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A Closed-Form Solution of Rotation Invariant
Spherical Harmonic Features in Diffusion MRI

Mauro Zucchelli, Samuel Deslauriers-Gauthier, and Rachid Deriche

Athena Project-Team, Inria Sophia Antipolis - Méditerranée, France

Abstract. Rotation invariant features are an indispensable tool for char-
acterizing diffusion Magnetic Resonance Imaging (MRI) and in particu-
lar for brain tissue microstructure estimation. In this work, we propose
a new mathematical framework for efficiently calculating a complete set
of such invariants from any spherical function. Specifically, our method
is based on the spherical harmonics series expansion of a given func-
tion of any order and can be applied directly to the resulting coefficients
by performing a simple integral operation analytically. This enable us
to derive a general closed-form equation for the invariants. We test our
invariants on the diffusion MRI fiber orientation distribution function
obtained from the diffusion signal both in-vivo and in synthetic data.
Results show how it is possible to use these invariants for characterizing
the white matter using a small but complete set of features.

Keywords: Diffusion MRI , Rotation Invariant , Gaunt Coefficients , Spherical
Harmonics

1 Introduction

Brain tissue microstructure influences the diffusion Magnetic Resonance Imaging
(MRI) signal in-vivo in multiple ways. Tissue microstructure in gray and white
matter can be subdivided into two main categories: tissue composition and tissue
orientation. Tissue composition corresponds to the heterogeneity of the neurites
in the voxel, namely the presence and relative fraction of a certain neurite pop-
ulation in the voxel. Axonal diameter and intra-axonal signal fraction are two of
the most studied tissue composition microstructural features in diffusion MRI.
Tissue orientation, on the other hand, corresponds to the geometrical arrange-
ment of the neurites in a given voxel. White matter axonal bundles (also known
as “fiber bundles”), because of their high anisotropy, represent the key factor
which influences the diffusion MRI signal via tissue orientation. It is common
practice in diffusion MRI to model the tissue orientation information in each
voxel using the so-called fiber Orientation Distribution Function (fODF) [18].
The fODF represents the probability distribution function of the fibers, namely
the probability of having a fiber oriented in a given direction. Such a distribution
is commonly obtained from the diffusion signal by deconvolving it with a single
fiber response which, in theory, should correspond to the tissue composition in



the same location [3][18][21]. In diffusion MRI, fODF is modeled using its real
symmetric Spherical Harmonics (SH) series expansion, and therefore, each fODF
is completely characterized by its SH coefficients. Being a well defined numerical
quantity, the idea of using the SH coefficients directly as a biomarker for tissue
orientation is appealing but it suffers from the fact that even a small rotation
of the same fODF will produce a different set of coefficients, which makes their
use unsuitable for classification and clustering tasks. An intuitive solution to
this problem is to use the SH coefficients to calculate Rotation Invariant Fea-
tures (RIF) which, as the name implies, have values which are independent of
the direction of the fODF. The first and most well-known fODF RIF which
has been developed for diffusion MRI is the Generalized Fractional Anisotropy
(GFA) [19]. GFA represents the fODF evolution of the diffusion tensor-derived
Fractional Anisotropy (FA) with the advantage of being able to better repre-
sent crossing fibers. However, reducing the rich directional information present
in the fODF into a single numerical value severely limits its descriptive power.
Bloy and Verma [1] proposed to use the power spectrum of the SH coefficients
to register diffusion MR images. The power spectrum provides a richer descrip-
tion with respect to GFA but is still incomplete with respect to the theoretical
number of independent invariants obtainable. Ghosh et al. [6] [13] proposed a
method for recovering all 12 invariants obtainable from a 4th order tensor while
Caruyer and Verma [2] derived a framework for obtaining all the algebraically
independent invariants for any given order of SH. Such a framework initially
derives all the polynomials invariant to a rotation of 1 degree with respect to
the x and z axes, which are proven to be invariant to any additional rotation.
After collecting all the possible invariants, a pruning algorithm is applied to the
polynomials to reduce them to the minimal set of algebraically independent in-
variants. The main limitations of this technique is that the invariants cannot be
expressed in closed-form and that it produces a huge number of polynomials to
be tested for independence (more than 30,000 for a SH order of 6).

