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Abstract

We consider a game-theoretical multi-agent learning problem where the feedback
information can be lost during the learning process and rewards are given by a
broad class of games known as variationally stable games. We propose a simple
variant of the classical online gradient descent algorithm, called reweighted online
gradient descent (ROGD) and show that in variationally stable games, if each
agent adopts ROGD, then almost sure convergence to the set of Nash equilibria is
guaranteed, even when the feedback loss is asynchronous and arbitrarily corrrelated
among agents. We then extend the framework to deal with unknown feedback loss
probabilities by using an estimator (constructed from past data) in its replacement.
Finally, we further extend the framework to accomodate both asynchronous loss
and stochastic rewards and establish that multi-agent ROGD learning still converges
to the set of Nash equilibria in such settings. Together, these results contribute
to the broad lanscape of multi-agent online learning by significantly relaxing the
feedback information that is required to achieve desirable outcomes.

1 Introduction

In multi-agent online learning [13, 14, 21, 45], a set of agents repeatedly interact with the environment
and each other while accumulating rewards in an online manner. The key feature in this problem is
that to each agent, the environment consists of all other agents who are simultaneously making such
sequential decisions, and hence, each agent’s reward depends not only on their own action, but also
on the joint action of all other agents. A common way to model reward structures in this multi-agent
online learning setting is through a repeated but otherwise unknown stage game: the reward of the
i-th agent at iteration n is 7;(al, a™;), where al is agent i’s action at n and a”; is the vector of all
other agents’s actions at stage n.

Even though the underlying stage game is fixed (i.e. each r;(-) is fixed), from each agent’s own
perspective, its reward is nevertheless a time-varying function when viewed solely as a function
of its own action, i.e., r7"(-) = 7;(-,a™;), and it needs to select an action a}' before receiving
the reward r*(al’). As such, each agent is exactly engaged in a classical online learning process
[9, 23, 42, 43]. In this context, there is a fruitful line of existing literature providing a rich source
of online learning algorithms to minimize the standard performance metric known as regret [10],
defined as Reg'® = maxa,ea Y, {r!(a;) — rf(a!)} with the sequence of actions af generated
by some online learning algorithm Alg. These algorithms, already classical, include “follow-the-
regularized-leader” [26], online gradient descent [57], multiplicative/exponential weights [3], online
mirror descent [44], and many others. Perhaps the simplest algorithm in the above list is Zinkevich’s
online gradient descent (OGD) method, where the agent simply takes a gradient step (using their
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current reward function) to form the action for the next stage, performing a projection if the iterate
steps out of the feasible action set. This algorithm, straightforward as it is, provides (asymptotically)
optimal regret guarantees (see Section B in the appendix for a brief review) and is arguably one of the
most well-studied and widely-used algorithms in online learning theory and applications [24, 39, 57].

Consequently, several natural questions arise in multi-agent online learning : if each agent adopts
OGD to minimize regret, what is the resulting evolution of the joint action? Specifically, under what
games/assumptions would it lead to a Nash equilibrium (the leading solution concept in multi-agent
games)? These questions fall in the broader inquiry of understanding the joint convergence of
no-regret online learning algorithms, an inquiry that lies at the heart of game-theoretical learning
for well-grounded reasons: Specifically, studying whether the process converges at all provides an
answer as to the stability of the joint learning dynamics, while studying whether it converges to a
Nash equilibrium provides an answer as to whether the joint learning dynamics lead to the emergence
of rationality. Specifically, for the latter point, if, when agents adopt an online learning algorithm
the joint action converges to a point that is not a Nash equilibrium, each agent would be able to do
better by unilaterally deviating from that algorithm. Hence, convergence to a non-Nash point would
inherently produce “regret" in equilibrium.

1.1 Related Work

Despite the fact that game-theoretic learning has received significant scrutiny in the literature, the
questions raised above are still open for several reasons.

First, in general, joint convergence of no-regret learning does not hold. In fact, even in simple finite
games (where each agent has a finite number of actions), no-regret learning may fail to converge [31].
Even if it does converge, in mixed extensions of finite games (where each agent’s action set is a
probability simplex over a finite number of actions), the limit can assign positive weight only to
strictly dominated actions. Consequently, establishing joint convergence to Nash equilibria under
no-regret learning algorithms (OGD included) for a broad and meaningful subclass of games has
been a challenging ongoing effort.

