
HAL Id: hal-01661127
https://hal.archives-ouvertes.fr/hal-01661127v3

Submitted on 31 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Weakest Failure Detector to Solve the Mutual
Exclusion Problem in an Unknown Dynamic

Environment
Etienne Mauffret, Denis Jeanneau, Luciana Arantes, Pierre Sens

To cite this version:
Etienne Mauffret, Denis Jeanneau, Luciana Arantes, Pierre Sens. The Weakest Failure Detector
to Solve the Mutual Exclusion Problem in an Unknown Dynamic Environment. [Technical Report]
LISTIC; Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606. 2018. �hal-01661127v3�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162984985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01661127v3
https://hal.archives-ouvertes.fr


The Weakest Failure Detector to Solve the Mutual Exclusion Problem in

an Unknown Dynamic Environment

Etienne Mauffret1, Denis Jeanneau2, Luciana Arantes2, and Pierre Sens2

1LISTIC/Université Savoie Mont Blanc, France
2Sorbonne Université, CNRS, INRIA, LIP6, France

Abstract

Mutual exclusion is one of the fundamental problems in
distributed computing but existing mutual exclusion al-
gorithms are unadapted to the dynamics and lack of mem-
bership knowledge of current distributed systems (e.g.,
mobile ad-hoc networks, peer-to-peer systems, etc.). Ad-
ditionally, in order to circumvent the impossibility of solv-
ing mutual exclusion in asynchronous message passing
systems where processes can crash, some solutions include
the use of (T +Σl) [3], which is the weakest failure detec-
tor to solve mutual exclusion in known static distributed
systems. In this paper, we define a new failure detector
T Σlr which is equivalent to (T +Σl) in known static sys-
tems, and prove that T Σlr is the weakest failure detector
to solve mutual exclusion in unknown dynamic systems
with partial memory losses. We consider that crashed
processes may recover.

1 Introduction

Distributed algorithms are traditionally conceived for
message-passing distributed environments which are
static and whose membership is known. However, new
environments such as mobile ad-hoc wireless network
(MANET) or wireless sensor network (WSN), peer-to-
peer networks, and opportunist grids or clouds provide
access to services or information regardless of node lo-
cation, mobility pattern, or global view of the system.
These new systems are dynamic, which means that the
communication graph evolves over time, processes might
join or leave the system, or crash and recover during the

run. Additionally, they are unknown, i.e., processes do
not initially know which other processes belong to the
network, and only discover them during the run. There-
fore, distributed algorithms that run on top of these new
systems can not use prior distributed models for static
known systems.

The mutual exclusion problem, introduced by Dijkstra
in [9], is a fundamental problem in distributed computing
requiring that their processes get exclusive access to one
or more shared resources by executing a segment of code
called critical section (CS). It specifies that, at any time,
each process is either in the try, critical, exit or remainder
sections. Processes cycle through these sections in order.
Two processes cannot be in the critical section at the
same time (safety property), and if a process is in the try
section, then at some time later some process is in the
critical section (liveness property).

Several mutual exclusion algorithms which tolerate
process crash failures in the context of known static dis-
tributed systems have been proposed in the literature [14]
[16] [1]. However, these works do not consider dynamic
networks, or that a crashed process can recover. Further-
more, mutual exclusion algorithms that tolerate crash-
recovery processes were mostly defined in the shared
memory model, such as [12], [11], and [13], where shared
variables are stored in non-volatile memory. One crash-
recovery mutual exclusion algorithm for message-passing
systems of which we are aware was proposed in [6] but its
recovery solution works provided that failures do not oc-
cur in adjacent connected processes. Hence, the concep-
tion of mutual exclusion in unknown dynamic distributed
systems where crashed processes can recover presents
great challenges.

1



A definition of recoverable mutual exclusion (RME) for
systems with crash-recovery was presented in [12] and fur-
ther studied in [11] and [13]. A main change with regard
to previous definitions of fault-tolerant mutual exclusion
is the critical section re-entry property, which specifies
that if a process p crashes while in the critical section
and later recovers, then no other process may enter the
critical section until p re-enters it after its recovery. In-
tuitively, this means that the lock on the critical section
is not released in the case of a temporary crash.

In this paper we consider RME on top of a message
passing model, where each process has access to a volatile
memory of unbounded size, which is lost after a crash and
recovery, and a non-volatile memory (stable storage) of
bounded size. We denote this model the partial memory
loss model.

Failure detectors were introduced in [5] as a way to
circumvent the impossibility to solve consensus in crash-
prone asynchronous systems ([10]). In [8], the T failure
detector was shown to be the weakest failure detector to
solve fault-tolerant mutual exclusion in message passing
systems with a majority of correct processes. Then, in [3],
the (T +Σl) failure detector was shown to be the weak-
est failure detector to solve the same problem with no
assumption on the number of process failures.

Both of these results are restricted to known, static sys-
tems without recovery. Our paper aims to extend these
results to unknown systems where crashed processes can
recover, with partial memory loss.

(T +Σl) is the sum of two failure detectors. It provides
two outputs, one of which verifies the properties of T , and
another one which verifies the properties of Σl. We call
T Σl the detector which provides a single output verifying
the properties of both T and Σl.

The contributions of our paper are as follows:

• A proof that (T +Σl) is equivalent to T Σl;

• The definition of the T Σlr failure detector, which is
equivalent to T Σl in known, static systems without
recovery, and is the weakest failure detector to solve
RME in our model;

• A RME algorithm that runs on top of the proposed
model using the T Σlr failure detector and which tol-
erates crashes and recovery of processes, thus proving
that T Σlr is sufficient to solve RME in our model;

• A reduction algorithm proving the necessity of T Σlr

to solve RME in our model.

The rest of the paper is organized as follows: Section 2
presents our distributed system model. Section 3 provides
failure detector definitions and proves the equivalence be-
tween (T +Σl) and T Σl. Section 4 gives an algorithm
solving mutual exclusion using T Σl. Finally, Section 5
proves that T Σl is necessary to solve mutual exclusion in
an unknown dynamic distributed system.

2 Model and Problem Definition

This section presents the distributed system model used
throughout the rest of the paper and the definition of the
Recoverable Mutual Exclusion (RME) problem.

2.1 System Model

The system is composed of a finite set of processes, de-
noted Π. Each process is uniquely identified. Addi-
tionally, processes are asynchronous (there is no bound
on the relative speed of processes). They communicate
by sending each other messages with a point-to-point
send/receive primitive.

Communications are asynchronous (there is no bound
on message transfer delay).

2.2 Failure Model

A process can crash (stop executing) during the run, and
may recover from the crash, or not.

Each process has access to both a volatile memory and
a stable storage of bounded size. After a crash and re-
covery, the variables in volatile memory are reset to their
initial default values. As each process has access to stable
storage, we say that this model deals with partial mem-
ory loss. In the rest of the paper, the names of variables
in stable storage is underlined.

A process is said to be alive at time t if it never stopped
executing before t or if it recovered since the last time it
stopped executing. A process which is not alive at time
t is said to be crashed at time t.

In the traditional crash failure model, processes are
grouped into faulty processes, which eventually crash,
and correct processes, which never crash. However, in a

2



crash-recovery model, in any run, we consider three types
of processes [2]:

1) Eventually up processes, which stop crashing after
some time and remain alive forever. This type also in-
cludes processes that never crash (always up).

2) Eventually down processes, which eventually crash
and never recover. This type also includes processes that
crashed immediately at the start of the run and never
recovered (always down).

