
HAL Id: hal-01913339
https://hal.inria.fr/hal-01913339

Preprint submitted on 6 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An instance optimality property for approximation
problems with multiple approximation subspaces

Cedric Herzet, Mamadou Diallo, Patrick Héas

To cite this version:
Cedric Herzet, Mamadou Diallo, Patrick Héas. An instance optimality property for approximation
problems with multiple approximation subspaces. 2018. �hal-01913339�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162982362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01913339
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

An instance optimality property for approximation
problems with multiple approximation subspaces

C. Herzet1,2 · M. Diallo1 · P. Héas1

Received: date / Accepted: date

Abstract Model-order reduction methods tackle the following general ap-
proximation problem: find an “easily-computable” but accurate approximation
ĥ of some target solution h?. In order to achieve this goal, standard method-
ologies combine two main ingredients: i) a set of problem-specific constraints;
ii) some “simple” prior model on the set of target solutions. The most common
prior model encountered in the literature assume that the target solution h?

is “close” to some low-dimensional subspace. Recently, triggered by the work
by Binev et al. [5], several contributions have shown that refined prior models
(based on a set of embedded approximation subspaces) may lead to enhanced
approximation performance. Unfortunately, to date, no theoretical results have
been derived to support the good empirical performance observed in these con-
tributions. The goal of this work is to fill this gap. More specifically, we provide
a mathematical characterization of the approximation performance achievable
by some particular “multi-space” decoder and emphasize that, in some specific
setups, this “multi-space” decoder has provably better recovery guarantees
than its standard counterpart based on a single approximation subspace.
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1 Introduction

Many approximation methods encountered in the domain of model-order re-
duction are based on the following abstract problem:

∀h? ∈M, find a “proper” ĥ ∈Mprior ∩ Ph? (1)

whereM is a set of target solutions,Mprior corresponds to some prior knowl-
edge aboutM, and Ph? is a set of elements satisfying some problem-specific
linear constraints:

Ph? =
{
h :
〈
h′,h

〉
=
〈
h′,h?

〉
∀h′ ∈Wm

}
(2)

whereWm is somem-dimensional linear subspace of the ambient Hilbert space
H.1 For example, “projection-based” reduction of linear parametrized partial
differential equations (PPDE) [11], some approximation methods for non-
linear operators (e.g., EIM [3], DEIM [6], Gappy POD [7]) or data-assimilation
schemes with reduced-order models [5] can be recast as particular instances
of (1).

In these problems, the choice ofMprior and Ph? plays a crucial role since
it determines the trade-off between accuracy and complexity achievable by the
approximation method. A standard option consists of choosingMprior as:

Mprior = {h : dist(h, Vn) ≤ ε̂n} (3)

where Vn is a n-dimensional subspace, dist(h, Vn) , minh′∈Vn

∥∥h− h′
∥∥ and

ε̂n ≥ 0. A variety of methods have been proposed in the literature to se-
lect “good” subspaces Wm and Vn, see e.g., [4, 11]. These methodologies are
grounded on the following “instance optimality property” (or some variation
thereof) which is valid for most of the decoders (1) exploiting constraints of
the form (2)-(3):

∥∥∥ĥ− h?
∥∥∥ ≤ C(Wm, Vn) dist(h

?, Vn) (4)

where C(Wm, Vn) is some constant depending on Wm and Vn.
Recently, triggered by the work by Binev et al. [5], more refined definitions

of Mprior have been considered in [1, 8–10]. In these works, Mprior is built
from a sequence of embedded approximation subspaces, that is

Mprior = ∩nk=0{h : dist(h, Vk) ≤ ε̂k} (5)

where ε̂k ≥ 0, dim(Vk) = k and

V0 ⊂ V1 ⊂ . . . ⊂ Vn. (6)

In [5], the authors select the subspaces {Vk}nk=0 and widths {ε̂k}nk=0 so that
M⊆Mprior, and propose an iterative procedure to identify a point ofMprior∩

1 We assume that all the quantities defined above belong to a Hilbert space H with inner
product 〈·, ·〉 and induced norm ‖·‖.
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Ph? . The authors also derive an “instance optimal property” bounding the
approximation error as a function of the distance between h? and the subspaces
{Vk}nk=0. From a practical point of view, the algorithm proposed in [5] has a
complexity scaling as O((m+ n)2) (per iteration) but requires the knowledge
of some orthonormal bases of Wm and Wm ⊕ Vn. When the subspace Wm is
fixed, the identification of these bases can be done once for all in advance,
with no impact on the online complexity of the procedure. In the more general
case where the definition of Wm may vary with h? ∈ M (as it may occur in
the case of model-order reduction of PPDE’s), the identification of these bases
may however become computationally too expensive.

