
HAL Id: hal-01906996
https://hal.inria.fr/hal-01906996

Submitted on 28 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

µ

NDN: an Orchestrated Microservice Architecture for
Named Data Networking

Xavier Marchal, Thibault Cholez, Olivier Festor

To cite this version:
Xavier Marchal, Thibault Cholez, Olivier Festor.

µ

NDN: an Orchestrated Microservice Architecture for Named Data Networking. ACM-ICN’18 - 5th
ACM Conference on Information-Centric Networking, Sep 2018, Boston, United States. pp.12,
�10.1145/3267955.3267961�. �hal-01906996�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162987486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01906996
https://hal.archives-ouvertes.fr

µNDN: an Orchestrated Microservice Architecture for
Named Data Networking

Xavier Marchal, Thibault Cholez, Olivier Festor
Universite de Lorraine, CNRS, Inria, LORIA

Nancy, France
{xavier.marchal,thibault.cholez,olivier.festor}@loria.fr

ABSTRACT
As an extension of Network Function Virtualization, mi-
croservice architectures are a promising way to design fu-
ture network services. At the same time, Information-Centric
Networking architectures like NDN would benefit from this
paradigm to offer more design choices for the network ar-
chitect while facilitating the deployment and the operation
of the network. We propose µNDN, an orchestrated suite
of microservices as an alternative way to implement NDN
forwarding and support functions. We describe seven essen-
tial micro-services we developed, explain the design choices
behind our solution and how it is orchestrated. We evaluate
each service alone and the whole microservice architecture
through two realistic scenarios to show its ability to react
and mitigate some performance and security issues thanks to
the orchestration. Our results show that µNDN can replace a
monolithic NDN forwarder while being more powerful and
scalable.

CCS CONCEPTS
• Networks→ Network architectures;

KEYWORDS
Information-Centric Networking, Network Functions Virtu-
alization, Software-Defined Networks, Microservice Archi-
tecture, Network Management
ACM Reference Format:
Xavier Marchal, Thibault Cholez, Olivier Festor. 2018. µNDN: an
Orchestrated Microservice Architecture for Named Data Network-
ing. In 5th ACM Conference on Information-Centric Networking (ICN
’18), September 21–23, 2018, Boston, MA, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3267955.3267961

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
ICN ’18, September 21–23, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5959-7/18/09. . . $15.00
https://doi.org/10.1145/3267955.3267961

1 INTRODUCTION
In recent years, there has been a trend toward the softwari-
sation of networks, and in particular the Network Functions
Virtualization (NFV) [7] paradigm is seen as a great enabler
to foster more innovation in networking by replacing special-
ized and expensive dedicated network equipment by com-
modity servers running Virtualized Network Functions. NFV
appears to be a great opportunity for disruptive protocols
like Named Data Networking (NDN) [32] because NFV in-
frastructure constitutes a substrate where NDN could be
deployed incrementally and at low cost on commodity hard-
ware alongside common protocols. This could help ISPs to
progressively deploy ICN when and where needed.
NFV also introduces new design patterns inherited from

the software world to networking and, among them, mi-
croservice architectures emerge as a promising way to im-
prove the flexibility and scalability of network functions by
giving more opportunities to deploy them in an efficient
manner. For example, it is well acknowledged that in ICN,
Content Stores are not useful in every node but rather in
particular points of the network, as demonstrated in [5, 27].
So, we expect several benefits from running NDN as a virtu-
alized microservice architecture compared to a bare metal
monolithic implementation, in particular:

• The incremental deployment of NDN over an existing
NFV environment;

• More efficient NDN topologies;
• Better horizontal scalability to deliver better perfor-
mance when needed;

• Ability to deploy dynamically on-path security func-
tions;

• Easier development and improvement of each module
separately (less coupling and complexity).

However, microservice architectures also face new chal-
lenges. Indeed, if each service is simpler, this also exacerbates
the need for a proper chaining and orchestration of microser-
vices to build consistent network topologies which tend to be
more complex. The full potential of a microservice architec-
ture, which heavily relies on the dynamic reconfiguration of
the network according to the operational needs, can only be

https://doi.org/10.1145/3267955.3267961
https://doi.org/10.1145/3267955.3267961

ICN ’18, September 21–23, 2018, Boston, MA, USA Xavier Marchal, Thibault Cholez, Olivier Festor

achieved if the architecture is properly orchestrated. There-
fore, to reveal the desirable properties of the microservices,
we also developed a manager entity.

In this paper, we propose the first realization of NDN
forwarding functions using microservice architecture, which
encompasses several contributions:

• The design of seven microservices to fulfil NDN re-
quirements and ensure the good performance and se-
curity;

• Examples of possible combinations to make efficient
NDN network topologies;

• A central manager component to monitor and orches-
trate the microservices according to predefined rules;

• The evaluation of the whole architecture under two
scenarios challenging the performance and the secu-
rity of the µNDN network;

• The open source implementation of the proposed ar-
chitecture.

The rest of the paper is organized as follows. Section 2
presents the related work regarding the microservice ar-
chitectures for networking and the initiatives to use net-
work softwarization technologies to deploy ICN. Section 3
describes the seven microservices composing our architec-
ture and how they can be assembled. Then, we explain how
they are managed and orchestrated in Section 4. Section 5
presents our implementation and the evaluation of our archi-
tecture under different scenarios. Finally, Section 6 discusses
the lessons to be learned and Section 7 concludes the paper.

2 STATE OF THE ART
2.1 NFV and SDN initiatives for ICNs
Only a few recent initiatives leverage the Network Function
Virtualization architecture and the related technologies to
support the deployment of ICN. The DOCTOR project pro-
poses a virtualized and orchestrated architecture to deploy
NDN [3] with a particular emphasis on the security aspects.
More precisely, they show that the proper monitoring of
the Virtualized Network Functions and the orchestration of
countermeasures can mitigate some security issues of ICN,
like the Interest Flooding Attack or the Content Poisoning
Attack. vICN [24] has the particularity to propose a generic
object-oriented programming framework using a precise
representation of the different resources used to build vir-
tualized ICN topologies. Both approaches have similarities
like the fact to use containers and virtual switches for the
Virtual Network Infrastructure and the fact to follow the
ETSI guidelines concerning the Management and Orchestra-
tion of NFV [8]. MiniCCNx [2] also uses similar technologies
but to offer an emulation environment for experimentation
rather than to build a production network, while the authors

of [9] propose their Future Internet Testbed with Security
architecture to perform ICN experiments.

Close to the NFV concept but in a 5G perspective, network
slicing, where several network protocols cohabit in the same
infrastructure thanks to the virtualization, is envisioned by
the IRTF ICNRG [20] as a possible scenario for future ICN
deployment. The authors of 5G-ICN [21] propose such an
architecture which enables mobility as a service, but they
mainly focus on the data plane and we miss details on the
control plane. To improve the performance of NFV-based
networks, the authors of [19] call for the support of hardware
acceleration and propose a programmable data plane (PDP)
that can enable on-the-fly customization of L2-L7 stacks to
integrate hardware accelerators. Their example instantiates
an accelerated ICN router which is decomposed in six mod-
ules but they are not designed to be autonomous and are not
managed.

