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Abstract

Tree-structured data naturally appear in various fields, particularly in biology where plants and blood vessels
may be described by trees, but also in computer science because XML documents form a tree structure. This
paper is devoted to the estimation of the relative scale parameter of conditioned Galton-Watson trees. New
estimators are introduced and their consistency is stated. A comparison is made with an existing approach
of the literature. A simulation study shows the good behavior of our procedure on finite-sample sizes and
from missing or noisy data. An application to the analysis of revisions of Wikipedia articles is also considered
through real data.

1 Introduction
Many data are naturally modeled by an ordered tree structure: from blood vessels in biology to XML files
in computer science through the secondary structure of RNA in biochemistry. The statistical analysis of a
dataset of hierarchical records is thus of great interest. In this paper, our aim is to propose new methods
to estimate the scale parameter arising in Galton-Watson trees conditioned on their number of nodes from
various statistical settings.

A Galton-Watson tree is the genealogical tree of a population starting from one initial ancestor (the root)
in which each individual gives birth to a random number of children according to the same probability
distribution, independently of each other. In this article, we focus on Galton-Watson trees conditional on
their number of nodes. Several main classes of random trees can be seen as conditioned Galton-Watson trees
[9, 16]. For instance, an ordered tree picked uniformly at random in the set of all ordered trees of a given size
is a conditioned Galton-Watson tree with offspring distribution the geometric law with parameter 1/2. In
addition, an ordered tree picked uniformly at random in the set of d-ary trees, i.e., trees in which each node
has no more than d children, is a conditioned Galton-Watson tree with offspring distribution the binomial
law with parameter d and 1/d. In particular, binary trees but also full binary trees (taking the uniform
law on the set {0, 2} as offspring distribution) are thus encoded by a conditioned Galton-Watson model.
Binary trees are widely used in computer science, through binary search trees [20] and Huffman coding [21]
commonly used for data compression. They also appear in biology in the approximation of phylogenetic
trees [3] for example. One also refers the reader to [16, 10. Examples of simply generated random trees] for
other examples of conditioned Galton-Watson trees arising from random trees (that can even be unordered
and labelled). To sum up, conditioned Galton-Watson trees model a large variety of random hierarchical
structures. Developing specific statistical methods for this stochastic model is thus of first importance.
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Any ordered tree may be encoded by its Harris path which returns height of nodes in depth-first order (see
Subsection 2.2, Algorithm 1 and Figure 1). Aldous [2, Theorem 23] stated the following asymptotic property
of the Harris path H[τn] of a Galton-Watson tree τn conditioned on having n nodes,(

H[τn](2nt)√
n

, t ∈ [0, 1]

)
(d)−→

(
2

σ
et, t ∈ [0, 1]

)
, (1)

in the uniform topology of C([0, 1],R), when n goes to infinity whenever the offspring distribution is 1 on
average with standard deviation σ and e denotes the normalized Brownian excursion. This means that
conditioned Galton-Watson trees asymptotically share a common form (the so-called continuum random
tree) given by the Brownian excursion, and can be differentiated only by the scale parameter of interest σ−1.
This unknown quantity is to be estimated from only one tree or from a forest of independent trees generated
from the same birth distribution.

Estimating (functions of) σ from a forest of independent conditioned Galton-Watson trees has only been
considered in a recent paper [4]. The authors of [4] exploit a corollary of the weak convergence (1) providing
the asymptotic distribution of the height of a uniformly sampled node in the tree (see [4, Proposition 4])
to construct estimators of the variance σ2 and develop asymptotic tests. It should be already noticed that
estimation strategies based on the convergence in distribution (1) can only lead to weak convergence results
for estimators computed from a unique tree. The aim of the present paper is twofold. First, we establish
in Theorem 6 that the empirical variance of the numbers of children is a consistent estimator of σ2 (in
particular even from the observation of only one tree), whereas, even if a Galton-Watson tree is generated
from a sequence of i.i.d. random variables, this is not the case for the conditioned structure. This new
result based on a corollary of Bartlett’s formula shows that the empirical variance provides a better estimate
of σ2 than any other statistical method based on Aldous’ theorem (1). Secondly, we propose two new
estimation strategies for σ−1 from a forest of independent conditioned Galton-Watson trees based on the
weak convergence established by Aldous and we compare them with the procedure developed in [4].

These estimation strategies rely on the idea motivated by the weak convergence (1) that, on average, the
normalized Harris paths of the forest should look like the expected process (2σ−1E(t), t ∈ [0, 1]) at least
asymptotically, where E(t) = E[e(t)]. The parameter σ−1 can thus be expressed as the solution of a
least square problem. Our first method consists in computing the least square estimator of σ−1 from the
concatenation of the Harris paths of the forest. We establish two results of convergence in Subsection 4.2.
For only one Galton-Watson tree τn conditioned on having n nodes, this estimator of σ−1 is given (see
Subsection 3.1) by

λ̂[τn] =
〈H[τn](2n·), E〉

2
√
n‖E‖22

,

where 〈·, ·〉 is the scalar product of L2([0, 1],R). By virtue of the weak convergence (1), one may remark
(see Corollary 7) that

λ̂[τn]
(d)−→ σ−1Λ∞,

where Λ∞ = 〈e,E〉
‖E‖22

. Actually, the aforementioned least square estimator only exploits the average behavior of
Λ∞ (in other words, the average asymptotic behavior of Harris paths) and not its complete distribution. Our
second strategy takes into account the shape of the distribution of Λ∞: we estimate σ−1 by the parameter
x that aligns the theoretical distribution of xΛ∞ and the empirical measure of the λ̂[τ ini ]’s in terms of
Wasserstein distance, the considered forest being composed of N trees τ ini . Convergence results are stated in
Subsection 4.3. We point out that the theoretical properties of Λ∞ are far from obvious. In particular, we
establish by Malliavin calculus that Λ∞ is absolutely continuous w.r.t. the Lebesgue measure in Proposition
10, which is required in some proofs.

The authors of [4] do not focus on the problem of estimating σ−1 but, for the sake of comparison, we rely on
their approach to provide another estimator of this quantity. We compare these alternative strategies from
both theoretical and numerical points of view. In particular, we show in Subsection 3.1 that the variances
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of our estimators are approximately 4 times lower than the one of the estimator based on this competitive
approach of the literature. Our results are better in terms of dispersion because the estimators take into
account all the behavior of the tree and not only the behavior of a randomly chosen node. We also point
out that the theoretical setting of [4] is slightly different because investigations are directly based on infinite
trees (i.e., continuum random trees, unobservable in practice) and not on large but finite trees.

At this step, one may wonder whether an approach that only yields weak convergence results is relevant
considering the empirical variance is a consistent estimator of σ2. Our idea is to explore statistical inference
for trees from coding processes, i.e., via functional data analysis. This connection has been first established
in the recent paper [31]. In the present article we aim at investigating this strategy when the data have
been generated from the stochastic model of conditioned Galton-Watson trees. In Subsection 5.3, we prove
from simulations that our estimators based on the weak convergence of Harris paths provide good results
even from missing or noisy data, in particular when the empirical variance presents a large bias or can not
be computed, showing the great interest of this approach.

The application of our estimators on simulated and real data in Section 5 appears to be a non trivial task,
in particular because it requires important preliminary computations. For this reason and to provide a
turnkey solution, we have developed a Matlab toolbox that enables users to quickly and easily apply our
methods to data. This toolbox as well as a detailed user documentation can be found at the webpage:
http://agh.gforge.inria.fr. The numerical experiments presented in Subsection 5.2 show that both
our estimators and the approach developed in [4] are intrinsically biased for binary trees because of the
approximation of the Harris paths of finite trees by the average Brownian excursion. Indeed, we empirically
observe on simulation examples that Harris paths of binary trees weakly converge to the Brownian excursion
from below (see Figure 7). As a consequence, we introduce a numerical correction of this negative bias, also
implemented in the toolbox. The simulation study illustrates the good behavior of the corrected estimates
on finite-sample sizes.

Visualizing the evolution of historical hierarchical data is a difficult issue in particular because such objects
have no representation in a Euclidean space. This problem occurs in the study of the sequence of revisions of
a given Wikipedia article. Indeed, the famous free Internet encyclopedia allows its users (the Wikipedians)
to edit almost any articles. Starting from the creation of a given article, the history of revisions is accessible
and can be investigated to understand how the contributors agree on its structure, or to automatically
detect vandalism1 [1, 25]. IBM’s History Flow is a visualization tool for documents in various stages of their
development which has been applied to Wikipedia articles [32, 33]. We think that our method may be a
complementary tool to this famous technique. Indeed the structure of HTML documents, such as Wikipedia
articles, may be encoded by an ordered tree structure (see Figure 19). Furthermore, all the Wikipedia
webpages share the same template, i.e., standardized HTML/CSS files, and thus can be differentiated by their
relative scale. In Section 6, we apply our estimators to the analysis of two Wikipedia articles. We highlight
that Wikipedia articles undergo “running in” period before reaching some kind of steady state in which the
contributors had agreed on the structure of the article. In addition, we show that our techniques may be
used to detect improper editions of an article.

The organization of the paper is as follows. Section 2 is devoted to the formulation of the problem at hand:
definition of conditioned Galton-Watson trees in Subsection 2.1, definition of Harris paths in Subsection
2.2, asymptotic behavior of Harris paths of conditioned Galton-Watson trees in Subsection 2.3. In addition,
we state in Subsection 2.4 the consistency of the empirical variance of the numbers of children. The two
estimation procedures from Harris paths are presented in Section 3, while Section 4 focuses on the results
of convergence. Simulation techniques for conditioned Galton-Watson trees, numerical experiments and
application to real data are presented in Sections 5 and 6. In particular, Subsection 5.3 is dedicated to the
difficult context of missing or noisy data in which the empirical variance performs less well than our Harris
paths-based estimators or even can not be computed. In this preliminary version, all the figures obtained
from simulated or real data have been deferred to the end of the article.

1It frequently happens that malicious people willingly disrupt the content of an article, for instance, for political or ideological
reasons.

3

http://agh.gforge.inria.fr


2 Conditioned Galton-Watson trees

2.1 Definition
Trees are connected graphs with no cycles. A rooted tree τ is a tree in which one node has been distinguished
as the root, denoted by r(τ) (always drawn at the bottom of the tree in this paper). In this case, the edges
are assigned a natural orientation, away from the root towards the leaves. One obtains a directed rooted
tree in which there exists a parent-child relationship: the parent of a node v is the first vertex met on the
path to the root starting from v. The length of this path (in number of nodes) is called the height h(v) of v.
The set c(v) of children of a vertex v is the set of nodes that have v as parent. An ordered or plane tree is a
rooted tree in which an ordering has been specified for the set of children of each node, conventionally drawn
from left to right. In this paper we consider ordered rooted trees simply referred to as trees. In addition, for
any node v, τ [v] denotes the subtree of τ composed of v and all of its descendants in τ .

Intuitively, a Galton-Watson tree can be seen as a tree encoding the dynamic of a population generated
from some offspring distribution µ on N. A Galton-Watson tree τ with offspring distribution µ is a random
ordered rooted tree constructed recursively as follows.

� The number of children #c(r(τ)) emanating from the root is a random variable with law µ. The first
generation consists thus in #c(r(τ)) vertices.

� Assume that the nth generation of children has been constructed and consists in a list of vertices Vn.
Then, the generation n + 1 is constructed such that {#c(v) : v ∈ Vn} is a collection of independent
random variables with law µ.

The asymptotic behavior of Galton-Watson trees may exhibit different regimes depending on the average
number of children per capita,

µ =
∑
k≥0

kµ(k),

where µ(k) is the measure of the singleton {k} by µ.

� The subcritical case: µ < 1. In this case, the average number of nodes is finite. This means that the
population goes extinct almost surely.

