
HAL Id: hal-01906170
https://hal.archives-ouvertes.fr/hal-01906170

Preprint submitted on 26 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Latent Surgical Interventions in Residual Neural
Networks

Benjamin Donnot, Isabelle Guyon, Zhengying Liu, Marc Schoenauer, Antoine
Marot, Patrick Panciatici

To cite this version:
Benjamin Donnot, Isabelle Guyon, Zhengying Liu, Marc Schoenauer, Antoine Marot, et al.. Latent
Surgical Interventions in Residual Neural Networks. 2018. �hal-01906170�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162988217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01906170
https://hal.archives-ouvertes.fr

Latent Surgical Interventions
in Residual Neural Networks

Benjamin Donnot†∗, Isabelle Guyon•‡, Zhengying Liu‡,
Marc Schoenauer‡, Antoine Marot†, Patrick Panciatici†

• ChaLearn, Berkeley, California.
‡ UPSud et Inria TAU, Université Paris-Saclay, France.

† RTE France

Abstract

We propose and study a novel artificial neural network framework, which allows
us to model surgical interventions on a physical system. Our approach was devel-
oped to predict power flows in power transmission grids, in which high voltage
lines are disconnected and re-connected with one-another from time to time, ei-
ther accidentally or willfully. However, we anticipate a broader applicability. For
several exemplary cases, we illustrate by simulation that our methodology permits
learning from empirical data to predict the effect of a subset of interventions (ele-
mentary interventions) and then generalize to combinations of interventions never
seen during training. We verify this property mathematically in the additive per-
turbation case. In terms of transfer learning, this is equivalent to training on data
from a few source domains then, with a zero-shot learning, generalizing to new tar-
get domains (super-generalization). Our architecture bears resemblance with the
successful ResNets, with the simple modification that interventions are encoded as
an addition of units in the neural network. For applications to real historical data,
from the French high voltage power transmission company RTE, we evaluate the
viability of this technique to rapidly assess curative actions that human opera-
tors take in emergency situations. Integrated in an overall planning and control
system, methods deriving from our approach could allow Transmission System
Operators (TSO) to assess in real time many more alternative actions, reaching a
better exploration-exploitation tradeoff, compared to presently deployed physical
system simulator.

1 Background and motivations

In this paper, we are interested in speeding up the computation of power flows in power transmission
grids using artificial neural networks, to emulate slower physical simulators. Key to our approach
is the possibility of simulating the effect of actions on the grid topology. Such neural networks
may then be used as part of an overall computer-assisted decision process in which human operators
(dispatchers) ensure that the power grid is operated in security at all times, namely that the currents
flowing in all lines are below certain thresholds (line thermal limits). We describe our application
setting for concreteness, but anticipate a broader applicability of the techniques developed in this
paper in various domains of physics, chemistry, manufacturing, biomedicine and others, in which
some actions can be combined with each other, but running extensive simulations for each possible
combination of such actions is computationally untractable.

Electric power generated in production nodes (such as power plants) is transmitted towards con-
sumption nodes in a power grid. The power lines enable this transmission through substations
interconnecting them. Each pattern of connections is referred to as a grid topology. This topology is

∗Benjamin Donnot corresponding authors: benjamin.donnot@inria.com

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

(a) (b)

Figure 1: Mini example of power transmission grid. Electricity must be transported from produc-
tion nodes (brown circles) to consumption nodes (green circles). They are interconnected through a
network (grid) of transmission lines (red lines), connected at substations (red squares). The injec-
tions x = (x1, x2, x3, x4), which include both productions and consumptions, must add up to zero.
The way in which lines are interconnected is referred to as grid topology τ . The flows in the red
lines y result from the injections and the topology: y = S(x, τ). At any time, the grid operators (or
dispatchers) must make sure that the network is operated in security and no line exceeds its thermal
limit (a current flow above which the line might melt). (a) Line y4 goes over its thermal limit 100.
(b) A change in topology (splitting of node 6) brings y4 back to its thermal limit.

