
HAL Id: hal-01919532
https://hal.inria.fr/hal-01919532

Submitted on 12 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Configuration of CUDA Runtime Variables for
CDP-based Divide-and-Conquer Algorithms

Tiago Carneiro, Jan Gmys, Nouredine Melab, Francisco Heron de Carvalho
Junior, Pedro Pedrosa Rebouças Filho, Daniel Tuyttens

To cite this version:
Tiago Carneiro, Jan Gmys, Nouredine Melab, Francisco Heron de Carvalho Junior, Pedro Pedrosa Re-
bouças Filho, et al.. Dynamic Configuration of CUDA Runtime Variables for CDP-based Divide-and-
Conquer Algorithms. VECPAR 2018 - 13th International Meeting on High Performance Computing
for Computational Science, Sep 2018, São Pedro, Brazil. �hal-01919532�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162977288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01919532
https://hal.archives-ouvertes.fr


Dynamic Configuration of CUDA Runtime
Variables for CDP-based Divide-and-Conquer

Algorithms

Tiago Carneiro1, Jan Gmys2,4, Nouredine Melab4, Francisco Heron de
Carvalho Junior3, P. P. Rebouças Filho1, and Daniel Tuyttens2

1 Instituto Federal de Educação, Ciência e Tecnologia do Ceará
{tiago.carneiro,pedrosa}@ppgcc.ifce.edu.br

2 Mathematics and Operational Research Department (MARO), University of Mons,
Belgium {jan.gmys,daniel.tuyttens}@umons.ac.be

3 Programa de Mestrado e Doutorado em Ciência da Computação, Universidade
Federal do Ceará, Brazil

heron@lia.ufc.br
4 INRIA Lille Nord Europe, Université Lille 1, CNRS/CRIStAL, France

Nouredine.Melab@univ-lille1.fr

Abstract. CUDA Dynamic Parallelism (CDP) is an extension of the
GPGPU programming model proposed to better address irregular ap-
plications and recursive patterns of computation. However, processing
memory demanding problems by using CDP is not straightforward, be-
cause of its particular memory organization. This work presents an al-
gorithm to deal with such an issue. It dynamically calculates and con-
figures the CDP runtime variables and the GPU heap on the basis of an
analysis of the partial backtracking tree. The proposed algorithm was
implemented for solving permutation combinatorial problems and ex-
perimented on two test-cases: N-Queens and the Asymmetric Travelling
Salesman Problem. The proposed algorithm allows different CDP-based
backtracking from the literature to solve memory demanding problems,
adaptively with respect to the number of recursive kernel generations
and the presence of dynamic allocations on GPU.

Keywords: CUDA dynamic parallelism; Backtracking; Divide-and-conquer

1 Introduction

Irregular applications are present in different research fields, such as combinato-
rial optimization, data mining, and simulations [1]. The difficulty of paralleliz-
ing an application is closely related to its degree of irregularity [2]. Applications
that present irregular control structure, irregular data structures, and irregular
pattern of communication are notably difficult to parallelize [3]. Unstructured
tree search methods for solving combinatorial problems, such as backtracking
and branch-and-bound, are examples of such applications. These problem solver
paradigms are present in many different areas, e.g., combinatorial optimization,



artificial intelligence, and operations research [4]. The program model usually
applied to parallelize backtracking algorithms for GPUs, allied to characteristics
of the problems commonly solved, results in fine-grained and irregular workloads,
which is detrimental to the performance of the GPU.

Although GPUs suffer from performance degradation while processing ir-
regular applications, they are still attractive accelerators. They are ubiquitous,
energy efficient, and deliver a high price/GFLOP rate [5]. Furthermore, GPU
programming interfaces and tools have become more flexible and expressive.
Recent extensions to the general-purpose graphics processing unit (GPGPU)
programming model, such as CUDA dynamic parallelism (CDP), can raise the
expressiveness of the GPGPU programming model, making it possible to better
address irregular applications and recursive patterns of computation [6], such as
divide-and-conquer, used by backtracking algorithms.

Despite CDP’s purpose of better coping with recursive computations, it is
not straightforward to use this technology for processing memory demanding
problems [7]. CDP presents several hardware limitations and a different mem-
ory organization [6, 8]: it is required to configure the CUDA runtime to reserve
memory for synchronization between kernel generations. Moreover, in case of
dynamic allocations on GPU, it is also necessary to configure the GPU heap
size. Both GPU heap and memory for synchronization are not available for use.
The related work on CDP does not address these issues.

