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Abstract

We construct a graded encoding scheme (GES), an approximate form of graded multilinear maps. Our
construction relies on indistinguishability obfuscation, and a pairing-friendly group in which (a suitable
variant of) the strong Diffie–Hellman assumption holds. As a result of this abstract approach, our GES
has a number of advantages over previous constructions. Most importantly:
• We can prove that the multilinear decisional Diffie–Hellman (MDDH) assumption holds in our

setting, assuming the used ingredients are secure (in a well-defined and standard sense). Hence,
our GES does not succumb to so-called “zeroizing” attacks if the underlying ingredients are secure.

• Encodings in our GES do not carry any noise. Thus, unlike previous GES constructions, there is
no upper bound on the number of operations one can perform with our encodings. Hence, our GES
essentially realizes what Garg et al. (EUROCRYPT 2013) call the “dream version” of a GES.

Technically, our scheme extends a previous, non-graded approximate multilinear map scheme due to
Albrecht et al. (TCC 2016-A). To introduce a graded structure, we develop a new view of encodings at
different levels as polynomials of different degrees.
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1 Introduction

The GGH candidate multilinear map. In 2013, Garg, Gentry, and Halevi (GGH) [GGH13a] proposed
the first plausible construction of an (approximate) multilinear map (MLM). In a nutshell, an MLM is a map
e : Gκ −→ GT (for groups G and GT ) that is linear in each input. Of course, we are most interested in the
case of “cryptographically interesting” groups G (in which, e.g., computing discrete logarithms is infeasible),
non-trivial maps e (with non-trivial kernel), and preferably large values of κ. The surprising cryptographic
consequences of such “cryptographically interesting” MLMs were already investigated in 2003 by Boneh and
Silverberg [BS03], but an actual construction of an MLM remained elusive until the candidate construction
of GGH.

Unfortunately, GGH only presented an “approximate” MLM in the following sense:
• Instead of group elements, their e inputs (and outputs) are encodings. An encoding is a non-unique

representation of a group element, and there is no guarantee about which particular encoding the group
operation (or e) outputs. However, every encoding allows to derive a “canonical form” that uniquely
determines the encoded group element. (This canonical form allows no further operations, though.)

• Each encoding carries a “noise level” that increases with each operation. If the noise level grows beyond
a certain threshold, no further operations are possible.

However, the GGH MLM also has an important graded property that allows to evaluate e partially, in a
sense we will detail later. In particular this graded structure has made the GGH MLM tremendously useful:
notable applications of graded MLMs include indistinguishability obfuscation [GGH+13b], witness encryp-
tion [GGSW13], attribute-based encryption for general circuits [GGH+13c], and constrained pseudorandom
functions for general circuits [BW13]. Furthermore, graded MLMs enable a very powerful class of pro-
grammable hash functions [HK08], which in turn allows to implement random oracles in certain “algebraic”
applications [HSW13, FHPS13].

After GGH’s MLM construction, several other (graded and approximate) MLM constructions have been
proposed [CLT13, LSS14, GGH15, CLT15]. However, all of these constructions (including the original GGH
scheme) succumb to cryptanalytic attacks [CHL+15, CGH+15, CLLT16, MSZ16]. In particular, currently
there is no obvious way to instantiate schemes relying on multilinear maps, e.g., the schemes from [GGSW13,
GGH+13c, BW13, HSW13, FHPS13].1

Graded MLMs. There is one (approximate) MLM construction of Albrecht, Farshim, Hofheinz, Larraia,
and Paterson (AFHLP) [AFH+16] that does not fall victim to any of the mentioned cryptanalytic attacks
on MLMs. However, this construction does not offer a graded MLM, and thus cannot be used to bootstrap,
e.g., witness encryption. Graded MLMs are algebraic tools that can enable other algebraic tools such as
multilinear Groth-Sahai proofs, or multilinear programmable hash functions. It is thus still an interesting
open problem whether graded MLMs exist, and whether the results of [GGH+13b] can be augmented to
even show equivalence to indistinguishability obfuscation.

Our contribution. In this work, we construct graded, approximate MLMs that do not succumb to any
of the known attacks. Technically, we extend the non-graded MLM construction from AFHLP [AFH+16]
to a graded MLM. We prove that the multilinear decisional Diffie–Hellman (MDDH) assumption [GGH13a]
holds relative to our MLM, provided that the used ingredients are secure.

Interestingly, our MLM has two technical features that previous graded approximate MLMs do not have:
1. Our encodings do not carry any noise (although they are not unique). In particular, there is no limit

on the number of operations that one can perform with our encodings.
2. The canonical forms derived from encodings allow further group operations (but no further pairings).

Our new MLM (when implemented with the indistinguishability obfuscator from [GGH+13b, GMS16]) cur-
rently forms the only plausible graded MLM, and thus the only plausible way to implement a number of
MLM-based constructions [GGSW13, GGH+13c, BW13, HSW13, FHPS13].

1We note, however, that the cryptographic tasks that the constructions from [GGSW13, BW13] aim to achieve can be
directly achieved with indistinguishability obfuscation [GGH+13b, SW14, AFP16].
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Furthermore, our construction is generic and modular. In particular, we reduce the quest to develop a
secure (graded) MLM to the quest for a secure indistinguishability obfuscator. This seems natural (and is
standard in most areas of cryptography), but given the history of previous MLM candidates (which were
based on complex algebraic or combinatorial assumptions), this is not an “understood feature” at all for
MLMs.

In fact, taken together with recent constructions of indistinguishability obfuscation (iO) from multilinear
maps (e.g., [GGH+13b, Lin16, AS17, LT17]), our result shows a (somewhat loose) equivalence of indis-
tinguishability obfuscation (iO) and (graded and approximate) MLMs, in the presence of a pairing-friendly
group. This equivalence is loose in the following sense. First, the assumptions on both ends of the equivalence
do not match: some of these works (e.g., [GGH+13b]) construct iO from MLMs which support very strong
computational assumptions (much stronger than MDDH) or require asymmetric multilinear maps. On the
other hand, we use iO to construct symmetric MLMs in which we can (at this point) only prove compara-
tively mild (though still useful) computational assumptions (such as MDDH). Still, there seems no inherent
barrier to proving stronger computational assumptions for our construction, or to adapt our construction to
asymmetric pairings, and we leave open to tighten this equivalence. Second, going through our equivalence
suffers subexponential security loss. Namely, we require probabilistic indistinguishability obfuscation, which
can be constructed from iO [CLTV15], but currently only through a sub-exponential reduction.

However, we note that such an equivalence would not be highly surprising given recent results on con-
structing iO from MLMs [Lin16, AS17]. These works only require “one-shot” (but asymmetric) MLMs, and
not even graded encodings as we construct them.

Related Work. Our work is closely related to [AFH+16], since the non-graded MLM there serves as a
starting point for our graded MLM. We will summarize their construction in Section 4 and give an informal
overview below.

Recently, Paneth and Sahai [PS15] have shown a near-equivalence of a suitable abstraction of MLMs
with iO. Their result requires no computational assumptions at all, but also does not consider MLMs in our
sense. In particular, they construct an abstraction of a MLM that only admits restricted access to encodings
similar to the one in [GGH+13b]. Beyond the group operation and the multilinear map, efficient procedures
for, e.g., uniform sampling, comparison or rerandomization of encodings, are not part of this abstraction.
Conversely, our notion of a MLM, like the ones from [AFH+16, GGH13a], contains descriptions of efficient
procedures for these tasks.

It would be interesting to see how the restricted MLMs of [PS15] can be used to instantiate the construc-
tions from [FHPS13, HSW13, BWZ14, BLR+15] directly, i.e., without making the detour via iO. However,
since iO alone is not even known to imply one-way functions (see [GR07] for a discussion), this will require
additional assumptions.

Pass et al. [PST14] give a security definition of graded MLMs that requires that whenever encodings
are generically equivalent (that is, cannot be distinguished with generic operations alone), they should
be computationally indistinguishable as encodings. They show that this MLMs which satisfy this strong
assumption imply indistinguishability obfuscation. It is not clear, however, how to construct such strongly
secure MLMs (without resorting to idealized models such as the generic group model).

1.1 The (non-graded) approximate multilinear map of AFHLP

Encodings. Since our own construction is an extension of the (non-graded) approximate MLM of [AFH+16],
we first recall their work. Simplifying slightly, AFHLP encode a group element gz (from a cyclic group G of
order p) as

h = (gz, c = Enc((α, β), pk), π) ,

where
• c is a homomorphic encryption (under some public key pk) of exponents α, β ∈ Zp,
• π is a non-interactive zero-knowledge proof that these exponents represent z in the sense that gz = gαuβ

for a publicly known group element u. (Hence, if we write u = gω, we have z = α+ β · ω.)
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Hence, AFHLP simply enhance the group element gz ∈ G by an encrypted representation of its discrete
logarithm z (and a suitable consistency proof). This added information will be instrumental in computing
a multilinear map on many encodings. Note that since c and π will not be uniquely determined, there are
many possible encodings of a G-element gz.

Addition. Encodings in the AFHLP construction can be added with an (obfuscated) public circuit Add.
This circuit takes as input two encodings h1 = (gz1 , c1, π1) and h2 = (gz2 , c2, π2), and computes the new
encoding h1 + h2 = (gz, c, π) as follows:

1. gz = gz1+z2 is computed using the group operation in G;
2. c is computed homomorphically from c1 and c2 (adding the encrypted exponent vectors (αi, βi));
3. the consistency proof π is computed using the decryption key sk as a witness to show that the resulting

c indeed contains a valid representation of z = z1 + z2.
Here, only the computation of π requires secret information (namely, the decryption key sk). This secret
information allows to derive a valid representation (α, β) of gz. The most delicate part of the security proof
from [AFH+16] is to argue that the obfuscated circuit knowing sk does not help in solving (a multilinear
variant of) the decisional Diffie–Hellman problem.

The multilinear map. The AFHLP encodings can also be multiplied with an (obfuscated) public circuit
Mult; this takes as input κ encodings h1, . . . , hκ with hi = (gzi , ci, πi), and outputs a single group element
g
∏κ
i=1 zi . (Hence, elements from the target group GT are trivially and uniquely encoded as G-elements.) To

compute g
∏
zi from the hi, Mult first checks the validity of all proofs πi, and then uses the decryption key

sk to retrieve representations (αi, βi). If all πi are verifying proofs, we may assume that zi = αi + βi · ω (for
u = gω), so we can write

g
∏κ
i=1 zi =

κ∏
i=0

(gω
i

)γi for (γ0, . . . , γκ) = (α1, β1) ∗ · · · ∗ (ακ, βκ) , (1)

where “∗” denotes the convolution product of vectors.2 The values gω
i

(for i ≤ κ) are hardwired into Mult,
so Mult can compute g

∏
zi through (1). Note that this way, Mult can compute a κ-linear map on encodings,

but not a (κ + 1)-linear map. This observation is the key to showing that the MDDH assumption holds in
this setting. (Indeed, the MDDH assumption states that given κ + 1 encodings h1, . . . , hκ+1 as above, it is

hard to distinguish g
∏κ+1
i=1 zi from random.)

1.2 Our new graded encoding scheme

Before proceeding any further, we briefly recall the notions of a graded multilinear map and a graded encoding
scheme.

Graded maps. In a graded multilinear map setting, we have groups G1, . . . ,Gκ, and (efficiently computable)
bilinear maps ei,j : Gi ×Gj −→ Gi+j for i+ j ≤ κ. Hence, the ei,j also allow the evaluation of a multilinear
map e : Gκ1 −→ Gκ iteratively, e.g., through

e(g1, . . . , gκ) := e1,κ−1(g1, e1,κ−2(g2, · · · , e1,1(gκ−1, gκ) · · · )) .

However, the ei,j also allow “partial” evaluation of e, which is the key to entirely new applications such as
those in [GGH+13b, GGSW13, GGH+13c, BW13].

Unfortunately, we do not currently know how to implement such a “clean” graded multilinear map.
Instead, all known graded MLM constructions work on encodings (i.e., non-unique representations of group
elements). Such a construction is usually called a graded encoding scheme (GES). Following the GES
notation, we will henceforth also call an encoding of a G`-element a level-` encoding.

In the following, we will describe the main ideas for our GES.

