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Abstract

Genome-wide association study (GWAS) methods applied to bacterial genomes have
shown promising results for genetic marker discovery or detailed assessment of marker
effect. Recently, alignment-free methods based on k-mer composition have proven their
ability to explore the accessory genome. However, they lead to redundant descriptions
and results which are sometimes hard to interpret. Here we introduce DBGWAS, an
extended k-mer-based GWAS method producing interpretable genetic variants
associated with distinct phenotypes. Relying on compacted De Bruijn graphs (cDBG),
our method gathers cDBG nodes, identified by the association model, into subgraphs
defined from their neighbourhood in the initial cDBG. DBGWAS is alignment-free and
only requires a set of contigs and phenotypes. In particular, it does not require prior
annotation or reference genomes. It produces subgraphs representing
phenotype-associated genetic variants such as local polymorphisms and mobile genetic
elements (MGE). It offers a graphical framework which helps interpret GWAS results.
Importantly it is also computationally efficient – experiments took one hour and a half
on average. We validated our method using antibiotic resistance phenotypes for three
bacterial species. DBGWAS recovered known resistance determinants such as mutations
in core genes in Mycobacterium tuberculosis, and genes acquired by horizontal transfer
in Staphylococcus aureus and Pseudomonas aeruginosa – along with their MGE context.
It also enabled us to formulate new hypotheses involving genetic variants not yet
described in the antibiotic resistance literature. An open-source tool implementing
DBGWAS is available at https://gitlab.com/leoisl/dbgwas.
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Author summary

Genome-wide association studies (GWAS) help explore the genetic bases of phenotype
variation in a population. Our objective is to make GWAS amenable to bacterial
genomes. These genomes can be too different to be aligned against a reference, even
within a single species, making the description of their genetic variation challenging. We
test the association between the phenotype and the presence in the genomes of DNA
subsequences of length k – the so-called k-mers. These k-mers provide a versatile
descriptor, allowing to capture genetic variants ranging from local polymorphisms to
insertions of large mobile genetic elements. Unfortunately, they are also redundant and
difficult to interpret. We rely on the compacted De Bruijn graph (cDBG), which
represents the overlaps between k-mers. A single cDBG is built across all genomes,
automatically removing the redundancy among consecutive k-mers, and allowing for a
visualisation of the genomic context of the significant ones. We provide a
computationally efficient and user-friendly implementation, enabling
non-bioinformaticians to carry out GWAS on thousands of isolates in a few hours. This
approach was effective in catching the dynamics of mobile genetic elements in
Staphylococcus aureus and Pseudomonas aeruginosa genomes, and retrieved known local
polymorphisms in Mycobacterium tuberculosis genomes.

Introduction 1

The aim of Genome-Wide Association Studies (GWAS) is to identify associations 2

between genetic variants and a phenotype observed in a population. They have recently 3

emerged as an important tool in the study of bacteria, given the availability of large 4

panels of bacterial genomes combined with phenotypic data [1–7]. 5

GWAS rely on a representation of the genomic variation as numerical factors. The 6

most common approaches are based on single nucleotide polymorphisms (SNPs), defined 7

by aligning all genomes of the studied panel against a reference genome [1,3, 4] or 8

against a pangenome built from all the genes identified by annotating the genomes [8], 9

and on gene presence/absence, using a pre-defined collection of genes [5,7]. The use of a 10

reference genome becomes unsuitable when working on bacterial species with a large 11

accessory genome – the part of the genome which is not present in all strains. On the 12

other hand, methods focusing on genes are unable to cover variants in noncoding 13

regions, including those related to transcriptional and translational regulation [9, 10]. 14

Moreover, some poorly studied species still lack a representative annotation [11]. 15

To circumvent these issues and make bacterial genomes amenable to GWAS, recent 16

studies have relied on k-mers: all nucleotide substrings of length k found in the 17

genomes [2, 5, 6]. The presence of k-mers in genomes can account for diverse genetic 18

events such as the acquisition of SNPs, (long) insertions/deletions and recombinations. 19

Unlike SNP- or gene-based approaches, k-mer analyses do not require a reference 20

genome or any assumption on the nature of the causal variants and can even be 21

performed without assembling the genome sequences [12]. 22

While k-mers can reflect any genomic variation in a panel, they do not themselves 23

represent biological entities. Translating the result of a k-mer-based GWAS into 24

meaningful genetic variants typically requires mapping a large and redundant set of 25

short sequences [2, 5, 6, 13]. Recent studies have suggested reassembling the significantly 26

associated k-mers to reduce redundancy and retrieve longer marker sequences [6, 13]. 27

Nonetheless, k-mer representation often loses in interpretability what it gains in 28

flexibility, and the best way to encode the genomic variation in bacterial GWAS is not 29

yet clearly defined [14,15]. 30

Our approach, coined DBGWAS, for De Bruijn Graph GWAS, bridges the gap 31
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between, on the one hand, SNP- and gene-based representations lacking the right level 32

of flexibility to cover complete genomic variation, and, on the other hand, k-mer-based 33

representations which are flexible but not readily interpretable. We rely on De Bruijn 34

graphs [16] (DBGs), which are widely used for de novo genome assembly [17,18] and 35

variant calling [12, 19]. These graphs connect overlapping k-mers (here DNA fragments), 36

yielding a compact summary of all variations across a set of genomes. Fig 1 illustrates 37

the construction of such a graph for a simple example, where the only variation among 38

the aligned genomes is a point mutation. DBGs also accommodate more complex 39

disparities including rearrangements and insertions/deletions (S1 Fig). 40

DBGWAS relies on the ability of compacted DBGs (cDBGs) to eliminate local 41

redundancy, reflect genomic variations, and characterise the genomic environment of a 42

k-mer at the population level. More precisely, we build a single cDBG from all the 43

genomes included in the association study (in practice, up to thousands). The graph 44

nodes – called unitigs – represent, by construction, sequences of variable length and are 45

at the right level of resolution for the set of genomes considered, taking into account 46

adaptively the genomic variation. The unitigs are individually tested for association 47

with the phenotype, while controlling for population structure. The unitigs found to be 48

phenotype-associated are then localised in the cDBG. Subgraphs induced by their 49

genomic environment are extracted. They often provide a direct interpretation in terms 50

of genetic events which results from the integration of three types of information: 1) the 51

topology of the subgraph, reflecting the nature of the genetic variant, 2) the metadata 52

represented by node size and colour, allowing us to identify which unitigs in the 53

subgraph are associated to a particular phenotype status, and 3) an optional sequence 54

annotation helping to detect unitig mapping to – or near – a known gene. 55

We benchmarked our novel method using several antibiotic resistance phenotypes 56

within three bacterial species of various degrees of genome plasticity: Mycobacterium 57

tuberculosis, Staphylococcus aureus and Pseudomonas aeruginosa. The subgraphs built 58

from significant unitigs described SNPs or insertions/deletions in both core and 59

accessory regions, and were consistent with results obtained with a resistome-based 60

association study. In addition, novel genotype-to-phenotype associations were also 61

suggested. 62

Results 63

We developed DBGWAS, available at https://gitlab.com/leoisl/dbgwas, and 64

validated it on panels for several bacterial species for which genome sequences and 65

antibiotic resistance phenotypes were available. DBGWAS comprises three main steps: 66

it first builds a variant matrix, where each variant is a pattern of presence/absence of 67

unitigs in each genome. Each variant is then tested for association with the phenotype 68

using a linear mixed model, adjusting for the population structure. Finally, it uses the 69

cDBG neighbourhood of significantly associated unitigs as a proxy for their genomic 70

environment. DBGWAS outputs a set of such subgraphs ordered by minq, which is the 71

smallest q-value observed over unitigs in each subgraph. The top subgraphs therefore 72

represent the genomic environment of the unitigs most significantly associated with the 73

tested phenotype. Fig 2 summarises the main steps of the process. A detailed 74

description of the pipeline is presented in the Methods section. 75

Here we rely on a few experiments to illustrate how the subgraphs output by 76

DBGWAS can be read as genetic events. We then benchmark DBGWAS against two 77

other k-mer-based approaches and one resistome-based approach. DBGWAS recovers 78

known variants, while suggesting novel candidates out of the range of the 79

resistome-based approach. We also find it to be more computationally efficient and to 80

provide more interpretable outputs than the other k-mer-based methods. 81
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A synthetic description of the discussed subgraphs is provided in Table 1, while a 82

description of the top subgraphs obtained for all tested antibiotics is provided in S3 83

