
HAL Id: hal-01906994
https://hal.inria.fr/hal-01906994

Submitted on 29 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging NFV for the deployment of NDN:
Application to HTTP traffic transport

Xavier Marchal, Moustapha El Aoun, Bertrand Mathieu, Thibault Cholez,
Guillaume Doyen, Wissam Mallouli, Olivier Festor

To cite this version:
Xavier Marchal, Moustapha El Aoun, Bertrand Mathieu, Thibault Cholez, Guillaume Doyen, et al..
Leveraging NFV for the deployment of NDN: Application to HTTP traffic transport. NOMS 2018
- IEEE/IFIP Network Operations and Management Symposium, Apr 2018, Taipei, Taiwan. pp.5,
�10.1109/NOMS.2018.8406206�. �hal-01906994�

https://hal.inria.fr/hal-01906994
https://hal.archives-ouvertes.fr

Leveraging NFV for the Deployment of NDN:

Application to HTTP Traffic Transport

Xavier Marchal1, Moustapha El Aoun2, Bertrand Mathieu3, Thibault Cholez1,

 Guillaume Doyen2, Wissam Mallouli4, Olivier Festor1

1University of Lorraine,

LORIA, UMR 7503

Nancy, France

2Troyes University of Technology,

ICD, UMR CNRS 6281

Troyes, France

3Orange Labs

Lannion, France

4Montimage

Paris, France

Abstract—For a few years, Network-Function Virtualization

(NFV) acts as the most promising solution for the flexible

implementation and management of future network services. If

most of current efforts in this area focus on IP-based Virtual

Network Functions (VNF), the case of Information-Centric

Networking (ICN) is interesting since it can demonstrate that

NFV is a promising technology for ISP to deploy such new

innovative network stacks. In this context, we propose to design

and implement a NFV compliant architecture to easily deploy

ICN islands. Especially, at the core of this architecture, we

present an HTTP/NDN gateway, which enables our network to

carry real HTTP traffic. Finally, we show early functional

experimental results of an initial testbed deployment exhibiting

the capability of our global infrastructure to retrieve the top-

1000 of the most popular web sites.

Keywords—Network Function Virtualization; Named Data

Networking; experimental study; Web traffic

I. INTRODUCTION

Internet pursues its fast paced evolution while more and
more users and bandwidth-consuming services depend on it,
putting a high pressure on the underlying infrastructure. To
address this challenge, several disruptive technologies have
emerged from the networking community. From one side,
based on the observation that the main usage of today's Internet
is related to content diffusion, Information-Centric Networking
(ICN) architectures, and particularly the Named-Data
Networking (NDN) initiative, propose a paradigm shift to
optimize data delivery, where the Internet data plane shifts
from host-based network mechanisms to content-based ones
and include caching on all network devices. From the other
side, NFV (Network Function Virtualization), as defined by the
ETSI [1], can reduce operating cost and foster the innovation in
the network core by replacing specialized and expensive
dedicated network equipment by commodity servers running
Virtualized Network Functions (VNF).

In this context, we believe that NDN could only be
deployed incrementally, step after step, at low cost for reducing
network investment by network operators, and that running
NDN nodes in an NFV infrastructure is the only reasonable
path leading to a progressive deployment by ISPs of this new
network protocol. Therefore, our research question
encompasses the deployment of NDN-based VNF in an

operational context. In this paper, we propose a HTTP/NDN
gateway to interconnect ICN islands to the IP world, and an
experimental architecture supporting this research direction and
able to process the web traffic passing through a virtualized
NDN network.

The rest of the paper is organized as follows. Section II
presents the related work on NFV and ICN deployments.
Section III describes our architecture with an emphasis on the
design of the key component that is the HTTP/NDN gateway.
Section IV validates our approach with a first analysis of web
traffic delivered through our testbed. Finally, Section V
concludes the paper and gives directions for future work.

