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Abstract

The Martian Moons eXploration mission is currently under development at JAXA and
will be the first spacecraft mission to retrieve pristine samples from the surface of Phobos.
In preparation for the sampling operations, MMX will collect observations of Phobos from
stable retrograde relative trajectories also known as quasi-satellite orbits or QSOs. This
paper offers a semi-analytical analysis of mid- and high-altitude QSOs in terms of relative
orbit elements. Our analysis is not limited to planar orbits and takes into account the ec-
centricity of the moon’s orbit. Furthermore, we introduce a numerical map between mean
and osculating orbit elements to study the long-term evolution of MMX and derive a Lya-
punov control law for orbit maintenance purposes. The nonlinear controller is based on
mean relative orbit element differences and tested with respect to injection errors.

1 Introduction

In order to enhance our comprehension of the Martian system and pave the way for the human
exploration of Mars, JAXA is currently planning the Martian Moon eXploration (MMX) mission
to Phobos and Deimos [1]. The main goal of MMX is to retrieve pristine samples from the surface
of Phobos and return them back to Earth by 2029. Analysis of these samples will be fundamental
for understanding the moons’ origin and provide valuable information on their composition and
geophysical properties [2].

To guarantee the success of the mission as well as the safety of the spacecraft during the
sampling operations, months of preparation will follow the arrival of MMX to Mars in 2025. The
mission scenario currently envisions early investigations of Phobos from three different quasi-
satellite orbits (QSOs) of size 100× 200 km, 50× 80 km, and 30× 50 km in the radial and along-
track directions of the planetary satellite, respectively [3]. Ongoing research is also looking at
the possibility to further extend these orbits outside the orbital plane of the moon and guarantee
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the full coverage of its surface from low altitude QSOs. While this would be a desirable outcome
for the scientific return of the mission, it poses new challenges for analytical and semi-analytical
methods available in the literature that can only cope with equatorial orbits [4]. Most of these
methodologies are also developed in the framework of the circular restricted three-body problem
and do not take into account the eccentricity of Phobos’ orbit (e = 0.0151) [5].

In this research, we introduce a numerical transformation that allows us to map from os-
culating to mean relative orbit elements (MROE) that better capture the long-term evolution
of quasi-satellite orbits in the elliptical Hill problem. This transformation is not restricted to
planar orbits and enables the study of three-dimensional QSOs (i.e., with non-zero out-of-plane
component). Based on this result, we propose a MROE control strategy that keeps the spacecraft
in a desired orbit around Phobos despite insertion errors.

The article is organized as follows. First, we review the equations of the Elliptical Hill Prob-
lem (EHP) and present examples of planar quasi-satellite orbits (Section 2). Next, we neglect
the gravitational attraction of Phobos and summarize the analytical solution of the unperturbed
problem as developed by Yamanaka and Ankersen in [6] (Section 3). In Section 4, we analyze
Gauss variational equations and discuss the effects of Phobos’ gravity on the relative orbit ele-
ments derived from the solution of the unperturbed problem. The results of this investigation
are validated in Section 5 by comparison with the numerical integration of the EHP over 100
orbital revolution of Phobos around Mars (i.e., one month circa). In Section 6, we average the
linearized equations of motion over one satellite revolution around Phobos and derive the aver-
aged set of equations of motion. These developments are tested with the numerical integration
of the averaged systems after the implementation of a mean-to-osculating orbit element mapping
that provides reliable initial conditions for bounded relative motion (Section 7). Finally, we
apply the analytical and numerical machinery to derive a nonlinear control law that keeps the
spacecraft in the neighborhood of a nominal trajectory regardless of its injection errors (Section
8). Conclusions and final remarks are summarized in Section 9.

