
HAL Id: hal-01919858
https://hal.inria.fr/hal-01919858

Submitted on 12 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coding for QUIC
Ian Swett, Marie-Jose Montpetit, Vincent Roca

To cite this version:

Ian Swett, Marie-Jose Montpetit, Vincent Roca. Coding for QUIC. 2018. �hal-01919858�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162976998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01919858
https://hal.archives-ouvertes.fr

nwcrg I. Swett
Internet-Draft Google
Intended status: Informational M-J. Montpetit
Expires: December 23, 2018 Triangle Video
 V. Roca
 INRIA
 June 21, 2018

 Coding for QUIC
 draft-swett-nwcrg-coding-for-quic-01

Abstract

 This document focusses on the integration of FEC coding in the QUIC
 transport protocol, in order to recover from packet losses. This
 document does not specify any FEC code but defines mechanisms to
 negotiate and integrate FEC Schemes in QUIC. By using proactive loss
 recovery, it is expected to improve QUIC performance in sessions
 impacted by packet losses. More precisely it is expected to improve
 QUIC performance with real-time sessions (since FEC coding makes
 packet loss recovery insensitive to the round trip time), with
 multicast sessions (since the same repair packet can recover several
 different losses at several receivers), and with multipath sessions
 (since repair packets add diversity).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 23, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Swett, et al. Expires December 23, 2018 [Page 1]

https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Coding for QUIC June 2018

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Definitions and Abbreviations 3
 3. General Design Considerations 4
 3.1. FEC Code versus FEC Scheme, Block Codes versus Sliding
 Window Codes . 4
 3.2 . FEC Scheme Negotiation 4
 3.3 . FEC Protection Within an Encrypted Channel 5
 3.4 . About Middleboxes . 5
 3.5 . FEC Protection at the Stream Level 5
 3.6. About Gaps in the Set of Source Symbols Considered During
 Encoding . 5
 4. FEC Scheme Negotiation in QUIC 6
 4.1 . FEC Scheme Selection Process 7
 4.2 . FEC Scheme Configuration Information 7
 5. Procedures when Protecting a Single QUIC Stream 8
 5.1. Application data, STREAM Frame data and Source Symbols . 8
 5.2. Signaling Considerations within STREAM and REPAIR Frames 9
 5.3 . Management of Silent Periods and End of Stream 10
 6. Procedures when Protecting Several QUIC Streams 11
 6.1. Application data, STREAM Frame data and Source Symbols . 11
 6.2 . Block or Encoding Window Management 11
 6.3. Signaling Considerations within STREAM and REPAIR Frames 12
 7. Security Considerations 13
 8. IANA Considerations . 13
 9. Acknowledgments . 13
 10. References . 13
 10.1 . Normative References 13
 10.2 . Informative References 14
 Authors’ Addresses . 14

1. Introduction

 QUIC is a new transport that aims at improving network performance by
 enabling out of order delivery, partial reliability, and methods of
 recovery besides retransmission, while also improving security. This
 document specifies a framework to enable FEC codes to be used to

Swett, et al. Expires December 23, 2018 [Page 2]

https://tools.ietf.org/pdf/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Coding for QUIC June 2018

 recover from lost packets within a single QUIC stream or across
 several QUIC streams.

 The ability to add FEC coding in QUIC may be beneficial in several
 situations:

 o for a robust transmission of latency sensitive traffic, for
 instance real-time flows, since it enables to recover packet
 losses independently of the round trip time;

 o for the transmission of contents to a large set of QUIC reception
 endpoints, since the same repair frame may help recovering several
 different packet losses at different receivers;

 o for multipath communications, since repair traffic adds diversity.

 This framework does not mandate the use of any specific FEC code
 (i.e., how to encode and decode) nor FEC Scheme (i.e., that specifies
 both a FEC code and how to use it, in particular in terms of
 signaling). Instead it allows to negotiate the FEC Scheme to use at
 session startup, assuming that more than one solution could
 potentially be offered concurrently. Without loss of generality, we
 assume that the encoding operations compute a linear combination of
 QUIC packets, regardless of whether these codes are of block type (as
 with Reed-Solomon codes [RFC5510]) or sliding window type (as with
 RLC codes [RLC]).

