
HAL Id: hal-01917636
https://hal.archives-ouvertes.fr/hal-01917636

Submitted on 9 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blockchain-Based Auditing of Transparent Log Servers
Hoang-Long Nguyen, Jean-Philippe Eisenbarth, Claudia-Lavinia Ignat,

Olivier Perrin

To cite this version:
Hoang-Long Nguyen, Jean-Philippe Eisenbarth, Claudia-Lavinia Ignat, Olivier Perrin. Blockchain-
Based Auditing of Transparent Log Servers. 32th IFIP Annual Conference on Data and Applications
Security and Privacy (DBSec), Jul 2018, Bergamo, Italy. pp.21-37, �10.1007/978-3-319-95729-6_2�.
�hal-01917636�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162978917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-01917636
https://hal.archives-ouvertes.fr


Blockchain-Based Auditing of Transparent Log
Servers

Hoang-Long Nguyen, Jean-Philippe Eisenbarth, Claudia-Lavinia Ignat, and
Olivier Perrin

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
hoang-long.nguyen@loria.fr

Abstract. Public key server is a simple yet effective way of key manage-
ment in secure end-to-end communication. To ensure the trustworthiness
of a public key server, CONIKS employs a tamper-evident data structure
on the server and a gossiping protocol among clients in order to detect
compromised servers. However, due to lack of incentive and vulnerability
to malicious clients, a gossiping protocol is hard to implement in practice.
Meanwhile, alternative solutions such as EthIKS are too costly. This
paper presents Trusternity, an auditing scheme relying on Ethereum
blockchain that is easy to implement, inexpensive to operate and resilient
to malicious clients. We also conduct an empirical study of system be-
haviour in face of attacks and propose a lightweight anomaly detection
algorithm to protect clients against such attacks.

Keywords: Authentication · Public key · Blockchain · Auditing · Ethereum

1 Introduction

In order to meet user demands regarding online privacy and prevent digital
snooping, identity and data theft, we can see in the last years an increase in the
number of end-to-end encryption (E2EE ) messaging services. A major challenge
in any E2EE system is to prevent man-in-the-middle attack (MITM ) where
an adversary impersonates a legitimate communication participant. Thus, some
E2EE systems leverage Out-of-Band (OOB) channels for client authentication by
means of manual comparison of public key fingerprints [27] or pre-known shared
passwords [5]. However, secure and easy to use OOB channel is hard to achieve
in practice. Password entropy is often overlooked by users while fingerprint com-
parison is error-prone and cumbersome [22]. Other client authentication solutions
rely on trusted third parties, i.e. key servers to distribute and authenticate public
keys among clients. Many popular E2EE services such as WhatsApp [21] adopt
centralized key servers as they are easy to use and straightforward to implement.
However, a centralized key server becomes a system single point of failure being
vulnerable to attacks from adversaries or surveillance agencies. Therefore, secure
and autonomous client authentication remains a major challenge for E2EE.

Rather than preemptively verify the exchanged keys, by using the Key trans-
parency approach [13] [17] [26], clients can verify if the key server behaves correctly



2 HL. Nguyen et al.

during communication. The general idea is to turn the key server to a transparent
log server using an authenticated data structure [18] that is append only and can
be efficiently audited. The key server acts as a prover who returns public keys
upon request along with compact proofs that can be verified by clients. Thus,
clients do not worry about MITM attack as any attempt to modify client keys is
recorded on the auditable server log.

Authenticated data structure ensures that the server cannot change user
keys without being recorded. It is, however, possible for a compromised key
server to equivocate by presenting different answers to different clients. Therefore,
log clients need a way to cross validate the received information to ensure the
key server consistency among clients. This process is called auditing. There are
third-party clients (auditors) who frequently query the key server for proofs.
Thus, whenever clients receive replies from the key server, they can cross check
the proofs with these auditors. State of the art suggests the use of a gossiping
protocol among log clients and auditors to exchange information and effectively
blacklist any exposed compromised key server.

However, such gossiping mechanism is hard to implement in practice [3]. It is
vulnerable to certain classes of failures when attackers are present in the network
i.e. Sybil attack [10]. It is hard to incentivize clients to participate and bootstrap
the gossiping network. Users’ privacy may also be at risk [20]. So far, we are
not aware of any complete gossiping protocol design in current Transparent log
systems. A similar effort in Certificate Transparency [15] is being standardized
though after several years, and it is still not finished. Rather than using a separate
gossiping protocol, EthIKS [4] implements the transparent log server on Ethereum
blockchain [23]. However, as EthIKS operation cost increases proportionally with
the number of users and due to the significant increase in the price of ETH, the
system does not scale to large key servers with millions of users.