In order to circumvent this problem, a slightly different definition ofMprior

have been considered in several recent works, see [1, 8–10]. In these contribu-
tions, the authors relax the constraint “ĥ ∈ Ph? ” but impose the approxima-
tion ĥ to belong to the n-dimensional subspace Vn.2 As pointed out in [9,10],
imposing “ĥ ∈ Vn” allows to implement approximation algorithms whose com-
plexity scales as O((m+n)2) per iteration without requiring the evaluation of
orthonormal bases depending on Wm. This approach thus allows for slightly
more computational flexibility than the procedure proposed in [5]. As shown
in these works, this particular definition for Mprior leads to great improve-
ments of the approximation performance (as compared to that induced by the
standard prior (3)) in both the fields of model-order reduction of PPDEs and
the approximation of non-linear operators.

In this paper, we focus on the approximation procedure considered in
[1, 8–10]. Although numerical assessments have shown the relevance of this
approach, to date, no theoretical guarantees have been made available to sup-
port these empirical evidences. The goal of this work is to fill this gap. We
derive an instance optimal property relating the approximation performance of
the decoder considered in [1,8–10] to the distances between the target solution
h? and the approximation subspaces {Vk}nk=0. We show on several examples
that, for particular choices of subspaces {Vk}nk=0 and Wm, this enhanced prior
can lead to much better approximation guarantees than its standard counter-
part (3).

The paper is organized as follows. In Section 2, we recall the standard
methodologies encountered in the literature whenMprior is defined as in (3). In
Section 3, we give a precise definition of the “multi-space” decoder considered in
[1,8–10] and state an optimal instance property characterizing its performance.
We particularize our result to two different setups and show that the “multi-
space” decoder has more favorable guarantees of performance than the “single-
space” approach (3) in these cases. The proof of our main result is finally
detailled in Section 4.

2 We give a precise formulation of the approximation problem considered in [1, 8–10] in
Section 3 of this paper.
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2 The Single-space Approximation

In this section, we consider a particular concrete example of the abstract prob-
lem stated in (1) whenMprior is defined as in (3). Since this prior model only
involves one approximation subspace Vn, we will refer to it as “single-space
approximation” in the sequel. The material presented in this section is not
novel but is intended to support our discussion in the next section.

WhenMprior is defined as in (3) and m = n, a standard approach to select
an element ofMprior ∩ Ph? is as follows:

Find ĥSS ∈ Vn such that
〈
wj , ĥSS

〉
= yj for all j = 1 . . . n, (7)

where {wj}mj=1 is a basis of Wm and yj , 〈wj ,h
?〉. This problem can also be

expressed3 in a variational form as

Find ĥSS ∈ argmin
h∈Vn

n∑

j=1

(yj − 〈wj ,h〉)2. (8)

As shown in [5, Section 2], the approximation computed in (7) can in fact be
seen as a “min-max” solution of (1): under some mild non-degeneracy condi-
tions, (7) can indeed be rewritten as

ĥSS = argmin
h∈Mprior∩Ph?

sup
h′∈Mprior∩Ph?

∥∥h− h′
∥∥. (9)

Hence, as long as prior (3) is considered, ĥSS corresponds to the element of
Mprior ∩ Ph? minimizing the worst-case approximation error.

Problem (7) is the basis of many methodologies encountered in the field
of model-order reduction. In the context of “projection-based” reduction of
PPDEs, (7) is better known as “Petrov-Galerkin projection”. In this case,M
corresponds to a set of solutions of a differential equation, i.e.,

M = {h? : PDE(h?, θ) = 0 for some θ ∈ Θ} (10)

where Θ is some set of parameters and PDE(h?, θ) = 0 is an abstract notation
for the PPDE; Vn is an approximation subspace forM and Wm derives from
the form defining the weak formulation of the PPDE, see e.g., [11].

Many procedures to approximate the output of a non-linear operator (e.g.,
EIM [3], DEIM [6], Gappy POD [7]) may also be seen as particular instances
of (7). Here, M corresponds to a set of outputs of an operator L : Θ → H,
i.e.,

M = {h? = L(θ) : θ ∈ Θ}, (11)

Vn is an approximation subspace forM and Wm is commonly chosen so that
yj = 〈wj , L(θ)〉 can be computed efficiently ∀θ ∈ Θ.

3 Equivalence holds as long as a solution to (7) exists.
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Finally, in [5], the authors considered a problem related to (7) in the domain
of data assimilation with reduced-order models. In this context, M typically
represent the set of solutions of a PPDE as in (10), Vn is an approximation
subspace for M and Wm defines the observation operator used in the data
assimilation process.