� The critical case: µ = 1. The fact that the offspring distribution µ is critical also ensures the almost
sure finiteness of the tree, except when µ(1) = 1 where the number of nodes is almost surely infinite.
When µ(1) < 1, in contrary to the sub-critical case, the expected number of nodes is infinite.

� The supercritical case: µ > 1. In this case, the number of vertices is infinite with positive probability.

We use the notation GWn(µ) for the distribution of Galton-Watson trees with offspring distribution µ
conditioned on having n nodes.

Remark 1 In this paper, we will always state our results in terms of critical Galton-Watson trees. However,
this is not really a restriction since, as noted in [28, 6.3 Brownian asymptotics for conditioned Galton-Watson
trees], for any offspring distribution µ, there exists a critical law µ′ such that

GWn(µ)
(d)
= GWn(µ′).

In particular, this means that the average number of children µ is not identifiable from conditioned Galton-
Watson trees without some additional assumptions on µ.
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2.2 From ordered trees to Harris paths
The Harris walk H[τ ] of an ordered rooted tree τ is defined from the depth-first search algorithm and
the notion of height of nodes already presented in Subsection 2.1. Depth-first search is an algorithm for
traversing a tree which one explores as far as possible along each branch before backtracking. The version
of the algorithm used to define the Harris walk of a tree is presented in Algorithm 1.

Function DFS(τ , l = ∅):
Data: an ordered tree τ
Result: vertices of τ in depth-first order
add r(τ) to l
for v in c(r(τ)) do

if r(t[v]) is not in l then
call DFS (t[v],l)
add again r(τ) to l

return l

Algorithm 1: Recursive depth-first search.

0 141

Figure 1: Construction of the Harris path (right)
from 0 to 2n = 14 as the contour of an ordered tree
(left) with n = 7 nodes.

Remark 2 In Algorithm 1, each node v appears #c(v) + 1 times. Starting from the root of a tree τ , the
result is thus a sequence of length∑

v∈τ
(#c(v) + 1) = #τ +

∑
v∈τ

#c(v) = 2#τ − 1,

because the root is the only vertex not to be counted.

The Harris walk H[τ ] of τ is defined as a sequence of integers indexed by the set {0, . . . , 2#τ} as follows:

� H[τ ](0) = H[τ ](2#τ) = 0,

� for 1 ≤ k < 2#τ , H[τ ](k) = h(v) + 1 where v is the kth node in depth-first traversal of τ .

The Harris process is then defined as the linear interpolation of the Harris walk (see example in Figure
1). Note that, as displayed in Figure 2, the tree can be recovered from its Harris process such that the
correspondence is one to one.

Figure 2: The ordered tree of Figure 1 in its Harris path (left): each vertical axis represents a node of the
original structure (right). A common picture helping to see how to recover the tree from the contour is to
imagine putting glue under the contour and then squeezing the contour together horizontally such that the
inner parts of the contour which face each other are glued.
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2.3 Asymptotic behavior of Harris paths
Let τn ∼ GWn(µ) with µ = 1. The variance of the offspring distribution µ is denoted by σ2,

σ2 =
∑
k≥1

(k − 1)2µ(k).

We focus on the asymptotic behavior of the Harris process H[τn](2n·) when n tends to infinity. The conver-
gence in distribution has been stated by Aldous [2, Theorem 23].

Theorem 3 When n goes to infinity, we have(
H[τn](2nt)√

n
, t ∈ [0, 1]

)
(d)−→

(
2

σ
et, t ∈ [0, 1]

)
,

where e is a standard Brownian excursion, the convergence holding in law in the space C([0, 1],R). An
illustration of this convergence in distribution may be found in Figure 5.

[ Figure 5 approximately here ]

Let us simply recall that a standard Brownian excursion is a Brownian motion conditioned on being positive
and on taking the value 0 at time 1. The density of et, for 0 ≤ t ≤ 1, is given in [30, XI. 3. Bessel Bridges]
and writes

∀x ∈ R, fet(x) =

√
2

π

x2√
t(1− t)

3 exp

(
− x2

2t(1− t)

)
1R+

(x).

From this, we can compute some simple functionals of the excursion. For instance, we have,

∀ 0 ≤ t ≤ 1, Et = E[et] = 4

√
t(1− t)

2π
and E

[
e2
t

]
= 3t(1− t). (2)

The easiest way to simulate a Brownian excursion is certainly from its identity in law with a three-dimensional
Bessel bridge [30, Theorem XII.4.2], which is simply the Euclidean norm of a three-dimensional Brownian
bridge,

(et, t ∈ [0, 1])
(d)
=


√√√√ 3∑

i=1

(
Bit − tBi1

)2
, t ∈ [0, 1]

 , (3)

where the Bi’s are three independent Brownian motions. The convergence presented in Theorem 3 also holds
in expectation [10, Theorem 1].

Theorem 4 When n goes to infinity, we have,

∀ 0 ≤ t ≤ 1, E

[
H[τn](2nt)√

n

]
−→ 2

σ
Et,

where the function (Et, 0 ≤ t ≤ 1) has been defined in (2).

Remark 5 Theorem 3 establishes that, in the asymptotic regime, the shape of a conditioned Galton-Watson
tree is given by the normalized Brownian excursion, regardless of the offspring distribution µ. However,
there is one scale parameter given by the inverse of the standard deviation of µ. As a consequence, when
µ is unknown, the only quantity of interest that one may access by asymptotic inference from Theorem 3 is
σ−1. From Section 3, we shall focus on the estimation of σ−1.
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2.4 Empirical estimators
The purpose of this section is to study the behavior of empirical estimators of the mean µ and of the variance
σ2. These estimators are privileged candidates in the case of standard, i.e., unconditioned, Galton-Watson
trees. Unfortunately, the lack of independency and homogeneity in the numbers of children of the nodes in
conditioned Galton-Watson trees suggests such methods should not work in this more complex framework.

2.4.1 Empirical mean

We begin our study with the empirical mean. Let τn be a Galton-Watson tree with birth distribution µ
conditioned on having n nodes. Denote, for any i in {1, . . . , n}, Xi the number of children of the ith individual
indexed in depth-first order in τn. Set

M [τn] =
1

n

n∑
i=1

Xi

the empirical mean of the number of children of the individuals in τn. However, it is easily seen that,
whatever the underlying stochastic model,

M [τn] =
]τn − 1

n
= 1− 1

n
.

As a consequence, this estimator is deterministic and always estimates 1 asymptotically whatever the real
mean of the birth distribution.

2.4.2 Empirical variance

This section is devoted to the study of the empirical variance,

V [τn] =
1

n

n∑
i=1

(Xi −M [τn])
2
.

Our main result of convergence is given below.

Theorem 6 When n goes to infinity,
E
[∣∣V [τn]− σ2

∣∣]→ 0.

In particular, V [τn] converges to σ2 in probability.

Proof. Let (ξi)1≤i≤n be a sequence of i.i.d. random variables distributed according to µ. Using the work
of Devroye [9, Turning to random walks], it is known that there exists a random permutation Σ such that
the random vector

(
ξΣ(1), . . . , ξΣ(n)

)
conditioned to

∑n
i=1 ξi = n− 1 is equal in distribution to (X1, . . . , Xn).

However, since the empirical estimators are invariant up to permutation, it follows that we can work directly
with the vector (ξ1, . . . , ξn) conditioned to

∑n
i=1 ξi = n− 1. Consequently, our main goal is simply to prove,

keeping in mind that M [τn] = 1− 1/n, that

R(n) = E

[∣∣∣∣∣ 1n
n∑
i=1

(
ξi − 1 +

1

n

)2

− σ2

∣∣∣∣∣
∣∣∣∣∣ 1

n− 1

n∑
i=1

ξi = 1

]

converges to 0 as n goes to infinity. The proof lies on the asymptotic behavior of conditional probabilities
which were obtained in [14] and allows to get the expected convergence. Let F be a measurable and bounded
real valued function. Since ξ1/(n−1) goes to 0 in probability as n goes to infinity, it follows, according to [14,
Theorem 1] (using the alternative hypothesis of Remark 2.9 of this paper), that the conditional expectation

E

[
F (ξ1)

∣∣∣∣∣ 1

n− 1

n∑
i=1

ξi = 1

]
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converges to E [F (ξ1)], as n goes to infinity. Since, µ does not have necessarily third order moments, we
need to use a truncation method. Hence, let us consider, for any positive integer k,

R(n) = E

[∣∣∣∣∣ 1n
n∑
i=1

(
ξi1ξi>k + ξi1ξi≤k − 1 +

1

n

)2

− σ2

∣∣∣∣∣
∣∣∣∣∣ 1

n− 1

n∑
i=1

ξi = 1

]
.

Now, since(
ξi1ξi>k + ξi1ξi≤k − 1 +

1

n

)2

=

(
ξi1ξi≤k − 1 +

1

n

)2

+ (ξi1ξi>k)
2

+ 2ξi1ξi>k

(
1

n
− 1

)
,

we get

R(n) ≤ T1(n, k) + T2(n, k) + 2

(
1− 1

n

)
T3(n, k),

where

T1(n, k) = E

[∣∣∣∣∣ 1n
n∑
i=1

(
ξi1ξi≤k − 1 +

1

n

)2

− σ2

∣∣∣∣∣
∣∣∣∣∣ 1

n− 1

n∑
i=1

ξi = 1

]
,

T2(n, k) = E

[∣∣∣∣∣ 1n
n∑
i=1

(ξi1ξi>k)
2

∣∣∣∣∣
∣∣∣∣∣ 1

n− 1

n∑
i=1

ξi = 1

]
,

T3(n, k) = E

[∣∣∣∣∣ 1n
n∑
i=1

ξi1ξi>k

∣∣∣∣∣
∣∣∣∣∣ 1

n− 1

n∑
i=1

ξi = 1

]
.

In order to treat T1(n, k), we consider

Q(n, k) = E

( 1

n

n∑
i=1

(
ξi1ξi≤k − 1 +

1

n

)2

− σ2

)2 ∣∣∣∣∣ 1

n− 1

n∑
i=1

ξi = 1

 .
We have

Q(n, k) =
1

n2

∑
1≤i,j≤n

E

[((
ξi1ξi≤k − 1 +

1

n

)2

− σ2

)((
ξj1ξj≤k − 1 +

1

n

)2

− σ2

)∣∣∣∣∣ 1

n− 1

n∑
i=1

ξi = 1

]
.

Using the exchangeability of the vector (ξ1, . . . , ξn) under P (· |
∑n
i=1 ξi = n− 1), we get

Q(n, k) =
1

n
E

((ξ11ξ1≤k − 1 +
1

n

)2

− σ2

)2 ∣∣∣∣∣ 1

n− 1

n∑
i=1

ξi = 1


+

n(n− 1)

n2
E

[((
ξ11ξ1≤k − 1 +

1

n

)2

− σ2

)((
ξ21ξ2≤k − 1 +

1

n

)2

− σ2

)∣∣∣∣∣ 1

n− 1

n∑
i=1

ξi = 1

]
.

Then, [14, Theorem 1] allows to understand the asymptotic behavior of both terms in the above sum,

lim
n→∞

E

((ξ11ξ1≤k − 1 +
1

n

)2

− σ2

)2 ∣∣∣∣∣ 1

n− 1

n∑
i=1

ξi = 1

 = E

[(
(ξ11ξ1≤k − 1)

2 − σ2
)2
]
> 0,

and

E

[((
ξ11ξ1≤k − 1 +

1

n

)2

− σ2

)((
ξ21ξ2≤k − 1 +

1

n

)2

− σ2

)∣∣∣∣∣ 1

n− 1

n∑
i=1

ξi = 1

]
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goes, as n tends to infinity, to

E
[(

(ξ11ξ1≤k − 1)
2 − σ2

)(
(ξ21ξ2≤k − 1)

2 − σ2
)]

=
(
E
[
(ξ11ξ1≤k − 1)

2
]
− σ2

)2

→ 0,

when k goes to infinity. Hence, we get, for any positive integer k,

lim
n→∞

Q(n, k) =
(
E
[
(ξ11ξ1≤k − 1)

2
]
− σ2

)2

, (4)

without any assumption on the moments of µ because of the truncation ξ11ξ1≤k. First, the Cauchy-Schwarz
inequality entails T1(n, k) ≤

√
Q(n, k), which gives, according to (4),

lim sup
n→∞

T1(n, k) ≤
∣∣∣E [(ξ11ξ1≤k − 1)

2
]
− σ2

∣∣∣ .
In addition, we have according to [14, Theorem 1],

lim sup
n→∞

T2(n, k) ≤ lim sup
n→∞

E

[
(ξi1ξi>k)

2

∣∣∣∣∣ 1

n− 1

n∑
i=1

ξi = 1

]
= E

[
(ξi1ξi>k)

2
]
.

