
HAL Id: hal-01897272
https://hal.inria.fr/hal-01897272

Submitted on 28 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Random-Walk Methods for Approximating
Polytope Volume

Ioannis Z. Emiris, Vissarion Fisikopoulos

To cite this version:
Ioannis Z. Emiris, Vissarion Fisikopoulos. Efficient Random-Walk Methods for Approximating Poly-
tope Volume. ACM Transactions on Mathematical Software, Association for Computing Machinery,
2018, 44 (4), pp.1 - 21. �10.1145/3194656�. �hal-01897272�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162987421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01897272
https://hal.archives-ouvertes.fr

Efficient Random-Walk Methods for

Approximating Polytope Volume

Ioannis Z. Emiris∗ Vissarion Fisikopoulos∗

Abstract

We experimentally study the fundamental problem of computing the volume of a convex
polytope given as an intersection of linear inequalities. We implement and evaluate practical
randomized algorithms for accurately approximating the polytope’s volume in high dimen-
sions (e.g. one hundred). To carry out this efficiently we experimentally correlate the effect
of parameters, such as random walk length and number of sample points, on accuracy and
runtime. Moreover, we exploit the problem’s geometry by implementing an iterative round-
ing procedure, computing partial generations of random points and designing fast polytope
boundary oracles. Our publicly available code is significantly faster than exact computation
and more accurate than existing approximation methods. We provide volume approxima-
tions for the Birkhoff polytopes B11, . . . ,B15, whereas exact methods have only computed
that of B10.

Keywords: volume approximation, general dimension, random walk, polytope oracle,
algorithm engineering, ray shooting

∗Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Greece.
{emiris,vfisikop}@di.uoa.gr.

ar
X

iv
:1

31
2.

28
73

v2
 [

cs
.C

G
]

 2
9

M
ar

 2
01

4

1 Introduction

A fundamental problem in discrete and computational geometry is to compute the volume of
a convex body in general dimension or, more particularly, of a polytope. In the past 15 years,
randomized algorithms for this problem have witnessed a remarkable progress. Starting with
the breakthrough poly-time algorithm of [15], subsequent results brought down the exponent
on the dimension from 27 to 4 [28]. However, the question of an efficient implementation had
remained open.

Notation. Convex bodies are typically given by a membership oracle. A polytope P ⊆ Rd
can also be represented as the convex hull of vertices (V-polytope) or, as is the case here, as
the (bounded) intersection

P := {x ∈ Rd | Ax ≤ b}

of m halfspaces given by A ∈ Rm×d, b ∈ Rm (H-polytope); ∂P is its boundary, and O∗(·) hides
polylog factors in the argument. The input includes approximation factor ε > 0; W denotes the
most important runtime parameter, namely random walk length.

Previous work. Volume computation is #-P hard for V- and for H-polytopes [16]. Several
exact algorithms are surveyed in [9] and implemented in VINCI [8], which however cannot
handle general polytopes for dimension d > 15. An interesting challenge is the volume of the
n-Birkhoff polytope, computed only for n ≤ 10 using highly specialized software (Sect. 4).
Regarding deterministic approximation, no poly-time algorithm can compute the volume with
less than exponential relative error [17]. The algorithm of [7] has error ≤ d!.

The landmark randomized poly-time algorithm in [15] approximates the volume of a convex
body with high probability and arbitrarily small relative error. The best complexity, as a
function of d, given a membership oracle, is O∗(d4) oracle calls [28]. All approaches except [28]
define a sequence of co-centric balls, and produce uniform point samples in their intersections
with P to approximate the volume of P .

Concerning existing software (cf Sect. 5), [13] presented recently Matlab code based on [28]
and [12]. The latter offers a randomized algorithm for Gaussian volume (which has no direct
reduction to or from volume) in O∗(d3), as a function of d. In [26] they implement [28], focusing
on variance-decreasing techniques, and an empirical estimation of mixing time. In [25], they use
a straightforward acceptance-rejection method, which is not expected to work in high dimension;
it was tested only for d ≤ 4. An approach using thermodynamic integration [21] offers only
experimental guarantees on runtime and accuracy.

The key ingredient of all approaches is random walks that produce an almost uniform point
sample. Such samples is a fundamental problem of independent interest with important appli-
cations in, e.g., global optimization, statistics, machine learning, Monte Carlo (MC) integration,
and non-redundant constraint identification. Several questions of sampling combinatorial struc-
tures such as contingency tables and more generally lattice points in polytopes may be reduced
to sampling a polytope.

No simple sampling method exists unless the body has standard shape, e.g., simplex, cube or
ellipsoid. Acceptance-rejection techniques are inefficient in high dimensions. E.g., the number
of uniform points one needs to generate in a bounding box before finding one in P is exponential
in d. A Markov chain is the only known method, and it may use geometric random walks such
as the grid walk, the ball walk (or variants such as the Dikin walk), and Hit-and-run [34].
The Markov chain has to make a (large) number of steps, before the generated point becomes
distributed approximately uniformly (which is the stationary limit distribution of the chain).
We focus on Hit-and-run which yields the fastest algorithms today.

In contrast to other walks, Hit-and-run is implemented by computing the intersection of a
line with ∂P . In general, this reduces to binary search on the line, calling membership at every
step. For H-polytopes, the intersection is obtained by a boundary oracle; for this, we employ
ray-shooting with respect to the m facet hyperplanes (Sect. 2). In exact form, it is possible to

1

avoid linear-time queries by using space in o(mbd/2c), achieving queries in O(logm) [33]. Duality
reduces oracles to (approximate) ε-nearest neighbor queries, which take O(dm(1+ε)−2+o(1)) using
O(dm+m1+(1+ε)−2+o(1)) space by locality sensitive hashing [2]. Moreover, space-time tradeoffs
from O(1/ε(d−O(1))/8) time and O(1/ε(d−O(1))/2) space to O(1) time and O(1/ε(d−O(1))) space
are available by [3]. Approximate oracles are also connected to polytope approximation. Classic
results, such as Dudley’s, show that O((1/ε)(d−1)/2) facets suffice to approximate a convex body
of unit diameter within a Hausdorff distance of ε. This is optimized to O(

√
vol(∂P)/ε(d−1)/2)

[3]. The boundary oracle is dual to finding the extreme point in a given direction among a
known pointset. This is ε-approximated through ε-coresets for measuring extent, in particular
(directional) width, but requires a subset of O((1/ε)(d−1)/2) points [1]. The exponential depen-
dence on d or the linear dependence on m make all aforementioned methods of little practical
use. Ray shooting has been studied in practice only in low dimensions, e.g., in 6-dimensional
V-polytopes [37].

Contribution. We implement and experimentally study efficient algorithms for approxi-
mating the volume of polytopes. Point sampling, which is the bottleneck of these algorithms,
is key in achieving poly-time complexity and high accuracy. To this end, we study variants of
Hit-and-run. It is widely believed that the theoretical bound on W is quite loose, and this is
confirmed by our experiments, where we set W = O(d) and obtain a < 2% error in up to 100
dimensions (Sect. 4).

Our emphasis is to exploit the underlying geometry. Our algorithm uses the recursive
technique of co-centric balls (cf. Sect. 3) introduced in [15] and used in a series of papers, with
the most recent to be [22]. This technique forms a sequence of diminishing radii which, unlike
previous papers, allowing us to only sample partial generations of points in each intersection
with P , instead of sampling N points for each. In fact, the algorithm starts with computing the
largest interior ball by an LP. Unlike most theoretical approaches, that use an involved rounding
procedure, we sample a set of points in P and compute the minimum enclosing ellipsoid of this
set, which is then linearly transformed to a ball. This procedure is repeated until the ratio
of the minimum over the maximum ellipsoid axes reaches some user-defined threshold. This
iterative rounding allows us to handle skinny polytopes efficiently.

We study various oracles (Sect. 2). Line search using membership requires O(md + log r
εs

)
arithmetic operations. This is improved to a boundary oracle in O(md) by avoiding membership.
Using Coordinate Direction Hit-and-run, we further improve the oracle to O(m) amortized
complexity. We also exploit duality to reduce the oracle to ε-nearest neighbor search: although
the asymptotic complexity is not improved, for certain instances such as cross-polytopes in
d = 16, kd-trees achieve a 40x speed-up.

