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Abstract

In this paper, we address the problem of learning from imbalanced data. We consider the
scenario where the number of negative examples is much larger than the number of positive ones.
We propose a theoretically-founded method which learns a set of local ellipsoids centered at the
minority class examples while excluding the negative examples of the majority class. We address
this task from a Mahalanobis-like metric learning point of view and we derive generalization
guarantees on the learned metric using the uniform stability framework. Our experimental
evaluation on classic benchmarks and on a proprietary dataset in bank fraud detection shows
the effectiveness of our approach, particularly when the imbalancy is huge.

1 Introduction

The study of imbalanced data is an active and important topic due to its huge economical impact, for
example in anomaly or fraud detection in applications related to banks, medicine, intrusion detection,
video-surveillance, fault detection or industrial processes (Agrawal and Agrawal, 2015; Khalilia et al.,
2011; Chandola et al., 2009; Goldstein and Uchida, 2016). In such applications, datasets are usually
composed of a large number of negative examples (e.g. genuine transactions, normal MRI, normal
human behavior, etc.) and only a few positive data (e.g. frauds, faults, hacking, etc.). From a
theoretical point of view, imbalanced scenarios raise two main challenging problems for the machine
learning and data mining communities. First, the large majority of classic supervised learning
methods optimize the accuracy by minimizing error-based loss functions, like the hinge loss in
Support Vector Machines, the exponential loss in Boosting, or the logistic loss in Logistic Regression.
However, if one class is rare, those methods will struggle to capture any useful information about
this class and will obtain a high accuracy by simply predicting all (possibly new) examples as being
of the majority class(es). Second, deriving theoretical results in an imbalanced setting is difficult
and many existing approaches come without any specific guarantee.
In this paper, we aim at addressing both issues by designing a new algorithm - driven by the
minority class - for which generalization guarantees are derived. Unlike the state of the art, our
method does not resort to sampling preprocesses. Indeed, it is worth noticing that classic methods
typically consist of over/under-sampling the data (Aggarwal, 2013) or creating synthetic examples
in the neighborhood of the minority class (Chawla et al., 2002) in order to get more balanced sets.
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However, as we will see in this paper, when the datasets become highly imbalanced (i.e. no more
than 2-3% positives), those methods usually fail to model the minority class because they suffer from
an inability to generate enough diversity which is key for a sampling method to work well. In such
extreme situations, two main families of solutions are available. The first one consists of designing
alternative loss functions able to directly capture the imbalance in the data and usually based
on the F-Measure, the area under the ROC curve, or the Average Precision (Frery et al., 2017).
The main pitfalls related to this line of research concern the difficulty to deal with non smoothed
and non convex measures. The second category of methods aims at changing the original problem
into an unsupervised anomaly detection task. This is for example done by Support Vector Data
Description (SVDD) (Azami et al., 2014; Pauwels and Ambekar, 2011; Tax and Duin, 2004) methods
such as one-class SVMs (OCSVM) (Heller et al., 2003) which work on unlabeled data. SVDD learns
the smallest enclosing ball which includes most of the training data and excludes all examples lying
in the tail of the data distribution, which are considered as anomalies. More formally, the goal is to
solve the following constrained optimization problem given a sample of n instances:

min
R,c,ξ

R2 +
µ

n

∑n
i=1 ξi,

s.t. ‖xi − c‖2 ≤ R2 + ξi, ∀i = 1, . . . , n,
ξi ≥ 0,

(1)