Auditing is a mandatory mechanism to secure a transparent log scheme. How-
ever, proposed auditing mechanisms using gossiping are vulnerable and difficult to
implement. Meanwhile, blockchain based auditing is considered too expensive to
operate as demonstrated in EthIKS. To tackle this problem, we present Truster-
nity , a practical transparent log auditing scheme using blockchain that is secure,
easy to implement, suitable for large scale key servers, as well as lightweight for
clients. The contributions of this paper are the following:

– We design Trusternity, a secure, scalable auditing mechanism using a blockchain
to ensure key server consistency. Our scheme is complete and more cost effec-
tive in comparison to state-of-the-art approaches.

– We implement a proof-of-concept for Trusternity using Ethereum and ex-
tending a state-of-the-art solution.

– We simulate an attack that deceives clients to accept a compromised blockchain
and provide metrics to help detection of such attack.

2 Requirements

We now define several requirements for our auditing system.



Blockchain-Based Auditing of Transparent Log Servers 3

R1 Trustless auditor: The system must be able to detect anomaly in auditing
process even when clients connect to malicious auditors.

R2 Scalability: The system is scalable with unbounded number of servers and
clients. For this, the system must satisfy the following sub requirements.

R2.1 Incentive: Auditors must be incited for their service of querying key
servers and answer client requests.

R2.2 Budget operation: We want to reduce the operation cost of the key server
when participating in the auditing process.

R2.3 Thin client: The auditing mechanism must not require extensive client
resources so that it can be easily adopted in practice.

3 Background and related work

In this section, we shortly describe some background notions and related work.

3.1 Key Transparency

Key transparency brings autonomous key verification to end users in order to elim-
inate the need to fully trust a key server. Melara et al. introduced CONIKS [17],
the first key transparency scheme which also preserves user privacy. Google Key
Transparency [13] and Yahoo End-to-End [26] rely on this approach.

A CONIKS system includes three major components: (1) a CONIKS server
managed by an Identity Provider (IP) that stores bindings between user identities
and their public keys, (2) CONIKS clients which run on users’ devices to manage
cryptographic keys and (3) auditors who help clients to verify IPs consistency.

A CONIKS server uses a Merkle radix tree to map each user to his public key
in a binding. The index path of each binding in the tree is randomized based on
the user identity. At every fixed period of time (called an epoch), the CONIKS
server signs the root of the Merkle tree to create a Signed Tree Root (ST R) value.
A ST Rt at epoch t is also hashed together with ST Rt−1 to form a hash chain of
the entire history of the key server. The server then publishes ST Rt to all clients
and auditors. When a client queries for a public key, the CONIKS server returns
the chain of ST R values, the binding at the leaf and an authentication path from
the leaf to ST R to prove that the binding exists in the tree. The client can cross
validate ST R value with any auditors to validate the CONIKS server answer.

CONIKS guarantees two security properties:

S1 No malicious keys: At every epoch t, a client looks up its own binding on
the server by performing a monitor operation. Thus, an IP cannot insert
malicious keys binding for users without being detected.

S2 Non-equivocation: After monitoring, the client queries ST Rt from auditors
via an auditing protocol. Thus, an IP cannot provide different answers to
different user queries without accepting a high risk of being exposed. In case
that an IP and auditors collude to equivocate a client, Melara et al. [17]
shows that by choosing randomly 4 auditors, a CONIKS client can discover
a malicious server with 99,7% probability.



4 HL. Nguyen et al.

As CONIKS data structure is very efficient and privacy-preserving, our
solution extends CONIKS by replacing its auditing mechanism.

3.2 Gossiping

In CONIKS execution model, an IP and clients need to disseminate ST R in every
epoch to ensure that the key server does not equivocate different ST R to different
clients. CONIKS suggests a decentralized gossiping protocol for this purpose. In
this protocol, all IPs act as auditors for each other. For example, Alice@ f oo.com
can perform audit with bar .com while Bob@bar .com can audit his key server
with f oo.com.

However, such gossiping network is hard to design in practice where there
are potentially millions of IPs and clients. The protocol has to be decentralized
so that the system does not depend on any single trust party. Each IP needs to
broadcast his ST R at every epoch to all other parties and has to answer random
queries from any clients. There is no incentive for IPs to provide such extra
overhead of communication bandwidth or for third party auditors to query an IP
and to answer to random clients.

Another limitation for the gossiping network is the epoch time. CONIKS
suggests an epoch time of one hour. This period depends not only on the
computational power of each key server, but also the efficiency of the gossip
protocol. The longer the epoch time is, the longer it takes for a client to register
or revoke its key to the system, hence the longer the vulnerability window for an
attack is. Meanwhile, shorter epoch time will increase the communication traffic
in the gossiping network.

Finally, a decentralized gossip protocol is still vulnerable to network partition
attack. An attacker can isolate a client from honest gossiping nodes to trick
the client to accept compromised results from the server. Similarly, an attacker
can plague the network with a great number of malicious nodes to increase the
possibility that the client will connect to his nodes (Sybil attack).