Our C++ code is open-source (sourceforge) and uses the CGAL library. A series of experi-
ments establishes that it handles dimensions substantially larger than existing exact approaches,
e.g., cubes and products of simplices within an error of 2% for d ≤ 100, in about 20 min.
Compared to approximate approaches, it computes significantly more accurate results. It com-
putes in few hours volume estimations within an error of 2% for Birkhoff polytopes B2, . . . ,B10;
vol(B10) has been exactly computed by specialized parallel software in a sequential time of years.
More interestingly, it provides volume estimations for vol(B11),. . . ,vol(B15), whose exact values
are unknown, within 9 hours. In conclusion, we claim that the volume of general H-polytopes in
high dimensions (e.g. one hundred) can be efficiently and accurately approximated on standard
computers.

Paper organization. The next section discusses walks and oracles. Sect. 3 presents
the overall volume algorithm. Sect. 4 discusses our experiments, and we conclude with open
questions in Sect. 5.

2

2 Random walks and Oracles

This section introduces the paradigm of Hit-and-run walks and focuses on their implementation,
with particular emphasis on exploiting the geometry of H-polytopes. The methods presented
here are analysed experimentally in Sect. 4.

Hit-and-run random walks. The main method to randomly sample a polytope is by
(geometric) random walks. We shall focus on variants of Hit-and-run, which generate a uniform
distribution of points [35]. Assume we possess procedure Line(p), which returns line ` through
point p ∈ P ⊆ Rd; ` will be specified below. The main procedure of Hit-and-run is Walk(p, P,W),
which reads in point p ∈ P and repeats W times: (i) run Line(p), (ii) move p to a random
point uniformly distributed on P ∩ `. We shall consider two variants of Hit-and-run.

In Random Directions Hit-and-run (RDHR), Line(p) returns ` defined by a random vector
uniformly distributed on the unit sphere centered at p. The vector coordinates are drawn from
the standard normal distribution. RDHR generates a uniformly distributed point in

O∗(d2r2), or O∗(d3r2) oracle calls, (1)

with hidden constants 1030, or 1011 respectively,

starting at an arbitrary, or at a uniformly distributed point (also known as warm start), respec-
tively, where r is the ratio of the radius of the smallest enclosing ball over that of the largest
enclosed ball in P [27].

In Coordinate Directions Hit-and-run (CDHR), Line(p) returns ` defined by a random vector
uniformly distributed on the set {e1, . . . , ed}, where ei = (0, . . . , 0, 1, 0, . . . , 0), i = 1, . . . , d. This
is a continuous variant of the Grid walk. As far as the authors know, the mixing time has not
been analyzed. We offer experimental evidence that CDHR is faster than RDHR and sufficiently
accurate. An intermediate variant is Artificially Centering Hit-and-run [23], where first a set S
of sample points is generated as with RDHR, then Line(p) returns ` through p and a randomly
selected point from S. This however is not a Markov chain, unlike CDHR and RDHR.

Procedure Walk(p, P , W) requires at every step an access to a boundary oracle which com-
putes the intersection of line ` with ∂P . In the sequel we discuss various implementations of
this oracle.

Boundary oracle by membership. For general convex bodies, a boundary oracle can
be implemented using a membership oracle which, given vector y ∈ Rd, decides whether y ∈ P .
The intersection of ` with ∂P is computed by binary search on the segment defined by any
point on ` lying in the body and the intersection of ` with a bounding ball. Each step calls
membership to test whether the current point is internal, and stops when some accuracy εs is
certified. Checking the point against a hyperplane takes O(d) operations, thus obtaining the
intersection of ` with the hyperplane. We store this intersection so that subsequent tests against
this hyperplane take O(1). The total complexity is O(md+log r

εs
) arithmetic operations, where

r is the ball radius.
Boundary oracle by facet intersection. Given an H-polytope P the direct method to

compute the intersection of line ` with ∂P is to examine all m hyperplanes. Let us consider
Walk(p0, P,W) and line ` = {x ∈ Rd : x = λv+p0}, where p0 ∈ Rd lies on `, and v is the direction
of `. We compute the intersection of ` with the i-th hyperplane aix = bi, ai ∈ Rd, bi ∈ R,
namely pi := p0 + bi−aip0

aiv
v, i ∈ {1, . . . ,m}. We seek points p+, p− at which ` intersects ∂P ,

namely p+v = min1≤i≤m{piv | piv ≥ 0} and p−v = max1≤i≤m{piv | piv ≤ 0}. This is computed
in O(md) arithmetic operations. In practice, only the λ± are computed, where p± = p0 + λ±v.

In the context of the volume algorithm (Sect.3), the intersection points of ` with ∂P are
compared to the intersections of ` with the current sphere. Assuming the sphere is centered at
the origin with radius R, its intersections with ` are p = p0+λv such that λ2+2λp0v+|p0|2−R2 =
0. If λ+, λ− give a negative sign when substituted to the aforementioned equation then p+, p− are
the endpoints of the segment of ` lying in the intersection of P and the current ball. Otherwise,

3

we have to compute one or two roots of the aforementioned equation since the segment has one
or two endpoints on the sphere.

However, in CDHR, where ` and v are vertical, after the computation of the first pair p+, p−,
all other pairs can be computed in O(m) arithmetic operations. This is because two sequential
points produced by the walk differ only in one coordinate. Let j, k be the walk coordinate
of the previous and the current step respectively. Then, assuming P = {x ∈ Rd : Ax ≤ b},
where A ∈ Rm×d, λ± = max{λ | A(p0 ± λv) ≤ b}. This becomes ±λAv = ±λAj ≤ −Ap0 + b,
where Aj is the j-th column of A. The two maximizations are solved in O(md) ops. Let vector
t = −Ap0 + b ∈ Rm. At the next step, given point p′0 = p0 + cej , where ej is the j-th standard
basis vector, we perform two maximizations λ : ±λAk ≤ t− cAj in O(m).

Boundary oracle by duality. Duality reduces the problem to nearest neighbor (NN)
search and its variants. Given a pointset B ⊆ Rd and query point q, NN search returns a
point p ∈ B s.t. dist(q, p) ≤ dist(q, p′) for all p′ ∈ B, where dist(q, p) is the Euclidean distance
between points q, p. Let us consider, w.l.o.g., boundary intersection for line ` parallel to the xd-
axis: ` = {x : x = λv + p, λ ≥ 0}, v = (0, . . . , 0,−1). It reduces to two ray-shooting questions;
it suffices to describe one, namely with the upward vertical ray, defined by λ ≤ 0. We seek
the first facet hyperplane hit which, equivalently, has the maximum negative signed vertical
distance from p to any hyperplane H of the upper hull, for fixed v. This distance is denoted by
sv(p,H). Let us consider the standard (aka functional) duality transform between points p and
non-vertical hyperplanes H:

p = (p1, . . . , pd) 7→ p∗ : xd = p1x1 + · · ·+ pd−1xd−1 − pd,
H : xd = c1x1 + · · ·+ cd−1xd−1 + c0 7→ H∗ = (c1, . . . , cd−1,−c0).

This transformation is self-dual, preserves point-hyperplane incidences, and negates vertical
distance, hence sv∗(p∗, H∗) = −sv(p,H), where sv∗(·, ·) is the signed vertical distance from
hyperplane p∗ to point H∗ in dual space. Hence, our problem is equivalent to minimizing
sv∗(p∗, H∗) ≥ 0. Equivalently, we seek point H∗ minimizing absolute vertical distance to
hyperplane p∗ on its side of positive distances. In dual space, consider

point t = (t1, . . . , td), and hyperplane

p∗ = q : xd = q1x1 + · · ·+ qd−1xd−1 + q0 : (2)

sv∗(q, t) = td − (q1t1 + · · ·+ qd−1td−1 + q0)

= −(q0, q1, . . . , qd−1,−1) · (1, t1, . . . , td−1, td),

where the latter operation is inner product in Euclidean space Rd+1 of “lifted” datapoint t′ =
(1, t1, . . . , td−1, td) with “lifted” query point q′ = (q0, q1, . . . , qd−1,−1). Let

q′′ = (q′, 0), t′′ = (t′,
√
M − ‖t′‖22), for M ≥ max

t
{1 + ‖t‖22},

following an idea of [4]. By the cosine rule,

dist2
d+2(q′′, t′′) = ‖q′‖22 +M + 2sv∗(q, t),

where distd+2(·, ·) stands for Euclidean distance in Rd+2. Since the t′′ lie on hyperplane x1 = 1,
optimizing distd+2(q′′, t′′) over a set of points t′′ is equivalent to optimizing distd+1(q̂, t̂), q̂ =
(q1, . . . , qd−1,−1, 0), over points t̂ = (t,

√
M − 1− ‖t‖22). Hence, point t minimizing sv∗(q, t) ≥

0 corresponds to t̂ minimizing dist2
d+1(q̂, t̂). Thus the problem is reduced to (exact) nearest

neighbor in Rd+1. Ray shooting to the lower hull with same v reduces to farthest neighbor.
Unfortunately, an approximate solution to these problems incurs an additive error to the cor-
responding original problem.