Other initiatives try to enhance network processing with
on-path information processing in ICN. The authors of [25]
consider Named Function Networking over CCN and pro-
pose to distribute processing functions across the network by
adding a resolver in CCN nodes for λ-expressions embedded
in names and that can be identified with a specific prefix. To
the same extent, the NFaaS [12] framework (Named Func-
tion as a Service) uses cloud-based techniques to deploy
lightweight VM based on Unikernels [14] for on-demand ex-
ecution of services on network nodes. The VM are stored in a
Kernel Store component that can also manage the VM execu-
tion so that a service is able to migrate between nodes over
time. These twoworks aim to execute information processing
functions over the network nodes while our microservices
are fully dedicated to networking tasks. However, since they
operate at a different level, it should be possible and fruitful
to use both approaches at the same time.
Focusing on a single concept of network softwarisation,

more studies have coupled ICN with Software Defined Net-
working (SDN) for various purposes. SRSC [1] is a controller-
based forwarding scheme for NDN to perform the route
management as an alternative to NLSR, [31], [30], [23] and
[18] use SDN, and more precisely OpenFlow to transport
ICN over IP while also optimizing the caching on the path,
but [30] and [18] must twist the use of IP address and port
fields to contain hashes of content names in order to allow
OpenFlow switches to process Interests, while [23] rather
chose to use IP options and payload, and [31] chose to ex-
tend OpenFlow for a cleaner approach. While fundamentally
different in the internal operation, our architecture shares
with the ones cited above the centralized nature of route
management.

µNDN: an Orchestrated Microservice Architecture for NDN ICN ’18, September 21–23, 2018, Boston, MA, USA

2.2 Microservice architectures for
networking

The microservice architecture was first described by the
software architects J. Lewis and M. Fowler [6] as a way to
split a monolithic application as a set of small ones that
handle a well-defined single task (the service or function)
and are able to communicate with each other through a
common protocol (mostly over HTTP RESTful API). The
microservice architecture is an extension of Service Oriented
Architectures [11] but with additional concepts and it is
mostly used in cloud web applications and in IoT.

Much of the literature, like [22] or [4], give as advantages
of microservice architectures easier development and main-
tenance tasks compared to monolithic applications that grow
and become more complex over time with the addition of
new functionalities, and also a better scalability and reac-
tivity to emerging technologies. On the opposite, using a
microservice architecture also comes with a few drawbacks
which are mainly additional deployment complexity and the
need to design an external communication layer. They also
tend to use more resources, like shown in [29] where T. Ueda
et al. benchmarked a web application using both a mono-
lithic and a microservice implementation. They show that
switching from a monolithic to a microservice architecture
increases the performance cost up to 79.2% due to context
switching, cache misses, etc. Moreover the virtual network
infrastructure, in their case made of Docker virtual bridge,
reduces the throughput up to 33.8%.

Microservices can be used for any kind of application and
some research works like [13] try to create automatic tools to
help people to switch from monolithic software applications
to microservices. More precisely, Levcovitz et al. propose a
methodology, based on a dependency graph, to identify mi-
croservice candidates in a monolithic application (the loosely
coupled parts), and validate it on a real application. Advanced
management architectures dedicated to microservices are
also proposed, like the self-managing microservices archi-
tecture in [28]. With the rising of network softwarization
initiatives like ClickOS [16] or Unikernels [14] and the emer-
gence of new standards like NFV, network functions tends to
follow the same path toward the creation of scalable and ro-
bust network architectures from small orchestrated functions
with the promise of reducing network operators operational
and capital expenditures while fostering innovation.
In summary, the microservice architecture is promising

but has not yet been fully applied to networking problematic.
At the same time, there is a clear trend toward the use of
network softwarization (SDN and NFV) to facilitate the de-
ployment of ICN but all the previous works use off-the-shelf
monolithic ICN routers, thus limiting the flexibility and the
options of the virtualized ICN network. In this paper, we

have the challenging objective to propose a new microser-
vice architecture specifically designed for ICN to get the full
benefit from NFV.

3 MICROSERVICES FOR NDN
In this section, we describe the different microservices we
developed as Virtualized Network Functions (VNF). We di-
vide them into two groups: core routing functions that can
replace the key routing functionalities provided by the NDN
Forwarding Daemon (NFD), and support functions that can
perform additional on-path processing of packets. We will
indifferently use the term microservice or module in the rest
of the paper.

3.1 Common definitions and design
constraints

Before presenting the different microservices, we define here
their shared foundations. The design of the services follows
three key guidelines. The first is to be fully compatible with
the NDN protocol to be able to communicate with any other
implementation. The second is to force the decomposition
into distinct services as much as possible, to exacerbate the
good and bad aspects of such architecture. The third is to
have the links between our modules to follow a pipeline
logic to chain network functions. More precisely, a module
does not know which one is above or under it and can be
linked to any other one, even if all combinations do not make
sense. The central manager described in Section 4 is the only
one to have a global view. Other management architectures
could have been envisioned to orchestrate microservices
(distributed or self-management [28]) but are beyond the
scope of this paper.

Yet, many challenges still arise:
• How to decompose a monolithic NDN router?
• How to link the microservices?
• How to process distinct Interest and Data flows?

In the following description of the different modules, the
ingress and egress Faces refer as which module initiate the
connection to create the link. An ingress Face listens to in-
coming traffic/connection. Also, each microservice may be
oriented or not. An oriented module only processes Interest
or Data on its Faces, while a non-oriented can process both.

We will also refer to the effective cardinality of a module
which is the number of different sources or destinations it
can distinguish when forwarding, but it has no relation to
the number of endpoints a module can handle concurrently.
The cardinality can take two values:

• An effective cardinality of "1" on one side means that a
module should be connected to a single other. If it has
to handle more than one neighbour, it is still possible
to forward packets to all its source or destination Faces

ICN ’18, September 21–23, 2018, Boston, MA, USA Xavier Marchal, Thibault Cholez, Olivier Festor

in a multicast fashion. This can happen because, for
a source, it does not have any clue to which one to
send back the response, or for a destination, it does
not store information to route the packet correctly.

• An effective cardinality of "N", means that a module
is able to forward packets to the right source(s) or
destination(s), which implies to maintain some routing
information.

All the microservices described below are able to report
their status (at least Faces statistics, but also service-specific
values) for monitoring, like described in Section 4.