A good example for the challenging aspect of this situation is the standard-
ization process for gossiping protocol in Certificate Transparency [20] where
browsers, auditors and certificate authorities gossip about the root hash of Cer-
tificate Transparency log. The standard has been on discussion for several years
but it is still not finalized.

To sum up, while the proposed gossiping network protocol in CONIKS and
similar systems is necessary for auditing CONIKS key server, such solution is
hard to implement in an efficient, scalable, Sybil resilient and incentive manner.

3.3 Blockchain

Blockchain [19] is an append-only list of blocks where each block is linked directly
to the previous one with cryptographic hashes. A blockchain system operates using
a peer-to-peer (P2P) architecture where peers create and exchange transactions
to modify the state of the system. Those transactions can hold different data
types from financial records [6] to arbitrary code execution instructions [23].



Blockchain-Based Auditing of Transparent Log Servers 5

Wust et al. [25] show a methodology to determine how a blockchain system
solves various technological problems. Indeed, we can simplify a set of requirements
for an auditing method as follows. First, a CONIKS server needs to disseminate
a state (which is encapsulated in a ST R) every epoch. There should be multiple
servers that can disseminate information asynchronously since a user might
have different accounts at different IPs. There is also no trusted third party in
the network. Wust methodology shows that blockchain – either permissioned
or permissionless, depending on whether only authorized set of entities or any
entities can read or write the blockchain respectively – is the suitable solution
for those requirements. In this paper, we consider a generic auditing mechanism
that allows any untrusted CONIKS server to participate. Therefore, we choose
permissionless blockchain, in particular, Ethereum as the underlying platform.

Ethereum is one of the major permissionless blockchain systems in the world
besides Bitcoin. Ethereum uses blockchain as a ledger of transactions where a
sender deposits coins (money) to a receiver. The sender signs the transaction
with his private key and gives the ownership of the coin to the receiver so that
later the receiver can redeem the received coin for subsequent transactions. A
main issue addressed by the system is how to avoid sender generating invalid
transactions of double spending a coin to two different receivers. Due to the
decentralized nature of the system, the two receivers might not know each other,
thus blindly accept the invalid transaction.

Similar to Bitcoin and some other blockchain solutions, Ethereum resolves
this issue using Proof-of-work (POW). A group of miners participating in the
system uses their computing power to solve a puzzle in a form of exhaustive
search at a given difficulty. The first miner who solves the puzzle can create a
block consisting of a set of pre-selected transactions and broadcast the solution.
Other miners validate the block and move on to solve next puzzles. In the case
that a sender attempts to double-spend, only transactions chosen by the winning
miner will be considered valid.

In case there are multiple forks of the chain, a miner always chooses the
longest chain, i.e. the chain with the highest accumulated difficulty, to work on
the next block. Thus, after some time, the whole network will abandon shorter
forks. According to this consensus rule, the longer a block stays in the blockchain,
the harder it is to be discarded by other miners. An alternative fork would have
to solve all puzzles starting from the mentioned block to the end of the chain.
Unless there is a party who owns more than 50% of the computing power of
the whole Ethereum network, it is impossible for somebody to always produce a
longer chain.

We chose Ethereum as our underlying platform as, in contrast to Bitcoin,
it features a Turing-complete virtual machine that can execute scripts defined
by users in various smart contracts and submitted inside a transaction. The
script, along with the transaction, is permanently included within the blockchain
unless it is scripted to self destruct at some point. Users can execute functions
in the script by sending other transactions to the contract with appropriate
transaction fee and parameters. These transactions are validated and executed by



6 HL. Nguyen et al.

all Ethereum clients. The transaction fee is calculated by an internal unit called
gas and then paid by the sender in ETH. In this paper, we use an exchange rate
of e 500 for 1 ETH (as in January 1st 2018).

3.4 EthIKS

EthiKS is the first contribution that proposes using a blockchain to enhance
CONIKS. EthIKS implements a CONIKS server in an Ethereum smart contract.
In particular, the smart contract stores the Merkle tree in the persistent storage of
Ethereum. The server can update the tree by executing the smart contract, while
a client can query public keys by extracting data from the blockchain storage.
As EthIKS clients have the same view of the key server within the blockchain,
no separate gossip protocol is needed for key server consistency.

However, EthIKS introduces several inconveniences to the original CONIKS
scheme. In order to fully trust the blockchain, EthIKS clients must download and
validate every single transaction from the genesis block to the most recent block
which is around 100GB. This is in contradiction with our R2.3 requirement.
Although Ethereum light client can significantly reduce the bandwidth amount,
EthIKS must trust a third party to deliver the lightweight block header (see R1).

Moreover, EthIKS server operates entirely on Ethereum smart contracts. Every
operation affecting the key server database has to be recorded in a transaction.
EthIKS claimed that those transactions are relatively cheap (e.g. approximately
e 0.0004 for an insertion, not including the mandatory transaction fee). However,
for a large size key server (million users) with high key change frequency, it
will introduce great additional cost for the Identity Provider. Thus, R2.2 is not
satisfied.