2Recall that the multiplication of polynomials can be implemented through the convolution product on the respective
coefficient vectors. In particular, we have

∑κ
i=0 γiX

i =
∏κ
i=1(αi + βiX).
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Encodings in our scheme. In our GES, we generalize the linear representation of exponents in AFHLP
to polynomials of higher degree. Additionally, we divide encodings into levels by restricting the maximum
degree of the representing polynomial in each level. More formally, level-` encodings take the form

h = (gz, c = Enc(P, pk), π, `) ,

where
• gz ∈ G for a cyclic group G (that does not depend on `) of prime order p,
• P ∈ Zp[X] is a polynomial of degree up to `, represented by its coefficient vector from Z`+1

p ,
• c is the encryption (under a fully homomorphic encryption scheme) of P ,
• π is a non-interactive zero-knowledge proof of the equality gz = gP (ω), where ω is defined through

public values u0, . . . , uκ ∈ G with ui = gω
i

. (Hence, gz = gP (ω) is equivalent to gz =
∏
i u

γi
i for

P (X) =
∑
i γiX

i.)
The encodings of AFHLP can be viewed as level-1 encodings in our scheme (with linear polynomials P ).

Adding encodings. Encodings can be added using a public (obfuscated) circuit Add that proceeds
similarly to the AFHLP scheme. In particular, Add adds the gz and c parts of the input encodings
homomorphically, and derives a consistency proof π with the decryption key sk as witness.

Multiplying encodings. The pairings ei,j : Gi × Gj −→ Gi+j are implemented over our encodings
by (obfuscated) circuits Multi,j . Circuit Multi,j takes as input two encodings h1 = (gz1 , c1, π1, i) and
h2 = (gz2 , c2, π2, j) at levels i and j, respectively. The output of Multi,j is a level-(i + j) encoding h =
(gz, c, π, i+ j), computed as follows:3

• gz is computed as gz = g(P1·P2)(ω), where the polynomials P1 and P2 are extracted from c1 and c2 with
sk , then multiplied to form P := P1 · P2 ∈ Zp[X], and finally used to compute

g(P1·P2)(ω) = gP (ω) =

i+j∏
`=0

uγ`` for P (X) =

i+j∑
`=0

γ`X
` .

(Since the u` are public, this value can be computed as long as i+ j ≤ κ.)
• c is computed homomorphically from c1 and c2, as an encryption of the polynomial P1 · P2.
• The consistency proof π (showing that indeed gz = gP (ω) for the polynomial P encrypted in c) is

computed with the decryption key sk as witness.
The key insight needed to show that the MDDH assumption holds for our GES is the same as in AFHLP’s

non-graded, approximate MLM. Namely, observe that any Multi,j can only multiply encodings if i+ j ≤ κ.

To compute the first component gz of any “higher-level” encoding, knowledge of gω
`

for ` > i + j seems

to be required. Under the SDDH assumption in G, such gω
`

look random, even when given u0, . . . , uκ. Of
course, to turn this observation into a full proof, more work is required.

Neglected details. For a useful GES, it should be possible to generate encodings with “known discrete
logarithm”; that is, we would like to be able to generate encodings for an externally given (or at least known)
z ∈ Zp. For this reason, the standard way to generate encodings (at any level) is to set up P as a constant
polynomial of the form P (X) = z ∈ Zp. (That is, we “reserve space” in c for polynomials P of degree ` in
level-` encodings, but, by default, use only constant polynomials.) For this type of encoding with “low-degree
P ,” however, our security argument above does not apply. Rather, it requires that the degree of P increases
at higher levels.

Hence, the central technical piece in our MDDH security proof will be a “switching theorem” that allows
to replace a low-degree P in an encoding with an equivalent high-degree P ′ (that satisfies P ′(ω) = P (ω)).
The proof of this switching theorem is delicate, since it must work in a setting with (obfuscated) algorithms
that use the decryption key sk . (Note that free access to sk would allow the retrieval of the used polynomial
P from an encoding, and hence would prevent such a switching of polynomials.)

3Since Multi,j can be used to multiply two encodings at level i as long as 2i ≤ κ, our GES can be viewed as symmetric.
We note that we do not deal with the construction of generalized GES (see [GGH13a, Appendix A] for a definition).
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To this end, we will use double encryptions c (instead of the single encryption c = Enc(P, pk) described
above), along with a Naor–Yung-style consistency proof in π. However, this consistency proof does not show
equality of encryptions, but equivalence of encrypted representations P, P ′ in the sense of P (ω) = P ′(ω).
This allows to switch representations without invalidating the consistency of the double encryption. As
a result, the full consistency language used for π is considerably more complicated than the one sketched
before. Additionally, the proof of our switching theorem requires a special and explicit “simulation trapdoor”
and Groth–Sahai-style dual-mode proof systems.

We note that similar complications arose already in AFHLP’s proof, and required similar measures. The
main technical difference in our setting is that our multiplication circuits Multi,j output encodings (and not
just group elements as in the multilinear map of AFHLP). Hence, our Multi,j circuits also need to construct
consistency proofs π, which requires additional secrets (as witnesses) in the description of Multi,j and which
entails additional steps in our switching theorem. (We give more details on the technical differences with
AFHLP in the main body. However, we note that, in addition to providing a graded encoding scheme, we
also provide simplified and tighter proofs.

Fortunately, the indistinguishability obfuscator from [GGH+13b] requires only a relatively weak MLM
variant and hence is not affected by the above-mentioned cryptanalyses.4

Assumptions. In summary, our construction uses a cyclic group in which the SDDH assumption holds,
a probabilistic indistinguishability obfuscation scheme [CLTV15], a perfectly correct fully homomorphic
encryption (FHE), a dual-mode non-interactive zero-knowledge proof systems, and a language with hard
membership. All of these assumptions are implied by pairing-friendly SDDH groups (equipped with an
asymmetric pairing) and sub-exponentially secure indistinguishability obfuscation (see [GS12]). We stress
that plausible candidates for both ingredients exist (e.g., by combining [GGH13a] and [GGH+13b] to an
indistinguishability obfuscator candidate).

Road map. We first recall some preliminaries in Section 2, the GES definition in Section 3, and the AFHLP
construction in Section 4. Then, we present our GES construction in Section 5, and establish our central
technical tool (the “switching theorem”) in Section 6. We prove the hardness of the MDDH in Section 7. In
the appendices we provide the full proofs.

2 Preliminaries

Notation. We denote the security parameter by λ ∈ N and assume that it is implicitly given to all
algorithms in the unary representation 1λ.

By an algorithm we mean a stateless Turing machine. Algorithms are randomized unless stated otherwise,
and ppt as usual stands for “probabilistic polynomial-time.” In this paper, by a ppt algorithm we mean an
algorithm that runs in polynomial time in the security parameter (rather than the total length of its inputs).

Given a randomized algorithm A we denote the action of running A on input(s) (1λ, x1, . . .) with uniform
random coins r and assigning the output(s) to (y1, . . .) by (y1, . . .)←$ A(1λ, x1, . . . ; r).

For a finite set X, we denote its cardinality by |X| and the action of sampling a uniformly random
element x from X by x←$ X.

Similarly, for a finite set X, the action of sampling a uniformly random element x is denoted by x←$ X.
We write [k] := {1, . . . , k}. Vectors are written in boldface x, and slightly abusing notation, running

algorithms on vectors of elements indicates component-wise operation.
Throughout the paper ⊥ denotes a special error symbol, and poly(·) stands for a fixed (but unspecified)

polynomial.
A real-valued function negl(λ) is negligible if negl(λ) ∈ O(λ−ω(1)). We denote the set of all negligible

functions by Negl. We use bracket notation for elements in G, i.e., writing [z] and [z′] for two elements gz

4A recent attack on MLMs (see [MSZ16]) tackles even the weak MLM security requirements the indistinguishability obfuscator
from [GGH+13b] has. However, the construction of [GGH+13b] (resp., its MLM building block) can be suitably enhanced to
thwart this attack [GMS16].
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and gz
′

in G and [z] + [z′] for their product gzgz
′
.

Circuits. A polynomial-sized deterministic circuit family C := {Cλ}λ∈N is a sequence of sets Cλ of poly(λ)-
sized deterministic circuits (for a fixed polynomial poly(λ)).

We assume that for all λ ∈ N all circuits C ∈ Cλ share a common input domain ({0, 1}λ)a(λ), where a(λ)
is the arity of the circuit family, and an output co-domain {0, 1}λ.

A randomized circuit family is defined similarly except that the circuits also take random coins r ∈
{0, 1}rl(λ), for a polynomial rl(λ) specifying the length of necessary random coins. To make the coins used
by a circuit explicit

(e.g., to view a randomized circuit as a deterministic one)
we write C(x; r).

2.1 Homomorphic public-key encryption

Syntax. A homomorphic public-key encryption (PKE) scheme for a deterministic circuit family C =
{Cλ}λ∈N of arity at most a(λ) is a tuple of ppt algorithms Π := (Gen,Enc,Dec,Eval) such that (Gen,Enc,

Dec) is a conventional public-key encryption scheme with message space {0, 1}λ and Eval is a deterministic
algorithm that on input a public key pk a circuit C ∈ Cλ and ciphertexts c1, . . . , cn with n ≤ a(λ) outputs a
ciphertext c. Without loss of generality, we assume that secret keys of a homomorphic PKE scheme are the
random coins used in key generation. This will allow us to check key pairs for validity.

Correctness and compactness. For the scheme Π := (Gen,Enc,Dec), we require perfect correctness as
a PKE scheme; that is, for any λ ∈ N, any m ∈ {0, 1}λ, any (sk , pk)←$ Gen(1λ), and any c←$ Enc(m, pk)
we have that Dec(c, sk) = m. We also require the FHE scheme to be fully compact in the following sense.
For any λ ∈ N, any m1, . . . ,mn ∈ {0, 1}λ with n ≤ a(λ), any C ∈ Cλ, any (sk , pk)←$ Gen(1λ) and any
ci←$ Enc(mi, pk) we have that Eval(pk ,C, c1, . . . , cn) is in the range of Enc(C(m1, . . . ,mn), pk).

A fully homomorphic encryption (FHE) scheme is a homomorphic PKE that correctly and compactly
supports any circuit family containing polynomial-sized circuits of polynomial arity (for any a priori fixed
polynomial bounds on the size and arity). In our constructions, full correctness and compactness are used to
ensure that the outputs of the addition and multiplications circuits can be iteratively operated on. This in
particular means that our GES is “noise-free” in the sense that its correctness is not affected by the number
of operations operated on encodings.

A perfectly correct FHE scheme can be constructed from probabilistic indistinguishability obfuscation
(and a re-randomizable public-key encryption scheme such as ElGamal), see [CLTV15]. (We note that the
FHE scheme from [CLTV15] only enjoys perfect correctness when the obfuscator and encryption scheme are
also perfectly correct.)

Security. The IND-CPA security of a homomorphic PKE scheme is defined identically to a standard PKE
scheme without reference to the Dec and Eval algorithms.

Formally, we require that for any legitimate ppt adversary A := (A1,A2),

Advind-cpa
Π,A (λ) := 2 · Pr

[
IND-CPAAΠ(λ)

]
− 1 ∈ Negl ,

where game IND-CPAAΠ(λ) is shown in Figure 1 (left). Adversary A is legitimate if it outputs two messages
of equal lengths.

2.2 Obfuscators

Syntax and correctness. A ppt algorithm Obf is called an obfuscator for a (deterministic or ran-
domized) circuit class C = {Cλ}λ∈N if Obf on input the security parameter 1λ and the description of a
(deterministic or randomized) circuit C ∈ Cλ of arity a(λ) outputs a deterministic circuit C. For deter-
ministic circuits, we require Obf to be perfectly correct in the sense the circuits C and C are functionally
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IND-CPAAΠ(λ):

(sk , pk)←$ Gen(1λ)
(m1,m1, st)←$ A1(pk)
b←$ {0, 1}
c←$ Enc(m, pk)
b′←$ A2(c, st)
Return (b = b′)

INDAObf (λ):

(C0,C1, st)←$ A1(1λ)
b←$ {0, 1}
C←$ Obf(1λ,Cb)

b′←$ A2(C, st)
Return (b = b′)

Sel-INDDA(λ):

(x, z)←$ D1(1λ)

(C0,C1, st)←$ A1(1λ)

b←$ {0, 1}; r←$ {0, 1}rl(λ)

y ← Cb(x; r)
b′←$ D2(y,C0,C1, st, z)
Return (b = b′)

Figure 1: Left: IND-CPA security of a (homomorphic) PKE scheme. Middle: Indistinguishability security
of an obfuscator. We require A1 to output two circuits of equal sizes. Right: Static-input (a.k.a. selective)
X-IND property of A := (A1,A2).

equivalent; that is, that for all λ ∈ N, all C ∈ Cλ, all C←$ Obf(1λ,C), and all mi ∈ {0, 1}λ for i ∈ [a(λ)] we
have that C(m1, . . . ,ma(λ)) = C(m1, . . . ,ma(λ)). For randomized circuits, the authors of [CLTV15] define

correctness via computational indistinguishability of the outputs of C and C. For our constructions we do
not rely on this property and instead require that C and C are functionally equivalent up to a change in
randomness; that is, for all λ ∈ N, all C ∈ Cλ, all C←$ Obf(1λ,C) and all mi ∈ {0, 1}λ for i ∈ [a(λ)] there
is an r such that C(m1, . . . ,ma(λ)) = C(m1, . . . ,ma(λ); r).We note that the construction from [CLTV15] is
correct in this sense as it relies on a correct indistinguishability obfuscator and a PRF to internally generate
the required random coins.

