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ABSTRACT
Retargeting motion from one character to another is a key process
in computer animation. It enables to reuse animations designed for
a character to animate another one, or to make performance-driven
be faithful to what has been performed by the user. Previous work
mainly focused on retargeting skeleton animations whereas the
contextual meaning of the motion is mainly linked to the relation-
ship between body surfaces, such as the contact of the palm with
the belly. In this paper we propose a new context-aware motion
retargeting framework, based on deforming a target character to
mimic a source character poses using harmonic mapping. We also
introduce the idea of Context Graph: modeling local interactions be-
tween surfaces of the source character, to be preserved in the target
character, in order to ensure fidelity of the pose. In this approach,
no rigging is required as we directly manipulate the surfaces, which
makes the process totally automatic. Our results demonstrate the
relevance of this automatic rigging-less approach on motions with
complex contacts and interactions between the character’s surface.

CCS CONCEPTS
• Computingmethodologies→Animation;Optimization al-
gorithms;

KEYWORDS
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1 INTRODUCTION
Performance-driven animation of human-like characters has been
widely explored, especially with the dissemination of cheap and
easy-to-use motion capture devices. Users generally wish to control
characters with various shapes, ranging from realistic to cartoon
characters. Moreover, animations studios have gathered Terabytes
of rigged animations accurately adapted to a given character in
specific conditions. Being able to automatically reuse this data to
make new characters move in the same way is essential to save time
and associated costs. The problem is: how to accurately transfer a
motion perfectly adapted to character A (either an actor/user, or
a preprocessed virtual character) to character B, whereas A and B
have different shapes and environments to interact with.

To answer this question, motion retargeting has been widely ex-
plored [Gleicher 1998]. However, most of previous approaches rely
on a rigged skeleton, whereas the contextual meaning of the mo-
tion is mainly linked to relationship between skin surfaces. Hence,
motions such as applauding, touching the belly, or crossing the legs,
need manual editing to correct the errors introduced by skeleton-
based motion controllers driven by inverse kinematics. Even though
skeleton animation looks fine, manual post-processing is needed
to correct artifacts introduced when animating the body surface.
Moreover the rigging process is tedious and has to be done for each
new character, leading to a reprocessing of all the required motions.

In order to tackle these limitations, this paper proposes a new
approach to get rid of the rigging process and skeleton control,
as suggested in previous works [Baran et al. 2009; Rhodin et al.
2014]. We aim at pushing the idea further to directly retarget a
database of motions to new characters while ensuring that the
contextual meaning linked to the body surface is preserved, without
manipulation of rigged skeletons. As shown in Figure 1, we input
the source calibration pose in Figure 1(a), a sequence of deformed
source poses in Figure 1(c) extracted from the prerecorded database,
and a target calibration pose in Figure 1(f). Then ourmethod outputs
a set of newly synthesized target poses for the target character,
preserving the relationship between body surfaces of the deformed
source poses in Figure 1(i).
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Because of the versatility of computer graphics applications,
poses such as those explored in this paper can typically be rep-
resented either by manifold mesh or, most of the time, by non-
manifold mesh such as multiple-part objects, polygon soup or tetra-
hedral volumetric meshes. In order to reuse existing shape deforma-
tions and deal with various representations of shapes, we therefore
propose a new surface-based motion retargeting framework. Our
method is general and does not require the source and target cali-
bration meshes to be compatible, namely, to have the same number
of vertices, triangles, and connectivity. Our method needs to set a
sparse set of joints inside the source and target calibration shapes.
These joints can be provided by skeleton joint extraction algorithms
automatically or obtained from user specification. Then we gen-
erate the retargeted animation based on the joints and available
source mesh sequences. In contrast, the rigging process requires
the users to perform operations such as setting up the skeleton,
painting body part weight, and skeleton adjustment, which is much
more tedious and time-consuming. In this sense, our method simpli-
fies the work of the animation process. However, we assume there
are clear semantic correspondences between the surface of the two
3D domains.

We use harmonic function as the mapping function, as previ-
ous work showed that it results in a smooth and detail-preserving
mapping between two 3D domains [Ben-Chen et al. 2009b; Ferrari
et al. 2012; Joshi et al. 2007; Zayer et al. 2005]. However, the Lapla-
cian operator and its derivative can be quite complicated functions,
which makes it hard to analytically solve these integrals. Inspired
by the Method of Fundamental Solutions (MFS) [Fairweather and
Karageorghis 1998; Li et al. 2009] that discretized the problem by
using a linear combination of component functions, we construct
an approximated harmonic mapping using MFS. Results presented
in Section 8 show that our method using MFS produces very small
reconstruction error.

The major contributions of this paper are summarized as follows:

• We propose a new unified framework for motion retargeting
consisting in two steps: 1) extracting deformation descrip-
tors and 2) synthesizing new deformations based on these
deformation descriptors. During the deformation descriptor
extraction process, we compute the affine transformation by
solving a linear system. During the deformation synthesis
process, we generate new poses by minimizing the differ-
ence between affine transformation descriptors and other
constraints such as position, spatial relationship, and volume
preservation.

• We propose a new structure to capture the spatial relation-
ship among different body parts on the surface of a mesh,
which we call Context Graph. By minimizing the deformation
of the Context Graph between a source animated pose and
a synthesized pose, we are able to preserve the contextual
meaning for the newly synthesized pose.