4 Architecture

We present the architecture design and implementation of our proposed au-
diting scheme. As discussed above, we choose CONIKS data structure for our
transparent-log server so we focus our proposal on the auditing scheme. Similar
to EthIKS, we consider blockchain as an effective piggyback channel for such
purpose. We also optimize the system so that server operation cost is kept at
minimum. We develop Trusternity [9] and depict the general architecture in
figure 1. The architecture contains four modules: Storage, Smart Contract, Server
and Client. We explain each module in detail in the following subsections.

4.1 Storage

We consider Ethereum as an immutable distributed database. Thus, we can use
Ethereum to store and distribute ST R to all clients. We consider transaction
log for this purpose. A transaction Log L is a collection of Log entry l which is
the result of the code execution in Ethereum virtual machine (EVM ) and can
be recomputed at anytime by re-executing the code stored in the blockchain.



Blockchain-Based Auditing of Transparent Log Servers 7

Fig. 1. Trusternity architecture

Therefore, storing data in log costs only 8 gas per byte, 80 times less than storing
data inside the smart contract as in EthIKS [23]. The downside of this method is
that we cannot directly access log data from smart contracts. Yet, we designed
our own smart contract to address this problem.

We also consider the hybrid approach where actual data is stored in an
immutable data structure provided by third party services such as IPFS [2] while
the smart contract only holds a reference pointer to data location. Although this
method significantly reduces the blockchain storage cost, clients have to rely on
third party services. Thus, we do not use this approach.

4.2 Trusternity Smart Contract

We develop a Trusternity smart contract T SC on Ethereum 1. Each IP is mapped
by its Ethereum wallet address in a map data structure ProviderList. We assume
that each IP only uses one address to create and sign transactions. The smart
contract exposes two main functions: Register and Publish. Register accepts
server name and related meta-data to insert into ProviderList then set it’s
lastepoch as 0. At each epoch, a registered server calls the Publish function by
sending an epoch number and a 32 bytes ST R. A key server must not be able
to publish different ST R for the same epoch or modify the previous ones. It
also must not be able to publish ST R in different sequence order to limit client
difficulty in tracking and ordering those values. To use transaction log storage,
we defined event Published which is fired at every Publish function call. The
event is indexed by two topics, i.e. the sender address and epoch number while
ST R is kept in data field.

4.3 Trusternity server

A Trusternity server T S is a transparent key server that enables auditing via
Ethereum. T S consists of three components: a CONIKS Server S, a Trusternity
extension for server Sx and an Ethereum wallet W . S is the original CONIKS
server. A CONIKS server handles registration, look-up and monitoring keys
operations. At every epoch, the server automatically recalculates its Merkle Tree

1 The full source can be found at https://github.com/coast-team/trusternity-
contract/blob/master/src/trusternity_log.sol



8 HL. Nguyen et al.

database. We then developed Sx as a plugin for S. The extension allows S to
communicate with W , the official Go implementation of the Ethereum protocol [1],
via a RPC API. In every epoch, T S sends an Ethereum transaction, embedded
with ST R, to a smart contract on the blockchain network.

1. Register: Sx calls smart contract Register function.
2. Calculate STR: As defined in CONIKS.
3. Get l astE poch: Sx checks last epoch from T SC. Though this step is optional,

it helps Sx to avoid sending duplicate transactions blindly to T SC. Sx then
performs a check to make sure that the server is at the correct epoch e where
e = lastepoch + 1.

4. Publish: Sx calls Publish function and sends the new ST Re to T SC.
5. Canonical chain confirm: It is required to wait for a certain number of

blocks γ to avoid chain reorganization [24]. Currently, we set γ = 5. After γ
block, Sx checks again if the transaction is correctly included in the chain.

4.4 Trusternity client

A Trusternity client TC is a key management software that a user runs on his
computer. TC has three components: a CONIKS client C, a Light Ethereum
Wallet Wl and a Trusternity Extension for client Cx. C performs public key
registration and looks up other public keys by sending HTTP requests to S as
designed in CONIKS.

We add an extension module Cx to C that handles public key auditing using
Ethereum. The extension is configured to synchronize epoch time with the server
and then it regularly performs look up and audits registered public keys. Unlike
T S, TC uses a light Ethereum wallet that can significantly reduce local storage
and network bandwidth concerning the blockchain. We also found that a light
wallet for client is enough to secure Trusternity scheme. The auditing process
involves three steps as follows.

1. Register: As defined in CONIKS.
2. Lookup: When TC enables auditing with Trusternity, TC periodically

performs public key lookup operation with its own identity (i.e. email) and
validates the authentication path.

3. Light chain lookup: After validating the authentication path and the
public key, TC follows light wallet look up protocol to find the corresponding
ST R′ of the server in that epoch. This value is then compared to the received
ST R from step 2.

