
HAL Id: hal-01917249
https://hal.archives-ouvertes.fr/hal-01917249

Submitted on 9 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Analysis of Merge Conflicts and Resolutions in
Git-based Open Source Projects

Hoai Le Nguyen, Claudia-Lavinia Ignat

To cite this version:
Hoai Le Nguyen, Claudia-Lavinia Ignat. An Analysis of Merge Conflicts and Resolutions in Git-based
Open Source Projects. Computer Supported Cooperative Work, Springer Verlag, 2018, 27 (3-6),
pp.741-765. �10.1007/s10606-018-9323-3�. �hal-01917249�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162979214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01917249
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

An Analysis of Merge Conflicts and Resolutions in
Git-based Open Source Projects

Hoai Le Nguyen · Claudia-Lavinia Ignat

Received: date / Accepted: date

Abstract Version control systems such as Git support parallel collaborative
work and became very widespread in the open-source community. While Git
offers some very interesting features, resolving conflicts that arise during syn-
chronization of parallel changes is a time-consuming task. In this paper we
present an analysis of concurrency and conflicts in official Git repository of
four projects: Rails, IkiWiki, Samba and Linux Kernel. We analyse the col-
laboration process of these projects at specific periods revealing how change
integration and conflict rates vary during project development life-cycle. We
also analyse how often users decide to rollback to previous document version
when the integration process generates conflicts. Finally, we discuss the mech-
anism adopted by Git to consider changes made on two continuous lines as
conflicting.

Keywords Version control systems · Parallel work · Conflicts

1 Introduction

Computer supported collaboration is an increasingly common occurrence that
becomes mandatory in academia and industry where the members of a team
are distributed across organizations and work at different moments of time.
Version control systems are popular tools that support parallel work over
shared projects and offer support for synchronization of parallel changes on
those projects. Version control systems can be classified into centralised version
control systems (CVCSs) and decentralised version control systems (DVCSs).

Hoai Le Nguyen
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
E-mail: hoai-le.nguyen@inria.fr

Claudia-Lavinia Ignat
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
E-mail: claudia.ignat@inria.fr



2 Hoai Le Nguyen, Claudia-Lavinia Ignat

CVCSs such as CVS (Berliner, 1990) and Subversion (Collins-Sussman
et al., 2004) rely on a client-server architecture. The server keeps a complete
history of versions while clients keep only a local copy of the shared documents.
Users can modify in parallel their local copy of the shared documents and
synchronize with the central server in order to publish their contributions and
make them visible to the other collaborators.

DVCSs such as Git (2005), Mercurial (2005) and Darcs (2003) became
popular around 2005. These systems rely on a peer-to-peer architecture where
each client keeps the history of versions plus a local copy of the shared doc-
uments. Users can work in isolation on their local repositories. They can also
synchronize their local repository with the ones of other collaborators.

Even if CVCSs are largely used in academia and industry they feature
some limitations due to their centralised architecture: they offer a limited
scalability and limited fault tolerance, administration costs are not shared
and data centralisation in the hands of a single vendor is an inherent threat
to privacy. On the other side, DVCSs overcome these limitations of centralised
architectures. Their peer-to-peer architecture allows them supporting a large
number of users and tolerating faults. Each user keeps a copy of the history
and decides with whom to share it without storing it on a central server. These
features made DVCSs widely used in the domain of open software development
where projects have often a large number of contributors.

Studies showed that in large projects the partition of software modules
among developers is limited and developers can contribute to any part of
the code (Gutwin et al., 2004). In Git, users can synchronize their changes
with other users working in parallel with them. In this process, a merge is
performed between local changes and remote changes. Similar to other com-
mercially available merge tools, Git uses a textual merging technique (Mens,
2002) where software artefacts, i.e. files, are viewed as flat text files. Merg-
ing approaches are line-based, where lines of text are considered as indivisible
units. If concurrent changes refer to the same file, we say that these changes are
conflicting. Conflicts on a file can be automatically resolved or they need user
intervention for their resolution. We call the former category automatically
resolved conflicts and the latter category unresolved conflicts. If conflicting
changes refer to different non-adjacent lines of the file, the conflict is auto-
matically resolved by the system. If, on the contrary, conflicting changes refer
to the same or adjacent lines of the file, the conflict cannot be automatically
resolved and the user has to manually resolve it. Unresolved conflicts also oc-
cur if a file is renamed and modified/deleted concurrently, if it is modified
and deleted concurrently, if it is renamed concurrently by two users, if a user
renames a file with the same name as another user gives to a concurrently
created file and if two users concurrently add two files with the same name.
Note that by the name of a file we understand the whole path identifying that
file.

Conflicts are costly as they delay the development process (de Souza et al.,
2003). In the period of time between conflicts occur and they are discovered
and understood, they might grow and become difficult to resolve. Developers



Title Suppressed Due to Excessive Length 3

may postpone integrating parallel work as they fear that conflicts may be hard
to resolve. The potential conflicts concern makes parallel work to diverge more
and conflicts to more likely to happen and grow.

Understanding how often and when conflicts are more likely to happen
during the development process and how users resolve them can help propos-
ing awareness mechanisms that can prevent conflicts from happening. This
study could help proposing better merging approaches that minimize conflicts
that users have to manually resolve. In this paper we study traces of projects
developed with Git in order to quantitatively analyse the different types of
textual conflicts at the level of files that arise at the different development
cycle phases. One particular type of unresolved conflict that we study is that
referring to adjacent lines. If concurrent changes occur on two adjacent lines
Git signals an unresolved conflict, but not in the case of two lines separated
by two or more lines. As there is no reason why these cases are treated differ-
ently, we aim studying whether developers resolve them differently. We also
aim quantitatively measuring merge user satisfaction after a conflict resolution
in terms of how often users roll back to a previous version. Even if several ex-
isting studies focused on parallel changes and conflicts on Git-based projects
(Brun et al., 2013; Kasi and Sarma, 2013), they did not analyse fine-grained
conflicts at file level and their resolution mechanisms.

Several tools rather than using textual merging, use syntactic or semantic
merging (Mens, 2002). Syntactic merging takes the syntax of software arte-
facts into account, while semantic merging considers semantic information.
Studies such as Brun et al. (2013) and Kasi and Sarma (2013) considered both
textual conflicts as result of textual merging and higher order conflicts that
are conflicts at semantic level that cause compilation errors or test failures.
Other studies such as de Souza et al. (2004) studied indirect conflicts when
changes to one software artefact affect concurrent changes to another artefact.
In de Souza et al. (2004) authors proposed the social call graph that describes
dependencies between software developers for a piece of code. The social call
graph combines the call graph data structure that contains all the dependency
relationships of a software application with authorship information. Our study
does not investigate indirect and higher level conflicts and focuses uniquely on
conflicts related to the same file with a particular attention for textual conflicts
as used by main DVCSs such as Git.