The case of T3(n, k) can be treated similarly and leads to

lim sup
n→∞

R(n) ≤
∣∣∣E [(ξ11ξ1≤k − 1)

2
]
− σ2

∣∣∣+ E
[
(ξ11ξ1>k)

2
]

+ 2E [|ξ11ξ1>k|] .

Now, letting k going to infinity leads to the result. 2

3 Estimation procedure
In the previous part, we have shown that the empirical variance is a consistent estimator of σ2 in critical
conditioned Galton-Watson trees despite the lack of independency in the numbers of children. In this section,
we aim at developing estimation procedures for σ2 that exploit the weak convergence towards the Brownian
excursion stated by Aldous and presented in Theorem 3.

3.1 Adequacy of the Harris path with the expected contour
Let τn ∼ GWn(µ) with µ = 1. We assume that the offspring distribution µ is unknown. By virtue of
Theorem 4, the asymptotic average behavior of the normalized Harris process (n−1/2H[τn](2nt), 0 ≤ t ≤ 1)
is given by (2σ−1Et, 0 ≤ t ≤ 1), where σ−1 is obviously also unknown. We propose to estimate σ−1 by
minimizing the L2-error defined by

λ 7→
∥∥∥∥H[τn](2n·)√

n
− 2λE

∥∥∥∥2

2

,

where, and in all the sequel, L2 = L2([0, 1],R) and its usual norm is denoted ‖ ·‖2 for the sake of readability.
The solution of this least square problem is well-known and is given by

λ̂[τn] =
〈H[τn](2n·), E〉

2
√
n‖E‖22

, (5)

where 〈·, ·〉 is the scalar product of L2.

Corollary 7 When n goes to infinity, we have

λ̂[τn]
(d)−→ σ−1Λ∞,

where the random variable Λ∞ is defined by

Λ∞ =
〈e, E〉
‖E‖22

. (6)
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Proof. The result directly follows from Theorem 3 because the functional x 7→ 〈x,E〉 is continuous on
C([0, 1],R). 2

Remark 8 The convergence in distribution stated in Corollary 7 seems quite unsatisfactory because this
means that λ̂[τn] is not a consistent estimator of σ−1 and the least square strategy thus seems like inadequate
in regards to the consistency of V [τn]. In the sequel, we shall focus on the estimation of the parameter
of interest σ−1 from a forest of conditioned Galton-Watson trees as in [4], only chance to get consistent
estimates from Aldous’ theorem. As mentioned in the introduction, our goal in this paper is to explore
statistical inference for trees via functional data analysis of their Harris paths.

Computing λ̂[τn] is a first step in the estimation of the inverse standard deviation from a large number of
conditioned Galton-Watson trees. As a consequence, the distribution of the limit variable Λ∞ is of first
importance.

Lemma 9 For any 0 ≤ t < u ≤ 1, we have

E[eteu] =
2

π

[
3
√
t(u− t)(1− u) + (2t(1− u) + u(1− t)) arcsin

(√
t(1− u)

u(1− t)

)]
.

Proof. This identity is derived from the joint density of (et, eu) given in [30, XI. 3. Bessel Bridges]. The
density of (et, eu) for 0 ≤ t < u ≤ 1 is given, for any positive numbers x and y, by

ft,u(x, y) =
2

π

xy√
(u− t)t3(1− u)3

sinh

(
xy

u− t

)
exp

(
− x2u

2t(u− t)

)
exp

(
− y2(1− t)

2(1− u)(u− t)

)
.

Thus,

E[eteu] =

∫ ∞
0

∫ ∞
0

2

π

x2y2√
(u− t)t3(1− u)3

sinh

(
xy

u− t

)
exp

(
− x2u

2t(u− t)

)
exp

(
− y2(1− t)

2(1− u)(u− t)

)
dxdy.

At this point, one can use the power series of sinh to separate the variables x and y and obtain

E[eteu] =
2

π

√
(u− t)5√
u3(1− t)3

∞∑
k=0

4k+1((k + 1)!)2

(2k + 1)!

(√
t(1− u)

u(1− t)

)2k+1

.

Note that when 0 ≤ t < u ≤ 1 we have indeed
√

t(1−u)
u(1−t) < 1. Then, using

∞∑
k=0

4k+1((k + 1)!)2

(2k + 1)!
x2k+1 =

3x
√

1− x2 + (2x2 + 1) arcsin(x)√
(1− x2)5

,

we obtain the desired expression for E[eteu]. 2

Proposition 10 The random variable Λ∞ admits a density fΛ∞ w.r.t. the Lebesgue measure. Furthermore,

E[Λ∞] = 1 and Var(Λ∞) =
1

‖E‖42

∫ 1

0

∫ 1

0

g(s, u)EsEu dsdu − 1, (7)

where the mapping g : [0, 1]2 → R+ is defined from

g(t, u) =

{
2
π

[
3
√
t(u− t)(1− u) + (2t(1− u) + u(1− t)) arcsin

(√
t(1−u)
u(1−t)

)]
if 0 ≤ t ≤ u ≤ 1,

g(u, t) otherwise.
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Proof. We consider the probability space (C([0, 1],R3),F ,W), where C([0, 1],R3) is endowed with the
uniform topology, F is the corresponding Borel σ-field andW is the Wiener measure. Let T be the continuous
linear operator defined by

T : C([0, 1],R3) → C([0, 1],R3),
ϕ 7→ (Tϕ(s) = ϕ(s)− sϕ(1)) .

Let also Γ be the following function,

Γ : ϕ 7→
∫ 1

0

|ϕ(s)|2
Es
‖E‖22

ds.

where |x|2 denotes the Euclidian norm on R3. With these notations and (3), we have that the pushforward
measure of W through the application

F : ϕ 7→ Γ(Tϕ),

is the law of Λ∞. In other words, the random variable F is equal in distribution to Λ∞. Now for every ϕ in
C([0, 1],R3) such that Leb

(
{t ∈ R+ : ϕ(t) = 0}

)
= 0, we have that Γ is Fréchet differentiable at the point

ϕ. Moreover, the derivative at such point ϕ is given by

DϕΓ : C([0, 1],R3) → R,

h 7→
∫ 1

0
(ϕ(s),h(s))
|ϕ(s)|2

Es
‖E‖22

ds,

where (·, ·) denotes the Euclidean scalar product on R3. Indeed, some straightforward manipulations give

∫ 1

0

[
|ϕ(s)+h(s)|2 − |ϕ(s)|2−

(ϕ(s), h(s))

|ϕ(s)|2

]
Es
‖E‖22

ds =

∫ 1

0

 |h(s)|22 + (ϕ(s), h(s))
(

1− |ϕ(s)+h(s)|2
|ϕ(s)|2

)
|ϕ(s) + h(s)|2 + |ϕ(s)|2

 Es
‖E‖22

ds.

Now, since Es
‖E‖22

≤ 3
√
π

2
√

2
and using the Cauchy-Schwarz inequality, we obtain∣∣∣∣∣

∫ 1

0

[
|ϕ(s) + h(s)|2 − |ϕ(s)|2 −

(ϕ(s), h(s))

|ϕ(s)|2

]
Es
‖E‖22

ds

∣∣∣∣∣
≤ 3
√
π

2
√

2

∫ 1

0


|h(s)|22 + |h(s)|2

∣∣∣∣∣|ϕ(s)|2 − |ϕ(s) + h(s)|2

∣∣∣∣∣
|ϕ(s) + h(s)|2 + |ϕ(s)|2

ds

≤ 3
√
π

2
√

2
‖h‖∞

∫ 1

0

 |h(s)|2 +

∣∣∣∣|ϕ(s)|2 − |ϕ(s) + h(s)|2
∣∣∣∣

|ϕ(s) + h(s)|2 + |ϕ(s)|2

ds,

with ‖h‖∞ = sups∈[0,1] |h(s)|2. Since

∫ 1

0

 |h(s)|2 +

∣∣∣∣|ϕ(s)|2 − |ϕ(s) + h(s)|2
∣∣∣∣

|ϕ(s) + h(s)|2 + |ϕ(s)|2

ds

is well-defined (because the integrand is bounded by 2) and goes to zero as ‖h‖∞ goes to zero, this proves that
DϕΓ is the Fréchet derivative of Γ at point ϕ. The functional T being linear, F is also Fréchet differentiable

11



with Fréchet derivative given by

DϕF : (C([0, 1],R3) → R,

h 7→
∫ 1

0
(Tϕ(s),Th(s))
|Tϕ(s)|2

Es
‖E‖22

ds.

Moreover, let h be an element of L2([0, 1],R3), we have, since ‖E‖22 = 4
3π ,∣∣∣∣F (ω +

∫ ·
0

h(s)ds

)
− F (ω)

∣∣∣∣ ≤ 3π

4

∫ 1

0

{∣∣∣∣∫ t

0

h(s)ds

∣∣∣∣
2

+ t

∣∣∣∣∫ 1

0

h(s)ds

∣∣∣∣
2

}
Et dt.

But in the right hand side of the last inequality, we have, using Jensen’s inequality,

∫ 1

0


√√√√ 3∑

i=1

(∫ t

0

hi(s)ds

)2

+ t

√√√√ 3∑
i=1

(∫ 1

0

hi(s)ds

)2
Et dt ≤

∫ 1

0

√√√√ 3∑
i=1

(∫ 1

0

hi(s)2ds

)
(1 + t)Et dt

=

∫ 1

0

‖h‖L2([0,1],R3)(1 + t)Et dt.

From this, using the results of [26, p. 35], we have that F belongs to the space D1,2, which is the domain of
the Malliavin operator D in L2([0, 1],R3) (see [26, pp. 25–27] for more details). Before going further let us
recall some facts on Malliavin derivative. When working with the probability space (C([0, 1],R3),F ,W), it is
known [26, 1.2.1 The derivative operator in the white noise case] that there exist strong connections between
Malliavin derivative and Fréchet derivative for a random variable G of D1,2 defined from (C([0, 1],R3),F ,W)
to R. Since, the Fréchet derivative DωG at point ω of G is a continuous linear form from C([0, 1],R3) into
R, it can be identified to a triple (µω1 , µ

ω
2 , µ

ω
3 ) of σ-finite measures on R such that,

∀h ∈ C([0, 1],R3), DϕGh =

3∑
i=1

∫
[0,1]

hi(s) µωi (ds).

In such a case, the Malliavin derivative of G is the random process belonging to L2([0, 1],R3) given by{
(µω1 (u, 1], µω2 (u, 1], µω3 (u, 1]) : u ∈ [0, 1]

}
.

In our case, it follows that the Malliavin derivative of F is given by

DF (ω) =

(∫ 1

0

(ωs − sω1)Es
|ωs − sω1|2‖E‖22

(1s>u − s)ds, u ∈ [0, 1]

)
∈ L2([0, 1],R3).