This work presents an algorithm that dynamically calculates and configures
the CDP runtime requirements and the GPU heap size. This calculus is based
on an analysis of the partial backtracking tree. The proposed algorithm was
implemented for solving permutation combinatorial problems, experimented on
two test-cases: N-Queens and the Asymmetric Travelling Salesman Problem. The
proposed algorithm allows different CDP-based backtracking from the literature
to solve memory demanding problems, autonomously with respect to the number
of recursive kernel generations and the presence of dynamic allocations on GPU.

The remainder of this paper is structured as follows. Section 2 brings back-
ground information and related works. Section 3 presents the proposed algo-
rithm, and Section 4 brings the performance evaluation. Finally, conclusions
and directions for further investigations are outlined in Section 5.

2 Background and Related Works

2.1 N-Queens and ATSP

The Traveling Salesman Problem (TSP) consists in finding the shortest Hamil-
tonian cycle(s) through a given number of cities in such a way that each city
is visited exactly once. For each pair of cities (i, j) a cost cij is given by a cost
matrix CN×N . The TSP is called symmetric if the cost matrix is symmetric
(∀i, j : cij = cji), and asymmetric otherwise (ATSP). Due to its relevance, the
TSP is often used as a benchmark for novel problem-solving strategies [9].

The ATSP instances used in this work come from a generator that creates
instances based on real-world situations [10]. Three classes of instances have



been selected: crane, modeling stacker crane operations; coin, modeling a person
collecting money from pay phones in a grid-like city; and tsmat, consisting of
asymmetric instances where the triangle inequality holds. Each class of instances
has its own characteristics. Hence, two instances of the same size N may result
in a different behavior for the same algorithm.

The N-Queens problem consists in placing N non-attacking queens on a
N × N chessboard. It is also often used as a benchmark for new GPU-based
backtracking strategies [11, 12]. We consider the version of N-Queens that con-
sists in finding all feasible board configurations. N-Queens can be modeled as
a permutation problem: position r of a permutation of size N designates the
column in which a queen is placed in row r.

2.2 CUDA Dynamic Parallelism Programming Model

In the CDP terminology, the thread that launches a new kernel is called parent.
The grid, kernel, and block to which this thread belongs are also called parents.
The launched grid is called child. The launch of a child grid is non-blocking, but
the parent grid only finishes its execution after the termination of all child grids.
Inside a block, different kernel launches are serialized. To avoid serialization
of kernel launches, the programmer must link each kernel launch to a different
stream [8]. Concerning the memory model, blocks of a child grid also have shared
memory, and child threads also have local and register memories. A Child grid
is not aware of its parent context data, and a parent thread should not pass to
child threads pointers to its local or shared memories. Thus, the communication
between parent and child is performed through global memory.

2.2.1 Related Works on CUDA Dynamic Parallelism

The parallelization of irregular applications using CDP has received little atten-
tion in the literature. Particularly, CDP has been used for processing graphs,
clustering, simulations, and backtracking algorithms [1, 7, 11, 13, 14]. According
to related works, CDP is beneficial for processing applications whose data are
hierarchically arranged. In such situations, the use of CDP results in perfor-
mance gains and a code closer to the high-level description of the algorithm [13,
14]. However, when these requirements are not met, using CDP may result in
significant overheads and makes the code much more complex [7, 11].

2.3 GPU-accelerated Backtracking

Backtracking algorithms explore the solution space by dynamically building a
tree in a depth-first order [15]. The algorithm iteratively generates and evaluates
new nodes, where each child node is more restricted than its father node. If a
child node leads to a feasible and valid solution, it is branched, and its child
nodes are stored in the Active Set. Otherwise, the node in question is discarded,
and the algorithm backtracks to an unbranched node in the Active Set. The
search generates and evaluates nodes until the Active Set is empty.



GPU-based backtracking algorithms usually consist of two stages: backtrack-
ing on CPU until a cutoff depth dcpu and parallel backtracking on GPU [7, 11, 12,
16, 17]. Algorithm 1 presents a pseudocode for the GPU-accelerated backtracking
in question.

Initially, the algorithm gets the problem to be solved (line 1) and the proper-
ties of the GPU (line 2). Next, the variable dcpu receives the initial cutoff depth
(line 3). The cutoff depth dcpu is a problem-dependent parameter, usually de-
termined by manual tuning. For the ATSP, the cutoff depth dcpu corresponds
to all feasible and valid permutations with dcpu cities. The initial backtracking
on CPU (line 4) fills the active set Acpu with all objective nodes found at dcpu,
as illustrated in Figure 1. In the present context, an objective node is a valid,
feasible and incomplete solution (permutation) at dcpu.