3.2 Description of the microservices
3.2.1 Core routing functions. Our first key decision was

to separate the PIT and FIB functions. This is challenging
because they are known to be tightly coupled to implement
NDN forwarding. However, the idea to split ICN core net-
work functions as distributed services has already been in-
troduced in a CCNx report1. We chose to split PIT and FIB
because we think that it can be useful to have a distinct PIT
in some specific scenarios. For example, to scale up the PIT
alone when it is a bottleneck. Also, like NFD, we need a third
function to select the right Interest or Data pipeline. So, the
three core routing functions have the following purpose:

• Name Router (NR): this function handles the prefix
registration requests sent by the producers and per-
forms the routing based on packets’ name. It is similar
to the Forward Information Base (FIB) in NFD. This
module is the only one that is "mandatory" in a µNDN
network because it is the only one that can listen to
incoming route advertisements from producers. This
module is oriented and has two types of ingress inter-
faces: Faces that handle the consumers have a cardinal-
ity of 1 and Faces that handle the routing information
have a cardinality of N. The egress Faces have a cardi-
nality of N.

• Backward Router (BR): this function keeps track of
the Interest packets that pass through it in order to
forward later the Data packets back to the right con-
sumers. Since it stores user requests, it can also handle
a retransmission mechanism. This function is similar
to the Pending Interest Table (PIT) in NFD. It is oriented
so Interest packets can only come from ingress Faces
and Data packets from egress Faces and the cardinality
of ingress and egress sides are respectively N and 1.

• Packet Dispatcher (PD): this function aims to split
a mixed Interest and Data traffic that comes from the
same Face and redirect each traffic type to different
outgoing Faces. It is used to avoid packet dropping

1https://github.com/PARC/CCNxReports/raw/master/2014/5.1CCNx1.
0ImplicationsforRouterDesign.pdf

when chained with "oriented" modules that can only
process one type of ingress traffic. NFD does something
similar when it receives packets from its Faces in order
to select the right processing pipeline (Interest or Data
processing). We think that this module is more suited
at the edge of the network to handle external traffic
that is not aware of the specific traffic management
performed by µNDN but should not be useful inside
the network. The cardinality of the module is N for
both ingress and egress sides.

3.2.2 Support functions. These microservices can be con-
sidered as on-path modules because they are not used to
route network packets. They are not oriented and have a
cardinality of 1 for both ingress and egress sides. They can
improve the performance, the reliability or the security of
the network. We can extract two of these functions from the
monolithic NFD:

• Content Store (CS): this function aims to store recent
Data packets that pass through it in order to reuse them
later. Since it is optional in NFD (CS size can be set
to zero), it is perfectly logical to make it a standalone
function.

• Strategy Forwarder (SF): this function is used to for-
ward packets to one or more selected destination(s)
based on a strategy. In NFD, it occurs after a FIB match-
ing and the strategy can be defined for any prefix reg-
istered in the FIB and is hierarchical. Extracting this
function enables more general forwarding rules be-
cause it can be used between any module (no longer
dependent on the Faces selected after a FIB matching).
The strategies can be simple ones used at a low level
like load-balancing, fail-over, etc., or other more spe-
cific to NDN. The strategy rules are only applied for
egress Faces and the cardinality depends on the actual
strategy in use.

We can also take advantage of the NFV paradigm to pro-
pose more specific functions. For instance, some security
functions that would be too demanding or too specific can
be implemented as microservice:

• Signature Verifier (SV): this function checks the sig-
nature of Data packets. The verification of the packets’
signature is not implemented in NFD due to the lack
of universal trust model and the heavy cost of the veri-
fication. But in µNDN, this function can be configured
with a trust model to follow and placed in a different
process or even in a different server which reduces its
impact on the other network components. To store the
keys, this function can use both a local storage as the
public keys repository or an NDN Public Information
Base if it exists. This function then reports the name of

https://github.com/PARC/CCNxReports/raw/master/2014/5.1 CCNx 1.0 Implications for Router Design.pdf
https://github.com/PARC/CCNxReports/raw/master/2014/5.1 CCNx 1.0 Implications for Router Design.pdf

µNDN: an Orchestrated Microservice Architecture for NDN ICN ’18, September 21–23, 2018, Boston, MA, USA

PD

NR

CS

 BR

External
routes

Interests’ path
Datas’ path
Both

Figure 1: Example of service chaining that is equiva-
lent to NFD (with multicast policy)

every failed packet to an upper entity that can deploy
countermeasures if needed. If packet signature can-
not be checked at line speed, the module can perform
statistical verification.

• Name Filter (NF): this function simply drops NDN
packets based on their name (strict or partial matching).
It is used to avoid specific packets in the network by
filtering traffic at the edge, or to limit the scope to a
given path for a service in case of multiple available
paths (for example, to limit the diffusion of videos for
a specific service to a single path).

These two functions may also communicate with each
other in order to create something similar to a firewall by
making the Signature Verifier directly append rules in aName
Filter with the aim to reduce fake packet verification. These
functions could be easily used between regular NFD nodes
because of their on-path nature. The main properties of each
microservice are summarized in Table 1.

3.3 Network examples of possible
combinations

We illustrate in Figure 1 an instance of µNDN that mimics the
network functionalities of a monolithic NFD instance. For
this service, the three core modules (Content Store, Backward
Router and Name Router) are needed to simulate the three
inner-tables of NFD (CS, PIT and FIB). The Packet Dispatcher
module handles the external connections and the pipeline
selection based on the packet type so the clients (consumers
and producers) only need to connect to a single entry point
of the µNDN network like they would do with a monolithic
forwarder. In our case, the NR module is not able to use
name-based strategies other than multicast forwarding, but
this can be solved by adding a Strategy Forwarder. By default,
the only logic used by the NR is to forward Interest packets
to all Faces that can handle prefixes of these packets, which
is equivalent to the multicast strategy in NFD.
Figure 2 shows an example of a more complex topology

involving five different microservices. There are three points

NR

Management & Orchestration

cache
statistics

PD

routes

FIB
info,
new
prefix

notify new
connection

CS1

2

3

NR

bad
packet
name

routes

FIB
info,
new
prefix

endpoints

SV

BR

BR

BR

public
keys

Figure 2: Example of a small managed µNDN network

of interest that are highlighted in the Figure. The first is
the practical use of the previous topology that mimics NFD.
We believe that this kind of chaining is more prone to be
placed at the edge of the network to propose bidirectional
Faces to clients. The second point of interest shows that it is
possible not to follow the "default" NDN pipeline and only
use what is needed. Here, a client cannot use the same Face to
send consumer and producer traffic because of the oriented
chaining so they must specialize their Faces for one kind of
traffic (but they can still do both by using two or more Faces:
at least one per traffic type). The third point of interest is
when we decide to link two Name Routers together. This can
create a routing loop like the one in our example, when the
same prefix is available on both sides. To avoid packets to
loop in the network, a Backward Router (or any efficient loop
avoidance function) must be placed between them to avoid
a broadcast storm (this can be automatically performed by
the manager).