Table, S4 Table, and S5 Table. The subgraphs themselves are available at http://pbil. 84

univ-lyon1.fr/datasets/DBGWAS_support/experiments/#DBGWAS_all_results. 85
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Table 1. Resistance determinants identified by DBGWAS for S. aureus (SA), M. tuberculosis (TB) and
P. aeruginosa (PA) panels.
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For each antibiotic, we report subgraphs with their rank, number of significant unitigs over all unitigs in the subgraph (Sign.

unitigs), q-value of the unitig with the lowest q-value (minq), the corresponding estimated effect (β̂ coefficient of the linear
mixed model) and annotation of the subgraph. The type of event represented by the subgraph is colour-coded as: yellow for
MGE, light blue for local polymorphism in gene (LPG), and dark blue for local polymorphism in noncoding region (LPN).
Known resistance markers are indicated in dark green (Pos), determinants whose presence was described to be caused by
co-resistance in orange (CR), unknown variants arriving at the first rank in grey (Ukn). For other subgraphs, an r2 value
relative to the first subgraph is provided as an estimation of linkage disequilibrium with the first subgraph. It was computed
between the most significant patterns of the first and the considered subgraphs.
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Coloured bubbles highlight local polymorphism in core genes, 86

accessory genes and noncoding regions 87

For P. aeruginosa levofloxacin resistance, the subgraph obtained with the lowest minq 88

highlighted a polymorphic region in a core gene (Fig 3A). Indeed, it showed a linear 89

structure containing a complex bubble, with a fork separating susceptible (blue) and 90

resistant (red) strains. The annotation revealed that all unitigs in this subgraph mapped 91

to the quinolone resistance-determining region (QRDR) of the gyrA gene. gyrA codes 92

for a subunit of the DNA gyrase targeted by quinolone antibiotics such as levofloxacin 93

and its alteration is therefore a prevalent and efficient mechanism of resistance [20,21]. 94

In all our experiments related to quinolone resistance, DBGWAS identified QRDR 95

mutations in either gyrA or parC, which codes for another well-known quinolone target: 96

P. aeruginosa levofloxacin (first subgraph, gyrA: minq = 7.21× 10−29 and second, parC : 97

5.68× 10−06), S. aureus ciprofloxacin (first, parC : minq = 8.67× 10−104 and second, 98

gyrA: 2.21× 10−76), and ofloxacin resistance in M. tuberculosis, whose genome does not 99

contain the parC gene [22] (first, gyrA: minq = 9.66× 10−144). 100

For P. aeruginosa amikacin resistance, the top subgraph (minq = 5.86× 10−9) 101

highlighted a SNP in an accessory gene (Fig 3B). As in Fig 3A, it contained a fork 102

separating a blue and a red node. However, other remaining nodes were not grey: they 103

represented an accessory sequence because they were not present in all the strains. Most 104

of these nodes were pale-red, showing that the accessory sequence was more frequent in 105

resistant samples. The annotation revealed that this subgraph corresponded to aac(6’), 106

a gene coding for an aminoglycoside 6-acetyltransferase, an enzyme capable of 107

inactivating aminoglycosides, such as amikacin, by acetylation [23]. Most unitigs in this 108

gene had a low association with resistance, except for the ones describing this particular 109

SNP. Mapping the sequence of these unitigs on the UniProt database [24] revealed an 110

amino-acid change at L83S, right in the enzyme binding site. This SNP was previously 111

shown to be responsible for substrate specificity alteration in a strain of Pseudomonas 112

fluorescens [25]. It appears to increase the amikacin acetylation ability of aac(6’), 113

making its association to amikacin resistance more significant than the gene presence 114

itself. 115

Finally, for M. tuberculosis ethionamide resistance, the top subgraph 116

(minq = 7.86× 10−11, Fig 3C) represented a polymorphic region in a core gene 117

promoter. The subgraph was mostly grey and linear with a localised blue and red fork. 118

The most reliable annotation for this subgraph was fabG1 (also known as mabA), a core 119

gene previously shown to be involved in ethionamide and isoniazid resistance [26,27]. 120

None of the significantly associated unitigs mapped to the fabG1 gene, but their close 121

neighbours did (highlighted in Fig 3C by black circles), suggesting that the detected 122

variant was located in the promoter region of the gene. This was confirmed by mapping 123

the significant unitig sequences using the Tuberculosis Mutation database of the mubii 124

resource [28]. 125

Long single-coloured paths denote mobile genetic element 126

insertions 127

For S. aureus resistance to methicillin, the top subgraph (minq = 7.68× 10−188), shown 128

in Fig 3D, revealed a gene cassette insertion. It contained a long path of red nodes, and 129

a branching region including another red node path. The first path mapped to the 130

mecA gene, extensively described in this context and known to be carried by the 131

Staphylococcal Cassette Chromosome mec (SCCmec) [21, 29, 30]. The other part of the 132

subgraph represented a >5,000 bp fragment of the cassette. It was less linear because it 133

summarised several types of the cassette differing by their structure and gene 134

content [29]. The next subgraphs represented other regions of the same cassette. 135
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Interestingly, retaining a greater number of unitigs to build the subgraphs leads to 136

merging these individual subgraphs, representing related genomic regions, into a single 137

one. This can be done by increasing the Significant Features Filter (SFF ) parameter 138

value, which defines the unitigs used to build the subgraphs. By default, the unitigs 139

corresponding to the 100 lowest q-values are retained (SFF = 100). Increasing the 140

SFF value to 150 (150th q-value = 1.60× 10−27) allowed us to reconstruct the entire 141

SCCmec cassette, as shown in S3 Fig. 142

For S. aureus erythromycin resistance, a unique subgraph was generated 143

(minq = 2.69× 10−100). As shown in Fig 3E, the subgraph described the circular 144

structure of a 2,500 bp-long plasmid known to carry the causal ermC gene together 145

with a replication and maintenance protein in strong linkage disequilibrium with 146

ermC [30, 31]. 147

For P. aeruginosa amikacin resistance, the third subgraph (minq = 2.21× 10−6) 148

represented a 10,000 bp plasmid acquisition. Using the NCBI nucleotide database [32], 149

most of the unitigs in this subgraph mapped to the predicted prophage regions of an 150

integrative and conjugative plasmid, whose structure corresponds to a plasmid, pHS87b, 151

recently described in the amikacin resistant P. aeruginosa HS87 strain [33]. S4 Fig and 152

S5 Fig provide more examples of MGEs recovered by DBGWAS, and the Interpretation 153

of significant unitigs (step 3) subsection of the Methods section discusses SFF default 154

value and tuning. 155

DBGWAS reports expected variants without prior knowledge 156

Although resistance determinants are not perfectly or exhaustively known for all species, 157

some resistance mechanisms are well described. This is the case of gyrA and parC 158

alteration in fluoroquinolone resistance in P. aeruginosa [20], and of the alteration of 159

two streptomycin targets: the ribosomal protein S12 (coded by rpsL) and the 16S rRNA 160

(coded by rrs) in M. tuberculosis [34]. Here we verify the ability of bacterial GWAS 161

methods to recover these known mechanisms. We compared DBGWAS results to those 162

obtained by applying the same association model to a collection of known resistance 163

genes and SNPs [7, 35] (see the Resistome-based association studies subsection of the 164

Methods section), and to two other recent k-mer-based methods: pyseer [6, 36], and 165

HAWK [13]. 166

For P. aeruginosa levofloxacin resistance (Table 2), both DBGWAS and pyseer 167

identified the two expected known causal determinants reported by the prior 168

resistome-based study: gyrA and parC, while HAWK only reported gyrA. pyseer 169

reported 224 k-mers, all mapping to gyrA and parC, while the other methods reported 170

less than 10 features (subgraphs or reassembled k-mers), among which were several 171

unknown, potentially new candidate markers. 172
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Table 2. Resistance determinants found by the four methods for P. aeruginosa levofloxacin
resistance.