The performance of the single space approximation (7) is characterized by
the well-known Babuska’s theorem [12] stated below. The statement of this
theorem involves the singular values of the following Gram matrix

G = [〈wi,vj〉]i,j ∈ Rn×n. (12)

where {vj}nj=1 is an arbitrary basis of Vn.

Theorem 1 (Babuska’s Theorem) Let σ1 and σn respectively denote the
largest and smallest singular values of the Gram matrix defined in (12). If
σn > 0 then (7) has a unique solution which satisfies

∥∥∥h? − ĥSS

∥∥∥ ≤ σ1
σn

dist(h?, Vn). (13)

We note that (13) is only one particular example of instance optimal prop-
erty valid for single-space approximations in Hilbert spaces. Other versions
of instance optimal properties exist. For example in [5, Theorem 2.9], a more
general formulation of (13) has been derived in Hilbert spaces when m > n. In
Banach spaces, (4) holds with a slightly larger constant C(Wn, Vn) = 1 + σ1

σn
,

see [2]. In the field of non-linear operator approximation, instance optimal
properties involving L∞-norms have been derived, see e.g., [3]. In what fol-
lows, we will restrict our attention to (13), since it is valid in the context of
Hilbert spaces considered in this paper, and is more amenable to comparisons
with our main result stated in Theorem 2.

3 The Multi-space Approximation

In this section, we present a theoretical result supporting the performance of
the “multi-space” decoder considered in [1, 8–10]. We state our main result
in Theorem 2 and provide two examples of scenarios in which the multi-space
decoder have provably better performance guarantees than the standard “single
space” decoder (7).

Before stating our result, we recall the definition of the multi-space decoder
considered in [1, 8–10]:4

Find ĥMS ∈ argmin
h∈Vn

m∑

j=1

(yj − 〈wj ,h〉)2 (14)

subject to dist(h, Vk) ≤ ε̂k, k = 0 . . . n.

4 In this paper we assume that the constraints are defined ∀k ∈ {0 . . . n}. All the deriva-
tions presented in this paper may nevertheless be easily extended to the case where the
constraints in (14) are only available for some k ∈ {0 . . . n}.
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In the sequel, we assume without loss of generality that the vectors {wj}mj=1

are linearly independent. We also suppose that the subspaces {Vk}nk=0 are
embedded, that is, obey (6).

We note that (14) can be seen as an extension of the standard Petrov-
Galerkin approach discussed in Section 2. More specifically, if one removes the
constraints in (14) and let m = n, the problem becomes

Find ĥ ∈ argmin
h∈Vn

n∑

j=1

(yj − 〈wj ,h〉)2, (15)

i.e., is equivalent to problem (8). On the other hand, we note that the con-
straints in (14) define a set of feasible points of the form (5). Hence, if the
subspaces {Vk}nk=0 and widths {ε̂k}nk=0 are properly chosen, these constraints
add some valuable information about the position of the sought solution h? in
H. We may thus expect the multi-space decoder to lead to enhanced perfor-
mance in some specific situations. In this section, we provide a mathematical
support to this intuition.

In the following, we will make the assumption that the constraints in (14)
are such that

∀h? ∈M : dist(h?, Vk) ≤ ε̂k for all k = 0 . . . n, (16)

that is, they are satisfied by any target solution h? ∈M. Under this assump-
tion, we provide a mathematical characterization of the performance achiev-
able by the multi-space decoder (14). More specifically, we derive an instance
optimality property relating the approximation error ‖ĥMS − h?‖ to the dis-
tance between h? and the different approximation subspaces {Vk}nk=0. Our
result is presented in Theorem 2 below.

In order to state our result we need to introduce the following quantities.
We first define the short-hand notations

εk = dist(h?, Vk) for all k = 0 . . . n, (17)

and

γ = sup
h∈V ⊥

n ,‖h‖=1




m∑

j=1

〈wj ,h〉2



1
2

, (18)

where V ⊥n is the orthogonal complement of Vn in H. We let {vj}nj=1 be an
orthonormal basis of Vn such that

Vk = span
(
{vj}kj=1

)
. (19)

We note that such a basis always exists since we assume that the sequence of
subspaces {Vk}nk=0 obeys (6).
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We define the Gram matrix G as in (12) and let

δj =

n∑

k=1

|xkj |(ε̂k−1 + εk−1), (20)

where xkj are the elements of matrix X appearing in the singular value de-
composition of G, that is G = UΛXT, where U ∈ Rm×m, X ∈ Rn×n are
orthogonal matrices and Λ ∈ Rm×n is the diagonal matrix of singular values
{σj}min(m,n)

j=1 . In the sequel we will consider the extended set {σj}nj=1 by using
the following convention: if n > m, we define σj = 0 for all j > m. Without
loss of generality, we assume that the singular values {σj}nj=1 are sorted by
decreasing order of magnitude.