Before launching the backtracking on GPU, a subset S ⊆ Acpu of size
chunk ≤ |Acpu| is chosen (line 7). Next, the CPU updates Acpu and trans-
fers S to GPU’s global memory (lines 8 − 11). Then, the host configures and
launches the kernel (lines 12 − 14). In the kernel, each node in S represents a
concurrent backtracking root Ri, i ∈ {0, ..., chunk − 1}. Therefore, each thread
Thi explores a subset Si of the solution space S concurrently. The kernel ends
when all threads have finished the exploration of S. The kernel may be called
several times until Acpu is empty (lines 6− 16).

Algorithm 1: CPU-GPU parallel backtracking algorithm.
1 I ← get problem()
2 p← get gpu properties()
3 dcpu ← get cpu cutoff depth()
4 Acpu ← generate initial active set(dcpu, I)
5 S ← ∅
6 while Acpu is not empty do
7 S ← select subset(Acpu, p)
8 chunk ← |S|
9 Acpu ← Acpu \ S

10 allocate data on gpu(chunk)
11 transfer data to gpu(S, chunk)
12 nt← get block size()
13 nb← dchunk/nte
14 parallel backtracking <<< nb, nt >>> (I, S, chunk, dcpu)
15 synchronize gpu cpu data()

16 end

2.3.1 CDP-based Backtracking Algorithms

Plaut et al. [11] propose two CDP-based backtracking for enumerating all feasible
and unique solutions of the N-Queens, called DP2 and DP3. Both approaches
launch recursively Algorithm 1 by using CDP. The strategy called DP2 is based
on two depths: dcpu and dgpu. Each node in Acpu (at depth dcpu) is a root of
a backtracking that searches for objective nodes at depth dgpu. To store the
objective nodes, the first thread of block b that finds an objective node allocates
memory for the maximum number of objective nodes block b can find. This
block-based active set will be further referred to as Ab

gpu. Then, a recursive new
generation of kernels is launched by using CDP, searching from dgpu to N , as



x

1 2 3

x x x

4 5 6 ...

x x x

d= 1

d = dcpu

d = dgpu

...
...

...
...

Acpu

Ab
gpu

CDP

CPU

Launched
by CPU ... ...

... ...

... ...

... ... ...

GPU

d = N

Fig. 1: Illustration of the DP2 strategy.

illustrated in Figure 1. In turn, DP3 doubles dgpu at each new recursive kernel
launch, until the search reaches the base depth of the recursion.

Results show that the overhead caused by dynamic allocations and dynamic
kernel launches outweighs the benefits of the improved load balance yielded by
CDP. Moreover, the performance of both algorithms strongly depends on the
tuning of several parameters, such as block size and cutoff depth.

Applications that perform dynamic allocations on GPU and/or launch more
than two kernel generations that synchronize require the configuration of the
CUDA runtime, which is not straightforward [6, 8]. Under this scope, Carneiro
Pessoa et al. [7] propose CDP-BP: a CDP-based backtracking that performs no
dynamic allocations on GPU and avoids the need for dynamic setup of CUDA
runtime variables. CDP-BP is also based on two depths, like DP2. The memory
requirements of the application are dynamically calculated on the host, taking
into account an analysis of the partial backtracking tree. The host allocates mem-
ory for further kernel generations and launches the search on GPU. Each GPU
thread identifies its portion of the device-side active set based on thread-to-data
mappings. Results show that CDP-BP has much better worst-case execution
times and smaller dependence on parameters tuning than its non-CDP counter-
part. Additionally, the authors also reported a difficulty in comparing CDP-BP
to DP2 and DP3 using memory demanding instances, due to the complexity of
dynamically calculating the upper bound on the required CUDA heap size.

3 The Proposed Algorithm

As previously pointed out, it is not straightforward to calculate an upper bound
on the GPU heap size a CDP-based application needs. It is necessary to take
into account the memory requirements of several CDP kernel generation until
the search reaches the base depth. If the programmer does not configure the
CUDA heap size before launching the first kernel generation, the GPU reserves
a default memory space of 8 MB, which may be insufficient to store the objective



nodes found by several kernel generations. However, it is not possible to configure
the GPU heap size equal to the GPU’s global memory size, as the CDP runtime
reserves memory for other purposes.