2 Dynamical Model

Consider the motion of a satellite in the vicinity of Phobos. Both attractors, i.e., Mars and
Phobos, are assumed to be spherical and in a Keplerian orbit with eccentricity e = 0.0151 and
semi-major axis a = 9377.2 km. It is also assumed that the gravitational attraction excerted
by the planetary satellite is much smaller than the tidal force due to Mars. In this case, the
equations of motion of the spacecraft are accurately described by the EHP, namely [7, 8]

ẋ = u,
ẏ = v,
ż = w,

u̇ =
1

γ
(gx + 3x) + 2 v,

v̇ =
gy
γ
− 2u,

ẇ =
gz
γ
− z,

(1)

where dots denote differentiation with respect to the true anomaly of Phobos around Mars, ν, γ is

defined as 1+e cos ν, and X =
[
x, y, z, u, v, w

]T
is the state of the satellite (rectangular

coordinates) in a pulsating reference frame S ′ centered on Phobos and such that x̂ is aligned
with the separatrix between the two barycenters of the primaries, ẑ is parallel to the orbital
angular momentum of Phobos, and ŷ = ẑ × x̂ completes the right-handed triad. The time and
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length units are normalized such that one orbital period of Phobos around Mars corresponds
to 2π, and such that the pulsating resonance radius R = a γ µ(1/3) is equal to 1. The quantity

µ = 1.6610× 10−8 is the mass ratio between the two primaries, whereas
[
gx, gy, gz

]T
are the

components of Phobos’ gravitational attraction as expressed in the synodic reference frame S ′.
The System (1) depends explicitly on the independent variable ν. Accordingly, the EHP is

a nonautonomous system that does not depend on any parameter as long as the eccentricity of
the small body is fixed. Hence, periodic orbits are no longer organized in families, but isolated
at best [9]. In particular, the period of a periodic orbit must be resonant with the orbital period
of Phobos around Mars.

In actuality, the EHP is better understood and organized by studying families of two-
dimensional quasi-periodic invariant tori that replace QSO orbits when e = 0.0151.[10] To com-
pute these manifolds, we adapt the numerical algorithm outlined in Gómez & Mondelo [11] and
Olikara & Scheeres,[12] and hereby referred to as “GMOS”. The main idea of GMOS is that
quasi-periodic invariant tori can be calculated via invariant curves of a stroboscopic mapping by
solving the boundary value problem described in [13]. The interested reader may find more de-
tails on the methodology in the authors’ original papers as well as in [14] and [15]. In particular,
Olikara[14] provides an exhaustive explanation of the collocation method used in this work to
march along the QSO family branch and generate a variety of quasi-periodic invariant tori with
e = 0.0151. Several examples of quasi-periodic QSO orbits are shown in Fig. 1.

An advantage of the GMOS algorithm is that additional frequencies can be taken into account
in order to search for higher-dimensional tori. This feature was demonstrated by Baresi and
Scheeres in [16] and is hereby adopted for calculating quasi-periodic QSOs that extend beyond
the equatorial plane of Phobos. We refer to this type of orbits as “3D QSOs” and discuss an
example of them in Section V.

The purpose of this paper is to study the long-term evolution of three-dimensional QSO tra-
jectories obtained with the GMOS algorithm by means of analytical techniques such as Gauss
Variational Equations (GVE) and averaging process. To that end, we begin by neglecting momen-
tarily the gravitational attraction of Phobos and revise the analytical solution of the Keplerian
relative motion problem developed by Yamanaka and Ankersen in [6].

Figure 1: Family members of the QSO (top) and quasi-QSO (bottom) orbit families.
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3 The Keplerian Relative Motion Problem

Assuming that the gravitational attraction of Phobos is negligeble, the dynamics of a satellite
near the planetary satellite would be governed by the simplified set of equations given by

ẋ = u,
ẏ = v,
ż = w,

u̇ = 3
x

γ
+ 2 v,

v̇ = −2u,
ẇ = −z.