Now, since DF is not zero in L2([0, 1],R3) for W-almost every ω, we get, together with [26, Theorem 2.1.2],
the existence of a density for F w.r.t. the Lebesgue measure. The calculation of the variance is derived from
the expectation of etes, (s, t) ∈ [0, 1]2, stated in Lemma 9. 2

Remark 11 The existence of a density was already known [23, 24] for the random variable
∫ 1

0
esds but to

the best of our knowledge no paper investigates the existence of a density for Λ∞. In these papers [23, 24]
the study is performed thanks to the analysis of the double Laplace transform

λ 7→
∫ ∞

0

exp(−λt)E
[
exp

(
−t
∫ 1

0

esds

)]
dt.

Thanks to the Feynman-Kac formula, the authors express this quantity in terms of Airy functions. Then,
they take the inverse of the Laplace transform via analytical methods. Unfortunately, their method does not
extend to our case. Indeed, in their case, an expression of the double Laplace transform given above is derived
from the Feynman-Kac formula for standard Brownian motion which tells us that the function

u(t, x) = Ex

[
f(Bt) exp

(∫ t

0

Bsds

)]
, ∀ (t, x) ∈ R+ ×R,
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is solution of the partial differential equation{
∂tu(t, x) = 1

2∆u(t, x) + xu(t, x) ∀x ∈ R, t ∈ R+,
u(0, x) = f(x) ∀x ∈ R.

In this case, taking the Laplace transform in time of u leads to an ordinary differential equation whose
solution can be expressed in terms of Airy functions [15]. In our problem, this partial differential equation
becomes inhomogeneous in time which prevents us to use this Laplace transform. As a consequence, we think
that one can not obtain information by this method. This is why we have established that Λ∞ admits a
density using Malliavin calculus and the representation of the Brownian excursion as a three-dimensional
Bessel bridge (3).

Of course, λ̂[τn] is not a consistent estimator of σ−1 but it should be noted that its weak limit is unbiased by
(7) and Corollary 7. The expression (7) of the variance of Λ∞ is an explicit but quite intractable formula.
Nevertheless, it may be at least evaluated numerically to compute the variance of Λ∞. Otherwise, we can
also use Monte Carlo simulations to produce a sample with the same law as Λ∞ to achieve this task. Both
methods lead to

Var(Λ∞) ' 0.0690785.

At this point, it is quite interesting to compare our approach to the one developed in [4]. The authors
of [4] construct estimators for the variance of the offspring distribution of a forest of conditioned critical
Galton-Watson trees. Their strategy relies on the distance to the root of a uniformly sampled node v of the
considered tree τn ∼ GWn(µ),

δ[τn] =
h(v)√
n
. (8)

Using Theorem 3, it has been shown that δ[τn] converges in law, when the number of nodes n goes to infinity,
towards σ−1∆∞ where the random variable ∆∞ follows the Rayleigh distribution with scale 1 [4, Proposition
4] with density,

∀x ∈ R+, f∆∞(x) = x exp

(
−1

2
x2

)
.

We emphasize that δ[τn] is somehow biased because E[∆∞] =
√

π
2 6= 1. Nevertheless, one may avoid this

issue by considering the quantity

δ̂[τn] =

√
2

π
δ[τn] (9)

that converges to σ−1
√

2
π∆∞ which is σ−1 on average. As a consequence, λ̂[τn] and δ̂[τn] are two quantities

directly computable from the tree τn and that may be used to construct an estimator of the inverse standard
deviation of interest. We propose to compare them from their respective asymptotic dispersion which should
be as small as possible in order to get an accurate estimator. A first comparison may be done by computing
the variances of Λ∞ and

√
2
π∆∞. One has

Var

(√
2

π
∆∞

)
' 0.2732395 and Var(Λ∞) ' 0.0690785.

This difference in the dispersions is quite apparent in Figure 3 where the densities of
√

2
π∆∞ and Λ∞ have

been displayed. Consequently, one may expect better results in terms of dispersion from our approach.
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Figure 3: Densities of
√

2
π∆∞ (full line) where ∆∞ follows the Rayleigh distribution given by f(x) =

π
2x exp

(
−πx

2

4

)
for x ∈ R+ and of Λ∞ (dashed line) estimated from 1 000 000 simulated Brownian excursions.

3.2 Interpretation in functional principal component analysis
On the suggestion of a reviewer, we performed a functional principal component analysis (FPCA) from
normalized Harris paths of large conditioned Galton-Watson trees with different values of σ. We refer the
reader to [17] and the references therein for explanations on this statistical tool and to Subsection 5.1 for
simulation methods. The FPCA has been carried out with function FPCA from the R package fdapace. The
results are presented in Figure 4.

These numerical experiments show that the first eigenfunction is very close to the average Brownian excursion
(see Figure 4 (bottom right)). As a consequence, λ̂[τ ] can be interpreted as the first eigenvalue in FPCA
of the normalized Harris path of τ . The first eigenspace expresses approximately 70% of the total dataset
inertia. For the sake of comparison, the second eigenspace gets only 7% of the inertia. In addition, one can see
on Figure 4 (top left, top right and bottom left) that only the first dimension of FPCA captures information
on the value of σ. These results highlight that λ̂[τ ] is a relevant quantity in our estimation problem as well
as one can not expect more significant information from the projection on the other eigenspaces.

Alternative functionals of the Brownian excursion can be investigated in order to develop statistical methods
for conditioned Galton-Watson trees. For instance, the vector of peaks and valleys at random [8] or fixed
[27] times could be considered. If the distribution of such objects is simple enough, this could enable the
use of maximum likelihood methods. However, as shown above, the functional λ̂[τ ] considered in our work
seems to be one of the best in our setting in terms of quantity of information.

3.3 Estimation strategies
In this section, we give details on two ideas in order to estimate σ−1 from a forest of conditioned Galton-
Watson trees. A forest is defined as a tuple of trees. Let N be a positive integer. In this section, we consider
a forest F made of N independent trees τ1, . . . , τN with respective sizes n1, . . . , nN and respective laws
GWn1(µ), . . . ,GWnN (µ).

3.3.1 Least square estimation

This first strategy lies on the goodness of fit between the Harris path of the forest with the expected
limiting contour. This adequacy is measured thanks to an L2([0, N ],R)-norm. More precisely, we denote

14
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Figure 4: FPCA performed from 600 large conditioned Galton-Watson trees with different standard devia-
tions: from dark to bright gray, σ ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 0.95}. Coefficients of projection on the three first
eigenfunctions (top left, top right and bottom left) and first eigenfunction (full line, bottom right) compared
to the average Brownian excursion (dashed line).

(H[F ](t), t ∈ [0, N ]) the Harris path of the forest F . This process is defined by

∀ 0 ≤ t ≤ N, H[F ](t) =

N∑
i=1

1
√
ni
H[τ i](2ni(t− i+ 1))1[i−1,i)(t).

The Harris path of a forest is simply the concatenation of the Harris paths of each tree, in the natural order.
We propose to estimate σ−1 by λ̂ls[F ] that minimizes the L2([0, N ],R)-error

λ 7→ ‖H[F ](·)− λH(· − b·c)‖2L2([0,N ],R),

the function H(· − b·c) mapping x ∈ [0, N ] to H(x−bxc). As aforementioned in (5), λ̂ls[F ] can be explicitly
computed. Indeed, one can check that

λ̂ls[F ] =
〈H[F ](·), H(· − b·c)〉
‖H(· − b·c)‖22

.

We remark that λ̂ls[F ] is only the average of the quantities λ̂[τ i] (defined in (5)),

λ̂ls[F ] =
1

N

N∑
i=1

λ̂[τ i].

Thus, according to Theorems 4 and 7, one can expect that λ̂ls[F ] tends to σ−1 in some sense, when both N
and ni go to infinity, by virtue of the law of large numbers.

3.3.2 Estimation by minimal Wasserstein distance

In the preceding method, we did not use our knowledge of the limiting distribution of the random variable of
type λ[τn]. In order to take this into account, one may want to test the goodness of fit between the empirical
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measure P̂ defined by

P̂ =
1

N

N∑
i=1

δλ̂[τ i] (10)

and the the law of Λ∞. Using Wasserstein metrics to align distributions is rather natural since it corresponds
to the transportation cost between two probability laws. In particular, this feature appears to be useful in
a statistical framework [6, 12]. In our case, P̂ is expected to be close in terms of Wasserstein distance to
σ−1Λ∞ in the asymptotic regime of an infinite forest of infinite trees. That is why, we propose to estimate
σ−1 with the real number λ which minimizes the distance between P̂ and λΛ∞. More precisely, our estimator
λ̂W [F ] is defined by

λ̂W [F ] = arg min
λ>0

dW

(
P̂ , PλΛ∞

)
,

where dW denotes the Wasserstein distance of order 2 and PλΛ∞ denotes the law of λΛ∞.

The Wasserstein distance of order 2, denoted dW (ν1, ν2), between two probability measures ν1 and ν2 on R
can be defined from their cumulative distribution functions F1 and F2 as follows,

dW (ν1, ν2) = ‖F−1
1 − F−1

2 ‖2. (11)

Let F̂ be the cumulative function of the empirical measure P̂, while FλΛ∞ stands for the cumulative function
of the random variable λΛ∞. As a consequence of (11), one has

dW

(
1

N

N∑
i=1

δλ̂[τ i] , PλΛ∞

)2

=

∫ 1

0

(
F̂−1(s)− F−1

λΛ∞
(s)
)2

ds

=

∫ 1

0

(
F̂−1(s)− λF−1

Λ∞
(s)
)2

ds,

thanks to the fact that F−1
λΛ∞

= λF−1
Λ∞

. It follows that minimizing the Wasserstein distance boils down to
solving a least square minimization problem. Hence, it comes that

λ̂W [F ] =
〈F̂−1, F−1

Λ∞
〉

‖F−1
Λ∞
‖22

=
1

‖F−1
Λ∞
‖22

N∑
i=1

λ̂[τ (i)]

∫ i
N

i−1
N

F−1
Λ∞

(s)ds, (12)

where (λ̂[τ (i)])1≤i≤N denotes the order statistic associated with the family (λ̂[τ i])1≤i≤N .

Remark 12 We point out the fact that there is no problem of definition in the above quantities because both
F̂−1 and F−1

Λ∞
belong to L2. In the first case, this follows from the fact that F̂−1 is bounded (because P̂ has

compact support). For F−1
Λ∞

, this comes from the uniform sampling principle which entails that∫ 1

0

F−1
Λ∞

(u)2 du = E[Λ2
∞].

Remark 13 The proposed methodology consists in identifying the best parameter λ that allows to align the
distributions P̂ and PλΛ∞ . The Wasserstein distance is well-adapted to this problem because it is computed
from the inverse cumulative distribution functions together with the fact that F−1

λΛ∞
= λF−1

Λ∞
. As a conse-

quence, one may get the optimal parameter λ̂W [F ] from only a numerical estimate of F−1
Λ∞

. The same trick
does not hold for the maximum likelihood method: one can not express the likelihood of λΛ∞ as a function
of the two variables λ and fΛ∞ . Thus this alternative method is not adequate without an explicit formula for
fΛ∞ , which seems to be out of our reach.

16



4 Main results

4.1 Increasing sequences of random forests
Before going further, the statistical framework needs to be precisely formulated. In the sequel, the set of
integer sequences is denoted by S. For any positive real number A, we denote by SA the subset of S defined
by

SA =

{
u ∈ S : min

i≥1
ui ≥ A

}
.

In addition, for any sequence u in S and any positive integer N , ~uN is the multi-integer made of the N first
components of u, that is

~uN = (u1, . . . , uN ) .

Now, let us introduce our probabilistic framework. Let (τkn)n,k≥1 be a family of independent conditioned
Galton-Watson trees such that, for a given n, the family (τkn)k≥1 is i.i.d. GWn(µ). From this family, we
define, for any multi-integer ~uN = (u1, . . . , uN ), the random forest F~uN made of the trees (τ1

u1
, . . . , τNuN ).

The idea of this construction is to consider increasing (in the sense of inclusion) sequences of random forests.
Indeed, assume we are given a sequence (un)n≥1 of integers (corresponding with the sizes of our trees), then
the N first trees of the forest F~uN+1

are the same as the trees of the forest F~uN .