Legend resistome-based DBGWAS pyseer HAWK
Time (mem) 37m (7.2 GB) 21m (3.2 GB) 24h22m (14.5 GB) 39m (4.2 GB)
Nb reported 2 variants 5 subgraphs 224 k-mers 8 reassembled k-mers

Known gyrA (2.11× 10−22) gyrA (7.21× 10−29) gyrA (1.97× 10−17) gyrA (2.82× 10−14)

positive parC (1.83× 10−5) parC (5.68× 10−6) parC (5.68× 10−9)

HK/RR (1.87× 10−2) tnp (1.66× 10−14)

Unknown tnp NC near tnp
topA

This table presents the annotation of the features identified by the tested methods with default parameters. The
total number of reported features, as well as the execution time and memory load (in Gigabytes) are given in the
header. For k-mer-based methods, annotations were retrieved by mapping unitig/k-mer sequences to the
resistance and Uniprot databases (see Interpretation of significant unitigs (step 3) subsection of the Methods
section), and completed when needed by Blast on NCBI Nucleotide database. Green cells correspond to
resistance determinants already described in the literature. Grey cells represent unknown determinants. Within
each category, annotations are ordered by increasing minimum p/q-values. p/q-values are reported only for the
most significant annotations. For each method, the annotation with the lowest p/q-values is underlined. ‘NC’
means noncoding region and ‘tnp’ transposase.

For M. tuberculosis streptomycin resistance (Table 3), the four methods reported the 173

two expected known causal determinants rpsL and rrs. However, while the 174

resistome-based study and DBGWAS methods ranked the causal rpsL determinant first, 175

pyseer and HAWK reported their lowest p/q-values for the false positive katG 176

determinant. katG and other false positives caused by co-resistance were among the 177

top-ranked features for all methods and this is a well described phenomenon in 178

M. tuberculosis species [34,37]. 179
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Table 3. Resistance determinants found by the four methods for M. tuberculosis streptomycin
resistance.

Legend resistome-based DBGWAS pyseer HAWK
Time (mem) 1h31m (2.1 GB) 42m (4.3 GB) 14h14m (102.4 GB) 3h01m (3.7 GB)
Nb reported 28 variants 24 subgraphs 85,011 k-mers 2,038 reassembled k-mers

Known rpsL (1.96× 10−33) rpsL (3.70× 10−31) rpsL (4.85× 10−55) rpsL (5.72× 10−47)

positive rrs (5.40× 10−8) rrs (2.86× 10−9) rrs (1.63× 10−14) rrs (3.45× 10−20)

katG (2.61× 10−30) katG (1.06× 10−28) katG (2.12× 10−71) katG (1.44× 10−57)
rpoB rpoB rpoB embB
gidB embB embB kasA
gyrA gyrA ubiA embC

Determinant embB gidB pncA gyrA
described fabG1 promoter rpoC fabG1 promoter iniA
for other pncA fabG1 promoter gyrA embA
antibiotics rpoC ubiA gidB embR

inhA ethA gidB
embA tsnR
embC rpoB

pncA
ethA

espG1 (1.20× 10−3) NC near tnp/PE (1.13× 10−19) NC near tnp/PPE (2.93× 10−57)
rpsN Rv0270 tnp
NC near tnp/PPE Rv2665 Rv2825c/Rv2828c

Unknown rnj Rv2743c 13E12 repeat family protein
(top list) Rv2672 Rv2522c PPE

espA promoter NC near tnp/PPE CRISPR repeats, down Cas genes
Rv2456c promoter guaA mmpL14
whiB6 kdpD esxM
... ... ...

This table presents the annotation of the features identified by the tested methods with default parameters. The
total number of reported features, as well as the execution time and memory load (in Gigabytes) are given in the
header. For k-mer-based methods, annotations were retrieved by mapping unitig/k-mer sequences to the
resistance and Uniprot databases (see Interpretation of significant unitigs (step 3) subsection of the Methods
section), and completed when needed by Blast on NCBI Nucleotide database. Green cells correspond to
resistance determinants already described in the literature, orange cells to resistance determinants described for
association with other antibiotics. The annotations not found by the resistome-based strategy are written in bold.
Grey cells represent unknown determinants. Within each category, annotations are ordered by increasing
minimum p/q-values. p/q-values are reported only for the most significant annotations. For each method, the
annotation with the lowest p/q-values is underlined. ‘NC’ means noncoding region, ‘tnp’ transposase, ‘PE’ stands
for PE-family protein and ‘PPE’ for PPE-family protein.

Additional results for all antibiotics can be found in S6 Table and S7 Table for 180

resistome-based association studies, and in S3 Table and S5 Table for DBGWAS. 181

DBGWAS provides novel hypotheses 182

In addition to resistance markers, all three k-mer-based approaches reported several 183

unknown variants, not described in the context of resistance. Among them, in the 184

context of streptomycin resistance, a noncoding region between a transposase and a 185

PPE-family protein was reported by the three methods but, as expected, not by the 186

resistome-based approach, as only resistance genes were included in this analysis. More 187

generally, knowledge-based approaches such as SNP-, gene- or resistome-based GWAS 188

can be limited in the context of new marker discovery, since any causal variant absent 189

from the chosen reference would remain untested. Besides being time-consuming, 190

preparing such a list of genetic variants can be problematic for bacterial species without 191

extensive annotation or reference availability. Here we describe associations identified by 192

DBGWAS and which were never described in the antibiotic resistance literature. 193
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In our P. aeruginosa panel, the second subgraph obtained for amikacin resistance 194

(minq = 1.37× 10−6) gathered unitigs mapping to the 3’ region of a DEAD/DEAH box 195

helicase, known to be involved in stress tolerance in P. aeruginosa [38]. The unitig with 196

the lowest q-value was present in 13 of 47 resistant strains and in only 1 of 233 197

susceptible strains and represented a C-C haplotype summarising two mutated 198

positions: 2097 and 2103. This annotation was not an artefact of the population 199

structure, properly taken into account by the linear mixed model. Indeed the 13 200

resistant strains corresponded to distinct clones belonging to two phylogroups, one of 201

them containing the susceptible strain. In P. aeruginosa levofloxacin resistance, the 202

third subgraph (minq = 1.87× 10−2) represented a L650M amino-acid change in a 203

hybrid sensor histidine kinase/response regulator. Such two-components regulatory 204

systems play important roles in the adaptation of organisms to their environment, for 205

instance in the regulation of biofilm formation in P. aeruginosa [39], and as such may 206

play a role in antibiotic resistance. 207

In S. aureus, polymorphisms within genes not known to be related to resistance were 208

identified for several antibiotics: purN (minq = 2.02× 10−22) for fusidic acid, odhB 209

(minq = 1.49× 10−33) for gentamicin, ybaK and mqo1 (minq = 9.30× 10−18, resp. 210

6.82× 10−10) for trimethoprim. None of these genes have been associated with 211

antibiotic resistance before, to the best of our knowledge. 212

In M. tuberculosis, polymorphisms in two genes encoding proteins involved in cell 213

wall and cell processes, espG1 and espA, were found associated with streptomycin 214

(seventh subgraph, minq = 9.43× 10−4) and XDR phenotype (third subgraph, 215

minq = 9.58× 10−36), respectively. Again, these genes have never been reported in 216

association with antibiotic resistance before. 217

Although experimental validation would be required to tell whether these hypotheses 218

are false positive (e.g., in linkage with causal variants) or actual resistance mechanisms 219

not yet documented, DBGWAS is a valuable tool to screen for novel candidate markers. 220

Moreover it provides a first level of variant description (SNPs in gene or promoter, 221

MGE, etc) which can directly drive the biological validation. 222

DBGWAS facilitates the interpretation of k-mer-based GWAS 223

Other k-mer-based approaches are as agnostic as DBGWAS and were also able to 224

provide novel hypotheses, but interpreting their output can prove more challenging than 225

a SNP/gene-based GWAS. In the M. tuberculosis streptomycin resistance experiment 226

for example, they reported several thousands of features, while DBGWAS reported only 227

24 annotated subgraphs without missing any expected determinant (see Table 3). The 228

thousands of k-mers generated by HAWK and pyseer are of course also amenable to 229

interpretation: to build our Table 3, we mapped these k-mers to references and 230

extracted annotated variants which showed at least one hit. However, doing so required 231

additional efforts and a working knowledge of the most appropriate annotated 232

references. In addition, k-mers which do not map to the chosen reference cannot be 233

interpreted. By contrast, DBGWAS always returns a subgraph containing these k-mers. 234

