easy to implement. It does fit a 

smooth curve through a set of data points to build up a function that identify the variation in the 

data. Quantile normalization proposed by Bolstad et al.101 used in chapter 2 is a popular method 

due to it being mathematically simple. It does force each channel to share the same empirical 

distribution.  

Microarrays have several millions of features which allow for multiple probes per target gene. 

This is mainly due to the availability of multiple sequences for the same target gene. A 

summarization procedure is applied to produce a unique measure for every gene102. Two 

different methods to summarize multiple probes are commonly preferred: taking the average 

expression values of all the probes or select the one with the highest intensity value as features 

with low expression values are considered highly variable across biological replicates. An 

additional filtering step to remove lowly expressed genes may be also applied. One of the key 

assumption of microarray technology is that only a few genes (up to a few hundred) are 

expressed at different levels between samples. This means that most of the genes have identical 

expression across samples. For this reason, in order to increase sensitivity in finding differentially 

expressed genes, genes whose expression fall below a given detection limit can be removed. The 

resulting dataset is now ready for downstream analysis as outlined in the next sections.  

1.7.2 Exploratory	data	analysis	

Exploratory data analysis techniques encompass a wide range of tools which are important for 

the detection of outliers and for the identification of trends between genes or samples. 

Moreover, microarrays as well as the other omics technologies are characterized by a high 

dimensionality which cannot be visualized by the human eye. For this reason, different data 
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reduction techniques have been developed to provide a visual representation of the similarity or 

dissimilarity between genes or samples. Among the different techniques developed, principal 

component analysis (PCA) is probably the most widely used for the identification of dominating 

patterns in multidimensional data sets103,104. Moreover, it has also been successfully applied for 

the detection of outliers in multidimensional data sets105,106. PCA is a projection technique that 

aims at representing a highly multidimensional dataset into a small number (typically a maximum 

of 3) of principal components with minimal loss of information. This allows the visual inspection 

of the data and the identification of the variables mostly contributing to the variation in the data. 

The variance across the different samples is summarized into principal components where the 

first and the last component contain the most and the least of the variance of the original data 

set respectively. Importantly, the different principal components (PCs) are not correlated to each 

other ensuring they represent different features of the original dataset107. 

Other commonly used techniques for representing the relative similarity between genes and 

between samples are clustering algorithms, where some of them use a tree based 

representation108,109. Clustering methods use a dissimilarity matrix created by applying simple 

distance measures (Euclidean, Pearson or Spearman correlation, etc.) and then use it to identify 

groups of variables that have a similar expression profile. Traditional clustering methods can be 

classified into two main categories: hierarchical and non-hierarchical algorithms. Hierarchical 

algorithms groups similar objects together and provide a natural way for graphical 

representation which is called dendrogram where each branch forms groups of genes (or 

samples) sharing similar expression patterns. Classical hierarchical clustering methods lack 

robustness when dealing with noisy data. Self-Organising Maps (SOM), clustering approaches 

belonging to the family of the neural networks, have been frequently used as an alternative as 

they are more robust and accurate in clustering noisy data. However, SOM lack of the ability to 
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detect higher order relationships between clusters which is typical of hierarchical clustering 

methods. The Self-Organising Tree Algorithm (SOTA), which we employed in chapter 4, combine 

both the advantages of SOM and hierarchical clustering providing a hierarchical clustering 

achieved with the accuracy of a neural network110. In SOTA Kohonen’s self-organising map 

(SOM)111 is coupled with Fritzke’s growing cell structures112. The method starts with a mother 

neuron which include all the data and after a training procedure as implemented in the SOM, the 

data are split into two “sons” neurons. Then, the most heterogeneous of these two neurons splits 

again and the training re-starts. This splitting scheme uses a binary tree topology and it is possible 

to stop the growth of the hierarchy at the desired level of variability which allows a better 

visualization of the different patterns. Non-Hierarchical algorithms (i.e. partitional), on the other 

hand, perform a partition of n genes (or samples) into K clusters where each cluster contains 

features with similar expression profiles. One of the most common non-hierarchical clustering 

methods is K-means113. In K-means, K random centroids are put into your data space. For each 

individual point (genes) the nearest centroid is found. The centroids are then re-computed by 

averaging all the points associated to that given centroid. The nearest centroid for each point is 

again found. The process is repeated as long as the centroid cannot be moved further. A good 

overview of clustering methods for microarray data is given by Belacel et al.114.  

1.7.3 Differential	gene	expression	

Identifying genes whose expression is significantly different between experimental conditions is 

one of the most common question in the analysis of omics data. Among the first statistical 

approaches developed for the identification of differentially expressed genes there is the 

traditional t-test which compare the sample means of up to two classes specifying a p-value for 

each gene. However, there are issue when this is applied to omics datasets. One is associated 

with the data distribution as the t-test assumes that the data are normally distributed and omics 
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data do not always follow a gaussian distribution. Moreover, the t-test needs a procedure for 

correcting for multiple testing. With all statistical tests, is highly important to control the Type 1 

error rate. This error controls the number of false positive within the statistical test. The problem 

arises when multiple comparisons are made. Several correction methods have been proposed in 

order to control Type 1 error rate115. The most commonly used was proposed by Benjamini and 

Hochberg116 which they named the false discovery rate (FDR). It has been particularly designed 

to control the expected proportion of false discoveries. An FDR of 1%, for example, would be 

able to yield 99% of true and 1% of false positives. Significance analysis of Microarrays (SAM) 

address these limitations by using an improved statistics and by using a non-parametric method 

for computing the FDR117. SAM is a permutation-based method which use the d-statistic to 

identify genes differentially expressed between different experimental conditions giving 

estimates of FDR. Moreover, it has been optimized for many different experimental designs as 

paired, unpaired and time-course. Another widely used method is the analysis of variance 

(ANOVA), which is similar to the t-test but it allows the identification of features that are linked 

to specific factors affecting the experimental data. These factors can be either biological (i.e. 

different treatments) or technical (factors that may affect the results, i.e. different hybridization 

days in a typical microarray experiment).  

1.7.4 Functional	analysis	

Differential gene expression analysis used in combination with cluster analysis and other data 

exploration techniques are able to identify genes whose expression is linked to specific 

experimental or environmental condition and to organise them in groups with similar expression 

profiles. While this is extremely useful, it is challenging to make biological sense of large gene 

lists. This challenge is addressed by functional annotation tools that test whether genes 

belonging to specific functional terms or biological pathways are over-represented in a given gee 
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list. The Database for Annotation, Visualization and Integrated Discovery (DAVID) is probably the 

most popular functional analysis tool for omics data 118. One of the key functions of DAVID is the 

ability to integrate multiple functional annotation databases as Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) providing biological insight at multiple level of 

biological organization (either genes or pathways). DAVID implements an algorithm to identify 

functional terms that share a high percentage of genes and group them together to simplify the 

task of biological interpretation. The EASE score, a modified Fisher exact p-value, is used to 

measure gene-enrichment in annotation terms. Moreover, different methods have been 

implemented within the DAVID tools such as functional clustering, functional annotation chart 

and functional annotation table. Other commonly used functional annotation tools are FatiGO119 

and gProfiler120. Gene Set Enrichment Analysis (GSEA)121 has been shown able to identify 

statistically significant functional enrichment even when not a single genes is found to be 

differentially expressed by conventional hypothesis testing statistical procedures. The method 

works by first ranking all the genes in the transcriptome depending on their differential 

expression between different phenotypes. The goal of GSEA is to determine whether members 

of a functionally defined given gene set (e.g. genes in a biological pathway) are enriched at the 

top or at the bottom of the ranked list, in which case the gene set is correlated with that 

phenotypic class. An enrichment score (ES), which represent the degree to which a given gene 

set is overrepresented at the extremes of the ranked list, is then calculated for each of the gene 

set. Finally, the probability values are adjusted for multiple testing using FDR. An overview of the 

GSEA methodology is reported in fig. 1.4. 
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Figure 1.4: Schematic overview of the GSEA method. A) The expression dataset is sorted by correlation with the 
phenotype. B) Plot showing the calculation of the enrichment score. Picture taken from Subramanian et al.121.  

 

One of the weakness linked to these functional annotation tools is the inability to remove 

redundant terms. As previously reported, DAVID is able to deal with that however most of the 

classical annotation tools do not have an in-built function that address this issue. The Reduce 

and Visualize Gene Ontology (REVIGO) tool has been developed to specifically address this 

issue122. REVIGO identifies representative subset of terms using a clustering algorithm that relies 

on semantic similarity measures. 

1.7.5 Network	inference	

Omics technologies are capable of measuring thousands of features representing the molecular 

state of a given biological system in a particular experimental condition. In transcriptomics, 

proteomics and metabolomics these features are represented by mRNA, proteins and 

metabolites respectively. Since transcription, translation and metabolism are integrated within 

the hierarchy of information leading from genotype to phenotype, it is reasonable to hypothesise 
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that the relationship between genes of similar functions may be learned from observational 

data123,124. In the last ten years, several research groups have worked at developing reverse-

engineering approaches that can address precisely the above-mentioned challenge. Several 

methods have been developed to reverse engineer molecular pathways to represent biological 

pathways both as static as well as dynamical systems. The most common reverse-engineering 

approaches can be classified into three different classes: correlation-based, mutual information-

based and Bayesian (fig. 1.5). 

 

Figure 1.5: Schematic representation of the process to infer interaction networks applying three different reverse-
engineering approaches: correlation, mutual information and Bayesian. Picture taken from125. 
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Correlation-based methods for the reconstruction of genetic networks have been successfully 

applied126. These methods represent the right choice for measuring linear relationships however, 

their accuracy decrease when measuring non-linear interactions as spearman correlation 

coefficient is only able to spot monotone relationships. Mutual information, defined by 

Shannon127, represent a more general measure with the ability to identify non-monotonic 

relationships. It measures the amount of information a variable contains about another applying 

the concept of the entropy which represent the uncertainty of a variable. The stronger the 

interaction between two variables the larger the value of mutual information; mutual 

information of unrelated variables will be theoretically zero. One of the most popular mutual 

information-based approaches for the inference of gene regulatory networks is the Algorithm 

for the Reconstruction of Accurate Cellular Networks (ARACNe)128. ARACNe predicts potential 

functional association between features (genes, proteins or metabolites) using MI. The power of 

the algorithm is coming by the exploitation of the Data Processing Inequality (DPI) to discard 

indirect interactions129. It reduces the number of false positive by examining gene triplets that 

have a significant value of MI and removing the edges with the smallest value. A time-delay 

version of ARACNe accounting for time-course data has also been developed130. One of the 

advantages of the MI-based algorithms is the low computational cost as the MI is calculated 

between pairs of features at a time hence making this tool suitable to deal with the huge amount 

of data generated by omics technologies. MI methods have been criticized for their inability to 

infer direction of regulations131. However, some improvements have been made and nowadays 

methods capable of recovering directions have been developed132. The third class of reverse-

engineering approaches for network reconstruction use Bayesian inference. It uses probability 

as a measure of uncertainty allowing the incorporation of prior knowledge in order to update 

the probability as more information becomes available. Bayesian networks are probabilistic 
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graphical models that use Directed Acyclic Graph (DAG), a finite graph with no directed cycles, 

to fit the data. They present a few advantages as their ability to deal with small and incomplete 

datasets133,134 and the possibility to incorporate prior knowledge135. An important limitation is 

that most of the biological networks contains loops and Bayesian networks, being acyclic, do not 

take them into account. Dynamic Bayesian networks have been developed to overcome this issue 

as they can include cycles and are particularly useful when time-course data are available136,137. 

The downside of these reverse engineering approaches is that they can be computationally 

expensive and they require a lot of measurements for the same node (>50 with ARACNe and 

>100 with Bayesian networks). Moreover, the lack of genome-wide measurements of factors we 

cannot collect measure for and the dynamics that elude cost-effective experimental designs still 

present some limitations138. Nevertheless, network inference approaches have been successfully 

applied in different fields of science providing new insights about the mechanism of action of 

both chemical exposures8 and diseases139. 

1.7.6 Machine	learning	

Machine learning is a field of computer science that develops algorithms that can learn from data 

rules to predict unknown future events. A Machine learning workflow consist of three main 

phases including building the model from input data, evaluating and tuning the model and finally 

using the model for prediction-making140. These methods can be classified into three broad 

categories: supervised learning, unsupervised learning and reinforcement learning. In supervised 

learning, the system infers a function from labelled training data which is used to predict the 

value of a variable, called dependent variable, from a set of variables, called independent 

variables. In supervised learning, there are two different kind of tasks: regression and 

classification. Regression models predict numerical values while classification models try to 

predict distinct classes. Among the most common techniques, we find decision trees, rule 
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learning and instance-based learning such as k-Nearest Neighbors (k-NN)141, Genetic Algorithms 

(GA), Artificial Neural Networks (ANN) and Support Vector Machines (SVM). k-NN, which we 

employed in chapter 2, is a simple and intuitive method widely used for classification problems. 

It offers many advantages over the other method as it being non-parametric and its low error 

rate. The classification algorithm finds the K nearest neighbours of a sample of unknown category 

by computing samples similarities (i.e. Euclidean distance). A given class is then assigned 

depending on the class majority of the K nearest neighbours. The choice of the K value is arbitrary 

its value should be odd for a two-class problem and must not be a multiple of the number of 

classes in order to avoid ties. Historically, the best K value is between 3 and 10. 

In unsupervised learning, on the other hand, the system tries to discover hidden data structure 

or data association from unlabelled data. In unsupervised learning, there is no evaluation of the 

model accuracy as the data given to the learner are unlabelled. Some of the most common 

methods include clustering approaches, ANN and approaches for learning latent variable models 

as PCA. In reinforcement learning, the system tries to learn through direct interaction with the 

environment to maximize some notion of cumulative reward142. The most common approaches 

for reinforcement learning belong to the family of the Monte Carlo methods. 

1.7.7 Variable	selection	

With the development of functional genomics technologies able to generate very large datasets, 

the selection of genes whose profile is associated with the known sample phenotype has become 

a challenging problem. Identifying subset of features with the ability to discriminate between 

samples type would allow generating new hypothesis, selecting biomarkers, acquiring more 

knowledge about MoA and choosing potential drug targets143,144. Methods able to “test” whether 

genes are related to sample phenotype can be subdivided in univariate and multivariate 

methods. Univariate methods test each variable at the time for its ability to distinguish between 
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group of samples. These methods first identify differentially expressed genes between group of 

samples and then use the ones most differentially expressed to build a statistical model. One of 

the most common univariate variable selection methods is PAMR145. As genes works together in 

the context of complex interconnected pathways it is their behaviour as a group that can be 

predictive of the phenotypic class and univariate methods do not take this into account. 

Multivariate selection methods have been developed to overcome this issue since the variables 

are tested in combination to identify interactions between genes. One limitation associated with 

multivariate selection methods is the lack of computational resources to evaluate the extremely 

large number of statistical models they produce since they test different combination of 

thousands of genes. A good solution is the use of searching algorithm that explore the data 

looking for better sets of variables. These methods, as Markov Chain Monte Carlo methods and 

GA, have been already successfully applied146,147.  Multivariate methods present some pitfalls 

specially in the way they build the best predictive model. Sainani provide a good explanation of 

issues associated with variable selection and suggest alternatives to overcome these 

limitations148. GALGO, which we employed in chapter 5, is a method that uses a GA variable 

selection strategy to develop statistical models from large-scale datasets149. Briefly, given a 

dataset of two classes of samples, the GA is used to search and evolve combination of genes 

(called chromosome) that distinguish between classes using a classification method. A broad 

number of models are developed which may differ in gene content but they all have a similar 

high classification accuracy. Genes that appear multiple times in different models suggest they 

are important in defining that given phenotype. Then, a forward selection strategy is used to 

develop a representative model: genes are ranked based on their frequency in the population 

and the top 50 most present variables are incrementally tested, by adding each variable one by 

one. The final representative model is chosen as the one with the higher accuracy and the smaller 
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number of variables. GALGO has been already successfully applied in the field of environmental 

toxicology150. 

1.7.8 State-of-the-art	environmental	omics	

Risk assessment of chemical exposures has traditionally relied on directly measured apical 

endpoints by applying in vivo toxicity test. These methods were good at investigating the adverse 

outcome but were not providing any information about molecular mechanisms driving the toxic 

response. To overcome this issue the AOP framework has been developed26. It aims at filling the 

gap between a MIE and the resulting AO by applying in vitro toxicity tests coupled with advanced 

in silico methodologies. In recent years, OECD in collaboration with Environmental Protection 

Agency (EPA), the European Commission’s Joint Research Centre (JRC)151 and the US Army 

Engineer Research & Development Center (ERDC)152 developed the “Adverse Outcome Pathway 

Knowledge Base” (AOP-KB) to enable scientific community to share, develop and discuss AOP 

related knowledge. The AOP-KB project includes 4 different platforms: 1) the AOP-wiki153, which 

is publicly available,  it is an interactive encyclopedia for AOP development which allows users to 

develop new AOPs; 2) the AOP Xplorer (currently being developed), a computational tool that 

enables graphical representation of AOPs; 3) the Intermediate Effects DB (currently being 

developed), a database holding information on how chemical compounds trigger MIE and/or KE; 

4) the Effectopedia154, a modelling platform using modular structure to capture semantically 

annotated Knowledge. Currently, the AOP-wiki includes 203 AOPs of which 6 endorsed, 18 under 

review and 178 under development. It is a valuable source as incorporates assembly and 

evaluation of weight of evidence able to support the casual relationships between KE in the 

pathway and moreover, when available it can include quantitative understanding. For this 

reason, the AOP approach offers great potential to aid in the development of computational 

prediction models in regulatory toxicology. This is possible because AOP focuses on a limited 
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number of molecular processes hence reducing an initially complex biology which in turn will 

avoid model overload when building predictive models155. Furthermore, the AOP concept may 

help for assessing the risk of chemical mixtures by integrating the knowledge coming from 

different KE and AOPs156. The application of the AOP framework for risk assessment is however 

at present challenging. The information on the chain of events linking the MIE to the outcome is 

in fact missing for many of the biological processes of interest in ecotoxicology and gaining that 

knowledge can be very time consuming. However, the application of omics technologies and 

computational learning of biological pathways has provided us with the necessary tools for the 

rapid discovery of toxicity mechanisms.  

1.8 Aim	of	the	thesis	

The work presented in this thesis aims at achieving the overarching goal of demonstrating the 

potential of systems biology and data driven science in identifying novel mechanisms of 

environmental toxicity and to develop a set of biomarkers for monitoring proposes. This 

overarching aim has been achieved by the following specific objectives: 

1. Identifying specific biomarkers correlated to chemical MoA 

2. Address the question whether a cell culture system can be informative of whole 

organism toxicity 

3. Development of a system that allow the identification of novel chemicals with endocrine 

disruption activity in fish and in an invertebrate species 

 

These objectives were demonstrated using three different biological systems, either model and 

non-model species. Principle 1 and 2 were demonstrated using both D. rerio embryos and a Trout 

gill cell line (R. trout). Results show I can identify biomarkers correlated to a specific chemical 



Page 59 of 296 
 

MoA. Furthermore, I demonstrated that in vitro molecular signatures linked to compound class 

are informative of toxicity in a more complex organism hence providing evidence that a trout gill 

cell line has the potential to replace the zebrafish embryos in toxicity testing. Application of 

principle 3 was demonstrated using a vertebrate fish species and an invertebrate species. 

Application of the principle to Largemouth bass (M. salmoides) led to the reconstruction of a 

dynamic model of ovary development. Moreover, using information coming from the CTD 

database I successfully identified novel compound with the ability to interfere with biological 

pathways underlying ovary development. The invertebrate species used to demonstrate 

principle 3 was D. magna and results led to the identification of novel compounds with the ability 

to affect moulting and juvenile hormone pathways.  

The work presented in this dissertation offers essential knowledge that can be used to refine 

further study and to improve risk assessment and environmental monitoring.  
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Chapter	2: Molecular	signatures	for	the	classification	of	

environmentally	relevant	chemicals:	in	vitro	and	in	vivo	

studies	

 

The whole experimental design was performed by our collaborating labs while I have developed 

data analysis strategies and performed all the in silico analysis with the exception of the 

microarray annotation which was achieved by John Herbert. 

 

2.1 Abstract	

Alternatives to in vivo animal testing in ecotoxicology aim to increase the throughput of chemical 

safety assessment whilst reducing the number of animals used. The use of in vitro systems is 

more cost-effective, practical and expedient. However, it is still unclear whether such alternative 

methods provide the level of information gained from the use of a whole-living system. In this 

chapter, I set to characterize the molecular response following exposure to environmentally 

relevant chemicals in two alternatives for toxicity testing as the zebrafish embryo and a Rainbow 

trout gill cell line. By applying high-level computational techniques, I identified and compared in 

vitro and in vivo molecular signatures triggered by chemical exposure and demonstrated that 

these can be indicative of the chemical MoA. I identified biomarkers of compound MoA that can 

be potentially used to improve ERA. More specifically, I identified glycolysis/gluconeogenesis and 

steroid biosynthesis to be diagnostic of uncoupler chemicals in zebrafish while ribosome 

biogenesis was found to be diagnostic of reactive chemicals in trout. 
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2.2 Introduction	

Chemical safety assessment is extremely important in modern industrialised countries. Until 

recently, this heavily relied on the use of animal testing. In the UK, Home Office statistics for 

2015 shows that 2.08 millions of animal procedures were undertaken for toxicological testing, 

including the testing of chemicals, pharmaceuticals and personal care products, or for monitoring 

the aquatic environment. Of these, 14% (~294K procedures) involved fish, specifically in 

conjunction with environmental monitoring within current legislation. Moreover, the use of fish 

in experimental procedures had increased by 14% (~35K procedures) compared to 2013. With 

an increasingly stringent legislative context and because of a constant increase in the number of 

novel chemicals released in the environment, there is a clear need to identify alternatives to 

animal testing that make the process of safety assessment faster, cheaper, and more ethically 

acceptable. This has triggered several initiatives to promote the development of alternative 

methods. In UK, the Research Councils have developed the 3Rs as a framework for animal 

research157,158. The principle of the 3Rs is based on developing methods that avoid or replace the 

use of animals (Replacement), methods that minimise the number of animals used per 

experiment (Reduction) and methods that minimise suffering and improve animal welfare 

(Refinement). This has triggered the development of toxicity testing procedures that rely on cell 

lines or early-stage fish embryos.  

The first decade of the 21st century has seen a major transition from use of whole animal 

experiments to a mechanism-based assessment based on in vitro experimentation. This shift has 

been driven by some key considerations. First, the concordance between human and animal 

toxicity has been demonstrated to be poor159,160. Second, in vitro methods allow tests at more 

well-defined chemical concentrations. Third, in vivo methods cannot account for human 

variability in response and susceptibility67. Lastly, there is the need to reduce the use of animals 
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in toxicity testing as required by the 3Rs framework. Cell cultures represent a promising tool able 

to embrace these requirements. The application of vertebrate cells for predicting the toxicity in 

whole animals, is based on the belief that the interaction of a substance with an organism take 

place first at the cellular level. Cell culture methods present many technical advantages over the 

use of in vivo methods in reducing the cost for animal care and maintenance, in reducing the 

amount of chemical needed for a given toxic effect and also the amount of chemical waste 

produced, in reducing the time needed for testing and thereby increasing the throughput for 

evaluating multiple chemicals. Moreover, the easier access to dose-response relationships, 

enzyme activities, and global methods for assessing protein and transcript abundance, all aids 

the identification of the chemical MoA. However, concerns have been expressed that cell 

cultures will never be able to fully replace the breadth of information generated from whole 

animal experiments. This is due to the fact that functional organs in vivo exhibit complex 

relationships and crosstalk from multiple and different cell types and physiological processes are 

modulated by complex dynamics that are not evident in cell cultures. Also organs are able to 

compensate for stressful situations that in vitro may not be evident161–163. Because of these 

issues, extrapolation of in vitro data to the whole integrated animal is very challenging. 

Moreover, cell lines are also less sensitive to perturbation than whole, integrated organisms164. 

The bioavailability of compounds in a test system has been demonstrated to be reduced when 

considering lipophilic or volatile compounds, as compounds tend to bind to the serum protein 

contained in the culture media, and to evaporate, respectively, leading to the underestimation 

of toxicity165,166. Potential solutions to improve cell line sensitivity have been proposed by 

Schirmer166. Fish cell lines, as the RTgill-W177, have been widely used for assessing toxicity after 

exposures to environmentally relevant chemicals73,167. Fish cell line are expected to better 

represent fish phenomena than the more commonly used mammalian cell lines. Moreover, they 
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do not require CO2 atmosphere as for mammalian cell lines. Also, they tend to immortalise 

spontaneously thanks to a relatively high telomerase expression168. The reasoning behind the 

choice of a gill cell type is due to it being the site of oxygen, ion and metabolic waste product 

exchange with the environment169. It is also one of the first organs to be affected by many 

chemical compounds given that it is the site of toxicant uptake. The potential of the RTgill-W1 

cell line has been demonstrated by Tanneberger et al. who showed a good correlation between 

fish gill cell line EC50 values and the LC50 values from the fish acute toxicity test74. Moreover, 

Knobel et al., suggested that the RTgill-W1 cell line assay has the potential to serve as an 

adequate alternative to whole organism toxicity testing42. A good overview of the gill cell culture 

system as a model for aquatic environmental monitoring is given by Bury et al.167. 

The fish embryo acute toxicity test (FET) with zebrafish was originally designed as an alternative 

to the adult fish acute test170. Initially designed as a tool for defining the best range of chemical 

doses for the definitive in vivo test, its robust correlation with in vivo fish testing42,43 led to an 

OECD recommendation to be an adequate full replacement for the fish acute test171. Zebrafish 

presents many advantages over other animal models. First, they have a short generation time, 

they are small, fast to develop and mature females typically lay up to 10,000 eggs yearly172. 

Another advantage is represented by the transparency of their early-stages, from fertilization to 

when the tissue starts to become dense (approximately at 30-72 hpf), which allows the collection 

of numerous data points. The fact that development occurs entirely outside the body of the 

mother makes it the most convenient vertebrate system to study toxicant effects on 

developmental processes. Given these experimental advantages the zebrafish embryo system 

offers the potential to investigate mechanisms of toxicity173,174. However, despite its advantages, 

there are few points that need to be considered in using the zebrafish FET for screening toxicity. 

First, chemical compounds with a high molecular weight are not able to pass the chorion prior 
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to hatch and Braunbeck et al.175 showed that the barrier function of the chorion increases with 

the lipophilicity of the chemical compound. To overcome this issue the FET was extended in 

duration from 48 h to 96 h to encompass the hatching process and to capture effects of those 

compounds less able to cross the chorion. Another solution has been proposed by Henn and 

Braunbeck who proposed the removal of the chorion (dechorionation), as a means of improving 

the sensitivity of fish embryo to toxicant effectss176. A second limitation is presented by the 

presence of solvent vehicles that are able to modify the ease of uptake of the chemicals into the 

embryo. DMSO, a commonly used solvent, has been shown not to affect chemical uptake into 

the embryo at a maximum concentration of 0.01% (0.1 mL/L)177. A third  concern is that 

neurotoxic compounds have been shown to be less toxic in the embryo than in adult fish178. 

Finally, there is evidence of a limited capacity for biotransformation of compounds by early 

embryonic stages of zebrafish development, which results in the detoxification to less toxic 

metabolites and, in some other cases, it can also result in more toxic molecules179. With respect 

to the FET, so far, allyl alcohol is the only compound known to be less toxic in zebrafish embryos 

due to a lack of bioactivation42,180. A good overview of the FET, its origin, application and future 

consideration is given by Braunbeck et al.44 

Identifying the MoA for a compound is a crucial step in determining whether the effects we 

observed in lower vertebrates can be of relevance to humans. Moreover, it would enable the 

design of in vitro assays, read-across and development of suitable biomarkers. New post-

genomic technologies, particularly including gene expression profiling, have been identified as 

important tools to deliver mechanistic information at a global level which undoubtedly increases 

the impact of environmental risk assessment181,182. In this chapter, I compared two alternative 

approaches to toxicity testing, namely the zebrafish embryo and a fish gill cell line, based on 

biomarker gene signatures generated by toxic exposure, and which can be predictive of a 
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compound’s MOA. Applying advanced statistical techniques, I have been able to characterize the 

functional profile of single chemical exposures based on transcriptomic signatures diagnostic of 

chemical class. These findings provide support for the use of both zebrafish embryo and gill cell 

line methods for the identification of potential toxicity biomarkers that can be used to improve 

ERA. 