We point out that the hypothesis of independence may be thought to be too strong in some applications.
Exchangeability is a weaker assumption that could be considered. In such a statistical setting, the reference
[13] is particularly relevant.

4.2 Least square estimation
This first result focuses on the large trees regime and gives the asymptotic unbiasedness of the least square
estimator in this regime.

Proposition 14 The least square estimator is asymptotically unbiased in the large trees regime, that is

∀ ε > 0, ∃A ∈ N, ∀u ∈ SA, ∀N ∈ N
∣∣∣E [λ̂ls[F~uN ]

]
− σ−1

∣∣∣ < ε.

This means that the expectation of the least square estimator converges to σ−1 as the sizes of the trees
increase.

Proof. Since the family (τ iui)1≤i≤N is made of independent random variables, its follows from Theorem 4
and the definition (5) of λ̂[τni ] that the proof of this last statement boils down to proving that, when n goes
to infinity, ∫ 1

0

E

[
H[τn](2ns)√

n

]
Es ds −→ 2

σ

∫ 1

0

E2
s ds,

where τn is some tree with law GWn(µ). It is known from [10, Lemma 4] that, for any positive integer n
and real number 0 < t < 1,

∀x ∈ R+, P

(
H[τn](2nt)√

n
> x

)
≤ C

t
exp

(
−Dx√

t

)
. (13)

From this last estimate, one can easily show that E
[
H[τn](2n·)√

n

]
is uniformly bounded (w.r.t. n) by an

integrable function. Finally, the result follows from Theorem 4 and the dominated convergence theorem. 2

The spirit of the following result is that, given an increasing sequence of random forests, the least square
estimator can not be too far from σ−1 as soon as the sizes of the trees are large enough. In particular, due
to the weakness of the convergence of conditioned Galton-Watson trees given in Theorem 4, one can not
expect a stronger result of convergence.
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Proposition 15 We have,

∀ ε > 0, ∃A ∈ N, ∀u ∈ SA, P

(
lim sup
N→∞

∣∣∣λ̂ls[F~uN ]− σ−1
∣∣∣ < ε

)
= 1.

Proof. We begin the proof by showing that the family (λ̂[τkn ])n,k≥1 has uniformly bounded fourth moments.
By Jensen’s inequality, there exists a positive constant c such that

E

[(
λ̂[τ in]

)4
]
≤ c

∫ 1

0

E

[(
H[τ in](2ns)√

n

)4
]

ds

= 4c

∫ 1

0

∫
R+

x3 P

(
H[τ in](2ns)√

n
> x

)
dx ds. (14)

Finally, using again equation (13) gives the desired bound,

E
[
λ̂[τ in]4

]
≤ 12 cC

D4
. (15)

From this point we consider a sequence u of integers. This sequence corresponds to the sizes of the trees
in our increasing sequence of random forests (F~uN )N≥1. We recall according to the definitions given in the
beginning of this section that the random forest F~uN is composed of the trees (τ1

u1
, . . . , τNuN ).

Let mi
ui be the expectation of λ̂[τ iui ]. It is worth noting that this expectation depends only on the integer

ui. Now, using the uniform bound on the fourth moment (15), Markov’s inequality applied to the fourth
power of

1

N

N∑
i=1

(
λ̂[τ iui ]−m

i
ui

)
gives the convergence in probability of the above sum to zero at rate N−2 which implies, in light of the
Borel-Cantelli lemma, that

1

N

N∑
i=1

(
λ̂[τ iui ]−m

i
ui

)
a.s.−−→ 0, (16)

when N goes to infinity. Moreover, using Theorem 4, we have that mi
ui converges to σ−1 as ui goes to

infinity, from which it follows that for any ε > 0, there exists an integer A such that∣∣mi
ui − σ

−1
∣∣ < ε, (17)

whenever ui > A. Finally, letting all the ui’s be greater than A, we have that there exists a measurable set
Ωu , with mass 1, such that, using (16) and (17), for all ω in this set,

lim sup
N→∞

∣∣∣∣∣ 1

N

N∑
i=1

λ̂[τ iui ](ω)− σ−1

∣∣∣∣∣ ≤ lim sup
N→∞

1

N

∣∣∣∣∣
N∑
i=1

λ̂[τ iui ](ω)−mi
ui

∣∣∣∣∣+ lim sup
N→∞

1

N

N∑
i=1

∣∣mi
ui − σ

−1
∣∣ ≤ ε,

which establishes the expected convergence. 2

Remark 16 According to the proof of the preceding theorem, it would be very interesting to control the rate
of convergence in Theorem 4. Indeed, this would enable us to get a control of the error in the convergence
stated in Proposition 15 given in terms of the smallest tree in the increasing sequence of random forests.

Remark 17 Let us point out that equation (13) gives the exponential decay of the tail distribution of
n−1/2H[τn](2nt) uniformly w.r.t. n. In particular, one can apply the method used in equation (14) to obtain
uniform (w.r.t. n) bounds like

E
[
λ̂[τn]k

]
≤ (k − 1)! cC

Dk
,

for any positive integer k and some positive constant c.
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4.3 Estimation by minimal Wasserstein distance
As in the preceding section, we begin by looking at the asymptotic bias of the considered estimator.

Proposition 18 The Wasserstein estimator is asymptotically unbiased in the large trees and large forests
regime. That is,

∀ ε > 0, ∃ (N, A) ∈ N2, ∀u ∈ SA, ∀N ≥ N,
∣∣∣E [λ̂W [F~uN ]

]
− σ−1

∣∣∣ < ε.

Proof. Let u in S and N in N. Let (Λ∞,i)i≥1 be an i.i.d. sequence of random variables with the same
distribution as Λ∞. The first step of the proof is to show that

η~uN =

∣∣∣∣∣E
[
λ̂W [F~uN ]− 1

σ‖F−1
Λ∞
‖22

N∑
i=1

E
[
Λ∞,(i)

] ∫ i
N

i−1
N

F−1
Λ∞

(s)ds

]∣∣∣∣∣
converges to 0 as min(~uN ) goes to infinity uniformly w.r.t. N , where the order statistic in the above formula
has to be understood w.r.t. the random vector (Λ∞,1, . . . ,Λ∞,N ). The convergence easily follows from the
results of [10]. However, getting it uniformly w.r.t. N requires to give some new insights. To this end let
(Ui)i≥1 be a sequence of i.i.d. random variables with uniform distribution on [0, 1]. Denote, for any positive
integer n, F−1

n the right inverse of the cumulative distribution function associated to the random variable
λ̂[τ1

n]. According to the right inverse principle, the random vector (F−1
ui (Ui))1≤i≤N is equal in distribution to

(λ̂[τ iui ])1≤i≤N and the vector (F−1
Λ∞

(Ui))1≤i≤N is a vector of i.i.d. random variables with the same distribution
as Λ∞. At this point, let us highlight that the sequences (λ̂[τ in])n≥1 and (F−1

n (Ui))n≥1 do not have the same
distribution since the first one is made of independent random variables whereas this is clearly not the
case for the second one. However, this feature is not important since, in the above formula, we only look at
averaged behaviors. First note that, by definition of the Wasserstein estimator and the right inverse sampling
principle, we have

η~uN =
1

σ‖F−1
Λ∞
‖22

∣∣∣∣∫ 1

0

F−1
Λ∞

(s)E
[
Ĝ−1
~uN

(s)− Ĥ−1
N (s)

]
ds

∣∣∣∣ , (18)

where Ĝ−1
~uN

and Ĥ−1
N denote the inverse distribution functions of the empirical measures respectively asso-

ciated to the vectors (F−1
ui (Ui))1≤i≤N and (F−1

Λ∞
(Ui))1≤i≤N . Now, the Cauchy-Schwartz inequality entails

that ∣∣∣∣∫ 1

0

F−1
Λ∞

(s)E
[
Ĝ−1
~uN

(s)− Ĥ−1
N (s)

]
ds

∣∣∣∣ ≤ ‖F−1
Λ∞
‖2

√∫ 1

0

E
[
Ĝ−1
~uN

(s)− Ĥ−1
N (s)

]2
ds.

By the definition of the inverse distribution function, we get∫ 1

0

E
[
Ĝ−1
~uN

(s)− Ĥ−1
N (s)

]2
ds =

∫ 1

0

(
N∑
i=1

1[ i−1
N , iN )(s)E

[
F−1
u(i)

(U(i))− F−1
Λ∞

(U(i))
])2

ds,

where (F−1
n(i)

(U(i)))1≤i≤N and (F−1
Λ∞

(U(i)))1≤i≤N denote the order statistics respectively associated with the
vectors (F−1

ni (Ui))1≤i≤N and (F−1
Λ∞

(Ui))1≤i≤N . Using two times Jensen’s inequality leads to∫ 1

0

E
[
Ĝ−1
~uN

(s)− Ĥ−1
N (s)

]2
ds ≤ 1

N

N∑
i=1

E

[∣∣∣F−1
n(i)

(U(i))− F−1
Λ∞

(U(i))
∣∣∣2] .

Finally, using that the order function (x1, . . . , xn) 7→ (x(1), . . . , x(n)) is 1-Lipschitz w.r.t. the Euclidean norm
(as a consequence of the rearrangement inequality), we have

∣∣∣∣∫ 1

0

F−1
Λ∞

(s)E
[
Ĝ−1
~uN

(s)− Ĥ−1
N (s)

]
ds

∣∣∣∣ ≤ ‖F−1
Λ∞
‖2

√√√√ 1

N

N∑
i=1

E
[∣∣F−1

ni (Ui)− F−1
Λ∞

(Ui)
∣∣2]. (19)
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Now by construction, for any i, F−1
n (Ui) converges almost surely to F−1

Λ∞
(Ui). Moreover, the uniform square-

integrability of the laws of the λ̂[τ ini ]’s provided by Remark 17 gives that

lim
n→∞

E
[∣∣F−1

n (Ui)− F−1
Λ∞

(Ui)
∣∣2] = 0.

Now, let 0 < ε < 1 be some positive real number and let A such that for any n ≥ A, we have

E
[∣∣F−1

n (Ui)− F−1
Λ∞

(Ui)
∣∣2] ≤ σ2‖F−1

Λ∞
‖22 ε2.

Hence, as soon as min(u) ≥ A, we have, together with (19),

1

σ‖F−1
Λ∞
‖22

∣∣∣∣∫ 1

0

F−1
Λ∞

(s)E
[
Ĝ−1
~uN

(s)− Ĥ−1
N (s)

]
ds

∣∣∣∣ ≤ ε.
Finally, (18) gives the desired uniform convergence. It remains to prove that

1

σ‖F−1
Λ∞
‖22

N∑
i=1

E
[
Λ∞,(i)

] ∫ i
N

i−1
N

F−1
Λ∞

(s)ds

converges to σ−1 as N goes to infinity. It is well known, since Λ∞ has a density, that, for any 1 ≤ i ≤ N ,
one has (see for instance [7])

E
[
Λ∞,(i)

]
= N

(
N − 1

i− 1

)∫ ∞
0

xFΛ∞(x)i−1(1− FΛ∞(x))N−ifΛ∞(x)dx.

Hence,

E

[
N∑
i=1

Λ∞,(i)

∫ i
N

i−1
N

F−1
Λ∞

(s)ds

]

= N

∫ ∞
0

xfΛ∞(x)

N∑
i=1

(
N − 1

i− 1

)
FΛ∞(x)i−1(1− FΛ∞(x))N−i

∫ 1
N

0

F−1
Λ∞

(
s+

i− 1

N

)
ds dx.

This rewrites thanks to the right inverse sampling principle as

E

[
N∑
i=1

Λ∞,(i)

∫ i
N

i−1
N

F−1
Λ∞

(s)ds

]
=

∫ 1

0

F−1
Λ∞

(y)KN

(
F−1

Λ∞

)
(y) dy,

where KN is defined for all function ϕ in L2 by

KN (ϕ) (y) = N

N∑
i=1

(
N − 1

i− 1

)
yi−1(1− y)N−i

∫ 1
N

0

ϕ

(
s+

i− 1

N

)
ds, ∀ y ∈ [0, 1].