Even when no annotation exists, the topology and colours of the subgraphs may hint 235

towards the nature of the causal variant. 236

In addition to providing context for significant k-mers and guiding their 237

interpretation as SNPs or MGEs, DBGWAS clustering of close variants into a subgraph 238

can describe hypervariable regions as single entities, and highlight highly associated 239

haplotypes. As an example, the top subgraph for rifampicin resistance 240

(minq = 4.84× 10−70) contained 36 significant unitigs, distinguishing between 241

susceptible (blue) and resistant (red) strains. Instead of a single point mutation, this 242

subgraph represented a polymorphic region known as the rifampicin 243

resistance-determining region (RRDR) of the rpoB gene. The unitig with the lowest 244
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q-value covered several mutant positions, defining a particular haplotype strongly 245

associated with rifampicin resistance. Where DBGWAS reported in this case only one 246

subgraph, pyseer, for instance, reported 470 k-mers with the rpoB annotation, and the 247

resistome-based association study reported in this case 4 distinct SNPs in rpoB (S6 248

Table). In another user-submitted example, DBGWAS identified mosaic alleles of three 249

pbp genes involved in beta-lactam resistance of Streptococcus pneumoniae. Like in the 250

RRDR example, it returned five subgraphs corresponding to the three genes – three 251

subgraphs were annotated pbp2x and represented three distinct polymorphic regions of 252

the gene. Each subgraph summarised the polymorphism of the gene, as opposed to one 253

separate feature for each SNP. 254

Admittedly, some subgraphs output by DBGWAS are not readily interpretable: they 255

are neither coloured bubbles highlighting SNPs, nor long single-coloured paths denoting 256

MGE insertions. This was the case of several subgraphs produced for P. aeruginosa 257

amikacin resistance, and presented in S6 Fig. Genetic variants inserted in variable 258

regions, for example, lead to subgraphs with a high average degree, or to very large 259

subgraphs. The fourth subgraph for instance (minq = 2.21× 10−6) contains a path of 260

three red (positively-associated) nodes lying in a noncoding region between variable 261

accessory genes. Consequently, their neighbour unitigs branch to various other unitigs, 262

making the structure complex and hard to interpret. Complex subgraphs also arise 263

when several associated variants have overlapping neighbourhoods (as defined in the 264

Graph neighbourhoods subsection in the Methods section, and tuned with the nh 265

parameter) in at least one strain. This is the case for the subgraph with the smallest 266

minq which aggregates aac(6′) acetyltransferase and the CML efflux pump. 267

The interpretation of such subgraphs is not straightforward. We often found it 268

helpful to tune the nh and SFF parameters to break large subgraphs into a set of 269

smaller ones, as discussed in the Methods section. For the aac(6′) subgraph, where 270

nearby variants are aggregated into a large subgraph, reducing the SFF value to 15 271

provided a much smaller and easier-to-interpret subgraph focusing on the aac(6′) 272

mutation (Fig 3B). Otherwise, we recommend to focus on the topology of the most 273

significant unitigs and their close neighbours. 274

DBGWAS is fast, memory-efficient, and scales to very large 275

panels 276

To assess the scalability of DBGWAS to large datasets, we retrieved 5,000 genomes from 277

M. tuberculosis, 9,000 genomes from S. aureus and 2,500 genomes from P. aeruginosa, 278

as described in the Large panels subsection of the Methods section. We present in S9 279

Fig the runtime and memory usage performances for these panels. All 180 runs took 280

less than 5 days and 250 GB of RAM on 8 cores. Both the computational time and 281

memory usage increase log-linearly with the panel size. Moreover, at equal panel size, 282

DBGWAS performance also depends on the genome complexity, requiring less 283

computational resource for more clonal genomes such as M. tuberculosis. 284

We also compared the computational performance of DBGWAS with pyseer and 285

HAWK. The benchmark was performed on 13 datasets, including one large dataset of 286

2,500 genomes for each of the 3 species (see the Datasets subsection in the Methods 287

section for details). Detailed results are presented in S2 Table. DBGWAS was the 288

fastest tool in 11 out of 13 experiments, always taking less than 2 hours. HAWK ran in 289

less than 10 hours in 12 out of 13 experiments, and was a little faster than DBGWAS on 290

two of the large-scale datasets. pyseer took from 13 to 53 hours on 9 experiments, and 291

failed on the 4 others: one exceeded the disk space limit of 1TB, three exceeded the 292

runtime limit of five days. It was brought to our attention during the reviewing process 293

that piping the output of fsm-lite through gzip would decrease the disk space usage. 294
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HAWK was more parsimonious in memory usage than DBGWAS on the large scale 295

panels. This can be explained by the fact that the 0.8.3-beta version of HAWK which 296

we are using does not take into account the population structure, and as such does not 297

have to compute an n×n covariance matrix, providing it a large gain in memory usage – 298

and, to a lesser extent, runtime – for large panels. On the other hand, disregarding the 299

population structure could also lead to spurious discoveries. HAWK v0.9.8-beta offers 300

an adjustment but failed to recover the known true positives, which is why we chose to 301

present the results of the 0.8.3-beta version. DBGWAS and HAWK typically used one 302

order of magnitude less memory than pyseer. The most memory-consuming step for 303

pyseer was the k-mer counting step relying on fsm-lite. 304

Discussion 305

In this article we introduce an efficient method for bacterial GWAS. Our method is 306

agnostic: it considers all regions of the genomes and is able to identify potentially new 307

causal variants as different as SNPs in noncoding regions and MGE insertions/deletions. 308

It performs as well as the current SNP- and gene-based gold standard approaches for 309

retrieving known determinants, from genome pre-assemblies and without relying on 310

annotations or reference genomes. 311

DBGWAS exploits the genetic environment of the significant k-mers through their 312

neighbourhood in the cDBG, providing a valuable interpretation framework. Because it 313

uses only contig sequences as input, it allows GWAS on bacterial species for which the 314

genomes are still poorly annotated or lack a suitable reference genome. DBGWAS 315

makes bacterial GWAS possible in two hours using a single-core computer (see S1 316

Table), outperforming other state-of-the-art k-mer-based approaches. 317

Underlying our method, graph-based genome sequence representations such as 318

DBGs, extend the notion of the reference genome to cases where a single sequence stops 319

being an appropriate approximation [40,41]. As demonstrated in this paper, they pave 320

the way to GWAS on highly plastic bacterial genomes and could also be useful for 321

microbiomes [42] or human tumours [13]. 322

DBGWAS currently relies on the Benjamini-Hochberg procedure to control the FDR 323

and offers no advance exploiting the dependence among presence/absence patterns. An 324

important improvement would be to control the false discovery rate at the subgraph 325

level instead of the unitig level. DBGWAS could be extended to different statistical 326

tasks by adapting its underlying association model, to allow for continuous phenotypes 327

or identify epistatic effects, for instance. The interpretability of the extracted subgraphs 328

could also be improved by training a machine learning model to predict which types of 329

event they represent [43]. This automated labelling could guide users in their 330

interpretation and allow them to search for specific events, such as SNPs in core genes 331

or rearrangements. 332

Several recent studies describe in silico models for defining a genomic antibiogram 333

and hopes are high that such technologies will complement the classic phenotypic 334

methods [44]. Several studies have already demonstrated that in some cases, genomic 335

antibiograms can be at least as good as phenotypic ones [30,45–47]. Contrary to our 336

approach, these studies require extensive resistance marker databases. DBGWAS will 337

surely contribute to the extension of such databases or to the development of agnostic 338

genomic antibiograms. 339

In conclusion, we demonstrate for three medically important bacterial species that 340

resistance markers can be detected rapidly with relative ease, using simple computer 341

equipment. Our integrated software and visualisation tools offer an intuitive variant 342

representation, hence will provide future users with an enhanced insight into genotype 343

to phenotype correlations, in all domains of microbiology, beyond that of antibiotic 344
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resistance. This will include complex traits such as biofilm formation, epidemicity and 345

virulence. 346

Methods 347

Encoding genomic variation with compacted DBGs 348

DBGs are directed graphs that efficiently represent all the information contained in a 349

set of sequences. Nodes represent all the unique k-mers (genome sequence substrings of 350

length k) extracted from the input sequences. Edges represent (k − 1)-exact-overlaps 351

between k-mers: an edge connects a node n1 to a node n2 if and only if the 352

(k − 1)-length-suffix of n1 equals the (k − 1)-length-prefix of n2 (Fig 1A). 353

These graphs can be compacted into cDBGs by merging linear paths (sequences of 354

nodes not linked to more than two other nodes) into a single node referred to as a 355

unitig [48–50] (Fig 1C). Compaction yields a graph with locally optimal resolution: 356

regions of the genome which are conserved across individuals are represented by long 357

unitigs, while regions which are highly variable are fractioned into shorter unitigs (S1 358