2. Definitions and Abbreviations

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Terms and definitions that apply to coding are available in
 [nc-taxonomy]. More specifically, this document uses the following
 definitions:

 Packet versus Symbol: a Packet is the unit of data that is exchanged
 over the network while a Symbol is the unit of data that is
 manipulated during the encoding and decoding operations

 Source Symbol: a unit of data originating from the source that is
 used as input to encoding operations

 Repair Symbol: a unit of data that is the result of a coding
 operation

 This document uses the following abbreviations:

Swett, et al. Expires December 23, 2018 [Page 3]

https://tools.ietf.org/pdf/rfc5510
https://tools.ietf.org/pdf/rfc2119

Internet-Draft Coding for QUIC June 2018

 E: size of an encoding symbol (i.e., source or repair symbol),
 assumed fixed (in bytes)

3. General Design Considerations

 This section lists a few general considerations that govern the
 framework for FEC coding support in QUIC.

3.1 . FEC Code versus FEC Scheme, Block Codes versus Sliding Window
 Codes

 A FEC code specifies the details of encoding and decoding operations.
 In addition to that, a FEC Scheme defines the additional protocol
 aspects required to use a particular FEC code [nc-taxonomy]. In
 particular the FEC Scheme defines signaling (e.g., information
 contained in Source and Repair Packet header or trailers) needed to
 synchronize encoders and decoders.

 Block coding (e.g., Reed-Solomon [RFC5510]) and sliding window coding
 (e.g., RLC [RLC]) are two broad classes of FEC codes [nc-taxonomy].
 In the first case, the input flow must be first segmented into a
 sequence of blocks, FEC encoding and decoding being performed
 independently on a per-block basis. In the second case rely, a
 sliding encoding window continuously slides over the input flow. It
 is envisioned that the two classes of codes could be used to bring
 FEC protection to QUIC, usually with an advantage for sliding window
 codes when it comes to low latency communications.

3.2 . FEC Scheme Negotiation

 There are multiple FEC Scheme candidates. Therefore a negotiation
 step is needed to select one or more codes to be used over a QUIC
 session. This will be implemented using the one step negotiation of
 the new QUIC negotiation mechanism [QUIC-transport], during the QUIC
 handshake.

 Editor’s notes:

 * It is likely that FEC Scheme negotiation requires the use of a
 new dedicated Extension Frame Type. To Be Clarified and text
 updated.

 * It is not clear whether negotiation is meant to select a
 single FEC Scheme or **multiple** FEC Schemes. In the
 second case (multiple FEC) it is required to have a
 complementary mechanism to indicate which FEC Scheme is used
 in a given REPAIR frame (which could be done through as many

Swett, et al. Expires December 23, 2018 [Page 4]

https://tools.ietf.org/pdf/rfc5510

Internet-Draft Coding for QUIC June 2018

 REPAIR frame type values as potential FEC Scheme negotiated).
 Is it what we want to achieve? Not sure.

 * It is not clear whether negotiation is carried out at QUIC
 level (and therefore for multiple streams) or at a stream
 level (and therefore multiple streams may use multiple FEC
 Schemes). The terminology used above should be updated to
 reflect the choice.

3.3 . FEC Protection Within an Encrypted Channel

 FEC encoding is applied before any QUIC encryption and authentication
 processing. Source symbols, that constitute the data units used by
 the FEC codec, contain cleartext application data.

3.4 . About Middleboxes

 The coding approach described in this document does not allow on path
 elements (middleboxes) to take part in FEC protection. The traffic
 being encrypted end-to-end, the middleboxes are not in position to
 perform FEC decoding, nor to add any redundant traffic.