The rest of the paper is organized as follows. In Section 2 we explain
briefly related works. Section 3 presents our conflicts measurement during the
merge process. Section 4 discusses implications for design for our study and
some limitations of analysing Git repositories. Section 5 gives some concluding
remarks.

2 Related work

In this section we present some studies on parallelism of changes performed in
version control systems.



4 Hoai Le Nguyen, Claudia-Lavinia Ignat

The user study presented in Reiher et al. (1994) reports on conflict resolu-
tion experiences with the optimistic file system Ficus. Conflicts were classified
into update/update, remove/update and naming conflicts. Update/update con-
flicts appear when two concurrent updates are performed on the same file.
Remove/update conflicts appear when an update of a file and the removing of
that file were performed concurrently. A naming conflict occurs when two files
are independently created with the same name. The study found out that only
about 0.0035% of all updates made to non-directory files resulted in conflicts
and among them less than one third could not be resolved automatically. Au-
thors mentioned that conflicts that cannot be resolved automatically are any
update/update concurrent changes on source code or text files as they have ar-
bitrary semantics and therefore require user intervention. Note that in contrast
to the definition of conflicts used in Reiher et al. (1994), in the terminology
of version control systems two updates done on the same file (source code or
textual) lead to non-automatically resolved conflicts only if the updates refer
to the same or adjacent lines in the file. All update/remove conflicts required
human intervention and about 0.018% of all naming conflicts led to name
conflicts which have to be resolved by humans.

In Perry et al. (2001), the authors presented a study about parallel changes
in the context of a large software development organization and project. The
study analyses the complete change and quality history of a subsystem of
the Lucent Technologies’ 5ESS over a period of 12 years. Each set of change
requests representing all or part of a solution to a problem was recorded by
the system. When a change from this set was made on a file, the system kept
track of the lines added, edited or deleted. This set of changes composes a
delta. It was found that 12.5% of all deltas were made to the same file by
different developers within a day. 3% of all these deltas made within a day by
different developers physically overlap. However, interference of these deltas is
analysed over a quite large period of time (1 day) and not all these deltas are
performed concurrently.

In Zimmermann (2007) authors investigated four large open-source projects
(GCC, JBoss, JEdit and Python) and found that in CVS the integration rate
that measures the percentage of concurrently modified files over all modified
files is very low (between 0.26% and 0.54%). The study found that the conflict
rate, i.e. the proportion of files with unresolved conflicts over concurrently
modified files, varies between 23% and 47%. Low integration rates indicate
that the parallel changes within single files are rare and have small impact
to the development process. High conflict rates indicate that parallel changes
affect the same location within a file or can not be integrated automatically
by CVS.

Only few studies analysed parallel changes and conflicts for projects devel-
oped using DVCSs. In Brun et al. (2013) and Kasi and Sarma (2013), authors
studied the merge conflict rate of merges for several open-source projects us-
ing Git repositories. They found that the average merge conflict rate was 16%.
However, these studies did not analyse the types of conflicts during merge
and the frequency of conflicts at file level as measured in Zimmermann (2007).



Title Suppressed Due to Excessive Length 5

Also these studies did not analyse quantitatively what are the resolution mech-
anisms adopted by users.

In Brindescu et al. (2014) analysed how centralised and distributed version
control systems influence the practice of splitting, grouping and committing
changes. However, this study did not analyse merge commits that represent
decisions on conflict resolution. Our study is mainly focused on studying con-
flicts and therefore we analysed developers merging behaviour through merge
commits.

In McKee et al. (2017) authors propose a qualitative study on the factors
that impact how practitioners approach merge conflicts and the difficulties
they face when resolving conflicts. The study was conducted based on semi-
structured interviews on 10 software practitioners across 7 organizations. The
study found that the factors that mostly describe merge conflict difficulty
are complexity of conflicting lines of code, the knowledge/expertise in area of
conflicting code, the complexity of the files with conflicts and the number of
conflicting lines of code. Our study is complementary to McKee et al. (2017)
and studies quantitatively textual conflicts inside a file and investigates dif-
ferent aspects such as their frequency, their length and their localisation and
the ways developers resolve those conflicts such as by maintaining concurrent
changes or rollbacking to previous code versions. It is important to understand
what types of conflicts arise at the different moments during the lifetime of
a project. This can help tool designers and developers to choose the different
tools and techniques that can be applied during the lifetime of a project.

In conclusion, no study quantitatively analysed fine-grained conflicts inside
files in DVCSs and how people resolve these conflicts.

3 Measurements

In order to measure the level of parallelism and the proportion of conflicting
modifications in DVCSs, we adopted an experimental methodology where we
analysed the corpus of four large open-source projects developed using Git:

– Ruby on Rails (Ruby, 2015) is a web framework, with integrated support
for unit, functional, and integration testing. We analysed version 5.0.0.al-
pha of the Rails.

– IkiWiki (IkiWiki, 2015) is a wiki software system that compiles wiki pages
into HTML pages for publication. We analysed IkiWiki version 3.0.

– Samba (Samba, 2015) is an implementation of networking protocols to
share files and printers between Unix computers and Windows computers.
We analysed Samba 3.0.x.

– Linux Kernel (LinuxKernel, 2015) is an implementation of a Unix-like
computer operating system kernel. We analysed version 4.x of the Linux
kernel.

Beside the large size and the popularity of these projects, they are represen-
tative for the different software development pull-based (Gousios et al., 2014)



6 Hoai Le Nguyen, Claudia-Lavinia Ignat

models that they adopt. In practice, the core-development-team will organize
at least one repository as the primary repository where the latest approved
changes can be found. Contributors can clone from this official repository. How-
ever, only the core-development-team has the write-access to commit directly.
Other contributors need to use the pull-based development model in which a
contributor creates a pull-request for his changes. A core-team’s member then
inspects the changes and decides to pull and merge contributor’s changes to
the main repository or not. And in some cases, contributors are requested to
update or add more changes before their pull-request is accepted. Nowadays,
the pull-based model is naturally supported by web-based hosting services
such as GitHub (2008) and Bitbucket (2008).

Rails project uses pull-request model which is naturally supported by
GitHub (2008). Contributors can fork (clone) from the official GitHub repos-
itory and contribute via GitHub’s pull-requests. In a pull-request, reviewers
and its contributor communicate directly using pull-request’s comments. These
comments are available to other users and they can participate into this conver-
sation. Afterwards a pull-request can be merged to the main line or declined.