Fig). 359

Representing strains by their unitig content (step 1) 360

cDBG construction 361

We build a single DBG from all genomes given as input using the GATB C++ 362

library [51]. We start from contigs rather than reads and, consequently, we do not need 363

to filter out low abundance k-mers, allowing for the exploration of any variation present 364

in the set of input genomes. We then compact the DBG using a graph traversal 365

algorithm, which identifies all linear paths in the DBG – each forming a unitig in the 366

cDBG. During this step, we also associate each k-mer index to its corresponding unitig 367

index in the cDBG. 368

There is no general rule for choosing the ideal k-mer length as it depends on many 369

factors, including the assembly quality, complexity of the input genomes, or presence of 370

repeats. High values of k lead to haplotypes containing multiple SNPs instead of 371

distinct single SNPs, if these SNPs are separated by less than k bases. As k increases, 372

the k-mer-defined haplotypes also become more specific to a genome sub-population, 373

leading to a loss of power to detect genotype to phenotype associations. Low values of k, 374

on the other hand, produce highly connected sets of non-specific k-mers. In particular, 375

any repeated region with at least k bases may create a cycle in the DBG (Fig 4). We 376

use k = 31 by default, as it produced the best performance to retrieve known markers of 377

P. aeruginosa resistance to amikacin and levofloxacin (Fig 5). We found DBGWAS 378

results to be robust to small variations of k between 21 and 41. Similar graph structures 379

were generated whatever the tested value of k for the clonal M. tuberculosis species (S7 380

Fig). More variability was observed for P. aeruginosa resistance to amikacin, which 381

involves more complex resistance mechanisms (S8 Fig). 382

Unitig presence across genomes 383

Each genome is represented by a vector of presence/absence of each unitig in the cDBG. 384

To do so, we query the unitig associated to each k-mer in a given genome. This 385

procedure is efficient because it relies on constant time operations. Firstly, we use 386

GATB’s Minimal Perfect Hash Function (MPHF) [52] to retrieve the index of a given 387

k-mer, and then we use the previously computed association between k-mer and unitig 388

indices to know which unitigs the given genome contains. Since these two operations 389
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take constant time, producing this vector representation for a genome takes linear time 390

on the size of the genome. It is important to note that the GATB’s MPHF can be 391

successfully applied here because we always use the same list of k-mers, i.e., after 392

building the DBG, the set of k-mers is fixed and not updated, and because we always 393

query k-mers that are guaranteed to be in the DBG (since we do not filter out any 394

k-mer). 395

The unitig description on all the input genomes is stored into a matrix U : 396

Ui,j =

{
1, if the j-th unitig is present in the i-th input genome;
0, otherwise.

We then transform the matrix U into Z, which represents the minor allele 397

description, in terms of presence [5]: Z is identical to U except for columns with a mean 398

larger than 0.5, which are complemented: Zj = 1− Uj for these columns. 399

We then restrict Z to its set of unique columns. If several unitigs have the same 400

minor allele presence pattern, then they will be represented by a single column. Keeping 401

duplicates would lead to performing the same statistical test several times. Finally, we 402

filter out columns whose average is below 0.01 – the user can specify this threshold 403

using the -maf option. We denote the de-duplicated, filtered matrix of patterns by X. 404

Importantly, both k-mers and unitigs lead to the same set of distinct patterns across 405

the genomes. Indeed, every unitig represents (at least) one k-mer, and conversely every 406

k-mer is represented by one (single) unitig. When de-duplicated, the two 407

representations therefore lead to the same set of patterns to be tested for association 408

with the phenotype. 409

Testing unitigs for association with the phenotype (step 2) 410

Human GWAS literature extensively discusses how testing procedures can result in 411

spurious associations if the effect of the population structure is not taken into 412

account [53–55]. Population structures can be strong in bacteria because of their 413

clonality [5, 6, 56,57]. An additional performance analysis comparing several models for 414

population structure, on both simulated and real data, showed that correcting for 415

population structure using LMMs is often preferable to using a fixed effect correction or 416

not correcting at all (S1 Appendix). 417

We thus rely on the bugwas method [5], which uses the linear mixed model (LMM) 418

implemented in the GEMMA library [58], to test for association with phenotypes while 419

correcting for the population structure. This method also offers the possibility to test for 420

lineage effects, by calculating p-values for association between the columns of the matrix 421

representing the population structure, and the phenotype [5]. DBGWAS optionally 422

provides bugwas lineage effect plots when the user specifies a phylogenetic tree using 423

the -newick option. An example of the generated figures is available at http://pbil. 424

univ-lyon1.fr/datasets/DBGWAS_support/full_dataset_visualization/. 425

Formally, the LMM represents the distribution of the binarized phenotype Yi, given 426

the j-th minor allele pattern Xij and the population structure represented by a set of 427

factors W ∈ Rn6p, by: 428

Yi = Xijβ +WT
i α+ εij , j = 1, . . . , p. (1)

β is the fixed effect of the tested candidate on the phenotype, α ∼ N (0, σ2
a), σ2

a > 0 is 429

the random effect of the population structure, and εij
iid∼ N (0, σ2) are the residuals with 430

variance σ2 > 0. W is estimated from the Z matrix, which includes duplicate columns 431

representing both core and accessory genome. More precisely, denoting Z = USV > the 432

singular value decomposition of Z, we use W = US. 433

November 2, 2018 14/31

http://pbil.univ-lyon1.fr/datasets/DBGWAS_support/full_dataset_visualization/
http://pbil.univ-lyon1.fr/datasets/DBGWAS_support/full_dataset_visualization/
http://pbil.univ-lyon1.fr/datasets/DBGWAS_support/full_dataset_visualization/


We test H0 : β = 0 versus H1 : β 6= 0 in Eq 1 for each pattern using a likelihood 434

ratio procedure producing p-values and maximum likelihood estimates β̂. To tackle the 435

situation of multiple testing caused by the high number of tested patterns, we compute 436

q-values, which are the Benjamini-Hochberg transformed p-values controlling for false 437

discovery rate (FDR) [59]. 438

Interpretation of significant unitigs (step 3) 439

The LMM is used to identify de-duplicated minor allele presence patterns significantly 440

associated with the phenotype at a chosen FDR level. While the testing step is done at 441

the pattern level, the interpretation of the selected features is done at the unitig level. 442

As a result of the de-duplication procedure, a given pattern may correspond to several 443

distinct unitigs. To faithfully interpret the results, all the unitigs corresponding to the 444

significant patterns are retrieved and are assigned the q-value of their pattern. We now 445

show how the initial cDBG can be used in the interpretation step. 446

Significance threshold 447

The interpretation step focuses on the unitigs with the lowest q-values. These unitigs 448

are indeed used to build the resulting annotated subgraphs. The unitig selection can be 449

either based on the FDR (q-value threshold) or on a number of presence/absence 450

patterns ordered by increasing q-values. Practically, this is done in DBGWAS using a 451

Significant Features Filter (SFF). For a selection based on a FDR threshold, the SFF 452

value is set between 0 and 1, while any integer value > 1 defines the number of patterns 453

to consider. 454

In our experiments, we choose not to apply a fixed FDR threshold, even though 455

DBGWAS offers this option. Different datasets lead to different q-values, even by 456

several orders of magnitude, and a single FDR threshold would lead to selecting a large 457

number of unitigs generating more than 1,000 subgraphs on some of them (e.g. 458

S. aureus ciprofloxacin) as shown in S8 Table. Instead, we retain the 100 patterns with 459

lowest q-values. Although arbitrary, this choice is tractable for all datasets and provides 460

satisfactory results in our experiments. It does not provide and explicit control of the 461

FDR: only the q-value provides an estimation of the proportion of false discoveries 462

incurred when considering patterns below this value. Checking the q-values of the 463

selected unitigs is therefore essential to assess their significance. If the default SFF=100 464

is not satisfactory, it is also possible to re-run the third step only, with a more suitable 465