II. RELATED WORK

A. NFV Deployment Initiatives

Currently, several efforts aim at providing implementation
of the NFV reference architecture provided by the ETSI [1].
The OPNFV consortium proposes to gather all existing
components, which can be integrated in a modular architecture,
to produce a complete NFV implementation. They rely on both
OpenStack and OpenDaylight, and, to date, their fourth version
of the architecture “Danube”, is able to address many NFV
scenarios. Concurrently, the Telco working-group, which takes
part of the OpenStack consortium, is devoted to the evolution
of OpenStack toward NFV support. The methodology of the
working group consists in considering the ETSI NFV use-cases
as primary requirements and address, according to established
priorities, the development/adaptation of elements in the
OpenStack reference architecture. We also note that academics
take part of these efforts with implementation proposals such
as OpenANFV [2] and Cloud4NFV [3] that especially focus on
automation for NFV management, and infrastructure elasticity.
Only a few recent papers consider NFV to deploy ICN. In
particular, Ueda et al. [14], from the ICN2020 project, focus on
the performance aspects of deploying ICN routers as VNF.

B. Leveraging SDN for the deployment of ICN

Given the maturity of ICN solutions and the availability of
early-implementations, several efforts are currently conducted
to move ICN from a lab-restricted infrastructure to a fully
deployable one, in an operated context. To that aim, SDN is
often used to bring required control facilities needed to run a

non-IP stack. However, such a coupling induces a set of
challenges that we briefly provide here: (1) capability to carry
and control both ICN and IP traffic; (2) the compatibility with
current SDN standard [4] (e.g. OpenFlow); (3) network
protocols encapsulation strategy and (4) binding of the solution
with a topological location (i.e. dedicated island, transit
operator network, service provider, etc.). As an example of
such architecture, CONET [5] proposes to deploy ICN in
Openflow 1.0 transit networks. The protocol encapsulation is
based on the computing of a hash value of content names
inserted into UDP headers. With the same idea, in [6], the
authors propose to use the IP header to carry a similar hash,
thus making IP a protocol usable for both ICN and IP protocol
stacks and avoiding any change in Openflow at the price of
completely re-interpreting the meaning of IP header fields. By
contrast, NDNFlow [7] proposes to enable the transit of both IP
and ICN traffic by using a dedicated non-Openflow channel
between the routers and the controller. Finally, in [8], the
authors propose to use a full-overlay solution to avoid any
cohabitation between IP related functions and ICN ones.

Whatever the solution proposed, the coupling of IP
technologies with ICN ones requires a protocol adaptation (e.g.
data-plane protocol encapsulation, dedicated use of OpenFlow
as a control framework), which either takes it away from its
standard use while also impacting the infrastructure already
implemented. Another approach, proposed by Moiseenko et al.
[9], is to work on TCP/ICN conversion through gateways. By
contrast, we think the HTTP/ICN mapping is more adapted
because HTTP objects share common properties with ICN
content (URI-names, cachability). In addition, we leverage
virtualization and especially NFV to enable the full decoupling
of the infrastructure domain from the tenant one, which can
host VNFs based on heterogeneous protocol stacks. As such,
we consider NFV as the key-enabler for the ICN technology
and we propose to design, implement and validate a dedicated
framework enabling the deployment of ICN as VNF.

III. A VIRTUALIZED ICN CARRYING WEB TRAFFIC

A. Our Architecture

We propose a flexible network architecture based on NFV [1]

and SDN [4] principles. The full architecture is described in

[11]. We hereafter focus on the necessary blocks illustrating

the HTTP/NDN use-case as illustrated in Figure 1 and was

demonstrated in [10]. We focus on the NFV Infrastructure

(NFVI), which enables the resource virtualization and

management to host VNFs deploying an ICN protocol stack,

ant more precisely on the Data plane, the control plane

defining the management and orchestration (MANO) aspects

being left for future work. As a computing virtualization

framework, we have chosen Docker, which relies on a

lightweight virtualization principle. Even if Docker offers

lower isolation guarantees, this choice was driven by the better

performance compared to other virtualization solutions.