(2)

The System (2) is equivalent to the equations of the relative motion of two neighboring satellites
in eccentric Keplerian orbits and was analytically solved by Yamanaka & Ankersen in [6]. The
authors provide an expression for the relative position and velocity vectors in terms of the six
integrals of motion K1, K2, K3, K4, K5, K6. The solution reads as

x(ν) = K2 γ sin ν +K3 γ cos ν +K4 (2− 3 e J γ sin ν),
y(ν) = K1 +K2 (1 + γ) cos ν

−K3 (1 + γ) sin ν − 3K4 J γ2,
z(ν) = K5 sin ν +K6 cos ν,

u(ν) = K2 s∗ +K3 c∗ − 3 eK4

(
sin ν

γ
+ J s∗

)
,

v(ν) = −2K2 γ sin ν −K3 (2 γ cos ν − e)
−3K4 (1− 2 e J γ sin ν),

w(ν) = K5 cos ν −K6 sin ν,

(3)

where s∗ = cos ν + e cos 2 ν, c∗ = −(sin ν + e sin 2 ν), and J is an integral term defined as
J =

∫ ν
ν0

1/γ(τ)2 d τ .

Equation (3) can be rewritten in matrix form as

X(ν) = Φ(r,v, ν)K, (4)

with K =
[
K1, K2, K3, K4, K5, K6

]T
. We note that the determinant of Φ(r,v, ν) is

equal to (e2 − 1), so that the matrix is nonsingular for any e ∈ [0, 1). It follows that the values
of K can be inferred from rectangular coordinates through the inverse transformation

K = Φ(r v, ν)−1 X(ν). (5)

The explicit formulae of Φ(r v, ν)−1 can be found in [17], but do not yield great insight into the
geometry of the relative trajectory.

To that end, consider the following auxiliary variables

Ax = K3, (6a)

Ay = K2 − 3 e J K4, (6b)

δx = 2K4, (6c)

δy = K1 − 3 J K4, (6d)

A =
√
A2
x +A2

y, (6e)

α = arctan

(
−Ay
Ax

)
, (6f)

B =
√
K2

5 +K2
6 , (6g)

β = arctan

(
K6

K5

)
, (6h)
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Figure 2: Orbital evolution of a satellite in a 100-km quasi-QSO orbit with δx = δy = 0. The
red point illustrates the position of the spacecraft at periarion, i.e., when ν = 0.

so that  x(ν) = γ A cos (ν + α) + δx,
y(ν) = −(1 + γ)A sin (ν + α) + δy,
z(ν) = B sin (ν + β).

(7)

Equation (7) reveals that a mass particle in orbit around a massless Phobos would remain
in the vicinity of the Martian moon if A, δx, and δy have no secular growth. This is guaranteed
when K4 = 0 as Ay and δy would both remain constant regardless of the integral term appearing
in Eq. (6b) and Eq. (6d). If K4 = 0, the trajectory described by the spacecraft in the equatorial
plane becomes a pulsating ellipse with frequency ωxy = 1 and semi-major and semi-minor axes
equal to (1 + γ)A and γ A, respectively. The phase angles α and β represent the longitude and
latitude of the satellite at periarion, i.e., when ν = 0, as specified in Fig. 2). Meanwhile, the
out-of-plane motion is decoupled from the planar one and follows an harmonic oscillation with
amplitude B and frequency ωz = 1.

4 Gauss Variational Equations

As specified in Eq. (5), values of K can be inferred from the Cartesian coordinates of a spacecraft
while knowing the true anomaly of Phobos around Mars. In consequence, the total differential
of K = K(r,v, ν) reads as

K̇ =
∂K

∂r
ṙ +

∂K

∂v
v̇ +

∂K

∂ν
(8)

and must be equal to zero when the dynamics is governed by the unperturbed case (1), where

v̇ = a =
[
3
x

γ
+ 2 v, −2u, −z

]T
.

Let us now consider the perturbed System{
ṙ = v,
v̇ = a + u,

(9)

where u =
[
ux, uy, uz

]T
is a vector of disturbing forces per unit mass in the pulsating synodic

reference frame S′. Substituting Eq. (9) in Eq. (8) yields the GVE for the K integrals of motion

given by K̇ =
∂K

∂v
u.
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The rates of change for orbit elements A, α, δx, δy, B, and β can be now deduced from the
application of the chain rule and yields

Ȧ = −
[
γ sin (ν + α)− 2 e sinα

1− e2

]
ux

−
[
e cosα+ (1 + γ) cos (ν + α)

1− e2

]
uy +

3 e sinα

2 γ2
δx, (10a)