The rest of the paper is organized as below. We first review the
related work on motion adaptation and shape deformation in Sec-
tion 2. Section 3 gives an overview of our method. Algorithm details
on deformation analysis and synthesis will be discussed in Section 4
and 5, respectively. In Section 6, we describe the construction of

our Context Graph and how it is deformed to preserve spatial rela-
tionships and body parts volume, followed by Section 7 with some
implementation details. Experimental analyses and evaluations are
conducted in Section 8. Finally, in Section 9, we conclude the paper,
as well as discuss the limitations and future research directions.

2 RELATEDWORK
2.1 Motion Retargeting
Motion retargeting techniques tackle the problem of adapting an
animated motion from one character to another, and they have been
widely explored to reuse existing motion capture data in computer
graphics [Gleicher 1998; Kulpa et al. 2005].

Ho et al. [2010] proposed a new structure called interaction mesh
to preserve the spatial relationships between body parts/objects in
the scene by iteratively minimizing a Laplacian deformation energy.
Their method generates sensible motions for close interactions
as well as those without any contacts. However, their method is
not suitable for real-time animation application as the algorithm
performs the optimization over the whole animation sequence. Sim-
ilarly, Al-Asqhar et al. [2013] propose to use relationship descriptors
to describe the kinematics of the body parts by the weighted sum
of translation vectors with respect to points sampled on the surface
of the object in close proximity. Their method adapt the motion of a
character to large updates of character morphologies and scenarios
on-the-fly. However, re-position of contacts may be invalid due
to large deformations. This work was then extended by Tonneau
et al. [2016] [Al-Asqhar et al. 2013], who presented a scheme that
enhances the detection and re-position of unnatural motion adap-
tations. Kim et al. [2016] develop a spatial map, which builds a
bijection between two domains bounding the source and target ob-
jects. During the online motion generation process, the synthesized
motion tries to preserve the spatial relationship between the source
pose and an object. However, the algorithm needs to tetrahedralize
two domains and requires the shape of source and target object to
be very similar. Molla et al. [2018] propose an egocentric normaliza-
tion of body surfaces to preserve the spatial relationships between
the limbs and the other body parts. They test the proposed method
a variety of characters with and without self-contacts. There are
important differences between the method of Molla et al [2018], as
they start from the joints with IK solver to reconstruct new pos-
tures, while our method works on the surface of the source and
target meshes directly.

We are interested in generating realistic animations transfering
existing motions of a character onto other characters with very
different body morphologies. All of the above-discussed motion
retargeting methods work on sparse joints. Thus, the speed and
quality may decrease greatly when they are extended to a surface
mesh, as the dimension of a surfacemeshmodel is much higher than
the sparse joints, e.g. a typical surface mesh model contains 20K
vertices compared to approximately 50 sparse joints in a skeleton.

2.2 Surface Deformation
In this Section, we focus on direct surface manipulation deforma-
tion methods. Differential coordinates have been widely used to
represent local details of a mesh. Lipman et al. [2004] reconstruct
the surface by minimizing the difference of Laplacian coordinate
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before and after the deformation. This method requires to explicitly
find a correct rotation for the Laplacian coordinate of a local ver-
tex, otherwise, distortion would have resulted. Similarly, Sorkine
et al. [2004] propose a Laplacian representation by encoding each
vertex relative to its neighborhood. However, unlike Lipman et
al. [2004], the transformation of the differential coordinate for each
vertex is implicitly computed from the transformation of a control
handle. However, for transformations that involve large rotation,
the deformation will suffer from anisotropic scales and need a post-
process to refine it.

Zhou et al. [2005] enhance the Laplacian surface editing scheme
by introducing a volumetric graph. Specifically, they embed a cubic
lattice inside the shape, as well as an offset surface wrapping the
exterior of the shape. The Laplacian editing framework is then
employed to preserve the volume while keeping the local surface
details. Loper et al. [2014] estimate body shape and pose by using
a set of standard motion capture marker data. They successfully
approximate the soft-tissue deformation as shape variations within
the space of static human body shape. Wang et al. [2015] design
linear subspaces for controlling shape deformation, which cuts
down the time complexity of variational shape deformation meth-
ods. Methods such as [Boukhayma and Boyer 2017; Boukhayma
et al. 2017] transfer or generate variations of 3D models by building
a probabilistic low dimensional embedding of shape poses with
Gaussian Process Models. Casas et al. [2013] propose the paramet-
ric motion graphs that enables real-time animation editing based on
a database of temporally aligned mesh sequence reconstructions.

Most of direct surface manipulation techniques only work on
the surface of a manifold mesh, which are hard to be applied to
other mesh structures such as polygon soups and multi-component
shape. In this paper, we apply the Laplacian deformation frame-
work [Sorkine et al. 2004] to our Context Graph that preserves the
volume and spatial relationship among different body parts. We
approximate the harmonic mapping by using a linear combination
of the fundamental solution of harmonic equation [Li et al. 2009;
Poullikkas et al. 1998], which enables us to process both manifold
and non-manifold shapes.

2.3 Space Deformation
A space deformation maps a source domain to a target domain in-
side the Euclidean space while preserving user-defined constraints.
Cage-based deformation methods [Ben-Chen et al. 2009b; Joshi et al.
2007; Lipman et al. 2008] are such kinds of approaches that can be
used to deform any type of shapes inside the cage, such as poly-
gon soup, point cloud, and manifold mesh. Compared with direct
surface based deformation that manipulates a set of dense points,
controlling a sparse polyhedral cage simplifies the deformation
process.