constantly changing around a reference topology, due to different events such as random equipment
failures and planned maintenance operations. In the toy example of Figure 1 we make bold simpli-
fying assumptions for illustrative purposes (constant voltage, DC currents, no losses). Thus, power
flows indicated on the lines are proportional to currents. Here we picked an arbitrary number of units
and assumed that the thermal limit in all red transmission lines was 100. Positive currents flow in
the direction of the arrows (and negative currents in the opposite direction). At each substation, the
sum of all incoming currents must equal the sum of outgoing currents. In Figure 1-a, line y4 goes
over its thermal limit of 100. A corrective action in Figure 1-b (node splitting) brings it back below
its thermal limit. The object of this paper is to allow dispatchers to quickly assess the effectiveness
of a large number of such candidate topology changes as preventive or corrective actions.

The space of all possible grid topologies is huge and grows exponentially with the number of substa-
tions. For example, the French high-voltage transmission network includes N ≈ 6200 substations,
with more than a dozen possible configurations per substation and therefore more than 10N possi-
ble grid topologies. Even if only a small number of those are achievable, the search space is still
humongous. In practice, Transmission System Operators (TSOs) limit their dispatchers to choosing
from a very limited set of candidate operations on the grid topology. However, operating the grid is
becoming increasingly complex for a number of reasons, including the advent of renewable energies
(introducing wind and solar power that are little predictable), the globalization of energy markets
(also introducing fluctuations of consumptions harder to predict), the growth in consumption and the
concurrent limitations on new line construction (to protect the environment). Therefore, it is becom-
ing urgent to optimize more tightly the operation of the grid with more flexibility, by considering a
broader range of topological changes operated more frequently, without compromising security.

Using neural networks to emulate the power grid is not new. As early as 1995, [10] proposed to run
load flow computation with a neural network. The objective however was to reproduce faithfully the
calculation carried out in regular load-flow simulator with a parallelizable neural network implemen-
tation, for a fixed topology. Neural networks have also been used for short-term load forecasting (see
[7] for a recent example). A competition just ended on a similar topic (https://web.see4c.eu/),
in which the participants were challenged to forecast power flows given historical records. The prob-
lem we are tackling in this paper is rather different: The goal is to quickly evaluate the flows in all
lines for variants of the grid topology (line inter-connection pattern), for given injections (production
and consumption, balancing each other). Using one neural network for each topology is unrealistic,

2

https://web.see4c.eu/

thus one must find a way to use both injections and topology as input to the estimator. A related
problem was addressed in [4, 5] where the authors used neural networks to predict power flows
under unplanned contingencies (equipment failures, e.g. lines disconnected by a storm). This paper
goes beyond the analysis of contingencies and study planned coordinated actions reconfiguring the
grid topology to obtain desired effects, using real historical data.

Our method can be seen as a transfer learning approach [11]: we train a neural network to generalize
across domains (each topology being a domain). After learning to make predictions in a reference
topology, the neural network can adapt with few shot learning [3] to new domains (new topologies).
We also demonstrate that our predictive models exhibit a “super-generalization” property that can
be seen as a zero shot learning: The neural network generalizes to new domains for which it has
not been trained at all. This is made possible by encoding topologies as inputs that modify the
neural network architecture. This line of work has been pursued in [8] for one shot learning, in [9]
for few shot learning, and in [13] for zero shot learning, although with quite different approaches.
Our method combines ideas from residual networks [6], dropout [14], and conditional computation
(e.g. [2]). The idea behind the conditional computation is to adapt the architecture of a neural net-
work depending on its inputs. Both the weights and the architecture are trained. This conditional
computation has been adapted with success by [12] for image classification for example. More re-
cently Minhui Zou et al. [16] show that adding some units inside an already trained neural network
is enough to bias its predictions. This work is based on the same idea: the Latent Surgical Interven-
tions (LSI) consist in adding units at the heart of a residual neural network. Our contribution is to
propose and study this novel simple architecture while demonstrating its effectiveness in application
to power flow calculations in grids with varying topology.