Up to 150 MB of global memory is reserved for each kernel generation that
performs parent-child synchronization. This memory is used to keep track of the
state of the parent grid and cannot be used by the programmer. Additionally,
in case the application launches more than two kernel generations that perform
synchronization, a CUDA runtime variable must be explicitly configured with
such a number of generations to avoid runtime errors [8].

This section presents a new algorithm to calculate the memory requirements
of the search, independently of the number of launched kernel generations. The
proposed algorithm works on the host. The upper bound on the GPU heap size is
dynamically calculated according to an analysis of the partial backtracking tree,
by applying for different kernel generations the memory requirement analysis
of [7]. Additionally, the proposed algorithm also configures the CUDA runtime
accordingly, before the first kernel generation is launched.

The following sections provide a detailed description of the proposed algo-
rithm. It consists of two main parts: memory requirement analysis and launching
the first kernel generation. For the sake of greater simplicity, only the algo-
rithm for solving instances of the ATSP to optimality is presented, which can
be adapted for solving other permutation combinatorial problems with straight-
forward modifications.

3.1 Memory Requirement Analysis

As pointed out in Section 2.3, GPU-based backtracking performs an initial search
on CPU to generate Ah

cpu. Before launching the first kernel generation, it is nec-

essary to find a subset S ⊆ Ah
cpu of size chunk for which its memory requirement

fits the device limitations. The Device (GPU) and Host (CPU) data structures
will be further distinguished by the superscripts d and h, respectively.

Backtracking algorithms that dynamically allocate memory on GPU’s heap,
such as DP3, need to store in global memory Ad

cpu, the cost matrix CN×N , and
control data for the subsequent kernel generations. Moreover, it is necessary
to reserve memory for parent-child synchronization and the heap. The memory
requirement analysis consists of three steps: getting the number of kernel gen-
erations, heap size calculation, and calculation of the required global memory.
These steps are detailed in the following sections.

3.1.1 Calculating the Number of Kernel Generations

It is necessary to know the number of kernel generations before launching the
first one. This value is used to configure the runtime and to calculate the memory
reserved by the GPU to keep track of context data of the parent grid.

One can see in Algorithm 2 the function that returns the number of kernel
generations. Initially, the function receives the intial depth of the search and the
size N of the problem. Next, it gets the base of the recursion (line 1). Then, the



Algorithm 2: Calculating the number of kernel generations.
Input: The size N of the problem, and the initial cutoff depth initial depth.
Output: Number of kernel generations that perform synchronization. Also including the one

launched by the host.
1 base← get base depth(N)
2 current depth← initial depth
3 kernel gen← 1
4 while current depth ≤ base depth do

5 current depth← get next depth(current depth,N)
6 kernel gen← kernel gen + 1

7 end

number of generations that perform parent-child synchronization is calculated
in lines 4 – 6. The programmer must provide two functions: get base depth()
and get next depth(). The first one is responsible for calculating the base of the
recursion (line 1). In turn, the second one is responsible for returning the next
depth of the recursion (line 5), which works like an iterator.

3.1.2 Upper Bound on the Required GPU Heap Size

The heap size calculation is the main step of the memory requirement analysis.
The strategy employed in this step takes into account the maximum number of
children nodes that a node at current depth can have at next depth, which is:

expected childrennext =
maxnext

maxcurrent

where the maximum number of nodes of a given depth d is:

maxd =
(N − 1)!

(N − d)!

Algorithm 3 presents a function that estimates an upper bound on the re-
quired GPU heap size. This function receives as parameters chunk, which is the
size of a subset S ⊆ Ah

cpu, and the size N of the problem. Then, it calculates, for
each recursive kernel call until the search reaches the base depth, the memory
required to store the upper bound on the number of objective nodes at depth
next (lines 4 – 11). After getting the heap requirements for chunk nodes, it is
possible to determine the amount of global memory required by the application.

3.1.3 Global Memory Required by the Application

Algorithm 4 returns the amount of global memory required by the application
based on a subset S ⊆ Ah

cpu of size chunk. Initially, the memory reserved for
synchronization is calculated in line 1. As previously pointed out, a memory
space of 150 MB is reserved for each kernel generation that performs parent-
child synchronization. The amount of global memory required to store the control
data, Ad

cpu, and the heap is calculated in lines 3 – 4. Finally, in line 6, the required
global memory is calculated by adding the values got in lines 2 – 5.



Algorithm 3: Upper bound on the GPU heap size.