2.3 Materials	and	methods	

2.3.1 Experimental	design	

Experimental design along with data acquisition from microarray experiments were carried out 

by our collaborating labs (Melanie Knobel and Kristin Schirmer from EAWAG, and Ashley Sawle 

and Andrew Cossins from the University of Liverpool). Briefly, 12 environmentally relevant 

chemicals183 were selected to represent 4 mode of action categories (narcotic, neurotoxic, 

reactives and uncouplers) and to cover a wide range of lipophilicity (expressed as a function of 

the octanol-water partition coefficient, Kow) (Table 2.1). Both zebrafish embryos and rainbow 

trout gill cell line (RTgill-w1) were exposed at 2 different concentrations of each toxicant. 

Concentrations used were defined as EC10 and 1/10 of the EC10 where EC10 is the effective 

concentration at which 10% of the population exhibit a response. This response was intended as 

any developmental abnormalities in the zebrafish embryo, and cell membrane or lysosomal 

integrity in the cell line. Moreover, zebrafish embryos were exposed over a 96h period as 

indicated by the OECD guidelines, while rainbow trout gill cell line were exposed for 24h. 
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Table 2.1: Panel of chemicals used in the study. For each of the compound the ID, the MoA and the relative logP 
value (Kow) are reported. Solvent and dose used for each compound within each of the systems are showed. 

 

Samples were processed for genome-wide expression profiling using 60K Agilent microarray for 

both organisms. A two-colour hybridisation strategy was used based on an interwoven ANOVA-

based statistical design184 (Fig. 2.1). This was a relatively popular experimental design in the early 

days of microarray technology since it allowed a better control of experimental variability. A total 

of 108 arrays for the zebrafish embryos and 96 for the trout gill cell line were used. 

Trout Zebrafish

Chemical ID MoA KoW Solvent EC10	(mM) Solvent EC10	(mM)	 
Diethylphthalate DEP Narcotic 2.47 DMSO 0.13 Water 0.041

Dimethylphthalate DMP Narcotic 1.6 DMSO 0.76 Water 0.099

Sodium	dodecyl	sulfate SDS Narcotic 1.6 DMSO 0.003 Water 0.01

2,4-dichlorophenol DCP Uncoupler 3.06 DMSO 0.006 Water 0.018

Penta-chlorophenol PCP Uncoupler 5.12 DMSO 0.00003 DMSO 0.0002

Dinoseb Dino Uncoupler 3.56 DMSO 0.00003 DMSO 0.0001

Permethrin Perm Neurotoxic 6.5 DMSO 0.001 DMSO 0.001

Esfenvalerate Esfen Neurotoxic 6.22 DMSO 0.003 DMSO 0.00005

Lindane Lind Neurotoxic 4.14 DMSO 0.005 DMSO 0.0003

Acrolein Acro Reactive -0.01 DMSO 0.003 Water 0.023

Allyl	alcohol AA Reactive 0.17 DMSO 9.1 Water 0.724

Flucythrinat Fluc Reactive 6.2 DMSO 0.003 DMSO 0.00004
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Figure 2.1: Interwoven loop design employed for microarray analysis. Samples are represented by circles and 
labelled either with Cy3 or Cy5. Hybridisation groups were built differently for trout and zebrafish but all the 
comparison needed where achieved for both the species. 

 

2.3.2 Annotation	of	the	zebrafish	and	trout	arrays	

Zebrafish arrays were purchased from Agilent in the format of 8x44K (in 2007 it was the largest 

zebrafish array). To reach the 60K probes, the remaining 16K probes were designed by Cossins 

and collaborators against Ensemble transcripts. To improve our ability to interpret biologically 

the results of the analysis, we set to re-annotate the array. The array-design sequences were 

blasted to the Refseq RNA transcriptome (downloaded the 6th February 2015) setting the 

minimum alignment length to 58bp (all the probes were 60bp) and the identity of match >= 98%. 
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44,057 probes were successfully assigned to a single gene from the collection of 22,114 non-

redundant zebrafish genes. 

For the trout an in-house oligoarray designed by Cossins and collaborators was used. It was 

printed by Agilent in the format of 8x60K. We set to re-annotate the trout array especially 

because now a full genome is available for trout185. Zebrafish orthologs genes were assigned to 

zebrafish transcripts by BLAST. Using the RBH (reciprocal best hit) technique186, a successful 

orthologue assignment was attained. For those that failed, probe mapping to gene models was 

used where a single gene model was overlapped by a probe, and for that model a successful RBH 

result was attained. 45,124 probes were assigned to a gene (12,228 non-redundant trout genes). 

A total of 7698 genes were found to be in common between the zebrafish and the trout dataset. 

Array annotation was successfully achieved by John Herbert from Francesco Falciani’s lab. 

2.3.3 Data	pre-processing	

I adopted the same data pre-processing and downstream analysis workflows for both zebrafish 

and trout datasets, all within the statistical environment R. The key steps were as following: 

Step 1: Positive and negative control spots (1319) were removed from the dataset. 

Step 2: Genes whose average expression across all samples was in the lower 20th percentile 

(17870 for the trout and 18138 for the zebrafish) were removed. 

Step 3: Data were normalized using a LOESS regression method followed by a quantile method 

to correct for dye bias and for between-samples variation, respectively. 

Step 4: Duplicated probes were summarised by average intensity. 

Step 5: Probes having missing values in at least one sample were removed (5,147 in trout and 

2,491 in zebrafish). 
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Step 6: Probes without biological annotation were removed. 

The final dataset for zebrafish comprised 32,625 probes representing 17,387 non-redundant 

genes, while the trout dataset comprised 27,308 probes representing 9,262 non-redundant 

genes. Duplicated genes were summarised keeping those with the highest averaged intensity 

across all the samples. A channel decomposition routine using the “limma” package187 was 

applied on the dataset to obtain individual sample measurements. I then assessed whether the 

decomposition procedure introduced artefacts by first identifying differentially expressed genes 

from the full loop design using “limma” and on the separated channel dataset using SAM 

(Significance Analysis of Microarray)117 and second, I investigated the degree of overlap between 

the two different methods. 

A Principal Component Analysis (PCA) was applied to the individual samples to identify presence 

of artefacts, such as outliers and batch effects. Using the “prcomp” function within the R 

statistical environment I successfully identified and removed outliers in both the systems. 

Moreover, the PCA allowed me to identify the presence of a batch effect in both datasets due to 

the different cell line passage in trout and to the different hybridisation groups in zebrafish. The 

batch effect was successfully taken into account by computing ratios of each chemical with its 

specific solvent control sample. 

2.3.4 Identifying	potential	effects	of	DMSO	

Ability of the DMSO solvent to elicit transcriptional response was investigated first by using a 2-

factor ANOVA to assess the relative importance of the treatment (DMSO or water) as well as the 

potential confounding factors as the different cell line passages and the different hybridisation 

group as previously defined (10% FDR). Then, I investigated whether this difference between 

DMSO and water was detectable within each of the hybridisation groups or cell line passages 
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using a “2-class SAM” method117 and keeping a high FDR threshold (10% FDR). Finally, I ran a “1-

Class SAM” on the DMSO/water ratios and we recorded the d-statistic for each gene. I then 

ranked the genes and used the ranked list as input into Gene Set Enrichment Analysis (GSEA)121 

to identify potential KEGG pathways affected by DMSO. GSEA allow to identify hidden biological 

features as doesn’t require a threshold to be set beforehand as for the more conventional 

statistical methods (i.e. SAM). 

2.3.5 Single	chemical	analysis	

Differentially expressed genes were identified using the separated channel dataset. 

Transcriptional response of each of the single chemicals was achieved by running a 2-class SAM 

analysis between the chemical and its related control, followed by applying a cut-off threshold 

of 5% FDR. 

2.3.6 Statistical	power	

To address the important question of whether the limited statistical power significantly affected 

our ability to detect the molecular effects of chemical exposures, the GSEA121 was employed. I 

first recorded the d-statistic of the differentially expressed genes associated with each chemical 

compound and then used the resulting ranked list as input into GSEA121 to determine enrichment 

within KEGG pathways. A 1% FDR threshold was applied. Results have been reported as heat-

maps. 

2.3.7 Functional	analysis	

Gene lists derived from differential expression analysis of single chemicals were tested for 

enrichment in genes belonging to Gene Ontology and KEGG pathway functional terms using the 

DAVID web-service118. Biological GO terms with an FDR <= 5% and functional pathways with an 

FDR<= 1% were considered significant.  
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2.3.8 Analysis	of	chemical	classes	

Chemical classes and logP gene signatures were identified by applying a 2-factor ANOVA coupled 

with a TUKEY post-hoc test and using a 5% FDR threshold. Functional analysis of gene signatures 

associated to the lipophilicity was achieved retrieving GO terms using the “Gprofiler” package 

within the statistical environment R and applying an FDR threshold of 5%. Redundancy of GO 

terms was removed using REVIGO122. Functional analysis of chemical classes was achieved at a 

pathway-level retrieving KEGG pathways using DAVID web-service and applying a 1% FDR 

threshold. 

Key pathways were further investigated for their ability to be diagnostic of chemical MoA and 

were selected based on the differential expression between at least two chemical classes. Once 

identified, all the genes contained within the given pathway were used regardless of the fact that 

they were differentially expressed. A heat-map was used to visualize the gene expression profile 

in each of the chemical classes using Spearman correlation as distance method and average as 

the clustering method for the genes. Bar-charts were then built to show the overall behaviour of 

that given pathway in each chemical class based on the number of genes showing up- or down-

regulation. Heat-maps and bar-charts of key pathways were obtained within the statistical 

environment R and using the “heatmap.2” and “barplot” functions. 

2.4 Results	

2.4.1 Channel	decomposition	

The two-channel microarray dataset was constituted by ratio data. However, since most of the 

objectives of my analysis strategy required a dataset with measurements on individual samples 

I applied a channel decomposition routine. Since the channel decomposition procedure may 

introduce some artefacts I decided to test whether a methodology that analyses the full loop 
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design may give the same results of a methodology applied on the separated channel data. I 

therefore identified differentially expressed genes from the full loop design and from the 

separated channel dataset and we looked at the degree of overlap (Table 2.2).  
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Results showed that the two analyses were in close agreement for most of the compounds. The 

High dose of Fluc, Acro and DMP (FlucHigh, AcroHigh and DMPHigh) in the trout system showed 

differences that may have affected the downstream analysis. However, since only three out of 

the twelve compounds in the trout system (only considering the High dose, which is the one 

eliciting a transcriptional response) and none of the compounds in the zebrafish system present 

some differences between the two analysis, I reasoned that channel decomposition could be 

achieved without the risk of introducing artefacts. 

2.4.2 Identification	of	outliers	and	batch	effects	

As a first step, I set to explore the quality of our dataset looking for potential artefacts that may 

affect our downstream analysis. A PCA analysis was undertaken on the individual samples to 

identify the presence of outliers. I successfully identified and removed six and two outliers in the 

trout and in the zebrafish system, respectively (Fig. 2.2). While in trout the six outliers 

corresponded to exactly three arrays, in zebrafish the two outliers belonged to two different 

arrays hence we lost two additional samples when removing them.   
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Moreover, the PCA analysis also allowed me to identify the presence of a batch effect in both 

the systems due to the different cell line passage in trout and the different hybridisation groups 

used in the loop design in zebrafish. To account for this batch effect, chemical ratios were 

reconstituted simply by using the appropriate solvent control sample taking into account the cell 

line passage and the hybridisation group in trout and zebrafish, respectively. 

2.4.3 The	effect	of	DMSO	as	a	solvent	was	negligible	in	the	trout	cell	line	and	in	the	

zebrafish	embryos	

DMSO is a commonly used solvent for toxicity testing, especially in the FET, due to its low toxicity 

and its ability to cross biological membranes without affecting their structural integrity. 

However, little is known about its ability to modulate the uptake of chemicals into the organism. 

Kais et al., demonstrated that DMSO can be safely used at a maximum concentration of 0.01% 

(0.1 mL/L)177. I tested whether the low final concentration of DMSO used to solubilise the 

chemical may elicit a transcriptional response. This is because while the DMSO concentration 

used in zebrafish embryos was 0.01% for all the compounds solubilized, but in the trout gill cell 

line was 0.05%. I first assessed the relative importance of the different treatments (DMSO/water) 

as well as the cell line passage or hybridisation groups. The results indicated there was no effect 

associated with the presence of DMSO but there was a large effect due to the cell line passages 

and/or hybridisation group as previously identified by the PCA analysis (Table 2.3).

 

2-way	ANOVA	10%	FDR

Trout Zebrafish
Treatment	(DMSO/water) 60 19
Hybridisation	group/Cell	line	passage 3861 14451

Interaction 0 2
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Table 2.3: Results of the 2-way ANOVA used to evaluate the ability of DMSO to elicit transcriptional responses in 
both the systems. Results reveal that most of the genes were associated with the confounding factors. 

 

Considering the strong influence on the transcriptional response of these confounding factors, I 

set to investigate whether this difference between DMSO and water was detectable within each 

of the hybridisation groups or cell line passages. The comparison between DMSO and water only 

gave a significant amount of differentially expressed genes in 1 out of 6 hybridisation group (277 

genes in the group 5) (Table 2.4). 

 

Table 2.4: Results of the comparative analysis between DMSO and water ran within each hybridisation group or 
among each cell line passage. Only within the zebrafish system and for a hybridisation group alone we identified a 
significant number of DEGs. 

 

As a final analysis, I have employed the GSEA to identify potential pathways affected by the 

DMSO. It is important to note that GSEA identified a number of significant pathways suggesting 

that although undetected by conventional hypothesis testing statistical techniques, DMSO may 

affect the transcriptional state of embryos and cells (Fig. 2.3). Also, important to note is the fact 

that although present, these effects may be very small. 

2-Class	SAM	(10%	FDR)
Trout Zebrafish

Up-regulated Down-regulated Up-regulated Down-regulated
Hybridisation	group/Cell	line	passage	1 0 0 2 0
Hybridisation	group/Cell	line	passage	2 4 0 0 0
Hybridisation	group/Cell	line	passage	3 11 3 2 2
Hybridisation	group/Cell	line	passage	4 0 1 46 0
Hybridisation	group/Cell	line	passage	5 0 0 277 0
Hybridisation	group/Cell	line	passage	6 13 0 1 0



Page 78 of 296 
 

 

Fi
gu

re
 2

.3
:  G

SE
A 

an
al

ys
is

 re
ve

al
s b

io
lo

gi
ca

l p
at

hw
ay

s p
ot

en
tia

lly
 af

fe
ct

ed
 b

y 
DM

SO
. T

he
 d

ar
ke

r t
he

 o
ra

ng
e,

 th
e 

hi
gh

er
 is

 th
e 

no
rm

al
ise

d 
en

ric
hm

en
t 

sc
or

e 
(N

ES
).  

 

 

2.4.4 Single	chemical	response	is	heterogeneous	

I first asked whether chemical exposure induces a detectable transcriptional response in either 

the in vitro and in vivo systems. I discovered that this is indeed the case. However, the extent of 
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response (defined by the number of genes differentially regulated) was dose-dependent and it 

varied considerably across the chemicals (Fig 2.4). Low dose chemicals were generally unable to 

elicit a measurable transcriptional response. Moreover, not all the compounds in the study 

elicited a significant transcriptional response, even at high dose exposure. For example, PCP, 

dinoseb and permethrin elicited a poor transcriptional response in the cell line experiment (29, 

9 and 12 genes respectively) while acrolein, flucythrinat, dinoseb, esfenvalerate and lindane 

were unable to induce a significant transcriptional response in the zebrafish embryos (0, 4, 10, 0 

and 41 genes respectively). This observation was consistent across a spectrum of FDR thresholds 

(Table 2.5).  
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I discovered that the transcriptional response elicited by neurotoxic chemicals was 10-fold higher 

in zebrafish than in the cell line (5823 genes in zebrafish while just 548 in the cell line). 

Conversely, narcotics chemicals are more effective in eliciting a transcriptional response in the 

cell line than the embryo. Interestingly, all the reactive compounds in the panel were able to 

induce a transcriptional response in the cell line whilst just one out of the three compounds, allyl 

alcohol (AA), was effective in the embryo system. Given the poor transcriptional response 

elicited by low dose chemicals, I focused only on the high dose and all the subsequent 

downstream analyses were carried out using just the high dose. 

2.4.5 Alternative	methods	to	identify	hidden	transcriptional	signatures	

Here I addressed the important question whether the limited statistical power significantly 

affected our ability to detect the transcriptomic effects of chemical exposures. The use of GSEA 

allows the identification of hidden biological effects even in the low dose chemicals for which 

SAM was not successful (Fig. 2.5-2.6).   



Page 83 of 296 
 

 

Figure 2.5: GSEA results (1% FDR) for the low dose chemicals (A is trout and B is zebrafish). Chemicals circled are 
those for which SAM spotted less than 5 genes to be differentially expressed. Red and green are up-regulated and 
down-regulated genes, respectively. 
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Figure 2.6: GSEA results (1% FDR) for the high dose chemicals (A is trout and B is zebrafish). Chemicals circled are 
those for which SAM spotted less than 5 genes to be differentially expressed. Red and green are up-regulated and 
down-regulated genes, respectively. 

 

2.4.6 Functional	analysis	of	single	chemical	signatures	

In order to biologically interpret these results, I performed a functional analysis to identify 

biological functions (GO terms) enriched in the list of differentially regulated genes (5% FDR) (Fig. 

2.7).  
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Figure 2.7: Biological GO terms significantly enriched in each of the chemical compounds (5% FDR). Gene level 
analysis in the trout cell line (A) and in the zebrafish embryos (B) are displayed. Red and green show up- and down-
regulated functions respectively while orange shows functions which includes genes either up- or down-regulated. 
FDR values and genes included in each of the GO terms are provided in the supplementary material. 

 

This functional analysis interestingly reveals that most of the chemicals affect biological functions 

associated with embryo developmental processes in both the cell line and the zebrafish embryo. 

In the cell line, DEP, DMP, SDS, AA, Acro, Fluc and DCP hit functions such as sensory organ 

development, embryonic organ development, embryonic heart tube development, embryonic 

morphogenesis, pattern specification process, eye development, fin development and 
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notochord development. Some of these functions, such as sensory organ development, 

embryonic organ development, embryonic morphogenesis, pattern specification process and fin 

development, were also enriched in the zebrafish embryo by genes associated with AA, DCP and 

Perm.  Interestingly, AA and DCP are shown to affect biological functions linked to embryonic 

development regardless the species.  

To have a better overview of the biological pathways affected by each of the single chemical in 

the two biological systems, I tested whether KEGG pathways were enriched of differentially 

expressed genes associated with each chemical compound (1% FDR) (Fig. 2.8). 
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Figure 2.8: KEGG pathways significantly enriched in each of the chemical compounds (1% FDR). Pathway level 
analysis in the trout cell line (A) and in the zebrafish (B) embryos are displayed. Red and green show up- and down-
regulated functions, respectively, while orange shows functions including genes both up- or down-regulated. FDR 
values and genes included in each of the KEGG pathways are provided in the supplementary material. 

 

Pathway level analysis reveals a degree of functional similarity between chemicals belonging to 

the same chemical class suggesting they may share, as expected, mechanisms of action. 

Moreover, a partial overlap was observed also among chemicals belonging to different chemical 

classes. In trout, I observed a poor response by uncouplers and by neurotoxic compounds, as 
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previously stated. On the other hand, narcotics and reactives displayed massive functional 

response. Pathways enriched were mainly linked to signal transduction (MAPK and TGF-beta 

signalling pathways), cell growth and death (apoptosis, cell cycle and p53 signaling pathway), 

replication and transduction (DNA replication and aminoacyl-tRNA biosynthesis) and energy 

metabolism (calcium and insulin signalling pathways, oxidative phosphorylation and 

glycolysis/gluconeogenesis). 

In zebrafish, less compounds per class were functionally enriched, but the functional overlap was 

more conserved across the 4 chemical classes. Functions represented were mainly linked to 

signal transduction and cell growth and death as in trout. Energy metabolism was again 

represented with the same functions plus the pyruvate metabolism. Replication and 

transduction pathways were poorly enriched compared to the trout. Interestingly, in zebrafish I 

observed a significant enrichment of functions linked to xenobiotics metabolism (e.g., 

metabolism of xenobiotics by cytochrome P450, drug metabolism and glutathione metabolism).  

2.4.7 Identification	of	signatures	linked	to	specific	Mode	of	Action	(MoA)	

The functional analysis of the response of both cell line and embryos to chemical exposure 

suggests that similar pathways were affected by chemicals with similar MOA. I therefore decided 

to test whether an organism’s transcriptional responses can separate chemicals on the basis of 

their MoA (Fig. 2.9). 
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PCA plots reveal that this was indeed the case. Moreover, both the zebrafish and trout PCA plots 

showed few chemicals were able to trigger a very specific response (AA and Perm in zebrafish 

and AA, Acro and SDS in trout). 

Since the exploratory analysis suggested that transcriptional response was indicative of a 

chemical MoA, I set out to identify specific gene signatures that were diagnostic for each of the 

four chemical classes. I identified genes associated with each of the 4 chemical classes (Table 

2.6).  

 

Table 2.6: Number of differentially expressed genes for either each chemical class comparison and lipophilicity 
identified applying a 2-way ANOVA coupled with a Tukey post-hoc test and using an FDR threshold of 5%. 

 

Lipophilicity highly affect chemical uptake by cells/tissue and always needs to be considered. 

Interestingly, I identified a higher amount of genes associated with lipophilicity in the cell line 

than the embryo. To characterise the biological response linked to lipophilicity a functional 

analysis on the genes identified as being associated with LogP was performed. This lipophilicity 

functional profile revealed a massive regulation of transcriptional and translational processes in 

the Trout gill cell line (Table 2.7A). Functions affected in zebrafish were mainly associated with 

immune system processes and development, and with homeostasis (Table 2.7B) (5% FDR). 
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Having defined the influence of lipophilicity on the transcriptional response of the two biological 

systems, I sought to identify biological functions associated with each of the 4 different MoA’s. 

Differentially expressed genes identified as a comparison between pairs of chemical classes, 

were assessed for enrichment of KEGG biological pathways (1% FDR). The results implicated a 

wide range of biological functions. To facilitate representation, results have been arranged into 

tables, each reporting pathways belonging to a specific KEGG level of organisation (table 2.8). 
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Drug	metabolism	– cytochrome	
P450

Drug	metabolism	– other enzymes

Other	metabolism Neuro-Narc

T										Z

Rea-Narc

T									Z

Rea-Neuro

T									Z

Unc-Narc

T										Z

Unc-Neuro

T							Z

Unc-Rea

T									Z

Riboflavin	metabolism

Nicotinate and	nicotinamide

Retinol

Porphyrin and	chlorophyll

Caffeine

Glycosphingolipid biosynthesis	 –
lacto	and	neolacto series

Carbon	

2-oxocarboxylic	acid

Amino	acid	metabolism Neuro-Narc

T										Z

Rea-Narc

T									Z

Rea-Neuro

T									Z

Unc-Narc

T										Z

Unc-Neuro

T												Z

Unc-Rea

T									Z

Alanine, aspartate	and	glutamate

Glycine, serine	 and	threonine

Valine,	leucine	 and	isoleucine	
degradation

Arginine	and	proline

Histidine

Tryptophan

Beta-alanine

Glutathione

Biosynthesis	 of	amino	acids
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(Continued)

 

(Continue next page) 

Signaling Neuro-Narc

T										Z

Rea-Narc

T									Z

Rea-Neuro

T									Z

Unc-Narc

T										Z

Unc-Neuro

T							Z

Unc-Rea

T									Z

ABC	transporters

MAPK	signaling

Calcium	signaling

Wnt signaling

Notch	signaling

Hedgehog	signaling

TGF-beta	signaling

Jak-STAT	signaling

Cytokine-Cytokine	 receptor	
interaction

Folding,	 sorting	and	degradation Neuro-Narc

T										Z

Rea-Narc

T									Z

Rea-Neuro

T									Z

Unc-Narc

T										Z

Unc-Neuro

T							Z

Unc-Rea

T									Z

Ubiquitin	mediated	proteolysis

Translation Neuro-Narc

T										Z

Rea-Narc

T									Z

Rea-Neuro

T									Z

Unc-Narc

T										Z

Unc-Neuro

T							Z

Unc-Rea

T											Z

Aminoacyl-tRNA biosynthesis

Ribosome	biogenesis in	eukaryotes

RNA	transport

Replication	and	repair Neuro-Narc

T										Z

Rea-Narc

T									Z

Rea-Neuro

T									Z

Unc-Narc

T										Z

Unc-Neuro

T							Z

Unc-Rea

T									Z

DNA	replication

Base	excision	repair

Nucleotide	excision	 repair

Mismatch	repair

Transcription Neuro-Narc

T										Z

Rea-Narc

T									Z

Rea-Neuro

T									Z

Unc-Narc

T										Z

Unc-Neuro

T							Z

Unc-Rea

T									Z

RNA	polymerase

Spliceosome
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(Continued)

 

Table 2.8: Pathways differentially regulated between pairs of chemical classes in both specie. Columns report pairs 
of chemical classes compared in trout (T) and zebrafish (Z) while red and green arrows represent up-regulation and 
down-regulation respectively and always refer to the first of the chemical class stated. FDR values and genes 
included in each of the Kegg pathways are provided in the supplementary material. 

 

Endocrine	 system Neuro-Narc

T										Z

Rea-Narc

T									Z

Rea-Neuro

T									Z

Unc-Narc

T										Z

Unc-Neuro

T												Z

Unc-Rea

T									Z

PPAR	signaling

Melanogenesis

Circulatory	and	sensory	system Neuro-Narc

T										Z

Rea-Narc

T									Z

Rea-Neuro

T									Z

Unc-Narc

T										Z

Unc-Neuro

T							Z

Unc-Rea

T									Z

Cardiac	muscle	 contraction

Phototransduction

Cell	growth	and	death Neuro-Narc

T										Z

Rea-Narc

T									Z

Rea-Neuro

T									Z

Unc-Narc

T										Z

Unc-Neuro

T							Z

Unc-Rea

T									Z

Cell	cycle

Oocyte meiosis

Immune	system Neuro-Narc

T										Z

Rea-Narc

T									Z

Rea-Neuro

T									Z

Unc-Narc

T										Z

Unc-Neuro

T							Z

Unc-Rea

T									Z

RIG-I-like	receptor	signaling

Transport and	catabolism Neuro-Narc

T										Z

Rea-Narc

T									Z

Rea-Neuro

T									Z

Unc-Narc

T										Z

Unc-Neuro

T							Z

Unc-Rea

T									Z

Lysosome

Peroxisome

Cell	community Neuro-Narc

T										Z

Rea-Narc

T									Z

Rea-Neuro

T									Z

Unc-Narc

T										Z

Unc-Neuro

T							Z

Unc-Rea

T									Z

Cell	adhesion	molecules	 (CAMs)

Tight	junction

GAP	junction
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Interestingly, most of the functional enrichment has been achieved for the zebrafish embryo 

while only a few pathways in the trout gill cell line were found to be differentially expressed 

between at least a pair of chemicals. In zebrafish, the greatest functional difference was 

observed between uncouplers and narcotics/neurotoxics while the difference with reactives 

chemicals was just limited to a few functional pathways. Energy metabolism 

(Glycolysis/gluconeogenesis, amino sugar and nucleotide sugar and glyoxylate and dicarboxilate 

pathways), lipid metabolism (steroid biosynthesis and fatty acid metabolism), transport and 

catabolism (peroxisome), endocrine system (PPAR signaling) xenobiotics metabolism 

(metabolism of xenobiotics by cytochrome P450) displayed a significant down-regulation 

compared to the other chemical classes following exposure to uncoupling chemicals. Differences 

between reactives and neurotoxics/narcotics were mainly associated with energy and amino acid 

metabolism. Pathways involved with translation (Aminoacyl-tRNA biosynthesis, ribosome 

biogenesis in eukaryotes and RNA transport) were down-regulated following exposure to 

neurotoxics compounds when compared with the other chemical classes. In trout, as previously 

mentioned, functional enrichment was extremely poor. The biological pathways showing the 

greatest differences between pairs of chemical classes were translation and signaling pathways.  