Indeed, our initial performance evaluation [11] showed that, in

a NFV context, the throughput of Openstack/KVM VNFs is

half of the throughput of Docker.

Figure 1: Overview of our virtualized NDN infrastructure

A virtual network based on OpenVSwitch is also deployed to

ensure end-to-end network connectivity between the

virtualized network services and enable a software control of

the networking infrastructure. Then, as an ICN protocol stack,

we have selected NDN [12] due to the maturity of its

specification and implementation. We “dockerized” the NDNx

software to make it a VNF, deployable in our architecture.

Please note that we use NDN over IP, and not directly over
Ethernet because most of NFV tools are still IP-dependent.
Finally, we consider the Web as our main application-layer
service due to its high-popularity and predominance in the
global network shares. Moreover, the benefits of transporting
web traffic through an ICN have been investigated at the origin
of NDN, which especially focuses on the gain that native
multicasting of communications and caching can bring to
massive content diffusion. However, since current web clients
and servers do not yet implement NDN, and because telco
operators are still reluctant to widely deploy it, we have
designed and implemented dedicated gateways to perform an
HTTP/NDN conversion. Those gateways are conceived as
VNFs and can be deployable where and when required, thanks
to NFV principles. Two kinds of gateways are defined: (1) an
ingress gateway (iGW), aiming at converting HTTP users’
requests into NDN Interest messages to find the content in the
NDN network, and converting NDN Data messages into HTTP
replies sent to the end-users; and (2) an egress gateway (eGW),
the counterpart of the first one, aiming at converting NDN
messages into HTTP requests towards IP web sites if the
content is not available in the ICN network, and converting
HTTP replies into NDN Data messages to the iGW.

B. HTTP to NDN translation

We now detail the two gateways we have developed, being
the main VNFs running in our NFV-based testbed. First, we
had to design a translation scheme to transport over NDN the
main HTTP protocol header information, as described below:

1) Naming scheme. In order to communicate with each

other, the gateways follow a naming pattern based on the

official naming proposition to convert URL to ICN names1.

Table 1: Naming pattern of the protocol

a /http/reverse_splitted_domain_name/URI/sender_route/sha1

b /sender_route/sha1(/segment)

c /http/reverse_splitted_domain_name/URI/sha1(/version/segment)

1 http://www.icn-names.net/

Table 2: Example of HTTP request translation

a /http/com/firefox/detectportal/success.txt

/%07%0B%08%04http%08%03iGW/1E69...

b /http/iGW/1E69...(/segment)

c /http/com/firefox/detectportal/success.txt/1E69...(/version/segment)

Splitting the domain per sub-level and appending them in
reverse order gives us a better NDN routing capability with
route aggregation compared to a “monolithic” domain name
like we saw in another NDN gateway [11]. Also, by adding to
the name the prefix “/http”, an egress gateway can register only
this prefix in order to be the default producer for all the traffic
or, for example, “/http/com” prefix to be the default producer
for all .com domains. Furthermore, beginning an ICN name by
the protocol name “http” can later enable per protocol routing
and traffic management with different strategies or routes
applied to each of them.

2) Request a web content in the NDN network. Since NDN
Interest packet can't carry data while HTTP request’s header
does, the Ingress gateway (or a NDN client) must exchange
different messages in 3 steps to retrieve HTTP content. First,
iGW sends an Interest which name components contain, as
illustrated in Table 1.a:

 the requested domain splitted by sub-domains and in

reverse order (for example: www.google.com becomes

/com/google/www),

 the path of the content on the web server,

 a hash of the request’s header (a SHA1 of the HTTP

header and up to 1024 bytes of the request body),

 the full route to the sender as a single name

component in a binary TLV format.