Shapes inside a cage can be represented as a linear combination
of the vertices of the cage by barycentric coordinates [Floater et al.
2005; Huang et al. 2006]. However, barycentric coordinates are not
positive for a concave domain, which may result in stretching in the
resulting deformation. Harmonic coordinates [Joshi et al. 2007] are
then explored as they are always positive inside the cage. Unfortu-
nately, computing a closed-form solution for harmonic Dirichlet is
hard. Boundary element method (BEM) [Sauter and Schwab 2010]

offers a way to only discretize the boundary of the domain and
derive the solution by solving a linear system. Later, in order to
avoid computing the integral over the boundary, method of funda-
mental solution (MFS) [Li et al. 2009; Poullikkas et al. 1998] has been
proposed to use only the fundamental solution in computing the
solution. Lipman et al. [2008] introduce Green Coordinates for poly-
hedral cage in both 2D and 3D to extend barycentric coordinates,
which leads to space deformation with a shape-preserving property.
Ben-Chen et al. [2009b] propose a space deformation method that
manipulates a sparse set of position and orientation constraints by
finding an appropriate harmonic mapping of the space. They solve
a non-linear minimization problem on the cage to find such a map
that satisfies the user constraints.

In this paper, we employ harmonic mapping as our deforma-
tion function and compute the solution by a linear combination of
component functions introduced in [Li et al. 2009; Poullikkas et al.
1998]. Thanks to MFS, our method is a meshless boundary method
which does not require to enforce the connectivity of the mesh to
function.

2.4 Deformation Transfer
Deformation transfer methods reuse existing animation sequences
from the source shape to produce new animations. Given a source
calibration shape, a target calibration shape, and a deformed source
shape, the algorithm produces a deformed target shape that mimics
the source shape deformation.

Sumner and Popovic [2004] present an efficient method to trans-
fer animations from a source shape to a target shape, establishing
a bijection mapping between the triangles of the source and target
shapes. The deformation gradient for each triangle in the source
shape is then computed, which transforms a source triangle into its
corresponding target triangle. One limitation is that only manifold
mesh can be processed. Zhou et al. [2010] enhance this framework
by connecting all adjacent components with a minimal spanning
tree. In contrary, Ben-Chen et al. [2009a] project the deformation
into a linear space by transfering a sparse set of deformation gra-
dients inside a cage. However, their method requires constructing
two polyhedral cages for both the source and target shape. Jin et
al. [2018] propose the aura mesh, which is a volumetric mesh that
surrounds a character’s skin, to preserve the spatial relationships
between two characters. The interaction between two characters is
expressed with respect to the collision between the skin mesh of
one character and the aura mesh of the other. The method is fast
and produces interaction motions for characters with different sizes
and skin shapes. However, their method requires a rigged skeleton
and define the weights of the skin surface whereas our method just
needs to specify several joints inside the characters to transfer the
deformation descriptors.

Most of these deformation transfer methods just transfer the
deformation descriptor of the source shape to the target shape
without considering the spatial relationship between different body
parts of the source shape. To solve this problem, we define a Context
Graph on the surface of source/target shape, used to describe the
spatial relationship among different body parts.

Compared to the Green coordinates model [Lipman et al. 2008]
that needs to move the cage to deform the bounding space, our



MIG ’18, November 8–10, 2018, Limassol, Cyprus Z. Liu et al.

(b) Place Singularity Points q in Red

(g) Place Singularity Points u in Red

Deformation Analysis

Deformation Synthesis

(c) Deformed Source Pose M2(a) Source Reference Shape 
M1 with Joints lS in Green

(f) Target Reference Shape 
Ω with Joints lT in Green

(d) Approximate Harmonic
Mapping using MFS

Compute Deformation 
Descriptor for Joints lS

(e) Compute Spatial Relationship

(h) Newly Synthesized Target Pose

Synthesize Deformed Target 
Pose by Solving a Linear System Preserve Spatial

Relationship

(i) Output

Figure 1: Overview of synthesizing new poses using harmonicmapping. During the deformation analysis process, we calculate
the deformation descriptor of the source calibration pose. During the deformation synthesis process, we compute the coeffi-
cients of approximating harmonic mapping by assuming that the target calibration pose perform similar deformation to the
source calibration pose. We further constrain the synthesized motion to have an as similar spatial relationship as that of the
source deformed pose by adding Laplacian framework.

method directly builds volumetric mappings between different 3D
domains. Our method is somewhat similar to spatial deformations
such as [Ben-Chen et al. 2009a,b], in the sense that we also use the
Jacobian of the mapping function as the affine transformation de-
scriptor. However, there are important differences: (1) Our method
does not need a cage and we just need to compute some offset
points close to the boundary surface of the pose using methods
such as marching cubes and Silhouette Clipping [Lorensen and
Cline 1987; Sander et al. 2000] and this is completely hidden to
the users. In addition to the shape to be deformed, Ben-Chen et
al. [2009a; 2009b] require the user to offer a cage surrounding the
shape. Creating a cage is not a trivial work. Although some al-
gorithms could simplify this task, the user may still need to do
some manual work to construct a high quality cage. (2) We have
an analytical least-squares solution to the harmonic reconstruction
optimization problem. Methods of [Ben-Chen et al. 2009a; Lorensen
and Cline 1987] need multiple ‘local/global’ iteration steps to con-
verge to a satisfing solution. (3) We concentrate on preserving the
spatial relationship among different body parts using the proposed
Context Graph, which may also benefit other spatial deformation
methods such as [Ben-Chen et al. 2009a; Zhou et al. 2010].