SFF value. 466

Graph neighbourhoods 467

We define the neighbourhood of each significant unitig u (defined by the SFF ) as the 468

set of unitigs whose shortest path to u has at most ne = 5 edges. Users can modify the 469

ne value using the -nh option. The objects returned by DBGWAS are the connected 470

components of the graph induced by the neighbourhoods of all significant unitigs in the 471

cDBG. As illustrated in Fig 6, nearby significant unitigs might belong to the same 472

connected component, so this process groups unitigs which are likely to be located 473

closely in the genomes. We refer to the connected components as subgraphs in the 474

Results section. 475

The SFF value can be tuned to optimise the number and size of the output 476

subgraphs. It has no impact on subgraphs describing SNPs in core sequences (S2 Fig). 477

On the other hand, when significant unitigs map to different regions of a single MGE, 478

such as a plasmid, several subgraphs are generated but can be gathered into a single 479

subgraph by increasing the SFF threshold (S4 Fig). When significant unitigs map to 480
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several distinct mobile regions, which can be found in different contexts (transposon, 481

integron, etc.) at the population level, the resulting subgraph can become very large and 482

highly branching: decreasing the SFF threshold allows to select the few most significant 483

unitigs, generating a subgraph focusing on the most relevant region (S6 Fig). Reducing 484

the graph complexity can also be done by decreasing the ne value, using the -nh option. 485

Representing metadata with coloured DBGs 486

The subgraphs are enriched with metadata to make their interpretation easier. We use 487

the node size to represent allele frequencies, i.e., the proportion of genomes containing 488

the unitig sequence. We describe the effect β of each unitig as estimated by the LMM 489

using colours, in the spirit of the coloured DBGs [19]. Colours are continuously 490

interpolated between red for unitigs with a strong positive effect and blue for those with 491

a strong negative effect. 492

Annotating the subgraphs 493

DBGWAS can optionally integrate an automated annotation step using the Blast 494

suite [60] (version 2.6.0+) on local user-defined protein (-pt-db option) or nucleic acid 495

(-nt-db option) sequence databases. We annotate the subgraphs of interest by blasting 496

each unitig sequence to the available databases. Users can then easily retrieve the 497

annotations which are the most supported by the nodes in the subgraph, or with the 498

lowest E-value. Importantly, DBGWAS works with any nucleotide or protein Fasta files 499

as annotation databases straight away. However, users can customize the annotation 500

databases by changing the Fasta sequences headers to make DBGWAS results more 501

interpretable. A common example is compacting the annotation in the summary page 502

by using abbreviations or gene class names, and expanding them to full names in the 503

subgraph page. Other custom fields can also be included in the annotation table by 504

adding specific tags to the headers. A detailed explanation on how to customize 505

annotation databases for DBGWAS can be found in 506

https://gitlab.com/leoisl/dbgwas/wikis/Customizing-annotation-databases. 507

We also provide on the DBGWAS website a resistance determinant database built by 508

merging the ResFinder, MEGARes, and ARG-ANNOT databases [61–63], and a subset 509

of UniProt restricted to bacterial proteins [24]. Subgraphs discussed in the Results 510

section were annotated using these databases. 511

Interactive visualisation 512

DBGWAS produces an interactive view of the enriched and annotated subgraphs, 513

allowing the user to explore the graph topology together with information on each node: 514

allele and phenotype frequencies, q-value, estimated effect, and annotation. The view is 515

built using HTML, CSS, and several Javascript libraries, the main one being 516

Cytoscape.js [64]. Results can be shared and visualised in a web browser. As a large 517

number of components can be produced in one run of DBGWAS, we provide a summary 518

page allowing users to preview and filter the subgraphs. Filtering can be based upon 519

the minimum q-value of all unitigs in the component (minq), or based on the 520

annotations. A complete description of the DBGWAS interactive interface is available 521

in https://gitlab.com/leoisl/dbgwas/wikis/ 522

DBGWAS-web-based-interactive-visualization. 523

Re-running from step 2 or step 3 524

It is possible to re-run a part of the analysis if a first run with the default values was 525

unsatisfactory. The -skip1 option allows to re-run from the second step, for instance to 526
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compute the lineage effects (adding the -newick option). It is also possible to re-run 527

only the third step by using the -skip2 option, for instance when the default SFF and 528

nh values generated highly connected graphs, or if the annotation was incomplete. 529

Datasets 530

We used in our experiments genome sequences from three bacterial species with various 531

degrees of genome plasticity, from more clonal to more plastic: M. tuberculosis, 532

S. aureus, and P. aeruginosa. We also built large datasets with random phenotypes for 533

these 3 species, and used them only for time performance and memory usage assessment. 534

All panels are summarised in Table 4. 535
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Table 4. Microbial panels.

Species
Genome
plasticity

Range of
genome length

Panel name Source Phenotype
Number of
available genomes

M. tuberculosis very low 4.4 Mbp

TB [35]

rifampicin 1,197
isoniazid 1,287

ethambutol 1,041
streptomycin 1,166
kanamycin 671
ofloxacin 696

ethionamide 420
MDR 1,211
XDR 689

Large TB [11] random 5,000

S. aureus low 2.7-3.1 Mbp

SA [30]

methicillin 501
ciprofloxacin 991
erythromycin 991

penicillin 991
tetracycline 991
fusidic acid 991

trimethoprim 323
gentamicin 991
rifampin 991

mupirocin 490
vancomycin 501

Large SA [11] random 9,000

P. aeruginosa high 5.8-7.6 Mbp

PA [65]

amikacin 280
levofloxacin 117
meropenem 280
piperacillin 280

colistin 164
polymyxin B 117

chloramphenicol 103
cefepime 280

fosfomycin 113

Large PA [11] random 2,500

We selected 3 bacterial species with distinct levels of genome plasticity, and with antibiotic resistance phenotypes
available for several drugs. For each species, we also created large datasets by computing random phenotypes for all
available genome assemblies from NCBI RefSeq.

TB panel 536

M. tuberculosis (TB) is a human pathogen causing 1.7 million deaths each year [66]. 537

This species is known for its apparent absence of horizontal gene transfer (HGT) and, 538

accordingly, most of the reported resistance determinants are chromosomal 539

mutations [67] in core genes or gene promoters. Intergenic regions are also described to 540

be instrumental in multidrug-resistance (MDR) and extensively drug-resistant (XDR) 541

phenotypes [9]. We use the PATRIC AMR phenotype data, as well as genome 542

assemblies from their resource [35,68]. We thus gather a total of 1302 genomes after 543

filtering based on genome length. Phenotype data include isoniazid, rifampicin, 544
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streptomycin, ethambutol, ofloxacin, kanamycin and ethionamide resistance status. 545

Except for the last three drugs, phenotype data are available for more than a thousand 546

genomes. We reconstruct MDR and XDR phenotypes based on the WHO definition [66]. 547

XDR phenotype could only be defined for 689/1302 strains as it required data for at 548

least 4 drugs. Information on how phenotype data and genome assemblies were 549

obtained is available on the PATRIC website. 550

SA panel 551

S. aureus is a human pathogen causing life-threatening infections. It is subject to HGT 552

and many plasmids, mobile elements, and phage sequences have been described in its 553

genome. However, this does not affect the species’ genome size, which is always close to 554

3 Mbp [69]. Most antibiotic resistance mechanisms are well determined by known 555

variants, as shown in a previous study [30]. This study obtained an overall sensitivity of 556

97% for predicting 12 phenotypes from rules based on antibiotic marker mapping. We 557

use this study panel of 992 strains obtained by merging their derivation and validation 558

sets. 559

PA panel 560

P. aeruginosa is a ubiquitous bacterial species responsible for various types of infections. 561

It is highly adaptable thanks to its ability to exchange genetic material within and 562

between species [70]. The species accessory genome is particularly important both in 563

terms of size and diversity, and carries more than half of the genetic determinants 564

already described to confer resistance to antimicrobial drugs [7, 65,71]. We use a panel 565

of 282 strains, gathered from two collections which mostly include clinical strains: the 566

bioMérieux collection [65] (n=219) and the Pirnay collection [72] (n=63). Genome 567

assemblies and categorical phenotypes for 9 antibiotics are available [7]. Binarised 568

phenotypes of amikacin resistance are available on the DBGWAS project page as an 569

example for users. 570

Phenotype binarisation 571

Most available phenotypes are categorical, with S, I and R levels, respectively, for 572

susceptible, intermediary, and resistant. We binarise them by assigning a zero value to 573

susceptible strains (S) and one to others (I and R). 574

Large panels 575

We built large panels for the three species, in order to analyse the computational 576

performance at a comprehensive scale. To do so, we gathered all genome assemblies of 577