4.5 Light Ethereum Wallet

In a cryptocurrency scheme, in order to fully trust the blockchain, a client must
download and validate all transactions starting from the genesis block. Currently,
an Ethereum wallet must download around 100 GB data. This type of client is
called a full client/wallet which we run on Trusternity server. However, for a client



Blockchain-Based Auditing of Transparent Log Servers 9

Fig. 2. Trusternity deployment with a proxy wallet

who is not interested in cryptocurrency, it is hard to force him to download and
store all transactions just to extract the log from some particular transactions
published by T S.

A light client, on the contrary, only downloads block headers and transactions
filtered with requests from the client. Ethereum light client protocol is specified
in [8]. As stated in the specification, an Ethereum light client can efficiently
"watch" for events that are logged by T S by filtering transactions tagged only
with log topics IP.Adr and e.

According to the protocol specification, using a light client does not offer full
security function of a blockchain. In fact, Wl cannot check if a downloaded block
header H is completely valid or not. Wl can only make sure that H contains a
valid POW result. Wl also does not have access to other information in a full
block such as the block state tree. As Trusternity does not use that information,
we do not need the state tree. Yet, the described security limitation of Wl is a
great concern. Section 5 will discuss this problem in detail.

4.6 Deployment architecture

As Trusternity works over Ethereum, we want to make sure the system does not
create undesirable impacts to the Ethereum ecosystem. We assume that there
are thousands of W and millions of corresponding Wl connected over Ethereum
P2P network. A light client does not, or cannot, relay data like a full node,
yet it consumes bandwidth from other full nodes. Thus, it reduces the network
throughput.

For this reason, we propose that each T S hosts a centralized proxy service
W p that relays Ethereum block headers and relevant transactions from T S to
other Wl. W p can be replicated and balanced so that there is no bottleneck in
system availability. Optionally, if needed, Wl can also participate in the public
Ethereum network. We depict the deployment architecture in figure 2.

From a security point of view, Wl should trust W p in the same way as Wl
trusts any other full client in the public Ethereum network. The only difference



10 HL. Nguyen et al.

here is that W p is hosted by IP as a way to improve the availability of Trusternity
without damaging the Ethereum ecosystem.

5 Security analysis

In this section we analyze the security of Trusternity in terms of requirements
defined in section 2.

Trusternity uses S and C from CONIKS. Thus, we retain security requirement
[S1] from CONIKS. For [S2], if we assume Ethereum blockchain is trustworthy,
the auditing is then similar to that in CONIKS where auditors are Ethereum
clients. However, if an adversary Adv compromises T S, it is possible that the
adversary presents TC a fake blockchain. We now present several scenarios where
Adv can perform such attack.

5.1 Scenarios

Let us consider a scenario where Alice, Bob and Charlie use a key server T S as in
figure 2. An adversary Adv compromises T S and wants to perform MITM attack
against the 3 users. Thus, besides an honest T S, Adv maintains a compromised
T S′ where he keeps < Alice, PKAdv >. At epoch e, T S sends a Publish transaction
Te to Ethereum blockchain (MainNet) for Alice to monitor while sends T ′e from
T S′ to a fake blockchain. Adv then sends this fake chain to Bob to trick him into
accepting PKAdv.

As in figure 2, if Adv can compromise W p, he will succeed in tricking Bob
into accepting a compromised blockchain. Thus, Bob will have no way to detect
the attack. However, if the user already has connection to other Ethereum
nodes in MainNet as Charlie, the situation is more complex. First, Adv can
compromise several Ethereum full nodes and find a way to redirect Charlie
to those compromised nodes. This is sometimes referred as eclipse attack [16].
Secondly, if Adv can hijack Charlie’s network connection, he can simply block all
connections to honest nodes except to W p. Lastly, Adv can try to perform Sybil
attack on MainNet. Nevertheless, we see that Adv has various ways of tricking a
user to connect a compromised full node and accept a compromised blockchain.

Detecting a malicious blockchain while connecting to an untrusted full node is
a mandatory step to satisfy both [S2] and [R1] requirements. We now simulate
scenarios when a client is fed on a malicious blockchain and present how to detect
such problem.

Recall from section 3.3 that miners run a POW algorithm to solve a computing
puzzle at a given block difficulty dn of block number n > 0 at tn. dn is calculated
based on dn−1 and the time interval ∆tn = tn − tn−1 [7]. The calculation function
is tuned so that the average block time of the Ethereum network is around 17
seconds. For example, dn increases if ∆tn < ∆tn−1 and decreases otherwise. dn, tn
and the accumulated difficulty

∑
d of all blocks in the chain is stored in each

block header. Therefore, if Adv controls all of the neighbor nodes of Wl, Adv
must provide a malicious, yet valid blockchain to Wl. Assume that Wl has access



Blockchain-Based Auditing of Transparent Log Servers 11

to a portion of MainNet from block 0 to block m − 1 until Adv decides to fork
into a fake chain. This can be achieved by hard coding checkpoint blocks in Cx.
If the adversary does not have enough computing power, he cannot solve POW
with the honest chain difficulty as fast as MainNet. Thus, the client will observe
significant increases in block time interval and drops in block difficulty. We then
conduct a simulation on a private Ethereum network to simulate this scenario
and propose our method to automatically detect the attack on the client side.