To further investigate the differences between the molecular mechanisms underlying the MoAs 

for the different chemical classes I focused on some key pathways (defined as those whose 

regulation was statistically different in more than 2 chemical classes) and the degree of 

differential expression in each of the different chemical classes was assessed.  

Oxidative phosphorylation, within the dataset of the zebrafish embryo system, was down-

regulated in uncouplers compared to neurotoxics, and in the reactives compared to both 

narcotics and neurotoxics. The heat-map confirms these findings (Fig. 2.10). Moreover, I found 
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that 65% and 82% of the genes involved in this pathway to be down-regulated in the uncoupler 

and reactives, respectively, while narcotics and neurotoxics had 82% and 96% of up-regulated 

genes, respectively (Fig. 2.11). 
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The glycolysis/gluconeogenesis pathway within the dataset of the zebrafish embryo system was 

found to be down-regulated in uncouplers compared to all the other classes, while in reactives 

and narcotics it was down-regulated compared to neurotoxics as confirmed by the heatmap (fig. 

2.12). I identified 78% and 72% of the genes involved in this pathway to to be down-regulated in 

uncouplers and reactives, respectively, while 64% and 83% of the genes were up-regulated in 

narcotics and neurotoxics, respectively (Fig. 2.13). 
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Steroid biosynthesis, within the dataset of the zebrafish embryo system was found to be down-

regulated in uncouplers compared to all the other classes as confirmed by the heat-map (fig. 

2.14). Moreover, I found 96% of the genes involved in this pathway to be down-regulated in the 

uncoupler while in narcotics, neurotoxics and reactives 65%, 53% and 53% of the genes were 

found to be up-regulated, respectively (fig. 2.15). 
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Ribosome biogenesis, within the dataset of the zebrafish embryo system, was found to be down-

regulated in neurotoxic compared to all the other classes as confirmed by the heat-map (Fig. 

2.16). I showed that 93% of the genes involved in this pathway to be down-regulated in 

neurotoxics while narcotics, uncouplers and reactives were found to have 41%, 55%, and 41% of 

the genes, respectively, up-regulated (Fig. 2.17).  
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On the other hand, ribosome biogenesis within the dataset of the trout gill cell line system was 

found to be down-regulated in reactives compared to narcotics and uncouplers as confirmed by 

the heat-map (Fig. 2.18). Moreover, I found 92% of the genes involved in this pathway to be 

down-regulated in the reactives while in narcotics and uncouplers 87% and 97% of the genes, 

respectively, were up-regulated (fig. 2.19). 
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2.5 Discussion	

My work has led to the identification of biomarkers of chemical MoA in two biological systems 

commonly used for toxicity testing.  The relevance of these findings is to promote the use of early 

markers in zebrafish embryos and a fish gill cell line to identify toxic chemicals. I believe that 

ultimately, if these markers will be validated in a larger set of chemicals our work would have 

contributed to reduce or replace the use of adult fish for toxicity testing.  

My first analysis sought to characterise the functional profile of in vitro and in vivo exposures to 

single environmentally relevant chemicals. Results show that we were able to identify 

transcriptional signatures underlying chemical mechanisms of action for most of the high dose 

chemicals. The inability of low dose chemicals to elicit many meaningful transcriptional 

responses even when considering high FDR threshold, may be due either to the dose chosen or 

the fraction of bioavailable chemical being too low. Since we used a modified culture medium to 

increase chemical bioavailability, as described by Schirmer, Tanneberger and 

collaborators74,165,166, I reasoned that low dose chemicals were ineffective because of the low 

concentration chosen. Remarkably, I identified most of the single chemical exposures to affect 

biological functions associated with embryo developmental pathways. This is consistent with the 

finding that some of these chemicals (i.e. DEP, PCP and Permethrin) have already been shown to 

induce developmental abnormalities in zebrafish embryos. Kim et al, showed that exposure of 

zebrafish embryos to diethylphthalate (DEP) caused early embryonic death and impairment of 

skeletal development188. PCP was shown to induce developmental delay of zebrafish embryos in 

a concentration-dependent manner189 and DeMicco et al. showed that craniofacial abnormalities 

were generated by permethrin at doses approaching the LC50
190. One of the biggest challenges in 

defining the molecular mechanisms underlying chemical toxicity is given by the ability of the 

chemical itself to affect multiple pathways. In this context, it is of paramount importance to 
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discriminate between direct and indirect effects because of two main reasons. First, chemicals 

may have not specific targets leading to what is called “systemic toxicity” which may results in 

different biological functions to be affected simultaneously191. The second reason is associated 

with pathway crosstalk where deregulation of a given biological pathway may arise because it 

shares components of the signal transduction with another pathway192. Despite we didn’t 

investigate about potential crosstalk between the pathways identified to be deregulated by the 

single chemical exposure, our results are consistent with the findings of previous studies 

confirming we are able to characterize molecular mechanisms for this panel of chemicals. 

The most important discovery that emerged from this work however, is the demonstration that 

the transcriptional response in both in vitro and in vivo systems is diagnostic of the chemical 

class. As chemicals share similar mechanism of action I tried to address whether we could 

characterise functional profile of a given MoA. I identified pathways to be diagnostic of chemical 

class. Glycolisys/gluconeogenesis and steroid biosynthesis pathways were found to be diagnostic 

of uncoupler chemicals in the zebrafish embryo system; these pathways were strongly down-

regulated in relation to the other chemical classes and 78% and 96% of the genes involved in 

these pathways were found to be down-regulated. Ma et al., demonstrated that 2,4-DCP 

modulate transcription of steroidogenic genes in adult female zebrafish resulting in lower levels 

of 17b-estradiol (E2) and the down-regulation of aromatase (CYP19A) genes193. The finding that 

Glycolisys/gluconeogenesis is so widely affected is fully consistant with the fact that uncouplers 

do severely affect respiration and specifically the electron transport chain in the oxidative 

phosphorylation pathway.  

Most of the genes in the ribosome biogenesis pathway (93%) were found to be down-regulated 

in zebrafish embryos exposed to neurotoxic chemicals. This finding is consistent with the 
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observation by Jeffries et al., that ribosome biogenesis is affected by permethrin in Delta smelt 

(Hypomesus transpacificus)194 and by Connon et al., that identified genes encoding for ribosomal 

protein to be modulated by the exposure to Esfenvalerate in Delta smelt195. In the trout cell line, 

on the other hand, ribosome biogenesis was found to be down-regulated in reactives compounds 

with 92% of down-regulated genes. I can hypotesise that this transcriptional signature may have 

a functional effect on ribosome biogenesis. In fact, Wang et al., demonstrated that 

concentrations of acrolein ranging between 0 – 100 uM were able to impair ribosome biogenesis 

and polysome formation in human cancer cells196.  This effect may be conserved across a wide 

range of species since Golla et al., identified several genes involved in ribosome biogenesis to be 

down-regulated in budding yeast after exposure to 0.4 mM of AA197. However, the concentration 

they used are around 2 orders of magnitude greater than the ones we used in our study.  It is 

interesting to note that the ribosome biogenesis pathway is modulated by a different set of 

chemical classes in the two different system suggesting the presence of different compensatory 

mechanisms in the two biological systems. 

One of the challenges associated with the classification of chemicals based on transcriptional 

signatures is linked with the presence of chemical mixture. As humans and animals are exposed 

to more than one chemical in the natural environment, characterizing molecular mechanisms of 

chemicals belonging to mixture can be very difficult because of the presence of antagonistic or 

synergic effects that may influence the toxicity of each of the compounds in the chemical 

mixture. Garcia-Reyero et al., assessed chemical mixture effects on Daphnia transcriptome by 

comparing molecular responses in the mixtures with those of the single chemical exposure198. 

Interestingly, they identified shared gene function between mixtures and single chemicals but 

unique gene functions arose from the mixture suggesting additive and nonadditive mixture 

effects has a key role in mixture toxicity. In this context, the molecular mechanisms I identified 
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for the single chemicals may differ when considering these compounds as part of environmental 

mixture. However, to better understand chemical mixture toxicity, knowledge of gene behaviour 

in both single chemicals and mixture should be investigated in parallel.  

These results suggest the zebrafish embryo and the fish gill cell line in combination with a global 

method of quantifying transcripts offers a useful approach to generating mechanistic 

information of specific chemical exposures. This can identify suitable biomarkers that can assist 

the improvement of ERAs.  
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Chapter	3: Predicting	in	vivo	toxicity	from	in	vitro	

transcriptional	responses	following	chemical	exposure		

 

The analysis strategy and all the in silico analysis in this chapter have been performed by myself  

 

3.1 Abstract	

The lack of detailed toxicology data for thousands of chemical compounds currently being 

released in the environment is in part due to the challenge of generating these data using 

traditional animal testing. High-throughput in vitro testing offers a valid alternative to animal 

testing. In vitro to in vivo extrapolation (IVIVE) refers to the use of in vitro testing to infer the 

effects of chemicals on whole organisms. In this chapter, I precisely address whether the 

transcriptional state of a gill cell line exposed to a given chemical can be used as a biosensor to 

predict toxicity in a zebrafish embryo. This is achieved by building an approach able to identify 

signatures associated either with toxicity or lipophilicity. By developing a regression model 

linking in vitro gene signatures that are independent of compound lipophilicity to whole embryo 

toxicity I have been able to identify gene signatures with the ability to discriminate between the 

different MoA. These results support the view that cell lines have the potential to inform about 

toxicity in whole organism and have the potential for the development of a Mode of Action 

assignment framework. 
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3.2 Introduction	

Around 10 million tons of toxic chemicals are released into the environment by industries each 

year199. Due to the time and expense of generating data using conventional animal tests, health 

data for thousands of compounds currently in use are missing. Moreover, current legislation has 

become stricter regarding the use of whole organisms for toxicity testing since the primary 

endpoint is mortality and fish suffer distress and pain41. For these reasons, more effort was 

addressed towards the development of alternative methods for toxicity testing. High-throughput 

screening assays (HTS) have the ability to test many chemicals simultaneously offering a potential 

tool for prioritization applications200, to investigate mechanisms of toxicity201 as well as reducing 

the number of animals used. The ToxCast and Tox21 programs, established by the US EPA, have 

screened more than 1800 environmentally relevant chemicals carrying out more than 700 HTS 

assays covering around 300 cell signalling pathways and represent the best example of how HTS 

can be used to improve ecotoxicological assessment202,203. However, HTS is still at an early stage 

in the field of environmental toxicology compared with its application for drug development202. 

Most of the studies have focused on cellular and mechanistic pathways in model organisms as 

D. rerio, a suitable model for risk assessment204. Within the ToxCast program 309 chemicals have 

been screened to assess general phenotypic endpoints linked to embryo development and 

viability and results showed 62% of the compounds to be toxic to the developing zebrafish205. 

HTS have also been applied to cell cultures. George et al., used a gill cell line (RTgill-W1) in parallel 

with zebrafish embryos to assess how the shape of silver (Ag) nanoparticles influenced the 

toxicity profiles of cell viability and superoxide generation206. While the zebrafish embryos 

represent a well-established and accepted alternative method for toxicity testing, the RTgill-W1 

cell line has not been fully validated yet. Advantages, limits and applications of cell lines and early 

stage embryos have been already extensively discussed in the previous chapter164,207–211.  
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Two major challenges hamper the use of in vitro toxicity data for hazard risk assessment: a 

toxycodinamic problem, where interactions and mechanism happening between tissues and 

organs cannot be modelled by in vitro systems, and a toxycokinetic problem, where in vivo 

efficiency of exposure and chemical bioavailability is determined by biokinetic processes which 

may be either lost or different in vitro212. Absorption, distribution, metabolism and excretion 

(ADME) properties, which determine in vivo the relationship between the administered toxic 

dose and the internal dose or the effective free concentration at the target site, are missing in 

the in vitro systems. It has been demonstrated in vitro that considerable amount of chemicals 

become unable to trigger a toxic action due to binding to serum or cells213. To fill this gap, two 

main solutions are available which are 1) to increase the complexity of in vitro system to account 

for interactions between tissues and 2) to apply modelling techniques to simulate the behaviour 

of the complex system by using in vitro data to look for the best parameter values214. For these 

reasons, in vitro to in vivo extrapolation (IVIVE) is particularly challenging215,216.  

The present study fits the vision of an ecotoxicology framework that minimise animal testing. 

The study was designed to assess the potential of a fish cell line as alternative method for toxicity 

testing on a panel of chemicals which are of environmental interest. More specifically, I 

successfully proved that the transcriptional response of a fish gill cell line following chemical 

exposure is informative of molecular and toxicity response in a whole organism such as the 

zebrafish embryo. These results further support the use of a fish gill cell line as an alternative for 

toxicity testing and provide a suitable proof of concept approach for IVIVE. 

3.3 Materials	and	methods	

Experimental design, data acquisition and data pre-processing and normalization have been 

extensively explained in chapter 2. 
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3.3.1 Identification	of	gene	signatures	lipophilicity	dependent	and	independent	

Statistical analyses were all performed within the statistical environment R. Gene signatures 

correlated with EC10 and Kow have been identified using quantitative SAM117 as it is implemented 

in the “samr” package. Quantitative SAM identifies gene signatures that correlates with a given 

response variable. Within each biological system, gene signatures were assessed for their 

correlation with EC10 and Kow values which have been used as response variables. For IVIVE, in 

vivo EC10 has been used as response variable to identify in vitro transcriptional signatures 

correlated with in vivo toxicity. Significance was assigned for genes with an FDR < 5%.  

3.3.2 Regression	analysis	

A Regression analysis between EC10 and Kow within each biological system have been run to 

identify residuals that cannot be explained by lipophilicity. Regression analysis and residuals 

computation have been achieved using MS Excel. Gene signatures have been identified using 

quantitative SAM and a 5% FDR threshold was applied. For IVIVE, residuals of the correlation 

between in vivo toxicity with lipophilicity have been used as response variable to identify in vitro 

gene signatures correlating to the component of the transcriptional response which is free of 

lipophilicity effects.  

3.3.3 Functional	analysis	

All the functional enrichment was attained using DAVID webservice118. Functional analysis of 

gene signatures correlated with EC10 and Kow was achieved selecting GO terms and KEGG 

pathways from a functional clustering approach as it is implemented in DAVID and applying a 1% 

FDR cut-off. Functional clustering groups together similar annotations which makes the biology 

clearer. Non-redundant terms were then arranged into wider functional domains according to 

the KEGG functional levels. Functional analysis of gene signatures correlated with residuals was 

achieved retrieving KEGG pathways at 1% FDR with a gene count > 5. 
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3.3.4 Predictive	analysis	

To assess the ability of gene signatures correlated with EC10, Kow and residuals to predict chemical 

class MoA we employed a K-nearest neighbours (KNN) classification algorithm. KNN is a simple 

and intuitive method widely used in classification problems given its low error rate. Giving a 

sample whose category is unknown, the classification algorithm will find the K-nearest 

neighbours by computing similarities (Euclidean distance) between samples in the training data. 

I will then get the category of the new sample according to the K-nearest neighbours. KNN is the 

simplest and straightforward classification algorithm and has many advantages over other 

algorithms as for example it being a non-parametric method. Here we applied a KNN 

classification algorithm using the “class” package within the statistical environment R. The K 

value was set equal to 4 and a leave-one-out cross validation (LOOCV) method was used to 

measure the error rate. Results have been reported using bar-charts.  

3.4 Results	

3.4.1 Identification	of	gene	expression	signatures	that	are	correlated	to	toxicity	

In the previous chapter (chapter 2) I have identified transcriptional signatures in both in vitro and 

in vivo systems that are associated to chemical classes defining general MoA categories. Here I 

asked whether we can identify transcriptional signatures that are linked to compound toxicity, 

irrespective of the MoA.  

I first set to identify gene signatures which correlate with chemical toxicity, expressed as EC10 

(effective concentration at which the 10% of the population exhibit a response), in both in vitro 

and in vivo systems. Remarkably, I could identify a total of 2,477 genes in the gill cell line that 

correlated to cell line chemical toxicity (1,545 positively correlated and 932 negatively 
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correlated) (fig. 3.1). In Zebrafish embryos, I could identify 1,415 genes correlated to chemical 

toxicity (339 positively correlated and 1,076 negatively correlated) (fig. 3.2). 
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I then asked whether I could identify transcriptional signatures in the in vitro system that 

correlate with in vivo toxicity. A total of 1383 genes (391 positively correlated and 992 negatively 

correlated) were found to be correlated (fig. 3.3). Interestingly, functional enrichment analysis 

of in vitro transcriptional signatures correlated to in vivo toxicity revealed only enrichment in the 

negatively correlated genes list. More precisely, I identified functions linked to whole organism 

development such as sensory organ development, embryonic morphogenesis and gastrulation. 

In addition, functions as transcription, cell growth and cell death (P53 signaling pathway and 

apoptosis), endocrine system (PPAR signalling pathway) and lipid metabolism (fatty acid 

metabolism) were also found. These results are consistent with the original hypothesis that a cell 

line may be informative of the complex transcriptional programs associated to whole organism 

response. 
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3.4.2 The	relationship	between	toxicity	and	compound	lipophilicity	

The analysis described above revealed that in both systems molecular response can be 

informative of toxicity. While this is an interesting finding I reasoned it may simply reflect the 

important contribution of basal toxicity to the overall toxicity response.  Since non-specific basal 

toxicity is proportional to compound lipophilicity there is a possibility that the transcriptional 

signatures I just identified reflected at least in part, compound lipophilicity. Deconvolution of 

specific and basal toxicity is therefore important.  

I therefore hypothesise that a fraction of the genes correlated to toxicity may also be correlated 

with compound lipophilicity. 

In order to test this hypothesis, I first identified genes whose expression correlates with logP, a 

measure of compound lipophilicity, in both in vitro and in vivo systems. I then computed the 

overlap between these signatures and the toxicity-related signatures we already developed. 

Consistent with my original hypothesis, I found a significant overlap between logP positively 

correlated genes and genes negatively correlated with toxicity and logP negatively correlated 

genes and genes positively correlated with toxicity (fig. 3.4).  
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Figure 3.4: Venn diagrams showing gene overlaps between signatures associate with toxicity (EC10) and with 
lipophilicity (Kow) within each biological system. Gene overlaps are reported also for the cross-species analysis 
where we identified in vitro signatures linked to in vivo toxicity and lipophilicity. Red and green circles represent 
gene signatures positively and negatively correlated respectively. 

 

3.4.3 Residual	analysis	to	identify	molecular	signatures	linked	to	specific	toxicity	

effects	

The analysis described above shows that a significant component of the transcriptional response 

to toxic chemicals can be explained as a non-specific interaction with biological membranes. The 

analysis of the overlap between EC10 and logP correlated signatures suggest that I may be able 

to identify excess toxicity signatures. In order to gain more confidence in our ability to identify 

excess toxicity signatures, I first developed a regression model linking toxicity with lipophilicity 

(basal toxicity model) (fig. 3.5-3.6) and then computed the residuals, which represent the toxicity 

that cannot be explained by lipophilicity (fig. 3.7-3.8). 
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Pval=	1.92X10-291Pval=	1.42X10-226Pval=	1.87X10-56

Pval=	0Pval=	4.09X10-214Pval=	2.32X10-215
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Figure 3.5: Correlation between chemical toxicity and chemical lipophilicity within the trout gill cell line system. 
The fitted line represents the toxicity that can be explained by the lipophilicity. 

 

 

Figure 3.6: Correlation between chemical toxicity and chemical lipophilicity within the zebrafish embryo system. 
The fitted line represents the toxicity that can be explained by the lipophilicity. 
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Figure 3.7: Residuals of the correlation between toxicity and lipophilicity within the trout gill cell line system 
which represent the component of the transcriptional response that cannot be explained by the lipophilicity. 

 

 

Figure 3.8: Residuals of the correlation between toxicity and lipophilicity within the zebrafish embryo system 
which represent the component of the transcriptional response that cannot be explained by the lipophilicity. 
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Finally, I set to identify genes whose expression correlate with the residuals in both in vitro and 

in vivo systems. A total of 1,091 genes (733 positively correlated and 358 negatively correlated) 

and 4,637 genes (2,065 positively correlated and 2,572 negatively correlated) were found to be 

differentially correlated at 5% FDR with residuals computed in the in vitro and in vivo models, 

respectively. 268 in vitro genes (208 positively correlated and 60 negatively correlated) were 

found to be differentially correlated to in vivo residuals. A functional enrichment analysis was 

then achieved to identify biological functions associate with each of the portion of the 

transcriptional response free from lipophilicity effects. Biological functions enriched of in vitro 

gene signatures correlated with in vitro residuals were mainly identified for those signatures 

positively regulated (table 3.1). 
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Table 3.1: Functional enrichment of in vitro genes signatures found to be differentially correlated with in vitro 
residuals at 1% FDR. In red and green are reported KEGG pathways positively and negatively correlated with 
residuals, respectively while in brown those pathways enriched of genes both positively and negatively correlated 
with residuals. FDR values of each of the Kegg pathways are provided in the supplementary material. 

 

Interestingly, most of the zebrafish embryo signatures negatively correlated with residuals were 

found to be involved in biological functions associated with transcription, translation, DNA 

replication and repair and folding, sorting and degradation (table 3.2). Functions positively 

Domain KEGG	ID Pathway	Name Genes

dre00230 Purine	metabolism 9
dre00240 Pyrimidine	metabolism 8

Transcription dre03040 Spliceosome 6

dre03030 DNA	replication 15
dre03410 Base	excision	repair 5
dre03420 Nucleotide	excision	repair 9
dre03430 Mismatch	repair 5

dre04010 MAPK	signaling	pathway 18
dre04310 Wnt	signaling	pathway 6
dre04630 Jak-STAT	signaling	pathway 5
dre04350 TGF-beta	signaling	pathway 8
dre04020 Calcium	signaling	pathway 5

dre04060 Cytokine-cytokine	receptor	interaction 5
dre04512 ECM-receptor	interaction 6
dre04514 Cell	adhesion	molecules	(CAMs) 5

Transport	and	catabolism dre04142 Lysosome 5

Cell	motility dre04810 Regulation	of	actin	cytoskeleton 11

dre04110 Cell	cycle 9
dre04210 Apoptosis 5
dre04114 Oocyte	meiosis 8

dre04510 Focal	adhesion 10
dre04520 Adherens	junction 7
dre04530 Tight	junction 5

Immune	system dre04620 Toll-like	receptor	signaling	pathway 7

dre04910 Insulin	signaling	pathway 6
dre04920 Adipocytokine	signaling	pathway 5
dre04912 GnRH	signaling	pathway 6

Endocrine	system

Nucletoide	metabolism

Replication	and	repair

Signal	transduction

Signaling	molecules	and	
interaction

Cell	growth	and	death

Cellular	community



Page 133 of 296 
 

regulated are instead associated with pathways linked to energy and amino acids metabolism, 

signal transduction and with immune, endocrine and circulatory system.  
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(Continue next page) 

Domain KEGG	ID Pathway	Name Genes
dre00010 Glycolysis	/	Gluconeogenesis 15
dre00020 Citrate	cycle	(TCA	cycle) 9
dre00030 Pentose	phosphate	pathway 10
dre00051 Fructose	and	mannose	metabolism 8
dre00052 Galactose	metabolism 5
dre00500 Starch	and	sucrose	metabolism 6
dre00520 Amino	sugar	and	nucleotide	sugar	metabolism 10
dre00620 Pyruvate	metabolism 8
dre00640 Propanoate	metabolism 6
dre00650 Butanoate	metabolism 5
dre00562 Inositol	phosphate	metabolism 6
dre00190 Oxidative	phosphorylation 7
dre00910 Nitrogen	metabolism 5
dre00140 Steroid	hormone	biosynthesis 13
dre00240 Pyrimidine	metabolism 26
dre00230 Purine	metabolism 37
dre00250 Alanine,	aspartate	and	glutamate	metabolism 11
dre00260 Glycine,	serine	and	threonine	metabolism 7
dre00270 Cysteine	and	methionine	metabolism 6
dre00280 Valine,	leucine	and	isoleucine	degradation 12
dre00330 Arginine	and	proline	metabolism 6
dre00310 Lysine	degradation 8
dre00350 Tyrosine	metabolism 7

Glycan	metabolism dre00510 N-Glycan	biosynthesis 10
dre00860 Porphyrin	and	chlorophyll	metabolism 5
dre00900 Terpenoid	backbone	biosynthesis 5
dre03020 RNA	polymerase 6
dre03022 Basal	transcription	factors 7
dre03040 Spliceosome 56
dre03010 Ribosome 8
dre00970 Aminoacyl-tRNA	biosynthesis 6
dre04120 Ubiquitin	mediated	proteolysis 22
dre03050 Proteasome 18
dre03018 RNA	degradation 19

Carbohydrate	and	energy	metabolism

Lipid	and	nucleotide	metabolism

Amino	acids	metabolism

Metabolism	of	cofactors	and	terpenoids

Transcription

Translation

Folding,	sorting	and	degradation
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(Continued)

 

Table 3.2: Functional enrichment of in vivo genes signatures found to be differentially correlated with in vivo 
residuals at 1% FDR. In red and green are reported KEGG pathways positively and negatively correlated with 
residuals, respectively while in brown those pathways enriched of genes both positively and negatively correlated 
with residuals. FDR values of each of the Kegg pathways are provided in the supplementary material. 

Domain KEGG	ID Pathway	Name Genes
dre03030 DNA	replication 27
dre03410 Base	excision	repair 13
dre03420 Nucleotide	excision	repair 16
dre03430 Mismatch	repair 14
dre03440 Homologous	recombination 14
dre03450 Non-homologous	end-joining 7

Membrane	transport dre02010 ABC	transporters 6
dre04010 MAPK	signaling	pathway 30
dre04350 TGF-beta	signaling	pathway 8
dre04370 VEGF	signaling	pathway 6
dre04630 Jak-STAT	signaling	pathway 9
dre04020 Calcium	signaling	pathway 24
dre04310 Wnt	signaling	pathway 8
dre04330 Notch	signaling	pathway 7
dre04080 Neuroactive	ligand-receptor	interaction 9
dre04060 Cytokine-cytokine	receptor	interaction 8
dre04512 ECM-receptor	interaction 11
dre04144 Endocytosis 9
dre04142 Lysosome 15

Cell	motility dre04810 Regulation	of	actin	cytoskeleton 24
dre04210 Apoptosis 8
dre04110 Cell	cycle 41
dre04114 Oocyte	meiosis 20
dre04115 p53	signaling	pathway 22
dre04510 Focal	adhesion 21
dre04520 Adherens	junction 6
dre04540 Gap	junction 16
dre04620 Toll-like	receptor	signaling	pathway 12
dre04621 NOD-like	receptor	signaling	pathway 6
dre04622 RIG-I-like	receptor	signaling	pathway 5
dre04910 Insulin	signaling	pathway 16
dre00150 Androgen	and	estrogen	metabolism 5
dre04920 Adipocytokine	signaling	pathway 11
dre04916 Melanogenesis 7
dre04912 GnRH	signaling	pathway 10
dre04914 Progesterone-mediated	oocyte	maturation 20
dre04260 Cardiac	muscle	contraction 10
dre04270 Vascular	smooth	muscle	contraction 10

Environmnetal	adaptation dre04710 Circadian	rhythm 8

Endocrine	system

Circulatory	system

Signaling	molecules	and	interaction

Transport	and	catabolism

DNA	replication	and	repair

Signal	transduction

Cell	growth	and	death

Cellular	community

Immune	system
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Biological functions enriched of in vitro gene signatures correlated with in vivo residuals were 

just identified for those signatures positively correlated (table 3.3). These functions were 

associated with nucleotide metabolism and with DNA replication and repair. 