α̇ = −
[
γ cos (ν + α)− 2 e cosα

A (1− e2)

]
ux

+

[
e sinα+ (1 + γ) sin (ν + α)

A (1− e2)

]
uy +

3 e cosα

2Aγ2
δx, (10b)

δ̇x =

(
2 e γ sin ν

1− e2

)
ux +

(
2 γ2

1− e2

)
uy , (10c)

δ̇y =

[
e γ cos ν − 2

1− e2

]
ux −

[
e (1 + γ) sin ν

1− e2

]
uy −

3

2 γ2
δx, (10d)

Ḃ = cos (ν + β)uz , (10e)

β̇ = −
sin (ν + β)

B
uz . (10f)

We note that the rate of change of the latitude at periarion is inversely proportional to the
magnitude of the out-of-plane motion B. To avoid singularities, we consider

K̇5 = (cos ν)uz, (11a)

K̇6 = −(sin ν)uz, (11b)

instead of Eq. (10e) and Eq. (10f) when studying the dynamical evolution of planar QSO orbits
such as the one of Fig. 2.

The final set of equations of motion for the osculating orbit elements œ =
[
A, α, δx, δy, K5, K6

]T ∈
M becomes

œ̇ = F (ν,œ) +G(ν,œ)u. (12)

where M is the phase space of the orbit elements œ,

F (ν,œ) =



3 e sinα

2 γ2
δx,

3 e cosα

2Aγ2
δx,

0,

− 3

2 γ2
δx,

0,
0,

(13)

and G(ν,œ) is a six-by-three matrix with nonzero components

G1,1 = −
γ sin (ν + α)− 2 e sinα

1− e2
, (14a)

G1,2 = −
e cosα+ (1 + γ) cos (ν + α)

1− e2
, (14b)

G2,1 = −
γ cos (ν + α)− 2 e cosα

A (1− e2)
, (14c)

G2,2 =
e sinα+ (1 + γ) sin (ν + α)

A (1− e2)
, (14d)
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G3,1 =
2 e γ sin ν

1− e2
, (14e)

G3,2 =
2 γ2

1− e2
, (14f)

G4,1 =
e γ cos ν − 2

1− e2
, (14g)

G4,2 = −
e (1 + γ) sin ν

1− e2
, (14h)

G5,3 = cos ν, (14i)

G6,3 = − sin ν. (14j)

Equation (12) can be now integrated to obtain the evolution of the osculating orbit elements
without converting from the Cartesian coordinates adopted in Eq. (9). In addition, analytical
expressions for the effects of Phobos’ gravity on the osculating orbit elements œ can be derived
and analyzed as in the following Sections.

5 The Effects of Phobos’ Gravity

The terms ux, uy, uz appearing in (12) are now replaced with the gravitational attraction of
Phobos in the pulsating synodic reference frame S ′:

u = − 1

γ

x/r3y/r3

z/r3

 , (15)

where r =
√
x2 + y2 + z2.

Substituting Eq. (7) in r yields a fairly complicated expression for the distance between
the satellite and the barycenter of the Martian moon. Nevertheless, a satellite on a QSO orbit
remains close to the equatorial plane of Phobos if δx and δy are close to zero. In addition, the
eccentricity of the Martian moon is relatively small and allow for simplifications in the expressions
of the GVE presented in Section 3. These considerations justify the first order expansion of the

equations of motion in e, δ =

(
δx
A

)
, ε =

(
δy
A

)
, η5 =

(
K5

A

)
, η6 =

(
K6

A

)
under the assumption

that δ, ε, η5, η6 O(e) << 1. This assumption was investigated by Cabral in [18] and seems to be
reliable for QSO orbits above 80 km based on numerical experiments. In this orbital regime, the
expressions of x, y, and z in Eq. (7) imply

r(e) ' A
√
d2 + 2 e cos ν

[
cos2 θ + 2 sin2 θ

]
+ 2 δ cos θ − 4 ε sin θ, (16)

where e =
[
e, δ, ε

]T
, d =

√
cos2 θ + 4 sin2 θ, and θ = ν + α.
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Replacing ux, uy, and uz in Eq. (12) with (15) then yields