 This Interest packet is sent in the NDN network to ask

someone to handle the request. So, the Egress gateway (or a

NDN server) knows uppon reception that someone has an

HTTP request to be satisfied, but also the netwok name to

reach it. Please note that the SHA1 of the HTTP header is

necessary to be sure that we respect the way the HTTP request

was made to match users’ properties (user agent, etc.).

Choosing carefully a subset of fields to be considered to

compute the hash can improve ICN caching while giving

consistent results to users.

3) Retreive the HTTP request. Then, the Egress gateway

extracts information from the first Interest sent by the Ingress
gateway, more precisely the two last components: the sender
route and the hash, and send an Interest in order to retrieve the
full HTTP request (Table 1.b). Once the full HTTP request is
received by the Egress gateway from the NDN network, it can
now ask the HTTP server in the IP network for the actual web
content.

4) Publish the HTTP response. After receiving the HTTP

response form the IP web server, the Egress gateway splits it

into Data packets with a NDN name like the first Interest, but

without the sender route (Table 1.c). Following NDN principle,

it is up to the NDN client (the original one or any other) to send

Interest packets to retrieve each chunk of the HTTP response.

In Table 2 is given an example of our naming pattern for the

web content: “http://detectportal.firefox.com/success.txt”.

IV. IMPLEMENTATION AND FUNCTIONNAL VALIDATION

In order to validate the capability of our solution, we have
conducted a set of functional tests which consist in determining
the set of HTTP objects able to successfully cross our NFV-
based NDN domain. In this section, we first present the
architecture we have implemented. Then, we describe the
scenario, tools and the dataset we have used to perform the
tests. Finally, we provide the set of results we obtained as well
as a brief related analysis.

A. Implementation and Testbed Deployment

 Our testbed, depicted in Figure 1, is bi-located in two
distant cities. Each site operates a set of servers and a VPN
tunnel interconnects both. Following the NFV philosophy, the
infrastructure is composed of standard x86 servers with the
following configuration: dual Xeon CPU (E5-2630v3,
8c@2.4GHz), 128GB of RAM (DDR4) and 2x10Gbps (Intel
X540) + 4x1Gbps (BCM 5720) for network connectivity. The
VNF composing the logical architecture are instantiated by
Docker (v1.6.0) containers based on Ubuntu server (v15.04).
We can distinguish three types of components: NDN nodes
executing a NDN Forwarding Daemon (NFD v0.5.1), the
Ingress gateway and the Egress gateway. These two last
components rely on the ndn-cxx (0.5.1) library. Finally,
OpenVSwitch (v2.3.1) interconnects the different containers.

B. Dataset and Scenario

The first validation test our architecture has to pass, in order to
demonstrate his capability to carry real end-users traffic
accessing web content, consists in determining to what extent it
is able to (1) successfully map HTTP requests and responses to
respectively NDN Interest and Data packets and (2) transport
this traffic across the testbed in a reliable way (i.e. without any
loss of packet or excessive transit duration leading to the
expiration of timers in HTTP user-agents). To that aim, we
have challenged our architecture against the request of the top
1000 most popular HTTP web sites2. We deliberately do not
consider HTTPS in this first version since HTTPS contents are
end-to-end encrypted and thus cannot be converted by
intermediaries (to benefit from ICN features like caching and
multicast) if no agreement between the gateways and the
endpoints to delegate keys are established. Each entry in this
top-1000 consists in a web page standing for the entry point of
the site and gathers a set of HTTP objects (e.g. images, audio,
JavaScript, CSS sheets, etc.) which leads to several requests
and answers to retrieve the whole page content. All websites
were tested reachable but may still contain dead links. As a
source request injector as well as response collector and parser,
we have implemented a Web Scrapper based on the Jaunt
implementation.