Using these notations, our result reads:

Theorem 2 Assume h? verifies (16) and let yj = 〈wj ,h
?〉 for j = 1 . . .m.

Then any solution ĥMS of (14) verifies

∥∥∥h? − ĥMS

∥∥∥ ≤





(∑n
j=`+1 δ

2
j + ρ δ2` + ε2n

) 1
2

if
∑n
j=1 σ

2
j δ

2
j ≥ 4γ2ε2n,

(∑n
j=1 δ

2
j + ε2n

) 1
2

otherwise,
(21)

where ` is the largest integer such that
n∑

j=`

σ2
j δ

2
j ≥ 4γ2ε2n, (22)

and ρ ∈ [0, 1] is defined as

ρσ2
` δ

2
` +

n∑

j=`+1

σ2
j δ

2
j = 4γ2ε2n. (23)

Moreover, if σn > 0, (14) admits a unique solution.

The proof of Theorem 2 is reported in Section 4. We note that the struc-
ture of the instance optimal property stated in Theorem 2 is similar to that
derived by Binev et al. in [5, Theorem 3.2] (for a different multi-space de-
coder) although it involves different constants and the singular values of a
different Gram matrix. Scrutinizing the proof of our result in Section 4, we
notice nevertheless that the reasoning leading to Theorem 2 is quite different
from that developed in [5]. This is due to the fact that the formulations of
the decoders considered here and in [5] are quite different and thus necessitate
distinct developments to derive the corresponding instance optimal property.

Because they involve singular values of different Gram matrices, the recov-
ery results in [5, Theorem 3.2] and Theorem 2 can only be compared when
{wj}mj=1 is an orthonormal basis. In that particular case, it can be seen that the
result in [5, Theorem 3.2] is slightly more favorable (to some constant factor)
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than that in Theorem 2.5 This observation could have been intuitively ex-
pected since the prior information exploited in (14) corrrespond to a degraded
version of that used in [5]. Indeed, as mentioned previously, the multi-space
decoder in [5] is a particular instance of (1) with Ph? and Mprior defined in
(2) and (5) respectively; on the other hand, the multi-space decoder (14), al-
though also considering a prior of the form (5), imposes ĥMS ∈ Vn and relaxes
the constraint ĥMS ∈ Ph? . These modifications remove some relevant infor-
mation about the position of h? in H (since h? ∈ Ph? by construction and h?

does not necessarily belong to Vn). We note however that, as mentioned in the
introduction of this paper, these modifications also allow for a more flexible
computational implementation of the decoder in some situations.

We now turn our attention to the comparison between the performance
achievable by the standard single-space decoder (7) and its multi-space ver-
sion (14). More specifically, we show that the recovery guarantees obtained in
the multi-space setup may be much more favorable than in the single-space
setup in some specific settings. In order to allow a comparison between the
single and multi-space decoders, we consider the case where m = n and as-
sume that {wj}mj=1 is an orthonormal basis. We note that, in such a case, we
have σ1 ≤ 1 and γ ≤ 1. The specific settings considered hereafter are inspired
from [5] and are described in Examples 1 and 2. They correspond to differ-
ent choices of matrix X appearing in the singular value decomposition of the
Gram matrixG defined in (12). Since the latter matrix directly depends on the
bases {wj}mj=1 and {vj}nj=1, these examples thus correspond to some partic-
ular choices of the observation and approximation subspacesWm and {Vk}nk=0.

Example 1 We first assume that X = In in the singular-value decomposition
of G. We set ε̂j = εj and assume that

εj =





1 j = 0 . . . n− 3,

ε
1
2 j = n− 2, n− 1,
ε j = n,

(24)

for some ε� 1. Moreover, we let

σj =





1 j = 1 . . . n− 3,

ε
1
2 j = n− 2, n− 1,
ε j = n.

(25)

In this setup, the upper bound (13) of Theorem 1 becomes:
∥∥∥ĥSS − h?