5.2 Attack simulation

We deploy a private Ethereum network of 40 miners on a testbed system. All
miners are connected to a bootnode which helps bootstrapping the peer-to-peer
network. We then study the distribution of MainNet mining pools [11] to have a
brief understanding of of a potential adversary capability. There are many mining
pools who process relatively large computing power (Hashrate) in comparison
to the rest of the network. Our simulation is based on the assumption that an
adversary can compromise one of the pools and use its computing power for a
brief period of time to conduct the attack. We define p > 0 as the capability of
Adv over total computing power of MainNet. Since Adv should not have more
than 50% computing power of the whole network, p < 0.5. Our experiment
consists of two phases:

1. Stable: We run a fresh private Ethereum network with all 40 miners from
our genesis block beginning with d0 of block 0. We run this phase for 1 hour
to produce a base chain of a stable Ethereum network where all nodes are
honest. Our simulation script automatically switches to the second phase
after 1 hour.

2. Malicious: Instead of keeping running all 40 miners, we only keep m miners
for an additional hour where m/40 = p. As in [11], the biggest mining pool
has around 25% of MainNet computing power. Thus, with m = 10, we
can simulate the situation when this pool is compromised. We repeat the
simulation varying m range from 1 to 19 multiple times.

We did not choose to simulate this attack on any official Ethereum test
network (e.g. ropsten2) because our simulated attack could cause temporary forks
in the network that may harm experiments from other parties.

5.3 Results

In all experiments, we are interested in the aberration of d and ∆n. Figure 3 shows
two sample results from our experiments with m = 4 and m = 10 respectively.
m = 10 can be interpreted as the adversary has 25% of the total network Hashrate
by compromising the biggest mining pool, i.e. ethpool [12] while m = 4 is when
the secondary biggest pool with 10% Hashrate is compromised. d is collected

2 https://ropsten.etherscan.io/



12 HL. Nguyen et al.

Fig. 3. Average block time interval and difficulty where m = 4 (p = 10%) and m =
10 (p = 25%) respectively

directly from the chain header and is presented with a blue line. The average
block time interval t is calculated as in equation 1 where we set l1 = 10. We will
explain the rationale of choosing l1 in the next section.

tn =
∑l1−1

i=0 ∆tn−i

l1
(1)

In both cases, we observe the immediate change in the trend of d and t when
the malicious phase kicked in. t is kept below 20 seconds in the stable time
then increased significantly after block 241. On the other hand, d experienced
a dropping trend after block 241 due to the increase in time between blocks.
However, it is not trivial to automatically distinguish between malicious attempt
and an occasional fluctuation of the result.

5.4 Detection of Malice

Given the presented results, we want to detect the block when the adversary
forks the chain as soon as possible. Our general idea is to detect anomalies in
the change of d and t over time. Several approaches of anomaly detection in
multi-time series data have been proposed [14]. However, due to R2.3, we follow
a simple approach in anomaly detection. We first analyze 4 million Ethereum
blocks in MainNet. For a block i on MainNet, we observe that ti is less than 20
seconds in 92% of the time. We also find that di never decreases continuously
more than 20 times.

Assuming we start monitoring blockchain header at block i, all previous blocks
are trusted. We then design an adaptive algorithm to detect the malicious in
real-time manner as presented in algorithm 1. We introduce 4 parameters:

l1: Number of blocks to compute average block time.
l2: Number of blocks to compute difficulty decrease streak.
〈t〉: Mean of ∆t from block 0 to the most recent trusted block.
λ: Longest decrease times of ∆d over l2



Blockchain-Based Auditing of Transparent Log Servers 13

Algorithm 1: Detection of Malice
input :A block header Hi contains ti and di
output : true if Hi is malicious, else false

1 Constant: l1, l2, λ, 〈t〉;
2 ti ← equation 1 ;

3 S1←
l1−1∑
k←0

ti−k/〈t〉; // l1 block before i

4 ∆di ← (di − di−1) < 0; // 1 iff true, 0 iff false

5 S2←
l2−1∑
k←0
∆di−k ;

6 return (S1 > 2 ∗ l1) ∨ (S2 > l2 ∗ λ);

Fig. 4. Prediction error.

The idea of l1 and l2 is to smoothen out the block time and difficulty value.
If they are too small, we cannot eliminate the risk of true negativity for detection.
Meanwhile, large values mean that we might not detect the attack early enough
after it happens. Our aim is to keep the time required for detection at a reasonable
length, i.e. ≈ 15 minutes. We find those values by permuting a set of possible
parameters and rerun the algorithm. We achieve a result where l1 = 10 and
l2 = 20. In MainNet we can set 〈t〉 at 17.5 seconds and 13 in our private net.