2 https://gtmetrix.com/top1000.html

The latter especially provides insights about (1) connection
errors (e.g. timeout) and (2) HTTP-related errors, which allows
us to understand when and why our testbed may fail to carry
some HTTP traffic. For each of these two cases, we relate the
feedback collected and analyzed from the scrapper to a
particular HTTP objet to eventually determine the capability of
our architecture to carry such type of content.

C. Results

We have collected 73,236 web objects in total, whose
distribution per site is provided in Figure 2, each retrieved with
a dedicated HTTP request. Apart this set, we note that still
5,874 objects were not retrieved though the NDN island due to
the use of HTTPS as a transport protocol. In this case, they are
retrieved directly over IP (HTTPS traffic does not use the NDN
network as web proxy) and we remove them from the set of
results considered below.

As a first result, it appears that the testbed infrastructure has
been able to retrieve 98.24% of all HTTP objects. Among these
objects, 73.96% stands for images, 1.51% are scripts and
12.20% are links toward external resources (e.g. CSS sheets)
while the last 2.33% are heterogeneous external resources
embedded in tags such as iframe, area, span, etc. In order to be
well understood, this global functional result must be put in
front of the set of errors. We have shown in Figure 3 (plot in
log-log scale for a better readability) that only a few web sites,
hosting a significant set of image objects (from 10 to 100)
induce most of the errors in this category while the majority of
web sites gets a perfect or almost retrieval, thus assessing the
global good performance of the gateways. Finally, we plot in
Figure 4 the frequency distribution of the percentage of a web
page content, given by the number of HTTP objects retrieved
over the set of all objects that the infrastructure requests. The
result (plot in semi-log scale) shows that most of top-1000
HTTP web sites can be retrieved entirely or almost while only
a few (i.e. 17 sites over the 1000 considered in this study) bring
poor results (i.e. less than 80% of content retrieval). This last
category of sites is mainly composed of distant websites
(Chinese, Korean and Russian), leading us to the conclusion
that the problem comes from our eGW timeout value which is
too restrictive for those particular websites. Concerning the
overhead, the gateway adds approximately 30ms (only for the
1st packet, the rest of the content is streamed). The achieved
throughput of 180Mbit/s is also good and in fact limited by the
NDN routing function.

V. CONCLUSION AND FUTURE WORK

NDN is a promising technology but its clean slate approach
makes a large-scale deployment complex and unlikely.
However, coupling NDN with a NFV approach can provide
network operators with a progressive and affordable
deployment solution, but it must be assessed before. As a first
step, we built a testbed with the objective to process
unencrypted web traffic in a virtualized NDN architecture
based on Docker and OpenVSwitch. At the core of this
infrastructure, we designed and implemented an HTTP/NDN
gateway, that can map the HTTP protocol with NDN messages
and properly deliver most of web content (>98%), according to
our measurements. This allows ISP to progressively deploy
ICN islands to benefit from this network stack features for
content delivery in their core network, with the limited
investment costs offered by NFV.

In our future work, we will improve the caching strategy of
static web objects by giving them an identifier that can be
shared between users and we will evaluate the gain of NDN
when carrying web traffic. In parallel, we will develop the
MANO part of our architecture by leveraging the TOSCA
language to describe the network topology and to orchestrate
the NDN-based VNFs. Our orchestrator will address in
particular the scalability and the security of the NDN island, for
instance by defining reaction policies to well-known NDN
attacks like the Content Poisoning Attack, or to scale up the
infrastructure when a gateway is overloaded.

REFERENCES

[1] ETSI Group Specification. "Network Functions Virtualisation (NFV);
Management and Orchestration". ETSI GS NFV-MAN 001 V1.1.1
2014-12.

[2] X. Ge, Y. Liu, D. H.C. Du, L. Zhang, H. Guan, J. Chen, Y. Zhao, and X.
Hu. 2014. OpenANFV: accelerating network function virtualization with
a consolidated framework in OpenStack. In Proceedings of the 2014
ACM conference on SIGCOMM (SIGCOMM'14). ACM, New York,
NY, USA, 353-354.