4 MANAGEMENT AND
ORCHESTRATION OF MICROSERVICES

4.1 The manager
To enable the full potential of a microservice architecture,
which heavily relies on the dynamic reconfiguration of the
network according to the operational needs, a powerful man-
ager is needed (or VNFManager in NFV nomenclature). Even
if microservices can be managed one at a time for simple
tasks like editing their configuration, when the network
grows, the need to have (at least) a third-party program to
manage these microservices altogether increases. The man-
ager is in charge of a part or of the whole autonomous system
(AS) running µNDN. In particular the manager is in charge
of these key operations to guarantee the performance and
the security of the network:

• Deploy and dynamically link the microservices where
and when needed;

ICN ’18, September 21–23, 2018, Boston, MA, USA Xavier Marchal, Thibault Cholez, Olivier Festor

Table 1: Summary of the main properties of each microservice

Name Function Oriented Ingress/Egress cardinality
Name Router Route Interest packets Yes 1/N
Backward Router Route back Data packets No N/1
Packet Dispatcher Split Interest/Data traffic Yes N/N
Content Store Cache Data packets No 1/1
Strategy Forwarder Forward Interest packets No 1/1 or N
Signature Verifier Verify packets’ signature No 1/1
Name Filter Filter on packets’ name No 1/1

• Update their running configuration;
• Scale up the bottleneck modules accordingly;
• Deploy countermeasures in case of attack.

Each module has a management interface connected to
the manager through the control plane. This interface can
be implemented in different ways, for example by using
the name of Interest packets as commands like NFD, or by
using more common solutions like an HTTP RESTful API.
If we want to follow the NFV paradigm, it may be better
to use the second option since the first is specific to ICN.
To react to network events, the manager needs to store and
process information reported by the microservices. Table 2
lists some metrics that are useful to monitor. These values
are used by the manager and/or the operator to improve the
QoS of the network. For example, Unsolicited Data and cache
statistics are used to detect some ICN attacks like the Content
Poisoning Attack (CPA), while faces and routes statistics are
used to adapt the topology over time.
Inside the managed network, a route propagation proto-

col like NLSR [10] is not mandatory because the manager
can be in charge of route propagation routines and update
the routes in a centralized SDN fashion each time a route
(un)registration is notified by a NR module or when a NR
joins or leaves the network. In fact, the manager just has to
check the status of the known routes (static routes) and to
change the configuration of NR modules that are concerned
by these changes (dynamic routes). More precisely, any NR
module that can reach the one that triggers the routine(s)
will be concerned. For inter-AS route management, the de-
ployment of specific microservices, for example supporting
NLSR, and placed at the edge of the managed network is a
good solution to have a protocol agnostic communication of
routes between the manager and the microservices.

In µNDN, we use a centralized management architecture
which is sufficient for our needs. Of course, more advanced
management architectures are possible like [28] to avoid a
single point of failure but are left for future works.

Table 2: Microservices’ suggested values to monitor

Name Values
Name Router Route statistics

Backward Router Unsolicited Data packets
Retransmitted Interest packets

Packet Dispatcher User traffic statistics
Content Store Hit/Miss count
Signature Verifier Name of failed packets
Name Filter Drop count

4.2 Dynamic network changes
One of the most interesting properties of a managed mi-
croservices network is its ability to dynamically evolve, in
particular by scaling up slow modules when congestion oc-
curs, or by adding additional functions on the fly based on
the operational needs. Concerning the scaling, two modules
are typically expected to be slower than the others: SV and
BR (what is confirmed by our evaluation in Section 5). The
first because signature verification at line speed is known to
be computation intensive, and the second because its stateful
nature makes it the slowest part of NFD. Moreover, those
two cases are representative on the way to scale modules
with different ingress cardinalities, respectively 1 for SV and
N for BR.

Figure 3 illustrates the way we expect the scaling to occur
for a 1/1 function (SV for this example). The scaled function
must be first surrounded by SRwith a load balancing strategy
to distribute packets among the modules and BR to aggregate
the traffic from the multiple instances of the scaled function.
In this way, the whole thing can be seen as a box with the
same 1/1 cardinality and that contains the desired function.
By definition [6], microservices can also directly exchange
control messages with each other, which can be interesting
when scaling some specific functions like CS: the scaled CS
can collaborate with its counterparts to avoid duplicate cache
entries in the local cluster they form.
Figure 4 illustrates the method to perform the scaling of

the BR function. In the case of the BR function, the previous

µNDN: an Orchestrated Microservice Architecture for NDN ICN ’18, September 21–23, 2018, Boston, MA, USA

method is not applicable because it would just move the
bottleneck to the additional BR module used to ensure the
connectivity consistency. It is still possible to perform the
scaling for this function but it forces the next module to
duplicate the return traffic toward the BR instances, what can
impact its performances. On the ingress side, SF modules are
deployed, one per ingress Interest traffic source, to maintain
the routing property of the scaled function.With this method,
it is possible to get duplicate traffic when a retransmission
occurs, but this can be solved by adding a lightweight filter
on SF modules to drop duplicate packets if required.

For functions that store dynamic information like CS and
BR, a synchronization between the scaled modules may be
needed, especially when a scale down occurs. In this case, the
manager orders SF modules not to forward Interest packets
to the BR module that will be destroyed and ask it to pass
its table on the other module before destroying it, so that to
minimize information loss that would result in forwarding
errors and retransmissions. Another possibility is for the
cluster of scaled modules to use a shared memory, like etcd.

Three different strategies (sequences of actions) are possi-
ble to insert a new module in an existing chain. To explain
them, we consider the case when two modules M1 and M2
are already linked together and a third module M3 is inserted
between them. In the first two strategies, the link between
M1 and M2 is removed first so the choice must be made
between dropping the incoming packets or buffering them,
depending on the strategy. Finally, new links are set between
M3 and M2 and between M1 and M3 to get the new chain.
The third strategy consists of postponing the M1-M2 link
deletion to directly create the links M3-M2 and M1-M3, and
finally to remove the link M1-M2. This sequence may dupli-
cate traffic during the last step, but the chain is never broken
during the insertion process.

5 EVALUATION
5.1 Experimental environment
The microservices are written in C++ while the manager is
written in Python2 and both are released in open source3.
Most of the functionalities described in the paper is already
implemented. The following paragraphs highlight some im-
plementation points.

5.1.1 Implementation of the microservices. The microser-
vices currently work as an overlay of IP because it allows
faster prototyping than a lower layer development over Eth-
ernet. Our modules can currently communicate indifferently
over TCP or UDP to forward NDN packets, but we will sup-
port direct communications over Ethernet in the near future.