IkiWiki looks like a private repository where contributors send their patches
to Josey Hess, the main developer of the project. Samba uses a shared repos-
itory among registered contributors. It uses an auto-build system for code-
review process. Contributors need to join a technical mailing-list before con-
tributing. Linux Kernel uses a pull-based model via mailing-list. Contributors
need to send their patches to the appropriate subsystem maintainer’s mailing-
list in charge of the different parts of the project.

Table 3 presents some details about these projects: the period of their
development (until 05-October-2015), the number of commits, the number of
contributors (authors), the number of created files during the lifetime of the
project and the number of existing files on 05-October-2015. Note that if a file
is moved during the lifetime of the project from a place to another, we counted
it as a new created file.

Project Period No. of No. of No. of No. of
name (days) commits authors created files existing files

Rails 3,967 19,375 3,422 10,272 2,984
IkiWiki 3,496 53,625 982 4,610 3,362
Samba 7,094 100,301 386 33,626 7,582
Kernel 5,132 547,515 14,395 90,173 51,567

Table 1 Open source projects developed using Git

In contrast to CVCSs, Git does not support the centralized logging feature
of all user activities. The best overview of user activities is provided by the
commit history (including merges) from the primary repository. To identify
concurrences and conflicts in each project, we created a shadow repository



Title Suppressed Due to Excessive Length 7

and recursively re-integrated developer’s changes into this repository. In other
words, by means of Python scripts (GitChangesAnalyzer, 2017) we re-played
all merges that were performed during the development period of each project.

3.1 Integrations and conflicts on files

We first determined the number of concurrent updates to a same file and then
the number of concurrent updates to a same file that resulted in unresolved
conflicts. Similar to Zimmermann (2007) we computed the integration rate
and conflict rate as provided in Table 2. File updates represents the total
number of updates to files. A file can be updated several times throughout the
development cycle. Integration rate represents the proportion of concurrent
updates to a same file over all updates to files. Conflict rate is calculated by the
proportion of updates to a same file that resulted in unresolved conflicts over
concurrent updates to files. The file updates were collected from all commits
of the project. And by re-integrating all developer’s changes, we computed the
concurrent updates to a same file and the concurrent updates to a same file
that resulted in unresolved conflicts.

Project File updates Integration Unresolved
name rate conflict rate

Rails 117,960 4.04% 16.26%
IkiWiki 37,327 1.08% 50.50%
Samba 306,182 0.68% 87.84%
Kernel 1,278,247 10.99% 4.86%

Table 2 Concurrency and conflicts on files

We can notice that Kernel and Rails projects have larger integration rate
than IkiWiki and Samba. For instance, integration rate in Kernel project is
10 times larger than IkiWiki and 16 times larger than Samba. This can be
explained by the large size of Kernel project in terms of the number of files. In
contrast with the integration rate, Rails and Kernel have smaller conflict rates
than IkiWiki (50.50%) and Samba (87.84%). We do know that Rails is a large
project using advantages of GitHub, which supports pull-based model natu-
rally. GitHub interface allows not only the author of a pull-request and the
reviewer but also other contributors and core-team members to discuss about
that pull-request and its issues. It brings a big advantage of sharing collabora-
tors knowledge to solve problems during integration. In case of Linux Kernel,
it uses pull-based model via mailing list with a list of subsystem maintainers.
It also has a list of delegated servers, such as linux-next, where commits are
tested before they are pushed to primary repository (German et al., 2015).
On the other side, Samba uses shared repositories among contributors and



8 Hoai Le Nguyen, Claudia-Lavinia Ignat

IkiWiki is maintained as a private repository by Josey Hess. Nowadays, all of
them provide a list of Todo tasks and a list of Bugs where contributors can
focus their work to avoid conflicting integration.

The lack of a central server that holds a reference copy of the project intro-
duces more parallelism between user versions allowing them to diverge more
in DVCSs than in CVCSs. For instance, Kernel, Rails, IkiWiki and Samba
projects developed in Git have significantly (99% confidence level) higher in-
tegration rate (22, 8, 2 and 1.5 times respectively) than projects in CVS anal-
ysed in Zimmermann (2007). However, the higher integration rate does not
result into higher conflict rate. For instance, Kernel and Rails have 5 and 1.5
times respectively lower conflict rate than projects in CVS whereas Samba
and IkiWiki have almost 2 times higher conflict rate. The conflict rate in Git’s
projects depends on collaboration process management.

Project Content Remove/Update Naming
name conflict conflict conflict

Rails 89.68% 2.97% 7.35%
IkiWiki 46.31% 1.48% 52.22%
Samba 64.47% 34.44% 1.09%
Kernel 90.96% 8.63% 0.41%

Table 3 Proportion of conflict types

We also measured the proportion of the different conflicts types: content
conflicts referring to conflicts inside a file, remove/update conflicts referring
to concurrent removal and update of a file and naming conflicts referring to
concurrent renaming of the same file or of two files with the same name.
Table 3 presents the proportion of conflict types of four projects. We found
that content conflict is far the most popular type of conflict with a proportion
of 46% - 90% from all conflict types.

3.2 Integrations and conflicts based on release dates

In the previous section we presented the integration rate and conflict rate
of four projects over their whole development period. However during their
development life-cycle, activities are not equally distributed. Our hypothesis
is that collaborative activities achieve some peaks around project release dates,
such as periods of one or two weeks before a release date. To gain a better
understanding about collaboration during those active periods, we conducted
an analysis about integrations and conflicts based on project release dates.

Figure 1 illustrates four active periods of one week length before and after
respectively the release date (RD). We denote these periods as follows: B2W
(between two weeks before RD and one week before RD), B1W (between one



Title Suppressed Due to Excessive Length 9

week before RD to RD), A1W (between RD to one week after RD) and A2W
(one week after RD to two weeks after RD). We also analysed B4W, B3W,
A3W and A4W.

Release date V1.0

-1 weeks-2 weeks +1 weeks +2 weeks

Fig. 1 Analysis based on release date

3.2.1 IkiWiki

There are three official versions of IkiWiki, however the first two versions did
not introduce any concurrency nor conflict. In fact, at that time, IkiWiki was
developed by Josey Hess only. We analysed the latest version V3.0 with a
release date on 31-12-2008. The result is presented in Figure 2.

Fig. 2 IkiWiki-V3.0, integration and conflict rate on files

The result shows that one week before RD, the integration rate is very high
(29.41%) with a conflict rate of 46.67%. Also, the integration rate decreases
in the next two weeks after RD(A1W, A2W) and increases in the third and
the fourth weeks after RD (A3W, A4W). All integrations in A1W, A2W and
A4W are successful and all integrations in A3W generated conflicts.