3) Unstable processes, which crash and recover in-
finitely often. We assume that, infinitely often, each un-
stable process manages to stay alive long enough to at
least send a message to each other process of which it is
aware.

2.3 Connectivity Model

The system is dynamic in the sense that the edges in the
communication graph can appear and disappear during
the run. In other words, at any given time instant, each
edge in the graph might or might not be available. With-
out any further assumption, a system in which no edge is
ever available would fit this model. Since nothing can be
computed in such a system, additional assumptions are
needed. Therefore, we assume that the following proper-
ties are verified:

• Dynamic connectivity: Every message sent by a
process that is not eventually down to a process that
is not eventually down is received at least once.

• Uniqueness of reception: Every message sent is
received at most once.

• First in, first out: If process p sends a message m1

to q and then sends m2 to q, if q receives m2 then it
received m1 first.

These properties imply not only that channels are re-
liable, but also that each pair of processes that are not
eventually down is connected infinitely often by a path
over time. This means that when a process p sends a
message to process q, then there is a path from p to q
such that at some point in the future, every edge on this
path will be available in the correct order, and sufficiently
long for the message to cross the edge. Note that it is not
necessary that all the edges on the path to be available
at the same time, and the path that a pair of processes

uses to communicate is not required to be the same every
time. This connectivity assumption is referred to as a
Time-Varying Graph of class C5 in [4].

Our algorithms assume that the underlying
send/receive implementation handles message for-
warding and, therefore, behaves the same way that it
would in a complete communication graph with reliable
channels.

2.4 Knowledge Model

The system is unknown, i.e., processes initially have no
information on system membership or the number of pro-
cesses of the system, and are only aware of their own
identity. The identities of other processes can only be
learned through exchanging messages. More practically,
each process p has access to a local variable knownp (in
stable storage) that initially contains only p. Eventually,
knownp contains the set of all processes that are not even-
tually down. For the sake of simplicity, our algorithms
do not attempt to define the knownp variable and simply
assume that an underlying discovery algorithm eventu-
ally fills it with the necessary process identities. This is
not a strong assumption, since the dynamic connectivity
property ensures that all processes will be able to com-
municate (and therefore learn of each other’s existence)
infinitely often.

2.5 Problem Definition

We consider the Recoverable Mutual Exclusion (RME)
problem, which we define in our model as follows. At
any point in time, a process either (1) does not try to
access the critical section and is in the remainder sec-
tion, (2) attempts to access the critical section through
the try section, (3) is in critical section (CS) or (4) has
recently left the critical section and is in the exit section.
We consider that every user is well-formed, that is that a
user will go through the remainder, try, critical and exit
sections in the correct order. In case of a crash and recov-
ery, a well-formed user will restart in the critical section
if it was in the critical section when it crashed, and will
restart in the remainder section, otherwise (the critical
section re-entry property of [11]).

A fault-tolerant mutual exclusion algorithm must pro-
vide a try section and an exit section procedures

3



such that the following properties are satisfied:

Safety: Two distinct alive processes p and q can not
be in CS at the same time.

Liveness: If an eventually up process p stopped crash-
ing and is in the try section, then at some time later some
process that is not eventually down is in CS.

Additionally, we consider the following fairness prop-
erty:

Starvation Freedom: If no process stays in its criti-
cal section forever, then every eventually up process that
stopped crashing and reaches its try section will eventu-
ally enter its CS.

Note that stable storage is necessary to solve the prob-
lem. Indeed, if a process p is in the critical section when
all processes simultaneously crash, without stable storage
there is no way for p to re-enter the critical section after
recovery since no process remembers that p was in the
critical section in the first place.

3 Failure Detectors

Failure detectors were introduced by Chandra and Toueg
in [5] as a way to circumvent the impossibility to
solve consensus in crash-prone asynchronous systems [10].
They are distributed oracles which provide unreliable in-
formation on process crashes. The information is unreli-
able in the sense that correct processes might be falsely
suspected of having crashed, and faulty processes might
still be trusted after they crashed. Different classes of
failure detectors provide different properties on the relia-
bility of the information provided to the processes.

Failure detectors are used as an abstraction of the sys-
tem model assumptions.

A failure detector D1 is said to be weaker than D2 if
there exists a distributed algorithm that can implement
D1 using the information on failures provided by D2. In-
tuitively, this means that the computing power provided
to the system by D2 is stronger than the computing power
provided by D1. A failure detector that is sufficient to
solve a given problem while being weaker than every other
failure detector that can solve it, is said to be the weak-
est failure detector to solve that problem. It follows that
the weakest failure detector to solve a problem can be
implemented in any system in which the problem can be
solved.

3.1 Failure Detectors for Mutual Exclu-
sion

In [8], Delporte-Gallet et al. introduced the trusting fail-
ure detector T and proved that it is the weakest failure
detector to solve fault-tolerant mutual exclusion in a sys-
tem with a majority of correct processes. T provides each
process p with a list of trusted processes, denoted trp. We
denote trtp the value of trp at time t. We say that process
p trusts process q at time t if q ∈ trtp and that p suspects
q at time t if q /∈ trtp. The following properties must be
verified.

• Eventually strong accuracy: Every correct pro-
cess p is eventually trusted forever by every correct
process q, that is ∃t : ∀t′ > t, p ∈ qrt

′

q

• Strong completeness: Every faulty process p is
eventually suspected forever by every correct process
q, that is ∃t : ∀t′ > t, p /∈ qrt

′

q

• Trusting accuracy: For any process p, if there exist
times t and t′ > t such that q ∈ tqtp and q /∈ tqt

′

p , then
q is faulty.

Bhatt et al. introduce in [3] the Σl quorum failure de-
tector. Σl is a variant of the Σ quorum failure detector
[7] adapted for the mutual exclusion problem. It pro-
vides each process p with a quorum of process identities,
denoted qrp. Similarly to trp, we denote qrtp the value of

qrp at time t. Σl verifies the following properties.

• Strong completeness: Every faulty process p is
eventually suspected forever by every correct process
q, that is ∃t : ∀t′ > t, p /∈ qrt

′

q

• Live pairs intersection: If two processes p and q
are both alive at time t, then for any couple of time
instants t1 ≤ t and t2 ≤ t, qrt1p ∩ qrt2q 6= ∅.

Bhatt et al. show in [3] that T and Σl used together,
denoted (T +Σl), constitute the weakest failure detector
to solve mutual exclusion with any number of process
failures in static, known systems.

(T +Σl) provides two outputs, trp and qrp, with trp ver-
ifying the properties of T and qrp verifying the properties
of Σl. We call T Σl the failure detector that provides a
single output tqp verifying the properties of both T and
Σl.

4



Theorem 1. (T +Σl) is equivalent to T Σl.

Proof. (T +Σl) can be implemented using the output of
T Σl: it suffices to always return the value of tqp as both
trp and qrp. Therefore, (T +Σl) is weaker than T Σl.

(T +Σl) is sufficient to solve FTME, as shown in [3]. In
Section 5 of this paper, we will prove that it is possible to
use RME to implement the T Σlr failure detector (defined
in Section 3.2). The same reasoning and algorithms that
we use in Section 5 can be used to show that it is possible
to use FTME to implement T Σl. It follows that (T +Σl)
is sufficient to implement T Σl, and as a result, T Σl is
weaker than (T +Σl).