2with the help of Networkx, Twisted and Klein libraries
3https://github.com/Kanemochi/NDN-microservices

NR

BR

NR

Scaling SV

SF

SV SVSV

CS

CS

Figure 3: Scaling procedure of a Signature Verifier
when strictly following connectivity constraints

BR

NR

BR

NR

Scaling BR

SF SF

CS CS

CS CS

BR

Figure 4: Possible scaling procedure of a Backward
Router

All the microservices are currently single-threaded but some
of them could be easily multithreaded, even if horizontal scal-
ing already allows to dedicate more resources to a function.
In practice, the modules are free to connect to any number
of endpoints so they do not strictly follow the cardinality
defined in Section 3, which is only enforced by the manager.
This may lead to other interesting function chaining patterns
in the future, even if we did not have explored the full extent
of it.

https://github.com/Kanemochi/NDN-microservices

ICN ’18, September 21–23, 2018, Boston, MA, USA Xavier Marchal, Thibault Cholez, Olivier Festor

The longest prefix match used by BR, NR and NF functions
and the shortest suffix match used by CS are implemented
thanks to an indexed N-ary tree data structure using NDN
name as key. The index is checked first to help saving time
when a strict matching occurs. The other modules use flat
data structures like arrays or hashmaps.

The behavior of the CS function is currently a bit simplified
compared to NFD for an easier implementation. We made
the following minor changes that only prevent consumers
to retrieve outdated packets:

• Concerning Interest packets, we read the MustBeFresh
field to decide if the CS must be used: if it is set to
"true", the cache is bypassed;

• Concerning Data packets, we read the freshness field
before taking the caching decision: if it is set to zero,
the packet is never cached.

5.1.2 Implementation of the manager. The manager is di-
vided in five parts: (1) the network view as a graph, (2) the
orchestration engine, (3) the module management interface,
(4) the key management, and (5) the REST API.

(1) The representation of the network topology takes the
form of a directed graph that stores all the required
management information, for instance: routes forName
Router, CPU usage of every module, etc. It has asso-
ciated procedures to perform management tasks that
are based on the graph like route propagation.

(2) The orchestration engine ensures that the microser-
vices images and the virtual network are well deployed.
It relies on the Virual Network Infrastructure (VNI),
here a Docker engine, for the creation and the deletion
of the containers. It is also in charge of retrieving on
a regular basis containers statistics that are used to
take management decisions, for example to trigger the
scaling process.

(3) The module management interface is used to vehicle
information between the manager and the modules. It
identifies the containers and send asynchronous man-
agement messages (in JSON format) via an UDP socket.
A proper RESTful management API is planned for fu-
ture work.

(4) The key management engine acts as a PKI being in
charge of the synchronization of the public keys with
the different instances of the Signature Verifier func-
tion. It also handles the signature verification when a
new route is asked by a producer.

(5) The REST API allows external software to get infor-
mation from the network graph and to interact with
the manager. Based on this API, we implemented a
web-based GUI for the manager. The visualization of

Table 3: Average throughput of each microservice

Module Throughput (Mbps)
Bare-Metal Container

Name Router 1,820 1,595
Backward Router 1,304 1,090
Packet Dispatcher 1,761 1,635
Content Store (freshness = 0) 1,760 1,538
Content Store (freshness > 0) 1,031 979
Content Store (from cache) 2,447 2,061
Strategy Forwarder 1,756 1,540
Signature Verifier (RSA2048) 515 401
Signature Verifier (ECDSA256) 122 101
Name Filter 1,804 1,593

the dynamic topology of the managed network is im-
plemented with D3.js and the different management
functionalities can be used thanks to AJAX forms.

5.2 Unit testing of microservices
For the following experiments, we use a DELL PowerEdge
R730 server that features two Intel 2.4 GHz octo-core Xeon
processors (E5-2630 v3) with Hyper-Threading and Turbo
Boost enabled, 128GB of RAM and two 400GB SAS SSD in
RAID0 for the operating system (Ubuntu 18.04 server) and
Docker containers. The server uses Docker CE 18.03 and
ndn-cxx library v 0.6.1. Packets are transported over TCP/IP
and the containers are attached to a docker bridge virtual
network. The size of Data packets is set to 8192 octet.
To know how many resources must be allocated by the

orchestrator for each module and what are the possible bot-
tlenecks, we have to evaluate the throughput of each one
individually. In this experiment, we use a simple topology
considered as the best-case scenario where the tested module
is placed between a single consumer and a single producer
running NDNperf instances [15]. Table 3 gives the achieved
throughput for every module in two contexts: if they are
executed on the host or inside a container. Some modules
are given under different configurations when it is relevant.

Based on these results, we can identify that the Signature
verifier, the Backward Router and the Content Store (in a
specific case) functions are the slowest. As expected, the SV
module is slow due to its computation intensive nature, but
this is not critical since the verification is more prone to
be done on demand and at the edge of the network when
a suspicious traffic must be investigated. Concerning the
Content Store function, because its inner operations have
different costs, its tendency to become a bottleneck really
depends on the cache hit ratio and the quantity of received
Data packets that are candidates for caching (i.e. with a
freshness value > 0). When all Data packets are candidates,

µNDN: an Orchestrated Microservice Architecture for NDN ICN ’18, September 21–23, 2018, Boston, MA, USA

Table 4: Performance comparison between NFD and
its microservice equivalent

Microservices NFDPD CS BR NR
%CPU core usage 100 59 89 64 100
Throughput (in Mbps) 776 527
Latency (in ms) 2,63 3,88

a Content Store becomes slower than the Backward Router
when the cache hit is lower than 20% due to the increased
time spent to store Data packets in its table. The results in
Table 3 also show an average performance degradation of
13% when the microservices are run in containers, what was
expected and seems to be reasonable.
Then, in Table 4 is given a performance comparison be-

tween an NFD instance the minimal "corresponding" µNDN
instance presented in Figure 1. It is not really fair to compare
the two directly because their advanced functionalities differ,
but it gives a first idea of µNDN capacity. We can see that
the equivalent µNDN chain is faster than the NFD instance
(around 50% better throughput) and has a lower processing
latency, but at the price of a higher CPU consumption (3
times more CPU cycles). In this case, the Packet Dispatcher is
clearly the bottleneck. This is a limitation of this specific net-
work topology (Figure 1) where the PD module has to handle
twice the traffic of both the consumer and the producer (be-
cause they are on the same side of the network), compared to
the other modules that handle each packet only once. How-
ever, like said before, the PD function is not complex and
could be easily multithreaded. When PD is not the bottle-
neck (for example, when the producer is directly accessible
through NR), the reported throughput becomes 968 Mbps
with associated CPU usages of 67, 100 and 71 respectively
for CS, BR (the new bottleneck) and NR.