where R and c are respectively the radius and the center of the ball and ξi is the slack variable
associated to the ith instance xi. µ is tuned in order to control the proportion of the data outside
the sphere (considered as anomalies). Note that in Pauwels and Ambekar (2011), the authors have
shown that using the radius instead of the square of the radius in this formulation is often preferable.
Several refinements of the SVDD method can be found in the literature to take more than one class
into account (e.g. see Liu and Zheng (2006) and Boujnouni et al. (2012) for binary problems) or to
use multiple local models and apply non linear transformation to the data (Le et al., 2013; Boujnouni
et al., 2012). Even if the kernel-based methods are effective, the computation of the kernel is often
expensive (according to the number of examples in the dataset) and does not scale well on most real
datasets. An interesting approach, which does not suffer from this drawback, is presented in Wang
et al. (2010). The authors include a linear transformation of the data, in the form of a Positive Semi
Definite (PSD) matrix M in the SVDD optimization problem. To avoid high computational costs,
they set M to be the inverse of the covariance matrix, which allows the induction of ellipsoids rather
than spheres. Such objects are able to cover a larger volume in the input space compared to the
spheres.
In this paper, we present a supervised machine learning method called ME2 - for Maximum Exclud-
ing Ellipsoids - that can tackle imbalanced data without requiring sampling strategies. We exploit
the idea of learning multiple local models to capture non linearity at a cheap cost as in Le et al.
(2013) and combine it with a metric learning formulation. However, we learn local models centered
at each minority class example which exclude the examples of the majority class(es). This, contrary
to the previously cited methods, allows us to consider settings where the minority class examples do
not necessarily behave as anomalies but may be hidden within one of the modes of the data (e.g. in
fraud detection). Unlike Wang et al. (2010), we optimize both the shape and the orientation of the
ellipsoid by learning a Mahalanobis distance based on a PSD matrix M. This geometrical flexibility
allows us to capture more accurate and potentially larger areas around the minority class examples.
A nice property of our approach is that M can be obtained in closed-form solution ensuring directly
(and for free) the positive definiteness of M (Shi et al., 2014; Perrot and Habrard, 2015). Therefore,
we prevent the algorithm from having to check the positiveness of the eigenvalues of M, which has a
cubic complexity in the size of M, as required by many metric learning algorithms (Bellet et al.,

2



2013, 2015). Beyond its algorithmic contribution, materialized by ME2, this paper also aims at
providing guarantees on the learned models based on the uniform stability framework (Bousquet
and Elisseeff, 2002). We prove that our algorithm is stable, i.e. robust to changes in the training set.

To sum up, our contribution is four-fold:

1. We introduce a simple strategy consisting of learning local models centered at each positive
example (which can be done in parallel) allowing us to capture non linearity in the feature
space. This way, our algorithm is particularly relevant in the context of imbalanced settings
where (i) the number of local models to learn is very small but (ii) the minority examples (i.e.
the centers of the ellipsoids) play a key role.

2. We show that ME2 is algorithmically efficient by demonstrating that the learned matrices
satisfy the PSD constraint for free.

3. We prove that ME2 is theoretically founded by deriving generalization guarantees on the
learned models.

4. We experimentally show that ME2 is effective compared to the state of the art methods,
particularly on highly imbalanced settings.

As far as we know, ME2 is the first method able to gather all those interesting features in the field
of learning from imbalanced data.

The rest of this paper is organized as follows: In Section 2, we present the convex formulation of
our algorithm ME2 with both primal and dual formulations. Section 3 is devoted to the theoretical
study of our algorithm. We show that ME2 is stable which provides some insight into the variance
of the algorithm with respect to changes in the training set. In Section 4, we compare our algorithm
to some state-of-the-art methods. We conclude in Section 5.

2 ME2: a metric learning-based algorithm for optimizing excluding
ellipsoids

2.1 Problem formulation

Let S = {xi}ni=1 be a sample of n negative instances (the majority class) and P = {cj}pj=1 a set of p
positive examples (the minority class), with n >> p and where xi, cj are feature vectors of Rd. We
aim at maximizing ellipsoids centered at each positive c ∈ P excluding (most of) the negative data
xi, i = 1, ..., n. Learning such ellipsoids boils down to optimizing a Mahalanobis distance, that is
finding a positive semi-definite (PSD) d× d matrix M projecting the data linearly in a new space
and allowing to obtain balls centered at each positive example of maximum radius R. Let B be an
upper bound of the possible expected radius. Our algorithm, called ME2 for Maximum Excluding
Ellipsoids, can be expressed in the following form:

min
R,M ,ξ

1

n

∑n
i=1 ξi + µ(B −R)2 + λ‖M− I‖2F ,

s.t. ‖xi − c‖2M ≥ R− ξi, ∀i = 1, . . . , n,
ξi ≥ 0,
B ≥ R ≥ 0,

(2)
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Figure 1: Illustration of the interest of learning ellipsoids (on the left) rather than simple spheres
(on the right). Optimizing the size and the orientation of the ellipsoids allows us to better capture
local peculiarities.

where ‖xi − c‖2M = (xi − c)TM(xi − c) is the learned Mahalanobis distance, ξ is the vector of
slack variables, µ(B −R)2 + λ‖M− I‖2F is a regularization term with µ, λ > 0 the corresponding
regularization parameters, I the Identity matrix and ‖ · ‖F is the Frobenius nom. Note that the
upper bound B of the radius is used in µ(B −R)2 to have a convex formulation allowing us to get
a unique solution. We choose two different parameters for each part of the regularization term to
control the surface area of the sphere in the transformed space and the complexity of the matrix M.
The parameter λ gives the possibility to control the magnitude of the entries of M, and therefore the
shape/orientation of the ellipsoid. In practice, the bigger λ is, the closer ‖xi− c‖2M to the Euclidean
distance (i.e. the ellipsoid looks like a ball). On the other hand, the parameter µ controls the size of
the learned ellipsoids.