Second, the extensive existing literature in the field has mainly focused on studying convergence in
(mixed extensions of) finite games [8, 34, 45, 46]. Earlier work of game-theoretic learning (see [18]
for a comprehensive review) has mainly focused on learning in finite games with dynamics that are
not necessarily regret-less (e.g. best-response dynamics, fictitious play and the like). Subsequently,
the seminal work [14] (see also the many references therein) has provided a unified treatment of
joint convergence of various no-regret learning algorithms in mixed extensions of finite games.
The primary focus of [14] is convergence to other, coarser equilibrium notions (e.g. correlated
equilibria), where a fairly complete characterization is given. On the other hand, as pointed out
in [14], convergence to Nash is a much more difficult problem: recent results of [47] have clearly
highlighted the gap between (coarse) correlated equilibria obtained by no-regret learning processes
and Nash equilibria. More positive results can be obtained in the class of potential games where, in
a recent paper, the authors of [15] established the convergence of multiplicative weights and other
regularized strategies in potential games with only payoff-based, bandit feedback.

However, moving beyond mixed extensions of finite games, much less is known, and only a moderate
amount of literature exists. In the context of mixing in games with continuous action spaces, the
authors of [37] provide a convergence analysis for a perturbed version of the multiplicative weights
algorithm in potential games. In a pure-strategy setting, the network games considered in [29]
belong to the much broader class of games known as concave games: each agent’s reward function is
individually concave.! Therein, the dynamics investigated may lead to positive regret in the limit.
The recent paper [5] studied a two-player continuous zero-sum game, and showed that if both players
adopt a no-regret learning algorithm, then the empirical time-average of the joint action converges
to Nash equilibria. However, barring a few recent exceptions, the territory of no-regret learning on
concave games is not well understood (let alone in general games with continuous action sets). An
exception to this are the recent papers [30, 32] where the authors establish the convergence of mirror

'In this vein, mixed extensions of finite games can be called linear games, because each agent’s reward is
individually linear in its own action. Note also that convex potential games is a subclass of concave games.
The following gives the set membership: finite games C mixed extension of finite games C concave games C
general continuous games.



descent in monotone games — a result later extended to learning with bandit, zeroth-order feedback in
[7, 11].

Third, the convergence mode that is commonly adopted in the existing literature is ergodic conver-
gence (i.e. convergence of % Z;:n al), rather than the convergence of the actual sequence of play
(i.e. a™). The former is convergence of the empirical frequency of play, while the latter is convergence
of actual play: note that the latter implies the former, but not the other way round. It is important
to point out, however, that convergence of the actual sequence of play is more desirable” not only

because it is theoretically more appealing, but also because it characterizes the joint evolution of the

system in no-regret learning (since a™, rather than + Zi:n a', is the actual action taken).

n

This issue was highlighted in [31], where it is shown that even though continuous-time follow-
the-regularized-leader (another no-regret learning algorithm) converges to Nash equilibrium in
linear zero-sum games in the sense of time-averages, actual play orbits Nash equilibria in perpetuity.
However, most of the existing work focus on establishing ergodic convergence (which granted is some
form of stability), where the tools developed are far from sufficient to ensure convergence of actual
play. Some recent exceptions in specific games do exist: [27, 28] studied nonatomic routing games (a
special class of concave games) and established that both online mirror descent and multiplicative
weights (yet another two no-regret algorithms) converge to Nash equilibria; while [36] established
multiplicative weights converge to Nash equilibria under certain conditions in atomic routing games
(a subclass of finite games). Theoretically, the main difficulty in establishing convergence of the
sequence of play lies in cleverly designing (as done in [27, 28, 36, 53]) specific and much sharper
Lyapunov functions for the specific learning algorithms at hand. This difficulty is partially overcome
in [11] for strongly monotone games where, assuming perfect gradient observations, an O(1/n)
convergence rate is established.

1.2 Our Contributions

In this paper, we study the convergence of OGD to Nash equilibrium in general continuous games.
To the best of our knowledge, the existing state-of-the-art convergence guarantee is that multi-agent
OGD converges to Nash equilibria in monotone games in the sense of ergodic averages, a result
due to [35]. Monotone games® are an important and well-known subclass of concave games (in
particular, it includes convex potential games as a special case). On a related note, a very recent
paper [41] considered pseudo-monotone games (which strictly contain monotone games but also
belong to concave games) and devised two distributed algorithms for computing Nash equilibria.
However, it is far from clear that the algorithms devised are no-regret when used in an online fashion.