3.2 The T Σlr Failure Detector

The existing definition of T Σl is for static, known net-
works, and therefore we need to provide new definitions,
suitable for unknown dynamic networks.

In an unknown system, the lack of initial information
renders difficult the implementation of some failure de-
tector properties which must apply from the start of the
run, in particular the intersection property. To circum-
vent this problem, we make use of the ⊥ concept intro-
duced in [15].

Additionally, the traditional properties of T Σl are ex-
pressed in terms of correct and faulty processes. T Σlr

was rewritten using the concepts of eventually up and
eventually down processes instead.

The T Σlr failure detector provides each process p with
a set of trusted process identities, denoted tqp, and a flag
denoted rdyp. rdyp is initially set to ⊥ and changes to >
once the failure detector has gathered enough information
to verify the live pairs intersection property. We denote
tqtp the value of tqp at time t, and rdytp the value of rdyp
at time t. We say that process p trusts process q at time
t if q ∈ tqtp, that p suspects q at time t if q /∈ tqtp, and that
process p is ready at time t if rdytp = >. The following
properties must be verified.

• Eventually strong accuracy: Every eventually up
process p is eventually trusted forever by every pro-
cess that is not eventually down.

• Strong completeness: Every eventually down pro-
cess p is eventually suspected forever by every pro-
cess that is not eventually down.

• Trusting accuracy: For any process p, if there exist
times t and t′ > t such that q ∈ tqtp and q /∈ tqt

′

p , then
q is eventually down and will never be alive after t′.

• Quorum readiness: Every eventually up process is
eventually ready forever.

• Live pairs intersection: If two processes p and q
are both alive at time t, then for any couple of time
instants t1 ≤ t and t2 ≤ t, (rdyt1p = > ∧ rdyt2q =
>) =⇒ tqt1p ∩ tqt2q 6= ∅.

The eventually strong accuracy, strong completeness
and trusting accuracy properties are the original proper-
ties of T , adapted for a crash-recovery model. We call
these properties the trusting properties of T Σlr.

Similarly, the strong completeness and live pairs in-
tersection properties are the original properties of Σl,
adapted for our model. The new quorum readiness prop-
erty, along with the rdyp output variable, was added to
deal with the lack of initial information in an unknown
system. We call these properties the quorum properties
of T Σlr.

Note that the strong completeness is both a trusting
property and a quorum property, since both T and Σl

make use of this same property.

Both trusting and quorum properties apply to the same
set tqp, which is different from preexisting definitions in
which T and Σl are two separate oracles with separate
outputs. In Section 5, we will prove that this combined
version of the detector is necessary to solve RME.

Note that in a static, known system with reliable chan-
nels and prone to crash failures without recovery, T Σlr

is equivalent to T Σl, and therefore (T +Σl).

4 Sufficiency of T Σlr to solve
Fault-Tolerant Mutual Exclu-
sion

In this section we introduce Algorithm 1 and prove that
it solves the RME in any unknown dynamic environment
enriched with the T Σlr failure detector.

5



Algorithm 1 Solving RME with T Σlr: code for process p

1: procedure try section
2: wait for recoveringp = false
3: reqp ← true
4: roundp ← roundp + 1; grantsp ← {p}
5: for ∀q ∈ tqp do send(request, roundp, q)

6: requestsp ← requestsp ∪ {(roundp, p)}
7: check requests()
8: wait for gidp = p and rdyp = > and tqp ⊆ grantsp
9: critp ← true; reqp ← false

10: procedure exit section
11: wait for recoveringp = false
12: critp ← false
13: for ∀q ∈ grantsp \ {p} do send(done, q)

14: grantsp ← {p}; requestsp ← requestsp \ {(∗, p)}
15: check requests()

16: procedure check requests
17: if (gidp = −1 or gidp = p) and requestsp 6= ∅ and

critp = false and recoveringp = false then
18: (grndp, gidp)← highest(requestsp)
19: if gidp 6= p then send(grant, gidp)

20: for ∀q ∈ grantsp \ {p} do
21: grantsp ← grantsp \ {q}
22: send(reject, q)

23: procedure reconnection
24: recoveringp ← true
25: updatep ← tqp
26: for ∀q ∈ updatep do
27: send(comeback, critp, q)

28: wait for updatep = ∅
29: recoveringp ← false
30: check requests()

31: when q added to tqp
32: if reqp = true then send(request, roundp, q)

33: when q removed from tqp
34: grantsp ← grantsp \ {q}
35: requestsp ← requestsp \ {(∗, q)}
36: updatep ← updatep \ {q}

37: if gidp = q then
38: (gidp, grndp)← (−1,−1)
39: check requests()

40: upon reception of request (round) from src do
41: requestsp ← requestsp ∪ {(round, src)}
42: last roundp[src]← round
43: check requests()

44: upon reception of grant () from src do
45: if gidp 6= −1 and gidp 6= p then
46: send(reject, src)
47: else if recoveringp = false then
48: grantsp ← grantsp ∪ {src}
49: upon reception of done () from src do
50: requestsp ← requestsp \ {(∗, src)}
51: (gidp, grndp)← (−1,−1)
52: check requests()

53: upon reception of reject () from src do
54: (gidp, grndp)← (−1,−1)
55: check requests()

56: upon reception of comeback (crit src) from src do
57: requestsp ← requestsp \ {(∗, src)}
58: if crit src = false and gidp = src then
59: (gidp, grndp)← (−1,−1)
60: check requests()

61: send(update, gidp = src, last roundp[src], src ∈
grantsp, roundp, reqp, src)

62: upon reception of update (grant p, last rnd,
grant src, round, req) from src do

63: last roundp[src]← round
64: roundp ←max(roundp, last rnd)
65: if grant src = true then . p previously granted src
66: (gidp, grndp)← (src, round)

67: if grant p = true then . src previously granted p
68: grantsp ← grantsp ∪ {src}
69: if req = true then . src is requesting
70: requestsp ← requestsp ∪ {(round, src)}
71: updatep ← updatep \ {src}

6



4.1 Algorithm Description

Let’s consider p the sender (source) of a message. The
following types of messages are used by Algorithm 1:

request: p has asked for permission to enter CS. The
message contains the round number of the sender.

grant: p has granted permission to a requesting pro-
cess to enter CS.

done: notifies other processes that p has just exited
its CS.

reject: warns that p has already given its permission
to another process different from itself, thus preventing
deadlocks.

comeback: notifies processes that p has just recovered
from a crash.

update: p gives information to a recently recovered
process q about p’s requesting state, previously given per-
missions that p granted to q and vice-versa, and q’s last
round number of which p is aware.

In Algorithm 1, each request to enter the CS, issued by
p, is tagged by a sequence round number.

Besides having access to the output, tqp and rdyp, of its
local failure detector, process p also keeps the following
local variables, initialized with the indicated value:

critp ← false: a flag indicating that p is currently in
CS. It is the only variable kept in stable storage. Thus,
critp is not reinitialized after a crash and recovery.

roundp ← 0: the local round number of p, which is
used to number its requests. It is also used to define the
current priority of p to access the critical section.

last roundp ← ∅: a table associating each known pro-
cess identity with its last known round number. It is used
to restore the round number of other processes after they
crash and recover.

reqp ← false: a flag indicating that p is currently in
the try section.

requestsp ← ∅: the set of requests received by p which
are pending. Each request is a couple (round, pid).

gidp ← −1: the identity of the last process to which
p granted its permission, or −1 if p did not grant it. It
indicates that p sent a grant message to gidp, and that
this permission was not canceled by the reception of a
done or reject message yet.

grndp ← −1: the current round number of the process
to which p granted its permission, or −1 if p did not grant
it.

grantsp ← {p}: the set of processes from which p re-
ceived a grant message.

recoveringp ← false: a flag indicating that p is cur-
rently attempting to rebuild its volatile memory after a
crash. Calls to try section and exit section will be
delayed while recoveringp = false.

updatep ← ∅: the set of processes from which p waits
for an update message. This variable is only used during
the recovery phase, i.e., while recoveringp = true.