Alternatively, we shall consider hyperplane queries. Let us concentrate on hyperplanes
supporting facets on the lower hull of P . Their dual points lie in convex position. Given that

4

point p is interior in P , the dual points of the lower hull facets lie on the upper halfspace of
p∗. In dual space, consider point t and hyperplane q as in expression (2). Let sd∗(q, t) be the
signed Euclidean distance from q to t, i.e. the minimum Euclidean distance of any point on q
to t. Then sv∗(q, t) = sd∗(q, t) / ‖(q1, . . . , qd−1, 1)‖2, where the normal is (q1, . . . , qd−1, 1). Our
question, therefore, becomes equivalent to minimizing sd∗(q, t) over all datapoints t ∈ Rd for
which sd∗(q, t) ≥ 0; i.e., we seek the NN above q. Starting with facets on the upper hull, the
problem becomes that of maximizing sd∗(q, t) ≤ 0, i.e. finding the NN below q.

The above approaches motivate us to use NN software for exact point and hyperplane queries
(Sect. 4).

3 The volume algorithm

This section details our poly-time methods for approximating the volume of P . Algorithms
in this family are the current state-of-the-art with respect to asymptotic complexity bounds.
Moreover, they can achieve any approximation ratio given by the user, i.e., they form a fully
polynomial randomized approximation scheme (FPRAS). Given polytope P ⊆ Rd, they execute
sandwiching and Multiphase Monte Carlo (MMC) [34].

We consider that P is a full-dimensional H-polytope. However, we can also consider P
to be lower dimensional and be given in form {x ∈ Rd |Ax = b, x ≥ 0}, where A ∈ Rm×d,
x ∈ Rd, b ∈ Rm, A′ ∈ Rm×m−d+1, x′ ∈ Rm−d+1. Using Gauss-Jordan elimination the linear
system Ax = b can be transformed to its unique reduced row echelon form [I|A′]x = b′, where
I is the identity matrix. Then P can be written as {x′ ∈ Rm−d+1 | A′x′ ≥ b′, x′ ≥ 0}, i.e. a
full-dimensional H-polytope in Rm−d+1.

Rounding and sandwiching. This stage involves first rounding P to reach a near isotropic
position, second sandwiching, i.e. to compute ball B and scalar ρ such that B ⊆ P ⊆ ρB. There
is an abundance of methods in literature for rounding and sandwiching (cf. [34] and references
therein). However, here we develop a simple, efficient method that succeed significantly accurate
results in practice (cf. Sect. 4 and Table 5). The method doesn’t compute a ball that covers P
but a ball B′ such that B′ ∩ P contains almost all the volume of P .

For rounding, we sample a set S of O(n) random points in P . Then we approximate the
minimum volume ellipsoid E that covers S, and satisfies the inclusions 1

(1+ε)dE ⊆ conv(S) ⊆ E ,

in time O(nd2(ε−1 + ln d+ ln lnn)) [24]. Let us write

E = {x ∈ Rd | (x− cE)T E (x− cE) ≤ 1}
= {x ∈ Rd |LT (x− cE) ≤ 1}, (3)

where E ⊆ Rd×d is a positive semi-definite (p.s.d.) matrix and LTL its Cholesky decomposition.
By substituting x = (LT)−1y+cE we map the ellipsoid to the ball {y ∈ Rd | yT y ≤ 1}. Applying
this transformation to P we have P ′ = {y ∈ Rd |A(LT)−1 ≤ b − AcE} which is the rounded
polytope, where vol(P) = det(LT)−1vol(P ′). We iterate this procedure until the ratio of the
minimum over the maximum ellipsoid axes reaches some user defined threshold.

For sandwiching P we first compute the Chebychev ball B(c, r) of P , i.e. the largest inscribed
ball in P . It suffices to solve the LP: {maximize R, subject to: Aix + R‖Ai‖2 ≤ bi, i =
1, . . . ,m, R ≥ 0}, where Ai is the i-th row of A, and the optimal values of R and x ∈ Rd yield,
respectively, the radius r and the center c of the Chebychev ball.

Then we may compute a uniform random point in B(c, r) and use it as a start to perform a
random walk in P , eventually generating N random points. Now, compute the largest distance
between each of the N points and c; this defines a (approximate) bounding ball. Finally, define
the sequence of balls B(c, 2i/d), i = α, α+ 1, . . . , β, where α = bd log rc and β = dd log ρe.

Multiphase Monte Carlo (MMC). MMC constructs a sequence of bodies Pi := P ∩
B(c, 2i/d), i = α, α + 1, . . . , β, where Pα = B(c, 2α/d) ⊆ B(c, r) and Pβ (almost) contains P .

5

Then it approximates vol(P) by the telescopic product

vol(Pα)

β∏
i=α+1

vol(Pi)

vol(Pi−1)
, where vol(Pα) =

2πd/2(2blog rc)d

dΓ(d/2)
.

This reduces to estimating the ratios vol(Pi)/vol(Pi−1), which is achieved by generating N
uniformly distributed points in Pi and by counting how many of them fall in Pi−1.

For point generation we use random walks as in Sect. 2. We set the walk length W =
b10+d/10c = O(d), which is of the same order as in [26] but significantly lower than theoretical
bounds. This choice is corroborated experimentally (Sect. 4).

Unlike typical approaches, which generate points in Pi for i = α, α+1, . . . , β, here we proceed
inversely. First, let us describe initialization. We generate an (almost) uniformly distributed
random point p ∈ Pα, which is easy since Pα = B(c, 2α/d) ⊆ B(c, r). Then we use p to start
a random walk in Pα, Pα+1, Pα+2 and so on, until we obtain a uniformly distributed point in
Pβ. We perform N random walks starting from this point to generate N (almost) uniformly
distributed points in Pβ and then count how many of them fall into Pβ−1. This yields an
estimate of vol(Pβ)/vol(Pβ−1). Next we keep the points that lie in Pβ−1, and use them to start
walks so as to gather a total of N (almost) uniformly distributed points in Pβ−1. We repeat
until we compute the last ratio vol(Pα+1)/vol(Pα).

The implementation is based on a data structure S that stores the random points. In step
i > α, we wish to compute vol(Pβ−i)/vol(Pβ−i−1) and S contains N random points in Pβ−i+1

from the previous step. The computation in this step consists in removing from S the points
not in Pβ−i, then sampling N − size(S) new points in Pβ−i and, finally, counting how many lie
in Pβ−i−1. Testing whether such a point lies in some Pi reduces to testing whether p ∈ B(2i/d)
because p ∈ P .

One main advantage of our method is that it creates partial generations of random points
for every new body Pi, as opposed to having always to generate N points. This has a significant
effect on runtime since it reduces it by a constant raised to β. Partial generations of points have
been used in convex optimization [6].

We use threads, also in [26], to ensure independence of the points. A thread is a sequence
of points each generated from the previous point in the sequence by a random walk. The first
point in the sequence is uniformly distributed in the ball inscribed in P . Alg. 1 describes our
algorithm using a single thread.