The operators KN are known as Berstein-Kantorovich operators which were introduce in the 30’s by Kan-
torovich in order to extend the properties of Berstein polynomials to non-continuous functions [18]. In
particular, it is known that, for all ϕ in L2, KN (ϕ) converges to ϕ in L2 [22, Theorem 2.1.2 and p. 33]. Now,
according to the Cauchy-Schwarz inequality we have that∣∣∣∣∫ 1

0

F−1
Λ∞

(y)KN

(
F−1

Λ∞

)
(y) dy −

∫ 1

0

F−1
Λ∞

(y)2 dy

∣∣∣∣ ≤ ∥∥F−1
Λ∞

∥∥
2

∥∥KN (F−1
Λ∞

)− F−1
Λ∞

∥∥
2
.
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But since KN (F−1
Λ∞

) converges to F−1
Λ∞

in L2, we finally obtain

E

[
N∑
i=1

Λ∞,(i)

∫ i
N

i−1
N

F−1
Λ∞

(s)ds

]
−→ ‖F−1

Λ∞
‖22,

when N goes to infinity. This gives the result. 2

We also have a stronger convergence result for this estimator. It relies on the fact that the empirical measure
P̂ defined in (10) must be close (in Wasserstein distance) to the law of σ−1Λ∞ as soon as the trees are large
enough. More precisely, we have the following result of consistency.

Proposition 19 Let P be the law of σ−1Λ∞. Let also P̂~uN be the empirical distribution defined for any
multi-integer ~uN by

P̂~uN =
1

N

N∑
i=1

δλ̂[τ iui ]
.

Then, the following statement holds,

∀ ε > 0, ∃A ∈ N, ∀u ∈ SA, P

(
lim sup
N→∞

dW

(
P̂~uN ,P

)
< ε

)
= 1.

Proof. Let Πδ be the canonical projection of R on [−δ, δ], for a positive real number δ. We have

dW

(
P̂~uN (ω) ,P

)
≤ dW

(
P̂~uN (ω) ,ΠδP̂~uN (ω)

)
+ dW

(
ΠδP̂~uN (ω) ,ΠδP

)
+ dW (P,ΠδP) , (20)

where Πδµ denotes the image measure of µ by Πδ. To obtain the desired result, we need to control each of
the three terms in the right hand side of (20).
Third term. First, it is clear, for any probability measure µ, that Πδ is a transport of µ on Πδµ which need
not be optimal [5, 2. Generalities on Kantorovich transport distances]. Hence,

dW (µ,Πδµ) ≤

√∫
R

|x−Πδ(x)|2 µ(dx).

It follows, since x 7→ x2 is integrable w.r.t. P, that δ can be chosen in order to have

dW (P,ΠδP) ≤
√

E
[
(σ−1Λ∞)

2
1|σ−1Λ∞|>δ

]
<
ε

3
. (21)

First term. On the other hand, following the same lines as in the proof of Proposition 15 (and using
Remark 17), one can show that, for any ε > 0,

∃A ∈ N, ∀u ∈ SA, P

(
lim sup
N→∞

∣∣∣∣∣ 1

N

N∑
i=1

λ̂[τ iui ]
21|λ̂[τ iui

]|>δ −E
[
σ−2Λ2

∞1|σ−1Λ∞|>δ
]∣∣∣∣∣ < ε

)
= 1. (22)

This bound allows us to control the first term in the right hand side of (20) since

dW

(
P̂~uN (ω) ,ΠδP̂~uN (ω)

)
≤

√∫
R

|x−Πδ(x)|2 P̂~uN (ω)(dx)

≤

√√√√ 1

N

N∑
i=1

λ̂[τ ini ](ω)21|λ̂[τ ini
](ω)|>δ.
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Hence, it remains to control the second term.
Second term. Since ΠδP̂~uN (ω) and ΠδP are compactly supported measures, we have

dW

(
ΠδP̂~uN (ω) ,ΠδP

)
≤ C

√
d

(1)
W

(
ΠδP̂~uN (ω) ,ΠδP

)
,

where d(1)
W is the first order Wasserstein metric. As a consequence, if one gets the result for d(1)

W , it gives the
result for dW . First of all, we have

d
(1)
W

(
ΠδP̂~uN (ω) ,ΠδP

)
≤ d(1)

W

(
ΠδP̂~uN (ω) ,ΠδP~uN

)
+ d

(1)
W

(
ΠδP~uN ,ΠδP

)
, (23)

with

ΠδP~uN =
1

N

N∑
i=1

PΠδ(λ̂[τ ini
]),

where PΠδ(λ̂[τ ini
]) denotes the law of Πδ(λ̂[τ ini ]). Since the space C([−δ, δ],R) of continuous functions on

[−δ, δ], endowed with the uniform topology is separable, there exists a countable dense subset (fk)k≥1 of
C([−δ, δ],R). Once again, using the method developed in Proposition 15, it is easy to get that, for any
positive integer k and all ω in a set Ωk of mass 1,

lim
N→∞

∣∣∣ΠδP̂~uN (ω) fk −ΠδP~uN fk
∣∣∣ = 0,

where µf denotes
∫
f(x)µ(dx), for any a measure µ and any µ-integrable function f . Now, take ω in

⋂
k≥1 Ωk

and f in C([−δ, δ],R). Since (fk)k≥1 is dense in C([−δ, δ],R), there exists for any ε > 0 an integer k such
that ‖f − fk‖ < ε/2. This implies that

lim sup
N→∞

∣∣∣ΠδP̂~uN (ω) f −ΠδP~uN f
∣∣∣ ≤ lim sup

N→∞

∣∣∣ΠδP̂~uN (ω) f −ΠδP̂~uN (ω) fk

∣∣∣
+ lim sup

N→∞

∣∣∣ΠδP̂~uN (ω) fk −ΠδP~uN fk
∣∣∣

+ lim sup
N→∞

∣∣ΠδP~uN (ω) fk −ΠδP~uN f
∣∣ < ε.

Since this last inequality holds for any ε > 0, ΠδP̂~uN−ΠδP~uN converges weakly to 0 in the spaceMs([−δ, δ]) of
signed measures on [−δ, δ] with probability 1. Consequently, since d(1)

W metricizes the subspace of probability
measures, we get that, almost surely,

lim
N→∞

d
(1)
W

(
ΠδP̂~uN (ω) ,ΠδP~uN

)
= 0. (24)

In order to control the second term and, hence, end the proof, it remains to show that

∀ ε > 0, ∃A ∈ N, ∀u ∈ SA, d
(1)
W

(
ΠδP~uN ,ΠδP

)
< ε.

To get this, we use the duality formula for the first order Wasserstein distance,

d
(1)
W

(
ΠδP~uN ,ΠδP

)
= sup
φ∈Lip1([−δ,δ],R)

∣∣ΠδP~uNφ−ΠδPφ
∣∣ , (25)

where Lip1 ([−δ, δ],R) denotes the set of 1-Lipschitz continuous functions on [−δ, δ]. Now, let φ be an
element of Lip1 ([−δ, δ],R), we have that

∣∣ΠδP~uNφ−ΠδPφ
∣∣ ≤ 1

N

N∑
i=1

∣∣∣E [φ(Πδ(λ̂[τ ini ])
)]
−E [φ (Πδ(Λ∞))]

∣∣∣ .
To prove that the supremum taken in the above inequality will be small as soon as the trees are large enough,
we use the following lemma that gives the uniform convergence of the expectation of Lipschitz functionals
of the λ̂[τ ini ]’s.
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Lemma 20 We have,

∀ ε > 0, ∃A ∈ N, ∀n > A, ∀ f ∈ Lip1 ([−δ, δ],R) ,
∣∣∣E [f (Πδ(λ̂[τ ini ])

)]
−E [f (Πδ(Λ∞))]

∣∣∣ < ε.

The proof of the lemma has been postponed to the end of the section. In light of this lemma, we get

∀ ε > 0, ∃A ∈ N, ∀n > A, d
(1)
W

(
ΠδP~uN ,ΠδP

)
< ε.

Consequently, using the above result in conjunction with (23), (24) and (25), we have

∀ ε > 0, ∃A ∈ N, ∀n > A, lim sup
N→∞

d
(1)
W

(
ΠδP̂~uN (ω),ΠδP

)
< ε,

for all ω in
⋃
k≥1 Ωk, where the sets Ωk have been defined above. Hence,

∀ ε > 0, ∃A ∈ N, ∀u ∈ SA, P

(
lim sup
N→∞

dW

(
ΠδP̂~uN (ω) ,ΠδP

)
< ε

)
= 1. (26)

To end, using (21), (22) and (26) in (20) leads to the result. 2

Finally, we get the following consistency result.

Proposition 21 We have,

∀ ε > 0, ∃A ∈ N, ∀u ∈ SA, P

(
lim sup
N→∞

∣∣∣∣λ̂W [F~uN ]− 1

σ

∣∣∣∣ < ε

)
= 1.

Proof. By the Cauchy-Schwarz inequality, the convergence of this estimator is conditioned to the convergence
of the Wasserstein distance in the following manner,∣∣∣∣λ̂W [F~uN ]− 1

σ

∣∣∣∣ =

∣∣∣〈F̂−1
~uN
− σ−1F−1

Λ∞
, F−1

Λ∞
〉
∣∣∣

‖F−1
Λ∞
‖22

≤

∥∥∥F̂−1
~uN
− σ−1F−1

Λ∞

∥∥∥
2

∥∥F−1
Λ∞

∥∥
2

‖F−1
Λ∞
‖22

=
dW

(
P̂~uN , P

)
‖F−1

Λ∞
‖2

.

The result finally arises from Proposition 19 concerning the convergence of the empirical measure in the
sense of the Wasserstein distance. 2

Proof of Lemma 20. Let (ni)i≥1 be a strictly increasing sequence of integers and, for any i ≥ 1, let τ ini be a
conditioned Galton-Watson tree with size ni. By virtue of Skorokhod’s representation theorem, there exists
a probability space on which is defined a sequence (Xni)i≥1 of random variables and a random variable X∞
such that:

� the sequence (Xni)i≥1 has the same distribution as the sequence (Πδ(λ̂[τ ini ]))i≥1;

� X∞ has the same distribution as Πδ(Λ∞);

� Xni converges to X∞ in probability as i goes to infinity.

As a consequence of the uniform integrability properties showed in the proof of Proposition 18, we get

lim
i→∞

E [|X∞ −Xni |] = 0. (27)

Now, choose f in Lip1 ([−δ, δ],R), we have

|E [f (Xni)]−E [f (X∞)]| ≤ E [|Xni −X∞|] .

Together with (27), we obtain the expected convergence. 2
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5 Simulation study

5.1 Simulation of conditioned Galton-Watson trees
In order to illustrate our estimation techniques on Galton-Watson forests, we need to make some numerical
experiments. However, simulation of conditioned Galton-Watson trees is a difficult problem of independent
importance. In this section, we briefly present an algorithm due to Devroye [9] allowing to achieve this
aim. Given an integer n and a distribution µ on the set {0, . . . ,K}, this algorithm provides, in two steps,
the simulation of the Łukasciewicz walk L[τn] of a tree τn with distribution GWn(µ). Three more steps
are required to obtain the corresponding Harris path H[τn] through other coding processes (see for example
[11]).

� Simulation of numbers of children. The multinomial distribution of parameters (µ(k))0≤k≤K and
n may be defined by its probability mass function,

P(N0 = n0, . . . , NK = nK) =


n!

n0! . . . nK !
µ(0)n0 . . . µ(K)nK if

K∑
k=0

nk = n,

0 else.