The goal of this work is to propose a new framework for generating a set of
invariants in closed-form (Section 2) with an elegant mathematical framework.
Our solution is able to produce fewer polynomials to be tested for independence
compared to previous published related work. In Section 3 we will present the
synthetic and in-vivo fODF data which we will use to test our RIF. Results show
the potential for these invariants to disambiguate complex fiber geometries using
only a small set of invariants (Section 4).

2 Theory

2.1 A new set of invariants for SH

Given a spherical function f(u) defined on the three dimensional unit vector u
we can represent it as a linear combination of SH as

f(u) =

∞∑
l=0

l∑
m=−l

clmY
m
l (u) (1)



where Y ml are the real SH functions [4][7], and clm ∈ R are the SH coefficients.
The coefficients clm are calculated as the inner product f and Y ml

clm =

∫
S2

f(u)Y ml (u)du. (2)

A rotation R applied to the SH functions can be written as

RY ml (u) = Y ml (R−1u) =

l∑
m′=−l

Dl
m′,m(R)Y m

′

l (u) (3)

with Dl
m′,m(R) defined as

Dl
m′,m(R) = e−im

′αdlm′,m(β)e−imγ (4)

where α, β, and γ are the Euler angles and dm′,m is the Wigner d function.
Therefore, we can define h(u) = Rf(u) the function f rotated by R and whose
SH expansion is given by

h(u) = Rf(u) =

∞∑
l=0

l∑
m=−l

clmY
m
l (R−1u)

=

∞∑
l=0

l∑
m′=−l

glm′Y m
′

l (u).

(5)

The rotated SH coefficients for a given l are given by

glm′ =

l∑
m=−l

clmD
l
m′,m(R). (6)

A RIF of a Spherical Function f can be expressed as a function I for which

I[f(u)] = I[Rf(u)], ∀R (7)

If f is expressed in terms of its SH expansion, we have that

I[c] = I[g] (8)

where c and g are the SH coefficients of f(u) and h(u), respectively. It is straight-
forward to see that the integral of f(u) represents a RIF, in fact:

I[f ] =

∫
S2

f(u)du =

∫
S2

f(R−1u)du (9)

this equivalence follows the natural law that the area of a function does not
change while rotating the function. In particular in this case I[f ] =

∫
S2 f(u)du =

c00
√

4π, and therefore, normalizing by the constant factor
√

4π, the polynomial



P (c) = c00 represents a first RIF for f . Similarly, we can prove that if we raise
the function f to the power d, the integral of such a function is still a RIF. In
fact

Id[f ] =

∫
S2

[f(u)]
d
du =

∫
S2

[
f(R−1u)

]d
du (10)

Although it is an interesting RIF, Id[f ] represents only a partial representation
of f . In order to overcome this limitation we can define a new set of RIF from
Id[f ]. In particular, we observe that we can write Id[f ] as

Id[f ] =

∞∑
l1=0

· · ·
∞∑
ld=0

∫
S2

d∏
i=1

[
li∑

mi=−li

climi
Y mi

li
(u)

]
du

=

∞∑
l1=0

· · ·
∞∑
ld=0

∫
S2

l1∑
m1=−l1

· · ·
ld∑

md=−ld

cl1m1 · · · cldmd
Y m1

l1
(u) · · ·Y md

ld
(u)du

=

∞∑
l1=0

· · ·
∞∑
ld=0

l1∑
m1=−l1

· · ·
ld∑

md=−ld

cl1m1
· · · cldmd

∫
S2

Y m1

l1
(u) · · ·Y md

ld
(u)du

=

∞∑
l1=0

· · ·
∞∑
ld=0

Idl1...ld [f ] =
∑
l

Idl [f ]

(11)

with l = [l1 . . . ld]. I
d
l [f ] can be evaluated as

Idl1...ld [f ] =

l1∑
m1=−l1

· · ·
ld∑

md=−ld

cl1m1
· · · cldmd

G(l1,m1| · · · |ld,md) (12)

where G(l1,m1| · · · |ld,md) represents the generalized Gaunt coefficient calcu-
lated as the integral of the product of d SH of the same argument [7]. We can
also view Idl as a polynomial of degree d of the SH coefficients clm.