Complexity. The first O∗(d5) algorithm was in [22], using a sequence of subsets defined
as the intersection of the given body with a ball. It uses isotropic sandwiching to bound the
number of balls by O∗(d), it samples N = 400ε−2d log d = O∗(d) points per ball, and follows
a ball walk to generate each point in O∗(d3) oracle calls. Interestingly, both sandwiching and
MMC each require O∗(d5) oracle calls. Later the same complexity was obtained by Hit-and-run
under the assumption the convex body is well sandwiched.

Proposition 1. [22] Assuming B(0, 1) ⊆ P ⊆ B(0, ρ), the volume algorithm of [22] returns an
estimation of vol(P), which lies between (1− ε)vol(P) and (1 + ε)vol(P), with probability ≥ 3/4,
by

O

(
d4ρ2

ε2
ln d ln ρ ln2 d

ε

)
= O∗(d4ρ2)

oracle calls with probability ≥ 9/10, where we have assumed ε is fixed. Sandwiching yields
ρ =

√
d/ log(1/ε), implying a total of O∗(d5) calls.

In [28], they construct a sequence of log-concave functions and estimate ratios of integrals,
instead of ratios of balls, using simulated annealing. The complexity reduces to O∗(d4) by
decreasing both number of phases and number of samples per phase to O∗(

√
d). Using Hit-and-

run, O∗(d3) still bounds the time to sample each point. Moreover, they improve isoperimetric
sandwiching to O∗(d4).

6

Algorithm 1: VolEsti (P, ε, tr)

Input : H-polytope P , objective approximation ε, rounding threshold tr
Output: approximation of vol(P)

N ← 400ε−2d log d; W ← b10 + d/10c;
// rounding and sandwiching

compute the Chebychev ball B(c, r);
generate a random point p in B(c, r);
repeat

S ← ∅;
for i = 1 to N do

p← Walk(p, P,W);
add p in S;

compute min encl. ellipsoid E of S, with p.s.d. E;
set as Emin, Emax the min and max E axes;
compute the Cholesky decomposition LTL of E;
transform P and p w.r.t. L;

until Emax/Emin < tr;
set ρ the largest distance from c to any point in S;

// MMC

set α← blog rc; β ← dlog ρe;
Pi ← P ∩B(c, 2i/d) for i = α, α+ 1, . . . , β;

vol(Pα)← 2πd/2(2blog rc)d/dΓ(d/2);
i← β;
while i > α do

Plarge ← Pi; i← i− 1; Psmall ← Pi;

count prev ← size(S); remove from S the points not in Psmall; count← size(S);
Set p to be an arbitrary point from S;
for j = 1 to N − count prev do

p← Walk(p, Plarge,W);

if p ∈ B(c, 2i/d) then
count← count+ 1;
add p in S;

vol← vol · (N/count);
return vol/det(LT) ;

The following Lemma states the runtime of Alg. 1, which is in fact a variant of the algorithm
analysed in [22] (see also Prop. 1). Although there is no theoretical bound on the approximation
error of Alg. 1, our experimental analysis in Sect. 4 shows that in practice the achieved error is
always better than the one proved in Prop. 1.

Lemma 2. Given H-polytope P , Alg. 1 performs k phases of rounding in O∗(d3mk), and
approximates vol(P) in O(md3 log d log(ρ/r)) arithmetic operations, assuming ε > 0 is fixed,
where r and ρ denote the radii of the largest inscribed ball and of the co-centric ball covering P .

Proof. Our approach generates d log(ρ/r) balls and uses Hit-and-run. Assuming P contains the
unit ball, an upper bound on ρ/r is diameter δ. In each ball intersected with P , we generate
≤ N = 400ε−2d log d random points. Each point is computed after W = O(d) steps of CDHR.

7

P d m vol(P) N µ [min, max] std-dev vol(P)−µ
vol(P)

VolEsti Exact

(sec) (sec)
cube-10 10 20 1.024E+003 9210 1.027E+003 [0.950E+003,1.107E+003] 3.16E+001 0.0030 0.42 0.01
cube-15 15 30 3.277E+004 16248 3.24E+004 [3.037E+004,3.436E+004] 9.41E+002 0.0088 1.44 0.40
cube-20 20 40 1.048E+006 23965 1.046E+006 [0.974E+006,1.116E+006] 3.15E+004 0.0028 4.62 swap
cube-50 50 100 1.126E+015 78240 1.125E+015 [1.003E+015,1.253E+015] 4.39E+013 0.0007 117.51 swap

cube-100 100 200 1.268E+030 184206 1.278E+030 [1.165E+030,1.402E+030] 4.82E+028 0.0081 1285.08 swap
∆-10 10 11 2.756E-007 9210 2.76E-007 [2.50E-007,3.08E-007] 1.08E-008 0.0021 0.56 0.01
∆-50 60 61 1.202E-082 98264 1.21E-082 [1.07E-082,1.38E-082] 6.44E-084 0.0068 183.12 0.01

∆-100 100 101 1.072E-158 184206 1.07E-158 [9.95E-159,1.21E-158] 4.24E-160 0.0032 907.52 0.02
∆-20-20 40 42 1.689E-037 59022 1.70E-037 [1.54E-037,1.87E-037] 7.33E-039 0.0088 53.13 0.01
∆-40-40 80 82 1.502E-096 140224 1.50E-096 [1.32E-096,1.70E-096] 7.70E-098 0.0015 452.05 0.01
∆-50-50 100 102 1.081E-129 184206 1.10E-129 [1.01E-129,1.19E-129] 4.65E-131 0.0154 919.01 0.02
cross-10 10 1024 2.822E-004 9210 2.821E-004 [2.693E+004,2.944E+004] 5.15E-006 0.0003 1.58 388.50
cross-11 11 2048 5.131E-005 10550 5.126E-005 [4.888E-005,5.437E-005] 1.15E-006 0.0010 5.19 6141.40
cross-12 12 4096 8.551E-006 11927 8.557E-006 [8.130E-006,9.020E-006] 1.69E-007 0.0007 12.21 —
cross-15 15 32768 2.506E-008 16248 2.505E-008 [2.332E-008,2.622E-008] 5.15E-010 0.0004 541.22 —
cross-18 18 262144 4.09E-011 20810 4.027E-011 [3.97E-011,4.08E-011] 5.58E-013 0.0165 5791.06 —
rh-8-25 8 25 7.859E+002 6654 7.826E+002 [7.47E+002,8.15E+002] 1.93E+001 0.0042 0.30 1.14
rh-8-30 8 30 2.473E+002 6654 2.449E+002 [2.28E+002,2.68E+002] 1.06E+001 0.0099 0.27 5.56

rh-10-25 10 25 5.729E+003 9210 5.806E+003 [5.55E+003,6.06E+003] 1.85E+002 0.0134 0.66 6.88
rh-10-30 10 30 2.015E+003 9210 2.042E+003 [1.96E+003,2.21E+003] 7.06E+001 0.0132 0.67 swap
rv-8-10 8 24 1.409E+019 6654 1.418E+019 [1.339E+019,1.497E+019] 5.24E+017 0.0107 0.37 0.01
rv-8-11 8 54 3.047E+018 6654 3.056E+018 [2.562E+018,3.741E+018] 3.98E+017 0.0028 0.76 0.54
rv-8-12 8 94 4.385E+019 6654 4.426E+019 [4.105E+019,4.632E+019] 2.07E+018 0.0093 0.59 261.37
rv-8-20 8 1191 2.691E+021 6654 2.724E+021 [2.517E+021,2.871E+021] 1.05E+020 0.0123 3.69 swap
rv-8-30 8 4482 7.350E+021 6654 7.402E+021 [7.126E+021,7.997E+021] 2.19E+020 0.0072 12.73 swap

rv-10-12 10 35 2.136E+022 9210 2.155E+022 [1.952E+022,2.430E+022] 1.53E+021 0.0093 1.00 0.01
rv-10-13 10 89 1.632E+023 9210 1.618E+023 [1.514E+023,1.714E+023] 6.23E+021 0.0088 1.24 59.50
rv-10-14 10 177 2.931E+023 9210 2.962E+023 [2.729E+023,3.195E+023] 1.71E+022 0.0135 2.08 swap
cc-8-10 8 70 1.568E+005 26616 1.589E+005 [1.52E+005,1.64E+005] 3.50E+003 0.0138 1.95 0.05
cc-8-11 8 88 1.391E+006 26616 1.387E+006 [1.35E+006,1.43E+006] 2.65E+004 0.0034 2.10 0.08