3 ALGORITHM OVERVIEW
As shown in Figure 1, our method consists of two phases: the de-
formation analysis and synthesis. During the deformation analysis

process, if we do not have the skeleton together with mesh data,
we first compute the joints of both the source and target calibration
posesM1 and Ω as shown in Figure 1(a) and (f), using skeleton ex-
traction methods such as [Au et al. 2008; Cao et al. 2010]. Secondly,
as shown in Figure 1(b), we generate an offset surface enclosing
the source calibration poseM1. The points uniformly sampled on
this offset surface are auxiliary points used for approximating the
mapping function, and we call them singularity point. Then we
approximate the harmonic function using the singularity points
to map the source calibration shape to the deformed source shape
using MFS [Fairweather and Karageorghis 1998; Li et al. 2009]. We
use the Jacobian matrices of the harmonic function at these joints
as the affine transformation.

During the deformation synthesis process, similar to the defor-
mation analysis step, we first place some offset points close to the
target calibration shape as seen in Figure 1(g). Secondly, we assume
that the joints of the target calibration pose Ω experience simi-
lar deformations than the joints of the source calibration pose M1
such that we can calculate the coefficients for approximating the
harmonic mapping function of the target calibration pose. Thirdly,
in order to keep the spatial relationships similar to the deformed
source pose M2 and reduce the loss of volume, we introduce and
construct a Context Graph, and employ the Laplacian deformation
framework to further constrain the system. Finally, we synthesize
the new posture by solving a linear system.
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4 EXTRACTING DEFORMATION FROM
SOURCE SHAPE HARMONIC MAP

4.1 Solving Harmonic Mapping Using MFS
Recent work [Ferrari et al. 2012; Joshi et al. 2007; Zayer et al. 2005]
shows that harmonic functions generate pleasing deformations. We
therefore choose them as our deformation mapping function, and
formulate our harmonic mapping problem as follows.

Let M1 be an open region of R3 with a smooth boundary ∂M1,
andM2 be another open region of R3 with a smooth boundary ∂M2.
We aim at constructing a mapping f : M1 → M2 between two
boundaries with the same topology, that is, the objects have pairs
of corresponding boundary surfaces, such that

∆f (P) = 0, P ∈ M1
s .t . f (P) = P ′, P ∈ ∂M1, P ′ ∈ ∂M2

(1)

where the ∆ is the Laplacian operator defined as ∂f
∂x 2 +

∂f
∂y2 +

∂f
∂z2 .

Since the Laplacian operator ∆ is linear, we can construct a linear
subspace of functions from R3 to R3 using harmonic mappings.
Inside this linear space, We would like to find a mapping function
that both preserves the local details and the spatial relationships.
However, the Laplacian operator ∆f and its derivative are too
complex to be solved analytically.We follow previousmethods, such
as [Li et al. 2009], and discretize the boundary using the Method
of Fundamental Solutions (MFS) [Fairweather and Karageorghis
1998]. Then the solution to Equation 1 can be approximated by a
linear combination of component functions of harmonic equations:

f (P) = Ks (P ,Q)W s (2)

where
• P = [p1,p2, ...,pN s

c
] is a matrix of 3 × N s

c concatenating all
N s
c surface points of source calibration shape ∂M1.

• Q = [q1,q2, ...,qN s
a
] is a 3 × N s

a matrix consisting of all
N s
a three dimensional singularity points outside ∂M1. More

details on placing q can be found in Section 4.3.
• k(p,q) = 1/(4π ∥p − q∥ ) is the component function of the
harmonic function f , which depends on the distance be-
tween a point p ∈ P and singular point q ∈ Q . To simplify
the notation, we use Ks = Ks (P ,Q) to represent the ma-
trix of components function of size N s

c × N s
a and each row

Ks (p,Q) consists of N s
a components for a point p ∈ P .

• W s = [wT
1 ,w

T
2 , ...,w

T
N s
a
] is a N s

a × 3 matrix of harmonic co-
efficients associated with these N s

a singularity points, which
offers the degree of the freedom to control the boundary fit-
ting. The length of row vectorwT

i is 3 and each of its element
corresponds to one dimension of point p ∈ P .

The vanishing Laplacian operator ∆ on f is enforced by the com-
ponent functions k(p,q), we only need to ensure that the function
satisfies the boundary condition. To perform boundary fitting on
each surface point p ∈ ∂M1, we evaluate f (p) using Equation 2.
The boundary constraints are then f (p) = p̂ where p̂ is the cor-
responding point of p laid on the boundary surface of deformed
source pose. Enforcing these constraints on all collocation points
reduces to a linear system:

AsW s = bs (3)

where As is a N s
c × N s

a coefficient matrix with element Asi j =
k(pi ,qj ), N s

c is the number of surface points p while N s
a is the

number of singularity points q, b is the image of p on the boundary
of deformed source pose ∂M2 with size N s

c ×3. Therefore, the above
fitting process reduces to a linear system on three axis directions.
This is an over-determined linear least-squares problem as usually
N s
a ≪ N s

c , which results in a closed-form solution [Sorkine et al.
2004].