2 Proposed methodology

The objective is to approximate a function y = S(x, τ) that maps input data x (e.g. power produc-
tions and consumptions - also called injections) to output data y (e.g. power flows on transmission
lines), parameterized by a discrete topology vector τ , taking values in an intervention space (all pos-
sible power-grid topologies e.g. line interconnections, in our example). This section first introduces
notations, then describes the proposed neural network architecture, and demonstrates its behavior
on a simple example. Finally, a mathematical analysis proves some properties of this architecture.

2.1 Notations and definitions

Let x ∈ X ⊂ Rp be the input vector of the system (dim x = p = number of injections), y ∈ Y ⊂ Rl

the output vector (dim y = l = number of lines), and τ ∈ {0, 1}c the action vector (dim τ = c).
The action space is represented as as a binary vector without any particular encoding of (discrete)
actions. In particular, unary actions (e.g. single power line disconnection) are not necessarily one-hot
encoded and therefore c is not necessarily equal to the number of unary actions. If one-hot encoding
of unary actions is used, then if unary action a1 is encoded with τ (1) = (1, 0, 0, . . .), unary action a2
is encoded with τ (2) = (0, 1, 0, . . .) and double action a1,2 is encoded with τ (12) = (1, 1, 0, . . .).
In general, double action a1,2 is encoded with τ (12) = τ (1) ∨ τ (2) (element-wise "or" operation).
More generally, let τI be the vector in Rc such that τI =

∨
i∈I τ

(i). Here I ⊂ {1, . . . , u} where
u is the number of unary actions. If one-hot encoding of unary action is used, then (τI)i = 1 if
i ∈ I, and 0 otherwise. For any encoding of actions, by convention, τ ∅ = (0, 0, . . .) will represent
the absence of action, corresponding to the system in its reference topology.

Let y = S(x, τ) be the ground truth of the system’s response to input x in topology τ . The ground
truth here will be given by the physical simulator. In contrast, the approximation made by the neural
network will be denoted ŷ = NN(x, τ).

Similarly to other learning problems, for any fixed topology τ , training data pairs {x,y} are drawn
i.i.d. according to an unknown probability distribution2. We call simple generalization the capa-
bility of ŷ = NN(x, τ) to approximate y = S(x, τ) for test inputs x not pertaining to the training
set, and when τ values are drawn i.i.d. from a source domain distribution that remains the same
in training and test data (this covers in particular the case of a fixed τ).

2In practice, x is drawn randomly, but S(x, τ) is a deterministic function implementing Kirchhoff’s circuit
laws. No noise term is involved in the calculation of y from x.

3

LSI architecture:

Injection
x

E(·)
e(·) �τ

Interventions

d(·)
⊕ D(·) Flows

ŷ = NN(x; τ)

LSI Block

dim p dim h dim c dim h dim l

Baseline architecture:

Injection
x

τ

Interventions

E(·)
e(·) d(·)

⊕ D(·) Flows
ŷ = NN(x; τ)

regular "ResNet block"

dim p+ c dim h dim c dim h dim l

Figure 2: LSI and baseline architecture. The main novelty of the LSI architecture is that inter-
ventions are introduced by performing an element-wise multiplication � with a binary vector τ ,
which has the effect of selectively activating or inactivating units. The baseline architecture includes
instead a standard residual network block [6]. Interventions are introduced as additional inputs to
the first block. In both architectures, multiple ResNet or LSI blocks may be stacked.

Conversely, if values of τ are not drawn similarly in training and test data, i.e. τ is drawn
according to a source domain distribution in training data and from a target domain distribution in
test data, then we will talk about super-generalization. This setting is a particular case of transfer
learning from a source domain to a target domain.