 

Table 3.3: Functional enrichment of in vitro genes signatures found to be differentially correlated with in vivo 
residuals at 1% FDR. In red are reported KEGG pathways positively correlated with residuals. FDR values of each of 
the Kegg pathways are provided in the supplementary material. 

 

In the initial approach I used, I first identified signatures correlated with lipophilicity and I then 

removed them from our dataset. However, some of the signatures may also correlate with 

toxicity as showed in figure 3.9. Residuals analysis on the other hand, have the potential to truly 

identify signatures which are independent of the lipophilicity.  

 

Domain KEGG	ID Pathway	Name Number	of	genes
dre00230 Purine	metabolism 5
dre00240 Pyrimidine	metabolism 6
dre03030 DNA	replication 6
dre03420 Nucleotide	excision	repair 5

Nucleotide	metabolism

Replication	and	repair
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Figure 3.9: Venn diagrams showing gene overlaps between signatures associate with toxicity (EC10) and with 
lipophilicity (Kow) as previously showed plus the overlap with the signatures associated with the residuals within 
each biological system. 

3.4.4 Identifying	good	predictors	of	chemical	class	compound	

Since I have been able to identify gene expression signatures that are potentially representing 

excess toxicity, I reasoned that these should be good predictors of compound MoA class.  I 

employed KNN classification algorithm to address this hypothesis. Interestingly, I discovered that 

in vitro gene expression signatures linked to either Kow, EC10 or excess toxicity are good predictors 

of compound MoA, whereas the whole genome transcriptional signature tend to be poor 

predictor for all classes of chemicals except for neurotoxic, which as expected are poorly 

predicted (fig. 3.10).  The in vivo system is a better predictor of compound MoA but the selection 

of excess toxicity genes does not seem to increase dramatically the prediction (fig. 3.11).  

Trout Zebrafish Trout/Zebrafish

732

144

483 420

56 607

284

EC10 Kow

Residuals

966

115

830 459

566 1360

2596

EC10 Kow

Residuals

297

50

1034 472

2 98

118

EC10 Kow

Residuals



Page 138 of 296 
 

 

Figure 3.10: Bar-charts report results of the KNN classification for the in vitro model when using gene signatures 
coming from the original dataset and those correlating with in vitro toxicity, lipophilicity and residuals. The y axis 
reports the percentage of chemical classes correctly classified.  

 

 

Figure 3.11: Bar-charts report results of the KNN classification for the in vivo model when using gene signatures 
coming from the original dataset and those correlating with in vivo toxicity, lipophilicity and residuals. The y axis 
reports the percentage of chemical classes correctly classified 
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Most important, I discovered that in vitro gene signatures linked to either Kow, EC10 and excess 

toxicity are good predictors of compound MoA in the in vivo system (fig. 3.12). More 

specifically, excess toxicity is better predictor for all classes of chemicals. 

 

Figure 3.12: Bar-charts report results of the KNN classification for the in vitro gene signatures when using gene 
signatures coming from the original dataset and those correlating with in vivo toxicity, lipophilicity and residuals. 
The y axis reports the percentage of chemical classes correctly classified. 

 

3.5 Discussion	

In chapter 2 I did show that the transcriptional response of the RTgill-W1 cell line can be used to 

predict a chemical MoA. Although with its limitations, this proof of concept study has shown that 

an in vitro system can be used to infer mechanisms of action at the organism level. In this chapter, 

I have shown that the transcriptional response of the same cell line can be used to predict 

compound toxicity in the same cell line and, importantly, can be predictive of the development 

for embryonic abnormalities in Zebrafish embryos. 
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The functional analysis of the signatures I have discovered is linked to biological terms with high 

statistical significance. Interestingly, the diagnostic cell live transcriptional signature represents 

biological pathways that are active during embryo development. This is by far the strongest 

molecular evidence published so far supporting the view that this in vitro system is not just a 

biosensor but that also has the potential to inform about biological processes specific of 

embryos. 

The approach I have developed has some limitations, mainly due to the relatively small number 

of chemicals in the dataset. Therefore, the most important issue is whether these findings can 

be extrapolated to a larger chemical space that include more chemicals within each MoA 

category and possibly a broader range of specific MoAs.  With regards to the MoA categories, in 

the present study only 4 categories are considered: narcotics, reactives, neurotoxics and 

uncouplers. These MoA are in a partial agreement with the Verhaar scheme for the classification 

of chemical compounds217–219. In the Verhaar scheme, pollutants can be classified into 4 different 

categories being: class 1 or inert chemicals, which are nonpolar narcotics and represent baseline 

toxicity; class 2 or less inert which include polar narcotics; class 3 or reactive chemicals, with a 

non-selectively enhanced as compared to baseline toxicity; class 4 or specifically-acting 

compounds, which react with specific receptors and class 5 or unclassified chemicals. Chemicals 

are classified into any of these classes depending on their chemical structure with the exception 

of the last category representing compounds acting by specific MoA, which classification has to 

be based on specific knowledge. With the exception of neurotoxic compounds which represent 

a broader MoA category and narcotics compounds whose distinction between polar and 

nonpolar has not been considered, the other two MoA categories in our study follow the Verhaar 

classification. Another widely adopted MoA classification scheme is represented by the OASIS 

profiler, developed by the laboratory of mathematical chemistry at the University “Prof. As. 
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Zlatarov” in Bulgaria. This profiler classifies chemicals into one out of seven categories and its 

major advantage, compared with the Verhaar schema which is based on chemical structure, is 

the ability to assign categories based on MoA which provide a clear mechanistic foundation with 

the ability to improves transparency and acceptability.  

By considering more MoA categories as the AChE inhibition and the 

iono/osmoregulatory/circulatory impairment or by discriminating among the different specific 

neutotoxic MoA, the robustness my approach could be improved towards a more reliable 

predictive model. This can be achieved by leveraging the knowledge of public databases as the 

MOAtox developed by Barron et al.220. 

The second issue is a statistical one. The regression model I have used to define the residuals is 

effectively meant to represent a traditional basal toxicity model. The fact that I have built the 

model by using a small number of chemicals, of which only a few are bona fide narcotics raise 

the issue that the regression line may not represent the true relationship between lipophilicity 

and toxicity. A larger number of chemicals is necessary to develop an accurate model. Moreover, 

the model I have developed does not discriminate between polar and non-polar narcotics. These 

are both interacting with biological membranes in a lipophilicity  dependant manner but they are 

thought to do so with different chemical physical mechanisms, resulting in significantly different 

biological effects 221,222. Ideally, with a sufficiently larger number of chemicals belonging to both 

classes I may be in the position to develop this proof of concept study to a fully applicable 

predictive model.  

Having identified transcriptional responses associated with excess toxicity and baseline toxicity I 

addressed the question of whether in vitro gene signatures were able to inform about chemical 

MoA in an in vivo system. Results revealed that transcriptional signatures linked to toxicity are 
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able to discriminate between chemical MoAs and that this is also true when extrapolating from 

an in vitro system to whole animal. This proof of concept study offers a valuable approach that, 

once further developed fulfilling the limitations previously highlighted, has the potential to be 

used for IVIVE and may help reducing the use of animal testing as well as providing fast, cost-

effective and high-throughput methods for conducting chemical risk assessment.  
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Chapter	4: In	silico	computational	transcriptomics	reveals	

novel	endocrine	disruptors	in	Largemouth	bass	

(Micropterus	salmoides)	

 

I have developed data analysis strategies and performed all the in silico analysis with the 

exception of the microarray annotation which was achieved by John Herbert. Laboratory 

validation have been performed by our collaborating lab 

 

4.1 Abstract	

In recent years, decreases in fish populations have been attributed, in part, to the effect of 

environmental chemicals on ovarian development. To understand the underlying molecular 

events, I developed a dynamic model of ovary development linking gene transcription to key 

physiological endpoints, such as gonadosomatic index (GSI), plasma levels of estradiol (E2) and 

vitellogenin (VTG), in largemouth bass (Micropterus salmoides). I was able to identify specific 

clusters of genes, which are affected at different stages of ovarian development. A sub-network 

was identified that closely linked gene expression and physiological endpoints and by 

interrogating the Comparative Toxicogenomic Database (CTD), Quercetin and Tretinoin (ATRA) 

were identified as two potential candidates that may perturb this system. Predictions were 

validated by investigation of reproductive associated transcripts using qPCR in ovary and in the 

liver of both male and female largemouth bass treated after a single injection of Quercetin and 

Tretinoin (10 and 100 µg/Kg). Both compounds were found to significantly alter the expression 

of some of these genes. These findings support the use of omics and online repositories for 
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identification of novel, yet untested, compounds. This is the first study of a dynamic model that 

links gene expression patterns across stages of ovarian development.   
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4.2 Introduction	

The increasing amount of pollutants released into the environment is a major issue for the 

development of a sustainable economy. Growing numbers of anthropogenic pollutants affect 

freshwater and marine environments with profound impact on species of economic importance. 

This leads to an increase in the need for additional ecosystem maintenance to secure a constant, 

minimally burdened, food supply223,224. Moreover, due to their position in the food chain, higher 

level organisms (including humans) can be negatively affected through biomagnification of these 

toxic substances225,226. Endocrine disruptors (EDs), in particular, have the ability to associate with 

adverse effects, such as reproduction227,228. EDs are exogenous agents that interfere with the 

synthesis, transport, binding action, metabolism, secretion or elimination of natural endogenous 

hormones responsible for reproduction, homeostasis and developmental processes; the 

disturbance of which may lead to adverse outcomes229–231. These compounds are commonly 

found in daily use products such as detergents, cosmetics, processed food and products 

containing flame retardants232.  Many taxa exhibit reproductive and developmental 

abnormalities following exposure to EDs, including humans, reptiles, mammals, amphibians, 

birds, fish, and invertebrate organisms233.  For example, one of the most common abnormalities 

in animals in the aquatic environment that is caused by exposure to EDs is intersex, defined as 

males that have both sperm and oocytes in their testis234. EDs elicit tissue-specific responses235 

and have been shown to be toxic even at very low concentrations236. Moreover, time of exposure 

has been shown to be a crucial factor that determines the potency of EDs229.  

Largemouth bass (LMB) (Micropterus salmoides) is an important economic fish species widely 

distributed throughout the USA. LMB are popular as a sports fish and they represent a keystone 

species in freshwater ecosystems due to their trophic position as an apex predator. LMB 

reproduction is typically synchronous as they develop their gonads over a spawning season, 



Page 146 of 296 
 

which is controlled by both environmental and physiological factors (e.g. temperature, 

photoperiod and endogenous hormonal triggers237). Oocyte growth can be divided into two main 

stages of development, classified as primary growth or pre-vitellogenic and secondary growth or 

vitellogenesis238,239. These developmental stages can be further divided into discrete 

reproductive stages depending on ovarian morphology and oocyte maturation as defined by 

Martyniuk et al.8,240. The first stage of development is named perinuclear stage (PN) and it is 

characterized by the formation of the follicle which is made up of granulosa cells surrounding 

the oocyte, a basal lamina and the theca cells. Moreover, meiosis is arrested at the diplotene 

stage of prophase I and an intensive transcriptional activity is taking place241. The name of the 

stage is given by the production of multiple nucleoli following nucleolar amplification, which 

becomes oriented in a perinuclear position242. The oocyte keeps increasing its size entering in 

the cortical alveoli stage (CA).  This stage is characterized by the formation of large vesicles 

organized in a multi-layered structure at the oocyte periphery that keeps growing and fuses 

together243. The next stage is characterized by the oocyte uptake of nutritional resources as the 

egg yolk protein vitellogenin (Vtg) and is named vitellogenesis stage (VTG). The Vtg is synthesized 

by hepatocytes, carried to the oocyte by the bloodstream and incorporated through a receptor-

mediated process239,241. Once its uptake is completed the oocyte enters the maturation stage 

(OM) where the nucleus, also called germinal vesicle, starts to migrate to the animal pole of the 

oocyte. At the ovulation stage (OV) the oocyte emerges from the follicle becoming an egg. 

Quantifying the molecular events underlying ovary development dynamics in response to 

pollutants facilitates improved understanding of the mechanisms and hence improves our ability 

to design and manufacture safer products.  

In this study, I used transcriptome profiling data coupled with computational approaches to 

model the effects of chemicals in the LMB ovary. Using omics datasets, I first constructed a 
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dynamic model representing the development of healthy ovaries from unexposed fish. By 

mapping the responses of a transcriptome from LMB collected from a polluted site, I was then 

able to identify modules (clusters of genes), which are perturbed at different stages of ovarian 

development. By utilizing the Comparative Toxicogenomic Database (CTD)244, a robust database 

providing information about chemical interaction with genes, proteins and disease, I identified 

Tretinoin and Quercetin as potential chemicals that were associated to the observed molecular 

response in LMB ovary following reproductive disruption. Both compounds were subsequently 

tested for their potential as reproductive endocrine disruptors using exposure experiments in 

the laboratory with LMB. This study demonstrates that by utilizing computational approaches 

and online knowledge bases to understand the underlying molecular response of organisms, it is 

possible to identify putative chemical candidates that may impact reproductive health. This 

approach is highly relevant for classifying chemicals prior to conducting risk assessments, and I 

propose that this is a viable approach for chemical prioritization, reducing animal numbers, and 

developing safer chemicals in the public domain.  

4.3 Materials	and	methods	

4.3.1 Experimental	design	

For a detailed description of the experimental design and the data processing workflow see8. 

Briefly, wild largemouth bass (LMB) were collected from the St. Johns River in Florida from 

October 2005 to April 2007 at Welaka (29.48° N, 81.67° W) located approximately 20 miles south 

of Palatka, FL. This area is considered to be relatively free from the influence of industrial effluent 

and agricultural runoff245. Water temperature varies dramatically over the year and is reported 

by a month to month basis by Martyniuk et al240. At the sampling time, ovaries were dissected, 

and fish were categorized based on histology into 7 different stages of reproductive 
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development: perinucleolar (PN), cortical alveoli (CA), early vitellogenin (eVTG), late vitellogenin 

(lVTG), early ovarian maturation (eOM), late ovarian maturation (lOM) and ovulation (OV). 

Physiological endpoints as Plasma vitellogenin (VTG) levels, 17b-estradiol (E2) levels and 

gonadosomatic index (GSI) were also measured. Ovaries were then processed for gene 

expression profiling, with four biological replicates for each ovarian stage , using a custom LMB 

microarray platform246. These data were used to characterize the molecular events underlying 

oocyte maturation in the LMB ovary, identifying potential biomarkers of atresia8.  In a second 

study, a mesocosm experiment was set up by placing wild adult LMB (+ 3 years) at different 

stages of reproduction (late CA or eVTG), sampled from DeLeon Springs in Florida, in the Apopka 

ponds in October (collected from the ponds for samples in January) and in January (collected 

from the ponds for samples in April). LMB were in the ponds for 4 months. This site is well-known 

to be impacted by anthropogenic sources62. The contaminant load consisted of high levels of 

organochlorine pesticides (DDT, dieldrin, toxaphene, and others)62. These organochlorine 

pesticides, are known to disrupt LMB reproduction due to their estrogenic and anti-androgenic 

properties247–249. Ovaries were then collected and processed for gene expression profiling using 

four biological replicates62. 

4.3.2 Annotation	

The LMB microarray (Agilent ID: GPL 13229; Santa Clara, CA, USA) consists of 15,950 sequences. 

To improve on the previous multi-species annotation, the microarray was re-annotated using the 

most recent annotated genomes available. Two approaches, leveraging the power of the NCBI 

blast tool, were used: 1) Using blastn (search a nucleotide database using a nucleotide query), 

we aligned all of the array-design sequences against the most closely related and most 

completely annotated genome, which was the three-spined stickleback (Gasterosteus aculeatus) 

and then, using the same method, the sequences were aligned to RefSeq zebrafish (Danio rerio) 
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cDNA; 2) The array-design sequences were compared against the three-spined stickleback 

protein with blastx (search a protein database using a translated nucleotide query) and then with 

blastp (search a protein database using a protein query) against the RefSeq zebrafish protein. In 

both approaches, the e-value threshold was set at 1e-6. The two approaches led to the annotation 

of 6,373 and 5,522 sequences, respectively. A total of 7,772 genes (4,926 unique genes) were 

successfully associated to an official gene symbol of which 4,338 were associated to the zebrafish 

genome (98%) providing improved coverage over the previous annotation (1,031 genes, 15%). 

4.3.3 Differential	gene	expression	and	clustering	

Differentially expressed genes were identified using the Significance Analysis of Microarray 

(SAM)117 within the statistical environment R (“samr” package). To identify expression changes 

across the different stages of development, I applied a time-course SAM. To identify genes whose 

expression was differentially expressed in at least one stage, a multiclass SAM, which does not 

consider the time and is not constrained by a specific response function, was applied. Significant 

genes were defined by a threshold of 10% FDR (False Discovery Rate) to maximize the number 

of differentially expressed genes. To visualize the relationship between samples the differentially 

expressed genes were used as input to a principal component analysis using the “prcomp” 

package within the statistical environment R. In order to simplify the complexity of the dataset I 

set to identify clusters of genes whose expression was correlated across the different stages of 

development. I employed SOTA (Self-Organizing Tree Algorithm)110 using a Pearson correlation 

distance measure, an unsupervised neural network with a binary tree topology that can be easily 

scaled to large datasets. Each cluster was functionally annotated using the web-based software 

tool DAVID118. Biological gene ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes) 

pathways with an FDR < 5% were considered. 
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4.3.4 Dynamic	modelling	and	chemical	mapping	

Modules identified by the SOTA approach using the two different SAM methods were then 

merged into a single dataset. I chose to represent each module with a 4th degree polynomial 

interpolation of its genes. The approach interpolated the 7 ovarian stages to 100 pseudo-

timepoints. The resulting dataset and the physiological measurements (VTG, GSI and E2) were 

then used as input to a TimeDelay-ARACNE (TDA) algorithm130. This method extracts 

dependencies between two genes by incrementally delaying the expression profile of one gene 

against another; this results in a comparison where the timecourse of gene1 “t0 t1 t2 … t(n-1)” is 

then compared to a delayed timecourse of gene2 “t1 t2 t3 … tn”. The amount by which one profile 

is delayed with respect to another is defined as the time-delay. By testing multiple time-delays 

and identifying the highest dependency between two genes, a directionality can be inferred and 

represented graphically in a network format. TDA has been successfully compared to dynamic 

Bayesian networks and ordinary differential equations and it has been shown to have a good 

accuracy for network reconstruction130. To identify whether any of the identified clusters were 

up and down regulated as a result of pollution, I utilized a gene set enrichment analysis (GSEA)121. 

In addition to the standard GSEA procedure, a pre-ranked list of genes can be provided to the 

algorithm. To define the pre-ranked gene list, I conducted a “Two-class unpaired” SAM analysis 

between the polluted and clean sites and recorded the d-statistic for each gene. The d-statistics 

were then provided to the GSEA approach (to rank each gene). I then imported the previously 

identified clusters as gene-sets. GSEA then tested whether any of the identified clusters were 

generally up (positive d-statistic) or down (negative d-statistic) regulated in respect to pollution. 

Clusters identified as enriched were recorded and visually represented on the network view. 

Functional enrichment of the sub-network of interest was achieved using DAVID with a 1% FDR 

threshold applied. 
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4.3.5 CTD	enrichment	

To identify chemicals with the ability to affect the sub-network of interest, I utilised the curated 

data collection in the Comparative Toxicogenomics Database (CTD)244. The CTD provides 

manually-curated information about interactions between chemical and gene/protein as well as 

chemical-disease relationships to aid in the development of hypotheses about mechanisms 

underlying chemical and environmentally influenced disease. To identify which potential 

compounds might be involved in generating the transcriptome response that I observed, I first 

downloaded the CTD (Download-date: 14 January 2016) and identified the species with the 

broadest number of chemical interactions (Homo sapiens). As the zebrafish has been extensively 

used as a model system for human disease, human gene ortholog information is better defined 

than other species covered in the CTD. I selected the human subset of data and although this is 

a needed compromise, it provides me with the opportunity to explore potentially conserved 

mechanisms. I first converted my zebrafish genes to human genes using ZebrafishMine250 (3,977 

genes).To identify which chemical may interact with the sub-network of interest I calculated the 

EASE score (Expression Analysis Systematic Explorer; as defined in the DAVID web-based tool118) 

against the CTD database filtered for those compounds having associated more than 5 genes. 

The thresholding is necessary to reduce the potential of identifying spurious compound hits 

where a low gene-set size results in a significant p-value. Retrieved p-values were adjusted using 

a Benjamini and Hochberg correction (analogous to a FDR). This resulted in a list of compounds 

that have more genes in common than expected by random chance. I ordered the compounds 

by their respective p-value (10% FDR threshold) to identify the top identified toxicants.  

4.3.6 Prediction	validation	

Prediction validation was carried out by our collaborating lab. Twenty reproductive largemouth 

bass (10 males and 10 females for each exposure group) were injected intraperitoneally with 10 
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or 100 µg/Kg of Quercetin or Tretinoin dissolved in DMSO. The controls were injected with the 

carrier solution DMSO. Following a forty-eight hours exposure, the fish were anesthetized, 

weighed, bled, and dissected. For real-time PCR, sample sizes for female ovary and liver were as 

follows: Control (n=6), Quer 10 (n=6), Quer 100 (n=7), Tret 10 (n=6), and Tret 100 (n=6). Sample 

sizes for male liver were as follows: Control (n=6), Quer 10 (n=6), Quer 100 (n=6), Tret 10 (n=6), 

and Tret 100 (n=6). Gonad and liver tissues were collected and flash frozen in liquid nitrogen for 

RNA purification and extraction. RNA was assessed for quality using the Agilent 2100 Bioanalyzer 

and all samples showed a RIN > 7.0.  RNA was subjected to a DNAse treatment using DNAse Turbo 

as per manufacturer’s protocol (Ambion). The cDNA synthesis was performed using 1 µg total 

RNA (using the iScript BioRad protocol). Primer sets for target genes were collected from the 

literature for LMB. The genes investigated in this study included androgen receptor (ar), estrogen 

receptor alpha, betaa and betab (erα, erba, erbb), aromatase (cyp19a), steroidogenic acute 

regulatory protein (star), vitellogenin (vtg) and vitellogenin receptor (vtgr).  We chose these 

reproductive transcripts because (1) the computational analysis was done in reproductive tissues 

(liver and ovary) over a breeding season and these transcripts are sensitive to maturation, (2) we 

have observed that these genes are perturbed by chemicals in LMB and (3) these gene assays 

are widely used and reliable in our laboratory. 18S rRNA was used to normalize gene targets. 

Real-time PCR was performed using the CFX Connect™ Real-Time PCR Detection System (BioRad) 

with SSoFast™ EvaGreen® Supermix (BioRad, Hercules, CA, USA), 200 nM of each forward and 

reverse primer, and 3.33 µL of diluted cDNA. The two-step thermal cycling parameters were as 

follows: initial 1-cycle Taq activation at 95 °C for 30 s, followed by 95 °C for 5 s, and primer 

annealing for 5 s. After 40 cycles, a dissociation curve was generated, starting at 65.0 and ending 

at 95.0°C, with increments of 0.5 °C every 5 s. Normalized gene expression was extracted using 

CFX Manager™ software with the relative ΔΔCq method (baseline subtracted). All primers used 
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in the qPCR analysis amplified one product, indicated by a single melt curve. Details about the 

primers are provided in Table 4.1. Significant differences between group means were analysed 

using analysis of variance (ANOVA) followed by Dunn’s post-hoc test. A value of p < 0.05 was 

used to indicate significant differences.  

Gene Forward (5'-3') Reverse (5'-3') T (°C) R2 Efficiency (%) 

251rps18 CGG CTA CCA CAT CCA 

AGG AA 

CCT GTA TTG TTA TTT 

TTC GTC ACT ACC T 

58 0.996 88.1 

62rps23 CAG AAA TGG CAC 

GAT AAG CA 

GAC CTT TAC GCC CAA 

ATC C 

58 0.979 104.3 

62ef1α GGA CAA ACT GAA 

GGC AGA GC 

ACA CCA GCA GCA ACA 

ATC AG 

58 0.992 92.1 

252ar CAC CAC AGA GAA 

TGT GCC TGA 

CAG GTG AGT GCG CCG 

TAA 

58 0.997 93.2 

253esr1 CGA CGT GCT GGA 

ACC AAT GAC AGA G 

ACC TCC GGT CAC TGA 

TGA TTT TCC TCC T 

58 0.999 103.9 

253esr2a CCG ACA CCG CCG 

TGG TGG ACT C 

AGC GGG GCA AGG GGA 

GCC TCA A 

58 0.991 101.4 

253esr2b GTG ACC CGT CTG TCC 

ACA CA 

TCT GGG GTC AGT GCA 

GGA GA 

58 0.985 98.8 

252cyp19 TGG ATC AAG TGG 

ATG TCC TCA GT 

CCA GGA AGA GTC TGT 

TGG AGA TG 

58 0.999 98.6 

252star ACC CCT CTG CTC AGG 

CAT TT 

GGG CTC CAC CTG CTT 

CTT G 

58 0.980 99.8 
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61vtg 

receptor 

ATG CAG ACT TTA ACC 

AGC AGA TGA T 

TGT CCA GCA AAG TGC 

TAT AAA TGG 

58 0.998 96.1 

254vtg CAG AGT GAG ATG 

GGC GTT G 

CAG GCG TTT GTT GGG 

TGT 

58 0.994 104.6 

Table 4.1: The table provide the list of primers, along with their sequences and parameters, employed for the 
experimental validation by qPCR of tretinoin and Quercetin effects on LMB ovary development. 

 

4.3.7 Chemical-Set	Enrichment	Analysis	

To test whether my approach preferentially identifies endocrine disruptors as by random chance 

I first downloaded a defined list of endocrine disruptors from the CTD. Secondly, I extracted the 

estimates from the fisher exact test performed during identification of chemicals. I then used 

these two datasets as input to a standard Pre-Ranked GSEA.  

4.3.8 Analysis	strategy	

The overarching objective of my analysis was to identify chemicals that were most likely to 

disrupt ovarian development in largemouth bass. This was achieved by developing a dynamic 

network model, linking changes in the transcriptional state of different stages of normal LMB 

ovaries and measured key physiological endpoints (GSI, VTG and E2). The first step in developing 

this model was to reduce the overall complexity of the gene expression profiles. I first identified 

differentially expressed genes during ovary development (Fig 4.1, step 1a-1b) and then clustered 

the transcripts, via self-organizing trees, based on similarity of gene expression profiles (Fig. 4.1, 

step 1c). This reduced the total number of variables in the dynamic network model and provided 

means for better biological interpretation. The linkages between the key physiological indicators 

and the clusters of gene expression profiles were inferred using a time-delay mutual information 

algorithm (Fig. 4.1, step 2) and the response of the transcriptome to the polluted environment 
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was then mapped via gene set enrichment analysis onto the network (Fig. 4.1, step 3). By 

identifying which gene clusters are 1) directly connected to key physiological endpoints and 2) 

significantly enriched in the polluted site, I identified a sub-network of interest. Finally, by 

interrogating the CTD, and matching gene expression profiles to the clusters perturbed in an 

environment under chemical stress, I was able to identify chemical candidates that were 

predicted to interfere with ovary development (Fig. 4.1, step 4). Resulting chemical stressors 

were then ordered and the likely candidates tested on their ability to perturb ovary related 

systems (Fig. 4.1, step 5).  
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Figure 4.1: Schematic representation of the analysis pipeline. The data acquired by expression profiling underwent 
analysis to identify differentially expressed genes (step 1 a and b), in addition to clustering genes sharing similar 
expression profiles (step 1c). The linkage between gene clusters and key physiological indicators such as VTG, GSI 
and E2 across the different stages of development were inferred using a mutual information-based algorithm and 
response of the transcriptome in fish inhabiting a polluted environment were mapped via GSEA (step 2 and 3); the 
CTD database was interrogated to identify potential chemical candidates with the ability to affect endocrine 
functions driving ovary development (step 4); finally, candidate chemicals were then tested experimentally  (step 
5). 
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4.4 Results	

4.4.1 Differential	gene	expression	analysis	identifies	biological	functions	involved	in	

ovary	development	

In order to understand what biological processes are linked to ovary development I first set to 

identify genes differentially expressed across the seven stages of development. This was 

achieved by two criteria: 1) genes which changed expression over the different stages of ovary 

development (One class SAM time-course), and 2) genes which were significantly different in at 

least one developmental stage (multiclass). I identified 3057 genes associated with oocyte 

development and 5047 whose expression was significantly different in at least one stage at 10% 

FDR (Fig. 4.2). The two gene-lists were then combined to give the best possible understanding of 

the molecular response to normal ovary development.  