All of these local variables, except for critp, are stored
in volatile memory. This means that after a crash and
recovery, they are reinitialized to the above default value.

Requests are totally ordered by their priority,
which is defined as follows: priority(roundp, p) >
priority(roundq, q) ⇔ roundp < roundq or [roundp =
roundq and p < q]. The highest function takes a list of
requests and returns the couple (round, id) of the request
with the highest priority among the trusted processes ac-
cording to tqp.

The check requests procedure is extensively used in
Algorithm 1. Provided that process p did not already
grant its permission to another process and is not in CS,
check requests compares the requests that p received
so far by calling the highest function (line 18), and sends
a grant message to the process with the highest priority
(line 19). In case p received grants from other processes
before granting its own permission, it will send reject
messages to the processes in grantsp in order to prevent
a deadlock (lines 20 – 22).

Whenever process p wants to access the critical section,
it executes the try section: p increments its roundp,
resets its grantsp set (line 4), and then broadcasts a
request to every process in tqp (line 5). If p gets knowl-
edge of a new process while it is still in the try section,
the request will also be sent to this process (line 32).
Process p adds its own request to its requestsp before
calling check requests (lines 6 – 7), and finally waits
for permissions from every process in tqp (and its own
permission, line 8) before entering CS.

Upon reception of a request message from process q
(lines 40 – 43), process p updates its knowledge about q’s
round number and adds the new request to its requestsp
set. It then calls check requests to decide if it should
send a grant to the new requester.

When receiving a grant message from process q, if
p already granted its permission to some other process

7



then it informs q by responding with a reject message
to prevent deadlocks (line 46). Otherwise, if p is not in
the recovery phase, it accepts q’s permission by adding it
to its grantsp set.

Upon finishing the critical section and calling exit
section, p sends to all trusted processes a done mes-
sage (line 13). Then, p resets its grantsp set and cancels
its request (line 50) before calling check requests to
grant its permission to the next process.

If p receives a done or reject message from process
gidp, it cancels the permission granted to gidp (lines 51
and 54) and calls check requests. In the case of a
done message, the request from gidp is also deleted from
requestsp (line 50), since gidp is not requesting CS any-
more. However, in the case of a reject, the request from
gidp is still valid and must be kept, even if it is not the
highest priority request.

If p crashes and recovers, the reconnection proce-
dure will be called first. This procedure initiates the re-
covery phase (lines 24 – 29) by switching the recoveringp
flag to true, which will temporarily prevent the algo-
rithm from going into the try or exit sections (lines 2
and 11) and from sending or accepting a grant (lines 17
and 47). During the recovery phase, p attempts to re-
cover the information it lost during the crash by send-
ing a comeback message to every process in tqp. Other
processes will send update messages in response, which
enables p to restore its last roundp, roundp, gidp, grndp,
and requestsp variables (lines 63 – 71). The recov-
ery phase ends when every process to which p sent a
comeback has either responded with an update mes-
sage (line 71), or crashed (line 36). After recovering, p
calls check requests in order to choose a process to
which it will grant its permission (line 30).

If p receives a comeback message from a process q,
it cancels any request previously received from q, since a
process in recovery phase can only be in the remainder or
critical section (by definition of a well-formed process). If
q is in its remainder section (critp = false), then p can-
cels any permission it might have granted to q previously
(lines 58 – 60). Finally, p sends an update message to q.

Whenever p is informed by the failure detector that a
process q is eventually down (lines 33 – 39), p deletes q
from its requestsp, grantsp and updatep sets. If q was
the process to which p granted permission, then p cancels
the permission (line 38) and calls check requests to

grant its permission to another process, if appropriate.

4.2 Proof of correctness

We will prove, through the following claims, that any run
of Algorithm 1 solves the RME problem.

Claim 1 (Safety). Two distinct alive processes p and q
can not be in CS at the same time.

In order to prove Claim 1 we need to pose the following
lemmata.

Lemma 1 (Uniqueness of the permission). Let p, q1, q2

be three distinct alive processes. If p ∈ grantsq1 at a time
t then p cannot send a grant message to q2 at time t.

Proof. The only way that p can send a grant message to
a process q is on line 19, after it selected q as its gidp. Note
that the definition of the highest function also implies
that q ∈ tqp at the time when the grant message is sent.

Suppose that p has sent a grant message at time tG to
another process q1 (and therefore at time tG, gidp = q1).

Let us assume that there is a time t > tG such that
p ∈ grantsq1 . Let us then suppose that p sends a grant
message to another process q2 at time t.

In order to send a grant message to q2, p has to set
gidp to −1 or to p at some time t′ ∈ [tG, t] (otherwise
p cannot pass the test on line 17). This affectation can
only be done in one of the following lines:

Line 38: then q1 /∈ tqt
′

p . Since q1 ∈ tqtGp , according to

the trusting accuracy property of T Σlr, q1 has crashed at
some time before t′ and will never recover. It is therefore
impossible that p ∈ grantsq1 at time t.

By resetting gidp to −1 after a crash. If p crashed
between tG and t′, then its gidp got reset to −1. This also
means that p entered the recovery phase (lines 24 – 29) at
some time t′′ ∈ [tG, t

′]. Since q1 ∈ tqtGp , then according to

the trusting accuracy property of T Σlr, either q1 crashed
before t′′ and will never recover (which is a contradiction),
or q1 ∈ tqt

′′

p . p will therefore send a comeback message
to q1 on line 27, and q1 will respond with a update mes-
sage with the grant src parameter set to true, which will
cause p to set its gidp back to q1. Since p cannot have sent
a grant message while in the recovery phase (because of
the test on line 17), then p cannot send the grant to q2

at time t which is a contradiction.

8



Line 59: then p received a comeback message from
q1 at some time t′′ ∈ [tG, t

′]. This means that q1 crashed
and went into the recovery phase. p will respond with an
update message to q1. Since q1 cannot leave the recovery
phase until it receives p’s update and because of the first
in, first out property, then p’s grant message to q1 was
received either (1) before q1 crashed, in which case the
grant was forgotten, or (2) during the recovery phase,
in which case q1 will ignore the grant because of the test
on line 47. In both cases, p /∈ grantsq1 after t′′, which is
a contradiction.

Line 51 or 54: then p received a done or reject mes-
sage from q1 at time t′. There are two cases. If q1 sent
the done or reject message after receiving the grant,
then q1 removed p from grantsq1 on line 14 (resp. line 21)
and did not add it back in afterwards, which is a contra-
diction. Otherwise, q1 sent the done or reject message
before receiving p’s grant. Since q1 only sends done or
reject messages to processes from which it previously
received a grant, then p sent another grant message
to q1 before tG. This means that p sent two consecu-
tive grant messages to q1 without receiving a done or
reject message in between. The only way this could
happen is if p set its gidp to −1 or p between sending
the two grant messages without receiving a done or
reject, which is a contradiction since this proof elimi-
nated every other way of doing that.