5.3 Performance management
To experiment the scaling properties of µNDN, we built a
network with 3 modules in the following order: a Content
Store, a Backward Router and a Name Router (same as Figure
4 but with only one CS). In this experiment, the Content Store
is used as a pure traffic forwarder (no caching possible). We
also limited the CPU usage of the BR modules to 67% of a
single core to artificially accentuate the bottleneck and better
see the effect of the scaling process. Each time a scalable
function meets the following conditions, it can be scaled
up: (1) it must not be at the edge of the network (to avoid
breaking TCP connections outside the managed network),
(2) it must be defined as scalable (automatically deployed
functions are not defined as scalable by default), and (3) it
must have an associated CPU usage above 80% of its capacity

over the last reporting period. If all the conditions are met,
an orchestration routine scales up the function. In the same
way, when a scaled function has a CPU usage below 20%, an
orchestration routine scales it down. The scaling routine is
executed every 20 seconds.

Figure 5 shows the throughput reported by the consumer
and the CPU usage of all microservices that constitute the
network. At the beginning, a consumer is started with a win-
dow of 32 Interests packets to overload the network, resulting
in an average throughput of 635 Mbps limited by the Back-
ward Router (BR1, which has reached its CPU capacity of
67%). Then, the scale up process is triggered and follows the
procedure described in Section 4: the manager first creates
a Strategy Router and inserts it between the Content Store
and the actual Backward Router. Then it deploys up to 2 ad-
ditional BR modules (BR1.1 and BR1.2) and links them to the
newly deployed SF and the NR modules. During the scaling
process, we can notice that the throughput increases with
around 960 Mbps for a scaling factor of 2 (when BR1.1 is cre-
ated), but the throughput then decreases to 715 Mbps when
the third BR module is created. This can be explained be-
cause the NR module uses already 100% of its allocated CPU
core and has no more left capacity to forward the additional
traffic. However our scaling procedure could be improved by
taking into consideration the topology and the dynamic load
of the other modules. In this way, it would not have added
the third useless BR module knowing that NR was already at
its limit. Finally, we slow down the consumer by setting an
Interest packet window of 1 to trigger the scale down process.
This is illustrated in the last third of Figure 5: the clones are
removed when their reported CPU usage reaches 0% (and
their respective curves do not continue past this point). At
the end of the experiment, the network is in the same state
as it was at the beginning.

5.4 Security management
The goal of this experiment is to test the capability of µNDN
to dynamically deploy a countermeasure against a Content
Poisoning Attack (CPA). We built a network that leaves some
space for a CPA similar to the one that can affect NFD [17],
as depicted in Figure 6. It is made of a chain with two Content
Stores and one Name Router modules, the CS modules are
placed at the edges of the network and the Name Router is
placed in the middle. The flaw of this network is that a CS is
directly connected to the producer side of NR. More precisely,
once a good provider connects to CS and registers its prefix,
the NR module routes packets to the good provider through
the CS that will forward the Interest packets that do not
match any cache entry to all known endpoints (because a CS
does not know the concept of a route). Consequently, if a bad
provider connects to the sameCS, it can take advantage of the

ICN ’18, September 21–23, 2018, Boston, MA, USA Xavier Marchal, Thibault Cholez, Olivier Festor

Figure 5: Throughput and CPU usage of the network during a scaling event

NR

CS

Int
er

es
t

Data

Good Consumer

Bad Consumer

Good Provider

Bad Provider

CS

Interest

Data

Int
er

es
t

Data

Interest

Data

In
te

re
st

Interest
Data

Figure 6: Content poisoning scenario

already created route of the good provider (preventively, the
NR module drops any Data packet received from a Face that
has not previously registered the concerning prefix properly).
Like in [17], the attacker collaborates with a bad consumer
to perform the CPA: the bad consumer asks for bad contents
to be inserted in the cache. The good consumer is configured
to ask a limited range of content to set the cache hit to 100%.
Figure 7 shows a histogram that represents the cache hit

of the consumer-side CS and different curves that represent
the CPU usage of the modules (we do not plot the producer-
side CS for the readability). Once all the contents in the
range are cached, the cache hit reaches 100%. When the
producer-side CS fully serves the consumers, no more traffic
is forwarded to NR, which explains the 0% CPU usage. Then,
the bad consumer starts the cache pollution which results
in a decrease of the cache hit and an increase of the CPU
usage of the other modules in the network. The first report
of the cache hit ratio to the manager after the attack does
not show enough difference to appear suspicious (third bar),
but the next one shows a drop of the cache-hit from 94%
to 30%, triggering the verification process. At this moment,
the manager asks the orchestrator to deploy a SV module

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

Cache hit CS1 NR1 CS1.SV1 (x10)

C
ac

he
 h

it
(in

 p
er

ce
nt

)

C
P

U
 u

sa
ge

 (
in

 p
er

ce
nt

)

Figure 7: Cache hit over timeunderContent Poisoning
Attack

between the consumer-side CS and NR (the location where
the problem was detected). SV is configured with the public
keys of good producers and will drop any packet that fails
the verification process. Its execution makes the cache hit
quickly come back to its original value, mitigating the attack.
At the end, the bad consumer should stop after repeated
timeouts. Finally, the manager restores the network back to
its original state by removing SV when it does not receive
reports of fake Data packets for 10 periods (the report period
is set to 2 seconds). For an efficient usage of SV modules
in the network, a manager should be able to move them
dynamically over time (and/or deploy new ones) toward the
source of the attack, thus limiting the verification only to
the smallest concerned part of the network.

µNDN: an Orchestrated Microservice Architecture for NDN ICN ’18, September 21–23, 2018, Boston, MA, USA

6 DISCUSSION
With hindsight, our most questionable design choice is the
separation of the PIT and FIB functions in two distinct mod-
ules because it resulted in some significant drawbacks. We
had to define specialized Faces for a specific incoming traffic
(Interest or Data) which makes these modules "oriented" (see
Table 1) if we want to avoid traffic broadcast (Interest for
the PIT and Data for the FIB). Moreover, the asymmetric
cardinality of NR (1/N) and BR (N/1) makes them harder to
scale up separately. Indeed, scaling routing functions like BR
(NR was not shown but it is like a fusion of the two scaling
methods described with the additional constraint to have
consistent routes between scaled instances) increases the
complexity of the network management and does not appear
to be very efficient according to our experiments, even if our
implementation still needs to be optimized.
A unified module regrouping PIT and FIB functions ap-

pears to be the most reasonable choice for the moment. This
forwarding module could perform both actions on all its
Faces, thus reducing the network complexity. An interme-
diate solution to the development of a whole new PIT+FIB
component is to regroup our three core routing functions
(NR, BR and PD) in a single VM or container, as it is possible
in NFV to build a Virtualized Network Function with several
VNF Components inside. The standalone BR can be kept for
very specific scenarios like in [26] where the PIT is enhanced
with off-path functionalities to improve content delivery. By
opposition, all the on-path support functions (including the
CS) can easily take advantage of the microservice paradigm.