In this paper, we work with a broad class of general continuous games (not necessarily concave even),
known as variationally stable games [53, 54], that strictly include pseudo-monotone games (and
hence, in a chain of inclusion, monotone games and convex potential games), and also nonatomic
routing games, linear Cournot games, resource allocation auctions, etc. More importantly, we go a
step further and consider an even more general multi-agent online learning problem, where we allow
agents to have asynchronous gradient feedback losses (note that so far the game-theoretical learning
discussion is under perfect feedback, where the resulting landscape is already challenging). More
specifically, instead of assuming that every agent receives information at every stage, we allow for
cases where a (random) subset of agents remains informed (specifically, each agent ¢ has a probability
p; of receving the feedback and probability 1 — p; of losing it).

Two important features of this model are: 1) the feedback loss can be asynchronous; 2) the feedback
loss can be arbitrarily correlated among agents (whether some agent loses its feedback on the current
iteration may affect whether others lose theirs). In this asynchronous context, we design a simple
variant of OGD, called reweighted online gradient descent (ROGD), where each agent corrects its
own marginal bias via dividing the received gradient (if any) by p;. This is inspired by the classical
EXP3 algorithm [4, 12]) in the multi-armed literature, where it has a similar feature of weighting the
observed bandit feedback by the probability of selecting the corresponding arm. We then establish in

20f course, convergence in ergodic average is still valuable in many contexts, particularly when convergence
of actual play fails to hold.

*In short, it means (Va, 71(-), Vay 72(-), - - -, Va,, 7n(-)) is a monotone operator on the joint action space.
Note that if there is only 1 player, this means the underlying problem is a convex optimization problem since the
gradient of a convex function is monotone. In this case, a Nash equilibrium is a globally optimal solution.



Theorem 4.3 that, in this asynchronous feedback loss setting, the sequence of play induced by joint
ROGD converges almost surely to Nash equilibria in variationally stable games. We achieve this
strong theoretical guarantee by designing an energy function that sharply tracks the progress made in
the joint evolution of the ROGD update of all agents under feedback loss. We mention that a very
recent work that also studies multi-agent online learning under imperfect information at the generality
of variationally stable games is [53]. In particular, it is shown there that online mirror descent (also
no-regret) converges to Nash even in the presence of super-linear but sub-quradtic growing delays
in gradients. However, in that context, in addition to studying a different algorithm, [53] focuses
on delays and in particular requires all gradients to be received (i.e. no gradient loss is allowed).
Consequently, the results in [53] are strictly complementary to ours here: in particular, it is unclear
whether online mirror descent would converge to Nash under feedback loss.

Finally, we make two practically useful and theoretically meaningful extensions. First, we extend
to the case where the loss probabilites (which are assumed to be known so far) are not known. In
this case, we can replace the actual probabilities p; by an estimate. Our main message (Theorem
5.1) is that provided the estimator is v/n-consistent, then convergence to Nash in last iterate under
ROGD is still guaranteed. Note that a simple estimator that satisfies this guarantee is the sample mean
estimator (with Laplace smoothing). Second, we extend the multi-agent online learning setup to also
accomodate for stochastic reward functions, where in each iteration only a random reward function is
realized. In such cases, we first note an important equivalence result, both from a modeling standpoint
and from a proof standpoint: the setup where agents’ reward functions are iid can be identified
with the setup where agents’ reward functions are fixed and deterministic but the received feedback
gradients are noisy (but unbiased). We then establish that (in either setup) multi-agent ROGD learning
still converges almost surely to the set of Nash equilibria when noise has bounded support (Theorem
E.4 in the appendix); and converges in probability to the set of Nash equilibria if noise has unbounded
support but has finite second moment (Theorem E.6 in the appendix): both are in last iterate. Due to
space limitation, this part is placed in the appendix. Together, these results not only make meaningful
progress towards the challenging open problem of convergence of no-regret algorithms to Nash in
general continuous games under perfect information, but also, more importantly, contribute to the
broad lanscape of multi-agent online learning under imperfect information.