 

 

Figure 4.2:  Venn diagrams showing number of differentially expressed genes obtained using either of the two 
methods (MC and GC) and their overlap across different FDR thresholds. 
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In order to visually represent the dynamics of change in the transcriptional state of healthy 

ovaries, the resulting list of 5,199 genes was used as input to a principal component analysis 

(PCA) (Fig. 4.3). I could project the state of ovary samples in two dimensions while retaining 55% 

of variance. This visual representation was consistent with a high reproducibility of replicated 

samples as well as an expected progression from early stages such as perinuclear (PN) to ovary 

maturation (OV).  

 

Figure 4.3: Principal component analysis (PCA) shows a clear progression of ovary development from the first to the 
terminal stage of ovarian development. Stages are defined as PN (perinuclear), CA (cortical alveoli), eVTG (early 
vitellogenesis), lVTG (late vitellogenesis), eOM (early ovarian maturation), lOM (late ovarian maturation) and OV 
(ovulation). 

 

For each of the gene-sets, a self-organising tree algorithm (SOTA) was applied and for each 

cluster, functional annotation was retrieved. This approach yielded 12 and 9 clusters for the time-

course and multiclass gene-sets, respectively. Heat-maps of the clusters showed a variation in 

the responses that were identified by either of the differential gene expression approaches (Fig. 
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4.4). The identified functions represented were mainly linked to transcriptional and translational 

activity, energy metabolism and cell growth activity, for example as mTOR signaling pathway or 

cell cycle, respectively. Interestingly, mTOR is regulating both cell cycle and energy metabolism 

by controlling the selecting translation of growth factor induced genes255. 

 

Figure 4.4: Expression profiles of transcripts identified by two different differential gene expression approaches. 
Red and green shows up and down regulation, respectively. Functional annotation is reported with black, red and 
blue terms representing gene ontology terms at 5%, 10% and 20% FDR, respectively. FDR values of each of the GO 
terms are provided in the supplementary material. 
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4.4.2 A	dynamic	model	of	ovary	development	

To develop a dynamic model of ovary development, the identified clusters and key physiological 

endpoints were used as a input into TimeDelay-ARACNE (TDA). This resulted in a directed 

network where edges, linkages between nodes (clusters of genes and endpoints), indicate a 

positive or negative direction of effect based on their temporal profiles. The resulting network 

represented 20 modules linked through 30 edges that are coloured red and green to distinguish 

positive and negative effects (Fig. 4.5).  

 

Figure 4.5: The figure reports the model of ovary development inferred employing TD-ARACNE algorithm (details in 
the materials and methods section of the paper). The model links gene clusters with physiological measurements 
(Vtg, E2 and GSI) across the different stage of ovary development in a time-dependent manner. Ability of a cluster 
at an early stage of development to enhance or inhibit the expression of a cluster at a later stage is displayed in red 
and green, respectively. 
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Noteworthy was that several clusters were directly associated to the key physiological endpoints 

(Table 4.2). Cluster 12 was linked to GSI and E2 and contained genes that had representative 

functions including transduction (ribosome and spliceosome), nucleotide metabolism (purine 

and pyrimidine metabolism) and energy metabolism (oxidative phosphorylation). Cluster 6 

linked to E2 and contained genes that had representative functions that were associated with 

glycolysis/gluconeogenesis pathway. Functions associated with embryo development (eye 

development), DNA replication (DNA replication, nucleotide excision repair and mismatch 

repair), translational activity (ribosome) and energy metabolism (oxidative phosphorylation) 

were found to be represented in cluster 10 which was linked to VTG. 
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Table 4.2: The table shows the functional enrichment for each of the gene clusters belonging to the dynamical model 
of ovary development. Functional enrichment has been achieved using DAVID webservice and retrieving KEGG 
pathways. A 5% FDR threshold was used. Number of genes within each of the Kegg pathways are provided in the 
supplementary material. 
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4.4.3 Mapping	the	effects	of	pollutant	exposure	on	the	model	for	healthy	ovary	

development	

Having developed the network representing normal ovary development, I hypothesized that this 

would provide a platform for quantifying the effects of pollution. To test this hypothesis, I utilized 

an additional dataset, which was developed as part of the same initial study, which compared 

ovary transcriptomes of LMB collected from a heavily polluted and a pristine site. All fish in this 

experiment were histologically classified as late vitellogenesis stage and so the molecular 

differences were expected to affect clusters around the level of eVTG-lVTG. By using gene set 

enrichment analysis, I was able to determine whether any of the clusters were either up or down-

regulated as a result of the polluted environment. Interestingly, the effect of pollution extended 

well beyond the expected stage of development, showing significant effects even in clusters 

placed in PN and CA stages suggesting a regression, developmental inhibition or a stronger 

overlap of different ovary development stages appearing simultaneously during the process (Fig. 

4.6).  
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Figure 4.6: The transcriptome responses in the ovary due to a polluted site were mapped onto the developed 
dynamic network and a sub-network of interest, which included all three physiological measurements, was 
identified. Clusters positively or negatively enriched with pollution-related genes are displayed in red and green, 
respectively. 

 

This led to the identification of a sub-network, which connected to physiological endpoints and 

clusters 2, 6, 7, 10, 12 and 17. Functional characterization of this sub-network revealed evidence 

of E2-dependent functions, which are well known to drive ovary development (Table 4.3).  
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Table 4.3: The table reports the functional enrichment of the sub-network identified. More specifically, all the genes 
within the clusters belonging to the sub-network have been tested together for enrichment using DAVID webservice 
and retrieving KEGG pathways. A 1% FDR threshold was applied. 
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4.4.4 Identification	of	chemicals	with	the	potential	to	disrupt	ovarian	development	

Having identified a sub-network with evidence for ovary development perturbation, I next asked 

the question of whether it was possible to identify chemical compounds that have the ability to 

perturb these functions. I therefore collapsed the clusters (2, 6, 7, 10, 12 and 17) within our sub-

network to a single entity and interrogated the CTD database for potential entries of interest 

that have been shown to perturb this set of genes. This resulted in a list of 10 entries, 

Cyclosporine, Valproic acid, Copper Sulphate, Methyl Methanesulfonate, Cobalthous Chloride, 

Acetaminophen, Atrazine, Formaldheyde, Tretinoin and Quercetin, that showed a significant 

enrichment with the potential to perturb networks associated with ovary development (Table 

4.4). Some of the identified entries are widely used as drugs (Valproic acid, Cyclosporine and 

Tretinoin) or food additives (Quercetin). Interestingly, three of the identified compounds 

(Valproic Acid, Cyclosporine and Quercetin) have already been shown to have estrogenic activity 

which increased confidence that my approach identified likely candidates for endocrine 

disruption activity.   

CHEMICAL DESCRIPTION ENDOCRINE 
REFERENCE 

FDR 

Valproic Acid Drug used to treat epilepsy and bipolar 
disorders. It acts as histone 
deacetylase, by blocking voltage-gated 
sodium channels or affecting GABA 
levels. 

Estrogenic 
activity256 
Steroidogenic 
effect257 

8.9x10-34 

Cyclosporine Immunosuppressant drug used to 
reduce the activity of the immune 
system by interfering with the activity 
and growth of T cells. 

Estrogenic 
effect258 

9.9x10-31 

Copper sulphate Inorganic compound with a wide range 
of application. It is mainly used by 
industries or as analytical reagent and 
is environmentally relevant. 

Steroidogenic 
inhibition259 

3.3x10-21 

Methyl 
methanesulfonate 

Alkylating agent used in cancer 
treatment 

Reproductive 
toxicity260 

1.0x10-13 



Page 167 of 296 
 

Cobaltous 
Chloride 

Inorganic compound with a wide range 
of application. 

Indirect anti-
estrogenic261 

1.7x10-12 

Acetaminophen Drug commonly known as 
Paracetamol, it is used to treat pain 
and fever 

Anti-estrogenic 
activity262 
Anti-androgenic 
activity263 

1.7x10-11 

Atrazine Herbicide used to prevent broadleaf 
weed in crops 
 

Anti-androgenic 
and anti-
estrogenic264 

1.2x10-11 

Quercetin Flavonoid found in many fruits, 
vegetables, leaves and grains used as 
dietary supplement. 

Estrogenic 
activity265 

1.6x10-11 

Formaldehyde Organic compound used for the 
production of resins and it is known to 
be carcinogen. 

Reproductive 
toxicity266 

2.3x10-11 

Tretinoin A retinoic acid used to treat acne and 
leukaemia. It acts by forcing APL cells 
to differentiate and stops them from 
proliferating. 

 6.6x10-10 

 

Table 4.4: List of chemical compounds identified using the CTD database. These compounds are predicted to affect 
biological functions underlying the gene regulatory network of ovarian development. Compound description and 
endocrine references are reported along with p-values of enrichment. 

 

To identify the best possible candidates for further testing, I compared each of the 6 compounds 

effects to well-known key endocrine-related genes (esr1, esr2a, star, ctsD, ctsB, fst, cyp19a, 

cyp3a, nr0b1, zp3) (Table 4.5). This identified cyclosporine, Acetaminophen, Atrazine, Tretinoin, 

Quercetin and valproic acid as chemicals likely to have the potential to disrupt endocrine 

functions.  As all of these chemicals except Tretinoin have been previously shown to exhibit 

endocrine or reproductive toxicity-related effects, and Quercetin has been shown to impact 

mammalian ovary development265, we then experimentally tested these two compounds as 

endocrine disruptors in LMB.  
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Table 4.5: The table reports some of the criteria considered for selecting chemical compounds to be experimentally 
validated for their ability to affect ovary development. Testing compounds were chosen on the basis of their ability 
to affect key-endocrine genes well-known drivers of ovary development. 

 

4.4.5 Experimental	validation	of	predicted	compounds	and	their	effects	on	

endocrine	related	genes	

To assess the potential of the two selected compounds, Quercetin and Tretinoin, to perturb 

ovary development, fish were exposed at 10 µg/Kg and 100 µg/Kg of each compound for 48 h. 

Doses were selected based on what we have found in literature as these compounds have 

already been tested in mice and toxicity doses have been extrapolated to fish. The expression of 

key endocrine genes, androgen receptor (ar), the three oestrogen receptors (esr1, esr2a and 

esr2b), aromatase (cyp19a), the steroidogenic acute regulatory protein (star) and the 

vitellogenin receptor (vtgr) were tested by qPCR in ovary and esr1 and vtg in liver tissue. Neither 

of the compounds significantly affected the expression of androgen receptor in ovary tissue (Fig. 

4.7). Quercetin significantly perturbed all three ERs at the highest dose examined (esr2a was 

significant also at the lowest dose) while Tretinoin perturbed esr2a only at the high dose. Esr2a, 
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in particular, appeared to be more responsive to the treatments than the other two receptors. 

The high dose of Quercetin also perturbed cyp19a and vtgr expression while Tretinoin affected 

star expression at 10 µg/Kg and vtgr expression at 100 µg/Kg. In the liver, the low dose of 

Tretinoin only significantly affected the expression levels of the esr1 in males while vtg was not 

affected by either of the two compounds (Fig. 4.8).  
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Figure 4.7: Expression levels of reproductive-related transcripts in ovary tissue after exposure to candidate 
chemicals. 
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Figure 4.8: Expression levels of reproductive-related transcripts in liver tissue after exposure to candidate 
chemicals in both males and females. 

 

To verify that my method preferentially identifies endocrine disruptors I applied a GSEA 

algorithm with the EDCs, as defined by the CTD, as the set. The EDC chemical set was found to 

be positively enriched (FDR < 5%) adding more confidence to our approach (Figure 4.9).  

 

 



Page 172 of 296 
 

 

Figure 4.9: GSEA analysis of endocrine disruptor selection by our methodology. GSEA reported an enrichment of 
known endocrine disruptors in our list with an FDR < 5% suggesting that our methodology preferentially selects 
endocrine disruptors. 

 

4.5 Discussion	

4.5.1 Gene	regulatory	network	of	ovary	development	

Previously, we have characterized molecular pathways and temporal gene expression patterns 

in female largemouth bass across the different stages of ovarian development8. Here, I identified 

relationships between gene expression patterns in the different stages of ovarian development. 

This is the first study of its kind where a dynamic model is able to link gene expression patterns 

at early stages of development with those at later stages. Remarkably, I demonstrated that this 

approach can be used to identify chemicals that alter endocrine-related functions driving ovary 

development. 

My first goal was to develop a dynamic model of healthy ovary development that functionally 

describes the dynamics undergoing ovarian maturation and oocyte growth. The approach I chose 

is entirely data driven. Unlike the currently available models that are based on the description of 

the pharmacodynamics underlying hormones and VTG activity along the hypothalamic-pituitary-
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gonadal (HPG) axis267–270, my model is able to capture completely novel regulatory interactions. 

I successfully identified clusters of genes whose expression was related to a particular stage of 

ovarian development. Previous studies aiming to characterize gene expression profiles 

underlying ovarian development have already been performed in different fish species and these 

are consistent with our model. Guzman et al.271 characterized expression profiles of ovarian 

genes regulated by the follicle-stimulating hormone (fsh) in Coho salmon (Oncorhynchus kisutch). 

They determined that the expression of the transcript of cyp19a (aromatase) peaked at eVTG-

lVTG stage and showed a positive correlation with the transcript of the fsh receptor (fshr), 

supporting the idea that fsh stimulates the production of E2 in the ovary via upregulation of 

cyp19a. In my network model, the cyp19a belongs to cluster 10, which has the initial change of 

expression at the eVTG-lVTG stage, supporting similar relationships as identified by Guzman et 

al. and well-established since decades272. Gene expression profiles during vitellogenesis were 

also determined in Atlantic cod (Gadus morhua) by Breton et al.273. They identified cyp19a as 

over-expressed (4-fold) during vitellogenesis in the ovary, which drives the synthesis of E2 that 

ultimately regulates vtg synthesis in the liver. In my network model, aromatase expression is 

included in cluster 10, which is connected with VTG, supporting the data presented by Breton 

and collaborators. Here I also inferred a gene regulatory network linking these profiles with key 

physiological endpoints. Moreover, the ability of either a physiological endpoint or a cluster at 

an early stage of development to trigger the activation or inhibition of features at a later stage 

of development was identified by using the temporal profile of ovary progression. Gene 

regulatory networks are particularly useful in the field of environmental toxicology for identifying 

chemical mode of action274, deriving toxicity thresholds275 and for inferring gene targets of drugs 

and chemical compounds276. The gene regulatory network I developed precisely aids in the 
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prediction of gene targets of chemical compounds that can be used potentially to develop a new 

set of biomarkers of ovarian toxicity.  

One limitation of my model is that it does not consider all of the components of the HPG axis, I 

therefore may miss components/interactions of the system critical to ovary development. 

However, my simplification does consider time delays associated with signal transduction 

processes, leading to the development of a model where E2 and VTG play key roles during 

ovarian development as they show time sensitivity in reproduction. Development of more 

detailed and more biologically accurate mathematical models is required to better understand 

the full scope of effects that stressors are able to trigger277,278. 

4.5.2 Tretinoin	and	Quercetin	as	endocrine	disruptors	

Chemicals often used as drugs or food additives are widespread in the environment and many of 

them have already been characterized for their ability to disrupt fundamental biological 

processes in environmentally relevant species279,280. My computational approach led to the 

prediction of Tretinoin and Quercetin as potential endocrine disruptors (EDs) with the ability to 

alter key biological processes involved in the ovary development of the LMB.  

My results suggest Quercetin has the ability to disrupt reproductive targets such as the estrogen 

receptors, the aromatase (cyp19a) and the vtgr in the ovary. Quercetin is a natural occurring 

flavonoid found in many fruits, vegetables, leaves and grains. Flavonoids, in plants, have many 

different roles as they improve growth and seedlings development, attract pollinators helping 

seed germination and are responsible for the aroma and the colours of flowers281. Moreover, 

they serve as a barriers against many environmental stresses such as UV radiation282. Quercetin 

has been demonstrated to be beneficial to health in mammals because of its antioxidative, 

anticancer, free radical scavenging and antiviral activities283,284. Its presence in the environment 
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can be associated with industrial effluents from the pulp and paper industry processing plant 

material285,286. Quercetin is relevant for aquaculture as it has been investigated as a potential fish 

food supplement for its beneficial properties287. Moreover, it also has potential effects in 

lowering levels of lipids288–290 whose blood presence in fish has been associated with declining 

health conditions291. Few studies have also demonstrated that Quercetin may improve follicular 

development and oocyte quality in vitro and in vivo292,293. My findings suggest that low amounts 

of Quercetin only affect the expression of esr2a. However, Quercetin may also have negative 

effects on fish as shown by Weber et al., which demonstrated that Quercetin exposure (100ppb) 

in female Japanese medaka (Oryzias latipes) promoted follicular atresia294. Further studies have 

also shown that Quercetin has estrogenic-like effects on ovary development265.  

Further experimental evidence for the potential of Tretinoin to act on key endocrine genes was 

conducted and demonstrated its effect on esr2a, vtgr and star. Tretinoin, also called all-trans 

retinoic acid (ATRA), is. one of the metabolites of vitamin A (retinol). Retinoic acid is a biologically 

active metabolite of vitamin A (retinol) that, through the binding with retinoic acid receptors 

(RARs and RXRs), is involved in a wide range of biological functions including embryo 

development295,296, immune system297, reproduction298,299 and vision system300. Although 

Tretinoin mechanism of action is unknown, it may elicit its molecular action through the 

activation of retinoid receptors301 as well as PPAR302. Tretinoin is a drug used worldwide for the 

treatment of acne vulgaris and photodamage301. Despite its common use, few studies have been 

conducted to address any potential environmental toxicity, and most of these studies reveal 

developmental toxicity303–305. The only study which investigated potential effects of Tretinoin on 

ovarian developmental processes was carried out by Pu et al., which showed that ATRA improved 

in vitro oocyte nuclear maturation in goat after a 22h exposure at concentrations below the ones 

tested in this publication306.  Despite the fact that this compound is not classified as a chemical 
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of concern for the environment, it nevertheless demonstrates that my approach can predict 

chemicals de novo as potential reproductive disruptors. 

The additional experimental test performed have revealed new insight into the toxicity of 

Tretinoin and Quercetin, supporting predictions that these compounds can act as EDs based 

upon changes in mRNA levels for estrogen receptors, aromatase, star and vtgr. Interestingly, the 

two compounds seemed to act differently. Expression levels of all estrogen receptors were 

affected by Quercetin. It is interesting to notice the potential non-monotonic dose-response 

behavior of Tretinoin for star expression levels which has been previously observed in ED 

compounds307. However, further experimental validation is required to understand the 

relationship between Tretinoin and this endocrine disruption potential and more doses are 

needed to confirm non-monotonic dose-response behaviours. For the first time, I provide 

evidence that Tretinoin can affect transcripts related to steroidogenesis and vtgr mRNA levels. 

Evidence of Quercetin ovarian toxicity was associated also with aromatase activity. This 

demonstrates that omics analyses of target-organ specific perturbation can identify highly 

relevant toxicants that have yet to be tested. Validation of my predictions further increase our 

confidence that my findings have the potential to improve environmental risk assessment as well 

as providing a new tool for screening chemical compounds. 
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Chapter	5: Daphnia	as	test	organism	for	endocrine	

disruption	

 

The whole experimental design was performed by our collaborating lab while I have developed 

data analysis strategies and performed all the in silico analysis. 

 

5.1 Abstract	

Recently, there has been increasing evidence that chemicals that act as endocrine disruptors may 

have an effect in invertebrates, mainly insects and crustaceans. Daphnia magna has been 

proposed as a model organism for environmental ecotoxicology being a good biosensor for 

endocrine disruption because these chemicals may act by the juvenile and moulting hormone, 

endocrine hormones controlling development and growth. However, so far there is no direct 

evidence that all chemicals that are known endocrine disruptors in vertebrates truly act on this 

Daphnia magna pathways. Here I address this question by first constructing gene expression 

signatures representing Daphnia response to both Juvenile and moulting hormones and then by 

comparing a panel of chemicals to the reference expression profiles of these two hormones. 

Interestingly, I identified Diazinon and Atrazine on one side and l-cyhalothrin and bifenthrin on 

the other one, to have a similar expression profile to either juvenile and the moulting hormone, 

respectively. This finding is consistent with the working hypothesis that ED’s act affecting these 

hormones signalling pathways. My findings suggest that the approach I have developed could be 

used to identify novel endocrine disrupting compounds hence supporting the use of Daphnia 

magna for rapid screening in risk assessment. 
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5.2 Introduction	

Environmental contaminants have been increasingly investigated in the last decades for their 

ability to interfere with fundamental biological functions of living organisms. Because of their 

effect on the maturation, growth and reproduction, chemicals that are able to affect the 

endocrine system are of particular importance in ecotoxicology. Many of these endocrine 

disrupting chemicals (EDCs) elicit their toxic effects by mimicking the action of endogenous 

hormones, for example by binding to their nuclear receptors308,309.  Even if invertebrates account 

for around 95% of all animals310, no much effort has been invested in understanding their 

potential in signalling environmental endocrine disruption and most of the studies of EDCs 

effects have been performed on vertebrates.  

The endocrine system of both vertebrate and invertebrate species controls homeostasis, 

development, growth and reproduction311,312. However, vertebrate and invertebrate endocrine 

systems present significant differences. First, the vertebrate endocrine system involves a 

hierarchical array of organs where hormones are produced and released by the same endocrine 

gland and they reach their target organs by the circulatory system. The invertebrate endocrine 

system, on the other hand, is more centralized with hormones produced and stored in different 

organs and hemolymph is responsible for delivering them to their target sites. Also, the 

vertebrate endocrine system is composed of both neurosecretory cells and endocrine glands 

while the invertebrate endocrine systems present fewer true glands. The arthropods, in 

particular insects and crustaceans, are the only group presenting true endocrine glands similar 

to their vertebrate counterparts. Most of the knowledge we currently have about the 

invertebrate endocrine system is coming from studies on insects as the insect class is the richest 
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within the invertebrates313. Moreover, members of the arthropod subphylum Crustacea are the 

one dominating the aquatic environment. Differences in endocrine system components are 

present in the different species but the general functioning is conserved. Crustaceans endocrine 

system is made up of different organs of which the X-organ-sinus gland complex is the main 

neuroendocrine component and strikingly resemble the brain-corpora cardiaca complex of 

insects314. Hormones are produced by the X-organ which is connected by axonal terminals with 

the sinus gland in which they are stored. The main hormones secreted by the sinus gland include 

the MIH (molt inhibiting hormone)315, the GIH (gonad inhibiting hormone)316, the MOIH 

(mandibular organ inhibiting hormone)317, the NDH (neurodepressing hormone)318 and the CHH 

(crustacean hyperglycaemic hormone)319. Crustacean moulting is controlled by the MIH which 

exert an inhibitory effect on the Y-organs (structurally homologous to the insect prothoracic 

organs) responsible for the production of the moulting hormone, MH (20-

hydroxyecdysone)320,321. Prior to moulting, MIH levels decrease triggering increasing levels of 

ecdysteroids that lead to moulting322. MH acts through a dimeric nuclear receptor that binds DNA 

and activates de novo gene transcription. Interestingly, one of its monomers, namely 

ultraspiracle (USP) is structurally similar to the vertebrate retinoid-X-receptor (RXR)323. It has 

been shown that vertebrate endocrine disruptors can mimic the effect of the MH and are able 

to induce male offspring by controlling sex determination. Ecdysteroids have been shown to play 

an important role during embryonic development and genes responsible for their synthesis have 

been identified324. Hannas et al. showed ecdysteroids are able to affect mRNA levels of 

vitellogenin genes325. However, moulting is not under the sole control of MH. Juvenile hormones, 

JHs, are terpenoids which control reproduction and maturation326. Among the several forms of 

juvenile hormone identified, the JH III is the one occurring in most insects. In crustaceans, methyl 

farnesoate is the principal juvenile hormone synthesized327. Methyl farnesoate is produced by 
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the mandibular organ (homologous to the insect corpora allata) and is under the negative control 

of MOIH. The molecular basis of juvenile hormone signalling has been recently described by 

Jindra et al328. High levels of JH are necessary during the pre-moulting period to maintain the 

juvenile form. Decreasing level of JH will trigger the development of mature features and the 

moulting process. The role of methyl farnesoate in the regulation of moulting and reproduction 

has been investigated by Reddy et al.329. Moreover, the interplay between juvenile hormones 

and ecdysteroids has been demonstrated330–333. JH plays an important role also in sex 

determination. Daphnids produce female offspring by parthenogenesis under favourable 

environmental conditions, but in response to various unfavourable external stimuli, it produces 

male offspring. This process is regulated by methyl farnesoate334. Good reviews of invertebrates 

and crustaceans endocrinology and potential effects endocrine disrupting compounds are able 

to elicit are given by LaFont, LeBlanc, Soin and Rodriguez, respectively312,335–337. Therefore, the 

dominant signaling pathways driving moulting, maturation and reproduction in crustaceans and, 

more in general in insects, are either ecdysteroids or methyl farnesoate related.  

The crustacean Daphnia magna is an established model species to study aquatic environmental 

toxicity50. Most of these studies have applied standard ecotoxicological assays using established 

endpoints to determining hormone agonist effects on daphnids and just a few studies have 

applied gene expression profiling approaches338. In the recent decades, studies investigating 

effects of endocrine disruptors on D. magna have been constantly increasing and most of them 

identified a good number of compounds to act as ecdysteroids or methyl farnesoate analogs. 

Ginjupalli and Baldwin identified Pyriproxyfen, a juvenile hormone analog, to affect D.magna 

reproduction by increasing male production and decreasing overall fecundity339. Giraudo et al., 

recently demonstrated the ability of three different benzotriazoles, ubiquitous aquatic 

contaminants due to industrial and domestic activities, to regulate endocrine molecular 
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processes linked to ecdysteroids signalling340. Recently, Song et al. proposed the first 

invertebrate ED AOP linking MoA of EDs affecting moulting process with adverse effects 

according to OECD guidelines28. 

In this study I tested the ability of a wide range of compounds, including a number of known EDs, 

to affect biological pathways linked to the activity of juvenile and moulting hormones defined as 

a global transcriptional response. Interestingly, I show that some of these compounds elicit a 

similar transcriptional response to either the JH or MH. Moreover, by comparing the expression 

signature of Daphnia magna exposed to JH and MH with a collection of test compounds I have 

been able to identify novel chemicals that may potentially affect D. magna endocrine system. 

More specifically, my analysis revealed that exposure to Diazinon and Atrazine elicit a 

transcriptional response that represents biological functions associated with steroid metabolic 

process and regulation of hormone levels. This is remarkably similar to the transcriptional 

response elicited by exposure to JH. Interestingly, exposure to l-cyhalothrin and bifenthrin 

induce a transcriptional response that is similar to exposure to the moulting hormone. These 

findings support the use of Daphnia magna for rapid screening of endocrine disrupting 

compounds in risk assessment. 