Appendix A provides a proof that Equation (12) generates rotation invariant
features of the spherical function f(u) given the set of SH indices l. The function
Idl shares some of the properties of the Gaunt coefficients, in particular it is zero
for most combination of l and it is invariant to the permutations of the indices.
In this work, we will refer to the set of all the non-zero invariants of maximal
SH order lmax and degree d as Idlmax

.

2.2 Example 1: degree 2 invariant-polynomials

In the case of polynomials of degree d = 2 and considering a maximal SH order
lmax = 2, Idl corresponds to

I2l1,l2 [f ] =

l1∑
m1=−l1

l2∑
m2=−l2

cl1m1
cl2m2

G(l1,m1|l2,m2) (13)



d = 1 d = 2 d = 3 d = 4 d = 5

lmax = 2 1 (1) 2 (2) 3 (3*) 4 (3*) 5 (3*)
lmax = 4 1 (1) 5 (3) 7 (7) 12 (11) 18 (12*)
lmax = 6 1 (1) 7 (4) 13 (13) 28 (25*) 49 (25*)

Table 1. Number of RIF for symmetric (even) SH basis given the maximum value of l
and the degree. In bold we report the number of algebraically independent invariants,
with an asterisk if the number corresponds to the maximum theoretical number of
invariants.

with l = [(0, 0), (0, 1), · · · (2, 2)] considering only the sorted couple in ascending
order of (l1, l2) because of the symmetry property of the Gaunt coefficients.

G(l1,m1|l2,m2) represents the integral of two SH which is equal to δl2,m2

l1,m1
. This

means that the invariant will be non-zero only when l1 = l2 and m1 = m2. We
can thus rewrite the degree two invariants as

I2l [f ] =

l∑
m=−l

[cl,m]
2

(14)

which corresponds to the power spectrum of the SH basis. The power spectrum is
one of the most widely used invariants in pattern recognition application and has
been recently introduced in diffusion MRI for tissue microstructure estimation
[12].

2.3 Example 2: degree 3 invariant-polynomials

The invariants of degree 3 can be calculated as

I3l1,l2,l3 [f ] =

l1∑
m1=−l1

l2∑
m2=−l2

l3∑
m3=−l3

cl1m1cl2m2cl3m3G(l1,m1|l2,m2|l3,m3) (15)

It is possible to show that I3l1,l2,l3 [f ] are actually equivalent to the bispectrum
invariants proposed in [10], [9], and [11] (results not shown due to space limi-
tation). The main difference with respect to the bispectrum is that in this case
we have the Gaunt coefficients obtained from the integral of three SH instead of
the Clebsch-Gordan coefficients.

It is possible to show that both I2l1,l2 and I3l1,l2 are not only invariants but
they also form a set of algebraically independent invariants. The next subsection
will provide the formal definition of algebraically independence and how to apply
it in order to verify the independence of any set of Idlmax

.

2.4 Algebraically independence

Definition 1. A set of m polynomials P1, . . . , Pm ∈ R[X1, . . . , Xn] are called
algebraically independent over the field R if



d = 1 d = 2 d = 3 d = 4

lmax = 2 1 (1) 3 (3) 5 (5) 8 (6*)
lmax = 3 1 (1) 4 (4) 8 (8) 17 (13*)
lmax = 4 1 (1) 5 (5) 14 (14) 33 (22*)
lmax = 5 1 (1) 6 (6) 20 (20) 57 (33*)
lmax = 6 1 (1) 7 (7) 30 (30) 94 (46*)

Table 2. Number of RIF given the maximum value of l and the degree. In bold
we report the number of algebraically independent invariants, with an asterisk if the
number corresponds to the maximum theoretical number of invariants.

∀Q ∈ R[Y1, . . . , Ym], Q(P1, . . . , Pm) = 0 ⇐⇒ Q = 0

Example Given P1 = 2x2 − 4xy + 2y2 and P2 = x − y, the set [P1, P2] is
not algebraically independent. In fact, considering Q = 2P 2

2 − P1 it leads to:
2(x− y)2 − (2x2 − 4xy + 2y2) = 0.

