
HAL Id: hal-01924680
https://hal.inria.fr/hal-01924680

Submitted on 16 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel optimization using/for multi and many-core
high performance computing

Nouredine Melab, Albert Zomaya, Imen Chakroun

To cite this version:
Nouredine Melab, Albert Zomaya, Imen Chakroun. Parallel optimization using/for multi and many-
core high performance computing. Journal of Parallel and Distributed Computing, Elsevier, 2018,
112, pp.109 - 110. �10.1016/j.jpdc.2017.11.011�. �hal-01924680�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162972684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01924680
https://hal.archives-ouvertes.fr


Parallel Optimization using/for Multi and Many-core High Performance Computing

N. Melaba,, A. Zomayab,, I. Chakrounc,

aUniversité Lille 1 / INRIA Lille Nord Europe / CNRS CRIStAL - Lille, France.
bThe University of Sydney - Sydney, Australia.

cExascience Life Lab, IMEC Research Center - Leuven, Belgium.

On the path to exascale which is fast approaching,
multi- and many-core (co)processors are increasingly be-
coming key-building blocks of many computing platforms,
as evidenced in the Top500 international ranking. On the
other hand, plenty of hard problems in a wide range of
areas (biology, energy, etc.) are often modeled and tackled
using optimization approaches. These approaches include
mainly greedy algorithms, exact methods (dynamic pro-
gramming, Branch-and-X, constraint programming, A∗,
etc.) and meta-heuristics (evolutionary algorithms, parti-
cle swarm, ant or bee colonies, simulated annealing, Tabu
search, etc.). In many research works, on the one hand,
optimization techniques are used to face high performance
computing (HPC) challenges including hardware design,
compiling, scheduling, auto-tuning, etc. On the other
hand, optimization problems become increasingly large
and complex, forcing the use of parallel computing for
their efficient and effective resolution. The design and
implementation of parallel optimization methods raise
several issues such as load balancing, data locality and
placement, fault tolerance, scalability, thread divergence,
etc.

This special issue invited high-quality contributions on
the joint use of advanced (discrete, continuous or mixed,
single or multi/many-objective, static or dynamic, deter-
ministic or stochastic, hybrid) optimization methods and
distributed and/or parallel multi/many-core computing,
and any related issues. While the submissions were on
the topics of the POMCO’2016 workshop organized in
conjunction with HPC&S’2016, the call for papers was
open to all contributors. We received 17 submissions
from several different countries. The submissions were
rigorously reviewed by at least three expert external
reviewers, and further carefully evaluated by the guest
editors. After the review process, only 5 were finally
accepted for publication. We thank all the reviewers
for their critical and expert help. Below, we provide an
overview of the papers appearing in this volume.

In [5], the authors address the irregular combinatorial
problem of finding the smallest binary tree size generated
by the iterative partitioning of the regular simplex by a
longest edge. Solving this problem requires an increasing

computational burden in size (dimension and stopping
criterion). Several multi-core algorithms are proposed
and compared using TBB and PThread for threaded
implementation. The TBB-based approach uses a static
number of threads and features task stealing while the
Pthread-based one uses a dynamic number of threads and
the creation-destruction policy implicitly implementing
load balancing. According to the reported experimental
results several interesting observations related mainly to
memory management and dynamic load balancing can
be highlighted. First, the TBB version outperforms its
Pthreaded counterpart for the small instances of the
problem, but fails to solve the largest one. The Pthread
version could solve more instances than TBB more
efficiently, especially for the hardest instances. This can
be explained by the way in which threads get work units
from the search tree. Indeed, Breadth-First search is
activated at deeper levels of the tree which results in less
memory requirement. In addition, the LLAlloc memory
allocator of LockLess Inc has been demonstrated to be the
best among multiple experimentally evaluated allocators.

Another irregular combinatorial problem is tackled
using parallel exact optimization in [4]. The problem,
called Multiple Sequence Assignement (MSA), is a basic
operation in bioinformatics highly useful to find out the
similarities among a set of sequences. MSA is modeled as
a search for the path with minimum cost in a graph and
solved using the state-of-the-art A∗ algorithm revisited in
the paper using in single-core as well as multi-threaded
computing for multi-core platforms. The design of a
multi-threaded A∗ (PA-Star) for solving MSA raises two
major challenges: irregular data access patterns and
substantial memory requirements. The first challenge
is raised using a one-level hash function with locality
preserving characteristics allowing to reduce the overhead
induced by the communications between threads, thereby
increasing the scalability of the algorithm. The memory is-
sue is addressed using out-of-memory computing. Indeed,
PA-Star uses two primary lists of nodes, called OpenList
and ClosedList, to explore the search with a best-first
strategy. OpenList (resp. ClosedList) is used to store the
nodes to be (resp. already) analyzed. The disk-assisted
strategy consists in saving the nodes of ClosedList to the

Preprint submitted to Elsevier September 13, 2017



disk when the RAM is being saturated. The PA-Star
algorithm has been experimented on multi-core systems
using the BALiBASE reference set. The reported results
demonstrate the efficiency of the proposed mechanisms
and its superiority over the PFA∗−DDD state-of-the-art
algorithm.