∥∥∥ ≤ σ−1n dist(h?, Vn) = ε−1ε = 1. (26)

On the other hand, because X = In and ε̂j = εj , we have

δj = ε̂j−1 + εj−1 = 2εj−1. (27)

5 More specifically, the factor 4γ2 in Theorem 2 is equal to 1 in [5, Theorem 3.2].
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The index ` appearing in Theorem 2 is smaller or equal to n− 1 since

σ2
nδ

2
n = σ2

n(2εn−1)
2 = 4ε3 � 4ε2,

σ2
n−1δ

2
n−1 = σ2

n−1(2εn−2)
2 = 4ε2,

and thus

σ2
n−1δ

2
n−1 + σ2

nδ
2
n ≥ 4ε2 ≥ 4γ2ε2 (28)

since γ ≤ 1. The upper bound in Theorem 2 becomes
∥∥∥h? − ĥMS

∥∥∥ ≤
(
δ2n−1 + δ2n + ε2n

) 1
2 ,

=
(
4ε+ 4ε+ ε2

) 1
2 ,

≤ 3ε
1
2 . (29)

Hence the bound in the multi-space setup (29) can be arbitrarily small as
compared to (26) when ε→ 0.

�

Example 2 We now consider X = n−
1
2 1n×n where 1n×n is an n×n matrix of

1’s. We set ε̂j = εj and assume that

εj =





1
2 j = 0,

1
2(n−1) j = 1 . . . n− 1,

ε j = n,

(30)

for some ε � n−1 (Note that we must have: ε ≤ 1
2(n−1) by definition). More-

over, we let

σj =

{
σ j = 1 . . . n− 1,
ε2 j = n,

(31)

for some 1 ≥ σ > ε whose value will be specified below.
With these choices, the upper bound (13) of Theorem 1 becomes:

∥∥∥ĥSS − h?
∥∥∥ ≤ σ−1n dist(h?, Vn) = ε−2ε = ε−1. (32)

On the other hand, we have

δj =

n∑

k=1

|xkj |(ε̂k−1 + εk−1),

= 2n−
1
2

n∑

k=1

εk−1,

= 2n−
1
2 . (33)
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By choosing σ such that (we remind the reader that σn−1 = σ by definition
(31))

σ2
n−1δ

2
n−1 + σ2

nδ
2
n = 4ε2, (34)

we obtain that index ` appearing in Theorem 2 is smaller or equal to n − 1
since γ ≤ 1. The upper bound in Theorem 2 then reads

∥∥∥h? − ĥMS

∥∥∥ ≤
(
δ2n−1 + δ2n + ε2n

) 1
2 ,

=
(
4n−1 + 4n−1 + ε2

) 1
2 ,

≤ 3n−
1
2 , (35)

where the last inequality follows from our initial assumption ε� n−1.
�

We conclude this section by providing a graphical representation of the
geometry of problem (14). Fig. 1 gives an illustration of the feasible set and
the iso-contours of the cost function appearing in (14); these quantities are
plotted in the plane Vn for m = n = 2.

If σn > 0, it can be seen (see Appendix A) that the cost function f(h) ,∑n
j=1(yj − 〈wj ,h〉)2 can also be rewritten for any h ∈ Vn as

f(h) =

n∑

j=1

σ2
j

(〈
v∗j , ĥSS

〉
−
〈
v∗j ,h

〉)2
, (36)

where

v∗j =

n∑

i=1

xijvi. (37)

Here, the elements xij ’s correspond to the components of the orthonormal ma-
trix X appearing in the singular value decomposition of G. From (36), we thus
see that the iso-contours of f(h) in Vn correspond to n-dimensional ellipsoids
with center equal to ĥSS and principal axes equal to

{
v∗j
}n
j=1

. Moreover, the
elongation of the ellipsoids along each axis v∗j is inversely proportional to the
singular value σj .

From a geometric point of view, bad recovery guarantees in the single-
space setup (i.e., large value for σ1

σn
) corresponds to situations where the “iso-

contour” ellipsoids are much more elongated along (at least) one direction than
another: the center of the ellipsoid ĥSS may then be quite distant from the
optimal orthogonal projection PVn

(h?).
The prior information used in the multi-space decoder (14) may provide a

solution to this problem by constraining ĥMS to belong to some prespecified
feasible set. Fig. 1 gives an illustration of such a situation. The feasible set
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ε̂1

ε̂0

•̂
hSS

•ĥMS

v∗2

v∗1

•PVn
(h?)

v2

v1

Vn

“iso-contours” of
∑n

j=1(yj − 〈wj,h〉)2

{h : dist(h, V0) ≤ ε̂0}

{h : dist(h, V1) ≤ ε̂1}

Fig. 1 Graphical representation of the geometry of the multi-space problem (14).

defined by the constraints in (14) is represented by the gray shaded area. In
the simplified setup considered here, it corresponds to the intersection of two
sets: the constraint associated to V0 imposes ĥMS to belong to a ball of radius
ε̂0; the constraint corresponding to V1 requires that ĥMS does not deviate from
the line passing through v1 by more than ε̂1. The multi-space estimate ĥMS

then corresponds to the element of the feasible set leading to the smallest value
of the cost function. We see in Fig. 1 that constraining the estimate ĥMS to
belong to the feasible set prevents it from deviating too far from PVn

(h?). In
particular, in the simple example described in Fig. 1, the multi-space estimate
leads to better approximation performance than its single-space counterpart.