Security. The security of an obfuscator Obf requires that for any legitimate ppt adversary A := (A1,A2)

Advind
Obf ,A(λ) := 2 · Pr

[
INDAObf (λ)

]
− 1 ∈ Negl ,

where game IND is shown in Figure 1 (middle). Depending on the adopted notion of legitimacy, different
security notions for the obfuscator emerge; we consider the following one.

X-IND samplers [CLTV15]. Roughly speaking, the first phase of A := (A1,A2) is an X-IND sampler if
there is a set X of size at most X such that the circuits output by A are functionally equivalent outside X ,
and furthermore within X the outputs of the circuits are computationally indistinguishable. Formally, let
X(·) be a function such that X(λ) ≤ 2λ for all λ ∈ N. We call A := (A1,A2) an X-IND sampler if there
are sets Xλ of size at most X(λ) such that the following two conditions hold: (1) For all (even unbounded)
D the advantage function below is negligible.

Adveq
A,D(λ) := Pr

[
(C0,C1, st)←$ A1(1λ); (x, r)←$ D(C0,C1, st) :

C0(x; r) 6= C1(x; r) ∧ x /∈ Xλ
]

(2) For all non-uniform ppt distinguishers D := (D1,D2) it holds that

X(λ) ·Advsel-ind
A,D (λ) := X(λ) ·

(
2 Pr

[
Sel-INDDA(λ)

]
− 1
)
∈ Negl ,

where game Sel-INDDA(λ) is shown in Figure 1 (right).This game is named “static-input-IND” in [CLTV15].
and has a selective (or static) flavor since D1 chooses a differing-input x before it gets to see the challenge
circuits. We call an obfuscator meeting this level of security a probabilistic indistinguishability obfusca-
tor [CLTV15] and use PIO instead of Obf to emphasize this.

Remark. We note that samplers that output two (possibly randomized) circuits (C0,C1) for which the
output distributions of C0(x) and C1(x) are identical on any input x, are Sel-IND-secure for any function
X(λ). The circuits samplers that we will use in our security proofs enjoy this property.

2.3 Dual-mode NIZK proof systems

In our constructions we will be relying on special types of “dual-mode” non-interactive zero-knowledge
(NIZK) proof systems. These systems have two common reference string (CRS) generation algorithms that
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produce indistinguishable CRSs in the “binding” and “hiding” modes. They are also perfectly complete in
both modes, perfectly sound and extractable in the binding mode, and perfectly witness indistinguishable
(WI) and perfectly zero knowledge (ZK) in the hiding mode. The standard prototype for such schemes
are the pairing-based Groth–Sahai proofs [GS08], and using a generic NP reduction to the satisfiability of
quadratic equations we can obtain a suitable proof system for any NP language.5 We formalize the syntax
and security of such proof systems next.

Syntax. A (group) setup algorithm G is a ppt Turing machine that on input 1λ outputs gpk . A ternary
relation R(gpk , x, w) is a deterministic algorithm that outputs 1 for true or 0 for false. A dual-mode
extractable non-interactive zero-knowledge (NIZK) proof system Σ for setup G and relation R consists of
six algorithms as follows. (1) BCRS(gpk) on input gpk in the support of G outputs a (binding) CRS crs
and an extraction trapdoor tdext; (2) HCRS(gpk) on input gpk in the support of G outputs a (hiding) CRS
crs and a simulation trapdoor tdzk; (3) Prove(gpk , crs, x, w) on input gpk a first coordinate in the support
of G, a CRS crs, an instance x, and a witness w, outputs a proof π; (4) Verify(gpk , crs, x, π) on input gpk ,
crs, an instance x, and a proof π, outputs 1 for accept or 0 for reject; (5) WExt(tdext, x, π) on input an
extraction trapdoor tdext, an instance x, and a proof π, outputs a witness w; and (6) Sim(tdzk, x) on input
the simulation trapdoor tdzk and an instance x, outputs a simulated proof π.

We require the extractable dual-mode NIZK Σ for (G,R) to meet the following requirements.

CRS indistinguishability. For gpk←$ G(1λ), the two CRSs generated with BCRS(gpk) and HCRS(gpk)
are computationally indistinguishable. Formally, we require the advantage of any ppt adversary A defined
below to be negligible.

Advcrs
Σ,A(λ) :=2·Pr

[
b←${0, 1}; gpk←$ G(1λ); (crs0, tdext)←$BCRS(gpk);

(crs1, tdzk)←$ HCRS(gpk); b′←$ A(gpk , crsb) : b = b′
]
− 1

Perfect completeness. For any λ ∈ N, any gpk←$ G(1λ), any (crs, tdext)←$ BCRS(gpk), any (x,w)
where it holds that R(gpk , x, w) = 1, and any π←$ Prove(gpk , crs, x, w), it holds that Verify(gpk , crs, x, π) =
1. We require this property to also hold for any choice of hiding CRS.

Perfect soundness under BCRS. For any λ ∈ N, any gpk←$ G(1λ), any CRS (crs, tdext)←$ BCRS(gpk),
any x where it holds that R(gpk , x, w) = 0 for all w ∈ {0, 1}∗, and any π ∈ {0, 1}∗ we have that
Verify(gpk , crs, x, π) = 0.

Perfect extraction under BCRS. For any λ ∈ N, any gpk←$ G(1λ), any CRS (crs, tdext)←$

BCRS(gpk), any (x, π) with Verify(gpk , crs, x, π) = 1, and any w←$ WExt(tdext, x, π) we have that
R(gpk , x, w) = 1.

Perfect Witness Indistinguishability under HCRS. For any λ ∈ N, any gpk←$ G(1λ), any
(crs, tdzk)←$ HCRS(gpk), and any (x,wb) such that R(gpk , x, wb) = 1 for b ∈ {0, 1}, the two distribu-
tions πb←$ Prove(gpk , crs, x, wb) are identical.

Perfect Zero Knowledge under HCRS. For any λ ∈ N, any gpk←$ G(1λ), any (crs, tdzk)←$ HCRS(gpk),
and any (x,w) such that R(gpk , x, w) = 1, the two distributions π0←$ Prove(gpk , crs, x, w) and π1←$

Sim(tdzk, x) are identical.

2.4 Languages with hard membership

In our proofs of security we also rely on languages for which the membership problem is hard and whose
yes-instances have unique witnesses. Formally, such a language family is defined as a tuple of four algorithms

5We note that extraction in Groth–Sahai proofs does not recover a witness for all types of statements. (Instead, for some
types of statements, only gwi for a witness variable wi ∈ Zp can be recovered.) Here, however, we will only be interested in
witnesses w = (w1, . . . , wn) ∈ {0, 1}n that are bit strings, in which case extraction always recovers w. (Extraction will recover
gwi for all i, and thus all wi too.)
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Λ := (GenL,YesSamL,NoSamL,RL) as follows. (1) GenL(1λ) is randomized and on input the security
parameter outputs a language key lk ; (2) YesSamL(lk) is randomized and on input the language key lk
outputs a yes-instance y; (3) NoSamL(lk) is randomized and on input the language key lk outputs a no-
instance y; and (4) RL(lk , y, w) is deterministic and on input lk , an instance y and a witness w outputs 1
for true or 0 for false.

We require RL to satisfy the following correctness requirements. For all λ ∈ N, all lk←$ GenL(1λ) and
all y←$ YesSamL(lk) there is a w ∈ {0, 1}∗ such that RL(lk , y, w) = 1. For a given lk , we denote the set
of yes-instance by Llk . For all λ ∈ N, all lk←$ GenL(1λ) and all y←$ NoSamL(lk) there is no w ∈ {0, 1}∗
such that RL(lk , y, w) = 1. We also require RL to have unique witnesses: for all λ ∈ N, all lk←$ GenL(1λ),
all y←$ YesSamL(lk) and all w,w′ ∈ {0, 1}∗ if RL(lk , y, w) = RL(lk , y, w′) = 1 then w = w′.

Finally, the language is required to have a hard membership problem in the sense that for any ppt
adversary A

Advmem
Λ,A (λ) := 2·Pr

[
b←$ {0, 1}; lk←$ GenL(1λ); y0←$ NoSamL(lk);

y1←$ YesSamL(lk); b′←$ A(lk , yb) : b = b′
]
− 1 ∈ Negl .

Such languages can be instantiated using the DDH problem as follows. Algorithm GenL(1λ) outputs
the description of a prime-order group (G, g, p, 1) as lk . Algorithm YesSamL(lk) samples a Diffie–Hellman
tuple (ga, gb, gab), and NoSamL(lk) outputs a non-Diffie–Hellman tuple (ga, gb, gc) for a random c 6= ab
(mod p) when b = 0. Relation RL on instance (g1, g2, g3) and witness w = a checks if g1 = ga and g3 = ga2 .
The hardness of membership for this language family follows from the DDH assumption.

3 Graded Encoding Schemes

We start by recalling (a slight variant of) the definition of graded encoding systems from Garg, Gentry and
Halevi (GGH) [GGH13a].

κ-graded encoding system. Let R be a (non-trivial) commutative ring and S := {S(a)
i ⊂ {0, 1}∗ : a ∈

R, 0 ≤ i ≤ κ} a system of sets. Then (R,S) is called a κ-graded encoding system if the following conditions
are met.

1. For each level i ∈ {0, . . . , κ} and for any a1, a2 ∈ R with a1 6= a2 we have that S
(a1)
i ∩ S(a2)

i = ∅.

2. For each level i ∈ {0, . . . , κ}, the set {S(a)
i : a ∈ R} is equipped with a binary operation “+” and a

unary operation “−” such that for all a1, a2 ∈ R and every u1 ∈ S(a1)
i , u2 ∈ S(a2)

i it holds that

u1 + u2 ∈ S(a1+a2)
i and − u1 ∈ S(−a1)

i .

Here a1 + a2 and −a1 denote addition and negation is R.

3. For each two levels i, j ∈ {0, . . . , κ} with i + j ≤ κ, there is a binary operation “×” such that for all

a1, a2 ∈ R and every u1 ∈ S(a1)
i , u2 ∈ S(a2)

j it holds that

u1 × u2 ∈ S(a1·a2)
i+j .

Here a1 · a2 denotes multiplication in R.

The difference to the GGH definition is that we do not require the operations “+” and “×” to be
associative or commutative. (Indeed, our upcoming construction does not satisfy these properties.) We are
not aware of any applications that require the associativity or commutativity of encodings. However, we
stress that the operations “+” and “×” must respect the ring operations from R. For instance, while we

may have (u1 + u2) + u3 6= u1 + (u2 + u3) for some ui ∈ S(ai)
j , both the left-hand and the right-hand sides

lie in S
(a1+a2+a3)
j .
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Throughout the paper, we refer to an element a ∈ R as an exponent and a bit string u ∈ S
(a)
i as an

encoding of a. Further, we write Si :=
⋃
a∈R S

(a)
i for the set of all level-i encodings.

We now define graded encoding schemes by introducing explicit algorithms for manipulating encodings
of a graded encoding system.

κ-graded encoding scheme. Let (R,S) be a κ-graded encoding system. A graded encoding scheme (GES)

Γ = (Setup,Eq,Add,Mult,Sam,Ext)

associated to (R,S) consists of the following ppt algorithms.

Setup(1λ, 1κ): On input the security parameter 1λ and the (multi)linearity 1κ, it outputs parameters of Γ
(which are assumed to be provided to all other algorithms). We note that this algorithm runs in time
poly(λ) as long as κ is polynomial in λ.

Eqi(h1, h2): For i ∈ {0, . . . , κ} and two encodings h1 ∈ S
(a)
i and h2 ∈ S

(b)
i , this deterministic algorithm

outputs 1 if and only if a = b in R.

Addi(h1, h2): This deterministic algorithm performs the “+” operation of (R,S) in level i. For i ∈ {0, . . . , κ}
and encodings h1 ∈ S(a1)

i and h2 ∈ S(a2)
i this algorithm outputs an encoding in h ∈ S(a1+a2)

i .