Input: The size chunk of S ⊆ Ah
cpu, and the size N of the problem.

Output: Upper bound on the requested GPU heap size (in bytes).

1 ub requested heap← sizeof(Node)× chunk
2 base← get base depth(N)
3 current depth← get initial depth()

4 while current < base do

5 next depth← get next depth(current depth)

6 maxcurrent ← (N−1)!
(N−current)!

7 maxnext ← (N−1)!
(N−next)!

8 expected childrennext ← maxnext
maxcurrent

9 ub requested heap← ub requested heap× expected childrennext

10 current depth← next depth

11 end

All algorithms presented in this section take into consideration a subset S ⊆
Ah

cpu of size chunk. The next section shows how to choose S, to set up the CUDA
runtime variables, and to launch the first kernel generation.

3.2 Launching the First Kernel Generation

Before launching the first kernel generation from the host, the application must
find a subset S ⊆ Ah

cpu of size chunk such that an upper bound on its require-
ments fit into the global memory. Algorithm 5 shows how to get such a subset.
Initially, the upper bound on the requirements of S is calculated in line 1, using
Algorithm 4. If the memory required by S is bigger than the available global
memory, chunk is decreased until its requirements fit into the available global
memory (lines 3 – 5). If there is no S such that its requirement fits into the
available global memory, the program returns an error (lines 6 – 8).

Algorithm 6 presents the launching of the first kernel generation on GPU.
After determining a suitable S (line 1), the CUDA runtime variables of heap
size and number of kernel generations are set in line 2. All allocations on device
memory are performed in line 3. There is no host allocation for other active sets
than Ad

cpu because threads on device dynamically allocate memory on GPU’s

Algorithm 4: Global memory required by the application.

Input: The size chunk of S ⊆ Ah
cpu, the size N of the problem, and the number k of kernel

generations that perform parent-child synchronization.
Output: The total of global memory required by the application (in bytes).

1 required memory ← 0

2 nesting memory ← k × 150MB
3 activeSet memory ← chunk × sizeof(Node)
4 control memory ← chunk × sizeof(ControlData)
5 required heap← get heap(chunk,N)

6 required memory ←
required heap + nesting memory + activeSet memory + control memory



Algorithm 5: Calculating a suitable chunk size.
Input: chunk, the size N of the problem, and the number k of kernel generations.
Output: A suitable chunk size.

1 total required← required memory(chunk,N, k)
2 available memory ← get GPU properties(global memory)

3 while total required > available memory do
4 chunk ← decrease chunk(chunk)
5 total required← required memory(chunk,N, k)
6 if chunk < 1 then
7 return error
8 end

9 end

heap. Finally, lines 7 – 18 process S ⊆ Ah
cpu of size chunk until Ah

cpu is empty.
After each kernel call, control data is retrieved (line 12) and the variables counter
and remaining are updated (lines 13–17). The variable counter is used to make
Ad

cpu point to unexplored nodes (line 10) and as termination criteria (line 7).

Algorithm 6: Launching the first kernel generation on GPU.

Input: Cost matrix Cd
N×N ,Ah

cpu, the global upper bound, and the size N of the problem.

1 chunk ← get suitable chunk(survivors dcpu, N)
2 set CDP variables(get heap(chunk,N), get num gen(N, dcpu))

3 device memory allocation(Ad
cpu, chunk, sizeof(Node), control datad)

4 survivors dcpu ← |Ah
cpu|

5 counter ← 0
6 remaining ← survivors dcpu

7 while counter < survivors dcpu do

8 nt← get block size()
9 nb← dchunk/nte

10 cudaMemCpy(Ad
cpu, (Ah

cpu + counter), chunk × sizeof(Node), H2D)

11 GPU search <<< nb, nt >>> (Cd, chunk,Ad
cpu, control datad, upper bound,N)

12 syncDataD2H(control datah, control datad, chunk)
13 counter ← counter + chunk
14 remaining ← remaining − chunk
15 if remaining < chunk then
16 chunk ← remaining
17 end

18 end

4 Performance Evaluation

The proposed algorithm was implemented to manage three recursive CDP-based
backtracking from the literature:

– DP2 and DP3: CDP-based algorithms introduced in Section 2.3.1.
– CDP-DP3: hybridization between CDP-BP and DP3 proposed by [7]. Com-

pared to DP3, CDP-DP3 also doubles dcpu until the search reaches the base
depth. However, CDP-DP3 launches less CDP kernels than DP3, and dy-
namic allocations start on the second CDP kernel generation.