An efficient way for verifying whether the invariants Idlmax
are algebraically in-

dependent is the Jacobian theorem proposed by [5]:

Theorem 1 The polynomials P1, . . . , Pm ∈ R[X1, . . . , Xn] with m ≤ n are al-
gebraically independent iff the Jacobian matrix (∂Pi/∂Xj)1≤i≤m,1≤j≤n has full
rank.

In our case, the Jacobian matrix corresponds to the partial derivatives of our
invariants Idl with respect to the SH coefficients clm. The testing for full-rankness
is performed taking advantage of the Schwartz-Zippel polynomial identity testing
lemma [16][20] which states that given a random vector of coefficients c, the
Jacobian rank corresponds to the rank of (∂Pi/∂Xj)X=c with a probability that
is proportional to the probability of extracting c randomly. In this work, we
consider 100 random instances of clm in order to assess the independence of Idl
with sufficient accuracy.

This approach has already been used for the same purpose by [2], where the
authors also theorized that the maximal number of independent coefficients is
equal to the maximal number of SH coefficients used, nc, minus three, the degrees
of freedom of the rotation. Table 1 show the number of invariants calculated for
the symmetric SH basis [4]. In bold we highlight the number of algebraically
independent invariants and we also add an asterisk if this number corresponds
to nc − 3. For the complete SH basis we observed that using d = 4 we are able
to obtain all the invariants up to lmax = 6, while for the symmetric SH basis
our technique require d = 5 in order to obtain the 12th invariant for lmax = 4.
Caruyer and Verma [2] were able to obtain all 12 invariants for lmax = 4 at
d = 4 using a different technique, and we are also able to obtain the complete
set of invariants at d = 4 if we include also the odd terms of the basis (see Table
2). It is possible that with our technique the 12th invariant can be expressed as
a combination of two mixed even-odd invariants and appears as a function of
purely even coefficients only at d = 5.



Note that with our technique all the invariants at a certain degree include
also all the invariants of lower degree (i.e. I22,2 represents the same invariant
as I40,0,2,2). Therefore, in order to calculate all the algebraically independent
invariants it is sufficient to consider only the degree d that provides the maximal
number of invariants, without having to compute all the invariants at lower
degree. For example, taking Table 1 first row, we can observe that we have two
invariants at d = 2 of which one is a new invariant and the other is the same
invariant that appears at d = 1. In practice, in order to obtain the number of
new invariants appearing only at degree d we have to subtract the numbers of
invariants of degree d− 1.

3 Materials and methods

Synthetic fODF dataset: We created a synthetic fODF dataset consisting of
crossings of two delta functions on the sphere.
We can obtain the SH coefficients of two delta functions with equal volume
fraction centered around v1 and v2, respectively, as

ccrossingl,m =
1

2
Y ml (v1) +

1

2
Y ml (v2) (16)

In this dataset, we will use the cosine of the crossing angle, v1 · v2, as the
reference value for the invariants. Since the maximum absolute value of our
RIF is obtained when the considered fODF is a delta function (OD = 0 or
v1 · v2 = ±1) we can use this value as a normalization factor for our invariants.
In this work we will call the normalized fODF invariants Îdl [ρ] to distinguish
them from the unnormalized version.

Human Connectome Project (HCP) dataset: In order to test our RIF in-vivo
we considered one subject of the HCP diffusion MRI dataset [17]. The HCP
acquisition scheme presents 18 b-value 0 s/mm2 volumes, and 90 volumes at b-
value 1000, 2000, and 3000 s/mm2, respectively. All the three shell were acquired
using an unique gradient direction. HCP pulse separation time was set at ∆ =
43.1ms and pulse width at δ = 10.6ms. Each MRI volume consists of 145×174×
145 voxels with a resolution of 1.25× 1.25× 1.25 mm3.