2.2 Neural network architecture

The proposed Latent Surgical Intervention (LSI) model represented schematically in Figure 2 (top)
is given by:

ŷ =D(E(x) + d(e(E(x))� τ︸ ︷︷ ︸
some units are masked depending on τ

)) (1)

where E and e (encoders) and D and d (decoders) are all differentiable functions (typically imple-
mented as artificial neural networks). The � operation denotes the component-wise multiplication.
If the system is in the reference topology τ ∅, predictions are made according to ŷ = D (E(x)).
Indeed, assuming that d(0) = 0, for τ ∅ = (0, 0, 0, . . .), we have d(e(E(x)) � τ) = 0, thus the
LSI block lets the information flow directly, without modification.

Table 1: Toy data with additive perturbations. We illustrate the superiority of LSI over the base-
line architecture in a case of additive perturbations: a generative reference system S(x, τ ∅) = F (x),
unary perturbations S(x, τ (i)) = F (x)+αi, and binary perturbations S(x, τ (ij)) = F (x)+αi+αj .
Here, F (x) = [x1 cos(x2), x1 sin(x2)] and αi = 2.5. We report test data Mean Squared Error (MSE
± one std) across 20 independently trained neural networks in two settings. SETTING 1: 100 train-
ing data points in Source 1 and Source 2 domains. SETTING 2: only 1 training data point in Source
1 and Source 2 domains. In both cases, 1 000 training points are available in Source 0 domain. The
best results are highlighted in bold, extreme variance is highlighted in red. Test MSE are computed
on 1000 points per domain, not included in the training set.

SETTING 1 SETTING 2 (see Figure 3)
Domain Action (τ) Data generation 100 training points in target 1 and 2 1 training point in source 1 and 2

BASELINE LSI BASELINE LSI
Inputs
(all domains) -

x1 ∼ N (1, 0.1)

x2 ∼ U(0, 5π/3)
0.003
±0.001

0.00059
±0.00009

0.0010
±0.0006

0.0003
±0.0001

Source 0
(reference) τ ∅ = (0, 0)

y1 = x1 cos(x2)

y2 = x1 sin(x2)
0.003
±0.001

0.001
±0.001

0.0012
±0.0007

0.0003
±0.0002

Source 1 τ (1) = (1, 0)
y1 = x1 cos(x2) + 2.5

y2 = x1 sin(x2)
0.005
±0.003

0.001
±0.001

4
±2

0.02
±0.07

Source 2 τ (2) = (0, 1)
y1 = x1 cos(x2)

y2 = x1 sin(x2) + 2.5
0.005
±0.002

0.001
±0.001

2
±2

0.01
±0.04

Target τ (12) = (1, 1)
y1 = x1 cos(x2) + 2.5

y2 = x1 sin(x2) + 2.5
0.6
±0.5

0.001
±0.001

5
±7

0.03
±0.09

4

(a) Training examples overlaid on ground truth (b) Test ex. predictions overlaid on ground truth

Figure 3: Toy example of transfer learning with LSI: The Source domains are color-coded as
{black, red, blue } and the Target domain as green. The data, drawn according to Table 1 (Setting
2), are from a bi-variate regression problem of which we show only the values of y for various color-
coded values of τ ; the values of x are drawn randomly and identically in training and test data. (a)
Training data include all black crosses, a single red point, a single blue point, and NO green point
at all. (b) The LSI neural network generalizes to new test data from all source domains (including
those for which it has seen a single red or blue training example) and to the Target green domain
(for which it has seen no training example at all).

2.3 Super-generalization ability of LSI

In this section, we compare and contrast the LSI architecture with a baseline architecture in which
the topology information τ is entered as additional inputs to the first module E(.), see Figure 2.