4.2 Calculating Descriptor of Affine
Transformation

The Jacobian matrix of the mapping function can be used to pre-
scribe an affine transformation for any point p ∈ (M1 ∪ ∂M1). Once
we have approximated the source deformation f as a linear combi-
nation of component functions of Laplacian equation, the Jacobian
of the deformation for any point p inside the domain M1 can be
computed using the gradients of the Laplacian equation. The trans-
posed of the Jacobian of the source deformation of f at the point p
is:

J s (p)T = DsW s , p ∈ ∂M1 ∪M1 (4)
where Ds is a matrix whose ith column is the derivative of the
kernel andW s are linear coefficients of f computed in Equation 3.
Ds is a 3 × N s

a matrix andW s is a N s
a × 3 matrix.

The Jacobian of the source deformation on each point p pre-
scribes the affine transformation which we will transfer to the
target calibration pose. There are many choices for the selection of
Jacobian, e.g. we can choose any surface point’s Jacobian to be trans-
ferred. However, as suggested by Ben-Chen et al. [2009b], points
on the medial axis of the domain undergo the smallest distortion.
On the other hand, densely sampling points inside source domain
M1 would result in high computation and even artifacts [Zhou
et al. 2010]. Therefore, similar to Ben-Chen et al. [2009a; 2009b],
we choose the Jacobian of each joint to represent the affine trans-
formation.

4.3 Placing Singularity Points
We apply the MFS to solve the partial differential equation defined
in Equation 1. The kernel function defined in Equation 2 is not
well defined if a point p inside the shape equals to the singularity
point q. On the other hand, the vanishing Laplacian operator cannot
always be guaranteed if the singular points are sampled inside the
calibration shape. Therefore, we have to place singularity points
outside the surface of the calibration shape. The locations of the
singularities are either preassigned or determined along with the
coefficientswi of the component functions so that the approximate
solution satisfies the boundary conditions as well as possible. If the
locations of the singularities are to be determined, the resulting
minimization problem is nonlinear and time-consuming. Therefore,
in this paper, we preassigned the positions of singularity points
and find the approximate solution by the least square fit of the
boundary surface using Equation 1. In the current implementation,
we use 260 singularity points on average.

We follow the method of Li et al. [2009] to place singularity
points uniformly on an offset surface ∂M̂1 outside the boundary
surface ∂M1 as shown in Figure 1(b). Here is the process of how to
sample singularity points: (1) We collapse edges of ∂M1 until the
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desired number of faces is achieved but ensures that new vertices
are placed outside all previous meshes [Sander et al. 2000]. (2)
We uniformly sample some points Q = [q1,q2, ...,qN s

a
] on the

boundary points of ∂M̂1 by furthest point relaxation as described
in Fast Automatic Skinning Transformations [Jacobson et al. 2012].
Similarly, the collocation points are uniformly sampled from the
boundary points of ∂M1.

5 PRODUCING NEW POSTURES BY FINDING
APPROPRIATE HARMONIC MAP

Once the deformation descriptor has been extracted from the source
deformation, we can apply it to the target calibration pose. We de-
form the target calibration pose with the same affine transformation
(Jacobian constraints) extracted from Equation 4. First, we calculate
our deformation descriptor of the harmonic functions of the target
calibration pose, with a set of unknown coefficientswt . Then, we
compute the deformed target calibration pose as a linear combina-
tion of component functions of Laplacian equation by Equation 6.

5.1 Computing a Raw Pose
Let the target calibration shape be given as a set of N t

c points
V = {v1,v2, ...,vN t

c
}, and corresponding singularity points U =

{u1,u2, ...,uN t
a
}. Given the Jacobians J s at them joints J s inside

the deformed source pose, we want to minimize the Jacobian differ-
ences between the deformed source pose and newly synthesized
target pose by:

EAf f ine =
DtW t − J s

2
F (5)

whereW t is the unknown linear coefficient of target calibration
shape with size N t

a × 3. Dt = ∇K(J t ,U ) is the gradient of target
kernel function onm joints inside target calibration shape with size
3m × N t

a and J t is am × 3 matrix that concatenating positions of
m joint inside target calibration shape. J s is a 3m × 3 dimensional
matrix concatenating matrices of allm affine transformations, com-
puted by Equation 4, of the source shape deformation.

This optimization problem for computing the coefficientsW t

can be solved by a linear system. Equipped with the coefficients
W t , the deformed target pose is given as a linear combination of
the component function of the harmonic function for the target
calibration pose as:

V̂ = KtW t (6)

where Kt = Kt (V ,U ) is a matrix of size N t
c × N t

a that each row
computes the inverse of the distance between the point v ∈ V and
all singularity points ui .

5.2 Constraints
The problem defined in Equation 5 is under-determined because the
number of jointsm is much smaller than the number of singularity
points N t

a . On the other hand, we need to predetermine a position
for any vertex to compute a unique solution. Lastly, we introduce the
bone length constraint such that the resulting poses are physically
plausible. More details on solving the system with constraints are
discussed in Section 7.2.

Surface Smoothness Constraint
Here, we follow [Ben-Chen et al. 2009b] to assume that adjacent
points on the surface will be transformed similarly. Thus, the second
derivative of themapping function tends to be very small. In order to
make the surface as smooth as possible, we constrain the Hessian
matrix H (f t ) of the target mapping function f t = KtW t for a
newly synthesized surface to be as small as possible by:

ESmooth =
H (KtW t )

2
F (7)

where ESmooth is a linear function ofW t with the coefficients of
size 3N t

c × N t
a .