10 Hoai Le Nguyen, Claudia-Lavinia Ignat

This behaviour can be explained by the policy adopted by IkiWiki where
contributions are merged by Josey Hess just one week before RD. Figure 3,
extracted from IkiWiki official site (IkiWiki, 2015), is an illustration for this
explanation. Many merges and commits are submitted close to RD. There are
still some minor integrations such as bug-fixing after RD. We also analysed
the following four weeks after A4W (A5W to A8W) and did not find any
integration nor conflict. So we can say that for IkiWiki, the integration of
version V3.0 begins one week before the official release date and lasts four
weeks after that release date.

Fig. 3 IkiWiki-V3.0, commits in the week before RD

3.2.2 Samba

Samba community started using Git as its main repository from version 3.2.
We chose to analyse three Samba versions: 3.2, 3.3 and 3.6 based on the number
of merges between B4W and A4W. In fact we could not find any merges in
the period (B4W-A4W) in other versions (4.0, 4.1, 4.2, 4.3). The results are
presented in Figure 4 and Figure 5.

Figure 4 shows that the integration rates of version 3.2 and 3.3 are almost
similar. They have high integration rates in the week before RD, in the second
week after RD and in the fourth week after RD. These integration rates are
2 times (for V3.2, B1W), 6 times (for V3.2, A2W), 3 times (for V3.3, B1W)
and 4 times (for V3.3, A2W) respectively higher than the overall integration
rate (0.68%, Table 2).

The integration process in version 3.6 changed compared to versions 3.2
and 3.3. Version 3.6 had integrations only in the two weeks before RD and
the first week after RD (B2W and A1W). Furthermore, its integration rate is
three to six times lower than in versions 3.2 and 3.3.

In Figure 5, we can see that some integrations in version 3.2 and 3.3 in A2W
period resulted in conflicts and all other integrations in B4W-A4W period are
successful. Specially version 3.6 does not introduce a single conflict during
B4W-A4W. In fact, starting from version 3.6, each release version officially



Title Suppressed Due to Excessive Length 11

Fig. 4 Samba, integration rate on files

Fig. 5 Samba, conflict rate on files

has a series of pre-release (pre) versions and release-candidate (rc) versions.
For version 3.6, it has three pre versions (3.6pre1, 3.6pre2, 3.6pre3) and three
rc versions (3.6rc1, 3.6rc2, 3.6rc3). It means that most collaboration works are
done in pre and rc versions, not in official release version 3.6. It also explains
why we could not find any merges in B4W-A4W of other versions after 3.6.



12 Hoai Le Nguyen, Claudia-Lavinia Ignat

3.2.3 Rails

The first official version (1.0) of Rails was released in 13-December-2005. How-
ever, the most active periods started from version 3.1. We chose to analyse the
following Rails versions: 3.1, 3.2, 4.0, 4.1 and 4.2. The results are presented in
Figure 6 and Figure 7.

Fig. 6 Rails, integration rate on files

Versions 3.1 and 4.2 have high integration rates in B3W-A3W periods.
Version 3.2 and 4.0 have two distinct active periods of integration: B3W-B2W
and A1W-A3W. Version 4.1 has three distinct active periods of integration:
B4W-B3W, B1W-A2W and A4W. Generally, for versions 3.2 and 4.0 the inte-
gration was done in the two weeks before the release date (B3W-B2W). Their
integration rates in B1W are very low: 0.83% (V3.2) and 1.26%(V4.). However,
only version 3.2 is conflict-free in B1W while version 4.0 has a high conflict
rate (30%). In contrast, versions 4.1 and 4.2 have high integration rates in
B1W: 30.93% and 18.48% respectively for V4.1 and V4.2. They also have high
conflict rates in B1W: 30.93% (V4.1), 23.08%(V4.2). We can see that the inte-
gration process in Rails had changed from version 3.1 with a high integration
rate in B1W to versions 3.2 and 4.0 with a very low integration rate in B1W.
Then the integration rate became very high in versions 4.1 and 4.2.



Title Suppressed Due to Excessive Length 13

Fig. 7 Rails, conflict rate on files

3.2.4 Linux Kernel

Linux Kernel community started using Git as the main repository in version
2.6.x. We chose to analyse the versions 2.6.39, 3.0, 3.1, 3.19, 4.0 and 4.1. Each
version was developed in 2-3 months. The versions 2.6.39, 3.0, 3.1 and 3.19
were released in 2011 while 4.0 and 4.1 were released in 2015. We analysed
how the collaboration process in Linux Kernel was changed over years.

Figure 8 shows that with the exception of V3.19, the five other versions
have almost similar integration trends with an active period of integration
of three weeks after RD(A1W-A3W). It has 4-8 times higher integration rate
than other periods. For version 3.19, the active period of integration is two
weeks before RD(B2W-B1W) with a 7 times higher integration rate.

In fact, Linux Kernel community uses a development process called ‘merge
windows’. At the beginning of a new version development cycle - right after
the official release date of previous version - the ‘merge window’ is opened.
The bulk of changes is merged during this time. The ‘merge window’ lasts for
approximately two weeks. After this period a series of release-candidates (rc)
are proposed over the next six to ten weeks. On this time, only patches which
fix problems are allowed to be submitted to the mainline. This explains why
in Linux Kernel, the most active period of integration is A1W-A3W. Note
that all the changes integrated during the merge window have been collected,
tested and staged ahead of time. It keeps the conflict rate of Linux Kernel in
this period quite low (3.6%-8.39%) in comparison to active periods of other
projects such as Rails (40%, A2W), Samba (25%, A2W), IkiWiki (46%, B1W).



14 Hoai Le Nguyen, Claudia-Lavinia Ignat

Fig. 8 Linux Kernel, integration rate on files

Additionally, Figure 9 shows that conflict rate in B2W is sightly higher than in
A2W although A2W is the most active period of integration. We can explain
that integration before the RD has higher chance to result into conflicts.

3.2.5 Overall

By analysing the collaboration process of these projects at specific time periods
which are close to release dates, we can reveal how change integration evolves
over time. In IkiWiki (3.0), Samba (3.2, 3.3) and Rails (3.1), an ‘old integration
style’ was found in which most integration works were submitted just one
week before release date (B1W). This style was changed in the next versions
of Samba (3.6) and Rails (3.2, 4.0) that is integration works were submitted
two weeks before release date. Moreover, the integration process of Rails was
changed also in its next versions (4.1, 4.2). This time, it became worst with
very high integration rate in B1W (2.5-3.5 time higher than in version 3.1).
Linux Kernel, a special project, has a more stable integration process which
is called ‘merge window’. This integration process was changed sightly over
its versions. With this analysis, we can know when Samba community started
using pre-release and release-candidate versions and how the ‘merge window’
is used effectively in Linux Kernel. However, not all the stories are revealed
such as why version 3.19 has a different active period (B2W) in comparison
with other Linux Kernel versions.