3.5 . FEC Protection at the Stream Level

 Streams in QUIC provide a lightweight, ordered byte-stream
 abstraction. FEC encoding is applied at the stream level, within a
 single stream or across two or more streams of the same QUIC session.
 This is motivated by the fact that FEC protection is not necessarily
 beneficial to all data streams, but only to a subset of them. For
 instance FEC protection can be highly beneficial to live video
 streams to which the proactive erasure correction feature of FEC,
 independent of the RTT, should be highly beneficial. On the
 opposite, FEC protection is probably less attractive for latency
 insensitive bulk unicast flows.

 In order to facilitate experiments, and in order to enable backward
 compatibility, the STREAM frames that carry application data are kept
 unmodified. On the opposite, frames that carry one or more repair
 symbols use a dedicated REPAIR frame type, chosen within the type
 range dedicated to "Extension Frames".

3.6 . About Gaps in the Set of Source Symbols Considered During Encoding

 A given FEC Scheme MAY support or not the presence of gaps in the set
 of source symbols that constitute a block (for Block codes) or an
 encoding window (for Sliding Window codes). A potential cause for
 non contiguous sets of source symbols is the acknowledgment of one of
 them. When this happens, the QUIC sending endpoint may want to

Swett, et al. Expires December 23, 2018 [Page 5]

Internet-Draft Coding for QUIC June 2018

 remove this source symbol from further FEC encodings. This is
 particularly true with Sliding Window codes because of their
 flexibility during FEC encoding (i.e., the encoding window can change
 between two consecutive FEC encodings).

 Supporting gaps can be motivated by the desire to reduce encoding and
 decoding complexity since there are fewer variables. However this
 choice has major consequences in terms of signaling. Indeed each
 repair symbol transmitted MUST be accompanied with enough information
 for the QUIC decoding endpoint to unambiguously identify the exact
 composition of the block or encoding window. Without any gap, the
 identity of the first source symbol plus the number of symbols in the
 block or encoding window is sufficient. With gaps, a more complex
 encoding needs to be used, perhaps similar to the encoding used for
 selective acknowledgments.

 Whether or not gaps are supported MUST be clarified in each FEC
 Scheme.

4. FEC Scheme Negotiation in QUIC

 FEC Scheme negotiation has two goals:

 o Selecting a FEC Scheme (or FEC Schemes) that can be used by the
 QUIC transmission and reception endpoints. This process requires
 an exchange between them;

 o Communicating a certain number of parameters, the "Configuration
 Information", that are not expected to change over the session
 lifetime. For instance, this is the case of the symbol size
 parameter, E (in bytes), that needs either to be agreed between
 the endpoints, or chosen by the sender and communicated to the
 receiver(s);

 Editor’s notes:

 * It is likely that FEC Scheme negotiation requires the use of a
 new dedicated Extension Frame Type. The details remain TBD.

 * The Negotiation Frame Type format remains TBD.

 * How to communicate the parameters remains TBD.

 * The present document only provides high level principles, the
 details are of course the responsibility of the FEC Scheme.

Swett, et al. Expires December 23, 2018 [Page 6]

Internet-Draft Coding for QUIC June 2018

 * In case negotiation is different when protecting a single
 versus several streams, this section may be moved to the
 respective sections.

 * How does it work in case of a multicast session?

 * Do we negotiate here a FEC Scheme on a per-Stream basis (or
 group of Streams to be protected jointly)? Or do we negotiate
 a FEC Scheme on a QUIC session basis, therefore to be used for
 all the Streams that need FEC protection?

4.1 . FEC Scheme Selection Process

 Let us consider the FEC Scheme selection process between the QUIC
 endpoints. Figure 1 illustrates the principle when a QUIC reception
 endpoint initiates the exchange.

 QUIC sender QUIC receiver
 < -
 supported_fec_scheme_32b{FS1_Encoding_ID | other}
 supported_fec_scheme_64b{FS1_Encoding_ID | other}

 choose FEC Scheme "FS1"
 - >
 supported_fec_scheme_32b{FS1_Encoding_ID | other}

 Figure 1: Example FEC Scheme selection process, during the initial
 negotiation.