The experimental setting and results are described in Table 1 and illustrated in Figure 3. As we can
see on this figure, the LSI model is capable of super-generalization: it learns only from Source
domain data (many points from Source 0, but only one point from Source 1 and from Source 2);
then it generalizes to Target domain data. The results of Table 1 provide more details and show that
the baseline model cannot super-generalize similarly to the LSI. Both baseline and LSI successfully
learn the training data distribution ("Training error" rows) and successfully generalizes to unseen
test data when τ = 0 (Source 0 row: this is a standard generalization framework in which test data
come from the same distribution as training data). Both methods generalize to Source 1 and Source
2 data when enough training examples are provided (Source 1 and Source 2 rows, SETTING 1). But
the baseline method does not generalize as well as the LSI when very little data are available in the
other two source domains (Source 1 and Source 2 rows, SETTING 2). In this setting (SETTING 2),
we can observe that, for the baseline method, the variance of the error across repeated experiments
is very high3. This variance is much smaller for the LSI architecture (by almost two orders of
magnitude). Low variance in the predictions is a crucial feature in application to power systems.

Finally and most importantly, the "Target" row (last one) reports results in the Target domain for
which no data are available at training time. This is where LSI demonstrates its super-generalization
capabilities and the baseline method fails in all settings. A more detailed study of this test cases is
carried out in the supplementary material.

Our illustrative example was taken from the family of generative models with additive perturbations.
Our experimental successes prompted us to investigate whether the super-generalization property of
LSI architectures could be mathematically proven, at least in a limited setting. Consider a data
generating system S(x, τ) satisfying :{

S(x, τ ∅) = F (x)

S(x, τ {i}) = F (x) + εi(x), i = 1, . . . , c
(2)

and
S(x, τI) = F (x) +

∑
i∈I

εi(x), |I| ≥ 2 (3)

3the learned function depends on the initialization and the mini-batch ordering.

5

for some (unknown) deterministic functions F (x), ε1(x), . . . , εc(x). We prove two theorems in
supplementary material4 showing that a LSI architecture with linear submodules d and D exhibits
super-generalization in the following sense: if such a LSI architecture NN(x, τ) can learn from
empirical data to make “good” predictions on data triplets (x, τ , y) coming only from Source do-
mains defined by equations (2), then this network will also be able to make “good” predictions on
data coming from Target domains given by equation (3).

In the next section we show experimental success of super-generalization of LSI architectures in
non-linear cases, for which we do not have yet mathematical guarantees.

3 Predicting flows in power grids

In this section, we present results for our target application: predicting power flows in power grids,
First we test our method on simulated data , and benchmark our proposed LSI architecture with
the baseline architecture of Figure 2, as well as with the “DC approximation” (a linearization of
the power flow equations widely used in the power system community). Second, we use real data
coming from the “Toulouse” area, South West part of the French power grid, to predict the flows in
a near real time process for complex interventions given partial information.

3.1 The case 118 benchmark: Synthetic data from a physical simulator

We first conduct controlled experiments on a standard medium-size benchmark from "Matpower"
[15], a library commonly used to test power system algorithms [1]. We use case118, a simplified
version of the Californian power grid. This test case includes 99 consumptions, 54 productions
(dim x = 153), and 186 power lines (dim y = 186). Topology changes consist in reconfiguring
line connections in one or more substations (see Figure 1). A study of the reference grid topology
indicates that there are 11 558 possible unary actions (corresponding to single node splitting or
merging, compared to the reference topology). We sampled randomly 100 for training (Source
domains: τ (i) ∈ T Source). We sampled 50000 different inputs x in the reference topology (τ∅). For
each τ (i), we sampled 1000 inputs x among these possible changes. We used the Hades2 software5

to compute the flows y in all cases. This resulted in a training set of 150 000 rows (each row being
one triplet (x, τ (i),y)). We created an independent test set of the same size in a similar manner,
keeping the same τ (i) ∈ T Source. We proceeded differently for the Target dataset. We sampled 1500
(Target domains: τ (ij) ∈ T Target) among the 4950 possible binary actions τ (ij) = τ (i) ∨ τ (j),
τ (i) and τ (j) ∈ T train. Then, for each of these 1500 τ (ij), we sampled 100 inputs x (with the
same distribution as the one used for the training and regular test set). We used the same physical
simulator to compute the y from the x and the τ . The super-generalization set counts then 150 000
rows, corresponding to 150 000 different triplets (x, τ (ij),y).