Positional Constraint
The gradient of a deformation function can only specify the rotation
and scaling transformations. Thus, to determine all the absolute
positions, we predetermine the position of any point, e.g., v1, as
vposit ion by:

EPosit ion =
Kt (v1,U )W t −vposit ion

2 (8)

where Kt (v1,U ) is a row vector of length N t
a andU are singularity

points of target calibration shape.

Bone Length Constraint
In an ideal character animation, the bone length between two joints
is fixed. We introduce the bone length constraint to avoid stretching
the synthesized shape.

Specifically, the bone length li j between joint J t
i and J t

j for

target calibration shape is prescribed by (

J t
i − J t

j

 − li j )
2. We

compute the Jacobian Linearization of this non-linear system

(

Kt
iW

t − Kt
jW

t
 − li j )

2 (9)

by:
EBone = JBoneW

t +C (10)
where JBone is the Jacobian matrix of size 3B×N t

a , B is the number
of bones, and C is a constant matrix.

6 CONSTRUCTING CONTEXT GRAPH
In this Section, we compute the Context Graph to preserve the vol-
ume and spatial relationship between body parts. We first construct
two compatible Context Graphs and then simplify the graphs to
speed up the computation. Lastly, we deform the graph constructed
on the target calibration pose into the one built on the deformed
source pose such that we preserve the spatial relationships.

We project some singular points onto the boundary of source
calibration poseM1 to construct a graph such that spatial relation-
ship of a particular pose could be preserved. Here, we project the
N s
a singular points of M1 onto the surface P ∈ ∂M1, denoted as

Pa = {p1,p2, ...,pN s
a
}. We connect all the points Pa on each de-

formed source pose to build a fully connected Context Graph Gs ,
which enable us to capture the spatial relationships among points
on the boundary surface of deformed source pose.

We use the non-rigid iterative closest point (ICP) algorithm [Li
et al. 2008] to find N s

a corresponding pointsVa ∈ ∂Ω on the bound-
ary of target calibration poses Ω. Connecting all the pointsVa found
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on ∂Ω would result in a compatible graph Gt as the one Gs built
on the deformed source pose.

6.1 Pruning the Context Graph
The fully connected Context GraphGs contains toomany redundant
edges that will greatly slow down the deformation. Thus, we need
to prune the Context Graph, which we do according to the following
rules:

(1) As we can consider human poses to be close to rigid, the
distance between any two given points on the same body
part rarely changes during the deformation. For this reason,
edges connecting two points laid on the same body-part are
discarded, and we therefore only consider points distributed
on different body parts. To do so, we apply K-means to cluster
the body parts by the joints extracted either from the users
or the skeleton joint extraction algorithms such as [Au et al.
2008].

(2) As we focus on close interactions and assume that nodes
which are far away from each other on the graph have little
influence on the others, we remove edges longer than a
given threshold. Currently, we set the threshold to 50% of
the calibration shape height.

(3) As we only consider interactions on the surface of body
parts, edges passing through any body part would be invalid.
Edges intersecting with the interior of the mesh are therefore
discarded.

Figure 2 shows an example of constructing and pruning Context
Graph.

6.2 Deformation of Context Graph
There are many choices to combine the existing differential defor-
mation frameworks (reviewed in Section 2). For a clear presentation,
we follow in this paper the method of [Sorkine et al. 2004] to com-
pute Laplacian coordinate, which implicitly computes the affine
transformations from the translation of a point.

The Laplacian coordinates of points Pa are defined as L(Pa ) =
LPa = (I − Diaд−1Adjacent)Pa with the uniform weights, where
Adjacent is the adjacent matrix of Context Graph,Diaд is the degree
matrix, and L is the N s

a ×N s
a Laplacian operator matrix constructed

from the Context Graph of deformed source mesh. The deforma-
tion of target Context Graph that preserves spatial relationship is
computed by:

ESpatial =
TSpatial LSpatial (Pa ) − LSpatial (V̂a )

2
F

(11)

where points V̂a ∈ ∂Ω are the node of spatial Context Graph that
correspond to Pa ∈ ∂M1, which are extracted from the surface of
target calibration shape Ω, and LSpatial (Pa ) are the Laplacian coor-
dinates computed from the Context Graph of the source deformed
shape. The coefficients of TSpatial are the linear combinations of
unknownW t [Sorkine et al. 2004], which implies ESpatial is a linear
function of the unknownW t with size N s

a × N t
a .