 The supported_fec_scheme_16b and supported_fec_scheme_32b are two new
 TransportParameterId to be added to the "Table 7: Initial QUIC
 Transport Parameters Entries" Section 13.1 , of [QUIC-transport]. The
 supported_fec_scheme_32b contains a 32-bit data field to carry opaque
 32-bit value, while the supported_fec_scheme_64b contains a 64-bit
 data field to carry opaque 64-bit value (see Section 4.2).

4.2 . FEC Scheme Configuration Information

 Let us now focus on the communication of configuration information
 specific to the selected FEC Scheme. In Figure 1, the
 supported_fec_scheme_32b{FS1_Encoding_ID} contains a field meant to
 carry the FEC Encoding ID of the FEC Scheme selected plus addditional
 configuration information if any. If a 32 bit opaque field is not
 sufficient, the supported_fec_scheme_64b can be used instead and
 proposes a 64 bit opaque field.

Swett, et al. Expires December 23, 2018 [Page 7]

Internet-Draft Coding for QUIC June 2018

5. Procedures when Protecting a Single QUIC Stream

 This section focusses on the simple case where FEC protection is
 applied to a single QUIC stream. We consider a unidirectional data
 flow between a QUIC sending endpoint and one (or more) QUIC reception
 endpoints.

5.1 . Application data, STREAM Frame data and Source Symbols

 Application data is kept in a transmission buffer at a QUIC sending
 endpoint, and sent within STREAM frames. Each STREAM frame that
 carries data contains an Offset field that indicates the offset
 within the stream of the first byte of the Stream Data field, as well
 as a Length field that indicates the number of bytes contained in the
 Stream Data field. Upon receiving a STREAM frame, using the Offset
 and Length fields, a QUIC reception endpoint can easily store data in
 its reception buffer. But since a QUIC Packet may be lost during
 transmission, the reception buffer may have gaps.

 Figure 2 illustrates how source symbols are mapped to the QUIC
 transmission or reception buffers (same principle on either side).
 Since any source (and repair) symbol is of fixed size (E bytes) for a
 given stream, since QUIC guaranties that the first byte in the stream
 has an offset of 0, the position of each source symbol is known by
 both ends.

 < -E- > < -E- > < -E- > < -E- >
 +-------+-------+-------+-------+
 |< -- Frame 1 -- >< ----- Frame | source symbols 0, 1, 2, 3
 +-------+-------+-------+-------+
 | 2 ----- >< --- Frame 3 -- >< -| source symbols 4, 5, 6, 7
 +-------+-------+----+--+-------+
 | Frame 4 - >< -F5- >| source symbols 8, 9 and 10
 +-------+-------+----+ (incomplete)

 Figure 2: Example of source symbol mapping, when the E value is
 relatively small.

 Any value for E is possible, from a single byte to several hundreds
 or thousands of bytes. In general, the source symbols are not
 aligned with data chunks sent in the STREAM frames. A given STREAM
 frame may carry all the bytes of a given source symbol. But when a
 source symbol straddles two or more (e.g., if E is large compared to
 usual frame size) STREAM frames, a proper reception of these two (or
 more) STREAM frames is needed for a QUIC reception endpoint to
 consider that the source symbol is available for FEC decoding
 operations. The choice of an appropriate value for E may depend on
 the use case (in particular on the nature of application data). A

Swett, et al. Expires December 23, 2018 [Page 8]

Internet-Draft Coding for QUIC June 2018

 reasonably small value reduces the probability that a source symbol
 straddles two or more STREAM frames, a situation that is considered
 as potentially harmful (the unit of control, the source symbol, and
 unit of transmission, the frame, are not aligned). However an overly
 small value also increases processing complexity (FEC encoding and
 decoding are performed over a larger linear system) so there is an
 incentive to use a larger value. An appropriate balance should be
 found, and this choice is considered as out of scope for this
 document.