An illustration of our algorithm is given in Figure 1. On the right, we constrain ME2 to learn
spheres (i.e. λ is set to a large value such that M tends to be the identity matrix). On the left, we
allow ME2 to optimize both the orientation and the size of the ellipsoid. We can see that ME2 can
capture local peculiarities of the feature space. It is worth noticing that λ and µ are key parameters
to deal with anomaly/fraud detection in imbalanced settings. Indeed, we will show that they can be
used to improve the F-Measure by controlling the precision and the recall.

Note that we can establish a relationship between ME2 and a decision tree algorithm (Quinlan,
1993). Indeed, in both cases, decision rules take the form of local geometric shapes (an ellipsoid for
ME2 and a rectangle for a decision tree). In Figure 2, we report on the same toy example as in
Figure 1 the leaves learned by a decision tree algorithm containing each positive example as well
as the ellipsoids optimized by ME2. We can notice that while decision trees build axis-parallel
hyperplanes to generate the leaves, ME2 has a better expressiveness allowing to control the shape,
the orientation and the size of the ellipsoids. We think that this is an interesting feature that can be
favorably exploited to capture local specificities of the feature space and better estimate the density
function of the positives.
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Figure 2: Boundaries of the decision rules with ME2 and a decision tree algorithm. The expressive-
ness of ME2 is better to capture local specificities of the density function of the positives.

2.2 Dual version and closed-form solution

Note that Problem 2 can also be expressed in its dual form which leads to a closed form solution.
The Lagrangian is given by:

L(α, β, δ,γ, R, ξ,M) =
1

n

n∑
i=1

ξi + µ(B −R)2 −
n∑
i=1

γiξi −
n∑
i=1

αi
(
‖xi − c‖2M −R+ ξi

)
+ λ‖M− I‖2F − βR+ δ(R−B), (3)

where α = (αi)i=1,...,n, γ = (γi)i=1,...,n, β and δ are the dual variables. By setting to zero all the
derivatives of (3) with respect to the primal variables we get:

R =
β − δ + 2µB −

∑n
i=1 αi

2µ
,

M = I +
1

2λ

n∑
k=1

αk(xk − c)(xk − c)T ,

and 0 ≤ αi ≤
1

n
∀i.

The second equality shows that M is, by construction, positive definite (PD). Fulfilling the PD
constraint for free is very important because it prevents the algorithm from performing a singular
value decomposition (in O(d3)) at each step of the gradient descent.

The dual formulation of Problem (2) is then obtained by injecting the expression of both R and M
in the Lagrangian (3). The dual optimization is then obtained by minimizing the opposite of the
Lagrangian with respect to its dual variables:

min
α,β,δ

αT
(

1

4λ
G′ +

1

4µ
1n×n

)
α+

β2

4µ
+
δ2

4µ
+

αT
(
diag(G)−

(
B +

β

2µ
− δ

2µ

)
1n

)
+ β

(
B − δ

2µ

)
,

s.t. 0 ≤ αi ≤
1

n
, ∀i = 1, . . . , n,

β, δ ≥ 0,

(4)
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where G is the Gram matrix defined by Gij = 〈(xi − c), (xj − c)〉 and G′ is the Hadamard product
of G with itself. 1n (respectively 1n×n) represents a vector of length n (respectively a matrix of size
n× n) where entries are equal to 1.

3 Generalization Guarantees

One of our main contributions in this paper takes the form of a generalization guarantee on the
algorithm ME2. Since we learn a local model from a subset of training examples we need to prove
the ability of ME2 to perform well in generalization - that is - to exclude correctly new negative
instances from the learned ellipsoid centered at this positive example. To do so, we derive in this
section a generalization bound according to the theoretical framework of uniform stability (Bousquet
and Elisseeff, 2002).