Hence, we can not have p ∈ grantsq1 and p sending a
grant message to q2 at the same time, which conclude
the proof of Lemma 1 .

Lemma 2 (Self permission). Let p, q be two distinct alive
processes. If p ∈ grantsq then p can not enter CS.

Proof. If p ∈ grantsq, then p sent a grant message to
q and therefore set its gidp to q. The reasoning of the
proof for Lemma 1 can be used to show that p cannot
change the value of its gidp until q has removed p from
its grantsq.

Since p is required to have its gidp set to p in order to
enter CS (line 8), then it is impossible for p to enter CS
until after q removed p from grantsq.

We can now prove the Claim 1 by contradiction.

Proof. Let p1, p2 be two alive, distinct processes. Let us
suppose that p1 enters CS at time t1, and p2 enters CS
at time t2. Let us suppose that neither process leaves CS

until after the other process has entered it. According
to the live pairs intersection property of T Σlr, there is a
process q such that q ∈ tqt1p1

∩ tqt2p2
. It follows from the

wait condition on line 8 that q ∈ grantsp1
at time t1 and

q ∈ grantsp2
at time t2. There are two cases:

First case: p1, p2 and q are all distinct. Therefore,
q sent a grant message to p1 before t1 and a grant
message to p2 before t2. Additionally, neither process re-
moved q from their grants set before entering CS. With-
out loss of generality, let us assume that q sent the grant
message to p1 first. There could be a run in which p1 re-
ceived the message immediately, and therefore added q to
grantsp1 before q sent the second grant to p2. In this
run, q sends a grant message to p2 while q ∈ grantsp1

at
the same time, which is in contradiction with Lemma 1.

Second case: q = p1 or q = p2. Without loss of
generality, let us assume that q = p1. Since q ∈ grantsp2

at time t2, q sent a grant message to p2 before t2. Since
it is impossible for q to send a grant message while in
CS (because of the test on line 17), it follows that q sent
the grant before entering CS. There could be a run in
which p2 received the grant immediately after it was
sent, therefore adding q to grantsp2 before q entered CS,
which is in contradiction with Lemma 2.

Claim 2 (Starvation freedom). If no process stays in its
critical section forever, then every eventually up process
that stopped crashing and reaches its try section will even-
tually enter its CS.

To prove the Claim 2, we pose the following lemmata:

Lemma 3 (Deadlock-free). Assuming that no process
stays in CS forever, if a process p, which does not have
the highest priority among the requesting processes, re-
ceives at least one grant from another process q, p will
eventually either crash forever or remove q from grantsp,
and q will eventually either crash forever or set gidq to
−1.

Proof. Let p be a process in its try section at time t.
There exists a distinct process ph which is also in its try
section at time t and has the highest priority among re-
questing processes.

Let q be a process distinct from p that sends a grant
message that p receives at time t. It follows that p sent a
request message to q at some time tR < t.

One of the following cases applies:

9



1) p is eventually down, and q is not. Then according
to the strong completeness property of T Σlr, p will even-
tually be removed from tqq and q will set gidq to −1 on
line 38.

2) q is eventually down, and p is not. Then accord-
ing to the strong completeness property of T Σlr, q will
eventually be removed from tqp and p will remove q from
grantsp on line 34.

3) At time t, gidp 6= −1 and gidp 6= p. Then when p
receives q’s grant message, it will never add q to grantsp
and will send q a reject message instead (line 46). When
q receives the reject message, it will set gidq to −1
(line 54).

4) At time t, gidp = −1. When p calls check re-
quests, it will pass the test one line 17 since requestsp
contains at least p’s request, and critp and recoveringp
cannot be true while in CS. p will then set gidp to some-
thing different from −1 on line 18.

It follows from the cases above that the only way
Lemma 3 could be false is if neither p nor q are eventually
down, and gidp = p at time t. Since p is not eventually
down, then p will eventually receive ph’s request at some
time t′ > t. Then one of the following cases applies:

1) During [tR, t
′], p does not crash, receives grant

messages from every process in tqp, and rdyp is set to >.
Then p will end the wait on line 8 and enter CS. When
p leaves CS, it will remove q from grantsp on line 14 and
send a done message to q on line 13. When q receives
the done message, it will set gidq to −1 on line 51.

2) During [tR, t
′], p does not crash and does not receive

enough grant messages to enter CS (or rdyp stays equal
to ⊥). Then at time t′ when p receives ph’s request, it
will call check requests on line 43. p will pass the test
on line 17 and, since ph is the requesting process with the
highest priority, p will set gidp to ph. It will then remove
q from grantsp on line 21 and send a reject message to
q on line 22. When q receives the reject message, it will
set gidq to −1 on line 54.

3) During [tR, t
′], p crashes before receiving enough

grant messages to enter CS. When p recovers, its
grantsp set is reinitialized and does not contain q. Since
q was previously in tqp and q is not eventually down, it
follows from the trusting accuracy property of T Σlr that
q is still in tqp after p recovers. p will therefore send a
comeback message to q on line 27 with the crit src pa-
rameter set to false. When q receives the comeback

message, it will set gidq to −1 on line 59. Note that
because of the first in, first out property, q will neces-
sarily receive p’s request before the comeback message.
Additionally, p will receive q’s grant message before q’s
update message, and will ignore the grant because of the
test on line 47.

Lemma 4 (Decreasing priority). Assuming that no pro-
cess stays in the CS forever, if an unstable process p is in
the try section infinitely often, then the value of roundp
increases infinitely often (and therefore, p’s priority de-
creases infinitely often).

Proof. Let p be an unstable process that is in the try
section infinitely often. By definition, p also crashes in-
finitely often. Let q be any eventually up process. Ac-
cording to the eventually strong accuracy property of
T Σlr, p will eventually trust q forever.

Let t0 be a time after which every eventually down
process crashed permanently, every eventually up process
stopped crashing, and p started trusting q. According
to the strong completeness property of T Σlr, there is a
time t1 ≥ t0 such that ∀t > t1, tqtp does not contain any
eventually down process. Let t2 > t1 be the first time
after t1 that p crashes, and let t3 > t2 be the first time
after t2 that p enters the try section.

Every request sent by p after t3 is sent only to processes
that are not eventually down, including q. According to
the dynamic connectivity property, q will receive every
request sent by p after t3. Every time that p crashes after
t3, p will send a comeback message to q. Because of the
first in, first out property, q will receive p’s last request
before receiving the comeback message, and therefore
when q receives the comeback its last roundq[p] will be
up to date with q’s latest roundp value from before the
crash. q will then respond with an update message, and
p will update its roundp value on line 63 before leaving
the recovery phase. As a result, crashes after t3 do not
reduce or reset p’s roundp value.

At any time t > t3, there are three possibilities:

1) p is in the exit or remainder section at time t. By
assumption, p will eventually enter the try section, and
therefore increase its roundp value on line 4.

2) p is in the CS at time t. Since by assumption no
process stays in the section forever, p will eventually leave
CS and the case above applies.

10



3) p is in the try section at time t. Eventually, p will
either enter CS (and the case above applies), or p will
crash before entering the CS and therefore it will be in
the remainder section after recovery (and the first case
applies).

In all cases, there is a time t′ > t such that roundp
increases at time t′.

Lemma 5 (Highest priority starvation freedom). Let t
be a time after all eventually up processes stopped crash-
ing. Assuming that no process stays in CS forever, if an
eventually up process p is in the try section and has the
highest priority among requesting eventually up processes
at time t, then eventually p enters CS.