5.2 . Signaling Considerations within STREAM and REPAIR Frames

 Once the initial negotiation succeeded and an appropriate FEC Scheme
 has been chosen between the QUIC endpoints, data is exchanged as
 follows. Source data is transmitted within STREAM frames, as would
 happen without any FEC based loss recovery mechanism (in particular
 without considering source symbols boundaries). Repair data,
 computed during FEC encoding, on the opposite, is sent within a
 dedicated REPAIR frame type, chosen within the type range dedicated
 to "Extension Frames". In both cases, the same Stream ID is used
 since both flows relate to the same stream.

 The REPAIR frame format is FEC Scheme dependent. The document
 specifying a FEC Scheme to be used with QUIC MUST define the REPAIR
 frame format, among other things. The REPAIR frame MUST carry enough
 information for a QUIC reception endpoint to understand exactly how
 this repair symbol(s) has(ve) been generated. It implies that each
 REPAIR symbol MUST communicate the block (with block codes) or
 encoding window (with Sliding Window codes) composition. This MAY be
 achieved by communicating in case there is no gap in the source
 symbol set (see XXX):

 o the offset of the first source symbol of the block or encoding
 window;

 o the number of source symbols in the block or encoding window,
 which can be either a number of symbols or a number of bytes since
 symbols are of fixed size, E.

 Note that unlike FEC Schemes for FLUTE/ALC, NORM, and FECFRAME, here
 there is no notion of Encoding Symbol Id (ESI), an identifier managed
 in a sequential manner to identify source and repair symbols. The
 use of an offset within the stream, with the guaranty that no
 wrapping to zero can occur, provides an alternative mechanism to
 identify any source symbol.

 As explained above, source data is transmitted without any
 modification, which provides backward compatibility. This is

Swett, et al. Expires December 23, 2018 [Page 9]

Internet-Draft Coding for QUIC June 2018

 advantage in situations where the same QUIC stream is delivered to
 several QUIC reception endpoints (multicast): it may be appropriate
 to select a given FEC Scheme even if it is known that a subset of the
 QUIC reception endpoints do not support it.

 Editor’s notes:

 * This I-D proposes to define a single generic REPAIR frame
 type, but an alternative could be to have a one-to-one mapping
 between a REPAIR frame type and a specific FEC Scheme.

 * The use of frame type within the Extension Frames range for
 REPAIR frames is meant to facilitate experimentations. If the
 use of coding in QUIC is recognized as having benefits, a
 dedicated (or more, see above) frame type could be selected
 later on.

5.3 . Management of Silent Periods and End of Stream

 If an application does not submit fresh data for some time, the last
 source symbol may not be totally filled. It follows that this last
 source symbol cannot be considered during FEC encoding and therefore
 the associated bytes of the application stream are not protected. A
 similar problem arrives when a stream is finished, the application
 having no more data to submit to QUIC. Here also, the bytes of the
 last incomplete source symbol are not protected by FEC encoding.

 In order to solve this problem, it is RECOMMENDED that a QUIC sending
 endpoint:

 o Identifies when such a situation is likely to occur, for instance
 by waiting no more than a certain time during an application
 silent period;

 o Upon time-out, the application falls back to the alternative re-
 transmission based loss recovery mechanism for the bytes of the
 last incomplete source symbol;

 Editor’s notes: Clearly, the above mechanism requires more thoughts
 as well as experimental work. The "end of stream" situation may
 be addressed through zero padding perhaps easily. However the
 use of zero padding for transitory silent periods may add a lot
 of specification and implementation complexity...

Swett, et al. Expires December 23, 2018 [Page 10]

Internet-Draft Coding for QUIC June 2018

6. Procedures when Protecting Several QUIC Streams

 This section focusses on the general case where FEC protection is
 globally applied across two or more QUIC streams.

 Editor’s notes: It is not clear whether this use-case is needed. It
 adds specification and implementation complexity that need to be
 balanced with the expected benefits.