These GPU-based searches are launched in line 11 of Algorithm 6. For com-
parison, the following backtracking strategies are also considered.

– BP-DFS: non-CDP implementation of Algorithm 1 proposed by [17].
– CDP-BP: CDP-based algorithm introduced in Section 2.3.1 that makes no

dynamic allocations on GPU and launches two kernel generations.
– Multicore: multi-threaded version of BP-DFS that applies a pool scheme

for load balancing.
– Serial: serial control implementation optimized for single-core execution.

All implementations (but the serial one) use the data structures, the algo-
rithm for consistency of the incumbent solution, and the kernel code of BP-DFS.
For more details, refer to [7].

4.1 Experimental Protocol and Parameters Settings

All CUDA programs were parallelized using CUDA C 8.0 and compiled with
GCC 5.4. The testbed, operating under CentOS 7.1 64 bits, is composed of two
Intel Xeon E5-2650v3 @ 2.30 GHz with 20 cores, 40 threads, and 32 GB RAM.
It is equipped with an NVIDIA Tesla K40m (GK110B), 12 GB RAM, and 2880
CUDA cores @ 745 MHz.

In the experiments, ATSP instances of sizes (N) ranging from 10 to 19 are
solved to optimality. In turn, N-Queens problems of sizes (N) ranging from 10 to
18 are also considered. The memory requirement of the test-cases ranges from
few KB to several GB.

To compare the performance of two parallel backtracking algorithms, both
should explore the same search space [18]. Therefore, for all ATSP instances,
the initial upper bound is set to the optimal value. This initialization ensures
that all implementations above outlined explore the same feasible region, which
is always the case for the N-Queens problem.

The performance of GPU-accelerated backtracking algorithms strongly de-
pends on the tuning of several parameters [7, 11]. Preliminary experiments were
carried out to find out a suitable block size, dcpu and dgpu for all GPU-based
implementations. Table 1 summarizes the best parameter configurations of all
parallel implementations. The chosen parameters are the best for most of the
instances, but not for all of them.

Both DP3 and CDP-DP3 have no cutoff depth tuning because they follow
the strategy proposed by [11], which doubles dcpu. For the N-Queens, there are
N possibilities of starting node at depth dcpu. This way, four kernel generations
can be launched: at dcpu = 1, dgpu = 2, 4 and 8 (base). For the ATSP, there is
only one possible starting city. This way, three kernel generations are launched.

4.2 Results

First of all, it is important to point out that the proposed algorithm is nec-
essary to make DP2, DP3, and CDP-DP3 solve all test-cases without runtime



Table 1: List of best parameters found experimentally for all parallel implemen-
tations. The superscript Q and A indicate that the settings are for the N-Queens
or, respectively, the ATSP implementation.

Parameters Settings
Implementation Block Size Bl. Size-CDP dcpu dgpu

BP-DFS1 128 - 7 -
CDP-BPA 128 64 6 8
CDP-BPQ 128 64 5 7
CDP-DP31 128 64 - -

DP2A 128 64 4 7

DP2Q 128 32 4 7

DP3A 128 64 - -

DP3Q 128 32 - -
Multicore1 - - 4 -

1) Parameter are the same for ATSP and N-Queens.

errors. According to preliminary experiments, these implementations that make
dynamic allocations on GPU cannot solve instances of size N > 12 using the
default GPU heap size of 8 MB. The CUDA runtime returns an “illegal memory
access” error in situations where the GPU heap requirement of the application
is bigger than the configured one.

Table 2 reports the average speedup achieved by all parallel implementations
for different ranges of problem sizes compared to the serial baseline. In turn,
Figure 2 presents the average speedup reached by all parallel implementations
compared to the serial baseline.

The lowest values of average speedup in Table 2 are observed for DP2, DP3,
and CDP-DP3. These applications perform dynamic allocations/deallocations
on GPU and launch a new kernel per GPU thread. The overhead of dynamic
allocations, multiple streams creation/destruction, and several kernel launches
amount negatively for small sizes. However, as the solution space grows, this
overhead becomes less significant, and the benefits of a more regular load yielded
by the DP3 algorithm are observed: as can be seen in Figure 2, CDP-DP3 is the
CDP-based implementation with the best overall results for the ATSP.

The benefits of using the DP3 strategy would not be realized without the
proposed algorithm. As previously said, DP2, DP3, and CDP-DP3 can only solve
instances of size up to N = 12 without GPU heap configuration. According to

Table 2: Average speedup reached by all parallel implementations for different
ranges of sizes compared to the serial baseline.