The same type of conclusions can in fact be drawn in more general setups:
the multi-space decoder (14) is able to enhance the performance of the single-
space approach (7) as soon as the prior information used in (14) can compen-
sate for large deviations of the “iso-contour” ellipsoids. The gain achievable in
the multi-space setup thus depends on the relative configuration of the “iso-
contour ellipsoids” and the feasible set. We note that the shape of the ellipsoids
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depends on the basis
{
v∗j
}n
j=1

and the singular value {σj}nj=1. Similarly, the
feasible set is fully defined by the basis {vj}nj=1 and widths {ε̂j}nj=0. Moreover,
{vj}nj=1 and

{
v∗j
}n
j=1

only differ up to an orthogonal transformation X, see
(37). This explains why the parameters {σj}nj=1, {ε̂j}

n
j=0 and {δj}nj=1 (which

depend on X) play a crucial role in the characterization of the performance of
the multi-space decoder in Theorem 2.

4 Proof of Theorem 2

In this section, we provide a proof of the result stated in Theorem 2. We first
note that problem (14) is equivalent to finding the minimum of a quadratic
function over a closed bounded subset of Vn. A minimizer thus always exists.
Moreover, the unicity of the minimizer stated at the end of Theorem 2 follows
from the strict convexity of the cost function over Vn when σn > 0.

In the rest of this section, we thus mainly focus on the derivation of the
upper bound (21). Our proof is based on the following steps. First, since ĥMS ∈
Vn, we have that

∥∥∥h? − ĥMS

∥∥∥
2

=
∥∥∥PVn

(h?)− ĥMS

∥∥∥
2

+
∥∥P⊥Vn

(h?)
∥∥2,

=
∥∥∥PVn

(h?)− ĥMS

∥∥∥
2

+ ε2n, (38)

where PVn
(·) (resp. P⊥Vn

(·)) denotes the orthogonal projector onto Vn (resp.
V ⊥n ). We then derive an upper bound on ‖PVn

(h?)− ĥMS‖2 as follows:

• We identify a set D such that PVn
(h?) − ĥMS ∈ D in Section 4.1. This

implies in particular that ‖PVn
(h?)− ĥMS‖2 ≤ supd∈D‖d‖2.

• We derive the analytical expression of supd∈D‖d‖2 as a function of the
parameters {εk}nk=0, {ε̂k}

n
k=0 and {σk}nk=1 in Section 4.2.

Combining these results, we obtain (21)-(23).

4.1 Definition of D

We express D as the intersection of two sets D1 and D2 that we define in
Sections 4.1.2 and 4.1.3 respectively. In order to properly define these quan-
tities, we introduce some particular orthonormal bases for Vn and Wm =

span
(
{wj}mj=1

)
in Section 4.1.1.



An IOP for approximation problems with multiple approximation subspaces 13

4.1.1 Some particular bases for Vn and Wm

Let

G = UΛXT (39)

be the singular value decomposition of the Gram matrix defined in (12), where
U ∈ Rm×m and X ∈ Rn×n are orthonormal matrices and Λ ∈ Rm×n is the
diagonal matrix of singular values. We denote by {σj}nj=1 the set of singular
values of G sorted in their decreasing order of magnitude. We remind the
reader that if m < n, we adopt the convention σj = 0 ∀j > m.

We define the following bases for Vn and Wm:

v∗j =

n∑

i=1

xijvi, (40)

w∗j =

m∑

i=1

uijwi, (41)

where U ∈ Rm×m and X ∈ Rn×n are the orthonormal matrices appearing
in (39). We note that

{
v∗j
}n
j=1

is an orthonormal basis whereas
{
w∗j
}m
j=1

is

not necessarily orthonormal. By definition,
{
v∗j
}n
j=1

and
{
w∗j
}m
j=1

enjoy the
following desirable property:

〈
w∗i ,v

∗
j

〉
=

{
σj if i = j
0 otherwise. (42)

4.1.2 Definition of D1

Let us define D1 as

D1 =



d =

n∑

j=1

βjv
∗
j :

n∑

j=1

σ2
jβ

2
j ≤ 4γ2ε2n



, (43)

where γ is defined in (18). We show hereafter that PVn
(h?)− ĥMS ∈ D1.