The paper [3] is focused on parallel software framework
for solving large problems on multi-core systems. The
author proposes an extension, called IBobpp, of the
Bobpp framework. Bobpp supports the node-based
parallel model which is widely used for parallel tree
search. In this model, a global shared pool is used to
store the nodes generated by the parallel exploration
process. The tree nodes are distributed to threads
according to the work stealing paradigm. The shared
pool becomes a bottleneck when it comes to solve large
problem instances limiting thereby the scalability of the
framework. To deal with this issue the author proposes
in IBobpp another approach using multiple pools. In
addition, he proposes an implementation of the tree-
based coarse-grained parallel model. In this model, each
thread explores locally and serially a sub-tree limiting
the amount of memory accesses to the shared pool.
Extensive experiments reported in the paper show that
the combination of the node-based and tree-based parallel
models together with the use of multiple pools allows to
improve the performance and scalability of the framework.

The work presented in [1] deals with the paralleliza-
tion of metaheuristics, which are near-optimal algorithms.
More exactly, the focus is put on the Particle Swarm Opti-
mization (PSO) metaheuristic for solving multi-objective
optimization problems on multi-core systems. The authors
propose a parallel variant of the SMPSO, which stands for
Speed-constrained Multi-objective PSO, algorithm. The
new algorithm called CCSMPSO, which stands for Coop-
erative Co-evolutionary SMPSO, is based on the coopera-
tive co-evolution paradigm. This later consists in breaking
down the population of the algorithm into multiple sub-
populations that evolve specific parts of the global solution
by cooperating during the evolution. Extensive experi-
ments have shown that CCSMPSO outperforms the CC
versions of state-of-the-art multi-objective metaheuristics,
namely NSGA-II, SPEA2 and MOCell as well as their se-
rial counterparts. In addition, the reported results high-
light that CCSMPSO scales better when increasing the size
of the problem (number of decision variables) as well as the
number of processing cores. In particular, the algorithm
improves the quality of obtained Pareto fronts (solutions)
while the others decrease it.

In the four previous papers, fast execution is targeted
but not energy efficiency. In [2], the focus is put on this
later criterion within the context of heterogeneous data
centers. More exactly, the authors propose a new detailed

model of a data center considering the power consumption,
the performance of the compute nodes and cooling system,
thermal constraints, DVFS and co-location interference.
This later is crucial in modern data centers including
massively multi-core compute nodes. Co-located tasks
run on the processing cores within the same processor
leading to co-location interference effect because of the use
of shared memory and last-level cache. In addition, the
authors propose, experiment and rigorously analyze three
resource management techniques: a greedy heuristic, a
genetic algorithm combined with a local search and a
revisited non-linear programming approach. Co-location
is considered together with power and thermal constraints.

Finally, we warmly thank all the authors for their high
quality contributions. We hope that this volume will be of
timely value to the readers.

References

[1] Arash Atashpendar, Bernabe Dorronsoro, Gregoire Danoy and
Pascal Bouvry. A Scalable Parallel Cooperative Coevolutionary
PSO Algorithm for Multi-objective Optimization. Journal of Par-
allel and Distributed Computing, 2017.

[2] Mark Oxley, Eric Jonardi, Sudeep Pasricha, Anthony A. Ma-
ciejewski, Howard J. Siegel, Patrick J. Burns and Gregory A.
Koenig. Rate-based Thermal, Power, and Co-location Aware Re-
source Management for Heterogeneous Data Centers. Journal of
Parallel and Distributed Computing, 2017.

[3] Tarek Menouer. Solving Combinatorial Problems using a Paral-
lel Framework. Journal of Parallel and Distributed Computing,
2017.

[4] Daniel Sundfeld, Caina Razzolini, George Teodoro, Azzedine
Boukerche and Alba Cristina Melo. PA-Star: a Disk-Assisted
Parallel A-Star Strategy with Locality-Sensitive Hash for Mul-
tiple Sequence Alignment. Journal of Parallel and Distributed
Computing, 2017.

[5] Guillermo Aparicio, Jose Manuel G Salmerón, Leocadio Gonzalez
González Casado, Rafael Asenjo, Eligius M.T. Hendrix and Leo-
cadio Gonzalez Gonzalez Casado. Parallel algorithms for com-
puting the smallest binary tree size in unit simplex refinement.
Journal of Parallel and Distributed Computing, 2017.

GUEST EDITORS

• Nouredine Melab
Université Lille 1 / INRIA Lille Nord Europe / CNRS
CRIStAL - Lille, France.
Phone: +33 3 59 57 78 86
Email: nouredine.melab@univ-lille1.fr

• Albert Y. Zomaya
The University of Sydney - Sydney, Australia.
Phone: +61-2-9351 6442
Email: albert.zomaya@sydney.edu.au

• Imen Chakroun
Exascience Life Lab, IMEC Research Center - Leuven,
Belgium.
Phone: +32 16 28 81 89
Email: imen.chakroun@imec.be

2