5.3 Materials	and	methods	

5.3.1 The	dataset	

Transcriptional data from exposure of Daphnia magna to a panel of environmentally relevant 

compounds were obtained from a previous study341. Among the 24 compounds used in the 

previous study, we added back Aroclor1242 given the objective of our study. Briefly, the dataset 

represents gene expression profiles of Daphnia magna adults exposed for 24 h to nLC50 of a panel 

of compounds (table 5.1). Total RNA extraction was performed and arrayed using a custom 
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Agilent microarray (AMAID: 023710, GPL15139). Nine out of the twenty-five compounds were 

classified as Endocrine Disruptors (ED’s) (fig. 5.1). Among them, two were the natural moulting 

and juvenile hormone, 20-hydroxyecdysone and methyl farnesoate respectively. Moreover, 

Piriproxyfen is an analog of the MF while Ponasterone A is the analogue of the moulting 

hormone. 

 

Table 5.1: Panel of the 25 chemicals used in our project. Compound selected encompass a wide range of  lipophilicity 
values. 

 

CHEMICAL LIPOPHILICITY
2-chloroethylvinyl	ether 1.29
20-hydroxyecdysone 1.3
Acrylonitrile 0.25
Aroclor1242 6.3
Atrazine 2.61
Bifenthrin 6
Chloroform 1.97
Chlorpyrifos 4.96
Diazinon 3.81
Dichlorobenzene 3.38
Methoxychlor 4.95
Methylfarnesoate 5.61
MTBE 0.94
Nonylphenol 5.76
Parathion 3.83
Permethrin 6.5
Phenanthrene 4.52
Phenol 1.5
Ponasterone	A 2.14
Pyriproxyfen 4.89
Toluene 2.73
Toxaphene 5.28
Trichloroethylene 2.42
!-estradiol 4.01
"-cyhalothrin 7
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Figure 5.1: The graph shows the 9 ED’s we included in our study. 

 

Before running downstream analysis, I set to re-annotate the array. I used annotation coming 

from a personal communication with Bruno Campos where the annotation is based on genome 

information. The daphnia dataset was made of 14338 probes (13481 unique probes). Only 4988 

out of the 13481 probes were successfully annotated (3656 non-redundant genes). I successfully 

increased the number of annotated genes from the initial 1425. 

A schematic representation of the strategy analysis we followed is in fig. 5.2. I first carried out an 

exploratory analysis to look for lipophilicity signatures. I then set to characterize the components 

of the transcriptional responses that were either linked or not to compound lipophilicity. After 

removing Kow associated signatures from the initial dataset, I set to define both 20-

hydroxyecdysone and methyl farnesoate functional profile. Afterwards, I investigated the ability 
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of ED’s as well as other non-organic compounds to affect biological pathways triggered by the 

action of these two hormones. Finally, I apply a statistical modelling procedure to identify a 

predictor of endocrine disruption. 

 

Figure 5.2: The flow chart shows the strategy analysis we followed. I first run an exploratory analysis by leveraging 
the PCA analysis. I then Discriminated between basal and excess toxicity signatures. Next, we defined the functional 
profile of the two hormones regulating Daphnia endocrine system and we successively identify compounds whose 
transcriptional profile was comparable to the hormones. Finally, a predictive model of endocrine disruptors was 
computed. 

 

5.3.2 Differential	gene	expression	analysis	

To identify genes correlated to compound lipophilicity I applied a Quantitative Significance 

Analysis of Microarray117 (Q-SAM) as implemented in the “samr” package developed in the 

statistical environment R. Chemical compounds were first ordered by increasing Kow value and 

we then run the quantitative SAM analysis using the lipophilicity values as response variables. 

Quantitative SAM identifies genes that correlate with a given response variable, Kow in this case. 

Exploratory	analysis

Define	molecular response	
linked	to	lipophilicty

Define	the	functional	profile	
of	Juvenile	and	moulting

hormones

Identify	compound	with	the	
ability	 to	affect	biological	
pathways	triggered	by	the	

hormones

Define a	
predictor	of	
Endocrine	
Disruption

Analysis	strategy
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A 1% FDR threshold was applied. Heat-maps were obtained using Spearman correlation as 

distance method and average as the clustering method. To identify genes differentially expressed 

as a result of exposure to 20-hydroxyecdysone and methyl farnesoate as well as to the other 

compounds I used a one-class sam. Genes up and down-regulated were selected applying an FDR 

threshold of 5%. 

5.3.3 Functional	analysis	

Functional analysis of lipophilicity dependent and independent signatures as well as the one of 

juvenile and moulting hormone signatures was carried out at a pathway level. KEGG pathways 

were retrieved using DAVID web service118. Pathways enriched at 1% FDR and represented by at 

least 5 genes were selected and classified within a broader functional domain according to the 

KEGG levels of organization. Functional analysis of each of the compound in the panel, used to 

run a comparative analysis between the hormones and all the other compounds, was achieved 

at both gene and pathway level. Biological GO terms and KEGG pathways associated with each 

of the chemical were retrieved using DAVID and applying an FDR threshold of 5% and 1% 

respectively.  The comparative functional analysis between Kow and Kow-free molecular signatures 

as well as between the hormones and the other compounds in the panel was run within the 

statistical environment R using the full set of differentially expressed genes (up and down-

regulated genes), simply looking at the functional overlap. Redundant GO terms were 

summarized using REVIGO web service122 using default parameters (allowed similarity of 0.7 and 

simRel as functional similarity measure) and selecting Homo sapiens database to identify the size 

of each GO term. 

5.3.4 Defining	distances	between	hormones	and	other	compounds	

To identify chemical compounds that could potentially affect pathways underlying moulting or 

juvenile activity I set to use Euclidean distance coupled with a principal component approach. I 
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first summarized sample replicates by average. I then retrieve principal components able to 

explain at least 80% of variance. A total of 8 PC’s were retrieved (80.6% of variance) and 

Euclidean distances between hormones of interest and the other compounds was computed. 

The whole analysis was achieved using the “prcomp” function within the statistical environment 

R. 

5.3.5 Statistical	modelling	

To find a predictor of endocrine disruption I employed a variable selection strategy that uses a 

genetic algorithm methodology coupled with the KNN classification method as implemented in 

the GALGO package developed in the statistical environment R. KNN is a simple classification 

algorithm with the ability to do non-linear classification and identify quite complex patterns. KNN 

was set-up using default parameters: 3 as the number of neighbours to consider, 1 as the 

minimum number of neighbours of the same class needed to predict the sample in that class and 

“Euclidean” as distance method.  The modelling procedure was run using the default settings 

with a model size of 5. Model accuracy was estimated splitting the data into a training set (2/3) 

and a test set (1/3). At this stage the training set is used to build statistical models and their 

accuracy is computed using the test set by applying a leave-one-out cross validation procedure. 

A 1000 models were computed to reach the fitness goal of 95%. Out of the 1000 models, one 

representative model was developed using a forward selection strategy. This approach ranks the 

model variables (genes) based on their frequency in the population and the top 50 most present 

variables are incrementally tested, by adding each variable one by one. The final representative 

model is chosen as the one with the higher accuracy and the smaller number of variables. 
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5.4 Results	

5.4.1 Transcriptional	response	to	chemical	exposure	is	influenced	by	compound	

lipophilicity	

Our group has previously demonstrated that a considerable fraction of the transcriptional 

response following exposure to a wide range of chemicals (see method section for a description 

of the chemical exposure set) is dependent on the lipophilicity of compounds341. Interestingly, 

chemicals with Kow>1.8 induce a dramatically different transcriptional response when compared 

to lower Kow compounds. I, therefore, reasoned that in order to identify specific transcriptional 

signatures associated with hormone activity I may need to remove genes whose expression 

correlate with compound lipophilicity. I first performed an exploratory analysis using principal 

component analysis to verify that the largest source of variation is linked to lipophilicity (fig. 5.3).  
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Figure 5.3: PCA clearly shows the separation based on Kow (values reported). PC1 (x axis) and PC2 (y axis) explain 
29.4% and 11.3% of variance respectively. 

 

Consistent with previous observations, the first principal component (PC1) separates chemicals 

according to their Kow. Moreover, ED’s (marked in red in Figure 5.3) group together suggesting 
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they may have a similar expression profile. This suggests that they may act on a similar 

mechanism. 

Having verified that lipophilicity is an important factor, I then set to identify genes that 

significantly correlated to compound lipophilicity. I identified 2174 genes to be correlated with 

Kow (1159 positively and 1015 negatively) at 1% FDR (fig. 5.4). 
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As previously described in Antczak et al.341, I can observe a transcriptional switch at Kow =~ 1.8. 

Interestingly, 20-hydroxyecdysone and methyl farnesoate have very different Kow values and the 

heat-map reveals expression profile of these two hormones to potentially antagonize each other. 

To facilitate the interpretation of the lipophilicity signature I performed a pathway-level analysis. 

As genes do not work alone but in the context of complex biological networks, pathway level 

analysis offers a better overview of the biological functions ongoing into the cell as a result of a 

specific exposure. I identified 117 pathways enriched in genes correlated to Kow. Specifically, 69 

of them (59%) were positively correlated to Kow while 48 (41%) were negatively correlated to Kow 

(table 5.2 and 5.3). Moreover, 28 pathways (24%) included both positively or negatively Kow 

correlated genes. 
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(Continue next page) 

Domain KEGG	ID Pathway	Name Genes

hsa00010 Glycolysis	/	Gluconeogenesis 9

hsa00030 Pentose	phosphate	pathway 5

hsa00051 Fructose	and	mannose	metabolism 7

hsa00052 Galactose	metabolism 10

hsa00500 Starch	and	sucrose	metabolism 13

hsa00520 Amino	sugar	and	nucleotide	sugar	metabolism 11

hsa00620 Pyruvate	metabolism 6

hsa00562 Inositol	phosphate	metabolism 7

hsa00071 Fatty	acid	metabolism 6

hsa00564 Glycerophospholipid	metabolism 7

hsa00230 Purine	metabolism 14

hsa00240 Pyrimidine	metabolism 8

hsa00250 Alanine,	aspartate	and	glutamate	metabolism 8

hsa00270 Cysteine	and	methionine	metabolism 7

hsa00330 Arginine	and	proline	metabolism 6

hsa00340 Histidine	metabolism 6

hsa00350 Tyrosine	metabolism 9

hsa00410 beta-Alanine	metabolism 5

hsa00450 Selenoamino	acid	metabolism 5

hsa00510 N-Glycan	biosynthesis 12

hsa00512 O-Glycan	biosynthesis 5

hsa00982 Drug	metabolism	-	cytochrome	P450 5

hsa00983 Drug	metabolism	-	other	enzymes 7

hsa03040 Spliceosome 22

hsa04120 Ubiquitin	mediated	proteolysis 16

hsa03018 RNA	degradation 13

hsa03030 DNA	replication 9

hsa04010 MAPK	signaling	pathway 17

hsa04012 ErbB	signaling	pathway 9

hsa04310 Wnt	signaling	pathway 19

hsa04340 Hedgehog	signaling	pathway 5

hsa04350 TGF-beta	signaling	pathway 9

hsa04370 VEGF	signaling	pathway 7

hsa04020 Calcium	signaling	pathway 12

hsa04070 Phosphatidylinositol	signaling	system 7

Carbohydrate	and	energy	metabolism

Lipid	and	nucleotide	metabolism

Amino	acids	and	glycan	metabolism

Xenobiotics	metabolism

Transcription,	folding,	sorting	and	

degradation

Signal	transduction
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(Continued)

 

Table 5.2: List of significant pathways (1% FDR) represented by at least 5 genes found to be positively associated 
with lipophilicity. Pathways are arranged according to the KEGG levels of organization. FDR values of each of the 
Kegg pathways are provided in the supplementary material. 

 

Domain KEGG	ID Pathway	Name Genes
hsa04080 Neuroactive	ligand-receptor	interaction 12
hsa04060 Cytokine-cytokine	receptor	interaction 6
hsa04512 ECM-receptor	interaction 7
hsa04514 Cell	adhesion	molecules	(CAMs) 6
hsa04144 Endocytosis 12
hsa04142 Lysosome 14
hsa04810 Regulation	of	actin	cytoskeleton 16
hsa04110 Cell	cycle 18
hsa04114 Oocyte	meiosis 11
hsa04115 p53	signaling	pathway 5
hsa04510 Focal	adhesion 21
hsa04520 Adherens	junction 12
hsa04530 Tight	junction 13
hsa04540 Gap	junction 9
hsa04640 Hematopoietic	cell	lineage 5
hsa04620 Toll-like	receptor	signaling	pathway 5
hsa04650 Natural	killer	cell	mediated	cytotoxicity 6
hsa04660 T	cell	receptor	signaling	pathway 9
hsa04664 Fc	epsilon	RI	signaling	pathway 7
hsa04666 Fc	gamma	R-mediated	phagocytosis 9
hsa04670 Leukocyte	transendothelial	migration 12
hsa04062 Chemokine	signaling	pathway 11
hsa04910 Insulin	signaling	pathway 15
hsa04920 Adipocytokine	signaling	pathway 8
hsa03320 PPAR	signaling	pathway 9
hsa04912 GnRH	signaling	pathway 8
hsa04914 Progesterone-mediated	oocyte	maturation 14
hsa04916 Melanogenesis 10
hsa04614 Renin-angiotensin	system 5
hsa04270 Vascular	smooth	muscle	contraction 11
hsa04730 Long-term	depression 9
hsa04722 Neurotrophin	signaling	pathway 11
hsa04320 Dorso-ventral	axis	formation 5
hsa04360 Axon	guidance 9

Endocrine	system

Circulatory	and	nervous	system	and	development

Signaling	molecules	and	interaction

Transport	and	catabolism	and	cell	motility

Cell	growth	and	death

Cellular	community

Immune	system
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Domain KEGG	ID Pathway	Name Genes
hsa00020 Citrate	cycle	(TCA	cycle) 7
hsa00190 Oxidative	phosphorylation 26
hsa00910 Nitrogen	metabolism 5
hsa00564 Glycerophospholipid	metabolism 7
hsa00590 Arachidonic	acid	metabolism 8
hsa00230 Purine	metabolism 15
hsa00240 Pyrimidine	metabolism 11
hsa00260 Glycine,	serine	and	threonine	metabolism 7
hsa00280 Valine,	leucine	and	isoleucine	degradation 8
hsa00330 Arginine	and	proline	metabolism 8
hsa00480 Glutathione	metabolism 6
hsa00983 Drug	metabolism	-	other	enzymes 6
hsa03020 RNA	polymerase 5
hsa03022 Basal	transcription	factors 6
hsa03040 Spliceosome 16
hsa03010 Ribosome 31
hsa00970 Aminoacyl-tRNA	biosynthesis 6
hsa04130 SNARE	interactions	in	vesicular	transport 6
hsa04120 Ubiquitin	mediated	proteolysis 14
hsa03050 Proteasome 8
hsa03420 Nucleotide	excision	repair 8
hsa04010 MAPK	signaling	pathway 15
hsa04310 Wnt	signaling	pathway 15
hsa04330 Notch	signaling	pathway 7
hsa04350 TGF-beta	signaling	pathway 6
hsa04020 Calcium	signaling	pathway 14
hsa04150 mTOR	signaling	pathway 5
hsa04080 Neuroactive	ligand-receptor	interaction 6
hsa04144 Endocytosis 13
hsa04810 Regulation	of	actin	cytoskeleton 16
hsa04110 Cell	cycle 11
hsa04114 Oocyte	meiosis 14
hsa04210 Apoptosis 6
hsa04510 Focal	adhesion 12
hsa04520 Adherens	junction 8
hsa04530 Tight	junction 11
hsa04540 Gap	junction 6

Immune	system hsa04612 Antigen	processing	and	presentation 9
hsa04910 Insulin	signaling	pathway 11
hsa03320 PPAR	signaling	pathway 6
hsa04912 GnRH	signaling	pathway 9
hsa04914 Progesterone-mediated	oocyte	maturation 6
hsa04916 Melanogenesis 9
hsa04260 Cardiac	muscle	contraction 9
hsa04270 Vascular	smooth	muscle	contraction 13
hsa04720 Long-term	potentiation 8
hsa04730 Long-term	depression 10
hsa04722 Neurotrophin	signaling	pathway 7

Transport	and	
catabolism,	cell	
motility	and	cell	
growth	and	

death	

Cellular	
community

Endocrine	
system

Circulatory	and	
nervous	system	

and	
development

Carbohydrate	
and	energy	
metabolism

Lipid	and	
nucleotide	
metabolism

Amino	acids	and		
xenobiotics	
metabolism

Transcription,	
translation,	

folding,	sorting	
and	degradation,	
replication	and	

repair

Signal	
transduction	and	

interaction
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Table 5.3: List of significant pathways (1% FDR) represented by at least 5 genes found to be negatively associated 
with lipophilicity. Pathways are arranged according to the KEGG levels of organization. FDR values of each of the 
Kegg pathways are provided in the supplementary material. 

 

Biological pathways found to be associated with lipophilicity cover a wide spectrum of functions. 

Metabolism pathways (energy, lipid and amino acids) are the ones most represented. 

Carbohydrate and energy metabolism pathways found to be positively correlated with 

lipophilicity includes pyruvate metabolism, glycolysis/gluconeogenesis and inositol phosphate 

metabolism while oxidative phosphorylation and citrate cycle (TCA cycle) were found to be 

negatively correlated with lipophilicity. Lipid metabolism includes fatty acid metabolism and 

arachidonic acid metabolism which were positively and negatively correlated with lipophilicity 

respectively. Moreover, glycerophospholipid metabolism included both genes positively and 

negatively correlated to lipophilicity. Interestingly, signalling pathways are perturbed. For 

example, I saw that genes in the ErbB, hedgehog, VEGF signalling pathways were found to be 

positively correlated while notch signalling was negatively correlated to lipophilicity. Also, Wnt 

and TGF-beta signalling pathways were found to be represented by genes that were either 

positively or negatively correlated to lipophilicity. These genes play an important role during 

embryo development. Toll-like receptor and T-cell signalling pathways involved either in cell 

signalling and immunity were found to be positively correlated while calcium and insulin 

signalling pathways, involved in calcium and glucose homeostasis, includes genes either 

positively or negatively correlated to lipophilicity. Since they act through membrane receptor 

triggering signalling cascades, it is not surprising that transcriptional signatures are linked to a 

mechanism of toxicity that is based on a non-specific membrane interaction. Pathways involved 

in cell growth and death as cell cycle and apoptosis are also affected. Lastly, pathways underlying 

endocrine system were also differentially correlated. These results are consistent with the 
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hypothesis that highly lipophilic compounds are able to affect a wide range of biological 

pathways. From a practical perspective, the molecular signatures I have identified can be now 

eliminated from the data. The resulting new dataset could then be used to search for 

transcriptional signatures specifically linked to endocrine disruption. 

5.4.2 Comparative	analysis	between	lipophilicity	dependent	and	independent	

signatures	

Having characterized the functional profile of the lipophilicity gene signature, I set to identify the 

component of the chemicals transcriptional response that is lipophilicity independent. To 

retrieve transcriptional responses not affected by lipophilicity I removed signatures found to be 

correlated to the Kow from the initial dataset. This new dataset included 1,482 gene expression 

profiles (fig. 5.5). 
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The heat-map representing this gene signature shows that indeed the expression of these genes 

do not follow the paradigm of a lipophilicity dependent transcriptional switch.  

Functional analysis of this dataset (table 5.4) also reveals a wide range of biological functions. 

Surprisingly, I observed a high degree of similarity at a functional level between lipophilicity 

dependent and independent signatures. 63 pathways (81% of the lipophilicity independent 

functional profile) were found to be affected by both the lipophilicity dependent and 

independent signature. Interestingly, signalling pathways affected by lipophilicity as ErbB, Wnt, 

Notch, Hedgehog, VEGF (Vascular Endothelial Growth Factor) and Jak-STAT were not found to be 

enriched by lipophilicity independent signatures. 
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(Continue next page) 

Domain KEGG	ID Pathway	Name Genes
hsa00010 Glycolysis	/	Gluconeogenesis 12
hsa00020 Citrate	cycle	(TCA	cycle) 8
hsa00040 Pentose	and	glucuronate	interconversions 5
hsa00051 Fructose	and	mannose	metabolism 6
hsa00500 Starch	and	sucrose	metabolism 6
hsa00520 Amino	sugar	and	nucleotide	sugar	metabolism 8
hsa00620 Pyruvate	metabolism 10
hsa00640 Propanoate	metabolism 10
hsa00650 Butanoate	metabolism 11
hsa00562 Inositol	phosphate	metabolism 7
hsa00190 Oxidative	phosphorylation 14
hsa00071 Fatty	acid	metabolism 12
hsa00140 Steroid	hormone	biosynthesis 10
hsa00561 Glycerolipid	metabolism 10
hsa00564 Glycerophospholipid	metabolism 11
hsa00565 Ether	lipid	metabolism 5
hsa00591 Linoleic	acid	metabolism 6
hsa00230 Purine	metabolism 23
hsa00240 Pyrimidine	metabolism 19
hsa00260 Glycine,	serine	and	threonine	metabolism 6
hsa00280 Valine,	leucine	and	isoleucine	degradation 14
hsa00290 Valine,	leucine	and	isoleucine	biosynthesis 5
hsa00310 Lysine	degradation 11
hsa00330 Arginine	and	proline	metabolism 8
hsa00340 Histidine	metabolism 6
hsa00380 Tryptophan	metabolism 11
hsa00410 beta-Alanine	metabolism 5
hsa00450 Selenoamino	acid	metabolism 7
hsa00480 Glutathione	metabolism 11
hsa00510 N-Glycan	biosynthesis 10
hsa00532 Chondroitin	sulfate	biosynthesis 6
hsa00601 Glycosphingolipid	biosynthesis 5
hsa00511 Other	glycan	degradation 5
hsa00760 Nicotinate	and	nicotinamide	metabolism 6
hsa00830 Retinol	metabolism 10
hsa00860 Porphyrin	and	chlorophyll	metabolism 6
hsa00980 Metabolism	of	xenobiotics	by	cytochrome	P450 11
hsa00982 Drug	metabolism 11

Carbohydrate	and	energy	
metabolism

Lipid	and	nucleotide	
metabolism

Amino	acids	and	glycan	
metabolism

Metabolism	of	cofactor	
and	vitamin	and	

xenobiotics
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(Continued)

 

Table 5.4: List of significant pathways (1% FDR) represented by at least 5 genes associated with the component of 
the transcriptional response which is not affected by lipophilicity. Pathways are arranged according to the KEGG 
levels of organization. FDR values of each of the Kegg pathways are provided in the supplementary material. 

 

Having performed a KEGG pathway analysis I then set to extend this comparison to a wider range 

of functional terms, using the gene ontology system. I identified 302 biological GO terms 

associated with compound lipophilicity and 153 associated with the component of the 

Domain KEGG	ID Pathway	Name Genes
hsa03020 RNA	polymerase 5
hsa03040 Spliceosome 21
hsa03010 Ribosome 14
hsa00970 Aminoacyl-tRNA	biosynthesis 12
hsa04120 Ubiquitin	mediated	proteolysis 17
hsa03050 Proteasome 12
hsa03018 RNA	degradation 10
hsa03440 Homologous	recombination 5
hsa02010 ABC	transporters 8
hsa04010 MAPK	signaling	pathway 18
hsa04350 TGF-beta	signaling	pathway 6
hsa04020 Calcium	signaling	pathway 7
hsa04070 Phosphatidylinositol	signaling	system 10
hsa04080 Neuroactive	ligand-receptor	interaction 9
hsa04512 ECM-receptor	interaction 8
hsa04144 Endocytosis 19
hsa04142 Lysosome 22
hsa04810 Regulation	of	actin	cytoskeleton 17
hsa04114 Oocyte	meiosis 8
hsa04115 p53	signaling	pathway 7
hsa04510 Focal	adhesion 22
hsa04530 Tight	junction 12
hsa04621 NOD-like	receptor	signaling	pathway 5
hsa04660 T	cell	receptor	signaling	pathway 6
hsa04664 Fc	epsilon	RI	signaling	pathway 6
hsa04666 Fc	gamma	R-mediated	phagocytosis 8
hsa04670 Leukocyte	transendothelial	migration 7
hsa04062 Chemokine	signaling	pathway 12
hsa04910 Insulin	signaling	pathway 13
hsa04920 Adipocytokine	signaling	pathway 6
hsa03320 PPAR	signaling	pathway 8
hsa04912 GnRH	signaling	pathway 7
hsa00150 Androgen	and	estrogen	metabolism 8
hsa04914 Progesterone-mediated	oocyte	maturation 7
hsa04260 Cardiac	muscle	contraction 11
hsa04270 Vascular	smooth	muscle	contraction 10
hsa04960 Aldosterone-regulated	sodium	reabsorption 6
hsa04722 Neurotrophin	signaling	pathway 6
hsa04360 Axon	guidance 9

Transcription,	translation,	folding	sorting	and	
degradation,	replication	and	repair

Membrane	transport	and	signal	transduction	and	
interaction

Transport	and	catabolism	and	cell	motility

Cell	growth	and	death	and	cellular	community

Immune	system

Endocrine	system

Circulatory,	excretory	and	nervous	system



Page 201 of 296 
 

transcriptional response which we identified to be free from any Kow effect (1% FDR). 120 terms 

(78% of the lipophilicity independent signature) were in common while 182 (60% of the 

lipophilicity dependent signature) were specifically associated to the Kow -affected molecular 

response and 33 (22% of the lipophilicity independent signature) specifically linked to the Kow -

free molecular response. The redundancy in the gene ontology terms was reduced by employing 

semantic similarity criteria as implemented in the REVIGO web-based application (table 5.5-5.6).  
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Interestingly, I identified cAMP-mediated signalling and G-protein coupled receptor signalling 

pathways to be specifically affected by lipophilicity dependent signatures. These pathways are 

related to each other and are important in activating internal signal transduction as a result of 

external stimuli. Particularly, G-protein coupled receptors, which are seven transmembrane 

receptors since they cross the membrane seven times, can activate signal transduction via cAMP 

signalling pathway. Being associated with membranes they are susceptible to lipophilicity 

effects. Consistent with this, MAPK cascade, as well as terms linked to transcription and 

translation activity, were affected. I also found terms linked to calcium ion response and 

homeostatic process to be affected by lipophilicity potentially due to membrane dysfunction. 

Other functions identified were associated with regulation of cell cycle processes, apoptosis 

signalling pathway and cytoskeleton organization. 
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Table 5.6: Biological processes (GO terms) found to be specifically enriched by lipophilicity independent 
signatures. Redundant terms have been removed using REVIGO. 

 

Biological functions associated with lipophilicity are mainly linked to metabolic processes and, to 

some extent, to cellular organization. 

5.4.3 Defining	the	functional	profile	of	Juvenile	and	moulting	hormones	

In order to test whether the effects of EDs chemicals in D. magna are compatible with the 

disruption of the activity of endocrine hormones, I first defined transcriptional signatures linked 

to exposure to JH and MH. I identified a total of 861 (378 up and 483 down-regulated) and 509 

(177 up and 332 down-regulated) differentially expressed genes (FDR<5%) for the MH (20-

hydroxyecdysone) and the JH (methyl farnesoate) respectively (fig. 5.6). These genes actually 

represent a significant portion of the Kow independent signature. 

term_ID description
GO:0030001 metal	ion	transport
GO:0042493 response	to	drug
GO:0007017 microtubule-based	process
GO:0016032 viral	process
GO:0009314 response	to	radiation
GO:0006650 glycerophospholipid	metabolic	process
GO:0010608 posttranscriptional	regulation	of	gene	expression
GO:0000226 microtubule	cytoskeleton	organization
GO:0009968 negative	regulation	of	signal	transduction
GO:0001775 cell	activation
GO:0042355 L-fucose	catabolic	process
GO:0006516 glycoprotein	catabolic	process
GO:0033674 positive	regulation	of	kinase	activity
GO:0006898 receptor-mediated	endocytosis
GO:0051259 protein	oligomerization
GO:0019637 organophosphate	metabolic	process
GO:0032990 cell	part	morphogenesis
GO:0007584 response	to	nutrient
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To characterize their functional profile, I identified KEGG pathways that were significantly 

enriched. The results of this analysis for the exposure to moulting hormone are represented in 

table 5.7 (up-regulated genes) and 5.8 (down-regulated genes).  