2 Problem setup

2.1 Rewards for Multi-Agent Online Learning

We consider a general continuous game model for the rewards in multi-agent online learning:

Definition 2.1. A continuous game G is a tuple G = (N, A = Hf\il Ai, {ri}X.,), where NV is the
set of N agents, X; is a convex and compact subset of R% representing the action space of agent i,
and r;: A — R is agent ’s reward function, such that r;(a) = r;(a1, az,...,an) is continuous in a
and continuously differentiable in a; for each i € A and V,,7;(a) is Lipschitz continuous in a.

Definition 2.2. Given a continuous game G, a* € X is called a Nash equilibrium if for each i € N/,
ri(a;,a*;) > ri(ai, a*;),Ya; € X;.

For the rest of the paper, we set d = Zfil d;, which denotes the dimension of the joint action space:
A C R?. Variables associated with agent i are denoted by subscripts. If there is no subscript, then it is
understood that it is a joint variable of all agents. When each agent is applying* OGD independently,
we obtain multi-agent OGD in Algorithm 1 (we assume Y~ | Y541 = 00, 2o | Y2, 1 < 0O):

“Note that in particular, the gradient here is a partial gradient with respect to one’s own action, and its
dimension is equal to d;, the dimension of its own action space.



Algorithm 1: Multi-Agent OGD Learning

Require: Each agent i picks an arbitrary a? € R%
1: n <0, y,? — a?
2: repeat

3. for each agent ¢ do

szH_l =y + 'Yn-&-lvairi(an)

4
st =Proj ()
6: end for

7 n<n+1
8: until end

2.2 Asynchronous Feedback Loss

The setup described in Algorithm 1 is multi-agent learning under perfect feedback information. Here
we extend the model to allow for asynchronous feedback loss, where at each time step, only a subset
N7 C N of the agents receive their gradients from time’ n, while other agents’ gradients are lost.
We assume that this subset is drawn iid from a fixed distribution across time steps.

To faciliate the discussion, let the indicator variable I i"“ be 1 if agent ¢’s gradient from n is received
(at the beginning of n + 1) and 0 otherwise. Mathematically:

e [ ifie N 2.1)
t 0, ifsi¢ N

Note that under this model, even though N n+1 ig drawn iid across time steps, within the same
time step, IZ-”Jr1 and ™! can be arbitrarily correlated (whether agent i’s feedback is lost can
influence whether agent j’s feedback is lost). We assume each agent ¢ only knows its own marginal
loss probability 1 — p;, where p; = E[T Z-”“]. We refer to this setup as asynchronous feedback
loss, because different agents can have different feedback loss pattern at any iteration. Applying
multi-agent OGD in the feedback loss model yields:

Algorithm 2: Multi-Agent OGD Learning under Asynchronous Feedback Loss

Require: Each agent i picks an arbitrary A? € R%
I n+0,Y2«+ A?

2: repeat

3:  for each agent ¢ do

4: Yn+1 _ Y;n +’yn+1vairi(A”), ifIin—H =1
: i Y;’,na if Iin+1 =0

5 A = Proj 4 (V")
6: end for

7 n+<n-+1

8: until end

Here we have capitalized the iterates Y;", A7 because they are now random variables (due to random
feedback loss). Specifically, denoting by I the vector of indicator variables for all the agents, we have
that both Y;* and A” are adapted to A%, I', % ... I™. Note the important but subtle point here: Y;"
and A? are not adapted to AY, I}, I2, ... I", because each individual’s gradient update is coupled

with all the other agents’ actions, which is a fundamental phenomenon in multi-agent learning.

2.3 Variationally Stable Games

Consequently, special structures must be imposed on the games/reward functions. Here we consider
a broad meta class of games, called variationally stable games [32, 54], that contain many existing

Here the superscript n + 1 means that set A" is revealed at the beginning of time n + 1



well-known classes of games, such as convex potential games, monotone games, pseudo-monotone
games [56], coercive games [41], influence network games [52, 55], non-atomic routing games [40].
See [53] for more details.

Definition 2.3. G is a variationally stable game if its set of Nash equilibria .4* is non-empty and
satisfies: (V,r(a),a — a*) £ Zf\[ﬂ(Vairi(a),ai —af) <0,Va € A, Va* € A*, with equality if
and only if a € A*.