M. tuberculosis (5,504), S. aureus (9,331), and P. aeruginosa (2,802) available on the 578

NCBI RefSeq bacterial genome repository [11], and removed poor quality genomes. For 579

each panel, we generated random binary phenotypes. For a detailed time and memory 580

assessment, we built several sub-panels from these three large panels at size points of 581

100, 250, 500, 1,000, 2,500, 5,000 and 9,000 genomes. To build these sub-panels, we 582

sampled genomes uniformly from the panels. To take into account the variability among 583

subsamplings, each sub-panel was randomly built 10 times. 584

Resistome-based association studies 585

We benchmarked DBGWAS against a targeted approach to ensure its ability to retrieve 586

all expected resistance determinants. We thus performed association studies under the 587
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same model, using as input a collection of known causal resistance SNPs and genes, 588

defining the resistome. 589

In this validation study, we used bugwas with the same phenotypes and population 590

structure matrix W , so the resistome-based analyses and DBGWAS only differ by their 591

input variant matrix (unitigs versus SNPs or genes presence/absence). 592

For P. aeruginosa resistome, we use a variant matrix previously described [7], which 593

includes presence/absence of known resistance gene variants, as well as the SNPs called 594

against these reference gene variants. For M. tuberculosis resistome, we built the variant 595

matrix using the same approach as for P. aeruginosa [7]: we called the SNPs from a list 596

of 32 known resistance genes and promoters [34,67,73]. The time and memory usage 597

required for the complete analysis (from the mapping of the resistance genes and 598

positions on the genome assemblies to the association study) are provided in Tables 2 599

and 3. 600

We sort the annotated features by q-values. S6 Table and S7 Table summarise all 601

top variants using their q-value ranks, while Tables 2 and 3 report the annotations of all 602

variants with a q-value < 0.05 for P. aeruginosa levofloxacin and M. tuberculosis 603

streptomycin resistance, respectively. 604

k-mer-based GWAS 605

pyseer 606

We installed pyseer [6, 36] commit ID d17602500a4530b0e68a679ed675fdb12942f56f 607

(9 commits ahead of pyseer v1.1.1). pyseer pipeline is composed of four steps: 1) k-mer 608

counting; 2) population structure estimation; 3) running pyseer; 4) downstream analysis. 609

To use the correct parameters, we followed the pyseer tutorial 610

(https://pyseer.readthedocs.io/en/master/tutorial.html). For k-mer counting, 611

we used fsm-lite (https://github.com/nvalimak/fsm-lite), filtering out all k-mers 612

with a minor allele frequency smaller than 1%. For population structure estimation, we 613

used Mash v2.0 [74]. To run pyseer, we used 8 cores and a LRT p-value threshold of 614

0.05. Downstream analysis involved getting the k-mers which exceeded the significance 615

threshold (which can be found using the scripts/count patterns.py script), sorting 616

them by LRT p-value, blasting them against the two databases presented in the 617

Interpretation of significant unitigs (step 3) subsection, and keeping the best hit for each 618

k-mer. For reproducibility purposes, the scripts we used to run pyseer can be found at 619

https://gitlab.com/leoisl/DBGWAS_support/tree/master/scripts/pySEER. 620

HAWK 621

We firstly ran HAWK [13] v0.9.8-beta, as it allows correcting for population structure. 622

Unfortunately, it was unable to find the known causal variants reported for 623

P. aeruginosa levofloxacin and M. tuberculosis streptomycin resistances by other 624

methods (see Tables 2 and 3). We therefore kept in our benchmarks an earlier version, 625

HAWK v0.8.3-beta, which presented better qualitative performance for these two 626

evaluated panels. HAWK pipeline is composed of five steps: 1) k-mer counting with a 627

modified version of jellyfish [75]; 2) running HAWK; 3) assembling significant k-mers 628

with ABYSS [76]; 4) getting statistics on the assembled sequences; 5) downstream 629

analysis. The first four steps were performed as described in HAWK’s github page. 630

However, in the first step, we had to remove the lower-count cutoff in jellyfish dump 631

(parameter -L), since we are working with contigs and not reads. The last step was 632

performed similarly as the one described for pyseer. For reproducibility purposes, the 633

scripts we used to run HAWK v0.8.3-beta can be found at https: 634

//gitlab.com/leoisl/DBGWAS_support/tree/master/scripts/HAWK_0_8_3_beta. 635
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Supporting information 636

S1 Fig. Alignment to a reference (when possible), cDBG, and k-mers 637

obtained for similar (A) and very polymorphic genomes (B). In the first case, 638

the 3 loci represented as polymorphic in the alignment lead to 3 bubble patterns in the 639

cDBG, and numerous redundant k-mers. In the second case, genomes are so 640

polymorphic that an alignment is not possible. The cDBG summarizes well the common 641

regions and the links between them, while the collection of unique k-mers still contains 642

redundancy. 643

S2 Fig. Effect of SFF on the top subgraphs generated for S. aureus 644

ciprofloxacin resistance. Annotation of the first subgraphs is strictly conserved (red 645

for parC, green for gyrA, yellow for norA promoter region, blue for noncoding between 646

glmM and fmtB and violet for transposase flanking regions). 647

S3 Fig. Effect of SFF on the top subgraphs generated for S. aureus 648

methicillin resistance. Only one subgraph, containing the mecA gene (highlighted in 649

red) is generated for lower SFF values. Then several regions of the SCCmec cassette 650

appear for SFF = 70, and are aggregated into a single subgraph for SFF ≥ 150. Green 651

subgraphs do not concern the mecA MGE. 652

S4 Fig. Effect of SFF on the top subgraphs generated for S. aureus 653

penicillin resistance. Green subgraphs do not concern the blaZ MGE. Annotations 654

are ordered by number of nodes carrying it. Yellow, orange and pink highlight blaZ, 655

blaR1 and blaI, respectively. 656

S5 Fig. Effect of SFF on the top subgraphs generated for S. aureus 657

erythromycin resistance. Only one subgraph, describing the ermC and its plasmid 658

is outputted when SFF < 200 . Green subgraphs do not concern the ermC MGE. 659

S6 Fig. Effect of SFF on the top subgraphs generated for P. aeruginosa 660

amikacin resistance. Nodes corresponding to aac(6’) gene are shown in a blue frame. 661

When the SFF parameter increases, these nodes aggregate to others genes found at 662

least once close to aac(6’). The annotation of the following subgraphs are well 663

conserved (same color legend as in S8 Fig). 664

S7 Fig. Effect of k on the four first subgraphs obtained for TB rifampicin 665

resistance. With a k value varying between 21 and 41, the first 3 subgraphs always 666

have the same ordering, shape and annotation, as well as comparable q-values, although 667

smaller q-values are observed for lower values of k. The number of significant unitigs 668

per subgraph is also well conserved. The fourth top-rated subgraphs are not always the 669

same: the gyrA mutation appears at a lower rank when k is smaller. 670

S8 Fig. Effect of k on the five first subgraphs obtained for P. aeruginosa 671

amikacin resistance. When k varies, the plasmid (yellow) and the mercury reductase 672

and transposase (blue) remain among the five top-rated subgraphs. However, k has an 673

effect on the aggregation of subgraphs corresponding to different genetic events: the 674

mutation on aac(6’) gene (blue frame) always appears in the first subgraph but is 675

merged with the large mercury reductase and transposase subgraph for k = 27, 39 and 676

41. The order of the subgraphs also varies with k: up to four ranks for some subgraphs, 677

and others leave the top-5 list. 678
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S9 Fig. Large scale analysis on computational resources usage. This figure 679

describes how DBGWAS scales in terms of time and memory usage for large datasets, 680

containing up to 9,000 genomes. The large panels used here are described in the Large 681

panels subsection of the Methods section. To understand better DBGWAS performance 682

behaviour, we present performance curves for each panel at size points of 100, 250, 500, 683