We compared the proposed LSI method with two benchmarks: the DC approximation, a standard
baseline in power systems, which is a linearization of the AC (Alternative Current) non-linear pow-
erflow equations, and the baseline neural network architecture (Figure 2) in which τ is simply an
input (referred to as "baseline" network). We optimized the L2 (mean-square) error, using the Adam
optimizer from Tensorflow. To make the comparison least favorable to the LSI architecture, all
hyper-parameters of the neural network (learning rates, number of units) were optimized by cross-
validation for the baseline network architecture and are exposed in the supplementary material.

The results shown in Figure 4 indicate that the LSI method (green curves) performs better than the
DC approximation (black dashed line) both for regular generalization and super-generalization. In
contrast, the baseline neural network architecture (red curves) does not outperform the DC approxi-
mation in the super-generalization case (Figure 4b).

Figure 4a indicates that the LSI architecture may possibly be slightly under-fitting, since it is outper-
formed by the baseline neural network for regular generalization. This can be explained by the fact
that the baseline network has many more available connections to learn from (no unit in the inner

4For simplicity, we assumed l = 1 and thus all y’s are scalar, but the generalization to the case with any
l is straightforward. Consistent with the power system application setting, we assumed that data are collected
without noise, but our results could be extended to noisy cases.

5Freeware available at http://www.rte.itesla-pst.org/.

6

http://www.rte.itesla-pst.org/

100 101 102

Epoch (log10 scale)
1.5

1.0

0.5

0.0
M

S
E
 e

rr
o
r

(l
o
g
1
0
 s

c
a
le

) DC approx
Baseline
LSI

(a) Regular generalization.

100 101 102

Epoch (log10 scale)

1.00

0.75

0.50

0.25

0.00

0.25

M
S
E
 e

rr
o
r

(l
o
g
1
0
 s

c
a
le

) DC approx.
Baseline
LSI

(b) Super-generalization.

Figure 4: Synthetic data on a 118 node grid.
We show the MSE error in Amperes on a log
scale as a function of training epochs. Neural net-
works are trained with 15000 injections, for the
reference topology τ ∅ and unary changes τ (i).
(a) Regular generalization. Test injections for
unary changes τ (i). (b) Super-generalization.
Test injections for binary changes τ (ij). Error
bars represents the [20%, 80%] intervals, com-
puted on 30 independently trained model.

100 101 102

Epoch (log10 scale)

1.0

0.5

0.0

0.5

M
S
E
 (

lo
g
1
0
.
sc

a
le

)

Baseline
LSI

(a) Regular generalization.

100 101 102

Epoch (log10 scale)

0.6

0.4

0.2

0.0

0.2

0.4

M
S
E
 e

rr
o
r

(l
o
g
1
0
.
sc

a
le

) Baseline
LSI

(b) Super-generalization.

Figure 5: Real data from the ultra high voltage
power grid. We show the MSE error in Amperes
on a log scale as a function of training epochs.
The neural network in both cases is trained from
data until May 2017 with real data. (a) Regu-
lar generalization. Test set made of randomly
sampled data in the same time period as training
data. (b) Super-generalization. Test set made of
the months of June and July 2017.

layer being disabled). Adding more hidden units in the LSI might yield yet better performance;
more systematic experiments are under way.

Figure 4b shows that the baseline neural network architecture is not viable: not only does it perform
worse than the DC approximation, but its variance is quite high. While it is improving in regular
generalization with the number of training epochs, its super-generalization performances get worse.

3.2 Real French ultra high voltage power grid data

We now present results on a part of the French ultra high voltage power grid: the "Toulouse" area
with 246 consumptions, 122 productions 387 lines and 192 substations often split in a variable
number of nodes. Similarly to the previous artificial data experiments, the inputs x are injections
(productions and consumptions - this time of dimension dim x = 368) and the outputs y are flows
(with dimy = 387). In this study, x and y come from real historical data.