Remark 1. Monotone games require (V,7(a) — V,r(a’),a—a’) <0,Va,a’ € A. Pseudo-monotone
games require: if (V,r(a’),a —a’) <0, then (V,r(a),a —a’) <0,Va,a’ € A. That monotone is
a special case of pseudo-monotone is obvious. That pseduo-monotone is a special case of variational

stability follows by recalling the standard characterization of a Nash equilibrium: a* satisfies
(Var(a*),a —a*) <0,Va € A.

In the presence of feedback loss, the convergence of multi-agent OGD given in Algorithm 2 to Nash
equilibria cannot be guaranteed in variationally stable games (and there exist cases where it doesn’t,
in fact, convergence of OGD is not guaranteed even in convex potential games). In the next section,
we present a simple modification of the vanilla multi-agent OGD that will later be shown to converge
to Nash equilibria, even in the presence of asynchronous delays. We shall then see that as a corollary
(see Corollay 4.4), multi-agent OGD will converge to the set of Nash equilibria (almost surely) if the
feedback loss are synchronous (and as a further special case, if there is no feedback loss).

3 Algorithm and energy function

In this section, to deal with asynchronous feedback loss, we give a new algorithm called Reweighted
Online Gradient Descent (ROGD) for the multi-agent learning problem.

3.1 Reweighted Online Gradient Descent

The main idea in the modification of OGD lies in each agent individually correcting its marginal bias
(which comes from the loss of the gradient feedback) by dividing the probability. More specifically,
when a gradient is lost on the current time step, the agent uses the previous action as in OGD.
Otherwise, when a gradient is indeed available, the gradient will be weighted by p; first before getting
updated. This results in reweighted online gradient descent:

Algorithm 3: Multi-Agent ROGD Learning under Asynchronous Feedback Loss

Require: Each agent i picks an arbitrary A? € R%

I n<+ 0,V «+ A9

2: repeat

3. for each agent ¢ do
if It =1
if 1" =0

V. ri(A™)
Yn-l—l _ }/Zn + Yn+1 ‘ D 5
i

yn

70
5 AP = Proj 4 (V")
6: end for
7
8

&

n<n+1
: until end

We emphasize once again that the gradient loss among agents can be correlated. However, in ROGD,
each agent only corrects its own marginal bias and does not concern itself with other agents’ feedback
loss. To analyze the ROGD algorithm, we next introduce an important theoretical tool.

3.2 Energy Function

We start by defining the energy function, an important tool we use to establish convergence later. a*
is always any fixed Nash equilibrium.

Definition 3.1. Define the energy function L : R? — R as follows:
L(y) =[la"[|3 = [IProj 4 (w)lI3 + 2(y, Proj.a(y) — a”). (ER))



Lemma 3.2. Let y" be a sequence in R¢
1. L(y™) — 0 implies Proj 4,(y") — a*.

%,for any y,y € R4

2. ||Proj(y) — gll5 — IProj 4(9) — 9113 < lly — 9

3. Ly + Ay) — L(y) < 2(Ay, Proj 4(y) — a*) + | Ayl[3. for any y, Ay € R?.
Remark 2. The second statement of the lemma serves as an important intermediate step in proving the
third statement, and is established by leveraging the envelop theorem and several important properties
of Euclidean projection. To see that this is not trivial, consider the quantity |Proj ,(y) — 7|2 —
|IProj 4 (77) — 9||2, which we know by triangle’s inequality satisfies:

[Proj 4 (y) — dll2 — [Proj4(9) — gll2 < [[Proj.(y) — Proj4(9)ll2 < lly — 9ll2, (32)
where the last inequality follows from the fact that projection is an non-expansive map. However, this
inequality is not sufficient for our purposes because in quantifying the perturbation L(y+ Ay) — L(y),
we also need the squared term || Ay||2, which is not easily obtainable from Equation (3.2). In fact, a
finer-grained analysis is needed to establish that ||y — §||3 is an upper bound on ||Proj 4(y) — 9|3 —
IProj 4 (5) — 33

4 Almost sure convergence to Nash equilibria

In this section, we establish that when agents’ rewards come from a variationally stable game, multi-
agent ROGD converges to the set of Nash equilibria almost surely under asynchronous feedback loss.
For ease of exposition, we break the framework into three steps, each of which centers on one idea
and is described in detail in a subsection. All the proof details are given in the appendix. For the first
two subsections, let a* be an arbitrary Nash equilibrium.