1,000, 2,500, 5,000 and 9,000 genomes. The executions were done in a cluster, instead of 684

a single machine, and used 8 cores each. In order to reduce subsampling and machine 685

heterogeneity problems, each sub-panel was randomly built 10 times and we present the 686

time and memory usage for all these executions. Although these two measures not only 687

depends on the number of input genomes but also on their length and complexity, this 688

figure allows estimations of the computational resources usage on small and large panels 689

with different genome plasticities. 690

S1 Table. DBGWAS time and maximal memory load on a single core. All 691

runs presented in this table were executed with the default parameters, without 692

optional steps (lineage effect analysis nor annotation of subgraphs), on a single Intel(R) 693

Xeon(R) CPU E5-2620 v3 @ 2.40GHz core. The datasets are described in the Datasets 694

subsection of the Methods section. DBGWAS ran in less than 2,5 hours for all 695

experiments in our benchmark. The maximum memory load (given between parenthesis 696

in the Runtime column) was 11 GB of RAM. The panel size and genome length (given 697

between parenthesis in the Panel column) did not drive alone the running performances; 698

the genome complexity played an important role as well. To view the gain in 699

performance of DBGWAS when running on multiple (8) cores, see S2 Table. 700

S2 Table. Benchmarking DBGWAS, pyseer and HAWK: comparison of 701

time and maximal memory load. The total execution time is presented with the 702

maximal memory consumption in parenthesis, in order of GBs. For pyseer and HAWK, 703

the time and memory for each step is also detailed. All tools were ran on a same 704

machine with 8 Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz cores, 315 GB of RAM 705

and 1 TB of disk space. Each execution used all the 8 available cores. The datasets are 706

described in the Datasets subsection of the Methods section. However, for the three 707

large panels (Large TB, Large SA, and Large PA), here we just chose a random 708

2,500-genome sub-panel. Moreover, DBGWAS was ran with the default parameters, 709

without optional steps (lineage effect analysis nor annotation of subgraphs). The 710

parameters for pyseer and HAWK were the ones described in the k-mer-based GWAS 711

subsection of the Methods section. We did not consider the time and memory consumed 712

in the last step for these two tools (downstream analysis). The runs taking more than 5 713

days to finish were interrupted and are shown as Timeout. The runs that exceeded 1 714

TB of disk space were interrupted and are shown as DQE (Disk Quota Exceeded). 715

S3 Table. DBGWAS results for M. tuberculosis resistance to antibiotics. 716

For each antibiotic, top subgraphs were reported with their rank, the q-value of the 717

unitig with the lowest q-value (minq), the corresponding estimated effect (estimated β 718

of the linear model) and the number of susceptible (resp. resistant) strains harbouring 719

this unitig (count per phenotype). The type of event represented by the subgraph, its 720

annotation and some comments and references on this annotation were also provided. 721

Comments were coloured if the annotation was previously described in antibiotic 722

resistance literature: in green if this description concerned the tested antibiotic, in 723

orange otherwise. 724

S4 Table. DBGWAS results for S. aureus resistance to antibiotics. For 725

each antibiotic, top subgraphs were reported with their rank, the q-value of the unitig 726
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with the lowest q-value (minq), the corresponding estimated effect (estimated β of the 727

linear model) and the number of susceptible (resp. resistant) strains harbouring this 728

unitig (count per phenotype). The type of event represented by the subgraph, its 729

annotation and some comments and references on this annotation were also provided. 730

Comments were coloured if the annotation was previously described in antibiotic 731

resistance literature: in green if this description concerned the tested antibiotic, in 732

orange otherwise. 733

S5 Table. DBGWAS results for P. aeruginosa resistance to antibiotics. 734

For each antibiotic, top subgraphs were reported with their rank, the q-value of the 735

unitig with the lowest q-value (minq), the corresponding estimated effect (estimated β 736

of the linear model) and the number of susceptible (resp. resistant) strains harbouring 737

this unitig (count per phenotype). The type of event represented by the subgraph, its 738

annotation and some comments and references on this annotation were also provided. 739

Comments were coloured if the annotation was previously described in antibiotic 740

resistance literature: in green if this description concerned the tested antibiotic, in 741

orange otherwise. 742

S6 Table. Resistome-based association study results for M. tuberculosis 743

resistance to antibiotics. For each antibiotic, the 10 first features most associated to 744

the phenotype were reported, with their rank, q-value, and estimated effect (estimated 745

β of the linear model). The type of targeted variant, with its gene annotation were also 746

provided. Comments were coloured if the annotation was previously described in 747

antibiotic resistance literature: in green if this description concerned the tested 748

antibiotic, in orange otherwise. The last column presents the corresponding subgraphs 749

found by DBGWAs, with their rank and minq. 750

S7 Table. Resistome-based association study results for P. aeruginosa 751

resistance to antibiotics. For each antibiotic, the 10 first features most associated to 752

the phenotype were reported, with their rank, q-value, and estimated effect (estimated 753

β of the linear model). The type of targeted variant, with its gene annotation were also 754

provided. Comments were coloured if the annotation was previously described in 755

antibiotic resistance literature: in green if this description concerned the tested 756

antibiotic, in orange otherwise. The last column presents the corresponding subgraphs 757

found by DBGWAs, with their minq. 758

S8 Table. Number of subgraphs generated using different significance 759

thresholds. This table shows the number of subgraphs generated when defining the 760

significant unitigs as the ones with the 100 lowest q-values (default SFF = 100, ’top 761

100’) or when using a 5% false discovery rate (FDR) threshold (SFF = 0.05, ’5% 762

FDR’). Different datasets lead to different q-values, even by several orders of magnitude. 763

For instance, a single FDR threshold leads to selecting a large number of unitigs 764

generating several hundreds subgraphs for SA (S. aureus) panel. 765

S1 Appendix. Evaluation of association models. 766
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Figure captions

Fig 1. Compacted DBG construction over a set of sequences differing by a
single point mutation. In this example two sequences s1 and s2 of length 12 differ
by a single letter. (A) All k-mers (k = 4) present in these sequences are listed. A link is
drawn between two k-mers when the k − 1 = 3 last nucleotides of the first k-mer equal
the 3 first nucleotides of the second k-mer. (B) The bubble pattern represents the SNP
C to A; each branch of the bubble represents an allele. (C) Linear paths of the graph are
compacted; the compacted DBG of the example only contains four nodes (unitigs) and
represents the same variation as the original DBG, which contained 13 nodes (k-mers).

Fig 2. DBGWAS pipeline. DBGWAS takes as input draft assemblies and
phenotype data for a panel of bacterial strains. A variant matrix X is built in step 1
using cDBG nodes (called unitigs). Variants are tested in step 2 using a linear mixed
model taking into account the population structure. Significant variants are
post-processed in step 3 to provide an interactive interface assisting their interpretation.

Fig 3. Different types of genetic events identified by DBGWAS. Each
subgraph represents a distinct genetic event. Colours are continuously interpolated
between blue for susceptible unitigs and red for resistant ones. Untested unitigs, present
in > 99% or < 1% of the strains, are shown in grey. Nodes found to be not significative
are shown with a transparency degree. The node size relates to its allele frequency: the
larger the node, the higher the allele frequency. Circled black nodes map to annotated
genes. The two tables in each panel provide information on the sugraph nodes. As an
example, the subgraph in panel (A) is composed of 27 unitigs, 5 of which were
significantly associated with resistance. All unitigs of this subgraph mapped to the gyrA
gene. The subgraphs presented in the four other panels correspond to the top subgraphs
(with lowest minq) obtained for different panels/phenotypes. All subgraphs are
snapshots taken from DBGWAS interactive visualisation and are available online.

Fig 4. Effect of k on the graph topology. A cDBG was built from the
P. aeruginosa gyrA gene sequences from several strains. When k is small, k-mers are
highly repeated, which generate numerous loops. As k increases, k-mer sequences
become more specific and the graph gets more linear. For large values of k, few k-mers
are shared by all the strains, and the linear path thickens into parallel paths belonging
to variable strain populations.

Fig 5. Choice of k. True positive versus false positive curves for several values of k
for both amikacin and levofloxacin resistance phenotypes. True positives are unitigs
mapping to genuine variants described in resistance databases for the studied drugs [7].
In both cases, the value of k leading to the best AUC is k = 31.
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Fig 6. Subgraphs induced by the neighbourhood of significantly associated
unitigs. In this example, a neighbourhood of size ne = 2 was used: any unitig distant
up to 2 edges from a significant unitig is retrieved to define its neighbourhood.
Neighbourhoods are merged if they share at least one node, e.g. the neighbourhoods of
U1 and U2 are merged because they share N6, and will be represented in a single
subgraph.
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