Simulation of the multinomial distribution presents no difficulty. By rejection sampling, we simulate
multinomial random variables until obtaining a sequence (Nk)0≤k≤K satisfying

K∑
k=0

kNk = n− 1.

We define the sequence (ζi)1≤i≤n from

(ζi)1≤i≤n = (0, . . . , 0︸ ︷︷ ︸
N0

, 1, . . . , 1︸ ︷︷ ︸
N1

, . . . , K, . . . ,K︸ ︷︷ ︸
NK

).

Let (ξi)1≤i≤n be a sequence obtained as a random permutation of (ζi)1≤i≤n. A suitable technique
for random shuffling is presented in [19, Algorithm P (p. 139)]. The sequence (ξi)1≤i≤n represents the
vertices’ numbers of children in the depth-first search order.

� Computation of the Łukasciewicz walk. Let L be the process defined by L(0) = 0 and,

∀ 0 ≤ k ≤ n− 2, L(k + 1) = L(k) + ξk+1 − 1.

Set l = 1 + arg min {L(k) : 0 ≤ k ≤ n − 1}. Then there exists a tree τn with n nodes whose
Łukasciecwicz walk is defined by

L[τn](k) =

{
L(l + k) + minL− 1 if 0 ≤ k ≤ n− 1− l,
L(k − n+ l) + minL− 1 if n− l ≤ k ≤ n− 1.

� From the Łukasiewicz walk to the height process. Now, we compute the corresponding height
process [11, eq.(2)],

∀ 0 ≤ k ≤ n− 1, H[τn](k) = #

{
0 ≤ j ≤ k − 1 : L[τn](j) = min

j≤l≤n
L[τn](l)

}
.

� From the height process to the contour process. Let (bk)0≤k≤n−1 be the sequence defined from
bk = 2k − H[τn](k) if 0 ≤ k ≤ n − 1 and bn = 2(n − 1). Then the bi’s are sorted in increasing order.
The contour process C[τn](k) is defined for any 0 ≤ k ≤ 2n− 2 by [11, eq.(1)]

C[τn](k) =

 H[τn](i)− (k − bi) if ∃ 0 ≤ i ≤ n− 2, bi ≤ k < bi+1 − 1,
k − bi+1 + H[τn](i+ 1) if ∃ 0 ≤ i ≤ n− 2, bi+1 − 1 ≤ k < bi+1,
H[τn](bn−1)− (k − bn−1) if bn−1 ≤ k ≤ bn.
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� From the contour process to the Harris path. The Harris path is only a small modification of
the contour process, defined by H[τn](0) = H[τn](2n) = 0 and

∀ 1 ≤ k ≤ 2n− 1, H[τn](k) = C[τn](k − 1) + 1.

5.2 Inference for a forest of binary conditioned Galton-Watson trees
The aim of this section is to analyze the finite-sample behavior of both estimators introduced in this paper
by means of numerical experiments. The theoretical study achieved in Section 4 shows that we can expect
to obtain good numerical results, at least for large trees. To this goal, we consider a forest of independent
conditioned Galton-Watson trees with common critical birth distribution µ such that µ(k) = 0 for k ≥ 3.
Such a distribution satisfies the following linear system of equations, µ(0) + µ(1) + µ(2) = 1

µ(1) + 2µ(2) = 1
µ(1) + 4µ(2)− 1 = σ2

which is equivalent to

µ(0) = µ(2) =
σ2

2
and µ(1) = 1− σ2.

In other words, µ is entirely characterized by its variance σ2. Simulations of Galton-Watson trees GWn(µ)
are performed with the method provided in Subsection 5.1.

Let F = (τ i)1≤i≤N be a forest of N independent trees such that, for any 1 ≤ i ≤ N , τ i ∼ GWni(µ) for some
integer ni. From the Harris process of each tree τ i, one first computes the quantity

λ̂
[
τ i
]

=
〈H[τ i](2ni·), E〉

2
√
ni‖E‖22

,

where E is known and defined in (2). Then, we propose to estimate σ−1 in the two following ways, where
(λ̂[τ (i)])1≤i≤N denotes the order statistic associated to the family (λ̂[τ i])1≤i≤N .

Least Squares Wasserstein

λ̂ls[F ] =
1

N

N∑
i=1

λ̂
[
τ i
]

λ̂W [F ] =
1

‖F−1
Λ∞
‖22

N∑
i=1

λ̂
[
τ (i)
] ∫ i

N

i−1
N

F−1
Λ∞

(s)ds

Remark 22 In order to compute λ̂W [F ], we need to be able to perform computations using the function
F−1

Λ∞
. Unfortunately, in view of the theoretical study of Λ∞ made in Proposition 3.1, one can not expect to

have an explicit expression for this function. In the following of this section, we use a numerical estimation
of F−1

Λ∞
by Monte Carlo simulations. To achieve this goal, we perform simulations of Λ∞ thanks to formula

(6) by simulating Brownian excursions thanks to (3). In order to ensure that the error made on F−1
Λ∞

does
not propagate too much in our results, F−1

Λ∞
is estimated from one million simulations of Λ∞.

The theoretical investigations of Section 4 establish that our estimators are asymptotically unbiased. Nev-
ertheless, the problem is not as simple when working with finite trees. A clear illustration of this comes
from the numerical evaluations of the average Harris processes of finite trees. Indeed, the numerical study
of Figure 6 shows that the average Harris processes of small trees seem to be lower than the limiting Har-
ris process. Hence, the quantities λ̂[τ i] are expected to underestimate the target σ−1. But any estimator
based on the asymptotic behavior of conditioned Galton-Watson trees is expected to present such a bias. In
particular, we state in our numerical experiments that the estimator proposed in [4] presents the same bias.

[ Figure 6 approximately here ]
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The natural question arising from the preceding comments is: how is the bias of a conditioned Galton-Watson
tree related to its size and/or the unknown parameter σ ? The numerical study presented in Figure 7 shows
that the quantity η(n) = σ−1E[λ̂[τn]]−1, where τn ∼ GWn(µ), seems close to uncorrelated to σ at least when
σ is large enough. This allows us to construct a bias corrector which is independent of the unknown standard
deviation σ. In addition, the dependency on n may be modeled by the relation η(n) = 1 − (a

√
n + b)−1 .

The coefficients appearing in η may be estimated from simulated data,

η̂(n) = 1− (0.504273
√
n+ 0.9754839)−1

(see Figure 7 again). The correction is obviously expected to be better for large values of σ. Finally, we
construct the following corrected versions of the estimators λ̂ls[F ] and λ̂W [F ].

Corrected Least Squares Corrected Wasserstein

λ̂cls[F ] =
1

N

N∑
i=1

η̂(#τ i)λ̂
[
τ i
]

λ̂cW [F ] =
1

‖F−1
Λ∞
‖22

N∑
i=1

η̂
(

#τ (i)
)
λ̂
[
τ (i)
] ∫ i

N

i−1
N

F−1
Λ∞

(s)ds

[ Figure 7 approximately here ]

In light of the previous comments, computing the estimators proposed in this paper is not an easy task.
According to Remark 22, one needs to perform a significant number of simulations of Λ∞ in order to get
an accurate approximation of F−1

Λ∞
. Moreover, to be able to correct the aforementioned bias, one needs

to perform many simulations of finite trees. Together with this work, we propose a Matlab toolbox which
already includes these preliminary computations and allows to directly and quickly compute our estimators
for forests. This toolbox as well as its documentation and the scripts used in this paper are available at the
webpage: http://agh.gforge.inria.fr.

For improved comparison, we also compute the estimator λ̂un[F ] of σ−1 based on the work [4] (see Subsection
3.1) given by

λ̂un[F ] =
1

N

N∑
i=1

δ̂[τ i],

where δ̂[τ i] is defined (see equations (8) and (9)) from a node v randomly chosen in τ i by

δ̂[τ i] =

√
2h(v)√
π#τ i

.

The estimator λ̂un[F ] is expected to present the bias due to the approximation of Harris paths by their
expected limit. We correct it by the aforementioned method,

λ̂cun[F ] =
1

N

N∑
i=1

η̂(#τ i)δ̂[τ i].

In Figures 8, 9 and 10, estimators λ̂ls[F ], λ̂W [F ] and λ̂un[F ] are denoted by “LSE”, “Wasserstein” and
“Uniform node” (or “UN” in short), respectively.

The study of Figure 8 shows that for values of σ greater than 0.5, the bias correction works properly.
Moreover, it also shows that the approach developed in [4] presents the same kind of bias as ours. In the case
of small parameter σ, the bias correction is not as accurate. This was expected because the bias corrector
does not fit as well to the bias curve for small values of sigma as it does for greater values of σ.

[ Figure 8 approximately here ]
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Since we have an estimation procedure which seems to work, the natural further study is to see how the
quality of our estimators varies as the characteristics of the forest change. We begin by looking at the
variations when the sizes of the trees increase. A priori, the sizes of the trees in the considered forest should
not have influence on the variability of the estimators. Indeed, our estimation strategy is based on the
approximation of the Harris path of a finite tree by its limit. As a consequence, the size parameter only
governs the quality of this approximation. Whatever the sizes of the trees, the variability will be given by
the variance of the limit distribution Λ∞. As expected Figure 9 shows that the variability of the estimators
does not change as the sizes of the trees change when σ takes great values. Similarly, as shown in Figure 10,
for small values of σ, the sizes of the trees do not influence the dispersion of the estimator. However, Figure
10 also shows that the sizes of the trees have a positive influence on the bias of the estimators.

[ Figures 9 and 10 approximately here ]

Finally, Figure 11 shows the variation of the dispersion of the least square estimator as the size of the
forest changes. It appears to be consistent with the theoretical tolerance intervals given by the central limit
theorem. Similar results have been obtained from the Wasserstein method (see Figure 12).

[ Figures 11 and 12 approximately here ]

5.3 Missing or noisy data
We focus here on the application of our statistical methods in the framework of missing or noisy data. This
section is key for this paper because we exhibit difficult contexts in which Harris paths-based estimators
perform well while the empirical variance is biased or can not be computed.

5.3.1 Estimation with outliers

We assume that the forest F = (τ i)1≤i≤N is mainly composed of binary conditioned Galton-Watson trees
with the same variance σ2. However the forest also contains trees τ i that have not been generated from the
model and such that λ̂[τ i] is significantly lesser or greater than the true parameter σ−1. As a consequence, the
estimators λ̂ls[F ] and λ̂W [F ] should be disturbed by these outliers. In the following simulation experiments,
the forest contains 500 conditioned Galton-Watson trees and 50 outliers (addition of 10% outliers).

First, we consider the presence of outliers λ̂[τ i] ' 0.03 smaller than the expected parameter σ−1 = 2 and
we compare our estimation strategies (see Figure 13). One may observe that the Wasserstein method is
less sensitive to these outliers than the least square estimator. This may be explained by the small weights∫ i
N
i−1
N

F−1
Λ∞

(s)ds given to the smallest values of λ̂[τ (i)], that is to say, to the outliers, in formula (12) of λ̂W [F ].

For the same reason, the Wasserstein estimator is more sensitive to large outliers λ̂[τ i] ' 2.9 (see Figure 14)
than the least square strategy.

[ Figures 13 and 14 approximately here ]

The numerical results of Subsection 5.2 show that the two strategies developed in this paper perform in a
similar way on a dataset without outliers, which is clearly a benefit for the least square estimator λ̂ls[F ]

easier to compute than λ̂ls[F ] (see Remark 22). Nevertheless, if one suspects the presence of small (large,
respectively) outliers, these numerical experiments yield that the Wasserstein (least square, respectively)
estimator should be privileged. In addition, it seems that the two estimators behave differently only under
the presence of outliers. This observation could be used to detect suspicious data.
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5.3.2 Missing leaves

We assume that we observe a conditioned critical Galton-Watson tree τ through a noise hiding its leaves. It
means that, in the Harris path H[τ ], all the sections [i− 1, i+ 1] with

H[τ ](i− 1) = H[τ ](i+ 1) = H[τ ](i)− 1,

i.e., sections corresponding to leaves, are also hidden. We refer the reader to Figure 15 for an example
of conditioned Galton-Watson tree observed through this deleting noise. From a tree τ with n nodes, we
propose to estimate λ̂[τ ] from the partially observed Harris path as follows. Let us denote ζ ⊂ [0, 2n] the
union of the unobserved sections of the Harris path and η = ζ

2n ⊂ [0, 1]. Even if λ̂[τ ] is uncomputable, we
can approximate it by the solution λ̃[τ ] of the least square problem on ηc,

λ 7→
∥∥∥∥(H[τ ](2n·)√

n
− 2λE

)
1ηc

∥∥∥∥2

2

.