 * Receiver: A first complexity comes from the requirement to
 identify to which stream a decoded source symbol belongs to.
 This is also one of the main difficulty for FECFRAME (both
 with block and sliding window codes) which required to
 distinguish an ADU (submitted by the application) from an ADUI
 (the same ADU plus an additional FlowID among other things).
 Do we want this level of complexity?

 * Sender: Another complexity comes from the encoding window
 management at a sender. With multiple streams, shifting the
 encoding window to the right needs to be done based on
 timestamps associated to source symbols of the various
 streams: the oldest source symbol across all the streams will
 be removed.

 * When two largely different streams are protected togethers
 (e.g., a high definition 4K video flow plus the associated
 relatively low-rate audio stream), is this extra complexity
 balanced by significant performance improvements compared to
 an independent protection on each stream (intuition is yes,
 the low bitrate flow is better protected iff the encoding
 window is large enough)? And when the various streams have a
 comparable bitrate? More work (incl. experimental work) is
 needed to answer this question.

6.1 . Application data, STREAM Frame data and Source Symbols

 Within each stream, the source symbols MUST be defined as in the
 simple case of a single stream. Figure 2 remains valid.

6.2 . Block or Encoding Window Management

 The details of how to create the block or encoding window are
 specific to the FEC Scheme. A possible approach is the following.

 When creating the block (block FEC code) or encoding window (sliding
 window FEC code), the source symbols to consider of each stream are
 appended. All the relevant source symbols of the first stream are
 appended, followed by all the source symbols of the second stream,

Swett, et al. Expires December 23, 2018 [Page 11]

Internet-Draft Coding for QUIC June 2018

 etc. These sequences do not follow any timing consideration in order
 to simplify signaling.

 Figure 3 illustrates, in case of a Sliding Window FEC Scheme, an
 encoding window with source symbols belonging to two streams, of
 Stream ID 120 and 51 respectively.

 < ----------- Stream ID 120 ---------- > < --- Stream ID 51 --- >
 +-------+-------+-------+-------+-------+-------+-------+-------+
 | | | | | | | | |
 +-------+-------+-------+-------+-------+-------+-------+-------+
 ^ < -E- > ^
 | |
 offset = 0x42f0, length = 5*E offset = 0x0f24, length = 3*E

 Figure 3: Example of encoding window of a Sliding Window FEC Scheme
 and FEC protection across two streams.

6.3 . Signaling Considerations within STREAM and REPAIR Frames

 Source data on each stream is transmitted within STREAM frames, as
 would happen without any FEC based loss recovery mechanism.

 Repair symbols, generated during FEC encoding as a linear combination
 of source symbols that belong to one or more of the streams, are
 transmitted within REPAIR frames. Each REPAIR frame can be
 associated to any of the input streams it protects, and therefore
 associated to any of the associated Stream IDs.

 Editor’s notes: Check that indeed, with FEC protection across
 several streams, assigning a REPAIR frame to any of the streams
 it protects is meaningful. Should an approach for selecting one
 stream (and Stream ID) be preferred?

 The REPAIR frame format is FEC Scheme dependent and MUST be defined
 by document specifying a FEC Scheme. One of the key information of
 this REPAIR frame is the composition of the block (with block codes)
 or encoding window (with sliding window codes) used to perform FEC
 encoding. Indeed, this is the only manner to convey this information
 since an application flow is not predictable (e.g., if an application
 flow is momentarily suspended, the composition of the block or
 encoding window will be affected). One possibility is to list, in
 each REPAIR frame header:

 o the actual number of streams considered (the maximum number is
 known after the negotiation step, but if one of the streams
 remains silent for some time, it may not contribute during

Swett, et al. Expires December 23, 2018 [Page 12]

Internet-Draft Coding for QUIC June 2018

 encoding and therefore be absent from the block or encoding
 window);

 o for each stream concerned, its Stream ID, the offset of the first
 source symbol considered as well as the length, i.e., the number
 of bytes considered.