7 CONCLUSION
In this paper, we presented µNDN, an alternative way to
implement NDN forwarding and support functions using
microservices, in order to make NDN fully benefit from NFV
features. Our first work was to split the three key functions of
the NDN forwarder into dedicated Virtualized Network Func-
tions. To have a complete architecture, we also developed a
manager as well as other microservices to cover important
needs of a network operator related to performance and se-
curity. The microservices make it possible to design more
efficient NDN networks by only deploying the right function
where and when needed but at the price of a greater man-
agement complexity, i.e. more chaining and orchestration
tasks, to build and operate the network.
Even if a direct comparison with NFD is biased by the

specific features enabled on both sides, our evaluation still
highlighted the benefit of the microservice architecture. In-
deed, splitting the functions resulted in a greater throughput
than the current single-threaded implementation of NFD
without much optimization effort. We also showed that our
orchestrator can scale-up a bottleneck component and add

security modules on the fly to mitigate performance or secu-
rity issues. Finally, the source code of the different pieces of
software composing µNDN is released in open-source.
Nearly all the functionalities presented in this paper are

implemented but a few missing are still under development.
In particular, in our future work, we will make our microser-
vices directly communicate over Ethernet to avoid any TCP/IP
overlay and keep optimizing our architecture to improve
chaining and packet delivery. We will also make our archi-
tecture compatible with NFV standards like the TOSCA de-
scription language. Finally, we are interested in exploring
further the possibilities offered by µNDN by adding new
functionalities to NDN as microservices.

Acknowledgement
This work is partially funded by the French National Re-
search Agency (ANR), DOCTOR project, under grant <ANR-
14-CE28-0001>.

REFERENCES
[1] Elian Aubry, Thomas Silverston, and Isabelle Chrisment. 2017. Imple-

mentation and Evaluation of a Controller-Based Forwarding Scheme
for NDN. In AINA 2017 - IEEE 31st International Conference on Ad-
vanced Information Networking and Applications. IEEE, Taipei, Taiwan,
144 – 151. https://doi.org/10.1109/AINA.2017.83

[2] Carlos M.S. Cabral, Christian Esteve Rothenberg, and Maurício Fer-
reira Magalhães. 2013. Mini-CCNx: Fast Prototyping for Named Data
Networking. In Proceedings of the 3rd ACM SIGCOMM Workshop on
Information-centric Networking (ICN ’13). ACM, New York, NY, USA,
33–34. https://doi.org/10.1145/2491224.2491236

[3] Théo Combe, Wissam Mallouli, Thibault Cholez, Guillaume Doyen,
Bertrand Mathieu, and Edgardo Montes De Oca. 2017. A SDN and NFV
use-case: NDN implementation and security monitoring. In Guide to
Security in SDN and NFV. Springer. https://hal.inria.fr/hal-01652639

[4] Namiot Dmitry and Sneps-Sneppe Manfred. 2014. On micro-services
architecture. International Journal of Open Information Technologies 2,
9 (2014).

[5] Seyed Kaveh Fayazbakhsh, Yin Lin, Amin Tootoonchian, Ali Ghodsi,
Teemu Koponen, Bruce Maggs, K.C. Ng, Vyas Sekar, and Scott Shenker.
2013. Less Pain, Most of the Gain: Incrementally Deployable ICN.
In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM
(SIGCOMM ’13). ACM, New York, NY, USA, 147–158. https://doi.org/
10.1145/2486001.2486023

[6] Martin Fowler. 2014. Microservices a definition of this new architec-
tural term. (2014). https://martinfowler.com/articles/microservices.
html

[7] Network Functions Virtualisation Industry Specification Group.
2013. Network Functions Virtualisation (NFV). White Paper.
ETSI. https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_
White_Paper2.pdf

[8] Network Functions Virtualisation Industry Specification Group.
2014. Network Functions Virtualisation (NFV); Management
and Orchestration. Group Specification GS NFV-MAN 001.
ETSI. http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/
01.01.01_60/gs_NFV-MAN001v010101p.pdf

[9] P. H. V. Guimaraes, L. H. G. Ferraz, J. V. Torres, D. M. F. Mattos,
M. P. Andres F., M. E. Andreoni L., I. D. Alvarenga, C. S. C. Rodrigues,

https://doi.org/10.1109/AINA.2017.83
https://doi.org/10.1145/2491224.2491236
https://hal.inria.fr/hal-01652639
https://doi.org/10.1145/2486001.2486023
https://doi.org/10.1145/2486001.2486023
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper2.pdf
https://portal.etsi.org/Portals/0/TBpages/NFV/Docs/NFV_White_Paper2.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf

ICN ’18, September 21–23, 2018, Boston, MA, USA Xavier Marchal, Thibault Cholez, Olivier Festor

and O. C. M. B. Duarte. 2013. Experimenting Content-Centric Net-
works in the future internet testbed environment. In 2013 IEEE Inter-
national Conference on Communications Workshops (ICC). 1383–1387.
https://doi.org/10.1109/ICCW.2013.6649453

[10] AKM Hoque, Syed Obaid Amin, Adam Alyyan, Beichuan Zhang, Lixia
Zhang, and Lan Wang. 2013. NLSR: named-data link state rout-
ing protocol. In Proceedings of the 3rd ACM SIGCOMM workshop on
Information-centric networking. ACM, 15–20.

[11] Kevin Khanda, Dilshat Salikhov, Kamill Gusmanov, Manuel Mazzara,
and Nikolaos Mavridis. 2017. Microservice-based iot for smart build-
ings. In Advanced Information Networking and Applications Workshops
(WAINA), 2017 31st International Conference on. IEEE, 302–308.

[12] Michał Król and Ioannis Psaras. 2017. NFaaS: named function as
a service. In Proceedings of the 4th ACM Conference on Information-
Centric Networking. ACM, 134–144.

[13] Alessandra Levcovitz, Ricardo Terra, and Marco Tulio Valente. 2016.
Towards a technique for extracting microservices from monolithic
enterprise systems. arXiv preprint arXiv:1605.03175 (2016).

[14] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. 2013. Unikernels: Library Operating Systems
for the Cloud. SIGPLAN Not. 48, 4 (March 2013), 461–472. https:
//doi.org/10.1145/2499368.2451167

[15] Xavier Marchal, Thibault Cholez, and Olivier Festor. 2016. Server-
side performance evaluation of NDN. In 3rd ACM Conference on
Information-Centric Networking (ACM-ICN’16). ACM SIGCOMM, ACM,
Kyoto, Japan, 148 – 153. https://doi.org/10.1145/2984356.2984364

[16] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Mi-
chio Honda, Roberto Bifulco, and Felipe Huici. 2014. ClickOS and
the art of network function virtualization. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementation.
USENIX Association, 459–473.