Figure 4 presents our detection result when the number of malicious miners
change. The figure shows the prediction error, i.e. how much time or number
of block we need after the malicious miner appears to detect the attack. Two
dashed lines in Figure 4 represent the regression line, i.e. to show the trends of
prediction errors when the number of malicious participants change.

We see that the number of needed blocks increases almost linearly when
the number of malicious miners increases, yet the needed time shows almost
no difference (≈ 15 minutes as intended) due to the decrease in average block
time when there are more malicious miners in the network. We note that our
prediction results are acquired in conjunction with analyzing past 4 million
Ethereum blocks on MainNet. Thus, while we cannot guarantee 100% confidence



14 HL. Nguyen et al.

in detecting future attacks, we have a strong base of trust in the method if the
network continues to behave as in the past. Obviously, in case there are events
that significantly affect block time and difficulty such as a hard fork or natural
disasters, our algorithm will yield true negative results. However, it makes sense
to notify users when such events happen since Trusternity depends on Ethereum.

6 Evaluation

In this section, we show a thorough evaluation of Trusternity with regard to
network bandwidth overhead and operating costs in comparison to CONIKS and
EthIKS. We also suggest various options to apply Trusternity into other systems.

6.1 Network overhead

We reuse most of setup and assumptions from CONIKS and EthIKS. In particular,
Trusternity client uses the eliptic-curve based VUF and signature scheme. There
are total U = 232 users, u = 221 users update their keys per epoch and k = 24
epochs per day. Ethereum block time average is set at a lower bound of 12
seconds.

However, our calculation 3 shows that an Ethereum client has to download
≈ 0.6K B for each header instead of only 0.2K B per block header as in EthIKS
scenario. We slightly modify EthIKS calculation to reflect this change and
calculate our result for Trusternity in table 1.

Overall, we see there are no change in look up and monitor cost compared
to CONIKS since the calculation separates blockchain into auditing section. An
EthIKS full client has to download all α transactions related to EthIKS. This
assumption is rather complicated since we do not have the source code of EthIKS
smart contract, however, α should be proportional to the number of updates to
the contract per epoch. Thus, in a naive assumption, we can have α ≈ u. We also
cannot compare to a EthIKS light client since the author assumes that the light
version has a trusted source to query for Ethereum block header and data.

In summary, we can see that Trusternity only adds a fixed amount of band-
width overhead per epoch of 200 KB, result in less than 5MB per day to operate
in comparison to the original CONIKS client. We calculate this number entirely
based on Ethereum formal specification so the actual amount might be slightly
different due to encoding, extra protocol messages or bloom filter false positive
result. However, our calculation shows a clear advantage of our approach to
EthIKS over network bandwidth.

6.2 Gas cost

The transaction costs of operating Trusternity only come from the two listed
functions on the smart contract. Overall, Register costs 63,000 gas and Publish

3 https://github.com/coast-team/trusternity-contract/blob/master/
appendix/calculation.md



Blockchain-Based Auditing of Transparent Log Servers 15

Table 1. Client bandwidth requirements (KB) with α is the number of transaction in
each epoch

Operation CONIKS EthIKS Trusternity
lookup (per binding) 1.2 7.9 1.2
monitor (per epoch) 0.7 5.2 0.7
monitor (daily) 17.6 1405 17.6
audit (per epoch) 0.1 200.4 + α * 2 201.6
audit (daily) 2.3 4809.6 + α * 48 4838.5

costs 44,000 gas. We take the assumption from section 4.1 which is 0.0004ET H
per 20,000 gas and each ET H costs e 500. This results in Register costs e 0.63
which an IP only has to pay once when he installs Trusternity and e 0.44 for each
Publish call per epoch or ≈ e 10.56 per day. Comparing our results to EthIKS,
assume that we only take into account 221 update mapping transactions of 12,000
gas per epoch, this costs ≈ e 6 million per day.

6.3 Final result

We compare our implementation to the pre-defined requirements from section 2.
S1 and S2 are satisfied as we discussed in section 5. Regarding R1, our anomaly
detection algorithm can effectively detect a fork attack from a sub network of
malicious Ethereum miners in less than 15 minutes, assuming that the malicious
network only has less than 50% of the main network computing power. Thus, even
with untrusted auditors, Trusternity is still able to detect malicious behaviors
after a short period of time.

We also show above the improvement over network bandwidth and gas cost
overhead of Trusternity over EthIKS. Our scheme adds a flat amount of e 10
per day for an Identity Provider to operate regardless of the client amounts
(R2.2). Each Trusternity client only has to download a merely extra 5 MB every
day. Although our anomaly detection algorithm requires clients to continuously
monitor the downloaded Ethereum block header, the algorithm is simple enough
to not cause any noticeable overhead for clients. As a result, R2.3 is satisfied.
Lastly, Trusternity operates on Ethereum, any Ethereum client can be considered
an auditor, including W . Thus, R2.1 is trivial to achieve.