3.1 Uniform Stability

Roughly speaking, an algorithm is stable if its output does not change significantly under a small
modification of the training sample. A formal definition is given below.

Definition 1. (Bousquet and Elisseeff, 2002) A learning algorithm has a uniform stability in β
n with

respect to a loss function ` and a parameter set θ, with β a positive constant if:

∀S, ∀i, 1 ≤ i ≤ n, sup
x
|`(θS ,x)− `(θSi ,x)| ≤ β

n
,

where S is a learning sample of size n, θS the model parameters learned from S, θSi the model
parameters learned from the sample Si obtained by replacing the ith example xi from S by another
example x′i independent from S and drawn from P . `(θS ,x) is the loss suffered at x.

One can then obtain the following generalization bound1:

Theorem 1 (from Bousquet and Elisseeff (2002), Thm 12). Let δ > 0 and n > 1. For any algorithm
with uniform stability β/n, using a loss function bounded by b, with probability 1− δ over the random
draw of S:

L(θS) ≤ L̂S(θS) +
2β

n
+ (4β + b)

√
ln 1/δ

2n
,

where L(·) is the true risk and L̂S(·) its empirical estimate over S.

3.2 Generalization Bound

Given a centroid c (representing a positive instance) and a learning sample S = {xi}ni=1 of negative
instances drawn i.i.d. from an unknown probability distribution P−, the set of parameters to be
learned by ME2 is the pair (R,M). For convenience, we consider the following optimization problem
that is equivalent to Problem 2:

min
R,M

1

n

∑n
i=1 `(R,M,xi) + µ(B −R)2 + λ‖M− I‖2F ,

s.t. B ≥ R ≥ 0.
(5)

1If this result was proposed in the context of regression and classification tasks, the proof techniques are general
enough - by considering generic bounded and lipschitz losses - so that it also holds for the setting considered in this
section.
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where `(·) represents the loss such that `(R,M,xi) =
1

n
[R− ‖xi − c‖2M ]+ with [·]+ the hinge loss

function: [a]+ = max(a, 0).
The true risk is defined by L(M, R) = Ex∼P−`(M, R,x) and its empirical estimate over the sample
S by L̂S(M, R) = 1

n

∑n
i=1 `(M, R,xi) . We also denote the regularization term as N(M, R) =

µ(B −R)2 + λ‖M− I‖2F and assume that data are bounded by K. FS denotes the function to be
minimized, i.e.:

FS(M, R) = L̂(M, R) +N(M, R).

Note here that it can easily be checked that our loss function ` is convex with respect to M and R.
To prove a generalization bound on our algorithm ME2, we need to prove that our setting verifies
the definition of uniform stability. For this purpose, we first prove that our loss function is actually
k-lipschitz in its first two arguments.

Lemma 1. The loss ` is k-lipschitz with respect to M and R with k = max(1, 4K2), i.e.: for any
(M, R), (M′, R′), ∀x:

|`(M, R,x)− `(M′, R′,x)| ≤ k‖(M, R)− (M′, R′)‖,

where ‖(M, R)− (M′, R′)‖ = |R−R′|+ ‖M−M′‖F .

Proof. The proof uses successively the fact that the hinge loss is 1-lipschitz and a property of the
absolute value. We then use the Cauchy-Schwarz inequality and classic properties on norms. �

We now need a technical lemma on the objective function FS .

Lemma 2. Let S be a learning sample, let FS and FSi be two objective functions with respect
to samples S and Si and let (M, R) and (Mi, Ri) be their respective minimizers. We also define
∆(M, R) = (Mi, Ri)− (M, R) and recall that N(M, R) = µ(B −R)2 + λ‖M− I‖2F . We have, for
all t ∈ [0, 1]:

N(M, R)−N((M, R) + t∆(M, R)) +N((Mi, Ri)−N((Mi, Ri)− t∆(M, R))

≤ 2tmax(1, 4K2)

n
‖∆(M, R)‖.

Proof. The left hand side of the previous inequality can be written as follows:

µ[(B −R)2 + (B −Ri)2 − (B − (R+ t∆R))2 − (B − (Ri − t∆R))2]

+ λ[‖M− I‖2F + ‖Mi − I‖2F − ‖M + t∆M− I‖2F − ‖Mi − t∆M− I‖2F ]

= µθ(R) + λτ(M) (for the sake of simplification) (6)

The upper bound is then given by using the same development as the one given in the proof of
lemma 20 from Bousquet and Elisseeff (2002). �

We are now able to prove the stability of our algorithm.