Ȧ '
1

A2 d3

{
−

3

2
sin (2 θ)− 2 e [sin (ν + 2α)− 0.25 cos ν sin (2 θ)]

+ δ sin θ + 2 ε cos θ

+
9

2
sin (2 θ)

[
e cos ν

(
cos2 θ + 2 sin2 θ

)
+ δ cos θ − 2 ε sin θ

d2

]}
, (17a)

α̇ '
1

A3

{
1

d
− e

cos ν

d

−
e
[
2 cos (ν + 2α) + cos ν (cos2 θ + 2 sin2 θ)

]
d3

−
2 δ cos θ − 4 ε sin θ

d3

}
, (17b)

δ̇x '
2A

[r(e)]3
{2 sin θ + e [3 cos ν sin θ − sin ν cos θ]− ε} ,

'
2

A2

{[
2 sin θ + e [3 cos ν sin θ − sin ν cos θ]− ε

d3

]
−6 sin θ

[
e cos ν

[
cos2 θ + 2 sin2 θ

]
+ δ cos θ − 2 ε sin θ

d5

]}
. (17c)

δ̇y '
1

A2 d3

{
2 cos θ − e [cos ν cos θ + 4 sin ν sin θ] + δ

(
4− 3A3 d3

2

)
−6 cos θ

[
e cos ν

(
cos2 θ + 2 sin2 θ

)
+ δ cos θ − 2 ε sin θ

d2

]}
, (17d)

K̇5 ' −
cos ν

A2

(
η5 sin ν + η6 cos ν

d3

)
, (17e)

K̇6 '
sin ν

A2

(
η5 sin ν + η6 cos ν

d3

)
, (17f)

or
œ̇ = g(ν,œ) (18)

in vectorial form.
Equation (18) introduces a Linear Model (LM) in e, δ, ε, η5, and η6 that accurately predicts

the dynamics of mass particles in mid- and high-altitude QSO orbits for several orbital periods
around Phobos. This claim is supported by Fig. 3–5, which compare trajectories of the original
and linearized systems obtained by numerical integration of the same set of initial conditions:

x(ν0) =


4.223784177246

−0.0814069532286406
−0.317146285024353
0.0342016222056316
−8.42418511932641
0.139224827215046

 , (19a)

œ(ν0) =


4.22922122381657
0.61341331263205
−0.0576706532250935
−0.0778356681681636

0.296336249720383
−0.179304617116979

 , (19b)
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in Cartesian coordinates and osculating orbit elements, respectively, with ν0 = 324.8780 deg.
As depicted in Fig. 5(a), the error between the integration of Eq. (12) and Eq. (9) is purely

numerical and negligible after 100 orbital revolutions of Phobos around Mars (i.e., almost 32
days). In contrast, the position error of the linearized model exhibits a secular growth, but never
exceeds 5 kilometers over the same interval of time. Such an error is deemed reasonable for
the purpose of this article, as navigation errors and mismodeled dynamics would likely overtake
the inaccuracies of the linearized model over the time span of a few days. In this time frame,
the LM is considered as a good candidate for describing the long-term evolution of satellites in
QSO orbits and can be used for the analysis of the secular motion as described in the following
Section.

Figure 3: Quasi-QSO orbit integrated over 100 Phobos revolution with the LM (blue) and GVEs
(red) models.

(a) (b)

Figure 4: top) A, α, δx, δy obtained with the LM (blue) and GVEs (red) models. bottom) K5,
K6, B, β obtained with the LM (blue) and GVEs (red) models.

6 Averaged Equations

The long-term evolution of quasi-QSO orbits is now analyzed by averaging Eq. (17) over one

orbital period around Phobos, i.e., ˙̄œ =
∫ 2π

0
œ̇ dθ. We find that the averaged orbit elements Ā,
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(a) (b)

Figure 5: (a) Position error between the GVEs and EHP models. (b) Position error between the
LM and EHP models.