 This approach does not enable to keep track of the source symbol
 ordering across streams, but enables a non ambiguous description of
 the encoding window.

 The FEC Scheme specification MUST also detail how to manage the block
 or encoding window. For instance, should the oldest source symbol of
 any stream be removed from the encoding window when this latter is
 shifted to the right? This would mean that a timestamp is attached
 to each source symbol in order to identify the oldest one across all
 streams.

7. Security Considerations

 TBD

8. IANA Considerations

 TBD

9. Acknowledgments

 TBD

10. References

10.1 . Normative References

 [QUIC-transport]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", draft-ietf-quic-
 transport-12 (work in progress), May 2018,
 < https://datatracker.ietf.org/doc/
 draft-ietf-quic-transport/ >.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14 , RFC 2119 ,
 DOI 10.17487/RFC2119, March 1997,
 < https://www.rfc-editor.org/info/rfc2119 >.

Swett, et al. Expires December 23, 2018 [Page 13]

https://tools.ietf.org/pdf/draft-ietf-quic-transport-12
https://tools.ietf.org/pdf/draft-ietf-quic-transport-12
https://datatracker.ietf.org/doc/draft-ietf-quic-transport/
https://datatracker.ietf.org/doc/draft-ietf-quic-transport/
https://tools.ietf.org/pdf/bcp14
https://tools.ietf.org/pdf/rfc2119
https://www.rfc-editor.org/info/rfc2119

Internet-Draft Coding for QUIC June 2018

10.2 . Informative References

 [nc-taxonomy]
 Roca et al., V., "Taxonomy of Coding Techniques for
 Efficient Network Communications", draft-irtf-nwcrg-
 network-coding-taxonomy (Work in Progress) (work in
 progress), March 2018, < https://datatracker.ietf.org/doc/
 draft-irtf-nwcrg-network-coding-taxonomy/ >.

 [RFC5510] Lacan, J., Roca, V., Peltotalo, J., and S. Peltotalo,
 "Reed-Solomon Forward Error Correction (FEC) Schemes",
 RFC 5510 , DOI 10.17487/RFC5510, April 2009,
 < https://www.rfc-editor.org/info/rfc5510 >.

 [RLC] Roca, V., "Sliding Window Random Linear Code (RLC) Forward
 Erasure Correction (FEC) Scheme for FECFRAME", Work
 in Progress, Transport Area Working Group (TSVWG) draft-
 ietf-tsvwg-rlc-fec-scheme (Work in Progress), May 2018,
 < https://tools.ietf.org/html/
 draft-ietf-tsvwg-rlc-fec-scheme >.

Authors’ Addresses

 Ian Swett
 Google
 Cambridge, MA
 US

 Email: ianswett@google.com

 Marie-Jose Montpetit
 Triangle Video
 Boston, MA
 US

 Email: marie@mjmontpetit.com

 Vincent Roca
 INRIA
 Univ. Grenoble Alpes
 France

 Email: vincent.roca@inria.fr

Swett, et al. Expires December 23, 2018 [Page 14]

https://tools.ietf.org/pdf/draft-irtf-nwcrg-network-coding-taxonomy
https://tools.ietf.org/pdf/draft-irtf-nwcrg-network-coding-taxonomy
https://datatracker.ietf.org/doc/draft-irtf-nwcrg-network-coding-taxonomy/
https://datatracker.ietf.org/doc/draft-irtf-nwcrg-network-coding-taxonomy/
https://tools.ietf.org/pdf/rfc5510
https://www.rfc-editor.org/info/rfc5510
https://tools.ietf.org/pdf/draft-ietf-tsvwg-rlc-fec-scheme
https://tools.ietf.org/pdf/draft-ietf-tsvwg-rlc-fec-scheme
https://tools.ietf.org/html/draft-ietf-tsvwg-rlc-fec-scheme
https://tools.ietf.org/html/draft-ietf-tsvwg-rlc-fec-scheme