Proposition 1. It exists a positive constant κ such that the algorithm ME2 is uniformly stable with

β =
2(max(1, 4K2))2

κmin(µ, λ)
.
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Proof. We give here the main steps of the proof, using notations introduced before.

Setting t =
1

2
we have from Lemma 2

µθ(R) + λτ(M) ≤ max(1, 4K2)

n
‖∆(M, R)‖. (7)

Then, by developping the left hand side of equation (7) we have:

µ(Ri −R)2 + λ‖Mi −M‖2F ≤
2 max(1, 4K2)

n
‖∆(M, R)‖. (8)

Recall that ‖∆(M, R)‖ = |R−Ri|+ ‖Mi −M‖F . Because we are working in a finite space, all the
norms are equivalent, i.e. it exists a positive constant κ such that, ∀(R,Ri) ∈ R+, ∀(M,Mi) ∈ Rd×d
we have:

κ(|R−Ri|+ ‖Mi −M‖F )2 ≤ (R−Ri)2 + ‖Mi −M‖2F . (9)

The left hand side is equal to κ‖∆(M, R)‖2. Thus, by multiplying (9) by min(µ, λ) and using the
inequality (8), we have:

‖∆(M, R)‖ ≤ 2 max(1, 4K2)

nκmin(µ, λ)
.

Finally, starting from the left-hand side of Definition 1 and applying Lemma 1 and the previous
inequality leads to our result. �

It remains to show that our hinge-loss function ` is bounded, which is the case because the radius is
bounded by B, so is `.
Given the stability constant and the fact that the loss is bounded, using Theorem 1, we obtain our
final result:

Theorem 2. Let δ > 0 and n > 1. There exists a constant κ > 0, such that with probability at least
1− δ over the random draw over S, we have for any (M, R) solution of Problem 5:

L(M, R) ≤ L̂S(M, R) +
4(max(1, 4K2))2

nκmin(µ, λ)
+

(
8(max(1, 4K2))2

κmin(µ, λ)
+B

)√
ln 1/δ

2n
.

This generalization bound holds for any positive center c. If one has p positive centers, by the union
bound, we can extend the previous result for each of the p centers with probability 1− δ/p showing
that the learned ellipsoids can exclude negative instances with high probability. We can notice that
the bound implicitly depends on the dimension of the data through the hyperparameters µ and λ.

4 Experiments

4.1 Algorithms and Datasets

In this section, we aim at evaluating the behavior of ME2 in comparison to some state of the art
algorithms. Those methods have been selected to characterize some specificities of ME2.
• Since we established a link between our local ellipsoids and the rules induced by decision trees in
the form of local rectangles (Figure 2), we compare ME2 with standard decision trees (DT). The
objective here is to show that the learned ellipsoids better capture the local information of the input
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Table 1: Number of instances, number of features, Imbalance Ratio (i.e. number of positives over
the number of instances).

Dataset Nb. of ex. Nb. of feat. IR
Yeast3 1 484 8 10.9%
Abalone 4 177 8 10.7%
Wine 1 599 11 3.3%

Abalone 17 2 338 8 2.5%
Yeast6 1 484 8 2.4%

Abalone 20 1 916 8 1.4%
Bank Fraud 15 000 17 1%

space.
• To deal with imbalanced datasets, a commonly used strategy consists of sampling the data to
fix the imbalancy problem. Therefore, we also learn a decision tree DTO (resp. DTU ) after a
pre-processing step which consists of oversampling (with replacement) the minority class examples
(resp. undersampling the majority class examples). We also combine the two previous approaches
(DTOU ). Finally, we apply a SMOTE-like strategy (Chawla et al., 2002) (DTSMOTE) which creates
synthetic minority class examples in the neighborhood of the positive data. The goal of this
comparison is to show how ME2 behaves even if it does not resort to sampling processes.
• When the proportion of positive examples is too small, some Support Vector Data Description
methods (SVDD) (Azami et al., 2014; Pauwels and Ambekar, 2011; Tax and Duin, 2004) - like
one-class SVMs (Heller et al., 2003) - address the anomaly detection problem as an unsupervised
outlier detection task. We run here one-class SVMs with two kernels: a linear kernel (LOCSVM)
and a RBF kernel (KOCSVM). The objective of this comparison is to check if ME2 makes a good
use of the few positive labels compared to unsupervised methods. We also make use of the labels and
run standard linear SVMs (LSVM), and RBF kernel-based SVMs (KSVM).
All the classifiers are trained using the corresponding machine learning packages in R2, that is C50
for the decision trees, e1071 for the SVMs, DMwR for SMOTE and Rsolnp for ME2.