ᾱ, δ̄x, δ̄y, K̄5, and K̄6 evolve with the true anomaly as according to

˙̄A = 0, (20a)

˙̄α =
K
π Ā3

, (20b)

˙̄δx = −2
e

Ā2

(
K− 7 E

9π

)
sin ᾱ+ 2

δ̄y

Ā3

(
K− E

3π

)
, (20c)

˙̄δy =
e

Ā2

(
K− 52 E

9π

)
cos ᾱ−

3

2
δ̄x + 2

δ̄x

Ā3

(
K− 4 E

3π

)
, (20d)

˙̄K5 = −
K̄5

Ā3

(
2K− 5 E

6π

)
sin (2 ᾱ)−

K̄6

Ā3

E
2π

+
K̄6

Ā3

(
2K− 5 E

6π

)
cos (2 ᾱ), (20e)

˙̄K6 =
K̄5

Ā3

E
2π

+
K̄5

Ā3

(
2K− 5 E

6π

)
cos (2 ᾱ) +

K̄6

Ā3

(
2K− 5 E

6π

)
sin (2 ᾱ), (20f)

where K ' 2.156516 and E ' 1.211056 are the complete elliptic integrals of the first and second
kind, respectively, evaluated with modulus k =

√
3/2 [19].

We note that our expressions are different from the ones of Cabral [18] and are rather similar
to the ones of Kogan [5] whenever e→ 0. Indeed, as emphasized in [5], Eq. (20) exhibits cross-
coupling between some of the orbit elements, as well as long-term oscillations due to the secular
growth of α, i.e., the longitude at periarion. The secular growth of α causes the geometrical
configuration between the spacecraft, Mars, and Phobos, to change at every periarion passage,
i.e., when the gravitational attraction of Mars is at its strongest. To grasp the secular effects of
this phenomenon, note that ᾱ grows linearly with the true anomaly and with a rate that depends
on the amplitude of the in-plane motion via

ᾱ(ν) = ωα (ν − ν0) + ᾱ0, (21)

where ωα = (K/π) Ā−3 ' 0.686440 Ā−3, ᾱ0 = ᾱ(ν0), and ν0 is the true anomaly of Phobos at
epoch.

Observe that ωα is constant due to Eq. (20a). Furthermore, the value of ωα defines the
period of the QSO orbit around Phobos as T = 2π/nQSO, and nQSO = θ̇ = ν̇ + α̇ ' 1 + ωα.
This is demonstrated with the chart of Fig. 6, illustrating the comparison between the analytical
prediction of nQSO and the numerical value computed with the GMOS algorithm of Section II.
We find that the proposed linearization and averaging approach is only valid when Ā > 80 km.
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Figure 6: Comparison between the numerical value of nQSO and its theoretical prediction 1 + ˙̄α.
The time unit TU is equal to 1.288 hours.

In the validity regime of Eq. (20), the in-plane and out-of-plane components of motion can
be decoupled and reduced to the linear systems[

˙̄δx
˙̄δy

]
=

[
0 Dx

Dy 0

] [
δ̄x
δ̄y

]
− e

[
dx sin ᾱ
dy cos ᾱ

]
, (22)

[
˙̄K5

˙̄K6

]
=

[
−ζ sin (2 ᾱ) −ε+ ζ cos (2 ᾱ)
ε+ ζ cos (2 ᾱ) ζ sin (2 ᾱ)

] [
K̄5

K̄6

]
, (23)

where

Dx = 2

(
K − E
3π Ā3

)
> 0, (24a)

Dy = −3

2
+ 2

(
K − 4 E
3π Ā3

)
< 0, (24b)

dx = 2

(
K − 7 E
9π Ā2

)
< 0, (24c)

dy =

(
52 E − K

9π Ā2

)
> 0, (24d)

and

ζ =

(
2K − 5 E

6π Ā3

)
, (25a)

ε =
E

2π Ā3
. (25b)

The interested reader may find the analytical solution of these equations in Ref. [20]. Mean-
while, Figure 7 shows the behaviour of the mean orbit elements δ̄x and δ̄y obtained from the
osculating orbit elements of Eq. (19) over 400 orbital periods of Phobos. Although the secular
evolutions of δ̄x and δ̄y differ quite significantly from the osculating values, we find that the tra-
jectory of the spacecraft does not drift away from the vicinity of Phobos’ orbit. This shows that,
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in the averaged system, trajectories are bounded even when δ̄x is not exactly zero. At the same
time, we can also conclude that an appropriate transformation between osculating and mean
orbit element is mandatory in order to adequately capture the secular evolution of spacecraft in
mid-altitude 3D QSO orbits. The problem of finding accurate initial conditions for the averaged
system is addressed in the next Section.