4.1 Controlling the Tail Behavior of Expectation

Our first step lies in controlling the tail behavior of the expected value of the sequence
{{Var(A™),a* — A™)}>2 . Note that by variational stability, we have:

Vn, (Var(A™),a* — A™) > 0, as.

Consequently, E[(V,r(A™),a* — A™)] > 0, Vn. By leveraging the energy function, its telescoping
sum and an appropritate conditioning, we show that (next lemma) this sequece of expectations should
be rather small in the limit and its tail should “mostly" go to 0.

Lemma 4.1.

o0

> 1 E[(Var(AY),a* — A")] < o 4.1

t=0
Remark 3. Since y,°  Yn41 = 00, Lemma 4.1 that lim inf,,_, o E[(V,7(A"),a* — A")] = 0. Note
that the converse is not true: when a subsequence of {E[(V,r(A"), a* — A™)]}52, converges to 0,
the sum need not be finite. As a simple example, consider y,41 = 7., and
Lift =2~

E[(Var(A™),a* — A™)] = { '

4.2
1, otherwise. 4.2)

Then the subsequence on indicies 2¥ converges to 0, but the sum still diverges. This means that
Equation (4.1) is stronger than subsequence convergence.

4.2 Bounding the Successive Differences

However, Equation (4.1) is still not strong enough to guarantee that lim,, o, E[(V,r(A"),a* —
AYH] = 0, let alone lim,, oo (Vor(AY),a* — AY) = 0,a.s.. This is because the convergent sum
given in Equation (4.1) only limits the tail growth somewhat, but not completely. As an example to
demonstrate this point, let C; be the following boolean variable®:

_ {1, if ¢ contains the digit 9 in its decimal expansion 43)

t — .
0, otherwise.

®By it definition, co = 1, ¢11 = 0.



LifCc, =1
1,ifC, = 0.
a straightforward calculation that >,° ( vn41 E[(V,7(A"),a* — A')] < oo (see Problem 1.3.24
in [16]). However, the limit E[(V,r(A"),a* — A")] does not exist.

Now define 7,11 = i, and E[(V,r(A"),a* — A")] = { Then it follows from

This indicates that to obtain almost sure convergence of (V,r(A™),a* — A™) to 0, we need to
impose more stringent conditions to ensure its sufficient tail decay. One way is to bound the
difference between every two successive terms in terms of a decreasing sequence. This ensures that
(Var(A?), a* — At) cannot change two much from iteration to iteration. Further, the change between
two successive terms will become smaller and smaller. This result is formalized in the following
lemma (the proof is given in the appendix):

Lemma 4.2. There exists a constant C' > 0 such that for every n,

(Var(A™TY) a* — A™TY) — (Vr(A™),a* — A™) < Capy1,a.s. (4.4)

4.3 Main Convergence Result

We are now finally ready to put all the pieces together and state the main convergence result.

Theorem 4.3. Let the reward functions be given from a variationally stable game. Define the
point-to-set distance in the standard way: dist(a, A*) = inf,-c 4+ |la — a*||a. Then for any
strictly positive probabilities {pi}ij\il, ROGD converges almost surely to the set of Nash equilibria:
lim,, oo dist(A™, A*) = 0 a.s., as n — oo, where A™ is a sequence generated from Algorithm 3.

Remark 4. As a quick outline here (the details are in appendix), pick an arbitrary Nash equilibrium
a* € A*. Lemma 4.1 and Lemma 4.2 will together ensure that lim,,_, o (V,r(A%),a* — A") =0, a.s.
Since (V,r(a),a* — a) > 0 if and only if a ¢ A* and (V,r(a),a* — a) = 0 if and only if
a € A*, it then follows by continuity of V,7(+) that lim,, o (V,7r(A?),a* — At) = 0, a.s. implies
lim,, o dist(A™, A*) = 0 a.s..

Although not mentioned in this theorem, another useful and interesting structural insight to point
out here is that as (V,r(A"),a* — A") converges to 0, if it ever becomes 0 at n, then A* € A*, and
furthermore, the joint action will stay exactly at that Nash equilibrium forever. Why? There are two
cases to consider.