Multi,j(h1, h2): This deterministic algorithm performs the “×” operation of (R,S). For i, j ∈ {0, . . . , κ}
with i+ j ≤ κ and encodings h1 ∈ S(a1)

i and h2 ∈ S(a2)
j this algorithm outputs an encoding in S

(a1·a2)
i+j .

Sami(a): For i ∈ {0, . . . , κ} and a ∈ R, this probabilistic algorithm samples an encoding from S
(a)
i .

Exti(h): For i ∈ {0, . . . , κ} and input h ∈ Si, this deterministic algorithm outputs a bit string. Algorithm

Exti is required to respect membership in S
(a)
i , i.e., it outputs identical strings for any two encodings

h1, h2 ∈ S(a)
i

Our definition of a GES essentially implements the “dream version” of GESs [GGH13a], but differs in
two aspects:
• GGH do not permit sampling for specific values a ∈ R. (Instead, GGH provide an algorithm to sample

a random a along with its encoding.)
• GGH’s zero-testing algorithm is substituted with an equality test (through Eqi) above. Our equality

test must only work for consistent encodings from some S
(a)
i and S

(b)
i . In contrast, the dream version

of GGH requires that the set S
(0)
i is efficiently recognizable.

4 Approximate Multilinear Maps

We recall the approximate multilinear maps due to AFHLP [AFH+16]. The authors construct both sym-
metric and asymmetric multilinear maps. Their symmetric construction can be seen as a starting point for
our GES.

4.1 Syntax

We start with the syntax of multilinear group (MLG) schemes [AFH+16]. Informally, a κ-MLG scheme is a
restricted form of a graded encoding scheme where encodings belong to levels 0, 1 and κ only and the Mult
algorithm takes κ encodings at level 1 and outputs an encoding at level κ. We formalize MLG schemes in
terms of a GES.

Symmetric MLG schemes. A symmetric κ-linear group scheme is a κ-graded encoding scheme associ-

ated to (R,S), where (R,S) is defined similarly to a κ-graded encoding system except that S := {S(a)
i ⊂
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{0, 1}∗ : a ∈ R, i ∈ {0, 1, κ}} and the “×” operation is redefined as a κ-ary map that for any a1, . . . , aκ ∈ R
and any u1 ∈ S(a1)

1 , . . . , uκ ∈ S(aκ)
1 satisfies

u1 × · · · × uκ ∈ S(a1···aκ)
κ .

The associated Mult algorithm on inputs hi ∈ S(ai)
1 for i ∈ [κ] outputs an encoding in S

(a1···aκ)
κ . Algorithms

Eq, Add, Sam and Ext are defined analogously and restricted to i ∈ {0, 1, κ} only.

4.2 Overview of AFHLP

In a nutshell, [AFH+16] works with redundant encodings of elements h of the base group G of the form
h = gx0(gω)

x1 where gω comes from an SDDH instance. Vector x = (x0, x1) represents element h. The set
S1 consists of all strings of the form (h, c1, c2, π) where h ∈ G, ciphertext c1 is a homomorphic encryption
under public key pk1 of a vector x representing h, ciphertext c2 is a homomorphic encryption under a second
public key pk2 of another vector y also representing h, and π is a NIZK proof showing consistency of the two
vectors x and y. Here consistency means that the plaintexts vectors x and y underlying c1 and c2 encode
the same group element h. Note that each element of the base group G is multiply represented in S1, but
that equality of elements in S1 is easy to test (via checking the equality of first components).

Addition of two elements in S1 is carried out by an obfuscation of a circuit CAdd[sk1, sk2], which has
the two secret keys hardwired in. The circuit checks the respective proofs, adds the group elements in G
and uses the additive homomorphic property of the encryption scheme to combine ciphertexts. It then uses
witness (sk1, sk2) to generate a NIZK proof showing equality of encodings. Note that the new encoding is
as compact as the two input encodings.

The multilinear map on inputs (hi, ci,1, ci,2, πi) for 1 ≤ i ≤ κ is computed using an obfuscation of a
circuit CMap[sk1, ω], which has sk1 and ω hardwired in. The circuit recovers the exponents of hi in the form
(xi,1 + ω · xi,2) from ci,1 via the decryption algorithm Dec(·, sk1). It then uses these to compute the group
element g

∏
i(xi,1+ω·xi,2), which is defined to be the output of Mult. (The target set Sκ is therefore G, the

base group.) The κ-linearity of Mult follows immediately from the form of the exponent. See Appendix A
for technical details.

In the original paper, this construction is generalized to the asymmetric setting via representations of
the form g〈x,ω〉 with x,ω ∈ Z`N for ` ∈ {2, 3} (where 〈x,ω〉 denotes inner products modulo the base-group
order). The special case ω := (1, ω) then gives an MLG scheme where MDDH is shown to be hard. We refer
the reader to the original work [AFH+16] for the details.

5 The GES Construction

We now present our construction of a graded encoding scheme Γ according to the syntax introduced in
Section 3.

We will use the following ingredients in our construction. A similar set of building blocks were used
in [AFH+16].

1. A group setup algorithm SetupG(1λ) that samples (the description of) a group G, along with a random
generator g of G and the group order p and the identity element 1.6 We implicitly assume efficient
algorithms for checking group membership, performing the group operation, inversion, and randomly
sampling group elements. We further assume a unique binary representation for every group element
and a randomness extractor for this group.

2. A general-purpose probabilistic indistinguishability obfuscator PIO that we assume is secure against
X-IND samplers.

3. A perfectly correct and IND-CPA-secure fully homomorphic PKE scheme Π with plaintext space Zκ+1
p .

4. An extractable dual-mode NIZK proof system Σ.

6It is conceivable that our security proofs also hold for non-prime p up to statistical defect terms related to randomization
of elements modulo a composite number.
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5. A language family Λ with hard membership problem and unique witnesses.
Given the above components, with formal syntax and security as defined in Section 2, our graded encoding
scheme Γ consists of the algorithms detailed in the sections that follow. (See the introduction for an intuition.)

5.1 Setup

The Setup algorithm of Γ gets as input 1λ and 1κ. It samples parameters ppG←$ SetupG(1λ) with ppG :=
(G, g , p, 1), generates two encryption key pairs (pk j , sk j)←$ Gen(1λ) for j = 1, 2, and an element ω←$ ∈ Zp.
We will refer to G as the base group. It sets

[ω] := ([ω], . . . , [ωκ]) ,

a vector of κ elements in the base group G, with κ the number of desired levels It then samples lk←$ GenL(1λ),
and sets

gpk := (ppG, pk1, pk2, [ω], lk) .

We define G(1λ) to be the randomized algorithm that runs the above steps and outputs gpk . This algorithm
will be used to define the NIZK proof system.

The Setup algorithm continues by generating a binding CRS (crs ′, tdext)←$ BCRS(gpk), and also a
no-instance of Llk via y←$ NoSamL(lk). It sets crs := (crs ′, y). (The relation R that the NIZK should
support will be defined shortly in Section 5.2.)

Finally, it constructs two obfuscated circuits CMult and CAdd of circuits CMult and CAdd, which will be
described in Sections 5.3 and 5.4, respectively. Setup also selects a seed hk for a randomness extractor and
outputs the scheme parameters

pp := (gpk , crs, hk ,CAdd,CMult) .

5.2 Encodings and equality

Level-0 encodings. We treat algorithms for level-0 encodings separately in our construction as they behave
somewhat differently to those from the other levels. For instance, when multiplied by other encodings, they
do not result in an increase in encoding levels. The canonical choice for level-0 encodings is the ring Zp,
which we adopt in this paper. These encodings, therefore, come with natural algorithms for generation,
manipulation and testing of elements. Algorithm Mult when applied to inputs one of which is at level 0
corresponds to multiplication with the element in the zeroth level. The latter can in turn be implemented
with a shift-and-add algorithm that employs the encoding addition Add of Section 5.3. We omit explicit
mention of operations for level-0 encodings to ease notation and focus on the more interesting cases at levels
1 and above.7

Level-κ encodings. We set Sκ := G in our scheme and use the algorithms associated with G for generation,
equality testing, and addition of encodings at level κ. Once again, we omit these operations from the addition
circuit for clarity. The multiplication circuit can only be called on a level-κ together with a level-0 encoding,
which we have already excluded. However, we still have to deal with outputs at level κ in Mult.

Other levels. For 0 < ` < κ and z ∈ Zp, the encodings in S
(z)
` consist of all tuples of the form

h := ([z], c1, c2, π, `) ,

where c1, c2 are two ciphertexts in the range of Enc(·, pk1) and Enc(·, pk2), respectively,8 and π is a verifying
NIZK proof under crs ′ that:

7We mention that previous GESs used more complex level-0 encodings, and since their encodings were noisy, they allowed
only a limited number of operations on each encoding. Hence, implementing Mult on level-0 inputs via shift-and-add could be
too costly in their settings.

8This “honest-ciphertext-generation” condition is necessary for the (bi)linearity of our addition and multiplication algorithms.

Unfortunately, this also prevents the sets S
(z)
` from being efficiently recognizable.
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(1) either c1 and c2 contain polynomials P1 and P2 of degree at most `, such that P1(ω) = P2(ω) = z,
(2) or y ∈ Llk (or both).

More formally, π must be a verifying proof that (gpk , ([z], c1, c2, `)) satisfies one relation R1 or R2 as follows.
Relation R1 on input gpk , an encoding ([z], c1, c2, `), and a witness (P1, P2, r1, r2, sk1, sk2) accepts iff all

of the following hold:
• [z] ∈ G;
• both P1 and P2 are polynomials over Zp of degree ≤ ` (given by their coefficient vectors);
• both P1 and P2 represent z in the sense that [z] = [P1(ω)] and [z] = [P2(ω)];
• both ci are encryptions of (or decrypt to) Pi in the following sense:

for both i ∈ {1, 2} : ci = Enc(Pi, pk i; ri)

∨
for both i ∈ {1, 2} : (pk i, sk i) = Gen(sk i) ∧ Pi = Dec(ci, sk i) .

Note that there are two types of witnesses that can be used in proof generation for R1, namely (P1, P2, r1, r2)
and (sk1, sk2).

Let RL be the relation for the trapdoor language Λ. Relation R2, given gpk , an encoding, and a witness
wy, accepts iff RL(lk , y, wy) accepts. (Note that the output of R2 is independent of input encodings.) Hence,
intuitively, R2 provides an explicit trapdoor to simulate consistency proofs (in case y ∈ Llk ).

We define R := R1 ∨R2 and assume that Σ is a proof system with respect to (G,R) with G as defined
in Section 5.1.

Valid and consistent encodings. The following convention will be useful in the context of valid of
encodings and the correctness of out scheme. We call an encoding h valid if the proof π verifies correctly
under crs ′. We write Val`(h) iff h is valid and the level implicit in h matches `. We call h consistent (with
respect to gpk) if h is in the language defined by the first three conditions of relation R1 as well as the
first clause of the disjunction above. (In particular, the corresponding ciphertexts ci are possible outputs
of Enc(Pi, pk i); this implies that these ciphertexts behave as expected under the homomorphic evaluation
algorithm Eval.) Note that consistency implies validity but the converse is not necessarily the case and hence
a valid encoding may not lie in any S`. For example this would be the case if an “anomalous” ciphertext
decrypts correctly to a valid representation, but does not lie in the range of Enc. Furthermore, validity can
be publicly and efficiently checked, while this is not necessarily the case for consistency. We note, however,
that if the encryption scheme does not allow for anomalous ciphertexts, our GES would also have efficiently
recognizable encodings. We leave the construction of such FHE schemes as an open problem.

Algorithm Eq. The equality algorithm Eq` returns 1 iff the first components of the inputs match. The
correctness of this algorithm follows from the fact that the base group G has unique representations. (Recall
from GES syntax that Eq` is only required to work with respect to consistent encodings.)

Polynomial representations. A significant conceptual difference with the work of AFHLP is that we
represent exponents in Zp with polynomials instead of vectors. This generalization enables natural notion
of levels corresponding to the degrees of the representing polynomials. We observe that a level-` encoding h
is not a valid level-`′ encoding if `′ 6= ` as the perfectly sound proof π included in h depends on the instance
and in particular on the level.