Average Speedup
Implementation 10− 12 13− 15 16− 19(18) All sizes

DP2 1.3× 3.26× 5.11× 2.99×
DP3 1.08× 5.20× 6.68× 4.20×

CDP-DP3 2.10× 7.89× 7.12× 5.72×
CDP-BP 5.24× 8.38× 7.72× 7.10×
BP-DFS 5.82× 15.86× 15.70× 12.37×
Multicore 4.63× 14.71× 16.00× 11.41×



 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Coin Crane Tsmat Queens

A
v
e

ra
g

e
 S

p
e
e

d
u

p

Instance Class

DP2
DP3

CDP-DP3
CDP-BP
BP-DFS
Mcore

Fig. 2: Average speedup reached by all parallel implementations compared to the
serial baseline.

Table 2, CDP-BP is 2.5× faster than CDP-DP3 and 4.8× faster than DP3
for sizes ranging from 10 to 12. These values change considerably for bigger
problems, and CDP-DP3 becomes superior to CDP-BP for solving the ATSP,
as previously pointed out. However, it is not the case for the N-Queens, as one
can see in Figure 2.

Launching one new kernel for each GPU thread is not a good strategy for
the N-Queens problem. The load processed by a child kernel is much smaller
than the one launched when solving the ATSP [7]. This way, DP2, DP3, CDP-
DP3 produce a significant overhead for processing small loads. In turn, CDP-
BP launches a new kernel generation based on the load of the whole block,
instead of the load of a single thread. According to NVIDIA Visual Profiler, by
using the block-based kernel launch, CDP-BP can archive twice more occupancy
and three times more eligible warps per active cycle than all other CDP-based
implementations while enumerating all feasible configurations of the N-Queens.
Thus, CDP-BP is much faster than its CDP-based counterparts and as faster as
the multi-threaded implementation. The results of CDP-BP for the N-Queens
and instances of sizes ranging from 10–12 justifies its better values than the ones
of CDP-DP3 in Table 2.

BP-DFS is the fastest implementation when using its best configuration since
it is highly optimized and does not suffer from CDP’s intrinsic performance
penalties. Moreover, BP-DFS is also superior to the multi-threaded implemen-
tation that applies load balance and runs on two CPUs, 20 cores / 40 threads.

4.3 Discussion

One of CDP’s purposes is to better cope with divide-and-conquer applications.
This is in part true for our implementations of both CDP-DP3 and DP3. The use
of dynamic allocations removes the need for complex thread-to-data mapping.
Furthermore, the strategy of doubling dgpu makes almost the whole search to



be executed on GPU, which avoids dcpu/dgpu tuning. However, solving memory
demanding problems requires extra programming efforts.

Using a different value than the default one makes it necessary to configure
the CUDA heap beforehand, which brings complexity to the code. The heap size
calculation takes into account a subtree rooted at dcpu that goes down to the
base depth. Moreover, the definition of a recursion base is also challenging: for
an ATSP instance of size N = 18, 4 generations of kernels would be launched.
Furthermore, it would require an enormous amount of memory to store the
possible children nodes at dcpu = 16 (refer to Section 3.1.2). However, the last
kernel generation would perform no search at all. For example, consider instance
tsmat18. The fourth kernel generation of DP3 would evaluate less than 3% of
the solution space.

Moreover, the initial dcpu for both DP3 and CDP-DP3 is 2. Taking into
account the ATSP, it is unlikely that pruning of unfeasible nodes happens in
such a shallow depth. As a consequence, the memory requirement analysis of
both DP3 and CDP-DP3 would return a heap requirement close to the maximum
possible size, which wastes memory. This is not the case for DP2: both dcpu and
dgpu need tuning, and the number of objective nodes at deeper depths is much
smaller than the maximum one. This way, DP2 can solve instance crane15 in a
configuration with the default heap and a deep dcpu. However, this configuration
is slower than the one of Table 1 that needs GPU heap setup.

Finally, the memory for parent-child synchronization cannot be ignored, and
it can be a limitation for more modest hardware: there may be a situation where
the memory reserved for depth synchronization takes almost the whole global
memory, leaving nearly no memory space for the search procedure on GPU.