Table 4 presents the proportion of conflict types based on Release date.
Our analysis revealed that content conflict ‘CONFLICT (content)’ is the most



Title Suppressed Due to Excessive Length 15

Fig. 9 Linux Kernel, conflict rate on files

popular conflict type with 93.3%, 100%, 76%-100%, 81.85%-97.41% over all
conflicts respectively in IkiWiki, Samba, Rails and Linux Kernel.

In addition, we measured the Spearman’s rank correlation coefficient (Rho)
(SpearmanRankCorrelation, 2018) between integration rate and conflict rate.
We collected data points based on the release date. The result which is pre-
sented in Table 5 shows that the correlation between them is none or very weak
in both Linux (48 data points, negative monotonic) and Rails (18 data points,
positive monotonic). We do not have enough valid data points for IkiWiki and
Samba.

3.3 Conflict resolution

Several files can be in conflict during a merge. We counted the total number of
merges performed during the lifetime of the project and the number of merges
that leaded to unresolved conflicts. Table 6 gathers these results of all projects
analysed. When a merge is not resolved automatically by Git, users need to
resolve it manually. A user can decide to rollback to a previous version. We
provide also the rollback rate, i.e the number of times user uses rollback action
over all the merges that contain unresolved conflicts. The rollback rate is lower
in Kernel and Rails compared to IkiWiki and Samba.

In practice, after a successful merge, users build and test the merging re-
sults. A successful merge can result in build-failed or test-failed. In order to be
considered as a successful integration, a successful textual merge needs to be
built and tested successfully also. Otherwise, it is considered as higher-order



16 Hoai Le Nguyen, Claudia-Lavinia Ignat

Project Content Remove/Update Naming
name conflict conflict conflict

Rails 89.68% 2.97% 7.35%
IkiWiki 46.31% 1.48% 52.22%
Samba 64.47% 34.44% 1.09%
Kernel 90.96% 8.63% 0.41%
IkiWiki 3.0 93.33% 6.67% 0.005%
Samba 3.2 100.00% 0.00% 0.005%
Samba 3.3 100.00% 0.00% 0.005%
Samba 3.6 0.00% 0.00% 0.005%
Rails 3.1 62.50% 0.00% 37.505%
Rails 3.2 100.00% 0.00% 0.005%
Rails 4.0 100.00% 0.00% 0.005%
Rails 4.1 100.00% 0.00% 0.005%
Rails 4.2 76.00% 4.00% 20.005%
Linux 2.6.39 96.12% 3.88% 0.005%
Linux 3.0 97.41% 2.59% 0.005%
Linux 3.1 81.85% 17.74% 0.005%
Linux 3.19 97.26% 2.74% 0.005%
Linux 4.0 95.16% 4.84% 0.005%
Linux 4.1 94.49% 4.72% 0.005%

Table 4 Conflict types based on release date

Project No. of Rho P-value
name data points

Rails 18 0.102 0.343
IkiWiki 2 NA NA
Samba 2 NA NA
Kernel 48 -0.188 0.1

Table 5 Spearman’s rank correlation coefficient of integration rate and conflict rate

conflict (Brun et al., 2011). To detect these conflicts, we have to build using
provided project build-scripts and test using provided test-sets every successful
merge. We did not measure these types of conflicts as not all projects provided
test-sets.

We provided in Table 7 a more detailed analysis of the rollback action in
which we find rollback actions in all merges, not only the ones that contain
textual-conflicts. Level represents the number of following commits after a
merge when the rollback actions happen. Figure 10 illustrates levels of rollback
in which branch B2 is merged to branch B1. The merge result is M0 and C1,
C2, C3 are the following commits after the merge.

Normally, if a user decides to rollback, he can use the ‘git revert’ command
to rollback the merging. The ‘git revert SHA-1-B1’ usually creates a new
commit after the merging commit (i.e commit C1 has the same SHA-1 hash
with B1 ). We assigned level=1 to this case. However, in the most of the cases,



Title Suppressed Due to Excessive Length 17

Project No. of Unresolved conflict Rollback
name merges merge rate rate

Rails 9,728 4.34% 1.66%
IkiWiki 1,037 7.52% 5.13%
Samba 1,281 10.07% 6.98%
Kernel 38,961 9.11% 0.70%

Table 6 Frequencies of conflicting merges

B1 M0

level 0

C1

level 1

C2

level 2

C3

level 3

B2

Fig. 10 Levels of rollback action

Project name Level 0 Level 1 Level 2 Level 3 Level 4

Rails 3,217 36 2 0 0
IkiWiki 39 13 1 1 0
Samba 260 2 0 0 0
Kernel 2,016 1 0 0 0

Table 7 Rollback action after merging

users don’t want to create new commits. Users can use a set of commands to
rollback without creating a new commit such as ‘git checkout SHA-1-B1; git
reset –soft HEAD; git commit -amend’ that will rollback M0 to B1 version
(i.e commit M0 has the same SHA-1 hash with B1 ). We assigned level=0 to
this case. Note that, in practice, when merging a contributor’s work to the
main repository, the core-team members can use ‘git merge -s ours’ to chose
the main-line version as the default result when conflicts happen or use ‘git
merge –no-commit’ to test the merging results and manually fix the conflicts
before committing them. Furthermore, the rollback actions can happen in the
next one, two or three commits. We assigned level=1, level=2, level=3 to these
cases. In our measurements, we limit level to four. In fact, we could not find
any rollback actions after three commits from the merging result.

Table 7 shows that Rails (33.46% ) and Samba (20.45%) have many more
rollback actions than IkiWiki(5.21%) and Kernel(5.18%).



18 Hoai Le Nguyen, Claudia-Lavinia Ignat

3.4 Adjacent-line conflicts

In this section we analyse Git mechanism of considering concurrent modifica-
tions of two continuous lines as being in conflict (called adjacent-line conflicts).
Figure 11 illustrates an example of adjacent line conflict with both expected
and real merge result. User at site-1 makes changes on line 2 and user at site-2

Fig. 11 Adjacent-line conflict: expected and real merge results

makes changes on line 3. They then merge their changes and Git generates a
‘CONFLICT (content)’. Our hypothesis is that this is not a content conflict
because these changes are made on two different lines. Git should merge them
successfully by applying changes from both sites. To test our hypothesis, we
analysed all content conflicts in the four projects to detect all adjacent-line
conflicts. We then analysed the adjacent-line conflict resolutions that were
manually fixed by the authors to check if both changes done on the adjacent
lines were applied. If in most cases both changes were applied we can conclude
that adjacent-line conflicts should not be considered conflicts.