Proof. Let p be an eventually up process that is in the
try section with the highest priority among requesting
eventually up processes at time t. By contradiction, let
us assume that p never enters CS after t. It follows that
p will never leave the try section, since it will neither
crash nor enter CS. Therefore, p will never re-enter the
try section and increase its roundp value on line 4. It
follows that p’s priority will never change after t.

Let q1 be any unstable process. According to Lemma 4,
q1 will either eventually stop entering the try section (in
which case its priority becomes irrelevant), or q1’s priority
will be reduced infinitely often, in which case p’s priority
will eventually be higher than q1’s. As a result, there is
a time t′ ≥ t after which p has the highest priority of all
requesting processes in the system.

If gidp = q2 with q2 distinct from q after t′, then ac-
cording to Lemma 3, eventually p will set its gidp to −1
and then call check requests. p will then set itself as
gidp on line 18 and will never change gidp again.

According to the dynamic connectivity property, even-
tually every process in tqp will have received p’s re-
quest. Let q3 be any process that received p’s request.
If gidq3 6= −1 and gidq3 6= q3, then after t′, according to
Lemma 3, q3 will eventually set gidq3 to −1. When gidq3
is equal to −1 or q3 after t′, then q3 will set it to p on
line 18 and send a grant message to p on line 19. As a
result, p will receive a grant message from every process
in tqp.

Since p is eventually up, according to the quorum readi-
ness property of T Σlr, the eventually rdyp = >.

Finally, p will pass the wait condition on line 8 and
enter CS, which is a contradiction.

We can now prove Claim 2.

Proof. Let p be an eventually up process that stopped
crashing and is in its try section at time t. By contra-
diction, let us assume that p never enters CS after t. It
follows that p will never leave the try section, since it
will neither crash nor enter CS. Therefore, p will never
re-enter the try section and increase its roundp value on
line 4. It follows that p’s priority will never change after t,
and that every requesting unstable process will eventually
have a lower priority than p.

Let Q be the set of all requesting eventually up pro-
cesses with higher priority than p. Let q be the process
in Q with the highest priority. It follows from Lemma 5
that eventually, q will enter CS. After q leaves CS, it will
either (1) stop requesting forever (and therefore leave Q)
or (2) enter the try section again and therefore decrease
its priority. By induction, q will eventually not have the
highest priority amongst requesting processes anymore,
and another process in Q will take its place. As a re-
sult, eventually Q will become empty since every process
in it will either stop requesting or increase its priority
infinitely often.

Finally, p will become the requesting eventually up pro-
cess with the highest priority, and according to Lemma 5,
will enter CS, which is a contradiction.

Claim 3 (Liveness). If an eventually up process p stopped
crashing and is in the try section, then at some time later
some process that is not eventually down is in CS.

Proof. Let p be an eventually up process that stopped
crashing and is in the try section. There are two possi-
bilities:

• Some process eventually stays in CS forever. In this
case, liveness is ensured.

• Otherwise, according to Claim 2, p will eventually
enter CS, thus ensuring liveness.

From Claim 1 and Claim 3 we can deduce the following
theorem:

Theorem 2 (Correctness). The Algorithm 1 solves the
RME using T Σlr in any unknown dynamic environment.

11



Corollary 1 (Sufficiency). The T Σlr failure detector is
sufficient to solve the RME in any unknown dynamic en-
vironment with partial memory loss.

5 Necessity of T Σlr to solve Fault-
Tolerant Mutual Exclusion

In this section we prove that the T Σlr failure detector is
necessary to solve the RME problem in any unknown dy-
namic system with partial memory loss. For this purpose,
we assume that there is an unknown dynamic system
model MRME with partial memory loss, in which RME
can be solved with some algorithm ARME. We will then
show that the properties of T Σlr can be implemented in
MRME.

Although the purpose of this section is to show that
T Σlr can be implemented with RME inMRME, the same
arguments and algorithms used here can also be used to
show that T Σl can be implemented with fault-tolerant
mutual exclusion in a static, known system without re-
covery. As a result, this section is also a part of the proof
for Theorem 1.

The following proof is inspired by the proofs for the
necessity of T and Σl in [8] and [3], respectively. The
main additional challenge is to merge the two proofs, since
both trusting and quorum properties must apply for a
same set tqp.

The proof uses two algorithms, both of which share the
following local variables:

trustp ← {p} is the set of all processes that process p
has heard of and that it does not suspect. This variable
is in stable storage.

startp ← false is a flag used to delay the start of the
RME algorithm.

Firstly, we introduce the algorithm BRME. BRME has
exactly the same code as ARME, except that every call to
the send primitive is replaced by a call to BRME send,
as defined in Algorithm 2.

Algorithm 2 serves two purposes: (1) by using trustp,
it enables p to keep track of which processes it heard of
while trying to access CS; (2) by using startp, it enables
p to delay the start of the RME algorithm.

Lemma 6. Provided that each eventually up process p
eventually sets startp to true, Algorithm BRME solves the
RME problem in MRME.

Algorithm 2 Modified send primitive for BRME

1: procedure BRME send(msg, dest)
2: wait for startp = true
3: send(msg, trustp, dest)

4: upon reception of (msg, trust src) from src do
5: wait for startp = true
6: trustp ← trustp ∪ trust src
7: BRME deliver(msg)

Proof. The only difference between ARME and BRME that
could prevent BRME from solving RME is the wait on
lines 2 and 5. A process that never sets startp to true
cannot participate in the algorithm. By assumption, this
is only a problem for processes that are not eventually up.
If a process never sets startp to true, then for the purpose
of BRME, that process behaves exactly as an always down
process would behave in a run of ARME.

We can now introduce Algorithm 3, which makes use
of ARME and BRME to implement the properties of T Σlr.

In addition to trustp and startp, Algorithm 3 uses fol-
lowing local variables:

knownp ← {p}: as discussed in Section 2, knownp

represents the knowledge that p has of other processes in
the system. The algorithm does not show how knownp

is kept up to date, but simply expects that knownp will
eventually contain the process identities of (at least) all
eventually up processes.

crashp ← ∅: the set of all processes that p is certain
have crashed forever. Note that this variable is in stable
storage.

tqp ← ∅: the output of the T Σlr failure detector, which
verifies the trusting and quorum properties.

rdyp ← ⊥: the other output variable of T Σlr, which
verifies the quorum properties.

waitlistp ← ∅: the set of processes to which p must
grant permission for CS. This is used to ensure starvation
freedom. Note that this variable is in stable storage.

donelistp ← ∅: the set of processes to which p already
granted permission for CS. It prevents p from always be-
ing passed over for CS access.

Algorithm 3 initially starts two tasks in parallel: task
1 and task 2. Later on, whenever process p gets knowl-
edge of a process q, it starts a new task for q (denoted
task 3 + q).