Fm-4 6 7 8.640E+001 4300 8.593E+001 [7.13E+001,1.12E+002] 8.38E+000 0.0055 0.19 0.01
Fm-5 10 25 7.110E+003 9210 7.116E+003 [6.35E+003,8.10E+003] 3.01E+002 0.0009 0.69 0.02
Fm-6 15 59 2.861E+005 16248 2.850E+005 [2.42E+005,3.22E+005] 1.55E+004 0.0038 3.24 swap
ccp-5 10 56 2.312E+000 9210 2.326E+000 [2.16E+000,2.52E+000] 7.43E-002 0.0064 0.49 38.00
ccp-6 15 368 1.346E+000 16248 1.346E+000 [1.26E+000,1.45E+000] 3.81E-002 0.0002 6.14 swap
B8 49 64 4.42E-023 76279 4.46E-023 [4.05E-023, 7.32E-024] 1.93E+004 0.0092 192.97 1920.00
B9 64 81 2.60E-033 106467 2.58E-033 [2.23E-033, 3.07E-033] 2.13E-034 0.0069 499.56 8 days
B10 81 100 8.78E-046 142380 8.92E-046 [7.97E-046, 9.96E-046] 4.99E-047 0.0152 1034.74 6160 days
B11 100 121 ??? 184206 1.40E-060 [1.06E-060, 1.67E-060] 1.10E-061 ??? 2398.17 —
B12 121 144 ??? 232116 7.85E-078 [6.50E-078, 9.31E-078] 5.69E-079 ??? 4946.42 —
B13 144 169 ??? 286261 1.33E-097 [1.13E-097, 1.62E-097] 1.09E-098 ??? 9802.73 —
B14 169 196 ??? 346781 5.96E-120 [5.30E-120, 6.96E-120] 3.82E-121 ??? 17257.61 —
B15 196 225 ??? 413804 5.70E-145 [5.07E-145, 6.52E-145] 1.55E-145 ??? 31812.67 —

Table 1: Overall results; ε = 1, “swap” indicates it ran out of memory and started swapping.
“???” indicates that the exact volume is unknown; “—” indicates it didn’t terminate after
at least 10h. VINCI is used for exact volume computation except Birkhoff polytopes where
birkhoff is used instead.

The boundary oracle of CDHR is implemented in Sect. 2. In particular, k CDHR steps
require O(dm + (k − 1)m + kd) arithmetic operations. It holds d = O(m) and k = Ω(d).
Thus, the amortized complexity of a CDHR step is O(m). Overall, the algorithm needs
O(ε−2md3 log d log(ρ/r)) operations.

Each rounding iteration decreases δ and runs in O(nd2(ε−1 +ln d+ln ln(n))), where n stands
for the number of sampled points, and ε is the approximation of the minimum volume ellipsoid
of Eq. (3). We generate n = O(d) points, each in O(m) arithmetic operations. Hence, rounding
runs in O∗(d3mk), where ε is fixed. Moreover, k is typically constant since k = 1 is enough to
handle, e.g., polytopes with ρ/r = 100 in dimension up to 20.

Let us check this bound with the experimental data for cubes, products of simplices, and
Birkhoff polytopes, with d ≤ 100 and ε = 1, where m = 2d, d+ 2 and d+ 1 + 2

√
d, respectively,

for the 3 classes, and for cubes log(ρ/r) ≤ log(
√
d) = O(log d). Fig. 2 shows that the 3 classes

behave similarly. Performing a fit of adb log2 d, runtime follows 10−5d3.08 log2 d which shows a
smaller dependence on d than our bounds, at this range of experiments.

4 Experiments

We implement and experimentally test the above algorithms and methods in the software pack-
age VolEsti. The code currently consists of around 2.5K lines in C++ and is open-source1. It
relies on the CGAL library [11] for its d-dimensional kernel to represent objects such as points and

1http://sourceforge.net/projects/randgeom

8

RDHR CDHR

P d ε µ [min, max] (vol(P)− µ) VolEsti µ [min, max] (vol(P)− µ) VolEsti
/vol(P) (sec) /vol(P) (sec)

B5 16 1 2.27E-07 [1.66E-07,2.85E-07] 0.0072 22.90 2.25E-07 [1.87E-07,2.80E-07] 0.0003 4.06
B6 25 1 8.53E-13 [3.72E-13,1.22E-12] 0.0982 105.96 9.53E-13 [7.30E-13,1.15E-12] 0.0083 17.26
B7 36 1 2.75E-20 [1.78E-21,6.71E-20] 0.4259 479.40 4.82E-20 [3.86E-20,6.18E-20] 0.0056 56.64

cube-10 10 1 1022.8 [944.3951,1103.968] 0.0012 2.03 1026.83 [970.3117,1096.469] 0.0027 0.34
cube-10 10 0.4 – – – – 1022.88 [993.0782,1060.409] 0.0011 2.02
cube-20 20 1 1.04E+6 [9.38E+5,1.14E+6] 0.0033 25.44 1.04E+6 [9.74E+5,1.12E+6] 0.0028 4.62

Table 2: Experiments with CDHR vs RDHR; W = 10.

d m vol(P) N µ [min, max] std-dev (vol(P)− µ) VolEsti mem. VolEsti* mem.
/vol(P) (sec) MB (sec) MB

10 1024 2.82E-04 9210 2.82E-04 [2.67E-04,3.00E-04] 5.74E-06 0.0001 1.58 35 0.51 42
12 4096 8.55E-06 11927 8.54E-06 [8.04E-06,8.89E-06] 1.72E-07 0.0010 12.21 35 1.62 72
14 16384 1.88E-07 14778 1.88E-07 [1.80E-07,1.99E-07] 4.09E-09 0.0006 237.22 36 6.49 230
16 65536 3.13E-09 17744 3.13E-09 [2.97E-09,3.33E-09] 6.44E-11 0.0004 1430.93 37 32.87 992
18 262144 4.09E-11 20810 4.09E-11 [3.99E-11,4.29E-11] 7.19E-13 0.0013 5791.06 38 188.43 4781

Table 3: Experiments with NN for boundary oracle on cross-polytopes; VolEsti∗ uses flann;
ε = 1.

vectors, for its LP solver [19], for the approximate minimum ellipsoid [18], and for generating
random points in balls. We use Eigen [20] for linear algebra. The memory consumption is
dominated by the list of random points which needs O(dN) space during the entire execution
of the algorithm (Sect. 3). Arithmetic uses the double data type of C++, except from the
LP solver, which uses the GNU Multiple Precision arithmetic library to avoid double exponent
overflow. We experimented with several pseudo-random number generators in Boost [29] and
chose the fastest, namely mersenne twister generator mt19937. All timings are on an Intel Core
i5-2400 3.1GHz, 6MB L2 cache, 8GB RAM, 64-bit Debian GNU/Linux.

Data. The following polytopes are tested (the first 7 are from the VINCI webpage):

• cube-d: {x = (x1, . . . , xd) |xi ≤ 1, xi ≥ −1, xi ∈ R for all i = 1, . . . , d},
• cross-d: cross polytope, the dual of cube, i.e. conv({−ei, ei, i = 1, . . . , d}),
• rh-d-m: polytopes constructed by randomly choosingm hyperplanes tangent to the sphere,

• rv-d-n: dual to rh-d-m, i.e. polytopes with n vertices randomly distributed on the sphere,

• cc-8-n: the 8-dimensional product of two 4-dimensional cyclic polyhedra with n vertices,

• ccp-n: complete cut polytopes on n vertices,

• Fm-d: one facet of the metric polytope in dimension d,

• ∆-d: the d-dimensional simplex conv({ei, for i = 0, 1, . . . , d}),
• ∆-d-d: product of two simplices, i.e {(p, p′) ∈ R2d | p ∈ ∆-d, p′ ∈ ∆-d},
• skinny-cube-d: {x = (x1, . . . , xd) |x1 ≤ 100, x1 ≥ −100, xi ≤ 1, xi ≥ −1, xi ∈ R i =

2, . . . , d}, rotated by 30o in the plane defined by the first two coordinate axes,

• Bn: the n-Birkhoff polytope (defined below).