The experiments are performed on 6 datasets coming from the UCI and KEEL databases3 and one
proprietary database on a bank fraud detection task. Their characteristics (number of examples,
features, imbalance ratio IR) are described in Table 1. Note that the categorical variables have been
replaced by binary features.

4.2 Experimental setup

As explained in the introduction, the classic accuracy is not a suitable criterion to address issues
due to the presence of imbalanced data. For this reason, we evaluate the algorithms using the
F-measure defined as the harmonic mean of the Precision and Recall criteria, where F-measure
= 2×Precision×Recall

Precision+Recall with Precision = TP
TP+FP and Recall = TP

TP+FN , where TP is the number of
true positives, FP the number of false positives and TN the number of true negatives.
For each series of experiments, the dataset is divided into 80%/20%. A 2-fold cross-validation is
applied on the first set S (while preserving the same IR in each fold) to tune the hyperparameters.

2https://www.r-project.org/
3These datasets can be found either on the UCI Repository (https://archive.ics.uci.edu/ml/datasets.html) or the

KEEL website (http://sci2s.ugr.es/keel/imbalanced.php?order=ir#sub60).
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Table 2: Comparison of the methods in terms of F-Measure over 10 runs. The best results are
indicated in bold font. The last column reports the average running time (in sec) for one run.

Algorithm Yeast3 Abalone Wine Abalone17 Yeast6 Abalone20 Bank Fraud Time
DT 0.77 ± 0.06 0.64 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 0.51 ± 0.23 0.10 ± 0.15 0.00 ± 0.00 3.2
DTO 0.75 ± 0.06 0.64 ± 0.04 0.06 ± 0.09 0.35 ± 0.08 0.45 ± 0.12 0.30 ± 0.15 0.04 ± 0.03 3.5
DTU 0.76 ± 0.08 0.67 ± 0.03 0.09 ± 0.11 0.28 ± 0.11 0.49 ± 0.11 0.19 ± 0.20 0.04 ± 0.03 2.4
DTOU 0.72 ± 0.04 0.61 ± 0.04 0.15 ± 0.06 0.34 ± 0.05 0.36 ± 0.12 0.30 ± 0.12 0.05 ± 0.04 2.6

DTSMOTE 0.65 ± 0.10 0.57 ± 0.07 0.14 ± 0.12 0.24 ± 0.09 0.18 ± 0.09 0.27 ± 0.13 0.04 ± 0.03 28.1
LSVM 0.67 ± 0.05 0.62 ± 0.01 0.14 ± 0.08 0.29± 0.01 0.30 ± 0.05 0.23 ± 0.02 0.03 ± 0.02 702.5

RBFSVM 0.66 ± 0.09 0.63 ± 0.03 0.07 ± 0.08 0.17 ± 0.06 0.36 ± 0.09 0.13 ± 0.13 0.00 ± 0.00 39.2
LOCSVM 0.01 ± 0.02 0.11 ± 0.03 0.02 ± 0.07 0.10 ± 0.05 0.00 ± 0.00 0.05 ± 0.13 0.03 ± 0.01 28.3
KOCSVM 0.01 ± 0.02 0.21 ± 0.04 0.01 ± 0.07 0.06 ± 0.03 0.00 ± 0.00 0.05 ± 0.11 0.00 ± 0.00 1472.0

ME2 0.67 ± 0.06 0.61 ± 0.03 0.20 ± 0.09 0.46 ± 0.07 0.46 ± 0.08 0.30 ± 0.07 0.05 ± 0.02 2.9

The second set is used as a test set. Each experiment is repeated 10 times and the reported results
are the averages over the 10 trials.
Remember that we learn an ellipsoid centered at each positive example of S. This ellipsoid defines
in some way the local region of the projection space which is under the influence of the considered
positive example. In this context, at both validation (to tune the parameters) and test time, a query
x′ is associated to its closest positive example Nx′ (with respect to the Euclidean distance) in the
training set. Then, in order to take into account the local density of positives and negatives in the
corresponding ellipsoid, and following the idea suggested in Barandela et al. (2003), we apply the
following decision rule. x′ will be predicted as positive if: 1) It is inside the ellipsoid centered at
Nx′ . This means that x′ is actually under the influence of Nx′ which occurs when the corresponding
learned Mahalanobis distance verifies: ‖x′ − Nx′‖MNx′