Let us first consider the intermediate set

S =
{
h : f(h) ≤ γ2ε2n

}
, (44)

where f(h) ,
∑m
j=1(yj − 〈wj ,h〉)2 is the cost function appearing in the vari-

ational formulation of multi-space decoder (14).
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Clearly PVn
(h?) ∈ S because

f(PVn
(h?)) =

m∑

j=1

(
yj −

〈
wj , PVn

(h?)
〉)2

=

m∑

j=1

(
〈wj ,h

?〉 −
〈
wj , PVn

(h?)
〉)2

=

m∑

j=1

(〈
wj , P

⊥
Vn

(h?)
〉)2

≤ γ2
∥∥P⊥Vn

(h?)
∥∥2

≤ γ2ε2n. (45)

Moreover, we also have ĥMS ∈ S. This can be seen from the following
arguments. First, PVn

(h?) is a feasible point for problem (14), that is

dist(PVn
(h?), Vk) ≤ ε̂k for k = 0 . . . n. (46)

Indeed, rewriting h? as

h? =

n∑

j=1

〈vj ,h?〉vj + z, (47)

where z ∈ V ⊥n , we have

ε̂k ≥ dist(h?, Vk)

=
∥∥P⊥Vk

(h?)
∥∥

=

∥∥∥∥∥∥

n∑

j=k+1

〈vj ,h?〉vj + z

∥∥∥∥∥∥

=

√√√√√
∥∥∥∥∥∥

n∑

j=k+1

〈vj ,h?〉vj

∥∥∥∥∥∥

2

+ ‖z‖2

≥

∥∥∥∥∥∥

n∑

j=k+1

〈vj ,h?〉vj

∥∥∥∥∥∥
=
∥∥P⊥Vk

(
PVn

(h?)
)∥∥

= dist(PVn
(h?), Vk). (48)

The first inequality follows from our initial assumption (16). The third equality
is true because z ∈ V ⊥n . Now, since ĥMS is a minimizer of f(h) over the set of
feasible points, we have f(ĥMS) ≤ f(PVn

(h?)) ≤ γ2ε2n and therefore ĥMS ∈ S.
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Finally, we show that ĥMS ∈ S and PVn
(h?) ∈ S implies PVn

(h?)− ĥMS ∈
D1. Let us first note that, if h ∈ Vn, the cost function f(h) can be rewritten
as:

f(h) =

m∑

j=1

(〈wj ,h
?〉 − 〈wj ,h〉)2,

=

m∑

j=1

(〈
w∗j ,h

?
〉
−
〈
w∗j ,h

〉)2
,

=

n∑

j=1

(〈
w∗j ,h

?
〉
− σj

〈
v∗j ,h

〉)2
+

m∑

j=n+1

〈
w∗j ,h

?
〉2
, (49)

where the second equality follows from the fact that {wj}mj=1 and
{
w∗j
}m
j=1

differ up to an orthonormal transformation; the last equality is a consequence
of (42) and the fact that h ∈ Vn by hypothesis.

We note that, since
{
v∗j
}n
j=1

is an orthonormal basis of Vn, PVn
(h?)− ĥMS

can be written as
∑n
j=1 βjv

∗
j by setting βj =

〈
v∗j , PVn

(h?)
〉
−
〈
v∗j , ĥMS

〉
.

Therefore, we have

n∑

j=1

σ2
jβ

2
j =

n∑

j=1

(
σj
〈
v∗j , PVn

(h?)
〉
− σj

〈
v∗j , ĥMS

〉)2
,

=

n∑

j=1

(
σj
〈
v∗j , PVn

(h?)
〉
−
〈
w∗j ,h

?
〉
− σj

〈
v∗j , ĥMS

〉
+
〈
w∗j ,h

?
〉)2

,

≤2
n∑

j=1

(
σj
〈
v∗j , PVn

(h?)
〉
−
〈
w∗j ,h

?
〉)2

+ 2

n∑

j=1

(
σj

〈
v∗j , ĥMS

〉
−
〈
w∗j ,h

?
〉)2

,

≤2f(PVn
(h?)) + 2f(ĥMS),

≤4γ2ε2n,

where the first inequality follows from the standard inequality (a + b)2 ≤
2(a2 + b2), the second from (49), and the last one from the fact that ĥMS ∈ S
and PVn

(h?) ∈ S.

4.1.3 Definition of D2

Let

δj = ηj + η̂j , (50)
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where

ηj =

n∑

i=1

|xij |εi−1,

η̂j =

n∑

i=1

|xij |ε̂i−1, (51)

and the xij ’s are the elements of the matrix X appearing in the SVD decom-
position (39). We define D2 as

D2 =



d =

n∑

j=1

βjv
∗
j : |βj | ≤ ηj



. (52)

We show hereafter that PVn
(h?)− ĥMS ∈ D2.