[3] J. Soares, M. Dias, J. Carapinha, B. Parreira and S. Sargento,
"Cloud4NFV: A platform for Virtual Network Functions," in Cloud
Networking (CloudNet), 2014 IEEE 3rd International Conference on ,
vol., no., pp.288-293, 8-10 Oct. 2014.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, and J. Turner. 2008. OpenFlow: enabling

Figure 2: Distribution of content size of web pages,

given in #web objects (semi-log scale)

Figure 3: Frequency distribution of image errors

(log-log scale)

Figure 4: Frequency distribution of the percentage

of successful web site retrieval (semi-log scale)

This work is partially co-funded by (1) the French National Research
Agency (ANR), DOCTOR project, <ANR-14- CE28-0001>, started in

01/12/2014 and supported by the French Systematic cluster and (2) the CRCA

and FEDER CyberSec Platform, <D201304601>.

innovation in campus networks. SIGCOMM Comput. Commun. Rev. 38,
2 (March 2008), 69-74.

[5] S. Salsano, N. Blefari-Melazzi, A. Detti, G. Morabito, and L. Veltri.
Information centric networking over SDN and OpenFlow: Architectural
aspects and experiments on the Ofelia testbed. Computer Networks,
57(16):3207-3221, 2013.

[6] X. N. Nguyen, D. Saucez, and T. Turletti. Providing CCN functionalities
over openflow switches [Research Report] 2013. <hal-00920554>. 2013.

[7] N.L.M. van Adrichem and F.A. Kuipers, "NDNFlow: Software-defined
Named Data Networking," in Network Softwarization (NetSoft), 2015 1st
IEEE Conference on , vol., no., pp.1-5, 13-17 April 2015.

[8] M. Vahlenkamp, F. Schneider, D. Kutscher, and J. Seedorf. Enabling
information centric networking in IP networks using SDN. In Future
Networks and Services (SDN4FNS), pages 1-6, IEEE 2013.

[9] I. Moiseenko, D. Oran, “TCP/ICN: Carrying tcp over content centric and
named data networks, in: 2016 conference on 3rd ACM Conference on
Information-Centric Networking, ACM, 2016, pp. 112–121.

[10] X. Marchal, M. E. Aoun, B. Mathieu, W. Mallouli, T. Cholez, G. Doyen,
P. Truong, A. Ploix, E. M. de Oca, A virtualized and monitored NDN
infrastructure featuring a NDN/HTTP gateway, in: Proceedings of the 3rd
ACM Conference on Information-Centric Networking, ICN ’16, Kyoto,
Japan, ACM, 2016, pp. 225–226.

[11] F. Aguessy, O.Bettan, T. Cholez, G. Doyen, C. Enclos, H. Mai, W.
Mallouli, X. Marchal, B. Mathieu, E. Montes de Oca, A. Ortiz, A. Ploix,
P. Truong, “Architecture of the DOCTOR Virtualized Node”, Technical
Report, December 2015. http://www.doctor-project.org/outcome/
deliverable/DOCTOR-D1.2.pdf

[12] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K.C. Claffy, P.
Crowley, C. Papadopoulos, L. Wang, and B. Zhang. Named Data
networking. SIGCOMM Comput. Commun. Rev. 44, 3, 66-73. 2014

[13] S. Wang, J. Bi, J. Wu, X. Yang, and L. Fan, “On adapting http protocol
to content centric networking,” in Proceedings of the 7th International
Conference on Future Internet Technologies. ACM, 2012,pp. 1–6.

[14] K. Ueda, K. Yokota, J. Kurihara and A. Tagami, "Towards the NFVI-
Assisted ICN: Integrating ICN Forwarding into the Virtualization
Infrastructure," GLOBECOM 2016, Washington, DC, 2016, pp. 1-6.

https://hal.inria.fr/hal-00920554