7 Conclusion

We presented Trusternity, an auditing mechanism for Transparent-log key server
using Ethereum which is significantly more efficient and budget than state-of-
the-art approach. Our solution scales with an unbound number of log clients,
cheap to operate (e 10 per day for the server) and does not require huge network
bandwidth or storage of clients. Our solution is also independent of any trusted
third party by being able to detect malicious sudden change in the network.
Trusternity is also easy to extend for other purposes. Other transparent log
based approaches such as Certificate Transparency [15] can also benefit from our



16 HL. Nguyen et al.

proposal. CONIKS client and server components are also replaceable with similar
components, i.e. Key Transparency [13] server and clients.

References

1. Go Ethereum: Official Go implementation of the Ethereum protocol. https://geth.
ethereum.org/ (2017)

2. Benet, J.: Ipfs-content addressed, versioned, p2p file system. arXiv preprint
arXiv:1407.3561 (2014)

3. Birman, K.: The promise, and limitations, of gossip protocols. ACM SIGOPS
Operating Systems Review 41(5), 8–13 (2007)

4. Bonneau, J.: Ethiks: Using ethereum to audit a coniks key transparency log. In:
International Conference on Financial Cryptography and Data Security. pp. 95–105.
Springer (2016)

5. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using diffie-hellman. In: Advances in Cryptology - Eurocrypt 2000. pp.
156–171. Springer (2000)

6. Brito, J., Castillo, A.: Bitcoin: A primer for policymakers. Mercatus Center at
George Mason University (2013)

7. vitalik buterin: Homestead hard-fork changes. https://github.com/ethereum/
EIPs/blob/master/EIPS/eip-2.md (2015)

8. Buterin, V.: Ethereum light client protocol. https://github.com/ethereum/wiki/
wiki/Light-client-protocol (2016)

9. COAST team: The Trusternity Project. https://github.com/coast-team/coniks-
go (2017)

10. Douceur, J.R.: The sybil attack. In: International Workshop on Peer-to-Peer Systems.
pp. 251–260. Springer (2002)

11. etherchain.org: Mining statistics. https://etherchain.org/statistics/miners (2017),
accessed on 28.08.2017

12. ethpool: The Ethereum Solo Mining Pool . http://ethpool.org (2017), accessed
on 28.08.2017

13. Google: Key Transparency. https://github.com/google/keytransparency (2017)
14. Jones, M., Nikovski, D., Imamura, M., Hirata, T.: Exemplar learning for extremely

efficient anomaly detection in real-valued time series. Data Min. Knowl. Discov.
30(6), 1427–1454 (2016)

15. Laurie, B.: Certificate transparency. Queue 12(8), 10:10–10:19 (Aug 2014).
https://doi.org/10.1145/2668152.2668154, http://doi.acm.org/10.1145/
2668152.2668154

16. Marcus, Y., Heilman, E., Goldberg, S.: Low-resource eclipse attacks on
ethereum’s peer-to-peer network. http://www.cs.bu.edu/~goldbe/projects/
eclipseEth.pdf (2018)

17. Melara, M.S., Blankstein, A., Bonneau, J., Felten, E.W., Freedman, M.J.: Coniks:
Bringing key transparency to end users. In: 24th USENIX Security Symposium
(USENIX Security 15). pp. 383–398 (2015)

18. Miller, A., Hicks, M., Katz, J., Shi, E.: Authenticated data structures, generically.
In: ACM SIGPLAN Notices. vol. 49, pp. 411–423. ACM (2014)

19. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.
org/bitcoin.pdf (2008)



Blockchain-Based Auditing of Transparent Log Servers 17

20. Nordberg, L.: Gossiping in CT. https://tools.ietf.org/html/draft-linus-
trans-gossip-ct-00 (2014)

21. WhatsApp: WhatsApp Messenger. https://www.whatsapp.com/ (2017), accessed
on 28.08.2017

22. Whitten, A., Tygar, J.D.: Why johnny can’t encrypt: A usability evaluation of pgp
5.0. In: USENIX Security Symposium. vol. 348 (1999)

23. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151, 1–32 (2014)

24. Wood, G.: Chain Reorganisation Depth Expectations. https://blog.ethereum.
org/2015/08/08/chain-reorganisation-depth-expectations/ (2015), accessed
on 25.09.2017

25. Wüst, K., Gervais, A.: Do you need a blockchain? https://eprint.iacr.org/
2017/375.pdf (2017)

26. Yahoo: Yahoo End-To-End. https://github.com/yahoo/end-to-end (2017)
27. Zimmermann, P.R.: The official PGP user’s guide. MIT press (1995)