We used ‘git difftool’ to detect the changed lines of two sites in compar-
ing to the original document. Figure 12 illustrates how the changed-lines is
detected by denoting a changed line as ‘X’ and an unchanged line as ‘V’.
After updating the changed-lines for each content conflict, we used adjacent-
line patterns for each two continuous lines. Figure 13 (Group 1) illustrates



Title Suppressed Due to Excessive Length 19

adjacent-line conflicts where the first line is changed by only one site and the
second line by only the other site.

Fig. 12 Changed-lines

Figure 13 (Group 2) presents four patterns including both an adjacent-
line conflict and a normal content conflict. In our analysis of adjacent-line
conflicts, we excluded these patterns by considering that they can be resolved
as normal content conflicts. In our analysis we considered only adjacent-line
conflicts which do not include normal content conflicts.

Fig. 13 Adjacent-line patterns

The results are presented in Table 8 illustrating the number of adjacent-line
conflicts and their resolutions. Three types of resolutions exist: applying both
changes, applying a change from one site only (either from site-1 or site-2) and
applying no changes.

The proportions of applying both site changes are 24.39% in Samba, 57.5%
in Rails, 75% in IkiWiki and respectively 85.01% in Linux Kernel. We did



20 Hoai Le Nguyen, Claudia-Lavinia Ignat

Project Adjacent Applying Applying Other
name -line both one cases

conflicts changes change

Rails 80 46 28 6
IkiWiki 4 3 1 0
Samba 41 10 23 8
Kernel 367 312 51 4

Table 8 Adjacent line conflicts and resolutions

Adjacent-line conflicts Normal content conflicts
Project name No. of Applying No. of Applying

conflicts both conflicts both
changes changes

Rails 80 57.50% 317 5.67%
IkiWiki 4 75.00% 22 9.09%
Samba 41 24.39% 1149 14.19%
Kernel 367 85.01% 1326 13.38%

Table 9 Adjacent-line and normal content conflicts

the same analysis on how users resolve normal content conflicts and Table 9
presents a comparison of the results obtained for adjacent-line conflicts and
normal-content conflicts.

We compared the frequency of applying both changes for adjacent-line con-
flicts to that of applying both changes for normal content conflicts. Table 10
presents for each project the standardized mean-difference effect size (SdMD)
between proportions of applying both changes for adjacent-line and normal
content conflicts (EffectSizeCalculator, 2017). Only Samba has a low SdMD
and its lower bound of confidence interval is less than zero. Excepting Samba,
we obtained significant confidence at level of 95% that ‘adjacent-line conflicts’
are resolved more often by applying both changes than ‘normal content con-
flict’. Applying both changes in the case of a conflict means that the concurrent
changes were not in conflict, so the conflict was not necessary to be detected.

We had conducted an empirical test on adjacent-lines changes for Darcs
and SVN (GitChangesAnalyzer, 2017). The results show that SVN (CVCS)
and Darcs (DVCS) merge changes in adjacent lines successfully.

4 Discussion

We found that content conflict is far the most popular type of conflict with
a proportion of 46% - 90% from all conflict types. Compared to centralised
version control systems such as CVS, in Git we have a significantly higher



Title Suppressed Due to Excessive Length 21

Project SdMD Lower 95% Upper 95%
name confidence interval confidence interval

Rails 1.8872 0.4319 3.6909
IkiWiki 2.0614 1.4932 2.2812
Samba 0.405 -0.0384 0.8483
Kernel 2.1837 1.9854 2.382

Table 10 Standardized mean difference(SdMD) effect size between adjacent-line conflicts
and normal content conflicts

integration rate, i.e. concurrent changes that refer to the content of the same
file, varying from 1.5 to 22 times more than in CVS reported analysis. These
integration rates are not equally distributed over the life time of the project
but are higher close to release dates. In order to prevent conflicts, close to
release dates developers should use awareness mechanisms about the location
of their changes. Awareness, defined by Dourish and Bellotti (1992) as an
“understanding of the activities of others which provides a context for your
own activity”, has been identified by the CSCW community as one of the
most important issues in support of remote collaboration. For instance, the
awareness approach proposed in Dewan and Hegde (2007) could be adopted
to provide developers with warning messages concerning concurrent activity
and the possibility to consult a list of conflicts. Based on a selected conflict,
a user can set watches for concurrently edited elements. For instance, they
can be notified when a collaborator has finished editing the element. Another
solution could be annotation of concurrent changes (Ignat and Oster, 2008).
However, this solution is suitable only for centralised version control systems
that rely on a server and consists of computing divergence between the project
local version of a user and the current state of the project that is saved on the
server. Computing divergence in a distributed version control system where
there is no central server remains a challenge. Solutions relying on Conflict-
free Replicated Data Types such as André et al. (2013); Yu et al. (2015) that
have been adopted by Atom (AtomTeletype, 2017) can be used. Moreover,
the fact that the change in integration process can be identified based on the
integration rate can be of use to other researchers trying to extract process
related information from open-source projects.

We found that across the studied four repositories around 75% of the
adjacent-line conflicts were false positives. Adjacent-line conflicts detection
was designed to warn the developers that there are two changes on adjacent
lines that might be related and that developers should check whether the
changes are conflicting. For around 25% of cases adjacent-line conflict warn-
ings indeed helped developers to discover the conflicts reducing the costs in
later development phase. However, for the other 75% developers did some un-
needed extra work for solving the conflicts. Moreover, if concurrent changes
occur on two adjacent lines Git signals a conflict, but not in the case of two



22 Hoai Le Nguyen, Claudia-Lavinia Ignat

lines separated by two or more lines. Our results suggest that Git should re-
consider signalling conflicts on adjacent lines inside the source code file which
requires developers to do in most of the cases some extra work for removing
the conflict. A solution would be that Git sends a warning message to the users
in the case of concurrent changes on adjacent lines, but does not represent this
conflict inside the source code file. Note that in Subversion and Darcs version
control systems, concurrent modifications on adjacent lines are not considered
as conflict. Our suggestion would be useful for tool builders to help developers
in avoiding wasting time on trivial merge conflicts.