7 Near-identity Transformation

In order to provide a detailed mapping between mean and osculating orbit elements, different
methods of perturbation theories can be considered (see for instance [21], [4], [22] and refer-
ences therein). We introduce the inverse transformation T : [0, 2π] ×M → M such that the
reconstructed osculating orbit elements

œ̂ = œ̄ + ε T (ν, œ̄) (26)

satisfy
˙̂œ = ε g(ν, œ̂) +O(ε2). (27)

In Eq. (27), ε is a formal small parameter1 that emphasizes the slow evolution of the mean orbit
elements œ̄ with respect to the fast variable θ. Under this assumption, the System (20) may be
rewritten in vectorial form as ˙̄œ = ε ḡ(œ̄). From Eq. (26), it follows that

ε g(ν, œ̄ + ε T (ν, œ̄)) = ε ḡ(œ̄) + ε

(
∂T

∂ν
+
∂T

∂œ̄
ε ḡ(œ̄)

)
,

ε g(ν, œ̄) = ε

(
ḡ(œ̄) +

∂T

∂ν

)
, (28a)

1consider ε ' A−2 for practical purposes

Figure 7: Evolution of the in-plane center of motion over 400 Phobos revolution with œ̄(ν0) =
œ(ν0).
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which implies
∂T

∂ν
' g(ν, œ̄)− ḡ(œ̄) (29)

up to the first order in ε. Knowing that
∫ 2π

0
T (ν, œ̄) dν = 0, we then look for numerical approx-

imations of T via the Fourier transformations outlined in [23]:

T (ν, œ̄) = −i
N∑
i=1

(
g(k)

k

)
exp [−i k ν]. (30)

where g(k) are the Fourier coefficients of g(ν, œ̄)− ḡ(œ̄).
Based on this transformation, we calculate an approximate value of œ̄ and compare the

numerical integration of (20) with Eqs. (22) and (23). The averaged initial conditions obtained
from Eq. (19) are

œ̄ =


4.21151847992516
0.613104203916773
−0.00104870967949794
−0.0793524699676065

0.296432612194867
−0.179780157819618

 (31)

and yields the plots of Fig. 8 and 9. We find that satellites in orbit around Phobos trace out
prolate ellipses whose center oscillates in the δy direction. Meanwhile, K5 and K6 values follow
a pulsating circle with time-varying radius B̄(ν).

8 Nonlinear Lyapunov Controller

In this Section, we finally apply the near-identity transformation to derive a Lyapunov control
law for the orbit maintenance of a satellite in a mid-altitude QSO orbit. Let œ̄∗ denote the
“desired” mean relative orbit elements (i.e., the one obtained from the numerical integration of
Eq. 1), whereas œ̄ are the “actual” mean relative orbit elements. The coordinates œ̄ differ from

œ̄∗ because of injection errors such as
[
109, 111, −86, 7.74× 10−3, −0.12, −0.11

]T
(m,

m/s) that cause the actual trajectory to slowly drift away from the nominal one. Furthermore,
assuming u ' O(e) << 1, Eq. (12) may be rewritten as

œ̇ = ε g(ν,œ) + h(ν,œ)u, (32)

where ε is the formal parameter of Section 7 and

h(ν,œ) =



− sin θ −2 cos θ 0

−
(

cos θ

A

)
2

(
sin θ

A

)
0

0 2 0
−2 0 0
0 0 cos ν
0 0 − sin ν


. (33)

We may also assume that u causes equivalent changes in both the osculating and mean
relative orbit element domains such that

˙̄œ = ε ḡ(œ̄) + h(ν, œ̄)u. (34)
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Figure 8: In-plane offset evolution over 100 Phobos orbits.