5.3 Addition

We now provide a procedure for adding two level-` encodings h = ([z], c1, c2, π, `) and h′ = ([z′], c′1, c
′
2, π
′, `)

in S`. Conceptually, our addition circuit operates similarly to that of AFHLP. The main difference is that
encodings contain polynomials and the levels. We exploit the structure of the base group as well as the
homomorphic properties of the encryption scheme to “add together” the first and second components of the
inputs. We then use (sk1, sk2) as a witness to generate a proof π′′ that the new tuple is well formed. For
technical reasons we check both the validity of h and h′ (by checking π and π′) and their consistency (using
(sk1, sk2)).
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Circuit CAdd[gpk , crs, sk1, sk2, tdext](`, h, h
′): // for 1 ≤ ` ≤ κ− 1

1. if ¬(Val`(h) ∧Val`(h
′)) then return ⊥

2. parse ([z], c1, c2, π, `)← h and ([z′], c′1, c
′
2, π
′, `)← h′

3. [z′′]← [z] + [z′]; c′′1 ← c1 + c′1; c′′2 ← c2 + c′2
4. P1 ← Dec(c1, sk1); P2 ← Dec(c2, sk2)
P ′1 ← Dec(c′1, sk1); P ′2 ← Dec(c′2, sk2)

5. if [z] 6= [P1(ω)] ∨ [z] 6= [P2(ω)] ∨ [z′] 6= [P ′1(ω)] ∨ [z′] 6= [P ′2(ω)] then
5.1. w′y←$ WExt(tdext, ([z], c1, c2), π)
5.2. if ¬R2(gpk , ([z], c1, c2, `), w

′
y) then return ⊥

5.3. π′′←$ Prove(gpk , crs, ([z′′], c′′1 , c
′′
2 ), w′y)

6. else π′′←$ Prove(gpk , crs, ([z′′], c′′1 , c
′′
2 ), (sk1, sk2))

7. return ([z′′], c′′1 , c
′′
2 , π

′′, `)

Figure 2: The probabilistic circuit used to add encodings for levels 1 ≤ ` ≤ κ−1. The checks at 5 are never
passed in an honest execution of the protocol. We emphasize that the test in step 5 is implemented using the
values [ωi]. The random coins needed for randomized operations are internally generated after obfuscating
with PIO.

Figure 2 details the operation of the addition circuit CAdd. A PIO of this circuit will be made public
via the parameters pp. We emphasize that step 5, that is, the explicit consistency check, is never reached
under a binding crs ′ (due to the perfect soundness of the proof system), but they may be reached with a
hiding crs ′ later in the security analysis. Let us expand on this.

In the analysis, we need to specify how CAdd behaves if it encounters valid inputs (in the sense the proofs
pass NIZK verification), but nevertheless are inconsistent in the sense that at least one of encodings does
not decrypt to a valid representation. Let us call such inputs bad.

With the knowledge of secret keys, such bad inputs can be recognized, and the natural choice would be
to define CAdd to abort when this is the case. With this choice, however, we run into the following problem.
During the security proof we will set the addition circuit to answer all valid inputs (including bad ones)
with simulated proofs. On the other hand, the original addition circuit rejects such inputs. (Furthermore, it
cannot even simulate proofs for wrong statements, and hence cannot answer bad inputs with valid-looking
proofs.)

On a high level, we would like to modify how CAdd reacts on bad inputs so that it uses a NIZK simulation
trapdoor on bad inputs. The difficulty with this strategy is that no such simulation trapdoor exists when
the NIZK CRS is binding. Hence, we create our own NIZK trapdoor through an extra “OR branch” in the
proved statement (akin to the Feige–Lapidot–Shamir transform). This gives us a little more flexibility in
defining and using that trapdoor.

More specifically, recall that our CRS is of the form crs = (crs ′, y) where crs ′ is a binding CRS for the
dual-mode NIZK proof system, and y is a no-instance of Llk . However our actual means to fake proofs will
be to switch y to a yes-instance and use a witness wy to produce proofs. Specifically, in the security proof,
we will eventually let CAdd use a simulation trapdoor wy (instead of a simulation trapdoor for the NIZK).
The benefit of this is that CAdd will know an extraction trapdoor td ′ext (that of course only exists if the CRS
crs ′ is in the binding mode) which it can use to extract a witness from a given proof π. Thus, whenever CAdd

encounters a bad input, it can extract a witness w′y, which must at that point be a simulation trapdoor wy.
This simulation trapdoor wy can then immediately be used to produce a fake proof π′′ even upon bad inputs.
In other words, CAdd knows no simulation trapdoor a priori, but it can extract one from any simulated proof
for a false statement.

The Add` algorithm simply runs the obfuscated circuit on the input encodings and `. The correctness
of this algorithm follows from that of Π, the completeness of Σ and the correctness, in our sense, of the
(probabilistic) obfuscator PIO. Note that FHE correctness is only guaranteed to hold with respect to
ciphertexts that are in the range of encryption or evaluation (and not necessarily for anomalous ones that
decrypt correctly). This, in particular, means that we cannot enlarge the set of encodings to contain all valid
ones (as opposed to just consistent ones) to get efficient decidability of encoding sets as correctness can no
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Circuit CMult[gpk , crs, ω, sk1, sk2, tdext](`, `
′, h, h′): // for 1 ≤ `, `′ ≤ κ− 1

1. if ¬(Val`(h) ∧Val`′(h
′)) ∨ `+ `′ > κ then return ⊥

2. parse ([z], c1, c2, π, `)← h and ([z′], c′1, c
′
2, π
′, `′)← h′

3. c′′1 ← c1 ∗ c′1; c′′2 ← c2 ∗ c′2
4. P1 ← Dec(c1, sk1); P2 ← Dec(c2, sk2)
P ′1 ← Dec(c′1, sk1); P ′2 ← Dec(c′2, sk2)

5. z′′ ← (P1 ∗ P ′1)(ω)
6. if [z] 6= [P1(ω)] ∨ [z] 6= [P2(ω)] ∨ [z′] 6= [P ′1(ω)] ∨ [z′] 6= [P ′2(ω)] then

6.1. w′y←$ WExt(tdext, ([z], c1, c2), π)
6.2. if ¬R2(gpk , ([z], c1, c2), w′y) then return ⊥
6.3. π′′←$ Prove(gpk , crs, ([z′′], c′′1 , c

′′
2 ), w′y)

7. else π′′←$ Prove(gpk , crs, ([z′′], c′′1 , c
′′
2 ), (sk1, sk2))

8. If (`+ `′ = κ) then return [z′′] else return ([z′′], c′′1 , c
′′
2 , π

′′, `+ `′)

Figure 3: Circuit used for multiplying encodings for levels 1 ≤ `, `′ ≤ κ− 1. Step 6 is never reached in an
honest execution of the protocol with a binding crs. The random coins needed for randomized operations
are internally generated after obfuscating with PIO.

longer be established. (See also remark on validity on page 15.) Note that full compactness ensures that the
ciphertexts output by Add` are in the range of encryption, and hence they can be further operated on with
Eval.

5.4 Multiplication

Given two encodings h = ([z], c1, c2, π, `) and h′ = ([z′], c′1, c
′
2, π
′, `′) at levels ` and `′ respectively, the

multiplication algorithms operates analogously to addition as follows. The corresponding circuit CMult has
both decryption keys and now also ω ∈ Zp hardwired in. After validity checks and decrypting the input
ciphertexts, it performs the multiplication of the polynomials encrypted under ci and c′i homomorphically
using a convolution operation on the coefficient vectors. However, it cannot obviously compute the element
[zz′] in the base group G. Suppose c1 and c′1 encrypt polynomials P and P ′ of degrees at most ` and
`′ respectively and such that [z] = [P (ω)] and [z′] = [P ′(ω)]. The multiplication circuit uses the explicit
knowledge of ω and polynomials P and P ′ to compute [zz′] = [(P ∗ P ′)(ω)].9 Circuit CMult is shown in
Figure 3. Note that similarly to addition, step 6 performs explicit checks of consistency of encodings that
will only be used in the analysis under a hiding crs ′.

The correctness of these maps follows from the correctness of Π and PIO, and the completeness of Σ.

Enabling graded multiplication. The main difference between our circuit CMult and that of [AFH+16]
is that here we need to output auxiliary information (c1, c2, π) for multiplied encodings at output levels
below κ. This information allows the multiplication algorithm to operate in a graded fashion as any output
encoding by CMult can be fed back into CMult as long as it lies at a level ` < κ.10 In order to enable CMult to
generate this auxiliary information, we use an encryption scheme that is also homomorphic with respect to
multiplication in the plaintext ring. In contrast, AFHLP only rely on an additively homomorphic encryption
scheme.

9Observe that with the explicit knowledge of P ∗ P ′ and the powers ([ωi])1≤i≤κ it is also possible to compute [zz′] as long
as P ∗ P ′ is of degree ≤ κ; this will be exploited in the security analysis in Section 7.

10Recall that encodings at level κ can only be multiplied with level-0 encodings, i.e., with elements in Zp.
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κ-SwitchAΓ (λ):

(pp;ω)←$ Setup(1λ, 1κ) // ω generated within Setup
((P0,1, P0,2), (P1,1, P1,2), `, st)←$ A1(pp, ω)

b←$ {0, 1}; r1, r2←$ {0, 1}rl(λ)

c1 ← Enc(Pb,1, pk1; r1); c2 ← Enc(Pb,2, pk2; r2)
π←$ Prove(gpk , crs, ([Pb,1(ω)], c1, c2, `), (Pb,1, Pb,2, r1, r2))
hb ← ([Pb,1(ω)], c1, c2, π, `)
b′←$ A2(hb, st)
Return (b = b′)

Figure 4: Game formalizing the indistinguishability of encodings. (This game is specific to our construction
Γ from Section 5.) An adversary is legitimate if it outputs polynomials such that P0,1(ω) = P0,2(ω) =
P1,1(ω) = P1,2(ω) of degree at most `. We note that A gets explicit access to secret exponent ω generated at
setup. Here rl(λ) is a polynomial indicating the length of the random coins used by the encryption algorithm.

5.5 Sampling

Given polynomials P1 and P2 of degree at most ` and satisfying P1(ω) = P2(ω) = z we can generate an

encoding from S
(z)
` by computing

h←
(
[z], c1 = Enc(P1, pk1; r1), c2 = Enc(P2, pk2; r2),

π = Prove(gpk , crs, ([z]i, c1, c2, `), (P1, P2, r1, r2); r), `
)
.

(2)

Hence, our sampling algorithm Sam`(z) sets P1(X) = P2(X) = z ∈ Zp and computes an encoding through
(2). We call these the canonical encodings of z, independently of `. We note that this procedure is that
in [AFH+16] adapted to the generalized notion of polynomial representations.

5.6 Extraction

Since at each level ` the first component [z] is unique for each set S
(z)
` , we may extract a uniform string from

h = ([z], c1, c2, π, `) for a uniform z by applying a randomness extractor seeded with hk to [z].

6 Indistinguishability of Encodings

We show that a key property used by AFHLP in the analysis of their multilinear map [AFH+16, Theorem
5.3] is also exhibited by our graded scheme. Roughly speaking, this property states that for any given level
`, any two valid encodings of the same Zp-element are computationally indistinguishable. This claim is
formalized via the κ-Switch game shown in Figure 4. Note that in this game, we allow the adversary to not
only choose the representation polynomials, but also let him see part of the private information not available
through the public parameters, namely the exponent ω.

Theorem 6.1 (Encoding switch). Let Γ be the GES constructed in Section 5 with respect to an X-IND-
secure probabilistic obfuscator PIO, an IND-CPA-secure encryption scheme Π, a dual-mode NIZK proof
system Σ, and a language family Λ. Then, encodings of the same ring element z ∈ Zp are indistinguishable
at all levels. More precisely, for any legitimate ppt adversary A there are ppt adversaries B1, B2, B3 and
B4 of essentially the same complexity as A such that for all λ ∈ N

Advκ-switch
Γ,A (λ)≤3 ·

(
Advmem

Λ,B1
(λ) + 6 ·Advind

PIO,B2
(λ) + Advcrs

Σ,B3
(λ)
)

+ 2 ·Advind-cpa
Π,B4

(λ).

The proof of this result follows largely that in [AFH+16] and we include it for completeness in Appendix B.
The main difference is that we have to deal with obfuscations of the new multiplication circuit.
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Outline. We proceed via a sequence of 5 games, starting with κ-Switch and ending in a game where the
challenge encoding is independent of the bit b. Figure 5 shows the steps used in the proof of the theorem.
We use helper Lemma 6.2 for changing the addition and multiplication circuits to “forget” (one or both)
the secret keys and the extraction trapdoor. We now justify each of these steps in more detail below. See
Appendix B for the full proof.