Each experiment is repeated 100 times with ε = 1 unless otherwise stated. The reported
timing for each experiment is the mean of 100 timings. We keep track of and report the min and
the max computed values, the mean µ, and the standard deviation. We measure the accuracy
of our method by (vol(P) − µ)/vol(P) and (max−min)/µ; unless otherwise stated mean error
of approximation refers to the first quantity. The reader should not confuse these quantities
which refer to the approximation error that computed in practice with ε which refers to the
objective approximation error. Comparing the practical and objective approximation error, our
method is in practice more accurate than indicated by the theoretical bounds. In particular, in
all experiments all computed values are contained in the interval ((1− ε)vol(P), (1 + ε)vol(P)),
while theoretical results in [22] guarantee only 75% of them. Actually, the above interval is larger
than [min, max]. In general our experimental results show that our software can approximate the
volume of general polytopes up to dimension 100 in less than 2 hours with mean approximation
error at most 2% (cf. Table 1).

9

Random walks and oracles. First, we compare the implementations of boundary oracles
using membership oracles versus using facet intersection. By performing experiments with
RDHR our algorithm approximate the volume of a 10-cube in 42.58 sec using the former,
whereas it runs in 2.03 sec using the latter.

We compare RDHR to CDHR. The latter take advantage of more efficient boundary ora-
cle implementations as described in Sect. 2. Table 2 shows that our algorithm using CDHR
becomes faster and more accurate than using RDHR by means of smaller [min,max] interval.
Additionally, since CDHR is faster we can increase the accuracy (decrease ε) and obtain even
more accurate results than RDHR, including smaller error (vol(P)− µ)/vol(P).

Finally, we evaluate our implementations of boundary oracles using duality and NN search
(Sect. 2). The motivation comes from the fact that the boundary oracle becomes slow when the
number of facets is large, e.g., for cross-d, m = 2d. We consider state-of-the-art NN software:
CGAL’s dD Spatial Searching implements kd-trees [36], ANN [30] implements kd- and BBD-trees,
LSH implements Locality Sensitive Hashing [2], and FLANN [31] implements randomized kd-trees.
We compare them against our oracle running in O(m), on cross-17, B10 and cpp-7. We build two
kd-trees per coordinate, i.e. one per direction, each tree storing the dual of the corresponding
lower and upper hulls.

Consider point queries. FLANN, is very fast in high dimensions (typically > 100), but lacks
theoretical guarantees. It turns out that KDTreeSingleIndexParams on cross-d returns exact
results for all ε and d tested, since the tree stores vertices of a cube. Compared to the O(m)
oracle, for ε = 0 it is 10x slower, for ε = 2 it is competitive, and for ε = 5 it lets us approximate
vol(cross-18) with a 40x speed-up, but with extra memory usage (Table 3). On other datasets,
FLANN does not always compute the exact NN even for ε = 0. ANN, is very fast up to dimension
20 and offers theoretical guarantees. For ε = 0, it guarantees the exact NN, but is > 103x slower
than our O(m) oracle, though it becomes significantly faster for ε > 1. In [32], LSH is reported
to be 10x slower than FLANN and competitive with ANN, thus we do test it here.

CGAL for point queries is slower than ANN, but can be parametrized to handle hyperplane
queries with theoretical guarantees. Given hyperplane H, we set as query point the projec-
tion of the origin on H and as distance-function the inner product between points. With the
Sliding midpoint rule and ε = 0, this is a bit (while ANN is 1000x) slower than our boundary
oracle for cross-17. It is important to design methods for which ε > 0 accelerates computation
so as to use them with approximate boundary oracles.

The above study provides motivation for the design of algorithms that can use approximate
boundary queries and hence take advantage of NN software to handle more general polytopes
with large number of facets. Of particular relevance is the development of efficient methods and
data-structures for approximate hyperplane queries.

Choice of parameters and rounding. We consider two crucial parameters, the length
of a random walk, denoted by W , and approximation ε, which determines the number N of
random points. We set W = b10+d/10c. Our experiments indicate that, with this choice, either
(vol(P)-µ)/vol(P) or (min,max)/µ is < 1% up to d = 100 (Table 4). Moreover, for higher W
the improvement in accuracy is not significant, which supports the claim that asymptotic bounds
are unrealistically high. Fig. 1 correlates runtime (expressed by NW) and accuracy (expressed
by (min,max)/µ which actually measures some “deviation”) to W and ε (expressed by N). A
positive observation is that accuracy tightly correlates with runtime: e.g., accuracy values close
to or beyond 1 lie under the curve NW = 105, and those rounded to ≤ 0.3 lie roughly above
NW = 3 · 105. It also shows that, increasing W converges faster than increasing N to a value
beyond which the improvement in accuracy is not significant.

To experimentally test the effect of rounding we construct skinny hypercubes skinny-cube-d.
We rotate them to avoid CDHR taking unfair advantage of the degenerate situation where the
long edge is parallel to an axis. Table 5 on these and other polytopes shows that rounding
reduces approximation error by 2 orders of magnitude. Without rounding, for polytope rv-8-11

10

0

10

20

30

40

50

10000 100000

R
an

do
m

 w
al

k
le

ng
th

 W

Number of random points N

100K
300K
600K
900K

1200K
1800K
2500K

2.103

0.522

0.426

0.364

0.397

0.300

0.262

0.287

1.015

0.475

0.434

0.301

0.308

0.305

0.252

0.279

0.975

0.368

0.246

0.262

0.196

0.243

0.215

0.189

0.610

0.289

0.208

0.177

0.165

0.156

0.140

0.172

0.427

0.229

0.174

0.142

0.111

0.085

0.114

Figure 1: Runtime of VolEsti w.r.t. dimension; ε = 1, y-axis in logscale; fitting on cube-d
results.

0.1

1

10

100

1000

10000

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

ec
)

Dimension d

10^(-5) d^{3.08} log^2(d)
product of simplices

cube-d
birkhoff

Figure 2: Experiments with B5 on the effect of W and ε (or N) on accuracy, measured by (min,
max)/µ (crosses), and runtime, measured by levels of N ·W = c, for c = 105, . . . , 2.5 · 106.

one needs to multiply N (thus runtime) by 100 in order to achieve approximation error same
as with rounding.

Other software. Exact volume computation concerns software computing the exact value
of the volume, up to round-off errors in case it uses floating point arithmetic. We mainly
test against VINCI 1.0.5 [8], which implements state-of-the art algorithms, cf. Table 1. For H-
polytopes, the method based on Lawrence’s general formula is numerically unstable resulting in
wrong results in many examples [9], and thus was excluded. Therefore, we focused on Lasserre’s
method. For all polytopes there is a threshold dimension for which VINCI cannot compute the
volume: it takes a lot of time (e.g. > 4 hrs for cube-20) and consumes all system memory, thus
starts swapping.

LRS is not useful for H-polytopes as stated on its webpage: “If the volume option is applied
to an H-representation, the results are not predictable.” Latte implements the same decompo-
sition methods as VINCI; it is less prone to round-off error but slower [14]. Normaliz applies
triangulation: it handles cubes for d ≤ 10, in < 1 min, but for d = 15, it did not terminate after
5 hours. Qhull handles V-polytopes but does not terminate for cube-10 nor random polytope

11

P d m W µ [min,max] std-dev (vol(P)-µ) (min, max)
/vol(P) /µ

(*) cube-10 10 20 10 1026.953 [925.296,1147.101] 33.91331 0.0029 0.2160
cube-10 10 20 15 1024.157 [928.667,1131.928] 31.34121 0.0002 0.1985
cube-10 10 20 20 1026.910 [932.118,1144.601] 30.97023 0.0028 0.2069

cube-50 50 100 10 1.123E+15 [1.019E+15,1.257E+15] 4.135E+13 0.0022 0.2125
(*) cube-50 50 100 15 1.131E+15 [1.039E+15,1.237E+15] 3.882E+13 0.0044 0.1744

cube-50 50 100 20 1.127E+15 [1.033E+15,1.216E+15] 3.893E+13 0.0007 0.1629

cube-100 100 200 10 1.278E+30 [1.165E+30,1.402E+30] 4.819E+28 0.0081 0.1856
cube-100 100 200 15 1.250E+30 [1.243E+30,1.253E+30] 4.075E+27 0.0140 0.0083