1. First, this Nash equilibrium a* is an interior point in A. In this case, V,r(a*) = 0 and
hence V,7(A™) = 0. Consequently, per the ROGD update rule, whether any agent updates
or not does not matter: either the gradient is not received, in which case no gradient update
happens; or a gradient is received, but at this Nash equilibrium, it is 0 and therefore nobody
will want to make any update.

2. Second, this Nash equilibrium a* is a boundary point in 4. In this case, V,r(a*) may
not be 0, but it always points outside the feasible action set .A4. Consequently, even if an
agent receives a gradient and hence makes a gradient update, its action will immediately
get projected back to the same point. As a result, the joint action A™ will stay exactly at A
(even though the Y variables will still change).

Corollary 4.4. Under the same setup as in Theorem 4.3, if feedback loss is synchronous on average
(pi = pj, Vi, j), then multi-agent OGD in Algorithm 2 converges almost surely to A* in last iterate.

This can be easily seen that by noting that the probability can be absorbed into the step-size.

Corollary 4.5. Under the same setup as in Theorem 4.3, if there is no feedback loss (p; = 1,V1),
multi-agent OGD in Algorithm 2 converges to A* in last iterate.

Remark 5. Note that as stated, our above results require a joint learning step-size policy, even if
there is no missing gradient feedback — otherwise, the players’ individual gradients weighted by
individual step-sizes might not be “stable” and can cause divergence (and, of course, the situation
only becomes worse in the “lossy” regime). That said, our analysis still holds if each player i € A/
uses an individual step-size policy ¥/, such that limsup,, ., v’ /74 < oo for all pairs i, j € N, i.e.,
if the players’ updates do not follow different “time-scales” (so to speak). In that case however, the
proofs (and the overall write-up) would become much more cumbersome, so we avoided this extra
degree of generality in this paper.



5 Extension: Unknown Loss Probabilities

So far we have assumed p;’s are known. We close the paper with a brief comment on how to remove
this assumption. When each agent ¢ does not know the underlying loss probability p;, ROGD is
no longer feasible. To overcome this, we use an estimator p; (obtainable from the past history) in
replacement of the true probability p;. Since the only information an agent has is the past history
of received gradients, we require the estimator p; to be adapted to the sequence of the indicator
functions I}’s: pI* = pt(I}, ..., I"). The resulting algorithm will be called EROGD. An estimator p™

is called \/n-consistent if E[(p" — p)?] = O(L), where p is the true parameter (note that it is called
\/n-consistent because root-mean-squared error is typically used to define the rate of consistency.).
We have the following result (proof omitted due to space limitation):

Theorem 5.1. Under the same setup as in Theorem 4.3, if p1* is /n-consistent for every i € N, and
iy ’ynﬁ < 00, then the last iterate of EROGD converges to A* in probability.

Remark 6. One simple estimator that is 1/n-consistent is sample mean with smoothing (where the
ntl _ 200 741
7 - n+1

step-size sequences satisfy the requirement: examples include ~,, = n% where 0.5 < v < 1.

smoothing is used to prevent the estimator from ever reaching 0): p . Further, many

6 Concluding remarks

In this paper, we have provided an algorithmic framework to deal with multi-agent online learning
under feedback loss and obtained broad convergence-to-Nash results under fairly general settings.
We also believe more exciting work remains. For instance, our formulation is game-theoretical
where participating agents are self-interested. A parallel facet to multi-agent online learning is
coordination [1, 2, 17, 20], where participating agents coordinate to achieve a common goal. Un-
derstanding how to effectively cooperate under imperfect information will be an interesting future
direction. Another direction is to incorporate state into the reward and allow actions to also depend
on the underlying state that may transition. Such settings belong broadly to multi-agent online policy
learning, where the imperfect information regime is under-explored. Empirically, we believe the
recent advances in deep learning and representation learning could possibly [19, 33, 48-50] provide
a flexible architecture for learning good policies in the imperfect information regime, although
characterizations of theoretical guarantees may require novel machinery. Finally, it would also be
interesting to further extend the results into partial feedback settings. In the presence of a single
agent, such problems have been studied in the context of offline policy learning [6, 51] and online
bandits (with imperfect information) [22, 25, 38]. However, the multi-agent learning setting is again
under-explored; we leave that for future work.
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