12



Algorithm 3 Reduction Algorithm TARME→T Σlr : code for process p

1: procedure task 1
2: ARME.try(p)
3: startp ← true
4: loop forever:
5: for q ∈ knownp do
6: send(alive, reqp, trustp, q)

7: procedure task 2
8: loop forever:
9: wait for waitlistp \ donelistp = ∅

10: donelistp ← ∅
11: reqp ← true
12: BRME.try
13: BRME.exit
14: reqp ← false
15: if trustp ∩ crashp = ∅ then
16: tqp ← trustp
17: rdyp ← >
18: for q ∈ knownp do
19: send(quorum, trustp, crashp, q)

20: else
21: trustp ← trustp \ crashp

22: procedure task 3 + q

23: knownp ← knownp ∪ {q}
24: ARME.try(q)
25: ARME.exit(q)
26: crashp ← crashp ∪ {q}
27: procedure reconnection
28: tqp ← trustp \ crashp

29: for q ∈ trustp do
30: Start task 3 + q

31: when q 6= p is added to trustp
32: Start task 3 + q

33: upon reception of alive (req, trust src) from src do
34: trustp ← trustp ∪ trust src
35: if req = true then waitlistp ← waitlistp ∪ {src}
36: else
37: waitlistp ← waitlistp \ {src}
38: donelistp ← donelistp ∪ {src}
39: upon reception of quorum (trust src, crash src) from

src do
40: trustp ← trustp ∪ trust src
41: crashp ← crashp ∪ crash src
42: if rdyp = ⊥ then
43: tqp ← trustp \ crashp

13



Each process p has its own CS, which is handled by
algorithm ARME and accessed with ARME.try(p). Addi-
tionally, there is a global CS which is handled by algo-
rithm BRME and accessed with BRME.try.

In task 1, p enters its own CS and then never leaves
it. Since in this case a well-formed process restarts in the
CS after a recovery, this means that a recovering process
will restart task 1 directly after line 2 if it previously
managed to enter its own CS. This enables other pro-
cesses to detect p’s failure if it crashes permanently (if
another process manages to access p’s CS in task 3 + p,
it means that p crashed forever). In task 1, p also sends
information to the rest of the system about its own iden-
tity and whether or not p is trying to access the global
CS. These alive messages are used by other processes to
keep trustp, waitlistp, and donelistp up to date.

In task 2, p tries infinitely often to access the global
CS. The wait on line 9 helps to ensure that the global
CS starvation freedom property is satisfied. After enter-
ing and leaving the global CS, if p entered it using only
messages from processes that are not crashed (test on
line 15), then p updates its T Σlr output variables and in-
forms other processes with quorum messages. However,
if p used information from crashed processes to enter CS,
it removes them from its trustp set.
task 3 + q is started by p when q is added to trustp,

and is used to detect q’s permanent crash.
When a process p receives a quorum message, it up-

dates its local trustp and crashp information and, if rdyp
is currently ⊥ (and therefore p is not currently trying to
verify the live pairs intersection property), then p updates
its tqp.

Lemma 7 (Starvation freedom). Every eventually up
process passes the lines 12 – 13 infinitely often.

Proof. By contradiction, let us assume that there is an
eventually up process p which does not go through CS
infinitely often. There are two ways this could happen: p
is either stuck in the wait on line 9 forever, or p is stuck
in try section on line 12 forever.

First let us assume that p is stuck in try section forever.
Since the liveness property of RME is verified, and since
no process can stay in CS forever (since the CS has no
code), it follows that there is a process q that enters CS
infinitely often.

Eventually, p ∈ knownq and q ∈ knownp. Since p set

reqp to true on line 11, then eventually q will receive an
alive message from p with req set to true, and q will add
p to waitlistq. Because of the first in, first out property,
q will eventually stop receiving any alive message from
p that has the req value set to false. Since q passes the
line 10 infinitely often, eventually p /∈ donelist. Since p ∈
waitlistq \ donelistq, then eventually q will wait forever
on line 9, which is a contradiction.

Now let us assume that p is stuck on line 9 forever. Let
W be the set of processes that stay in waitlistp\donelistp
for infinitely long. Note that a process q that is not stuck
forever in the try section on line 12 would have their req
set to false and therefore would send an alive message
to p with req set to false, and would be removed from
waitlistp \ donelistp as a result. It follows that every
q ∈ W is stuck forever on line 12. If q is eventually
down, it eventually crashes forever and therefore cannot
be in W . If q is eventually up, according to the previous
paragraph it eventually enters CS and therefore cannot
be in W . If q is unstable, it eventually crashes and resets
its reqq to false, and therefore cannot be in W . As a
result, W is empty and p eventually ends the wait on
line 9.

Lemma 8 (Crashed completeness). A process can only
be added to crashp if it crashed forever.

Proof. A process can only be added to crashp on lines 26
and 41. In order for p to add a process to crashp on
line 41, some other process q must have added it to crashq

on line 26 first.
In order for p to add a process q to crashp on line 26,

p must first have started task 3 + q. This can only
happen if p added q to trustp. A process can be added
to trustp on lines 34 and 40, or by receiving information
from q as part of algorithm BRME. If q sent a quorum
message, then it must have passed the CS on lines 12 –
13 and therefore sent or received information as part of
algorithm BRME, which means that startq was set to true.
Whether q set startq to true on line 3 or sent an alive
message on line 6, it had to enter its own CS on line 2
first.

Since q entered its own CS before p started task 3 +
q and will never leave it, the only way that p can reach
line 26 and add q to crashp is if q crashed forever.

14



Claim 4 (Strong completeness). Algorithm 3 ensures the
strong completeness property of T Σlr in MRME.

Proof. Let p be an eventually down process, and q be a
process that is not eventually down. Note that by con-
struction, a process can never be added to tqq without
being added to trustq first. There are two cases:
p was never added to trustq. Then the property is

immediately verified.
p was added to trustq. Let r be some eventually up

process. Eventually, q will send an alive message to r
which contains trustq. Therefore, r will eventually add
p to its trustr and will then start task 3 + p. After p
crashes forever, eventually r will reach line 26 and add p
to crashr.

Let t1 be a time after which all eventually down pro-
cesses have crashed. Let t2 ≥ t1 be a time after which
there are no more messages sent by eventually down pro-
cesses in the system. After t2, neither q nor r will ever
add an eventually down process into their trust set again.
According to Lemma 7, r will then eventually remove all
eventually down processes from trustr on line 21. Since
according to Lemma 8 only eventually down processes can
be in crashr, after this time r will always pass the test
on line 15 and therefore r will send a quorum message
to q infinitely often.

If q goes through the loop in task 1 infinitely often, it
will act like r and eventually never have p in its tqq. If q
is unstable and does not go through the loop in task 1
infinitely often, then after it stops going through the loop
it will crash and reset its rdyq to ⊥. Then, the next time
that q receives a quorum message from r, it will add p
to crashq and remove it from tqq on line 43

Claim 5 (Eventually strong accuracy). Algorithm 3 en-
sures the eventually strong accuracy property of T Σlr in
MRME.

Proof. Let p be an eventually up process, and q a process
that is not eventually down. Eventually, q ∈ knownp.
According to the liveness property of RME, p will even-
tually enter its own CS and send an alive message to q
on line 6. When q receives the message, it will add p to its
trustq set on line 34. It follows from Lemma 8 that p will
never be in crashq. According to the proof for Claim 4, q
will update its tqp infinitely often with trustq, either on
line 16 or on line 43. As a result, p ∈ tqq forever.

Claim 6 (Trusting accuracy). By construction, the only
way that a process can be removed from tqp is by being
added to crashp. The proof then follows directly from
Lemma 8.

Claim 7 (Quorum readiness). Algorithm 3 ensures the
quorum readiness property of T Σlr in MRME.

Proof. Let p be an eventually up process. According to
the proof for Claim 4, p will pass the test on line 15
infinitely often. After p stops crashing, the next time it
reaches line 17, it will set rdyp to > forever.