Similarly, we define the deformation of volume Context Graph
that preserves the volume of the target calibration shape by:

EVolume =
TVolume LVolume (V ) − LVolume (V̂ )

2
F (12)

(b) Clustering of body-parts(a) Source calibration pose with joints

(c) Removing edges on the 
same body part 

(d) Removing long edges (e) Removing interpenetration edges

(a)
(b) Clustering of body-parts(a) Source calibration pose with joints

(c) Removing edges on the 
same body part 

(d) Removing long edges (e) Removing interpenetration edges

(b)
(b) Clustering of body-parts(a) Source calibration pose with joints

(c) Removing edges on the 
same body part 

(d) Removing long edges (e) Removing interpenetration edges

(c)
(b) Clustering of body-parts(a) Source calibration pose with joints

(c) Removing edges on the 
same body part 

(d) Removing long edges (e) Removing interpenetration edges
(d)

(b) Clustering of body-parts(a) Source calibration pose with joints

(c) Removing edges on the 
same body part 

(d) Removing long edges (e) Removing interpenetration edges(e)

(b) Clustering of body-parts(a) Source calibration pose with joints

(c) Removing edges on the 
same body part 

(d) Removing long edges (e) Removing interpenetration edges
(f)

(b) Clustering of body-parts(a) Source calibration pose with joints

(c) Removing edges on the 
same body part 

(d) Removing long edges (e) Removing interpenetration edges
(g)

Figure 2: Pruning the Context Graph. (a) Source calibration
pose with joints. (b) Clustering of body-parts. (c) Projecting
singular points onto the boundary surface and extracting
them. (d) Removing edges on the same body part. (e) Re-
moving long edges. (f) Removing edges interpenetrating the
body parts. (g) The simplified Context Graph.

whereV is a N t
c × 3 matrix that concatenating the position of point

v ∈ ∂Ω. Similar to TSpatial , the coefficients of TVolume are linear
functions of unknownW t with size N t

c × N t
a . LVolume (V̂ ) are the

Laplacian coordinates computed from the volume Context Graph of
the target calibration shape

7 IMPLEMENTATIONS
7.1 Solving the Linear System for Extracting

Source Deformation
As discussed in Section 4, the deformation analysis process can
be optimized by solving a linear system AsW s = bs . Each row in
the coefficient matrix As is the value of the kernel functions eval-
uated on a collocation point and all the other singularity points.
However, the resulting matrix As is not sparse because the value
of kernel functions is almost never zero. Thus, we cannot apply a
sparse solver to speed up the computation. As studied in [Li et al.
2009; Ramachandran 2002], such a matrix might be ill-conditioned
and will not produce a stable solution using regular linear system
solvers such as Gaussian elimination. We follow previous meth-
ods of [Li et al. 2009; Ramachandran 2002] to use Singular Value
Decomposition (SVD) because it approaches accurate and stable
results even when the coefficient matrix is highly ill-conditioned.
The matrixAs is then decomposed asAs = USVT and the inverse
of As is computed as As−1 = VS−1UT .

Once we have precomputed the inverse of As , we are able to
perform a fast fitting of new boundary condition bs∗ (new pose in
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the deformed source pose sequence) by:

W s
∗ = As−1bs∗ = VS−1UTbs∗ (13)

Then the transpose of the deformation descriptor of joints J s ∈ M1
that fits a new boundary bs∗ is computed by:

J s (J s )T = DsW s
∗ (14)

7.2 Solving the Linear System for Synthesizing
a New Pose

We define the retargeting problem as the sum of Equation 5, 7, 8, 11,
and 12 by:

E = EAf f ine + λSmoothESmooth + λPosit ionEPosit ion

+λBone EBone + λSpatial ESpatial + λVolume EVolume

(15)

where λPosit ion , λSmooth , λBone , λSpatial , and λVolume are theweights
for the energy terms. In our implementation, they are empirically
set to be 0.01, 10, 1, 0.8, and 1, respectively. There are some princi-
ples to tune the values of the weights. The bone length and volume
constraints are hard because we do not want to change the length
of bone or lose the volume of the shape during the deformation. The
position constraint makes the linear system solvable and it should
be with a large weight. The smooth constraint should be small,
otherwise, the shape would be flattened out. The spatial constraint
should be large such that the spatial relationship between body
parts can be preserved

We rewrite Equation 15 as a linear system by:

AtW t = bt (16)
whereW t is the unknown coefficient matrix of size N t

a × 3, At and
bt represent a concatenation of matrices from Equation 5, 7, 8, 11,
and 12 as:

At =



AAf f ine

λPosit ionAPosit ion

λBone JBone
λSmoothASmooth

λSpatialASpatial

λVolumeAVolume


,bt =


J s

λPosit ionvposit ion
−λBoneC

®0

 (17)

where bt is the right hand side matrix containing the affine trans-
formation J s , position vposit ion , and bone length C constraints.
The remaining elements are all 0. AAf f ine = Dt (J t ) is a coeffi-
cient matrix of size 3m × N t

a defined in Equation 5, wherem is the
number of joints J t and N t

a is the number of singularity points of
the target calibration pose. APosit ion = Kt (v1,U ) is a row vector
of length N t

a defined in Equation 8. ASmooth is a Hessian matrix
of size 3N t

c × N t
a defined in Equation 7, where N t

c is the number
of boundary points on the target calibration pose. ASpatial and
AVolume are the linear coefficients defined in Equation 11 and 12
that preserve the spatial relationship and volume for the synthe-
sized pose. J s is the Jacobian matrix of size 3m × 3 fromm joints of
deformed source pose defined in Equation 5 and vposit ion is a row
vector of length 3.

The analytical least-squares solution is defined by the following
normal equation:

W t = ((At )TAt )−1(At )Tbt (18)

Once we calculate the unknown coefficientW t , we produce a
new pose by using Equation 6.

8 EXPERIMENTAL RESULTS
8.1 Harmonic Mapping Error
In order to quantitatively analyze the correctness of the proposed
method, we use the source calibration shape as the target calibration
shape. Thus, we treat the source animation as our ground truth
data. We compute the average approximation error for each pose
from all the animation sequences by:

ErrorMappinд(P) = 1/m
m∑
i=1

fi (P) − P̂i
 (19)

where function fi maps each vertex P ∈ ∂M1 of ith frame onto
deformed source pose P̂i andm is total number of frames.