4 Results

Figure 1 shows the proposed algebraically independent RIF given a maximum
SH order lmax = 4 for the synthetic fODF dataset, before (left) and after (right)
the normalization by the maximum theoretical value. This dataset was generated
by taking 1000 fODF directions v1 and v2 randomly, and the relative invariants
was ordered according to the value of v1 · v2. Because of the randomness of
the orientation of the crossings, the smoothness of the curves itself can be view
as an empirical proof of the rotation invariance property of our RIF. In fact,
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Fig. 1. Unnormalized (left) and normalized (right) visual representation of the 12 alge-
braically independent invariants for lmax = 4 with respect to different crossing angles.

0o 30o 60o 90o

l = (0) 1.00/0.000 1.00/0.000 1.00/0.000 1.00/0.000
l = (2, 2) 0.89/0.012 0.75/0.012 0.39/0.009 0.23/0.007
l = (4, 4) 0.67/0.021 0.38/0.014 0.23/0.012 0.46/0.016
l = (2, 2, 2) 0.85/0.017 0.64/0.016 0.13/0.008 -0.11/0.005
l = (2, 2, 4) 0.73/0.017 0.45/0.012 0.09/0.006 0.07/0.003
l = (2, 4, 4) 0.63/0.021 0.30/0.012 0.04/0.004 0.21/0.010
l = (4, 4, 4) 0.54/0.026 0.19/0.012 0.02/0.009 0.28/0.018
l = (2, 2, 2, 4) 0.69/0.019 0.38/0.013 -0.02/0.003 -0.03/0.002
l = (2, 2, 4, 4) 0.60/0.022 0.28/0.012 0.05/0.004 0.06/0.003
l = (2, 4, 4, 4) 0.51/0.025 0.17/0.010 -0.00/0.002 0.06/0.003
l = (4, 4, 4, 4) 0.45/0.028 0.15/0.011 0.05/0.005 0.21/0.014
l = (2, 2, 2, 2, 4) 0.66/0.022 0.34/0.014 0.03/0.003 0.02/0.001

Table 3. Mean and standard deviation of the 12 algebraically independent invariants
for lmax = 4 with respect to different crossing angles.

two adjacent points in the graph had been generated by crossings oriented, up
to a rotation, in two completely different directions. If any of the Idl was not
invariant its curve would have appear as a broken line in the graph. We also
test the robustness of the invariants with respect to noise. We simulate diffusion
signal arising from crossing fibers at 0, 30, 60, and 90 degrees. We add Rician
noise with a signal to noise ratio equal to 30, generating 100 noise realization
per crossing angle. The fODF have been calculated using constrained spherical
deconvolution algorithm with SH order equal to 4. Table 3 reports the mean and
standard deviation of the twelve algebraically independent invariants. In general,
our invariants result to be stable with values of standard deviation fifteen times
lower than the mean in the worst case. Invariants including higher harmonics
terms seem to present higher standard deviation (e.g l = (2, 2) is more stable
than l = (4, 4)). This is probably due to the fact that higher harmonics tend to
model signal noise more with respect to the lower ones that are too smooth to
capture rapid signal changes.



In order to test the invariants in-vivo we consider one subject of the HCP
dataset. The main advantage of this dataset is the high spatial resolution which
enables us to observe the fine changes of our RIF in the white matter. From
the diffusion signal, a voxel-dependent response function was obtained using
the multi-compartment model presented in [8]. Each response function has been
used for calculating the fODF with constrained spherical deconvolution (lmax =
4) as in [21]. Figure 2 shows the 12 algebraically independent invariants after
normalization for a coronal slice of the HCP subject. As for the synthetic data,
the first invariant l = (0) is constant because the first SH coefficient c00 is always
1/
√

4π in order to have the integral of the fODF equal to 1 [12]. The average
values of the invariants generally decrease with the increase of each li and with
the degree of the polynomials. For example, l = (2, 2) has an average of 0.12
while l = (2, 2, 2, 2, 4) has an average of only 0.0009 in white matter. Conversely,
the contrast between white matter and gray matter generally increases with the
degree. A similar trend can be observed in the contrast between single bundles
and crossings in white matter. Some of our RIF present negative values in certain
areas of the brain, in particular in fiber crossing regions. In our simulations
we observed that negative values for certain invariants are associated with a
characteristic crossing angle (e.g 90 degrees crossing for l = (2, 2, 2)). However,
our synthetic data is formed only of 2-fiber crossings, whereas crossings of three
or even more fibers are common in the human brain. Therefore, a direct mapping
of the value of the RIF to the fiber geometry is not trivial and will require more
advanced mathematical tools.