Our study features some pitfalls of mining DVCS repositories as they lack
a centralized logging server. The history may be rewritten by the repository
owner (Bird et al., 2009): the order of commits can be altered, commits can
be removed, a sequence of commits can be flattened from multi-branches into
a single branch, edits can be squashed in multiple commits via rebase. In our
analysis we ignored merges flattened due to rebasing. In German et al. (2015)
the authors presented a new method called continuous mining. Instead of
mining only the primary repository (called blessed), this method continuously
observes all known repositories of a software project to cover the complete
history of the project development. Their empirical study focuses on Linux
Kernel (LinuxKernel, 2015) which has 479 repositories (from 2012). Among
these repositories, 22% did not contribute a single commit to the blessed.
Nevertheless, continuous mining is still a re-active logging mechanism and it
is not considered as a permanent solution to the need of centralized logging
features of Git.

By analysing only the history from official servers of four projects, we
also missed information regarding user communication. The short description
of commits does not include this data. Email threads in project’s mailing-
list such as Linux Kernel Mailing List (LinuxKernelMailingList, 2017) and
GitHub conversations (comments of a pull-request or an issues) are promising
for extracting this data.

5 Conclusion

The goal of this work was to analyse concurrencies and conflicts in Git, a
decentralized version control system. We analysed the corpus of four large
projects in Git and ours findings are as follows.

Generally, a higher integration rate of a project does not generate a higher
unresolved conflict rate. It depends on how the integration process is managed.
Linux Kernel is a large-scale project with a list of subsystem maintainers which
keep the lowest conflict rate for this project although its integration rate is
much more higher than the other projects. Excepting Linux Kernel, Rails
which was developed using GitHub pull-based model has 5 times lower conflict
rate than Samba(shared repository) and 3 times lower than IkiWiki(private
repository). A more detailed analysis based on release dates shows that each



Title Suppressed Due to Excessive Length 23

project has its own integration process with dynamic integration rates that
changed during project’s development cycle.

The rollback action is used more often in case of higher-order conflicts
than in case of textual-conflicts. Most of rollback actions do not create new
commits (level=0 ) meaning that users generally try to test the merge result
before deciding to rollback or not.

In contrast to Darcs and SVN, Git considers changes made on two adjacent
lines as content conflict. Based on our analysis, users mostly apply all changes
when resolving the adjacent lines conflicts. We proposed that Git should merge
concurrent changes on two adjacent lines and throw a warning message instead
of considering them as conflicting.

References

André, Luc; Stéphane Martin; Gérald Oster; and Claudia-Lavinia Ignat (2013).
Supporting Adaptable Granularity of Changes for Massive-scale Collabora-
tive Editing. In E. Bertino, D. Georgakopoulos, M. Srivatsa, S. Nepal and
A. Vinciarelli (eds): CollaborateCom’13. Proceedings of the 9th IEEE Inter-
national Conference on Collaborative Computing: Networking, Applications
and Worksharing, Austin, Texas, USA, 20 October 2013 – 23 October 2013.
Washington: IEEE Computer Society, pp. 50–59.

AtomTeletype (2017) Code together in real time with Teletype for Atom.
https://blog.atom.io/2017/11/15/code-together-in-real-time-with-teletype-
for-atom.html. Accessed 19 March 2018.

Berliner, Brian (1990). CVS II: Parallelizing Software Development. In:
USENIX’90. Proceedings of the Winter 1990 USENIX Technical Confer-
ence, Washington, D.C, USA, 22 January 1990 – 26 January 1990. Berke-
ley: USENIX Association, pp. 341–352.

Bird, Christian; Peter C. Rigby; Earl T. Barr; David J. Hamilton; Daniel M.
German; and Prem Devanbu (2009). The promises and perils of mining git.
In: MSR’09. Proceedings of the 6th International Working Conference on
Mining Software Repositories, Vancouver, BC, Canada, 16 May 2009 – 17
May 2009. Washington: IEEE Computer Society, pp. 1–10.

Bitbucket (2008) Atlassian Bitbucket. Code, Manage, Collaborate.
https://bitbucket.org/product. Accessed 19 March 2018.

Brindescu, Caius; Mihai Codoban; Sergii Shmarkatiuk; and Danny Dig (2014).
How do centralized and distributed version control systems impact software
changes? In P. Jalote, L. Briand, and A. van der Hoek (eds): ICSE’14.
Proceedings of the 36th International Conference on Software Engineering,
Hyderabad, India, 31 May 2014 – 7 June 2014. New York: ACM, pp. 322–
333.

Brun, Yuriy; Reid Holmes; Michael D. Ernst; and David Notkin (2011). Proac-
tive detection of collaboration conflicts. In: ESEC/FSE’11. Proceedings of
the 19th ACM SIGSOFT Symposium and the 13th European Conference on

https://blog.atom.io/2017/11/15/code-together-in-real-time-with-teletype-for-atom.html
https://blog.atom.io/2017/11/15/code-together-in-real-time-with-teletype-for-atom.html
https://bitbucket.org/product


24 Hoai Le Nguyen, Claudia-Lavinia Ignat

Foundations of Software Engineering, Szeged, Hungary, 5 September 2011 –
9 September 2011. New York: ACM, pp. 168–178.

Brun, Yuriy; Reid Holmes; Michael D. Ernst; and David Notkin (2013). Early
detection of collaboration conflicts and risks. IEEE Transactions on Soft-
ware Engineering, vol. 39, no. 10, October 2013, pp. 1358–1375.

Collins-Sussman, Ben; Brian W. Fitzpatrick; and Michael Pilato (2004). Ver-
sion Control with Subversion. Sebastopol: O’Reilly & Associates.

Darcs (2003) Darcs. Distributed. Interactive. Smart. http://darcs.net. Ac-
cessed 19 March 2018.

Dewan, Prasun; and Rajesh Hegde (2007) Semi-synchronous conflict detec-
tion and resolution in asynchronous software development. In Bannon L.
J., Wagner I., Gutwin C., Harper R. H. R., Schmidt K. (eds): ECSCW’07:
Proceedings of the 10th European Conference on Computer Supported Coop-
erative Work, 24 September 2007 – 28 September 2007, Limerick, Ireland.
London: Springer, pp. 159–178.

Dourish, Paul; and Victoria Bellotti (1992). Awareness and coordination in
shared workspaces. In: CSCW’92. Proceedings of the 1992 ACM Confer-
ence on Computer-supported Cooperative Work, Toronto, Ontario, Canada,
1 November 1992 – 4 November 1992. New York: ACM, pp. 107–114.

EffectSizeCalculator (2017) Practical meta-analysis effect size calcu-
lator. https://campbellcollaboration.org/escalc/html/EffectSizeCalculator-
SMD10.php. Accessed 19 March 2018.