Lemma 9 (Message reception intersection). Let p1 and
p2 be two processes that enter the CS of BRME at time t1
(resp. t2). Let Q1 (resp. Q2) be the set of all processes
from which p1 (resp. p2) received information from (di-
rectly or through forwarding) since the last time it entered
the try section before t1 (resp. t2). Then either one of
the process crashed permanently before the other entered
CS, or Q1 ∩Q2 6= ∅.

Proof. By contradiction, let us assume that Q1∩Q2 = ∅.
First let us assume that in BRME, a process r might

send a message to a process s to authorize s to enter
CS before s has entered the try section. In this case, it is
possible that every process in the system would send such
a message to s before s enters the try section. Let us now
consider a run in which a process s′ different from s later
enters the try section. If BRME allows some process to
authorize s′, then all other processes might do the same
thing. As a result, if s is not permanently crashed, s and
s′ might enter CS at the same time, thus violating the
safety property. If BRME does not allow any process to
authorize s′, then s might never enter the try section, thus
violating the liveness property. It follows that in BRME,
only messages received after entering the try section can
authorize a process to enter CS.

Let us now consider a run in which every message be-
tween Q1 and Q2 is delayed until after both p1 and p2

have left CS. This means that the system is partitioned,
and therefore algorithm BRME cannot possibly prevent a
run in which both p1 and p2 enter CS at the same time,
thus violating the safety property of RME.

Claim 8 (Live pairs intersection). Algorithm 3 ensures
the live pairs intersection property of T Σlr in MRME.

15



Proof. The live pairs intersection property only applies
when rdyp is set to >, and the only way to set rdyp to >
is on line 17. Since lines 28 and 43 can only be reached
when rdyp is set to ⊥, it follows that at any time rdyp is
equal to >, the current value of tqp was set on line 16.

Note that tqp is set from trustp on line 16 after p re-
cently went through the global try, critical, and exit sec-
tions with BRME on lines 12 – 13. By construction, ev-
ery process from which p received information (even in-
directly) in BRME since last entering the try section is in
trustp at that time. Observe also that the only way to
remove a process identity from trustp is on line 21, which
cannot be reached between lines 12 and 16.

Let p1 and p2 be two processes, and let t be some time
at which both are alive. Then for any time t1 ≤ t when
p2 reached line 16 and any time t2 ≤ t when p2 reached
line 16, it follows from Lemma 9 that trustp1

at time t1
and trustp2

at time t2 intersect.

From Claims 4 to 8, we can deduce the following theo-
rem:

Theorem 3 (Correctness). The Algorithm 3 implements
T Σlr in MRME.

Corollary 2 (Necessity). The T Σlr failure detector is
necessary to solve the RME in any unknown dynamic en-
vironment with partial memory loss.

Conclusion

In this paper, we redefined the (T +Σl) failure detector
into the T Σlr failure detector adapted to unknown dy-
namic systems with partial memory loss and where faulty
processes may recover. We proved that T Σlr is both nec-
essary and sufficient to solve the RME problem in such
systems, and it is therefore the weakest failure detector
to solve RME in unknown dynamic systems with partial
memory loss.

Additionally, we showed that the properties of (T +Σl)
can apply to two separate output variables or to a single
one, without changing the strength of the failure detector.

We focused on a specific definition of the mutual ex-
clusion problem for crash-recovery, more specifically the
variant where processes stay in CS after a temporary
crash. It would be interesting to study other definitions,
considering, for instance, that temporary crashes make

a process to restart from the remainder section, even if
it was in the critical section previously. On the other
hand, the definition that we adopted in this paper pro-
vides stronger properties, and notably ensures that once
a process, which is not eventually down, enters the crit-
ical section, it does not have to leave it until it decides
to.

Acknowledgements

E. Mauffret was supported by the RainbowFS project,
funded by the ANR project ANR-16-CE25-0013 within
the program (DS0703) 2016.

D. Jeanneau was supported by the Labex SMART, sup-
ported by French state funds managed by the ANR within
the Investissements d’Avenir programme under reference
ANR-11-LABX-65.

References

[1] Divyakant Agrawal and Amr El Abbadi. An effi-
cient and fault-tolerant solution for distributed mu-
tual exclusion. ACM Trans. Comput. Syst., 9(1):1–
20, February 1991.

[2] Marcos Kawazoe Aguilera, Wei Chen, and Sam
Toueg. Failure detection and consensus in the crash-
recovery model. Distributed Computing, 13(2):99–
125, 2000.

[3] Vibhor Bhatt, Nicholas Christman, and Prasad
Jayanti. Extracting quorum failure detectors. In
Proceedings of the 28th Annual ACM Symposium on
Principles of Distributed Computing, PODC 2009,
pages 73–82, 2009.

[4] Arnaud Casteigts, Paola Flocchini, Walter Quattro-
ciocchi, and Nicola Santoro. Time-varying graphs
and dynamic networks. IJPEDS, 27(5):387–408,
2012.

[5] Tushar Deepak Chandra and Sam Toueg. Unreli-
able failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225–267, 1996.

16



[6] Ye-In Chang, Mukesh Singhal, and Ming T. Liu. A
fault tolerant algorithm for distributed mutual ex-
clusion. In Ninth Symposium on Reliable Distributed
Systems, SRDS 1990, pages 146–154, 1990.

[7] Carole Delporte-Gallet, Hugues Fauconnier, and
Rachid Guerraoui. Tight failure detection bounds
on atomic object implementations. JACM, 57(4),
2010.

[8] Carole Delporte-Gallet, Hugues Fauconnier, Rachid
Guerraoui, and Petr Kouznetsov. Mutual exclu-
sion in asynchronous systems with failure detec-
tors. Journal of Parallel and Distributed Computing,
65(4):492–505, apr 2005.

[9] E. W. Dijkstra. Solution of a problem in concurrent
programming control. Communications of the ACM,
8(9):569, 1965.

[10] Michael J. Fischer, Nancy A. Lynch, and Mike Pa-
terson. Impossibility of distributed consensus with
one faulty process. J. ACM, 32(2):374–382, 1985.

[11] Wojciech M. Golab and Danny Hendler. Recover-
able mutual exclusion in sub-logarithmic time. In
Proceedings of the ACM Symposium on Principles of
Distributed Computing, PODC 2017, pages 211–220,
2017.

[12] Wojciech M. Golab and Aditya Ramaraju. Recover-
able mutual exclusion: [extended abstract]. In Pro-
ceedings of the 2016 ACM Symposium on Principles
of Distributed Computing, PODC 2016, pages 65–74,
2016.

[13] Prasad Jayanti and Anup Joshi. Recoverable FCFS
mutual exclusion with wait-free recovery. In 31st
International Symposium on Distributed Computing,
DISC 2017, pages 30:1–30:15, 2017.

[14] S. Nishio, E. Manning, and K. Li. A resilient mutual
exclusion algorithm for computer networks. IEEE
Transactions on Parallel and Distributed Systems,
1:344–356, 07 1990.

[15] Thibault Rieutord, Luciana Arantes, and Pierre
Sens. Détecteur de défaillances minimal pour le con-
sensus adapté aux réseaux inconnus. In Algotel, 2015.

[16] Julien Sopena, Luciana Bezerra Arantes, and Pierre
Sens. Performance evaluation of a fair fault-tolerant
mutual exclusion algorithm. In 25th IEEE Sympo-
sium on Reliable Distributed Systems (SRDS 2006).

17