One similarity between real and synthetic data is that y (the flows) have also been calculated from x
by a physical simulator (not measured). But there are several differences between real and synthetic
data. First, for the emulated data we could deliberately chose which topologies to include in T Source

and T Target domains: the emulated data is a controlled environment in which changes in τ were
our own interventions. In contrast, real data consist of played-back historical situations on which
we cannot deliberately intervene. Thus, we used data from 2012 to May 2017 for T Source and data
from June and July 2017 for T Target. This favored changes in distribution of τ .

Another key difference in real data is the actions space. In our synthetic experiments, actions in-
duced changes in line interconnections via nodes splitting and merging (grid topology changes). In
real data actual grid states are not precisely labelled. Instead, only information on line outages
are available to us. This is problematic because, when power lines are taken out for maintenance
or damaged by storms, dispatchers make curative/preventive node splitting actions to guarantee grid
security. Unfortunately no records are made of such induced topological changes. Therefore we
can only use information on line disconnections as surrogate for actual grid topology complex inter-
ventions. This makes the task of the neural network much harder: it must learn the effects of latent
topological changes.

In this context dim τ = 387, the number of power lines in the power grid. At the time of recording
of our historical data, the physical simulator computed y as a function of x and the actual topol-
ogy. Thus, from our perspective, the system S is a function of x, τ , and latent factors (unrecorded

7

Table 2: Comparison of datasets and experimental design. We illustrate the super-generalization
capabilities of the method. Training is performed simultaneously with data triplets {x, τ ,y} both
from the source domain τ = τ (∅) and the target domains τ ∈ T Source. Then the model is tested
for super-generalization using data triplets {x, τ ,y} from the target domains with τ ∈ T Target.

Data type Source domain τ =
τ (∅)

Source domains τ =
τ (i) ∈ T Source

Super-generalization
τ ∈ T Target

lots of training data few training data for
each τ

novel τ not necessar-
ily in training data

RTE historical data ≈ 5 years of data
with τ ' τ (∅)

Intermixed τ differ-
ent from τ (∅), same 5
years

Next month : new
τ ' τ (∅) not in train-
ing data

Synthetic dataset
(physical simulator)

5000 samples for
τ ≡ τ (∅)

100 samples per τ =
τ (i)

100 samples per τ =
τ (ij)

Toy examples (artifi-
cial data)

1000 generated for
τ ≡ τ (∅)

1 or 100 sample per
τ = [1, 0] or τ =
[0, 1]

1000 samples testing
super-generalization
to τ = [1, 1]

dispatcher interventions). This unfortunate loss of information on exact grid topology interventions
makes it impossible for us to compare our method to the DC approximation: computing this approx-
imation requires a full description of the topology.

Figure 5 displays the learning curves obtained on these real data. We arrive at the same conclusions
as in the previous subsection: the LSI model is able to learn a similar distribution than the one
it is trained on (figure 5a). It can also generalize to unseen grid states better than the reference
architecture (figure 5b), which is a critical property for the application. The baseline architecture
performs well on data distributed similarly to training data (figure 5a) but does not super-generalize
as well as the LSI.

4 Discussion and conclusion

The architecture of Latent Surgical Interventions (LSI) has been evaluated on a number of test cases,
and we summarize their experimental design in Table 2. In all cases, training is performed on data
triplets (x, τ ,y), for which τ ∈ T Source belong to source domains. We demonstrated that LSI
generalizes not only by approximating well y for new values of x when τ ∈ T Source, but also
when τ ∈ T Target (super-generalization). The toy example and the synthetic data were used as a
sanity check. It allowed us to verify that the method works in the case of additive superposition. The
synthetic power grid example allowed us to measure ourselves against a standard baseline (the DC
approximation) on a standard benchmark (the case118 example of Matpower). The LSI architecture
shows very competitive results. Finally, the experiments on real data show real promise.