Figure 9: Out-of-plane motion over 400 Phobos orbits.

Here, we assume that h(ν,œ) can be computed using œ̄ rather then its osculating counterpart,
which is adequate as long as we are willing to introduce an error of order ε.

Next, consider the equations of motion for the nominal mean relative orbit elements, i.e.,
˙̄œ∗ = ε ḡ(œ̄∗), and define a positive definite Lyapunov control function with

V (∆œ̄) =
1

2
∆œ̄T ∆œ̄, (35)

where ∆œ̄ = œ̄− œ̄∗. The first derivative of V (∆œ̄) then yields

V̇ (∆œ̄) = ∆œ̄T ∆ ˙̄œ,

= ∆œ̄T {ε [ḡ(œ̄)− ḡ(œ̄∗)] + h(ν, œ̄)u} (36)

and must be equal to −∆œ̄T P ∆œ̄, where P is a positive-semidefinite matrix, in order to ensure
the stability of the nonlinear control law. Noting that h(ν, œ̄) is a nonsquare matrix, Eq. (36)
implies

u = −(hT h)−1 hT {ε [ḡ(œ̄)− ḡ(œ̄∗)] + P ∆œ̄} , (37)

which resembles the nonlinear Lyapunov controller disclosed in Ref. [24]. In fact, inspired by
[24], we implement a time-varying gain matrix P so as to maximize the changes in A, α, K5 and
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K6 when it is more appropriate. The gain matrix reads as

P = diag
[
PA, Pα, Pδx Pδy PK5 , PK6

]
, (38a)

PA = 10−3 + 3

(
sin θ + 2 cos θ

2.2361

)N
, (38b)

Pα = 10−3 + 3

(
− cos θ + 2 sin θ

2.2361

)N
, (38c)

Pδx = 0.3, (38d)

Pδy = 0.3, (38e)

PK5 = 10−3 + 3 (cos ν)N , (38f)

PK6
= 10−3 + 3 (sin ν)N , (38g)

where N is an even integer number (e.g., N = 2), and yields the controlled trajectory of Fig. 10.
The controller is switched on as soon as the distance between the actual and nominal trajectory

Figure 10: Controlled and Uncontrolled trajectories as seen in the relative orbit element space.

exceeds 10 km, affects the dynamical evolution of the spacecraft for several orbital revolutions
around Phobos, and finally cutoff when the error is below 100 m. This control logic results in a
long thrusting arc where ‖u‖ never exceeds the normalized value of 0.1 (Fig. 11), corresponding
to approximately 0.11 mm/s2. When integrated over the entire duration of the simulation, the
control profile yields the total amount of ∆V produced, which is equal to 2.09 m/s.

The small quantity would be make the Lyapunov controller very attractive for in-situ opera-
tions. Unfortunately, the duration of the thrusting arc, along with the impossibility to implement
autonomous control law onboard MMX, would make the practical implementation of the control
law in Eq. (37) extremely challenging. Nevertheless, the value identified by this simulation could
be useful for the design of the mission, as it provides mission designers with an order of magnitude
for comparison with the actual control law that will be implemented on the spacecraft.
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9 Conclusions

This paper presented a new set of equations of motion for mass-particles in the vicinity of
Phobos. The equations are valid for mid-altitude quasi-planar retrograde orbits around the
planetary satellite (A > 80 km) and accurately describe the long-term evolution of a spacecraft
in this orbital regime. A near-identity transformation was applied in order to correctly transform
from osculating to mean relative orbit elements and gain semi-analytical insight into the problem.
This transformation enabled the derivation of a nonlinear Lyapunov control law based on mean
relative orbit element differences. The controller was capable of nullifying injection errors and
steer the spacecraft back to its nominal path regardless of the complexities generated by the
eccentricity of the Martian moon and out-of-plane oscillations. Based on this result, quasi-
QSO orbits seem to offer an interesting design option for spacecraft missions to Phobos and are
advocated for close investigations of this small body.
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