CAdd CMult c1 c2

Gm. crs′ y knows knows contains contains Remark
0 binding 6∈ Llk sk1,sk2,tdext sk1,sk2,tdext Pb,1 Pb,2

1 hiding ∈ Llk wy sk1, wy Pb,1 Pb,2 Lemma 6.2 (i = 1)

2 hiding ∈ Llk wy sk1, wy Pb,1 P1,2 IND-CPA wrt. pk2

3 binding 6∈ Llk sk1,sk2,tdext sk1,sk2,tdext Pb,1 P1,2 Lemma 6.2 (reverse, i = 1)

4 hiding ∈ Llk wy sk2, wy Pb,1 P1,2 Lemma 6.2 (i = 2)

5 hiding ∈ Llk wy sk2, wy P1,1 P1,2 IND-CPA wrt. pk1

Encoding indep. of b

Figure 5: Outline of the proof steps of Theorem 6.1. The underlined secret key in the “CMult knows”
column indicates the key that is used in decryption to construct [z′′]. For instance, in Game0, key sk1 is
used to obtain P1 and P ′1, which are then used to compute [z′′] = [(P1 ∗ P ′1)(ω)] within CMult.

Game0: This is the κ-Switch game with a binding crs ′ and y 6∈ Llk . The addition and multiplication circuits
are defined in Figures 2 and 3, respectively.

Game1: We change the public parameters so that they include a hiding crs ′, a yes instance y via YesSamL(lk)

and obfuscations of circuits ĈAdd and Ĉ
(1)
Mult (see Figure 6). Thus, the second circuit uses sk1 to de-

crypt the first ciphertexts given as inputs. Observe that these circuits use the witness wy to y ∈ Llk to
produce the output proofs π′′, and therefore the simultaneous knowledge of decryption keys sk1, sk2

is no longer needed. The difference with the previous game can be bounded by our helper Lemma 6.2
with i = 1, where we rely on PIO security, CRS indistinguishability, and the membership problem.

Game2: This game generates the second challenge ciphertext c2 by encrypting polynomial P1,2 even when
b = 0. We bound this transition via the IND-CPA security of Π with respect to pk2. The reduction

will choose a first decryption key sk1 and a witness wy so as to be able to construct Ĉ
(1)
Mult. It will

also generate a NIZK simulation trapdoor tdzk (recall the CRS is in the hiding mode) to construct
simulated proofs π for the (inconsistent) challenge encoding hb. Note that the perfect ZK property
guarantees that these proofs are identically distributed to the real ones in Game1.

Game3: The public parameters are changed back to include a binding crs ′, a no-instance y /∈ Llk and a (PIO)
obfuscation of the original circuits CAdd, CMult with both decryption keys hardwired. The difference
with the previous game is bounded again via Lemma 6.2 (in the reverse direction and with i = 1).

Game4: This transitions is defined analogously to that introduced in Game1 except that this time we invoke

Lemma 6.2 with i = 2 and switch to circuits ĈAdd and Ĉ
(2)
Mult. Observe that knowledge of sk1 is no

longer needed.

Game5: This transitions is defined analogously to that introduced in Game2. The only difference is that
this game generates the first challenge ciphertext c1 by encrypting P1,1 even when b = 0.

Finally, note that the challenge encoding in Game5 is independent of the random bit b and the advantage
of any (even unbounded) adversary A is 0.

In the proof of Theorem 6.1, we need the next Lemma for changing the addition and multiplication
circuits to “forget” (one or both) the secret keys and the extraction trapdoor. The proof can be found in
Appendix C.
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Circuit ĈAdd[gpk , crs, wy](`, h, h′):

1. if ¬(Val`(h) ∧Val`(h
′)) then return ⊥

2. parse ([z], c1, c2, π, `)← h, and ([z′], c′1, c
′
2, π
′, `)← h′

3. [z′′]← [z] + [z′]; c′′1 ← c1 + c′1; c′′2 ← c2 + c′2
4. // omitted: depends on sk1 and sk2

5. π′′←$ Prove(gpk , crs, ([z′′], c′′1 , c
′′
2 , `), wy)

6. // omitted: depends on sk1 and sk2

7. return ([z′′], c′′1 , c
′′
2 , π

′′, `)

Circuit Ĉ
(i)
Mult[gpk , crs, ω, sk i, wy](`, `′, h, h′):

1. if ¬(Val`(h) ∧Val`′(h
′)) ∨ `+ `′ > κ then return ⊥

2. parse ([z], c1, c2, π, `)← h and ([z′], c′1, c
′
2, π
′, `′)← h′

3. c′′1 ← c1 · c′1; c′′2 ← c2 · c′2
4. Pi ← Dec(ci, sk i); P

′
i ← Dec(c′i, sk i) // depends on sk i only

5. z′′ ← (Pi ∗ P ′i )(ω)
6. π′′←$ Prove(gpk , crs, ([z′′], c′′1 , c

′′
2 , `+ `′), wy)

7. // omitted: depends on sk1 and sk2

8. If (`+ `′ = κ) then return [z′′] else return ([z′′], c′′1 , c
′′
2 , π

′′, `+ `′)

Figure 6: Top: Circuit ĈAdd where witness wy to y ∈ Llk is used to produce π′′. Note that the secret keys

(sk1, sk2) or the extraction trapdoor tdext are no longer used by this circuit. Bottom: Circuits Ĉ
(i)
Mult were

only one key sk i is used to decrypt Pi and P ′i and witness wy to y ∈ Llk is used to produce π′′. The secret
key sk3−i and the extraction trapdoor tdext are not used by this circuit.

Lemma 6.2 (Forgetting secret keys). Let Γ be the GES from Section 5 with respect to an X-IND-secure
probabilistic obfuscator PIO, an IND-CPA-secure encryption scheme Π, a dual-mode NIZK proof system Σ,
and a language family Λ. For i = 1, 2, consider the modified parameter generation algorithm Setup(i) that

samples a yes-instance y ∈ Llk and outputs obfuscations of the circuits ĈAdd and Ĉ
(i)
Mult shown in Figure 6.

Let

Advκ-forget
Γ,i,A (λ) := 2 · Pr

[
pp0←$ Setup(1λ, 1κ); pp1←$ Setup(i)(1λ, 1κ);

b←$ {0, 1}; b′←$ A(ppb) : b = b′
]
− 1 .

Then, for any i ∈ {1, 2} and any ppt adversary A there are ppt adversaries B1,B2 and B3 of essentially
the same complexity as A such that for all λ ∈ N

Advκ-forget
Γ,i,A (λ) ≤ Advmem

Λ,B1
(λ) + 6 ·Advind

PIO,B2
(λ) + Advcrs

Σ,B3
(λ) .

7 Hardness of MDDH

We are now ready to show that MDDH is hard for our GES. We improve [AFH+16] by providing a simpler
and tighter proof of security. One corollary of our result is that there are no “zeroizing” attacks on our
scheme as such attacks immediately lead to the break of MDDH [CHL+15, CGH+15, GGH13a]. We start
by providing formal definition of MDDH as well as the strong DDH problem whose hardness we assume in
our analyses.

The q-SDDH problem [BB04, ZSS04]. For q ∈ N we say that the q-SDDH problem is hard for a group
G if

Advq-sddh
G,A (λ) := 2 · Pr

[
q-SDDHAG (λ)

]
− 1 ∈ Negl ,

where game q-SDDHAG (λ) is shown in Figure 7 (left). We note that this assumption can only hold in
asymmetric pairing-friendly groups. (With such asymmetric pairings, we could then implement, e.g., the
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q-SDDHAG (λ)

ppG←$ SetupG(1λ)
b←$ {0, 1}
ω, τ0←$ Zp
τ1 ← ωq+1 (mod p)
b′←$A(ppG, {[ωi]}

q
i=1, [τb])

Return (b = b′)

κ-MDDHAΓ (λ)

pp←$ Setup(1λ, 1κ)
b←$ {0, 1}
a1, . . . , aκ+1, z←$ Zp
hi←$ Sam1(ai)
h∗0←$ Samκ(z)
h∗1←Mult(h1, . . . , hκ)aκ+1

b′←$ A(pp, {hi}κ+1
i=1 , h

∗
b)

Return (b = b′)

Figure 7: Left: The SDDH problem. Here p = p(λ) denotes the group order implicit in pp. Right: The
MDDH problem. The sampler algorithms output canonical encodings. The κ-ary algorithm Mult is defined
by applying the 2-ary algorithm Mult of the scheme iteratively to inputs.

dual-mode NIZK proof system from [GS08].) It is not too difficult to show via re-randomization of the group
generator that hardness of q-SDDH implies that of (q − 1)-SDDH. We use this fact to simplify our theorem
statement below.

The κ-MDDH problem [BS03, GGH13a]. For κ ∈ N we say that the κ-MDDH problem is hard for a
GES Γ if

Advκ-mddh
Γ,A (λ) := 2 · Pr

[
κ-MDDHAΓ (λ)

]
− 1 ∈ Negl ,

where game κ-MDDHAΓ (λ) is shown in Figure 7 (middle).

The (κ,m, n, r0, r1, l)-RANK problem [EHK+13]. For κ,m, n, r0, r1 ∈ N and a level function l : [m] ×
[n] −→ [κ], we say that the (κ,m, n, r0, r1, l)-RANK problem is hard for a GES Γ if

Adv
(κ,m,n,r0,r1,l)-rank
Γ,A (λ) := 2 · Pr

[
(κ,m, n, r0, r1, l)-RANKAΓ (λ)

]
− 1 ∈ Negl ,

where game (κ,m, n, r0, r1, l)-RANKAΓ (λ) is shown in Figure 7 (right).

7.1 Hardness of MDDH

Recall that the GES of Section 5 represents an element z ∈ Zp at level ` with polynomials P1 and P2 of
degree at most ` such that Pj(ω) = z.

Theorem 7.1 (κ-SDDH =⇒ κ-MDDH). Let Γ be the GES constructed in Section 5 with respect to a base
group G and an X-IND-secure probabilistic obfuscator PIO.

Then, assuming the κ-SDDH assumption (see Fig. 7) holds in G, and using our switching lemma, the
κ-MDDH assumption holds in Γ.

More specifically, for any κ ∈ N and any ppt adversary A there are ppt adversaries B1, B2 and B3 of
essentially the same complexity as A such that for all λ ∈ N

Advκ-mddh
Γ,A (λ) ≤ (κ+ 1) ·Advκ-switch

Γ,B1
(λ) + Advind

PIO,B2
(λ) + Advκ-sddh

G,B3
(λ) .

Outline. We provide a simpler proof compared to that of [AFH+16, Theorem 6.2] at the expense of relying
on the slightly stronger κ-SDDH (instead of the (κ− 1)-SDDH) problem. At a high level, our reduction has
two steps: 1) Switch all encodings from polynomials of degree 0 to those of degree 1; and 2) Randomize the
κ-MDDH challenge using the κ-SDDH instance. The key difference with the proof of [AFH+16, Theorem
6.2] is that we no longer need to carry out a two-step process to randomize the exponent of the MDDH
challenge. In particular, we do not change the implementation of the multiplication circuit according to a
κ-SDDH challenge. We outline the proof along a sequence of κ+ 5 games here and leave the full details to
Appendix D.
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Game0: This is the κ-MDDH problem (Figure 7, middle). We use Pi,1 and Pi,2 to denote the canonical
degree-zero representation polynomials of ai as generated by the sampler Sam1(ai).

Game1–Gameκ+1: In these games we gradually switch the polynomials representations for level-1 encodings
hi for 1 ≤ i ≤ κ+ 1 so that they take the form

Pi,1(X) = Pi,2(X) = X + ai − ω .

These polynomials are still valid and their degrees are exactly 1. Hence when multiplied together, the
resulting polynomial will be of degree s(κ + 1). Each of these hops can be bounded via the κ-Switch
game via Theorem 6.1.

Gameκ+2: This game only introduces a conceptual change: ai for 1 ≤ i ≤ κ+1 are generated as ai+ω. The
distributions of these values are still uniform and the exponent of the MDDH challenge when b = 1 is
now

z1 =

κ+1∏
i=1

(ai + ω) ,

which is a polynomial in ω of degree κ.

Gameκ+3: In this game we replace CMult with C∗Mult, a circuit that uses the implicit values [ωi] for 0 ≤ i ≤ κ
in steps 5 and 6. (Note that [P (ω)] can be computed using [ωi] when the coefficients of P are explicitly
known.) This change does not affect the functionality of the multiplication circuit and hence we can
bound this hope via PIO security. As a result, the explicit knowledge ω is no longer needed to generate
the multiplication circuit.

Gameκ+4: In this game, we replace [ωκ] with a random value [σ] in challenge preparation. (Note that level-κ
encodings correspond to the base group.) We can bound this hop via the κ-SDDH game.

In the final game the challenge exponent (when b = 1) is fully randomized. This means that the challenge
is independent of b in Gameκ+4, which concludes the proof.