To simplify the calculation of reconstruction error, we normalize
each calibration shape to a height of 1. Figure 3 shows the resulting
error for a set of punching motions. Each pose contains around
18K vertices. As shown in Figure 3b-3d, the reconstruction error is
coded with color from blue (0) to red (0.04). We can observe that
our method generates meshes close to the ground truth meshes.
Note that, as illustrated in Table 1, the average error per pose over
the source animation sequence is very small, which shows that the
approximated harmonic function is able to map from one domain
onto another one precisely.

Table 1: Average reconstruction errors over differentmotion
sequences

 

 

Motion Name 
Number of 

Frames 

Number of 

Vertices 
Mean Error Std 

Punching 371 17996 0.021 0.14 

Sitting on a chair 490 19296 0.125 0.26 

Tree pose 329 19296 0.193 0.21 

 

8.2 Retargeting Results
All experiments were performed on a PC with an Intel core i7-
7700HQ CPU and with 16GB of RAM. Our method takes around 4
seconds to synthesize each frame. The deformation analysis takes
around 1 second. We first demonstrate the influence of different
terms on producing the resultant poses. As shown in Fig. 5, bone
length constraint defined in Equation 10 ensures that the defor-
mation of the target calibration shape is physically correct, while
preserving the volume during the deformation prevents unnatu-
ral morphological changes. As illustrated in Fig. 4(b), the belly in
blue color is collapsed if we do not add the volume constraint. In
addition, by preserving the Context Graph, the spatial relationship
between the legs is more similar to the original source shape as
shown in Fig. 4(d).

We test the proposedmethod on variousmorphologies. As shown
in Fig. 6, we compare the performance of our method to the Linear
Blend Skinning using the same skinweights as the source animation,
and the results created by an artist. We can see that our method
can capture the contextual meaning of the source animation, and
the resulting poses are similar to the artist’s manual corrections.
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(a) Source calibration Shape (b) Deformed Source Pose I (c) Deformed Source Pose II (d) Deformed Source Pose III (e) Reconstruction Error

Figure 3: Reconstruction error of harmonic mapping computed as per pose for 371 frames of punching motion. We map the
source calibration pose (a) with 18K vertices onto the other punching motion (b-d). The coded color indicates the scale of
approximation error from 0 (blue) to 0.04 (red). The reconstruction error curve shows that most of reconstructed vertices are
very close to ground truth points (e).

Figure 4: Influence of constraints preserving the volume and
using the Context Graph: Source shape (a) and Target shape
deformed using our method without volume preservation
(b), with volume preservation (c), and with both volume and
Context Graph preservation (d).

Serious artifacts can result if we apply the skin weights of source
animation to a new target calibration shape directly. As illustrated
in Fig. 6(f), the whole body is twisted and interpenetrated due to
the change of morphology and the lack of contextual information.
Thus, it is inefficient to produce retargeting animation based on
the naive Linear Blend Skinning.

Although our method generates sensible retargeting poses, we
can not totally avoid interpenetrations because we use a sparse set
of nodes to construct the Context Graph. As shown in Fig. 6(d), the
right hand may penetrate the left hand due to insufficient nodes
of Context Graph to capture the spatial relationship. On the other
hand, due to the limitation of the bone length and the avoidance
of interpenetration, the resulting pose can be slightly different
from the deformed source pose. As shown in the fourth example of
Fig. 6(d), the position of the two hands relative to the head is a little
different from the one in the deformed source shape. Such a kind of
deformation is common if the morphology of the target calibration
is extremely different from the source calibration shape.

Figure 5: Our method with (a) and without (b) bone length
constraints. Overlay of both (c).

9 CONCLUSIONS
We proposed a new context-aware framework for surface based
motion retargeting, which can be applied to both manifold and
non-manifold meshes. Our algorithm works in two stages: (1) We
learn the affine transformation descriptor from the source anima-
tion sequences. (2) We produce a new deformation of the target
calibration shape that respects the affine transformation descriptor
and spatial relationships among different body parts. The contex-
tual meaning is preserved by a new structure called the Context
Graph. We solve a linear system to compute the deformation of
the target shape such that the resulting motions mimic the source
deformation.

Currently, in order to preserve the spatial relationship, ourmethod
requires the source and target calibration shapes to be in the same
pose. While it makes sense to assume the source and target calibra-
tion poses are similar in motion retargeting area, a typical target
calibration shape provided by the user could have arbitrary pose.
Given an arbitrary target calibration shape, we may have two pos-
sible solutions: (1) We deform the given target calibration pose
such that it has a similar pose as source using shape deformation
methods such as [Ben-Chen et al. 2009a; Lipman et al. 2008; Wang
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Figure 6: The ‘tree pose’ retargeting comparison: source poses (a), retargeting results produced by ourmethod (b-d), by an artist
(e), and using traditional Linear Blend Skinning (f).

et al. 2015]. (2) We embed the deformation into our retargeting
framework and force the spatial relationship constraint to guide the
synthesized target pose. While we have shown many retargeting
examples both in the paper and supplemental video, we also want to
compare our algorithm with the other methods such as the Skinned
Multi-Person Linear model [Loper et al. 2015] in the future.
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