[17] Tan Nguyen, Xavier Marchal, Guillaume Doyen, Thibault Cholez, and
Rémi Cogranne. 2017. Content Poisoning in Named Data Networking:
Comprehensive Characterization of real Deployment. In 15th IFIP/IEEE
International Symposium on Integrated Network Management (IM2017).
Lisbon, Portugal, 72–80. https://doi.org/10.23919/INM.2017.7987266

[18] Xuan Nam Nguyen, D. Saucez, and T. Turletti. 2013. Efficient caching
in Content-Centric Networks using OpenFlow. In 2013 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS). 67–68.
https://doi.org/10.1109/INFCOMW.2013.6562846

[19] D. Perino, M. Gallo, R. Laufer, Z. B. Houidi, and F. Pianese. 2016. A
programmable data plane for heterogeneous NFV platforms. In 2016
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS). 77–82. https://doi.org/10.1109/INFCOMW.2016.7562049

[20] A. Rahman, D. Trossen, D. Kutscher, and R. Ravindran. 2018.
Deployment Considerations for Information-Centric Network-
ing. Internet-Draft draft-irtf-icnrg-deployment-guidelines-
00. Internet Research Task Force. https://tools.ietf.org/html/
draft-irtf-icnrg-deployment-guidelines-00 Work in Progress.

[21] R. Ravindran, A. Chakraborti, S. O. Amin, A. Azgin, and G. Wang.
2017. 5G-ICN: Delivering ICN Services over 5G Using Network Slicing.

IEEE Communications Magazine 55, 5 (May 2017), 101–107. https:
//doi.org/10.1109/MCOM.2017.1600938

[22] Chris Richardson. 2017. Microservice Architecture. (2017). http:
//microservices.io/patterns/monolithic.html

[23] S. Salsano, N. Blefari-Melazzi, A. Detti, G. Morabito, and L. Veltri. 2013.
Information Centric Networking over SDN and OpenFlow: Architec-
tural Aspects and Experiments on the OFELIA Testbed. Comput. Netw.
57, 16 (Nov. 2013), 3207–3221. https://doi.org/10.1016/j.comnet.2013.
07.031

[24] Mauro Sardara, Luca Muscariello, Jordan Augé, Marcel Enguehard,
Alberto Compagno, and Giovanna Carofiglio. 2017. Virtualized ICN
(vICN): Towards a Unified Network Virtualization Framework for
ICN Experimentation. In Proceedings of the 4th ACM Conference on
Information-Centric Networking (ICN ’17). ACM, New York, NY, USA,
109–115. https://doi.org/10.1145/3125719.3125726

[25] Manolis Sifalakis, Basil Kohler, Christopher Scherb, and Christian
Tschudin. 2014. An information centric network for computing the
distribution of computations. In Proceedings of the 1st ACM Conference
on Information-Centric Networking. ACM, 137–146.

[26] Vasilis Sourlas, Leandros Tassiulas, Ioannis Psaras, and George Pavlou.
2015. Information resilience through user-assisted caching in dis-
ruptive content-centric networks. In IFIP Networking Conference (IFIP
Networking), 2015. IEEE, 1–9.

[27] Yi Sun, Seyed Kaveh Fayaz, Yang Guo, Vyas Sekar, Yun Jin, Mo-
hamed Ali Kaafar, and Steve Uhlig. 2014. Trace-Driven Analysis of ICN
Caching Algorithms on Video-on-Demand Workloads. In Proceedings
of the 10th ACM International on Conference on Emerging Networking
Experiments and Technologies (CoNEXT ’14). ACM, New York, NY, USA,
363–376. https://doi.org/10.1145/2674005.2675003

[28] Giovanni Toffetti, Sandro Brunner, Martin Blöchlinger, Florian Du-
douet, and Andrew Edmonds. 2015. An Architecture for Self-managing
Microservices. In Proceedings of the 1st International Workshop on Au-
tomated Incident Management in Cloud (AIMC ’15). ACM, New York,
NY, USA, 19–24. https://doi.org/10.1145/2747470.2747474

[29] Takanori Ueda, Takuya Nakaike, and Moriyoshi Ohara. 2016. Work-
load characterization for microservices. InWorkload Characterization
(IISWC), 2016 IEEE International Symposium on. IEEE, 1–10.

[30] M. Vahlenkamp, F. Schneider, D. Kutscher, and J. Seedorf. 2013. En-
abling ICN in IP networks using SDN. In 2013 21st IEEE International
Conference on Network Protocols (ICNP). 1–2. https://doi.org/10.1109/
ICNP.2013.6733634

[31] N. L. M. van Adrichem and F. A. Kuipers. 2015. NDNFlow: Software-
defined Named Data Networking. In Proceedings of the 2015 1st IEEE
Conference on Network Softwarization (NetSoft). 1–5. https://doi.org/
10.1109/NETSOFT.2015.7116131

[32] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc
claffy, Patrick Crowley, Christos Papadopoulos, Lan Wang, and Be-
ichuan Zhang. 2014. Named Data Networking. SIGCOMM Comput.
Commun. Rev. 44, 3 (July 2014), 66–73. https://doi.org/10.1145/2656877.
2656887

https://doi.org/10.1109/ICCW.2013.6649453
https://doi.org/10.1145/2499368.2451167
https://doi.org/10.1145/2499368.2451167
https://doi.org/10.1145/2984356.2984364
https://doi.org/10.23919/INM.2017.7987266
https://doi.org/10.1109/INFCOMW.2013.6562846
https://doi.org/10.1109/INFCOMW.2016.7562049
https://tools.ietf.org/html/draft-irtf-icnrg-deployment-guidelines-00
https://tools.ietf.org/html/draft-irtf-icnrg-deployment-guidelines-00
https://doi.org/10.1109/MCOM.2017.1600938
https://doi.org/10.1109/MCOM.2017.1600938
http://microservices.io/patterns/monolithic.html
http://microservices.io/patterns/monolithic.html
https://doi.org/10.1016/j.comnet.2013.07.031
https://doi.org/10.1016/j.comnet.2013.07.031
https://doi.org/10.1145/3125719.3125726
https://doi.org/10.1145/2674005.2675003
https://doi.org/10.1145/2747470.2747474
https://doi.org/10.1109/ICNP.2013.6733634
https://doi.org/10.1109/ICNP.2013.6733634
https://doi.org/10.1109/NETSOFT.2015.7116131
https://doi.org/10.1109/NETSOFT.2015.7116131
https://doi.org/10.1145/2656877.2656887
https://doi.org/10.1145/2656877.2656887

	Abstract
	1 Introduction
	2 State of the art
	2.1 NFV and SDN initiatives for ICNs
	2.2 Microservice architectures for networking

	3 Microservices for NDN
	3.1 Common definitions and design constraints
	3.2 Description of the microservices
	3.3 Network examples of possible combinations

	4 Management and orchestration of microservices
	4.1 The manager
	4.2 Dynamic network changes

	5 Evaluation
	5.1 Experimental environment
	5.2 Unit testing of microservices
	5.3 Performance management
	5.4 Security management

	6 Discussion
	7 Conclusion
	References