7.2 Downgrading attacks

It might appear that our GES could be subject to a “downgrading” attack as follow. Start with any consistent
encoding h at level ` whose representation polynomial is of degree 0. Then “maul” h into an encoding at a
lower level `′ < ` by simply changing ` to `′ in h. Then use this malleability to attack, say, MDDH where
challenge encodings are canonical and of degree 0 (see Section 5.5).

What is crucial and prevents this downgrade attack is the proof system. The consistency proof π proves
that the encrypted values correspond to a polynomial P of degree up to ` such that P (ω) = z. Note that
this statement depends on `. Hence, a proof for a level-2 encoding cannot be “reused” for a level-1 encoding,
as in the attack: a single proof will not necessarily pass against two different statements even if they both
have the same witness. In order to downgrade, the proof would have to be changed.

Indeed, suppose that one had a method for changing a proof π2 of a level-2 encoding to a proof π1 of
the level-1 encoding (that is derived by simply omitting encrypted coefficients, as in a downgrading attack).
Consider what happens if one start with equivalent level-2 encoding (in the sense of our switching lemma)
with degree-2 polynomials P . Then, the statement that π1 proves becomes false, so any such attack would
contradict the soundness of the proof system.
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ysis of the multilinear map over the integers. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 3–12. Springer, Heidelberg, April
2015.
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[CLT15] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. New multilinear maps over the
integers. In Gennaro and Robshaw [GR15], pages 267–286.

23



[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation of proba-
bilistic circuits and applications. In Dodis and Nielsen [DN15], pages 468–497.

[DN15] Yevgeniy Dodis and Jesper Buus Nielsen, editors. TCC 2015, Part II, volume 9015 of LNCS.
Springer, Heidelberg, March 2015.

[EHK+13] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic frame-
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[LSS14] Adeline Langlois, Damien Stehlé, and Ron Steinfeld. GGHLite: More efficient multilinear maps
from ideal lattices. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 239–256. Springer, Heidelberg, May 2014.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from bilinear maps and block-
wise local prgs. Cryptology ePrint Archive, Report 2017/250, 2017.

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps: Crypt-
analysis of indistinguishability obfuscation over GGH13. In Robshaw and Katz [RK16], pages
629–658.

[OF15] Elisabeth Oswald and Marc Fischlin, editors. EUROCRYPT 2015, Part II, volume 9057 of
LNCS. Springer, Heidelberg, April 2015.

[PS15] Omer Paneth and Amit Sahai. On the equivalence of obfuscation and multilinear maps. Cryp-
tology ePrint Archive, Report 2015/791, 2015.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Garay and Gennaro [GG14], pages 500–517.

[RK16] Matthew Robshaw and Jonathan Katz, editors. CRYPTO 2016, Part II, volume 9815 of LNCS.
Springer, Heidelberg, August 2016.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM Press,
May / June 2014.

[ZSS04] Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. An efficient signature scheme from
bilinear pairings and its applications. In Feng Bao, Robert Deng, and Jianying Zhou, editors,
PKC 2004, volume 2947 of LNCS, pages 277–290. Springer, Heidelberg, March 2004.

A Details of the AFHLP Symmetric Multilinear Map

AFHLP [AFH+16] construct a symmetric κ-linear group scheme Γ relying on the following building blocks:
1. An algorithm SetupG that samples (a description of) a group G, along with a generator g of G and

the group order p.
2. A probabilistic indistinguishability obfuscator Obf .
3. An additively homomorphic public-key encryption scheme Π with plaintext space Zp (or alternatively,

a perfectly correct FHE scheme).
4. An extractable dual-mode NIZK proof system Σ.
5. A language family Λ with hard membership problem and unique witnesses.
We recall their construction in the section that follow.

A.1 Setup

The algorithm Setup for Γ gets as input 1λ and 1κ. It samples parameters ppG←$ SetupG(1λ) with
ppG := (G, g , p, 1), generates two encryption key pairs (pk j , sk j)←$ Gen(1λ) (for j = 1, 2), and a vector

ω ∈ Z`p where ` ∈ {2, 3}. G is called the base group. It then samples lk←$ GenL(1λ), and sets

gpk := (ppG, pk1, pk2, [ω], lk) .
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Let G(1λ) denote the randomized algorithm corresponding to the above steps that outputs gpk .
The setup algorithm continues by generating a common reference string crs ′←$ BCRS(gpk) using the

dual-mode NIZK procedure BCRS, and also a no-instance of Llk via y←$ NoSamL(lk). Setup then sets
crs := (crs ′, y).

Finally, Setup constructs two obfuscated circuits CMap and CAdd of circuits CMap and CAdd which will
be described in Sections A.4 and A.5, respectively. Setup then outputs the scheme parameters

pp := (gpk , crs,CAdd,CMap) .

A.2 Encodings

Level-0 encodings. The set of all level-0 encodings, S0, is defined to be Zp. Since efficient algorithms for
equality checking, sampling, extraction and addition are well known, we omit including these in the following
sections. Note that addition of encodings (see Section A.4) can be used to implement a multiplication of
level-0 encodings with encodings at higher levels, which is required by many applications.

Level-κ encodings. Set Sκ := G and use algorithms associated with G for equality checking, sampling,
extraction and addition.

Level-1 encodings. Encodings in S1 are tuples of the form h = ([z], c1, c2, π) where c1, c2 are two ciphertext
in the range of Enc(·, pk1) and Enc(·, pk2), respectively, and π is a NIZK proof under crs for a proof system
corresponding to (G,R := R1 ∨R2) as follows. Algorithm G(1λ) outputs gpk as defined above. Relation
R1 on input gpk , tuple ([z], c1, c2), and witness (x,y, r1, r2, sk1, sk2) accepts iff [z] ∈ G, the representations
of [z] as x,y ∈ Z`p are valid with respect to [ω] in the sense that

[z] = [〈x,ω〉] ∧ [z] = [〈y,ω〉] ,

(where 〈·, ·〉 denotes inner product) and the following ciphertext validity condition (with respect to the inputs
to the relation) is met:

c1 = Enc(x, pk1; r1) ∧ c2 = Enc(x, pk2; r2)

∨
(pk1,sk1)=Gen(sk1) ∧ (pk2,sk2)=Gen(sk2) ∧ x=Dec(c1,sk1) ∧ y=Dec(c2,sk2)

Relation R2 depends on Λ and on input gpk , an encoding ([z], c1, c2), and witness wy accepts iff
R(lk , y, wy) accepts. We note that AFHLP does not come with a validity check for encodings for the
same reason our construction fails to provide such an algorithm. (See Section 5.2 for more details.)

A.3 Equality

The equality algorithm Eq1 returns true iff their first components match in G. The correctness follows from
the fact that G has unique encodings.

A.4 Addition

This section gives a description of Add1 for adding level-1 encodings. The public parameters of the scheme
contain an obfuscation of the circuit CAdd shown in Figure 8 (top). Note that steps 5a or 5b are never
reached with a binding crs ′ (but they may be reached with a hiding crs ′ later in the analysis). Add1 runs
the obfuscated circuit on the input encodings. The correctness of this algorithm follows from the correctness
of Π, the completeness of Σ and the correctness, in our sense of (the possibly probabilistic) obfuscator Obf ;
see Section 2 for the definitions.
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Circuit CAdd[gpk , crs, sk1, sk2, tdext; r](h, h
′):

1. if ¬Val1(h) ∨ ¬Val1(h′) return ⊥
2. parse ([z], c1, c2, π)← h and ([z′], c′1, c

′
2, π
′)← h′

3. [z′′]← [z] + [z′]; c′′1 ← c1 + c′1; c′′2 ← c2 + c′2
4. // explicitly check relation R1 for h, h′ with witness sk1, sk2

4.1 x← Dec(c1, sk1);y← Dec(c2, sk2)
x′ ← Dec(c′1, sk1);y′ ← Dec(c′2, sk2)

4.2a if ([z] 6= [〈x,ω〉]) ∨ ([z] 6= [〈y,ω〉]) goto 5a
4.2b else if ([z′] 6= [〈x′,ω〉]) ∨ ([z′] 6= [〈y′,ω〉])

goto 5b
4.2c else goto 5c // R1 accepts h, h′ with witness sk1, sk2

5a. // R1 does not accept h
5a.1 w′y ←WExt(tdext, ([z], c1, c2), π; r)
5a.2 if ¬R2(gpk , (([z], c1, c2)), w′y) return ⊥
5a.3 π′′ ← Prove(gpk , crs, ([z′′], c′′1 , c

′′
2 ), w′y; r)

5b. repeat 5a with h′ // R1 does not accept h′

5c. π′′ ← Prove(gpk , crs, ([z′′], c′′1 , c
′′
2 ), (sk1, sk2); r)

6. return ([z′′], c′′1 , c
′′
2 , π

′′)

Circuit CMap[gpk , crs,ω, sk1](h1, . . . , hκ):

1. for i = 1 . . . κ
1.1 if ¬Val1(hi) return ⊥
1.2 ([zi], ci,1, ci,2, πi)← hi
1.3 xi ← Dec(ci,1, sk1)

2. z ←
∏κ
i=1〈xi,ω〉 (mod p)

3. return [z]

Figure 8: Top: Circuit for addition of encodings. Bottom: Circuit implementing the multilinear map.

A.5 The multilinear map

The multilinear map for Γ, on input κ encodings hi = ([zi], ci,1, ci,2, πi), uses sk1 to recover the representation
vectors xi. It then uses the explicit knowledge of ω to compute the output of the map as

e(h1, . . . , hκ) :=

[
κ∏
i=1

〈xi,ω〉

]
.

The product in the exponent can be efficiently computed over Zp for any polynomial level of linearity κ and
any ` as it uses xi and ω explicitly. The κ-linearity of the map follows from the linearity of each of the
multiplicands in the above product (and the completeness of Σ, the correctness of Π, and the correctness of
the obfuscator Obf). An obfuscation CMap of the circuit implementing this operation (see Figure 8, bottom)
will be made available through the public parameters and e is defined to run this circuit on its inputs.

A.6 Sampling

For sampling level-1 encodings, let x and y be vectors in Z`p satisfying 〈x,ω〉 = 〈y,ω〉, set [z] := [〈y,ω〉]
(which can be computed using [ω] and explicit knowledge of x) and define the output of Sam1 to be

h←
(
[z], c1 = Enc(x, pk1; r1), c2 = Enc(y, pk2; r2),

π = Prove(gpk , crs, ([z], c1, c2), (x,y, r1, r2); r
)
.

More concretely, AFHLP set x = y = (z, 0) when ` = 2 and x = y = (z, 0, 0) when ` = 3. (These
representations are called canonical.)
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A.7 Extraction

The extraction algorithm, on input ([z], c1, c2, π) ∈ S(z)
1 , applies a universal hash function to [z].

B Proof of Theorem 6.1: Indistinguishability of Encodings

Proof. We adapt the hybrids of [AFH+16, Theorem 5.3] to the graded setting. In the last hybrid, the
challenge encoding is drawn independently of the bit b, and therefore the advantage of any (even unbounded)
adversary is zero. Below we let Wi denote the event that Gamei outputs 1.

We proceed via a sequence of 5 games, starting with κ-Switch and ending in a game where the challenge
encoding is independent of the bit b.

Figure 5 shows the steps used in the proof of the theorem.

Game0: This is the original κ-Switch game (see Figure 4).

Game1: The public parameters are changed so that they include a hiding crs ′, a yes-instance y←$ YesSamL(lk)

and (probabilistic) obfuscations of the circuits Ĉ
(1)
Mult, and ĈAdd (see Figure 6). Recall that these cir-

cuits use the witness wy to y to produce the output proofs π′′. Therefore the simultaneous knowledge
of decryption keys (sk1, sk2) is not needed. By Lemma 6.2 we have that

|Pr[W0(λ)]− Pr[W1(λ)]| ≤ Advmem
Λ,B1

(λ) + 6 ·Advind
PIO,B2

(λ) + Advcrs
Σ,B3

(λ) .

Game2: As Game1, but now polynomial P1,2 is encrypted under pk2 regardless of the value of the bit b.
Thus, on A1’s response ((P0,1, P0,2), (P1,1, P1,2), `, st), the game sets c1 ← Enc(Pb,1, pk1) for a random
bit b, and c2 ← Enc(P1,2, pk2). We claim that

|Pr[W1(λ)]− Pr[W2(λ)]| ≤ Advind-cpa
Π,B4

(λ) .