In our experiments, we achieved a speed-up of ≈ 300 times using the LSI architecture compared
to running the physical simulator on the synthetic dataset (power grid of 118 nodes). Provided the
dataset are stored in the computer memory, our experiments on the Toulouse area show this speed up
could be as high as 2000 times compared to running one physical simulation. These speeds up were
obtained using a single high end Graphical Processing Unit (GPU) Nvidia Titan X. Further works
include scaling up our method computationally to the entire French extra high voltage power grid.

Currently, the error obtained on the "Toulouse" dataset on super-generalization is still too high for
our model to be used in production. But if this error goes down to the level of error achieved on
the regular generalization (see Figure 5a) this process could be implemented for real time operation
support. This goal seems achievable considering the results on the synthetic experiments, where
the super-generalization error is really close to the regular generalization ones. A better theoretical
understanding of our model could help us design a more powerful method. Further work is under
way to analyze various cases of data generating models and their associated distortions in an effort
to create a benchmark suite to test super-generalization abilities.

Our approach bridges transfer learning and the estimation of effects of interventions in systems
emulated by neural networks, a topic that deserves more in depth studies, including researching the-
oretical guarantees for "super-generalization". Our empirical evaluation of the super-generalization
capabilities of the LSI architecture demonstrates the viability of the method and could inspire re-
search in other application domains.

8

References
[1] O Alsac and B Stott. Optimal load flow with steady-state security. IEEE transactions on power

apparatus and systems, (3):745–751, 1974.

[2] Y. Bengio and et al. Estimating or propagating gradients through stochastic neurons for condi-
tional computation. arXiv:1308.3432, 2013.

[3] Rich Caruana. Learning many related tasks at the same time with backpropagation. In Ad-
vances in neural information processing systems, pages 657–664, 1995.

[4] Benjamin Donnot, Isabelle Guyon, Marc @bullet, Antoine Marot, and Patrick Panciatici. Fast
power system security analysis with guided dropout. April 2018.

[5] Benjamin Donnot, Isabelle Guyon, Marc Schoenauer, Antoine Marot, and Patrick Panciatici.
Anticipating contingengies in power grids using fast neural net screening. In IEEE WCCI
2018, Rio de Janeiro, Brazil, July 2018.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 770–778, 2016.

[7] T. Hossen, S. J. Plathottam, R. K. Angamuthu, P. Ranganathan, and H. Salehfar. Short-term
load forecasting using deep neural networks (dnn). In 2017 North American Power Symposium
(NAPS), pages 1–6, Sept 2017.

[8] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese neural networks for one-
shot image recognition. In ICML Deep Learning Workshop, volume 2, 2015.

[9] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for
few shot learning. arXiv preprint arXiv:1707.09835, 2017.

[10] T.T. Nguyen. Neural network load-flow. IEE Proceedings - Generation, Transmission and
Distribution, 142:51–58(7), January 1995.

[11] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on Know-
eledge and Data Engineering, 22(10):1345–1359, October 2010.

[12] N. Shazeer and et al. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. arXiv:1701.06538, 2017.

[13] Richard Socher, Milind Ganjoo, Christopher D. Manning, and Andrew Y. Ng. Zero-shot learn-
ing through cross-modal transfer. In Proceedings of the 26th International Conference on
Neural Information Processing Systems - Volume 1, NIPS’13, pages 935–943, USA, 2013.
Curran Associates Inc.

[14] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

[15] R. D. Zimmerman and et al. Matpower. IEEE Trans. on Power Systems, pages 12–19, 2011.

[16] Minhui Zou, Yang Shi, Chengliang Wang, Fangyu Li, WenZhan Song, and Yu Wang.
Potrojan: powerful neural-level trojan designs in deep learning models. arXiv preprint
arXiv:1802.03043, 2018.

9

	Background and motivations
	Proposed methodology
	Notations and definitions
	Neural network architecture
	Super-generalization ability of LSI

	Predicting flows in power grids
	The case 118 benchmark: Synthetic data from a physical simulator
	Real French ultra high voltage power grid data

	Discussion and conclusion