 

Table 5.7: List of KEGG pathways enriched for genes found to be up-regulated as a result of exposure to 20-
hydroxyecdysone. FDR values of each of the Kegg pathways are provided in the supplementary material. 

 

 

Table 5.8: List of KEGG pathways enriched for genes found to be down-regulated as a result of exposure to 20-
hydroxyecdysone. FDR values of each of the Kegg pathways are provided in the supplementary material. 

Domain KEGG	ID Pathway	Name Genes
hsa00190 Oxidative	phosphorylation 5
hsa00280 Valine,	leucine	and	isoleucine	degradation 5
hsa00330 Arginine	and	proline	metabolism 5

Signal	transduction hsa04010 MAPK	signaling	pathway 7
Transport	and	catabolism hsa04142 Lysosome 5

hsa04810 Regulation	of	actin	cytoskeleton 6
hsa04510 Focal	adhesion 7
hsa04530 Tight	junction 6
hsa04666 Fc	gamma	R-mediated	phagocytosis 5
hsa04062 Chemokine	signaling	pathway 5

Energy	and	amino	
acids	metabolism

Cell	motility	and	cellular	
community

Immune	system

Domain KEGG	ID Pathway	Name Genes

hsa00650 Butanoate	metabolism 6

hsa00071 Fatty	acid	metabolism 6

hsa00140 Steroid	hormone	biosynthesis 6

hsa00591 Linoleic	acid	metabolism 5

Nucleotide	metabolism hsa00230 Purine	metabolism 6

hsa00380 Tryptophan	metabolism 5

hsa00830 Retinol	metabolism 8

hsa00980 Metabolism	of	xenobiotics	by	cytochrome	P450 8

hsa00982 Drug	metabolism	-	cytochrome	P450 8

hsa00983 Drug	metabolism	-	other	enzymes 6

hsa03010 Ribosome 5

hsa04120 Ubiquitin	mediated	proteolysis 7

hsa03018 RNA	degradation 7

Signal	transduction hsa04070 Phosphatidylinositol	signaling	system 5

Transport	and	catabolism hsa04142 Lysosome 6

Cell	growth	and	death hsa04110 Cell	cycle 6

Cellular	community hsa04510 Focal	adhesion 8

Endocrine	system hsa04910 Insulin	signaling	pathway 5

Metabolism	of	amino	

acids	and	vitamins

Xenobiotics	

degradation	and	

metabolism

Translation,	folding,	

sorting	and	

degradation

Carbohydrate	and	lipid	

metabolism
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Exposure to moulting hormone induces specific over-expression of genes in energy metabolism, 

represented by oxidative phosphorylation, as well as in cell motility and cellular motility and 

communication (actin cytoskeleton, tight junction and focal adhesion) and in functions related 

to immunity as chemokine signaling pathway and Fc Gamma R-mediated phagocytosis. Genes 

belonging to the oxidative phosphorylation pathway are ATP6V0D1 and ATP6V1D, subunits of 

vacuolar ATPase, and NDUFS8, NDUFA10 and UQCR10, which are subunits of the complex I and 

III involved in the electron transport chain. Cell cycle and insulin signaling pathway along with 

functions linked to translation (ribosome) were found to be down-regulated. Also, pathways 

underlying drug metabolism (metabolism of xenobiotics by cytochrome P450, drug metabolism 

– cytochrome P450 and drug metabolism – other enzymes) were down-regulated. Genes part of 

the cytochrome P450 have been shown to drive the biosynthesis of 20-hydroxyecdysone342. 

Interestingly, steroid hormone biosynthesis pathway was down-regulated. Specifically, genes 

belonging to the steroid hormone biosynthesis pathway includes CYP3A4, CYP3A5 and CYP3A7 

which are members of the cytochrome P450 family involved in the steroid biosynthesis as well 

as xenobiotics metabolism, HSD17B12 which  is the estradiol 17-beta-dehydrogenase 12 and is 

important for the conversion of estrone into estradiol, SULT1E1 that is a sulfotransferase enzyme 

that catalyse the sulphate conjugation of many hormones and UGT2B7 which is an UDP-

glucuronosyltransferase playing an important role in regulating the level and the activity of 

estrogens. 

The functional profile of the gene expression signature associated to JH also contained the terms 

steroid hormone biosynthesis and metabolism of xenobiotics by cytochrome P450 (table 5.9). 

Moreover, 83% of the steroid hormone biosynthesis genes hit by MH were also differentially 

regulated by JH (CYP3A5, CYP3A7, SULT1E1 and UGT2B7). The other gene specifically hit by JH is 



Page 208 of 296 
 

HSD11B2, a hydroxysteroid 11-beta dehydrogenase 2. Similarly, purine metabolism was down-

regulated in both the hormones (table 5.10).  

 

Table 5.9: List of KEGG pathways enriched for genes found to be up-regulated as a result of exposure to Methyl 
farnesoate. FDR values of each of the Kegg pathways are provided in the supplementary material. 

 

 

Table 5.10: List of KEGG pathways enriched for genes found to be down-regulated as a result of exposure to 
Methyl farnesoate. FDR values of each of the Kegg pathways are provided in the supplementary material. 

 

A comparison between the response to JH and MH (table 5.11) revealed that six pathways were 

modulated by both hormones. These are steroid hormone biosynthesis, retinol metabolism, 

purine metabolism, drug metabolism – other enzymes, ubiquitin-mediated proteolysis and 

lysosome. Interestingly, steroid hormone biosynthesis was up-regulated in juvenile hormone but 

down-regulated in moulting hormone suggesting an antagonizing activity. Retinol metabolism 

was found to be up-regulated in MH but down-regulated in JH. Purine metabolism was down-

regulated in both but just 2 genes, CANT1 and HPRT1, were in common (we identified 6 and 7 

genes to be differentially expressed in moulting and juvenile hormone respectively). “Drug 

Domain KEGG	ID Pathway	Name Genes

hsa00140 Steroid	hormone	biosynthesis 5
hsa00830 Retinol	metabolism 5

Xenobiotics	metabolism hsa00983 Drug	metabolism	-	other	enzymes 5

Transport	and	catabolism hsa04142 Lysosome 5

Lipid	and	vitamins	
metabolism

Domain KEGG	ID Pathway	Name Genes

hsa00230 Purine	metabolism 7

hsa00240 Pyrimidine	metabolism 7

hsa03040 Spliceosome 7

hsa04120 Ubiquitin	mediated	proteolysis 5

hsa03050 Proteasome 8

Transport	and	catabolism hsa04142 Lysosome 7

Nucleotide	metabolism

Transcription,	folding,	

sorting	and	

degradation
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metabolism – other enzymes” pathway was found to up-regulated in the juvenile hormone but 

down-regulated in the moulting hormone.  

 

Table 5.11: Pathway-level comparison between moulting and juvenile hormone. Pathways in red have been 
showed to be modulated by both the hormones. 

 

I also investigate whether genes well-known to play a key role in the biosynthetic pathways of 

either juvenile or moulting hormone were differentially regulated. I retrieved 16 of these genes 

from KEGG (map00981). Surprisingly, none of them was found in our dataset. This is mainly due 

to the fact that KEGG lacks information about juvenile and moulting hormone pathways, 

especially for invertebrate species as crustaceans. 

Domain Pathway JH MH
Carbohydrate	and	energy	

metabolism
Butanoate	metabolism DOWN
Oxidative	phosphorylation UP

Lipid	metabolism
Fatty	acid	metabolism DOWN
Steroid	hormone	biosynthesis UP DOWN
Linoleic	acid	metabolism DOWN

Amino	acids	and	vitamin	
metabolism

Valine,	 leucine	and	isoleucine	metabolism UP
Arginine	and	proline	metabolism UP
Tryptophan DOWN
Retinol	metabolism UP DOWN

Nucleotide	metabolism Purine	metabolism DOWN DOWN
Pirimidine	metabolism DOWN

Xenobiotics	biodegradation	and	
biosynthesis

Metabolism	of	xenobiotics	by	cytochrome	P450 DOWN
Drug	metabolism	- cytochrome	P450 DOWN
Drug	metabolism	- other	enzymes UP DOWN

Transcription	and	Translation Spliceosome DOWN
Ribosome DOWN

Folding,	sorting	and	degradation
Ubiquitin	mediated	proteolysis DOWN DOWN
Proteasome DOWN
RNA	degradation DOWN

Signal	 transduction MAPK	signaling	pathway UP
Phosphatidylinositol	signaling	system DOWN

Transport	and	catabolism Lysosome UP/DOWN UP/DOWN

Cell	motility	and	cellular	
community

Regulation	of	actin	cytoskeleton UP
Focal	adhesion UP/DOWN
Tight	 junction UP

Immune	system Fc	gamma	R-mediated	phagocytosis UP
Chemokine	signaling	pathway UP

Endocrine	system Insulin	signaling	pathway DOWN
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5.4.4 Identifying	ED’s	with	the	ability	to	affect	biological	pathways	underlying	

juvenile	or	moulting	hormones	activity	

Having defined the transcriptional signatures linked to the two hormones, I set to test whether 

the EDs, as well as the additional non-ED chemicals in the panel, were able to mimic (or interfere 

with) the activity of either moulting or juvenile hormone. 

I first performed an exploratory PCA analysis comparing all chemicals by their lipophilicity 

independent gene expression signature. (fig. 5.7). 
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Figure 5.7: PCA analysis run on the lipohilicity-free response shows samples to cluster differently. PC1 and PC2 
explain 15.7% and 13.4% of the variance respectively. The “noLogP” stated in the plot is to indicate the PCA have 
been run on the component of the transcritpional response which is free from lipophilicity effects. 

 

I hypothesized that at least some of the ED’s in our study may be able to mimic either juvenile or 

moulting hormone. The PCA suggested that this may indeed be the case and that some of the 

Aroclor

Atrazine

!-estradiol

Bifenthrin

Chloroform

Chlorpyrifos

Diazinon

Dichlorobenzene

"-cyhalothrin

Methoxychlor

MTBE

Nonylphenol

20-hydroxyecdysone

Parathion

Permethrin

Phenanthrene
Methylfarnesoate

Phenol

Ponasterone A

Pyriproxyfen

Toluene

ToxapheneTrichloroethylene

2-chloroethyl	vinyl	ether

Acrylonitrile
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chemicals may be mimicking either JH (nonylphenol, ponasteroneA and pyriproxyfen) or MH 

(methoxychlor and aroclor).  

Since the first two components represent only the 29% of the variance, the PCA in figure 5.7 can 

only be considered indicative. In order to retain most of the variance and develop a more 

quantitative system of prediction, I computed the geometric distance between chemicals using 

the first 8 principal components which explain 80% of the variance. I finally calculated Euclidean 

distance between hormones of interest and the other compounds using the loadings of the first 

8 principal components (table 5.12). 
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Table 5.12: Euclidean distances between hormones of interest and the other compounds using the principal 
components (PCs). Highlighted in red the ED’s including the two hormones of interest. 

 

I identified b-estradiol and aroclor1242 to potentially mimic moulting and juvenile hormone 

respectively. Moreover, I identified novel compounds to potentially affect moulting (bifenthrin 

and l-cyhalothrin) and juvenile (Diazinon and Atrazine) hormone pathways. However, some of 

the known ED chemicals (e.g. Ponasterone A and toxaphene) show a very different profile to the 

reference hormones potentially indicating that they operate on a different mechanism. 

Chemical Euclidean	dist.
!-estradiol 0.59
Phenol 0.60
Bifenthrin 0.63
"-Cyhalothrin 0.65
Pyripoxyfen 0.70
Toluene 0.72
2-chloroethylvinyl	ether 0.74
Acrylonitrile 0.74
Dichlorobenzene 0.75
MTBE 0.76
Aroclor1242 0.79
Methoxychlor 0.83
Methylfarnesoate 0.84
Atrazine 0.85
Diazinon 0.87
Nonylphenol 0.88
Chlorpyrifos 0.90
Parathion 0.91
Permethrin 0.93
Phenanthrene 0.93
Ponasterone	A 0.96
Chloroform 0.96
Toxaphene 0.96
Trichloroethylene 1.02

Chemical Euclidean	dist.

Aroclor1242 0.34

Diazinon 0.57

Chlorpyrifos 0.63

Atrazine 0.64

MTBE 0.66

Nonylphenol 0.67

Phenol 0.67

Acrylonitrile 0.71

Parathion 0.71

Ponasterone	A 0.71

Bifenthrin 0.71

Dichlorobenzene 0.72

Pyripoxyfen 0.74

Trichloroethylene 0.76

!-estradiol 0.76

"-Cyhalothrin 0.79

Methoxychlor 0.79

Chloroform 0.81

Toxaphene 0.81

20-hydroxyecdysone 0.84

2-chloroethylvinyl	ether 0.85

Permethrin 0.94

Toluene 0.97

Phenanthrene 1.13

20-hydroxyecdysone Methylfarnesoate
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5.4.5 Identification	of	pathways	linked	to	moulting	and	juvenile	hormone	exposures	

that	are	affected	by	known	and	putative	ED’s		

I set to run a comparative analysis using compounds functional profile to identify either Methyl 

farnesoate or ecdysone pathways that are perturbed by ED’s. I first defined the transcriptional 

responses following exposure to each of the chemicals by selecting genes differentially expressed 

(5% FDR) (fig. 5.8). 
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I then performed a functional enrichment analysis on each of the chemical exposures and 

identified either the KEGG pathways and the GO terms that overlapped with the 20-
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hydroxyecdysone or Methyl farnesoate exposures. In order to reduce the redundancy in the gene 

ontology terms, I used semantic similarity criteria as implemented in the REVIGO web-based 

application. 

Aroclor was found to be the ED showing a more similar expression profile to the juvenile 

hormone. Comparative analysis at a pathway level shows nucleotide metabolism along with 

transcription and translation related functions to be in common (table 5.13). 

 

Table 5.13: KEGG pathways enriched for genes found to be differentially expressed in both juvenile hormone and 
aroclor. Number og genes and FDR values of each of the Kegg pathways are provided in the supplementary 
material. 

 

At a gene level, a comparative analysis identified five gene ontology terms (fig. 5.9). 

Domain KEGG	ID Pathway	Name
hsa00230 Purine	metabolism
hsa00240 Pyrimidine	metabolism
hsa03040 Spliceosome
hsa00970 Aminoacyl-tRNA	biosynthesis

Nucleotide	metabolism

Transcription	and	
Translation
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Most of the shared transcriptional response is associated with cellular metabolic processes 

mainly related to proteins. Moreover, genes involved in the regulation of apoptotic processes 

and more in general with cell death appear to be affected. Genes shared by the two compounds 

that belonged to the “response to organic substance” included CAV1, which is caveolin-1 a tumor 

suppressor gene involved in cell cycle progression, DUOX1, a dual oxidase involved in 

antimicrobial defence at mucosal surfaces, HPRT1, a transferase playing a central role in the 

generation of purine nucleotide, SRRT, an RNA effector molecule involved in RNA-mediated gene 

silencing (RNAi) and promoting neural stem cell self-renewal, CASP3, which encode caspase 3 

involved in apoptotic processes, HSPE1, a heat shock protein which functions as a chaperonin, 

GGH, a gamma-glutamyl hydrolase involved in pyrimidine metabolism, SLC34A2, a sodium-

dependent phosphate transporter, and ID1, a DNA binding and transcriptional inhibitor involved 

in cell growth, senescence and differentiation. 

The response to b–estradiol is more similar to the moulting hormone and the functional 

comparative analysis confirm a high degree of overlap. The pathway level comparative analysis 

reveals these two chemicals to affect different levels of biological organization (table 5.14). 

Transcription and translation activity were both affected. As a consequence, carbohydrate, lipid, 

nucleotide and amino acids metabolism are differentially regulated. Interestingly, functions 

involved in the metabolism of xenobiotics, particularly cytochrome P450 related, are affected. 
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Table 5.14: KEGG pathways enriched for genes found to be differentially expressed in both moulting hormone and 
b-estradiol. Number og genes and FDR values of each of the Kegg pathways are provided in the supplementary 
material. 

 

A gene-level comparative analysis was performed in order to identify more specific functions (fig. 

5.10).  

Domain KEGG	ID Pathway	Name

hsa00640 Propanoate	metabolism
hsa00650 Butanoate	metabolism

hsa00071 Fatty	acid	metabolism
hsa00561 Glycerolipid	metabolism

hsa00230 Purine	metabolism
hsa00240 Pyrimidine	metabolism

hsa00280 Valine,	leucine	and	isoleucine	degradation
hsa00310 Lysine	degradation
hsa00330 Arginine	and	proline	metabolism
hsa00380 Tryptophan	metabolism
hsa00480 Glutathione	metabolism

hsa00510 N-Glycan	biosynthesis
hsa00830 Retinol	metabolism

hsa00980 Metabolism	of	xenobiotics	by	cytochrome	P450
hsa00982 Drug	metabolism	-	cytochrome	P450
hsa00983 Drug	metabolism	-	other	enzymes

hsa03040 Spliceosome
hsa03010 Ribosome
hsa00970 Aminoacyl-tRNA	biosynthesis

hsa04120 Ubiquitin	mediated	proteolysis
hsa03050 Proteasome

hsa04010 MAPK	signaling	pathway
hsa04070 Phosphatidylinositol	signaling	system
hsa04512 ECM-receptor	interaction

hsa04144 Endocytosis
hsa04142 Lysosome

hsa04810 Regulation	of	actin	cytoskeleton
hsa04510 Focal	adhesion

hsa04666 Fc	gamma	R-mediated	phagocytosis
hsa04062 Chemokine	signaling	pathway

Endocrine	system hsa04910 Insulin	signaling	pathway

hsa04260 Cardiac	muscle	contraction
hsa04270 Vascular	smooth	muscle	contraction

Development hsa04360 Axon	guidance

Xenobiotics	metabolism

Carbohydrate	metabolism

Lipid	metabolism

Nucleotide	metabolism

Amino	acids	metbolism

Glycan	and	vitamins	
metabolism

Circulatory	system

Transcription	and	translaton

Folding,	sorting	and	
degradation

Signal	transduction

Transport	and	catabolism

Cell	motility	and	cellular	
community

Immune	system
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Functions related to cell growth (cell cycle, M phase, regulation of cell proliferation, etc.) and 

death (regulation of apoptotic process) are affected by both the compounds. Interestingly, drug 

metabolism is enriched suggesting the potential involvement of cytochrome P450 which plays a 

central role in both xenobiotics metabolism and ecdysteroids biosynthesis. Genes involved in 

drug metabolism and shared by the two compounds include among the other, STAR, the 

steroidogenic acute regulatory protein involved in steroid hormone synthesis, SLC8A1 a sodium-

calcium exchanger important for calcium homeostasis, ABCB1 and ABCA3, ABC transporters 

involved in drug resistance and PARK7, a positive regulator of androgen receptor-dependent 

transcription functioning as a sensor for oxidative stress. Other functions to be represented are 

linked to metabolic processes, neurological system process and cell adhesion.  

Among the compounds not classified as endocrine disruptors, we identified Diazinon and 

Atrazine to show a functional profile which suggests they could potentially affect biological 

pathways underlying juvenile hormone activity. A pathway level comparative analysis shows 

Atrazine and Diazinon to affect steroid hormone pathways along with xenobiotics metabolism 

pathways similarly to juvenile hormone (table 5.15-5.16).  

 

Table 5.15: KEGG pathways enriched for genes found to be differentially expressed in both Juvenile hormone and 
Atrazine. Number og genes and FDR values of each of the Kegg pathways are provided in the supplementary 
material. 

 

Domain KEGG	ID Pathway	Name

Lipid	metabolism hsa00140 Steroid	hormone	biosynthesis

hsa00980 Metabolism	of	xenobiotics	by	cytochrome	P450

hsa00982 Drug	metabolism	-	cytochrome	P450

hsa00983 Drug	metabolism	-	other	enzymes

Folding,	sorting	and	degradation hsa04120 Ubiquitin	mediated	proteolysis

hsa04142 Lysosome

hsa04510 Focal	adhesion

Xenobiotics	metabolism

Transport	and	catabolism	and	

cellular	community
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Table 5.16: KEGG pathways enriched for genes found to be differentially expressed in both Juvenile hormone and 
Diazinon. Number og genes and FDR values of each of the Kegg pathways are provided in the supplementary 
material. 

 

Gene-level comparative analysis confirm these findings (table 5.17). The functional overlap 

between Diazinon and Atrazine with Juvenile hormone is related to steroid metabolic process, 

the regulation of hormone levels and response to drugs. Other biological functions found to be 

affected are mainly related to cell growth and death processes as apoptosis and cell cycle and 

with the regulation of metabolic processes. 

Domain KEGG	ID Pathway	Name

Lipid	metabolism hsa00140 Steroid	hormone	biosynthesis

hsa00230 Purine	metabolism
hsa00240 Pyrimidine	metabolism

hsa00980 Metabolism	of	xenobiotics	by	cytochrome	P450
hsa00982 Drug	metabolism	-	cytochrome	P450
hsa00983 Drug	metabolism	-	other	enzymes

hsa03040 Spliceosome
hsa04120 Ubiquitin	mediated	proteolysis
hsa03050 Proteasome

hsa04142 Lysosome
hsa04510 Focal	adhesion

nucleotide	metabolism

Xenobiotics	metabolism

Transcription	and	folding,	
sorting	and	degradation

Transport	and	catabolism	
and	cellular	community
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Table 5.17: Functional overlap between Diazinon and Atrazine with Juvenile hormone.  

 

Chemical showing a functional profile similar to the moulting hormone included bifenthrin and 

l-cyhalothrin. Pathway level comparative analysis identified most of the transcriptional response 

shared by l-cyhalothrin and MH to be associated with lipid, nucleotide and amino acids 

metabolism, translation-related functions, signal transduction and immune system (table 5.18). 

Atrazine

term_ID description
GO:0042493 response	to	drug
GO:0043085 positive	regulation	of	catalytic	activity
GO:0031145 anaphase-promoting	complex-dependent	proteasomal	ubiquitin-dependent	protein	catabolic	process
GO:0008202 steroid	metabolic	process
GO:0042592 homeostatic	process
GO:0009719 response	to	endogenous	stimulus
GO:0042981 regulation	of	apoptotic	process
GO:0007049 cell	cycle
GO:0006351 transcription,	DNA-templated

GO:0010604 positive	regulation	of	macromolecule	metabolic	process

Diazinon
term_ID description

GO:0042493 response	to	drug
GO:0043085 positive	regulation	of	catalytic	activity
GO:0043161 proteasome-mediated	ubiquitin-dependent	protein	catabolic	process
GO:0009719 response	to	endogenous	stimulus
GO:0042981 regulation	of	apoptotic	process
GO:0022402 cell	cycle	process
GO:0007049 cell	cycle
GO:0006397 mRNA	processing
GO:0008202 steroid	metabolic	process
GO:0031396 regulation	of	protein	ubiquitination
GO:0010604 positive	regulation	of	macromolecule	metabolic	process

MTBE
term_ID description

GO:0007049 cell	cycle
GO:0007155 cell	adhesion
GO:0010605 negative	regulation	of	macromolecule	metabolic	process
GO:0022610 biological	adhesion
GO:0042493 response	to	drug
GO:0010817 regulation	of	hormone	 levels
GO:0009719 response	to	endogenous	stimulus
GO:0022402 cell	cycle	process
GO:0044265 cellular	macromolecule	catabolic	process
GO:0043085 positive	regulation	of	catalytic	activity
GO:0031399 regulation	of	protein	modification	process
GO:0042445 hormone	metabolic	process

Atrazine

term_ID description
GO:0042493 response	to	drug
GO:0043085 positive	regulation	of	catalytic	activity
GO:0031145 anaphase-promoting	complex-dependent	proteasomal	ubiquitin-dependent	protein	catabolic	process
GO:0008202 steroid	metabolic	process
GO:0042592 homeostatic	process
GO:0009719 response	to	endogenous	stimulus
GO:0042981 regulation	of	apoptotic	process
GO:0007049 cell	cycle
GO:0006351 transcription,	DNA-templated

GO:0010604 positive	regulation	of	macromolecule	metabolic	process

Diazinon
term_ID description

GO:0042493 response	to	drug
GO:0043085 positive	regulation	of	catalytic	activity
GO:0043161 proteasome-mediated	ubiquitin-dependent	protein	catabolic	process
GO:0009719 response	to	endogenous	stimulus
GO:0042981 regulation	of	apoptotic	process
GO:0022402 cell	cycle	process
GO:0007049 cell	cycle
GO:0006397 mRNA	processing
GO:0008202 steroid	metabolic	process
GO:0031396 regulation	of	protein	ubiquitination
GO:0010604 positive	regulation	of	macromolecule	metabolic	process

MTBE
term_ID description

GO:0007049 cell	cycle
GO:0007155 cell	adhesion
GO:0010605 negative	regulation	of	macromolecule	metabolic	process
GO:0022610 biological	adhesion
GO:0042493 response	to	drug
GO:0010817 regulation	of	hormone	 levels
GO:0009719 response	to	endogenous	stimulus
GO:0022402 cell	cycle	process
GO:0044265 cellular	macromolecule	catabolic	process
GO:0043085 positive	regulation	of	catalytic	activity
GO:0031399 regulation	of	protein	modification	process
GO:0042445 hormone	metabolic	process
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Table 5.18: KEGG pathways enriched for genes found to be differentially expressed in both moulting hormone and 
l-cyhalothrin. Number og genes and FDR values of each of the Kegg pathways are provided in the supplementary 
material. 

 

On the other hand, pathway-level functional overlap between MH and Bifenthrin shows a higher 

degree of similarities (table 5.19). Carbohydrate, lipid and amino acids metabolism are highly 

affected. Transcription and translation along with signal transduction are differentially regulated 

by both the compounds. Moreover, functions related to xenobiotics metabolism, particularly 

linked to the activity of cytochrome P450, are affected. 

Domain KEGG	ID Pathway	Name

Lipid	metabolism hsa00071 Fatty	acid	metabolism

hsa00230 Purine	metabolism

hsa00240 Pyrimidine	metabolism

hsa00280 Valine,	leucine	and	isoleucine	degradation

hsa00480 Glutathione	metabolism

hsa00510 N-Glycan	biosynthesis

hsa03010 Ribosome

hsa04120 Ubiquitin	mediated	proteolysis

hsa03050 Proteasome

hsa03018 RNA	degradation

hsa04010 MAPK	signaling	pathway

hsa04070 Phosphatidylinositol	signaling	system

hsa04144 Endocytosis

hsa04142 Lysosome

Cellular	community hsa04510 Focal	adhesion

Immune	system hsa04062 Chemokine	signaling	pathway

Translation	and	folding,	

sorting	and	degradation

Signal	transduction

Transport	and	catabolism

Nucleotide	metabolism

Amino	acids	and	glycan	

metabolism
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Table 5.19: KEGG pathways enriched for genes found to be differentially expressed in both moulting hormone and 
Bifenthrin. Number og genes and FDR values of each of the Kegg pathways are provided in the supplementary 
material. 