German, Daniel M.; Bram Adams; and Ahmed E. Hassan (2015). Continuously
mining distributed version control systems: an empirical study of how Linux
uses Git. Empirical Software Engineering, vol. 21, no. 1, February 2016, pp.
260–299.

Git (2005) Git. Fast version control system. https://git-scm.com/. Accessed
19 March 2018.

GitChangesAnalyzer (2017) Python scripts for analyzing paral-
lelism and conflicting changes in Git. https://github.com/coast-
team/ParallelismAndConflictingChangesInGit. Accessed 19 March 2018.

GitHub (2008) GitHub. Web-based Git repository hosting service.
https://github.com/. Accessed 19 March 2018.

Gousios, Georgios; Martin Pinzger; and Arie van Deursen (2014). An ex-
ploratory study of the pull-based software development model. In P. Jalote,
L. Briand, and A. van der Hoek (eds): ICSE’14. Proceedings of the 36th In-
ternational Conference on Software Engineering, Hyderabad, India, 31 May
2014 – 7 June 2014. New York: ACM, pp. 345–355.

Gutwin, Carl; Reagan Penner; and Kevin Schneider (2004). Group awareness
in distributed software development. In: CSCW’04. Proceedings of the 2004
ACM Conference on Computer Supported Cooperative Work, Chicago, Illi-
nois, USA, 6 November 2004 – 10 November 2004. New York: ACM, pp.
72–81.

Ignat, Claudia-Lavinia; and Gérald Oster (2008). Awareness of Concurrent
Changes in Distributed Software Development. In Meersman R., Tari Z.
(eds): OTM 2008. On the Move to Meaningful Internet Systems, OTM

http://darcs.net
https://campbellcollaboration.org/escalc/html/EffectSizeCalculator-SMD10.php
https://campbellcollaboration.org/escalc/html/EffectSizeCalculator-SMD10.php
https://git-scm.com/
https://github.com/coast-team/ParallelismAndConflictingChangesInGit
https://github.com/coast-team/ParallelismAndConflictingChangesInGit
https://github.com/


Title Suppressed Due to Excessive Length 25

Confederated International Conferences, CoopIS, DOA, GADA, IS, and
ODBASE 2008, Monterrey, Mexico, 9 November 2008 – 14 November 2008,
Lecture Notes in Computer Science, vol 5331. Berlin, Heidelberg: Springer,
pp.456–464.

IkiWiki (2015) Ikiwiki. https://ikiwiki.info/. Accessed 19 March 2018.
Kasi, Bakhtiar K.; and Anita Sarma (2013). Cassandra: Proactive conflict
minimization through optimized task scheduling. In D. Notkin, B. H. C.
Cheng, and K. Pohl (eds): ICSE’13. Proceedings of the 35th International
Conference on Software Engineering, San Francisco, CA, USA, 18 May 2013
– 26 May 2013. Piscataway: IEEE, pp. 732–741.

LinuxKernel (2015) Linux kernel. https://www.kernel.org/. Accessed 19
March 2018.

LinuxKernelMailingList (2017) Linux kernel mailing list archive.
https://lkml.org/lkml. Accessed 19 March 2018.

McKee, Shane; Nicholas Nelson; Anita Sarma; and Danny Dig (2017). Software
practitioner perspectives on merge conflicts and resolutions. In: ICSME’17.
Proceedings of the IEEE International Conference on Software Maintenance
and Evolution, Shanghai, China, 17 September 2017 – 22 September 2017.
Washington: IEEE Computer Society, pp. 467–478.

Mens, Tom (2002). A state-of-the-art survey on software merging. IEEE Trans-
actions on Software Engineering archive, vol. 28, no. 5, May 2002, pp. 449–
462.

Mercurial (2005) Mercurial.Work easier, Work faster. https://www.mercurial-
scm.org/. Accessed 19 March 2018.

Perry, Dewayne E.; Harvey P. Siy; and Lawrence G. Votta (2001). Parallel
changes in large-scale software development: an observational case study.
ACM Transactions on Software Engineering and Methodology, vol. 10, no.
3, July 2001, pp. 308–337.

Reiher, Peter; John Heidemann; David Ratner; Greg Skinner; and Ger-
ald J. Popek (1994). Resolving file conflicts in the Ficus file system. In:
USENIX’94. Proceedings of the USENIX Summer 1994 Technical Confer-
ence, Boston, Massachusetts, USA, 6 June 1994 – 10 June 1994. Berkeley:
USENIX Association, pp. 183–195.

Ruby (2015) Ruby on rails: The popular MVC framework for Ruby.
http://rubyonrails.org/. Accessed 19 March 2018.

Samba (2015) Samba - opening windows to a wider world.
https://www.samba.org/. Accessed 19 March 2018.

de Souza, Cleidson R. B.; David Redmiles; and Paul Dourish (2003). “Breaking
the code”, moving between private and public work in collaborative software
development. In: GROUP’03. Proceedings of the 2003 international ACM
SIGGROUP conference on Supporting group work, Sanibel Island, Florida,
USA, 9 November 2003 – 12 November 2013. New York: ACM, pp. 105–114.

de Souza, Cleidson R. B.; David Redmiles; Li-Te Cheng; David Millen; and
John Patterson (2004). Sometimes you need to see through walls: A field
study of application programming interfaces. In: CSCW’04. Proceedings of
the 2004 ACM conference on Computer supported cooperative work, Chicago,

https://ikiwiki.info/
https://www.kernel.org/
https://lkml.org/lkml
https://www.mercurial-scm.org/
https://www.mercurial-scm.org/
http://rubyonrails.org/
https://www.samba.org/


26 Hoai Le Nguyen, Claudia-Lavinia Ignat

Illinois, USA, 6 November 2004 – 10 November 2004. New York: ACM, pp.
63–71.

SpearmanRankCorrelation (2018) Spearman’s rank correlation coefficient.
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient.
Accessed 19 March 2018.

Yu, Weihai; Luc André; and Claudia-Lavinia Ignat (2015). A CRDT sup-
porting selective undo for collaborative text editing. In A. Bessani and S.
Bouchenak (Eds.): DAIS’15. Proceedings of the 15th IFIP WG 6.1 Inter-
national Conference on Distributed Applications and Interoperable Systems,
Grenoble, France, 2 June – 4 June 2015. New York: Springer-Verlag, vol.
9038, pp. 193–206.

Zimmermann, Thomas (2007). Mining workspace updates in CVS. In:MSR’07.
Proceedings of the Fourth International Workshop on Mining Software
Repositories, Minneapolis, Minnesota, USA, 19 May 2007 – 20 May 2007.
Washington: IEEE Computer Society, pp. 1–11.

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