(*) cube-100 100 200 20 1.263E+30 [1.190E+30,1.321E+30] 3.987E+28 0.0038 0.1038

∆-20-20 40 42 10 1.699E-37 [1.527E-37,1.881E-37] 7.670E-39 0.0056 0.2083
(*) ∆-20-20 40 42 14 1.694E-37 [1.526E-37,1.892E-37] 7.096E-39 0.0025 0.2166

∆-20-20 40 42 20 1.694E-37 [1.433E-37,1.836E-37] 7.006E-39 0.0024 0.2382

∆-50-50 100 102 10 1.098E-129 [1.012E-129,1.189E-129] 4.652E-131 0.0154 0.1612
∆-50-50 100 102 15 1.111E-129 [1.090E-129,1.139E-129] 1.610E-131 0.0281 0.0437

(*) ∆-50-50 100 102 20 1.079E-129 [1.011E-129,1.148E-129] 3.685E-131 0.0015 0.1266

B10 81 100 10 7.951E-55 [6.291E-55,9.077E-55] 8.533E-56 0.0946 0.3504
B10 81 100 15 8.124E-55 [7.451E-55,8.774E-55] 5.015E-56 0.0750 0.1629

(*) B10 81 100 20 7.489E-55 [7.398E-55,7.552E-55] 6.615E-57 0.1472 0.0106

Table 4: Experiments with varying W ; ε = 1. (*) indicate minimum W where either (vol(P)-
µ)/vol(P) or (min, max)/µ is < 1%.

P vol(P) N µ [min,max]
vol(P)−µ

vol(P)
VolEsti(sec)

rv-8-11 3.047E+18 6654 1.595E+18 [6.038E+17,3.467E+18] 0.4766 1.48
rv-8-11 3.047E+18 665421 3.134E+18 [3.134E+18,3.134E+18] 0.0283 157.46

(*) rv-8-11 3.047E+18 6654 3.052E+18 [2.755E+18,3.383E+18] 0.0013 1.34
skinny-cube-10 1.024E+05 9210 5.175E+04 [2.147E+04,1.228E+05] 0.4946 0.69

(*) skinny-cube-10 1.024E+05 9210 1.029E+05 [8.445E+04,1.149E+05] 0.0050 0.71
skinny-cube-20 1.049E+08 23965 4.193E+07 [2.497E+07,7.259E+07] 0.6001 5.59

(*) skinny-cube-20 1.049E+08 23965 1.040E+08 [8.458E+07,1.163E+08] 0.0084 6.70

Table 5: Experiments with rounding; (*): means that we use rounding.

rv-15-60 (Table 6). This should be juxtaposed to the duals, namely our software approximates
the volume of cross-10 in 2 sec with < 1% error and rh-15-60 in 3.44 sec. A general conclusion
for exact software is that it cannot handle d > 15.

We compare with the most relevant approximation method, namely the Matlab implemen-
tation of [13] for bodies represented as the intersection of an H-polytope and an ellipsoid. They
report that the code is optimized to achieve about 75% success rate for bodies of dimension
≤ 100 and ε ∈ [0.1, 0.2] (not to be confused with the ε of our method). Testing [13] with default
options and ε = 0.1, our implementation with ε = 1 runs faster for d < 80, performs roughly 100
times more total Hit-and-run steps and returns significantly more accurate results, e.g. from 4
to 100 times smaller error on cube-d when d > 70, and from 5 to 80 times on Birkhoff polytopes
(Table 7).

Birkhoff polytopes are well studied in combinatorial geometry and offer an important
benchmark. The n-th Birkhoff polytope Bn = {x ∈ Rn×n | xij ≥ 0,

∑
i xij = 1,

∑
j xij =

1, 1 ≤ i ≤ n}, also described as the polytope of the perfect matchings of the complete bipartite
graph Kn,n, the polytope of the n× n doubly stochastic matrices, and the Newton polytope of
the determinant. In [5], they present a complex-analytic method for this volume, implemented
in package birkhoff, which has managed to compute vol(B10) in parallel execution, which
corresponds to a single processor running at 1 GHz for almost 17 years.

First, dimBn = n2 − 2n+ 1: we project Bn to a subspace of this dimension. Our software,
with ε = 1, computes the volume of polytopes up to B10 in < 1 hour with mean error of ≤ 2%
(Table 1). The computed approximation values improves upon the best known upper bounds

12

P :
rv-15- rv-10- cube-

30 40 50 60 100 150 200 250 7 8 9 10

time (sec) 7.7 82.8 473.3 swap 37.3 107.8 282.5 449.0 0.1 2.2 119.5 > 5h

Table 6: Experiments with qhull; “swap” indicates it ran out of memory and started swapping;
“>5h” indicates it did not terminate after 5 hours.

software of [12] Volesti

P [min, max] std-dev vol(P)−µ
vol(P)

total time(sec) [min, max] std-dev vol(P)−µ
vol(P)

total time(sec)
steps steps

cube-20 [5.11E+05, 1.55E+06] 1.67E+05 0.0198 7.96E+04 21.48 [9.74E+05, 1.12E+06] 3.15E+04 0.0028 3.61E+06 4.62
cube-30 [6.75E+08, 1.45E+09] 1.72E+08 0.0440 2.22E+05 49.24 [9.91E+08, 1.16E+09] 3.89E+07 0.0039 1.21E+07 17.96
cube-40 [7.90E+11, 1.38E+12] 1.67E+11 0.0731 4.30E+05 88.09 [1.01E+12, 1.23E+12] 4.46E+10 0.0039 2.84E+07 50.72
cube-50 [8.75E+14, 1.45E+15] 1.43E+14 0.0327 7.16E+05 148.06 [1.00E+15, 1.25E+15] 4.39E+13 0.0007 5.49E+07 117.51
cube-60 [8.89E+17, 1.43E+18] 1.64E+17 0.0473 1.15E+06 229.33 [1.06E+18, 1.27E+18] 4.00E+16 0.0051 9.42E+07 222.10
cube-70 [9.01E+20, 1.36E+21] 1.49E+20 0.0707 1.66E+06 427.82 [1.02E+21, 1.32E+21] 5.42E+19 0.0013 1.49E+08 358.93
cube-80 [9.30E+23, 1.36E+24] 1.46E+23 0.1145 2.30E+06 531.46 [1.13E+24, 1.30E+24] 4.42E+22 0.0009 2.21E+08 582.19
cube-90 [1.07E+27, 1.88E+27] 2.20E+26 0.0394 3.30E+06 701.54 [1.09E+27, 1.44E+27] 5.18E+25 0.0019 3.15E+08 875.69

cube-100 [9.53E+29, 1.64E+30] 1.93E+29 0.0357 4.19E+06 884.43 [1.17E+30, 1.40E+30] 4.82E+28 0.0081 4.33E+08 1285.08
B8 [2.12E-23, 2.45E-22] 6.25E-23 0.3970 9.31E+05 221.30 [4.05E-23, 7.32E-24] 1.93E+04 0.0092 1.01E+08 192.97
B9 [1.54E-33, 2.77E-33] 3.71E-34 0.1830 2.05E+06 420.07 [2.23E-33, 3.07E-33] 2.13E-34 0.0069 2.27E+08 499.56
B10 [3.39E-46, 1.92E-45] 4.75E-46 0.1207 3.69E+06 691.97 [7.97E-46, 9.96E-46] 4.99E-47 0.0152 4.62E+08 1034.74

Table 7: Comparison of the software [12] vs VolEsti; each experiment is run 10 times, total
steps refer to the mean of the total number of Hit-and-run steps in each execution.

n 3 4 5 6 7 8 9 10

estimate
actual

[10] 1.25408 1.22556 1.19608 1.17258 1.15403 1.13910 1.12684 1.11627
VolEsti 0.99485 1.09315 1.00029 1.00830 1.00564 0.99440 0.99313 1.01525

Table 8: Comparison between asymptotic and experimental approximation of the volume of
Bn.

on vol(Bn), obtained through the asymptotic formula of [10], cf. Table 8. By setting ε = .5 we
obtain an error of 0.7% for vol(B10), in 6 hours. The computed approximation of the volume
has two correct digits, i.e. its first two digits equal to the ones of the exact volume. More
interestingly, using ε = 1 we compute, in < 9 hours, an approximation as well as an interval of
values for vol(B11),. . . , vol(B15), whose exact values are unknown (Table 1).