We first note that if h is feasible for problem (14), we must have
∣∣〈v∗j ,h

〉∣∣ ≤ η̂j . (53)

Indeed, if h is feasible, the constraint dist(h, Vk) ≤ ε̂k simply writes as
n∑

j=k+1

〈vj ,h〉2 ≤ ε̂2k.

In particular, this implies that

|〈vk+1,h〉| ≤ ε̂k.
Using the fact that

v∗j =

n∑

k=1

xkjvk,

we obtain (53). In a similar way, we can find that
∣∣〈v∗j , PVn

(h?)
〉∣∣ ≤ ηj , (54)

by using the fact that dist(PVn
(h?), Vk) ≤ εk from (48).

Let us now show that PVn
(h?) − ĥMS ∈ D2. Since

{
v∗j
}n
j=1

is an or-

thonormal basis of Vn, PVn
(h?)− ĥMS can be written as

∑n
j=1 βjv

∗
j by setting

βj =
〈
v∗j , PVn

(h?)
〉
−
〈
v∗j , ĥMS

〉
. This leads to

|βj | =
∣∣∣
〈
v∗j , PVn

(h?)
〉
−
〈
v∗j , ĥMS

〉∣∣∣,

≤
∣∣〈v∗j , PVn

(h?)
〉∣∣+

∣∣∣
〈
v∗j , ĥMS

〉∣∣∣,
≤ η̂j + ηj = δj ,

where the last inequality follows from (53) and (54).
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4.2 Expression of supd∈D‖d‖2

We consider the following problem:

sup
d∈D
‖d‖2 = sup

β
‖β‖2 subject to

{∑n
j=1 σ

2
jβ

2
j ≤ 4γ2ε2n

|βj | ≤ δj
. (55)

If
∑n
j=1 σ

2
j δ

2
j < 4γ2ε2n, the first constraint in (55) is always inactive and the

solution simply reads

sup
d∈D
‖d‖2 =

n∑

j=1

δ2j . (56)

If
∑n
j=1 σ

2
j δ

2
j ≥ 4γ2ε2n, the solution of (55) is given by

sup
d∈D
‖d‖2 =

n∑

j=`+1

δ2j + ρ δ2` , (57)

where ` is the largest integer such that
n∑

j=`

σ2
j δ

2
j ≥ 4γ2ε2n, (58)

and ρ ∈ [0, 1] is defined as

ρσ2
` δ

2
` +

n∑

j=`+1

σ2
j δ

2
j = 4γ2ε2n. (59)

This can be seen by verifying the optimality condition of problem (55). We note
that problem (55) is the same (up to some constants) to the one considered
in [5, Section 3.1]. The solution (57) is therefore similar, up to some different
constants, to the one obtained in that paper.

5 Conclusions

In this paper, we provide a mathematical characterization of the performance
of some particular decoder exploiting a set of approximation subspaces. This
decoder was previously shown to lead to good empirical results in several
contributions [1, 8–10], although no proof of its theoretical performance was
provided in these works. Our result shows how the performance of this “multi-
space” decoder is related to the parameters defining the approximation prob-
lem: the observationWm and prior subspaces {Vk}nk=0, the quality of the prior
information (i.e., the widths {ε̂k}nk=0) and the distance between the target
solution h? and the approximation subspaces (i.e., {εk}nk=0). Based on this
result, we show that the “multi-space” decoder can have provably better re-
construction guarantees than its standard (“single-space”) counterpart in some
situations.
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A Proof of (36)

In this appendix, we show that the cost function f(h) ,
∑n

j=1(yj − 〈wj ,h〉)2 can be rewrit-
ten as in (36) when h ∈ Vn and σn > 0.6 First, using the definition of yj , we have

f(h) =

n∑
j=1

(〈wj ,h
?〉 − 〈wj ,h〉)2. (60)

Moreover, using the particular orthonormal bases introduced in Section 4.1.1, we obtain

f(h) =

n∑
j=1

(〈
w∗

j ,h
?
〉
−
〈
w∗

j ,h
〉)2

,

=
n∑

j=1

(〈
w∗

j ,h
?
〉
− σj

〈
v∗j ,h

〉)2
, (61)

where the first equality follows from the fact that {wj}nj=1 and {w∗
j}nj=1 differ up to an

orthogonal transformation; the second is a consequence of (42) and our hypothesis h ∈ Vn.
Since ĥSS corresponds to the minimum of f(h) over Vn (see (8)), we simply have

〈
v∗j , ĥSS

〉
=

〈
w∗

j ,h
?
〉

σj
, (62)

if σn > 0. Hence, under this assumption, (61) can also be rewritten as in (36).
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