≤ RNx′ , where MNx′ is the PSD matrix
learned by ME2 corresponding to the ellipsoid centered at Nx′ and RNx′ is its associated radius. 2)
Its nearest neighbor in the ellipsoid is a positive example with respect to the learned local distance
‖x′ − x‖MNx′

. Otherwise, x′ is predicted as negative.
Note that the hyper-parameters µ and λ are tuned respectively in the range {0.75, 0.8, 0.85, 0.9, 0.95, 1, 2, 10}
and {10−6:2} by maximizing the F-Measure for each local model according to the previous rule.

4.3 Results

The results are reported in Table 2. The datasets are sorted from the least to the most imbalance
ratio to see the effect ofME2 with a decreasing rate of positive examples. We can make the following
remarks:
• On average,ME2 outperforms all the other methods even if it does not resort to sampling processes.
As shown in Figure 3, its average rank over the 7 datasets (2.6) is better than the others. If we
focus on the 5 datasets with large imbalancy (Wine, Abalone17, Yeast6, Abalone20 and the Bank
Fraud), ME2 is even better with an average rank of 1.4.
• For the first two datasets (i.e. Yeast3 and Abalone) where the rate of positive examples is greater
than 10%, our method is not very useful. This behavior can be explained by two reasons: (i) when
the number of learned ellipsoids grows, their overlapping is larger and larger and therefore the False
Positive rate increases; (ii) a large number of ellipsoids induces an increasing risk of generating close
ellipsoids with different orientations and shapes. About this second point, an interesting perspective
would consist of constraining close positive examples to have similar ellipsoids.
• Compared with decision trees, these experiments show that ME2 has a much better capacity to
capture the local specificities of the feature space than the local rectangles learned by decision trees.
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For three datasets, it is worth noticing that decision trees even do not capture anything (Wine,
Abalone17, Abalone20 ).
• The results obtained by one-class SVMs are much worse than the other methods. This behavior
shows that for all the datasets, including the bank fraud database, the positive examples cannot be
considered as outliers and that their underlying distribution is likely to be multimodal.
• ME2 works better than SVMs while the latter use a reweighting scheme in the objective function
to balance the data.

Figure 3: Average ranks over all the datasets (top) and over the five most imbalanced datasets
(bottom).

We also report in Table 2 the average running time for one run of each method. Note that since ME2

can be parallelized, we report the running time required for tuning and solving the optimization
problem 2. We can see that since ME2 learns matrices that directly satisfy the positive semi
definiteness, our method is efficient, i.e. very close to decision trees. However, note that if one uses
ME2 without parallelizing the learning of the p ellipsoids, the running time will be on average p times
the result reported in Table 2. But ME2 will be still efficient (at least better then kernelized-SVMs)
since p is supposed to be very small in highly imbalanced scenarios.
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5 Conclusion

We have presented a method to learn Maximum Excluding Ellipsoids in the context of imbalanced
binary classification tasks. Our algorithm, called ME2, is based on simple local linear models.
Moreover, we have proven its uniform stability which takes the form of a generalization bound on
the learned matrix M. We have shown that our method is particularly efficient and robust when
the rate of positive examples is very small. The reason comes from the fact that ME2 is able to
learn decision boundaries in the form of ellipsoids (via a metric learning-based strategy) that are
optimized locally to better fit the specificities of the space. ME2 is based on a very simple decision
rule looking for the nearest ellipsoid to a test query. We think that this rule may benefit from
further investigation, e.g. by considering a combination of ellipsoids to predict the label of a test
data. This would be possible by using a graph over the ellipsoids centers where information would
be shared like in an information network. Besides, from a theoretical point of view, we have derived
a guarantee on the learned matrix M and radius R. Since our decision rule is close to a nearest
neighbor classifier decision rule, it would be interesting to establish a link between the quality of M
and R and the generalization error of such a classifier. Another perspective would be to partition
the positive example space and constrain the ellipsoids to be similar in terms of orientation (using
some regularization) if they have been learned from the same cluster. Finally, in a context of fraud
detection where the fraud strategy tends to evolve through time, developing an online version of our
algorithm might be relevant to better capture distribution shifts.
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