5 Conclusion and Future Works

This work has presented an algorithm to calculate the memory requirements
of CDP-based divide-and-conquer algorithms and configure the CUDA runtime
accordingly. The proposed algorithm was implemented to manage different CDP-
based backtracking from the literature and experimented on two test-cases: N-
Queens and ATSP.

Using CDP may be a good choice for programmers that intent to parallelize
recursive divide-and-conquer application for solving nondemanding problems.
The use of recursion removes much of the complexity in programming and pa-
rameters tuning. Moreover, despite the intrinsic overhead of CDP, speedups are
observed for all CDP-based implementations. However, using CDP for processing
memory demanding recursive applications brings extra complexity on configur-
ing the runtime before launching the first kernel generation.

A future research direction is on investigating different ways of calculating
the next dgpu and a rule for determining the base depth. Another future work is
to investigate limitations of modest gamer hardware while processing memory
demanding CDP-based recursive applications.



References

1. Wang, J., Yalamanchili, S.: Characterization and analysis of dynamic parallelism
in unstructured GPU applications. In: 2014 IEEE International Symposium on
Workload Characterization (IISWC), IEEE (2014) 51–60

2. Mukherjee, S.S., Sharma, S.D., Hill, M.D., Larus, J.R., Rogers, A., Saltz, J.: Effi-
cient support for irregular applications on distributed-memory machines. In: ACM
SIGPLAN Notices. Volume 30., ACM (1995) 68–79

3. Yelick, K.A.: Programming models for irregular applications. ACM SIGPLAN
Notices 28(1) (1993) 28–31

4. Gendron, B., Crainic, T.G.: Parallel branch-and-bound algorithms: Survey and
synthesis. Operations Research 42(6) (1994) 1042–1066

5. Brodtkorb, A., Dyken, C., Hagen, T., Hjelmervik, J., Storaasli, O.: State-of-the-art
in heterogeneous computing. Scientific Programming 18(1) (2010) 1–33

6. Adinetz, A.: CUDA dynamic parallelism: API and principles (2014) Accessed:
2018-05-10.

7. Carneiro Pessoa, T., Gmys, J., de Carvalho Junior, F.H., Melab, N., Tuyttens, D.:
GPU-accelerated backtracking using CUDA dynamic parallelism. Concurrency
and Computation: Practice and Experience (2017) e4374–n/a

8. NVIDIA: CUDA C programming guide (version 9.1). (2018)
9. Cook, W.: In pursuit of the traveling salesman: mathematics at the limits of

computation. Princeton University Press (2012)
10. Cirasella, J., Johnson, D., McGeoch, L., Zhang, W.: The asymmetric traveling

salesman problem: Algorithms, instance generators, and tests. Algorithm Engi-
neering and Experimentation (2001) 32–59

11. Plauth, M., Feinbube, F., Schlegel, F., Polze, A.: A performance evaluation of
dynamic parallelism for fine-grained, irregular workloads. International Journal of
Networking and Computing 6(2) (2016) 212–229

12. Zhang, T., Shu, W., Wu, M.Y.: Optimization of N-Queens solvers on graphics pro-
cessors. In: International Workshop on Advanced Parallel Processing Technologies,
Springer (2011) 142–156

13. Zhang, P., Holk, E., Matty, J., Misurda, S., Zalewski, M., Chu, J., McMillan, S.,
Lumsdaine, A.: Dynamic parallelism for simple and efficient GPU graph algo-
rithms. In: Proceedings of the 5th Workshop on Irregular Applications: Architec-
tures and Algorithms, ACM (2015) 11

14. DiMarco, J., Taufer, M.: Performance impact of dynamic parallelism on different
clustering algorithms and the new GPU architecture. In: Proceedings of SPIE
Defense, Security, and Sensing Symposium. (2013)

15. Zhang, W.: Branch-and-bound search algorithms and their computational com-
plexity. Technical report, DTIC Document (1996)

16. Feinbube, F., Rabe, B., von Löwis, M., Polze, A.: NQueens on CUDA: Optimization
issues. In: Ninth International Symposium on Parallel and Distributed Computing
(ISPDC), IEEE (2010) 63–70

17. Carneiro, T., Muritiba, A., Negreiros, M., de Campos, G.: A new parallel schema
for branch-and-bound algorithms using GPGPU. In: 23rd International Sympo-
sium on Computer Architecture and High Performance Computing (SBAC-PAD).
(2011) 41–47

18. Karypis, G., Kumar, V.: Unstructured tree search on SIMD parallel computers.
IEEE Transactions on Parallel and Distributed Systems 5(10) (1994) 1057–1072