Consider a ppt distinguisher B4 against the IND-CPA security of scheme Π (with respect to key pair
(sk2, pk2)) as follows. The distinguisher runs Game1 and uses A as a subroutine. When it receives
A1’s outputs ((P0,1, P0,2), (P1,1, P1,2), `, st), B4 generates c1←$ Enc(Pb,1, pk1) for a random bit b. It
then submits (Pb,2, P1,2) to its IND-CPA challenger and gets back a challenge c∗. It sets c2 := c∗.
The proof π on the instance x := ([z], c1, c2, `) is generated using the simulation trapdoor of the
proof system guaranteed by the zero-knowledge property. (Note that in contrast to the Naor–Yung
paradigm we do not prove an invalid statement and do not need to rely on simulation soundness.)
Namely, π←$ Sim(tdzk, x). Finally, B4 sets h := ([z], c1, c2, π, `) and runs A2(h, st) to get a bit b′.
It returns (b = b′). Game1 and Game2 differ only in how c2 and π for the challenge encoding are
generated. First note that real and simulated proofs are identically distributed under the hiding crs ′.
Second, letting d denote the IND-CPA challenge bit, when d = 0 ciphertext c2 encrypts Pb,2 and B4

perfectly simulates Game1 for A, and when d = 1 ciphertext c2 encrypts P1,2 and B4 perfectly simulates
Game2.

Game3: The public parameters are changed back so that they include a binding crs ′, a no-instance y←$ NoSamL(lk)
and obfuscations of circuits CAdd and CMult of Figures 2 and 3. Once again by Lemma 6.2 we have
that

|Pr[W2(λ)]− Pr[W3(λ)]| ≤ Advmem
Λ,B1

(λ) + 6 ·Advind
PIO,B2

(λ) + Advcrs
Σ,B3

(λ) .

Game4: The public parameters are changed so that they include a hiding crs ′, a yes-instance y←$ YesSamL(lk)

and obfuscations of circuits Ĉ
(2)
Mult and ĈAdd (see Figure 6). By Lemma 6.2

|Pr[W3(λ)]− Pr[W4(λ)]| ≤ Advmem
Λ,B1

(λ) + 6 ·Advind
PIO,B2

(λ) + Advcrs
Σ,B3

(λ) .
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Game5: The polynomial encrypted under public key pk1 is P1,1 regardless of the bit b. Thus, after receiving
((P0,1, P0,2), (P1,1, P1,2), `, st) from A1, the game sets c1 ← Enc(P1,1, pk1), and c2 ← Enc(P1,2, pk2).
Using a similar argument to that for Game2 we get that

|Pr[W4(λ)]− Pr[W5(λ)]| ≤ Advind-cpa
Π,B4

(λ) .

Finally, note that Pr[W5(λ)] = 1/2 because the challenge encoding is generated using the same pair of
polynomial representations (P1,1, P1,2) regardless of the value of the bit b. The proof of the theorem follows
by collecting the terms above.

C Proof of Lemma 6.2

Proof. We provide an outline of the game hops in Figure 9 and give the details next.

CAdd CMult

Gm. crs′ y knows knows π′′-witness Remark
0 binding /∈ Llk sk1, sk2, tdext sk1, sk2, tdext (sk1, sk2) or w′y
1 binding /∈ Llk sk1, sk1, tdext sk i, sk3−i, tdext (sk1, sk2) or w′y PIO/soundness

2 binding ∈ Llk sk1, sk1, tdext sk i, sk3−i, tdext (sk1, sk2) or w′y Llk hard

3 binding ∈ Llk sk1, sk2, wy sk i, sk3−i, wy (sk1, sk2) or wy PIO/unique wy

4 hiding ∈ Llk sk1, sk2, wy sk i, sk3−i, wy (sk1, sk2) or wy CRS indist.

5 hiding ∈ Llk wy sk i, wy wy (always) PIO/WI

Figure 9: Outline of the proof of Lemma 6.2. The underlined element in the “CMult knows” column indicates
which secret key is used to decrypt information used to construct [z′′]. For instance, in Game0, sk1 is used
to obtain P1 and P ′1, which are used to compute [z′′] = [(P1 ∗ P ′1)(ω)] by CMult. The “or” expressions in the
“π′′-witness” column specify which π′′-witness is used in steps 5.3 and 6 of CAdd (resp. steps 6.3 and 7 of
CMult). Hence, in Game0 the CAdd circuit uses (sk1, sk2) to construct π′′ in case P1(ω) = P2(ω) = z and
P ′1(ω) = P ′2(ω) = z′. Otherwise, CAdd uses the extracted wy as witness in π′′.

Game0: We start with a game that runs A on pp0; that is with an obfuscation of CAdd and CMult (see
Figures 2 and 3), and a no-instance y 6∈ Llk .

Game1: Our first change consists in modifying the obfuscated CMult so that in step 5 it uses Pi and P ′i
(instead of P1 and P ′1) to construct [z′′]. (Both keys are still needed in step 4.) Note there is no
change when i = 1, but when i = 2 we show this modification leads to a functionally equivalent circuit.
Indeed, since the NIZK proof system is perfectly sound (the crs ′ is binding) and y /∈ Llk , any valid
encoding must satisfy P1(ω) = Pi(ω). Hence, using (Pi, P

′
i ) instead of (P1, P

′
1) leads to the same circuit

outputs. The security of the obfuscator can be used to bound the difference in the outputs of Game0

and Game1.

Game2: We sample y ∈ Llk instead of y /∈ Llk . By the hardness of deciding membership for Llk , this only
negligibly changes the game’s output.

Game3: We hardwire the witness wy to y ∈ Llk in CAdd and CMult, and remove tdext from both circuits. We
claim that this change does not change the functionality of CAdd and CMult at all. To see this, recall
that Llk has unique witnesses. Hence, any witness w′y extracted by CAdd or CMult in Game2 must be
equal to the hardwired witness wy in Game3. Since crs ′ is binding, extraction will always succeed in
Game2 (if it comes to step 5.1 in CAdd or step 6.1 in CMult). Thus this transition can be justified by
the security of the obfuscator (for two circuits).
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Game4: The string crs ′ included in the public parameters is changed to the hiding mode. Hence proofs
generated under crs ′ will be perfectly witness indistinguishable in this game. This hop can be justified
by the CRS indistinguishability of the dual-mode NIZK proof system.

Game5: Here, once again change the way CAdd and CMult prepare proofs π′′. Specifically, we let CAdd

and CMult to always use the hardwired wy as witness to construct π′′, independently of whether or
not the encodings h, h′ are consistent. Hence, CAdd and CMult do not need to perform the explicit
consistency check anymore. This means that CAdd no longer needs sk1 or sk2, and CMult only needs sk i
(to retrieve Pi and P ′i from ci and c′i). These modifications do not change the output distributions of
CAdd and CMult. Indeed, we have only changed the witness used for π′′-proofs. By the perfect witness
indistinguishability of the proof system (under a hiding CRS), the distributions of the resulting proofs
remain identical. Hence, we can use the obfuscator’s indistinguishability security against X-IND
samplers twice to justify our transition from Game4 to Game5.

Observe that in Game5 the modified public parameters are identically distributed to pp1. Indeed, we
have y ∈ Llk by the change introduced in Game2, the CRS crs ′ is hiding by the change in Game4, and
circuits CAdd and CMult always use a hardwired wy as a witness to construct π′′-proofs. Furthermore, CMult

uses sk i to retrieve Pi and P ′i , in order to compute [z′′] = [(Pi ∗P ′i )(ω)]. These changes render CAdd identical

to ĈAdd and CMult identical to Ĉ
(i)
Mult.

D Proof of Theorem 7.1: The MDDH Problem

Proof. We give a sequence of κ + 4 games, where in the last game, for case b = 1 the challenge exponent z
is also uniformly distributed. Below we let Wi denote the event that Gamei outputs 1.

Game0: This is the κ-MDDH game as shown in the middle of Figure 7.

Game1–Gameκ+1: In this sequence of games, Gamei proceeds similarly to Gamei−1 with the difference that
the representations Pi,1, Pi,2 of the i-th challenge encoding hi (which are at level 1) are no longer of
the form

Pi,1(X) = Pi,2(X) := ai

but set to
Pi,1(X) = Pi,2(X) := X + ai − ω .

These representation polynomials are valid and of degree exactly 1, the maximum allowed degree at
level 1. We claim that

|Pr[Wi−1(λ)]− Pr[Wi(λ)]| ≤ Advκ-switch
Γ,B1

(λ) for 1 ≤ i ≤ κ+ 1 .

Given an attacker A distinguishing Gamei−1 and Gamei, we build a ppt adversary B1 against game κ-
Switch of Figure 4. Algorithm B1 outputs ((Pi−1,1, Pi−1,2), (Pi,1, Pi,2), ` = 1, st) representing a uniform
value ai in Zp, where (Pi−1,1, Pi−1,2) is as in Gamei−1 and (Pi,1, Pi,2) as in Gamei as above. Observe
B1 can indeed construct these polynomials because it knows ω and ai explicitly (and furthermore they
are admissible because at level 1 polynomials can have degree up to 1). Algorithm B1 receives an
encoding hi of ai that has (Pi+b−1,1, Pi+b−1,1) for a random bit b embedded in it. It uses hi to simulate
Gamei+b−1 for A, and outputs what A outputs.

Gameκ+2: The i-th source exponent is changed to a′i = ai+ω for randomly chosen ai ∈ Zp and 1 ≤ i ≤ κ+1.
Also, the polynomial representations of a′i is set to Pκ+2,1(X) ≡ Pκ+2,2(X) = X + ai, which has the
same degree as the polynomials in Gameκ+1. This means that the exponent of the target encoding h∗b
when b = 1 is

z∗1 = Q(ω) := (ωs + a1) · · · (ωs + aκ+1) . (3)
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Note that Q has degree κ+ 1 and its (κ+ 1)-th coefficient is 1. The distribution from which the κ+ 1
exponents a′i are drawn has not changed and is uniform. Therefore

Pr[Wκ+1(λ)] = Pr[Wκ+2(λ)] .

Gameκ+3: The differences with the previous game are two-fold. First, when b = 1, the challenge en-
coding h∗1 = [Q(ω)] is generated evaluating polynomial Q(X) at X = ω in the exponent using(
[1], [ω], . . . , [ωκ+1]

)
, and the explicit knowledge of the coefficients (q0, . . . , qκ+1) of polynomial Q(X)

obtained by expanding Equation 3. This change is purely conceptual.

The second difference is that we obfuscate circuit C∗Mult which has the powers
(
[1], [ω], . . . , [ωκ]

)
hard-

wired in and computes the map implicitly in the exponent. In more detail, this circuit extracts the
representation polynomials P1, P ′1 from the input encodings (at levels ` and `′ respectively) and eval-
uates P ′′ := P1 ∗ P ′1 at ω in the exponent using

(
[1], [ω], . . . , [ωκ]

)
. The latter is possible because by

the perfect soundness of the proof system under a binding CRS, P1 (respectively, P ′1) is of degree at
most ` (respectively, `′), and therefore P ′′ is of degree at most (`+ `′) ≤ κ. This modification therefore
results in a functionally equivalent circuit (both compute [P ′′(ω)]). Since C∗Mult is of polynomial size,
we conclude that obfuscations of these two circuits are indistinguishable:

|Pr[Wκ+1(λ)]− Pr[Wκ+2(λ)]| ≤ Advind
PIO,B2

(λ) .

Gameκ+4: We regard the degree κ + 1 polynomial Q(X) of Equation (3) as a multivariate Zp-polynomial
Q′(Y1, . . . , Yκ+1) in κ + 1 unknowns by renaming variables Xi to Yi. In this game when b = 1 the
challenger samples random ω, τ ∈ Zp and sets

h∗1 = [z∗1 ] := [Q′(ω, ω2, . . . ωκ, τ)] ,

where Q′ is evaluated in the exponent using ([ωi])0≤i≤κ and [τ ]. We emphasize that circuit C∗Mult still
has

(
[1], [ω], . . . , [ωκ]

)
hardwired as in the previous game. We claim that

|Pr[Wκ+3(λ)]− Pr[Wκ+4(λ)]| ≤ Adv
(κ)-sddh
G,B3

(λ) .

This immediately follows because an adversary B3 against (κ)-SDDH on receiving challenge (([ωi])0≤i≤κ, [τ ]
)

can simulate Gameκ+3 if τ = ωκ+1, or Gameκ+4 if τ is random.

To see that Pr[Wκ+4] = 1/2 it suffices to show that in Gameκ+4 exponent z∗1 is randomly distributed over
Zp. This follows because the leading coefficient of Q′ is 1, and therefore the map f(X) := Q(ω, . . . , ωκ, X)
defines a bijection over Zp mapping a uniform τ into a uniform z∗1 = f(τ).
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