Mimicking the expression (5) of λ̂[τ ], λ̃[τ ] is given by

λ̃[τ ] =

∫
[0,1]∩ ηc H[τ ](2nt)Et dt

2
√
n
∫

[0,1]∩ ηc E
2
t dt

.

From a forest of conditioned Galton-Watson trees τ , we compute the values of λ̂[τ ] and λ̃[τ ] in order to
evaluate the influence of the noise on the quality of the estimation. We also compute the empirical variance
V [τ ] of the numbers of children appearing in τ from the complete tree and from its noisy version, σ−1 being
estimated by V [τ ]−1/2. Some numerical results are presented in Figure 16.

[ Figures 15 and 16 approximately here ]

First, we remark that the distributions of λ̂[τ ] and λ̃[τ ] are quite close, whereas the behavior of the empirical
variance is highly disturbed by the absence of zeros in the set of numbers of children. As a consequence,
statistical estimators computed from the Harris path seem to be more robust than empirical estimators of
the birth distribution, even when the Harris path is largely hidden (see the example of Figure 15).

5.3.3 Partial observation of the Harris path

Here we assume that the Harris path is partially observed in such a way that the underlying tree can not be
reconstructed. This kind of disturbance may appear in data transmission where unwanted electromagnetic
energy can degrade the quality of the signal. We consider two types of partial observation: (i) large sections
of the Harris path are hidden (see Figure 17) and (ii) the Harris path is observed through an additive
Gaussian noise (see Figure 18).

[ Figures 17 and 18 approximately here ]

Since the tree can not be deduced from these noisy observations, empirical estimators of the birth distribution
can not be computed, while statistical methods based on the Harris path are still feasible. The numerical
results of Figures 17 and 18 show that the distribution of λ̂[τ ] is only slightly disturbed by the noise proving
again the robustness of statistical estimators computed on Harris paths.

6 Real data analysis: history of Wikipedia webpages
The aim of this section is to show that the methodology developed in this paper can be used to analyze
the history of some real hierarchical data. More precisely, we focus on the evolution over time of a given
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webpage on the World Wide Web. HTML is the standard markup language for creating webpages. Documents
encoded in a markup language naturally presents a tree structure: the area delimited by opening and closing
tags represents a node of the tree; the children of this node are given by the tags directly found in this area
in the order they appear (see Figure 19 for an example of HTML document and the corresponding ordered
tree structure). It should be noted that the ordered tree representing an HTML document does not take into
account the text between tags but only the hierarchical structure.

[ Figure 19 approximately here ]

Nowadays, Wikipedia is probably the most famous free Internet encyclopedia. It allows its users to create
and edit almost any article. All past changes are listed in reverse-chronological order and are accessible
from the current version of the Wikipedia webpage. Consequently, each article forms a time series composed
of hundreds of revisions. The analysis of this chronological dataset is difficult because of the complex
structure of the data which has no representation in an Euclidean state space. We propose to apply the
strategy presented in this paper to investigate this question and obtain informations on the history of articles.
Wikipedia webpages do not look like conditioned Galton-Watson trees (see Figure 20 for a typical Wikipedia
webpage and its Harris path which should be compared with the conditioned Galton-Watson tree with a
comparable number of nodes of Figure 5) but they share the same structure with a typical layout that
consists in standardized HTML/CSS files on which articles are based. Thus webpages at hand might not be
differentiated by considering their shape but some scale parameter, as it is the case for conditioned Galton-
Watson trees. We claim that the quantity λ̂[τ ], where τ is the underlying tree of a given webpage, is a good
estimate of its relative scale and may be used to represent the revision history.

[ Figure 20 approximately here ]

We begin with the English version of the Wikipedia article Gravitational wave2. This article has been edited
2001 times by 810 Wikipedians since its creation on September 3rd 2001 (information acquired on August
11 2016). For each month since January 2005, we compute λ̂ls from the forest of the versions revised during
this month. If no revision has been found during this period, λ̂ls is equal to the estimate of the previous
month, and recursively. Figure 21 displays the evolution of λ̂ls over time. First, we remark two spikes (a),
negative in May 2007, and (b), positive in May 2016. Both these spikes correspond to massive vandalism of
the article on May 7 2007 (addition of 720 pointless sections with random text) and May 23 2016 (complete
deletion of the article) by malicious people. Indeed, if we do not consider these two vandalized webpages in
our estimation, we obtain the graph of Figure 22 (left) that has no spikes. In addition, we observe in Figure
22 (left) that the time series of λ̂ls has roughly two regimes (c) and (d). The first period (c) corresponds
to the “running in” required to find the adequate structure of the article. In this period, the webpage is
subject to major changes that are most often additions of new sections or paragraphs but may be deletions
of inappropriate content. When a good structure arises, the webpage is then slowly broadened during the
second regime (d). It should be remarked in Figure 22 (right) that two important modifications occur in the
period (d): (e) between July 2013 and April 2014 and (f) in February 2016. The (e) period is related to
major changes in the webpage (mainly addition of references and reorganization of some sections) especially
following advances in this field. The second event (f) corresponds to extensive adding following the announce
of the first observation of gravitational waves using the Advance LIGO detectors.

[ Figures 21 and 22 approximately here ]

We perform the same methodology on the history of the Wikipedia article Chocolate3 (see Figure 23). This
article has been edited 6332 times by 3105 Wikipedians since its creation on November 13 2001 (information
acquired on August 11 2016). All the spikes observed on the graph of Figure 23 correspond to acts of
vandalism (deletion of substantial content). For the sake of example, we highlight two major events (a)

2Wikipedia article Gravitational wave: https://en.wikipedia.org/wiki/Gravitational_wave
3Wikipedia article Chocolate: https://en.wikipedia.org/wiki/Chocolate
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(in May 2008) and (b) (in June 2010) occuring during the “running in” period (c): (a) corresponds to
important additions in the article (sections Etymology, Holydays and Manufacturers have been added),
while (b) is related to the creation of the parallel article Health effects of chocolate leading to deletion of the
corresponding sections in the main article.

[ Figure 23 approximately here ]

For both examples, we empirically observe that, when λ̂ls decreases, some content has been added to the
webpage, and conversely, when λ̂ls increases, some parts of the article have been removed. Our analysis shows
that, starting from their creation, these Wikipedia articles are broadened over time after a long “running
in” period used to unconsciously find the adequate structure. One may also detect vandalism on Wikipedia
articles by identifying spikes a posteriori. Vandalism is usually removed by dedicated individuals who patrol
Wikipedia webpages, but this is an onerous task with a rate of 10 edits per second4 and around 7% of edits
have been estimated to be vandalism [29]. Vandalism detection is often based on a combination of various
indicating features [1, 25]. Our algorithm might be used as a new feature for identifying acts of vandalism
on the structure of the article.
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Figures obtained from simulated data
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Figure 5: A Galton-Watson tree conditional on having 1000 nodes generated from the geometric birth
distribution with variance σ2 = 2 (top) and its Harris path (bottom).
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Figure 6: Estimated mean Harris processes of binary conditioned Galton-Watson trees with size n and
σ = 0.7 calculated from 2000 trees for each value of n.
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Figure 7: Estimation of the quantity η(n) = σ−1E[λ̂[τn]]−1, where τn ∼ GWn(µ), for different values of σ
and different numbers of nodes n, together with the fitted bias corrector function η̂. Estimations have been
made by Monte Carlo method with samples of 2000 trees for each couple (n, σ).
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Figure 8: Estimation and bias correction for forests of 10 trees with 20 nodes for σ equals to 0.3 (top, left)
0.5 (top, right), 0.7 (bottom, left) and 0.9 (bottom right). Boxplots have been drawn from 100 replicates
each.
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Figure 9: Influence of the size of the trees for σ equals to 0.9: tree sizes varying from 20 nodes (left), 50
nodes (center), to 100 nodes (right). Forests of 50 trees. Boxplots have been drawn from 100 replicates each.
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Figure 10: Influence of the size of the trees for σ equals to 0.3: tree sizes varying from 20 nodes (left), 50
nodes (center), to 100 nodes (right). Forests of 50 trees. Boxplots have been drawn from 100 replicates each.
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Figure 11: Least square estimation of σ−1 for different sizes of forests (σ = 0.5 with trees of size 20). Boxplots
have been drawn from 100 replicates each.
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Figure 12: Wasserstein estimation of σ−1 for different sizes of forests (σ = 0.5 with trees of size 20). Boxplots
have been drawn from 100 replicates each.
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Figure 13: Boxplots of λ̂ls[F ] and λ̂W [F ] from forests containing (right) or not (left) small outliers impacting
the quality of the estimation.
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Figure 14: Boxplots of λ̂ls[F ] and λ̂W [F ] from forests containing (right) or not (left) large outliers impacting
the quality of the estimation.
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Figure 15: The conditioned Galton-Watson tree of Figure 5 (top) and its Harris path (bottom) are partially
observed: leaves (in white) are missing.
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Figure 16: Least square and empirical estimators of σ−1 from complete trees and trees with missing leaves.
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Figure 17: The Harris path of the conditioned Galton-Watson tree of Figure 5 observed only on the intervals
[0, 500] and [1000, 1500] (left) and boxplots of λ̂[τ ] from complete and partially observed Harris paths (right).
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Figure 18: The Harris path of the conditioned Galton-Watson tree of Figure 5 observed through a Gaussian
noise with standard deviation 5 (left) and boxplots of λ̂[τ ] from complete and partially observed Harris paths
(right).
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Figures obtained from real data
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<html>
<body>

<h1>
Lorem ipsum dolor sit amet, consectetur adipiscing elit.

</h1>
<p>

Sed non risus.
</p>
<ul>

<li>
Suspendisse lectus tortor, dignissim sit amet,
adipiscing nec, ultricies sed, dolor.

</li>
<li>

Cras elementum ultrices diam.
<ol>

<li>
Maecenas ligula massa, varius a,
semper congue, euismod non, mi.

</li>
<li>

Proin porttitor, orci nec nonummy
molestie, enim est eleifend mi,
non fermentum diam nisl sit amet erat.

</li>
</ol>

</li>
<li>

Duis semper. Duis arcu massa, scelerisque vitae,
consequat in, pretium a, enim.

</li>
</ul>
<p>

Pellentesque congue. Ut in risus volutpat libero
pharetra tempor.

</p>
</body>

</html>

Figure 19: Underlying ordered tree structure (right) present in an HTML document (left). Each level in the
tree is colored in the same way as the corresponding tags in the document. Natural order from top to bottom
in the HTML document corresponds to left-to-right order in the tree.
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Figure 20: Underlying tree of the main page of Wikipedia accessed on April 12 2017 with 906 nodes (top)
and its Harris path (bottom).
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Figure 21: History of λ̂ls between January 2005 and June 2016 for the Wikipedia article Gravitational wave.
Events (a) and (b) are related to vandalism.
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Figure 22: History of λ̂ls for the Wikipedia article Gravitational wave without taking into account the two
vandalism pages related to (a) and (b) between 2005 and 2016 (left) and 2010 and 2016 (right).
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Figure 23: History of λ̂ls between January 2005 and June 2016 for the Wikipedia article Chocolate. All
spikes are related to vandalism.
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