5 Further work

NN search seems promising and could accelerate our code, especially if it were performed approx-
imately with hyperplane queries. Producing (almost) uniform point samples is of independent
interest in machine learning, including sampling contingency tables and learning the p-value.
We plan to exploit such applications of our software. We may also study sampling for special
polytopes such as Birkhoff. It is straightforward to parallelize certain aspects of the algorithm,
such as random walks assigning each thread to a processor, though other aspects, such as the
algorithm’s phases, require more sophisticated parallelization. Our original motivation and
ultimate goal is to extend these methods to V-polytopes represented by an optimization oracle.

6 Acknowledgments

This work is co-financed by the European Union (European Social Fund - ESF) and Greek
national funds through the Operational Program “Education and Lifelong Learning” of the
National Strategic Reference Framework (NSRF) - Research Funding Program: THALIS -
UOA (MIS 375891). The authors acknowledge discussions with Matthias Beck on Birkhoff
polytopes, and Andreas Enge on VINCI, and help with experiments by Ioannis Psarros and
Georgios Samaras, students at UoA.

13

References

[1] P.K. Agarwal, S. Har-Peled, and K.R. Varadarajan. Geometric approximation via coresets.
In Combinatorial and Computational Geometry, MSRI, pages 1–30. University Press, 2005.

[2] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. Commun. ACM, 51:117–122, 2008.

[3] S. Arya, G. Dias da Fonseca, and D.M. Mount. Optimal area-sensitive bounds for polytope
approximation. In ACM Symp. on Comp. Geometry, pages 363–372, 2012.

[4] R. Basri, T. Hassner, and L. Zelnik-Manor. Approximate nearest subspace search. IEEE
Trans. Pattern Analysis & Machine Intelligence, 33(2):266–278, 2011.

[5] M. Beck and D. Pixton. The Ehrhart polynomial of the Birkhoff polytope. Discrete &
Computational Geometry, 30(4):623–637, 2003.

[6] D. Bertsimas and S. Vempala. Solving convex programs by random walks. J. ACM,
51(4):540–556, 2004.

[7] U. Betke and M. Henk. Approximating the volume of convex bodies. Discrete & Compu-
tational Geometry, 10(1):15–21, 1993.

[8] B. Büeler and A. Enge. VINCI. http://www.math.u-bordeaux1.fr/~aenge/index.php?
category=software&page=vinci.

[9] B. Büeler, A. Enge, and K. Fukuda. Exact volume computation for polytopes: A practical
study. In Polytopes: Combinatorics and Computation, volume 29 of Oberwolfach Seminars,
pages 131–154. Birkhäuser, 2000.

[10] E. Canfield and B. McKay. The asymptotic volume of the birkhoff polytope. Online Journal
of Analytic Combinatorics, 4(0), 2009.

[11] CGAL: Computational geometry algorithms library. http://www.cgal.org.

[12] B. Cousins and S. Vempala. A cubic algorithm for computing gaussian volume. In SODA,
pages 1215–1228, 2014.

[13] B. Cousins and S. Vempala. A Matlab implementation for volume approximation of convex
bodies, 2014. http://www.cc.gatech.edu/~bcousins/Volume.html.

[14] J.A. De Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto, and J. Wu. Software for exact
integration of polynomials over polyhedra. Comput. Geom.: Theory Appl., 46(3):232–252,
April 2013.

[15] M. Dyer, A. Frieze, and R. Kannan. A random polynomial-time algorithm for approximat-
ing the volume of convex bodies. J. ACM, 38(1):1–17, 1991.

[16] M.E. Dyer and A.M. Frieze. On the complexity of computing the volume of a polyhedron.
SIAM J. Comput., 17(5):967–974, 1988.

[17] G. Elekes. A geometric inequality and the complexity of computing volume. Discrete &
Computational Geometry, 1:289–292, 1986.

[18] K. Fischer, B. Gärtner, T. Herrmann, M. Hoffmann, and S. Schönherr. Bounding volumes.
In CGAL User and Reference Manual. CGAL Editorial Board, 4.3 edition, 2013.

14

http://www.math.u-bordeaux1.fr/~aenge/index.php?category=software&page=vinci
http://www.math.u-bordeaux1.fr/~aenge/index.php?category=software&page=vinci
http://www.cgal.org
http://www.cc.gatech.edu/~bcousins/Volume.html

[19] K. Fischer, B. Gärtner, S. Schönherr, and F. Wessendorp. Linear and quadratic program-
ming solver. In CGAL User and Reference Manual. CGAL Editorial Board, 4.3 edition,
2013.

[20] G. Guennebaud, B. Jacob, et al. Eigen v3, 2010. http://eigen.tuxfamily.org.

[21] U. Jaekel. A Monte Carlo method for high-dimensional volume estimation and application
to polytopes. Procedia Computer Science, 4:1403–1411, 2011.

[22] R. Kannan, L. Lovász, and M. Simonovits. Random walks and an O∗(n5) volume algorithm
for convex bodies. Rand. Struct. Algor., 11:1–50, 1997.

[23] D.E. Kaufman and R.L. Smith. Direction choice for accelerated convergence in hit-and-run
sampling. Operations Research, 46:84–95, 1998.

[24] L.G. Khachiyan. Rounding of polytopes in the real number model of computation. Math.
Oper. Res., 21(2):307–320, 1996.

[25] S. Liu, J. Zhang, and B. Zhu. Volume computation using a direct Monte Carlo method.
In G. Lin, editor, Computing and Combinatorics, volume 4598 of LNCS, pages 198–209.
Springer, 2007.

[26] L. Lovász and I. Deák. Computational results of an O(n4) volume algorithm. European J.
Operational Research, 216(1):152–161, 2012.

[27] L. Lovász and S. Vempala. Hit-and-run from a corner. SIAM J. Comput., 35(4):985–1005,
2006.

[28] L. Lovász and S. Vempala. Simulated annealing in convex bodies and an O∗(n4) volume
algorithm. J. Comp. Syst. Sci., 72(2):392–417, 2006.

[29] J. Maurer. Boost: C++ Libraries. Chapter 23. Boost Random. www.boost.org/doc/

libs/1_54_0/doc/html/boost$_$random.html.

[30] D.M. Mount and S. Arya. ANN: A library for approximate nearest neighbor searching,
1997.

[31] M. Muja. Flann: Fast library for approximate nearest neighbors, 2011. http://mloss.

org/software/view/143/.

[32] M. Muja and D.G. Lowe. Fast approximate nearest neighbors with automatic algorithm
configuration. In International Conference on Computer Vision Theory and Application
VISSAPP’09), pages 331–340. INSTICC Press, 2009.

[33] E.A. Ramos. On range reporting, ray shooting and k-level construction. In Proc. Sympo-
sium on Computational Geometry, pages 390–399. ACM, 1999.

[34] M. Simonovits. How to compute the volume in high dimension? Math. Program., pages
337–374, 2003.

[35] R.L. Smith. Efficient Monte Carlo procedures for generating points uniformly distributed
over bounded regions. Operations Research, 32(6):1296–1308, 1984.

[36] H. Tangelder and A. Fabri. dD spatial searching. In CGAL User and Reference Manual.
CGAL Editorial Board, 4.3 edition, 2013.

[37] Y. Zheng and K. Yamane. Ray-shooting algorithms for robotics. IEEE Trans. Automation
Science & Engineering, 10:862–874, 2013.

15

http://eigen.tuxfamily.org
www.boost.org/doc/libs/1_54_0/doc/html/ boost$_$random.html
www.boost.org/doc/libs/1_54_0/doc/html/ boost$_$random.html
http://mloss.org/software/view/143/
http://mloss.org/software/view/143/

	1 Introduction
	2 Random walks and Oracles
	3 The volume algorithm
	4 Experiments
	5 Further work
	6 Acknowledgments