5 Discussion and Conclusion

In this work, we proposed a new framework for generating algebraically indepen-
dent rotation invariant features for the diffusion MRI signal. One of the main
results of our technique is that, conversely with respect to other works, we were
able to provide a general closed-form for our invariants. The core mathematical
tool of our formulation are the Gaunt coefficients originating from the integral of
multiple SH. Gaunt coefficients also appear in the invariants for diffusion MRI
proposed in [15], although using a completely different approach and without
testing the resulting invariants for completeness or independence.

Rotation invariant features are not only a subject of interest in diffusion MRI
but also in several other fields including computer vision and pattern recognition
[9][10]. We believe that our framework will be advantageous for non-diffusion
applications given the simplicity of the mathematical formulation of our RIF.
Our mathematical formulation makes them very fast to compute even for large
SH order compared to other techniques.

Recent works [12][14] show the importance of rotation invariant features such
as the power spectrum for estimating tissue microstructural properties. We will
focus our future works in trying to establish whether including the complete set
of invariants will result in a more precise estimation of brain microstructure.



l = (0) l = (2, 2) l = (4, 4) l = (2, 2, 2)

0.0 0.2 0.5 0.8 1.0 0.00 0.09 0.18 0.27 0.36 0.00 0.04 0.09 0.13 0.17 -0.052 0.000 0.053 0.105 0.158

l = (2, 2, 4) l = (2, 4, 4) l = (4, 4, 4) l = (2, 2, 2, 4)

-0.001 0.027 0.055 0.083 0.111 -0.010 0.010 0.029 0.049 0.069 -0.002 0.012 0.027 0.042 0.056 -0.0087 0.0060 0.0207 0.0353 0.0500

l = (2, 2, 4, 4) l = (2, 4, 4, 4) l = (4, 4, 4, 4) l = (2, 2, 2, 2, 4)

0.0000 0.0106 0.0212 0.0318 0.0424 -0.0025 0.0047 0.0118 0.0190 0.0261 0.0000 0.0072 0.0145 0.0217 0.0290 -0.00004 0.00819 0.01642 0.02466 0.03289

Fig. 2. All the 12 algebraically independent invariants calculated on the fODF of a
coronal slice of one of the HCP subjects.
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A Relation between signal SH coefficients and fODF SH
coefficients

Idl [f ] is rotation invariant iff Idl [f ] = Idl [Rf ] = Idl [h]. Given the rotated SH
expansion h(u) we can calculate Idl [h] as

Idl1...ld [h] =

∫
S2

d∏
i=1

 li∑
m′

i=−li

glim′
i
Y
m′

i

li
(u)

 du
=

∫
S2

d∏
i=1

 li∑
m′

i=−li

li∑
mi=−li

climi
Dli
m′

i,mi
(R)Y

m′
i

li
(u)

 du
=

∫
S2

d∏
i=1

 li∑
mi=−li

climi

li∑
m′

i=−li

Dli
m′

i,mi
(R)Y

m′
i

li
(u)

 du
=

∫
S2

d∏
i=1

[
li∑

mi=−li

climiY
m
l (R−1u)

]
du

=

∫
S2

l1∑
m1=−l1

· · ·
ld∑

md=−ld

cl1m1
· · · cldmd

Y m1

l1
(R−1u) · · ·Y md

ld
(R−1u)du

=

l1∑
m1=−l1

· · ·
ld∑

md=−ld

cl1m1
· · · cldmd

∫
S2

Y m1

l1
(R−1u) · · ·Y md

ld
(R−1u)du

=

l1∑
m1=−l1

· · ·
ld∑

md=−ld

cl1m1
· · · cldmd

G(l1,m1| · · · |ld,md)

= Idl1...ld [f ]

(17)

which proves the invariance property Idl [f ] = Idl [Rf ].
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