 

Gene-level functional overlap between bifenthrin and l-cyhalothrin with the moulting hormone 

reveal interesting insights and they are mainly related to cell growth and death processes as cell 

cycle and apoptosis, chromatin organization, neurological system process, ion homeostasis, cell 

Domain KEGG	ID Pathway	Name
hsa00010 Glycolysis	/	Gluconeogenesis
hsa00640 Propanoate	metabolism
hsa00650 Butanoate	metabolism
hsa00071 Fatty	acid	metabolism
hsa00140 Steroid	hormone	biosynthesis
hsa00561 Glycerolipid	metabolism
hsa00564 Glycerophospholipid	metabolism
hsa00230 Purine	metabolism
hsa00240 Pyrimidine	metabolism
hsa00280 Valine,	leucine	and	isoleucine	degradation
hsa00310 Lysine	degradation
hsa00330 Arginine	and	proline	metabolism
hsa00340 Histidine	metabolism
hsa00380 Tryptophan	metabolism
hsa00480 Glutathione	metabolism

Vitamin	metabolism hsa00830 Retinol	metabolism
hsa00980 Metabolism	of	xenobiotics	by	cytochrome	P450
hsa00982 Drug	metabolism	-	cytochrome	P450
hsa03040 Spliceosome
hsa03010 Ribosome
hsa00970 Aminoacyl-tRNA	biosynthesis
hsa04120 Ubiquitin	mediated	proteolysis
hsa03050 Proteasome
hsa04010 MAPK	signaling	pathway
hsa04070 Phosphatidylinositol	signaling	system
hsa04512 ECM-receptor	interaction
hsa04144 Endocytosis
hsa04142 Lysosome
hsa04810 Regulation	of	actin	cytoskeleton
hsa04510 Focal	adhesion
hsa04666 Fc	gamma	R-mediated	phagocytosis
hsa04062 Chemokine	signaling	pathway
hsa04260 Cardiac	muscle	contraction
hsa04360 Axon	guidance

Immune	system

Circulatory	system	and	
development

Carbohydrate	metabolism

Lipid	metabolism

Nucleotide	metabolism

Transport	and	catabolism

Cell	motility	and	cellular	
community

Xenobiotics	metabolism

Transcription	and	Translation

Folding,	sorting	and	
degradation

Signal	transduction

Amino	acids	metabolism
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adhesion and regulation of metabolic processes (table 5.20). Interestingly, response to hormone 

and response to drug terms were both found for bifenthrin and l-cyhalothrin. 

 

Table 5.20: Functional overlap between bifenthrin and l-cyhalothrin with moulting hormone.  

 

5.4.6 Prediction	of	endocrine	disruption	

I finally asked whether we could develop a biomarker signature to discriminate between 

endocrine disruptors and the other chemical compounds. Employing a statistical modeling 

technique that searches for smaller subsets of genes with the highest predictive power, I 

identified a model of endocrine disruption that included 25 genes (table 5.21). 

term_ID description
GO:0000279 M	phase
GO:0007155 cell	adhesion
GO:0016192 vesicle-mediated	transport
GO:0022610 biological	adhesion
GO:0042493 response	to	drug
GO:0050877 neurological	system	process
GO:0016265 death
GO:0007049 cell	cycle
GO:0016032 viral	process
GO:0032268 regulation	of	cellular	protein	metabolic	process
GO:0009719 response	to	endogenous	stimulus
GO:0000226 microtubule	cytoskeleton	organization
GO:0006650 glycerophospholipid	metabolic	process
GO:0007267 cell-cell	signaling
GO:0022402 cell	cycle	process
GO:0006955 immune	response
GO:0042981 regulation	of	apoptotic	process
GO:0007268 synaptic	transmission
GO:0006816 calcium	ion	transport
GO:0051259 protein	oligomerization
GO:0043085 positive	regulation	of	catalytic	activity
GO:0010605 negative	regulation	of	macromolecule	metabolic	process
GO:0009725 response	to	hormone
GO:0006355 regulation	of	transcription,	DNA-templated
GO:0051276 chromosome	organization
GO:0006325 chromatin	organization
GO:0031396 regulation	of	protein	ubiquitination
GO:0019226 transmission	of	nerve	impulse
GO:0010033 response	to	organic	substance
GO:0050890 cognition

!-cyhalothrin
term_ID description

GO:0000279 M	phase
GO:0006898 receptor-mediated	endocytosis
GO:0007155 cell	adhesion
GO:0008219 cell	death
GO:0022610 biological	adhesion
GO:0042493 response	to	drug
GO:0050877 neurological	system	process
GO:0016265 death
GO:0006325 chromatin	organization
GO:0032268 regulation	of	cellular	protein	metabolic	process
GO:0044093 positive	regulation	of	molecular	function
GO:0007267 cell-cell	signaling
GO:0022402 cell	cycle	process
GO:0007049 cell	cycle
GO:0042127 regulation	of	cell	proliferation
GO:0030001 metal	ion	transport
GO:0006351 transcription,	DNA-templated
GO:0007268 synaptic	transmission
GO:0007167 enzyme	linked	receptor	protein	signaling	pathway
GO:0010605 negative	regulation	of	macromolecule	metabolic	process
GO:0010604 positive	regulation	of	macromolecule	metabolic	process
GO:0009725 response	to	hormone
GO:0006816 calcium	ion	transport
GO:0051276 chromosome	organization
GO:0007601 visual	perception
GO:0031396 regulation	of	protein	ubiquitination
GO:0019226 transmission	of	nerve	impulse
GO:0010033 response	to	organic	substance
GO:0050953 sensory	perception	of	light	stimulus
GO:0050890 cognition

Bifenthrin
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Table 5.21: Genes representing the model we developed along with their frequencies which represent the times a 
gene was included into a model. 

 

Those genes were used as input for a functional analysis in order to retrieve biological pathways 

they were involved in (table 5.22). Functions enriched are mainly linked to energy, lipid and 

amino acid metabolism and cytochrome P450 activity. 

Gene Role Frequency

KRTAP5-10 keratin	associated	protein	5-10 42
SLC51A solute	carrier	family	51	alpha	subunit 42
CHI3L2 chitinase	3	like	2 37
CYB5A cytochrome	b5	type	A 35
PRKCE protein	kinase	C	epsilon 32
FAM162A family	with	sequence	similarity	162	member	A 30
BTBD3 BTB	domain	containing	3 27
NKAP NFKB	activating	protein 27
TMEM256 transmembrane	protein	256 26
ADH5 alcohol	dehydrogenase	5	(class	III),	chi	polypeptide 24
OTOP2 otopetrin	2 24
RRP15 ribosomal	RNA	processing	15	homolog 24
SRL sarcalumenin 24
ABHD16A abhydrolase	domain	containing	16A 23
SLC4A7 solute	carrier	family	4	member	7 23
TUBB4B tubulin	beta	4B	class	IVb 23
RP2 retinitis	pigmentosa	2 22
SDR42E1 short	chain	dehydrogenase/reductase	family	42E,	member	1 22
AGA aspartylglucosaminidase 21
ATP1A1 ATPase	Na+/K+	transporting	subunit	alpha	1 21
KMO kynurenine	3-monooxygenase	(kynurenine	3-hydroxylase) 21
BTBD1 BTB	domain	containing	1 20
FUT10 fucosyltransferase	10 20
NCAM2 neural	cell	adhesion	molecule	2 20
PCCB propionyl-CoA	carboxylase	beta	subunit 20
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Table 5.22: Pathways enriched for genes identified by our model to discriminate ED’s. 

 

5.5 Discussion	

In this chapter I have tested the hypothesis that chemicals that act as endocrine disruptors in 

vertebrates are affecting Daphnia via a mechanism that involve the juvenile and moulting 

hormones. Results are consistent with the original hypothesis. Moreover, the computational 

ADH5
					hsa00982:Drug	metabolism
					hsa00010:Glycolysis	/	Gluconeogenesis
					hsa00071:Fatty	acid	metabolism
					hsa00350:Tyrosine	metabolism
					hsa00680:Methane	metabolism
					hsa00830:Retinol	metabolism
					hsa00980:Metabolism	of	xenobiotics	by	cytochrome	P450
AGA
					hsa04142:Lysosome
					hsa00511:Other	glycan	degradation
ATP1A1
					hsa04960:Aldosterone-regulated	sodium	reabsorption
					hsa04260:Cardiac	muscle	contraction
KMO
					hsa00380:Tryptophan	metabolism
NCAM2
					hsa05020:Prion	diseases
					hsa04514:Cell	adhesion	molecules	(CAMs)
PCCB
					hsa00640:Propanoate	metabolism
					hsa00280:Valine,	leucine	and	isoleucine	degradation
PRKCE
					hsa04930:Type	II	diabetes	mellitus
					hsa04664:Fc	epsilon	RI	signaling	pathway
					hsa04270:Vascular	smooth	muscle	contraction
					hsa04530:Tight	junction
					hsa04666:Fc	gamma	R-mediated	phagocytosis
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pipeline I developed identified compounds which potentially could affect normal endocrine 

functions.   

5.5.1 Basal	toxicity	is	key	toxicity	mechanism	in	ecotoxicology	

A key step in the analysis I have performed is to identify the component of the transcriptional 

response that is dependent on a basal toxicity mechanism. This has allowed me to isolate the 

transcriptional signatures that may be associated to a specific mechanism of action.  

Basal toxicity or narcosis has classically been attributed to compounds acting by non-specifically 

disrupting the functioning of cell membranes. We have previously shown that a significant 

portion of the gene expression response to sub-lethal chemical exposure is linked to basal 

toxicity and that, at least in Daphnia magna, involves a transcriptional switch possibly driven by 

the release of calcium from the intracellular ER compartment341. This suggests that in the chronic 

exposure at sub-lethal doses that characterize the natural environment, basal toxicity may be a 

dominant factor affecting the biology of an organism.  

The analysis described in this chapter focuses on Kow to define a basal toxicity signature and 

indeed prove to be effective. However, my analysis has limitations. For example, I do not consider 

the fact that polar and non-polar Narcotic chemicals induce different responses in a fish acute 

toxicity test, which result in additional and more severe phenotypes following exposure to polar 

chemicals. Polar compounds disrupt cell membranes by binding the polar head groups of 

membrane lipids while non-polar compounds disrupt membrane integrity by a direct action with 

the hydrophobic membrane interior. At present, it is unclear what is the effect of this mechanism 

on gene expression and what role it may play in environmental toxicity. The relatively limited 

number of chemicals in this study prevented me to address whether polar and non-polar 

chemicals may induce a differential transcriptional response in Daphnia magna. I envisage that 
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by applying our approach to a sufficiently large number of chemicals may help to address this 

question. 

5.5.2 Novel	compounds	candidates	affecting	endocrine	system	in	Daphnia	magna	

Despite studies investigating endocrine disrupting chemical effects on invertebrates date back 

to almost two decades ago343, mechanistic information of these effects has been achieved just 

recently. This has been possible by leveraging the power of omics technologies in the context of 

the AOP framework. In 2017, Song and collaborators developed the first invertebrate ED AOP 

where ecdysone receptor agonism leads to lethal molting disruption in Daphnia28. Moreover, 

they identified the release of chitobiase as a biomarker of molting disruption344. This is of 

paramount importance as it provides a valuable endpoint for the development of biological 

assays with the ability to assess endocrine disruption in aquatic invertebrate species.  

The endocrine disruptors present in my chemical panel, with the exception of b–estradiol345, 

have already been shown to affect either ecdysone or juvenile related pathways. Pyriproxyfen is 

a well-known analog of juvenile hormone346. Campos et al. demonstrated that Nonylphenol is 

able to deregulate ecdysone regulatory pathways in D.magna347. Methoxychlor and Aroclor have 

been demonstrated to be able to delay moulting in D. magna348,349. Toxaphene has previously 

been showed to play a role in sex determination in Daphnia promoting male offspring350. 

Ponasterone A has already been demonstrated to act as ecdysone analogue351.  

Here I demonstrated the effectiveness of a transcriptomic-based approach coupled with 

functional genomics for the identification of biological pathways underlying juvenile and 

moulting hormone pathways to be affected by environmentally relevant compounds.   

Interestingly, my approach led to the identification of novel compounds with the potential to 

affect D. magna endocrine system by affecting either ecdysone or juvenile related molecular 
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pathways. Diazinon is an organophosphate insecticide whose toxicity is associated with the 

presence of strong oxidizing agents which can convert Diazinon into toxic phosphorus oxides as 

its active metabolite diaxozon352. Although the mode of action of Diazinon has been widely 

investigated as it inhibits the target site of the acetylcholinesterase, a few studies have tried to 

address the question whether this compound was able to affect endocrine system or 

reproduction in daphnids. Sanchez et al., exposed Daphnia magna to increasing concentration 

of Diazinon and they discovered that reproduction, in terms of total young for female and time 

to first reproduction, was significantly affected353. This finding is consistent with my hypothesis. 

Atrazine is a worldwide used herbicide that was banned in the European Union in 2004 but it is 

still one of the most-widely used in many countries such as Australia and United States. In 1998 

the US Environmental Protection Agency (EPA) started the Endocrine Disruptor Screening 

Program (EDSP) to determine whether a chemical has the potential to interact with the 

endocrine system and require more thorough testing. Results have shown Atrazine to have the 

potential to interact with the estrogen and androgen pathways in mammals and other wildlife 

however, EPA did not recommended further testing because Atrazine was not expected to 

impact current EPA-established regulatory endpoints for human health or ecological risk 

assessment354. The EPA’s results have been criticized and the safety of Atrazine is still 

controversial as many studies have shown its ability to act as endocrine disruptor355–357. 

Interestingly, Palma et al. showed Atrazine to induce abnormalities during embryo development 

but they also discovered that Atrazine elicit its toxic effect without interfering with the 

ecdysteroid activity of Daphnia358. Even if a crosstalk between ecdysteroid and juvenile hormone 

pathways is present, the finding of Palma and collaborators does not exclude the possibility that 

Atrazine affect the juvenile hormone pathway and further laboratory validation is needed to 

prove it. 
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On the other hand, I identified two environmentally relevant compounds showing a 

transcriptional profile similar to the ecdysone hormone. Bifenthrin, is a pyrethroid insecticide 

with a well recognize toxicity towards aquatic organisms. Its neurotoxicity is associated with the 

ability of this chemical to alter the normal functioning of sodium channels affecting the 

membrane potential. The effect of bifenthrin on reproduction in Daphnia magna was already 

investigated359. Daphnia magna (F0 generation) was exposed to different bifenthrin 

concentrations. Reproduction (number of young for female) as well as length in offspring from 

the first brood (F1 1st) was significantly reduced. Offspring from the third brood (F1 3rd) were 

able to restore reproduction but length was still significantly affected. There are currently no 

studies investigating its effect on ecdysteroids at molecular level and our hypothesis, upon 

laboratory validation, may confirm that providing new insight about the molecular mechanism 

of Bifenthrin toxicity.  

l-cyhalothrin is a man-made mixture of iosomers of cyhalotrhin, an organic compound, that is 

used as a pesticide for its ability to remain effective for longer period of times. As all the other 

pyrethroids, it acts by disrupting the functioning of the nervous system. There are no studies that 

have focused on elucidating l-cyhalothrin adverse outcomes on the endocrine system in D. 

magna.  

My results suggest that Diazinon and Atrazine on one side and l-cyhalothrin and bifenthrin on 

the other one, could potentially lead to reproduction and moulting impairment by affecting 

juvenile and moulting hormone pathways, respectively, and further laboratory validation is 

necessary to confirm my findings.  
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Chapter	6: Discussion	

The overarching aim of my thesis was to prove the effectiveness of a computational biology 

approach to infer the effects of chemicals in organisms of environmental relevance. The results 

of my work have indeed proven that system biology and data driven science have great potential 

in investigating mechanisms of environmental toxicity, particularly in relation to the application 

of pathway inference for the identification of mechanistic biomarkers and in silico identification 

of compounds with potential toxicity. The purpose of this section is to discuss the general 

implications of the work in relation to the development of alternative risk assessment 

procedures.  

6.1 Biomarkers	of	chemical	toxicity	

Risk assessment of chemical exposure to organisms and environment is particularly challenging 

due to the diversity in chemical MoA, the different organism’s sensitivity and the fact that effects 

produced are usually measurable after prolonged exposures.  Ideally, we would like to regulate 

the use of potentially dangerous chemicals before any effects are observed on individual species 

and ecosystems. Biomarkers, intended as early molecular changes linked to long term chronic 

toxicity can be indeed very useful to detect adverse effects long before the ecosystem is 

endangered.  Ideally, biomarkers should be informative of specific toxicity mechanisms reflecting 

the progression between exposure and adverse effect 360,361. A monitoring program built on such 

powerful diagnostic indicators  could indeed be useful to develop appropriate policies for 

prevention362,363. Biomarkers need to be thoroughly validated in order to be useful but the “gold 

standards” for the process of validation still need to be defined364.  

Developing and validating biomarkers with the characteristics mentioned above is a challenging 

task. However, the advent of functional genomics and data driven science has created 
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considerable expectations365–367. The work described in chapter 2 represent a proof of concept 

study that address this important need. I successfully identified in vitro and in vivo molecular 

signatures triggered by chemical exposure which are diagnostic of chemical Mode of Action 

(MoA). Moreover, the approach developed is a promising tool for chemicals grouping and read-

across and it can provide essential knowledge for the development of specific AOPs. By using the 

biomarkers we have developed on in vitro cell line assays, we may be able to predict toxic effects 

of related chemicals without the need of in vivo testing, reducing the number of animals, the 

cost and the time needed. Moreover, detailed understanding of toxic mechanisms and their 

downstream effects on the ecosystem would help scientist to make safe decision about the 

handling and treatment of municipal and industrial waste material. The computational approach 

I developed offer essential knowledge in this direction which can be used to improve current risk 

assessment procedures.  

My proof of concept study is an important step but, further work is needed to translate putative 

biomarkers into a useful diagnostic tool for environmental risk assessment. Such a task is an 

integrative process that requires discovery, integration of genomic data with phenotypical 

endpoints, development of predictive statistical models and the ability to deliver such predictive 

information to authorities in a format easy to be implemented.  

The greatest challenges to biomarker discovery are the platform and data analysis validation. 

The quick development of omics technologies posed a rush to identify new genomic biomarkers 

and analytical validation steps may have been superficially assessed. With regard to data 

analysis, on the other hand, discriminating between the signal associated with a specific 

phenotype and the background may be challenging for different reasons including the strength 

of the signal, the presence of confounding factors and sample heterogeneity. Moreover, the 
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large number of variables collected requires the development of statistical methods able to 

achieve the desired power. The MicroArray Quality Control Project (MAQC), a community-wide 

effort lead by the Food and Drug Administration (FDA), is currently tackling many of these issues 

for both microarray368,369 and sequencing370 platforms. With regards to microarray experiments, 

which technology has been extensively used throughout the whole thesis, is worth mentioning 

the development of a set of standards by the Microarray Gene Expression Data Society as 

requirement for the publication of microarray experiments371. Ecotoxicological studies have 

focused on the effects of acute exposures to single toxicants at high doses hence biomarkers 

contribute little to the prediction of direct consequences at a population, community and 

ecosystem level. With the development of ecotoxicogenomics372, the scientific community is 

focusing on exposures to mixtures of chemical agents at lower doses, which better represent 

realistic environmental concentrations, able to trigger a threat to populations and communities. 

In order to provide a continuum of toxic responses from molecules to ecosystems effort has to 

be put towards linking molecular signatures with alterations in the genetic pool of the affected 

population. 

6.2 Cell	lines	to	inform	about	in	vivo	toxicity	

The development of alternatives for toxicity testing is a major step that needs to be undertaken 

and a big effort has already been put to address this need. In the introduction, we extensively 

discussed the 3Rs framework for establishing these new alternatives for toxicity testing. In 

chapter 3, I presented a work based on these alternatives and we tried to address the question 

whether the transcriptional state of a cell line exposed to a given chemical could be used as a 

biosensor to predict toxicity in a more complex organism such as the zebrafish embryo. My work 

actually shows I can successfully map the transcriptional response of a cell line to an embryo. 
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This is of paramount importance and precisely fit the vision of the NC3R framework to reduce 

the need of animal testing and to develop in silico methods for toxicity predictions. 

While my study explores an interesting objective, it remains a proof of concept and should be 

used as a pilot study to drive further effort in this direction. My design suffers of a limitation 

associated with the absence of time series following exposure. The response can change quite 

rapidly in the timeframe of the experiment and different time points may be informative of 

different biological processes and can have a different predictive power in inferring the adverse 

phenotypic outcome. Moreover, the small number of chemicals in the panel does not provide 

enough robustness for the development of any quantitative models (i.e. basal toxicity model). I 

envisage that a better experimental design where these limitations are taken into account would 

have the potential to strengthen this approach and provide essential knowledge towards the 

NC3R vision. 

6.3 Omics	and	endocrine	disruption	

Omics technologies offer the ability to investigate the complexities of gene-environment 

interactions at a deeper level than more conventional methodologies by investigating biological 

pathways behaviour following chemical perturbations in a higher throughput fashion373,374. 

Transcriptome profiling can be seen as a tool to predict toxic outcomes of exposure to particular 

compounds. In combination with System Biology methods, it has the potential to investigate 

chemical MoA which are paramount in refining current risk assessment procedures. Canonical 

mechanism of action of endocrine disruptors refers to the ability to mimic or block the 

transcriptional activity elicited by the naturally circulating hormones by binding to steroid 

hormone receptors. However, in the last decades new MoA of endocrine disruptors have been 

described375. With regards to the MoA that affect reproduction, the approach I developed in 
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chapter 4 shows I can successfully predict chemicals able to alter ovary development through 

mechanisms which are different from the classical endocrine disruption. Moreover, it allows a 

rapid screening of chemical compounds with endocrine-related effects supporting the NC3R view 

of reducing animal testing. Finally, dynamical models taking into account different time-windows 

of a given biological process represent a promising tool in identifying molecular KEs in the context 

of the AOP framework which can in turn provide essential knowledge for the development of 

risk assessment procedures.   

While the knowledge of endocrine disruption activity in higher vertebrate species is well 

documented, information on their effects in invertebrate organisms is still limited336,376–378. This 

is due to a lack of knowledge of invertebrate endocrinology335,379 and the low number of 

invertebrate genomes sequenced380,381. However, studies aiming to investigate endocrine 

disrupting effects in invertebrate species are increasing28,340,382. In chapter 5, I developed an 

approach to compare gene expression signatures representing Daphnia response to both 

juvenile and moulting hormones, which are the hormones that drive organism’s moulting, 

reproduction and growth, with gene expression signatures representing response to a panel of 

chemicals including endocrine disruptors. By using this approach, I proved that well known 

vertebrate EDs have the ability to interfere with the normal Daphnia hormonal processes. 

Moreover, my approach led to the identification of novel compounds with the ability to affect 

juvenile and ecdysone-related pathways supporting the use of Daphnia as a rapid screening tool 

of endocrine disruption. The approach I developed can be potentially applied to different species 

where the hormones driving fundamental biological processes have been characterized 

providing not just the ability to screening different compounds but also to investigate chemical 

MoA. Acquiring new knowledge of MoA or KEs of a given chemical compound will enable the 

possibility to refine or develop new AOPs that can be used to drive risk assessment procedures.  
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6.4 Challenges	and	future	directions	

The fast development of technologies able to measure molecular-level endpoints has raised an 

interest in the scientific community to evaluate the ability of such measurements to be 

incorporated into modern risk assessment procedures383.  However, these molecular-level 

measurements are not yet integrated into existing health risk assessment procedures. The AOP 

framework, which we extensively discussed in the introduction, is an initiative to promote the 

use of mechanistic biological information in risk assessment. Development of AOPs is a key step 

to undertake in order to rapidly characterize the risk that a large number of chemicals pose to 

the environment and human health. The main challenge in developing these pathway-based 

frameworks is to define the key events and their relationships that take place between the 

molecular initiating event and the adverse outcome. In this context, high-content datasets can 

facilitate the understanding of molecular toxicity pathways and the effects occurring at the basal 

biological levels of organization26,384,385 . Although omics data are able to provide knowledge of 

how chemical compounds interfere with biological process386 , there is still no understanding of 

how these data could be incorporated in the context of risk assessment.  To fill this gap, many 

challenges still need to be addressed. 

One of these challenges is associated with the lack of standardised statistical approaches for 

interpreting differentially expressed genes, protein or metabolites as a result of chemical 

exposure or to provide quantitative information to support the link between omics data and 

phenotypic outcome4,387–389. System Biology methods, along with computational approaches 

need to be developed to link results coming from different biological assays and end-points 

across different levels of biological organization, especially at the population level, which would 

greatly facilitate extrapolation of in vivo impacts from in vitro effects. More specifically, 

development of more complex modelling techniques able to incorporate biological processes 
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(i.e.  compensatory homeostatic mechanisms) is needed in order for the field to progress. 

Moreover, there is a lack of gene annotations especially regarding non-model species. Most of 

the time, researchers have to investigate transcriptome changes following either exposures or 

diseases on small subset of genes having just a partial overview of the molecular changes 

occurring in a given tissue or cell hence making biological interpretation extremely difficult. The 

lack of reference genomes for these species make the use of whole genome sequencing not ideal. 

The scientific community is already successfully tackling this issue by applying de-novo 

transcriptome assembly approaches390,391. Wang and Gribskov outlined four main reason for 

which de-novo transcriptome assembly is beneficial even when a reference genome is 

available392.  

The other great challenge researchers have to face in order to understand the toxic processes at 

the molecular level is the integration of transcriptomic, proteomic and metabolomics 

technologies as well as with toxicity data (i.e. toxicological endpoints). As previously highlighted, 

transcriptional responses may not accurately reflect important toxicologically relevant biological 

responses since often important changes in proteins and metabolites are not detectable by 

simply studying the levels of mRNA. Moreover, even if transcriptomics, proteomics and 

metabolomics target different molecules they may anyway regulate the same biological 

pathways at different levels hence the need to integrate these different molecular data. The 

ability to link these different data with toxicity data would allow the detection of more sensitive 

toxicity signatures and biomarkers that could potentially lead to improvement in environmental 

monitoring and risk assessment. 

Another challenge is associated with the lack of comparative cross-species sensitivity data. The 

method of extrapolating data from standard laboratory model species to environmentally 
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relevant species, which is the standard in current risk assessment approaches, is characterised 

by a high degree of uncertainty due to different range of sensitivity to pollutants, different 

reproductive strategies and differences in physiology and life history393,394. Changes in molecular 

targets over the course of evolution represent a significant source of inter-species difference in 

relation to chemical sensitivity. Despite many biological systems (i.e. reproductive and 

detoxification) being conserved across species, it has been demonstrated that small structural 

variation, such as differences in amino acid residue of specific receptor ligand-binding pockets, 

can significantly affect chemical sensitivity395,396. Understanding the impact of these differences 

in sensitivity between species is a crucial step to successfully apply data extrapolation.  

Lastly, the current application of in vitro assays cannot be used to fully replace in vivo approaches 

however, studies demonstrating the potential of in vitro datasets in predicting apical toxic 

outcomes and mechanism of toxicity are increasing397. The biggest challenge is representing 

whole organism metabolism and physiology in a single in vitro system which present different 

ADME properties. Variation between the nominal and the freely available concentration that will 

reach the site of toxic action may affect the toxicity outcome masking true toxicity effects. These 

variations are mainly associated with the chemical binding to either components of the media or 

in vitro system constituent (i.e. plastic). To improve the accuracy of dose-response relationships 

the understanding of these mechanisms is crucial. However, the results so far are encouraging 

as many alternative methods have been established and a reasonable number of them have been 

accepted for regulatory purposes either nationally (i.e. OECD) and internationally (i.e. EPA)398.  

Chapter	7: Conclusions	

In this thesis, I aimed to demonstrate the potential of system biology and data-driven science in 

identifying novel mechanisms of action of environmental toxicity and to develop a set of 
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biomarkers able to improve risk assessment and environmental monitoring. Furthermore, I 

aimed to support the use of cell lines as alternative for toxicity testing. In the beginning of this 

thesis I outlined a number of aims that have come to the following conclusions based on my 

studies: 

1. System biology approaches can be used to identify biomarkers of chemical toxicity 

(chapter 2) 

2. A cell culture system can be informative of whole organism toxicity supporting the use 

of cell lines as alternative for toxicity testing (chapter 3) 

3. Advanced computational techniques have the power to identify novel chemical 

compounds with endocrine disruption activity (chapter 4 and 5) 

 

The work presented in this dissertation offers essential knowledge that can be used for risk 

assessment and environmental monitoring. 
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