
HAL Id: hal-01925953
https://hal.inria.fr/hal-01925953

Submitted on 18 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incremental Strong Connectivity and 2-Connectivity in
Directed Graphs

Loukas Georgiadis, Giuseppe Italiano, Nikos Parotsidis

To cite this version:
Loukas Georgiadis, Giuseppe Italiano, Nikos Parotsidis. Incremental Strong Connectivity and 2-
Connectivity in Directed Graphs. Latin American Symposium on Theoretical Informatics, 2018,
Buenos Aires, Argentina. �hal-01925953�

https://hal.inria.fr/hal-01925953
https://hal.archives-ouvertes.fr

Incremental Strong Connectivity and

2-Connectivity in Directed Graphs

Loukas Georgiadis1, Giuseppe F. Italiano2, and Nikos Parotsidis2

1University of Ioannina, Greece.
2University of Rome Tor Vergata, Italy.

Abstract

In this paper, we present new incremental algorithms for maintaining
data structures that represent all connectivity cuts of size one in directed
graphs (digraphs), and the strongly connected components that result by
the removal of each of those cuts. We give a conditional lower bound that
provides evidence that our algorithms may be tight up to a sub-polynomial
factors. As an additional result, with our approach we can also maintain
dynamically the 2-vertex-connected components of a digraph during any
sequence of edge insertions in a total of O(mn) time. This matches the
bounds for the incremental maintenance of the 2-edge-connected compo-
nents of a digraph.

1 Introduction

A dynamic graph algorithm aims at updating efficiently the solution of a prob-
lem after each update, faster than recomputing it from scratch. A dynamic
graph problem is said to be fully dynamic if the update operations include both
insertions and deletions of edges, and it is said to be incremental (resp., decre-
mental) if only insertions (resp., deletions) are allowed. In this paper, we present
new incremental algorithms for some basic connectivity problems on directed
graphs (digraphs), which were recently considered in the literature [20]. Before
defining the problems and stating our bounds, we need some definitions.

Let G = (V,E) be a digraph. G is strongly connected if there is a directed
path from each vertex to every other vertex. The strongly connected compo-
nents (in short SCCs) of G are its maximal strongly connected subgraphs. Two
vertices u, v ∈ V are strongly connected if they belong to the same SCC of G.
An edge (resp., a vertex) of G is a strong bridge (resp., a strong articulation
point) if its removal increases the number of SCCs in the remaining graph. See
Figure 1. Given two vertices u and v, we say that an edge (resp., a vertex) of G
is a separating edge (resp., a separating vertex) for u and v if its removal leaves
u and v in different SCCs. Let G be strongly connected: G is 2-edge-connected
(resp., 2-vertex-connected) if it has no strong bridges (resp., no strong articu-
lation points). Two vertices u, v ∈ V are said to be 2-edge-connected (resp.,
2-vertex-connected), denoted by u ↔2e v (resp., u ↔2v v), if there are two
edge-disjoint (resp., internally vertex-disjoint) directed paths from u to v and

1

ar
X

iv
:1

80
2.

10
18

9v
1

 [
cs

.D
S]

 2
7

Fe
b

20
18

𝑠

𝑎
𝑏

𝑐

𝑒
𝑓

𝑖

𝑗
𝑙

𝑑

𝑔 ℎ

𝑘

𝑚

𝐺 𝐺\(𝑎, 𝑐)

𝑠

𝑎
𝑏

𝑐

𝑒
𝑓

𝑖

𝑗
𝑙

𝑑

𝑔 ℎ

𝑘

𝑚

Figure 1: A strongly connected digraph G with strong bridges shown in red
(better viewed in color), and the SCCs of G \ e after the deletion of the strong
bridge e = (a, c).

two edge-disjoint (resp., internally vertex-disjoint) directed paths from v to u.
(Note that a path from u to v and a path from v to u need not be edge-disjoint
or internally vertex-disjoint). A 2-edge-connected component (resp., a 2-vertex-
connected component) of a digraph G = (V,E) is defined as a maximal subset
B ⊆ V such that u↔2e v (resp., u↔2v v) for all u, v ∈ B. Given a digraph G,
we denote by G \ e (resp., G \ v) be the digraph obtained after deleting edge e
(resp., vertex v) from G.

Let G = (V,E) be a strongly connected graph. In very recent work [20], we
presented an O(n)-space data structure that, after a linear-time preprocessing,
is able to answer in asymptotically optimal (worst-case) time all the following
queries on a static digraph:

• Report in O(1) time the total number of SCCs in G \ e (resp., G \ v), for
any query edge e (resp., vertex v) in G.

• Report in O(1) time the size of the largest and of the smallest SCCs in
G \ e (resp., G \ v), for any query edge e (resp., vertex v) in G.

• Report in O(n) time all the SCCs of G \ e (resp., G \ v), for any query
edge e (resp., vertex v).

• Test in O(1) time whether two query vertices u and v are strongly con-
nected in G \ e (resp., G \ v), for any query edge e (resp., vertex v).

• For any two query vertices u and v that are strongly connected in G,
report all edges e (resp., vertices v) such that u and v are not strongly
connected in G \ e (resp., G \ v) in time O(k + 1), where k is the number
of separating edges (resp., separating vertices).

As pointed out in [20, 37], this data structure is motivated by applications in
many areas, including computational biology [21, 34] social network analysis [30,
44], network resilience [40] and network immunization [4, 7, 32].

A dynamic version of the aforementioned data structure can be used to mon-
itor the critical components (i.e., edges and vertices) whose removal disrupts the

2

underlying graphs, in graphs that change over time. An ideal scenario is to de-
sign efficient algorithms in the fully dynamic setting. However, we show that
no data structure that can answer any of the queries that we consider in sub-
linear time in the number of edges, can be maintained faster than recomputing
the data structure from scratch unless a widely believed conjecture is proved
wrong. There are real-word dynamic networks where edge deletion occur rarely,
in which case the incremental setting finds applications. Such networks include,
for instance, communication networks, road networks, the power grid.

Our Results. We show a conditional lower bound for the fully dynamic version
of this problem. More specifically, let G = (V,E) be a digraph with n vertices
that undergoes m edge updates from an initially empty graph. We prove that
any fully dynamic algorithm that can answer any of the queries considered here
requires either Ω(m1−o(1)) amortized update time, or Ω(m1−o(1)) query time,
unless the Strong Exponential Time Hypothesis [27, 28] is false.

Motivated by this hardness result, we focus on the incremental version of this
problem. We present an incremental version of the data structure introduced
in [20], which can be maintained throughout a sequence of edge insertions. In
particular, we show how to maintain a digraph G undergoing edge insertions in
a total of O(mn) time, where n is the number of vertices and m the number of
edges after all insertions, so that all the queries we consider can be answered
in asymptotically optimal (worst-case) time after each insertion. As an addi-
tional result, with our approach we can also maintain the 2-vertex-connected
components of a digraph during any sequence of edge insertions in a total of
O(mn) time. After every insertion we can test whether two query vertices are
2-vertex-connected and, whenever the answer is negative, produce a separating
vertex (or an edge) for the two query vertices. This matches the bounds for the
incremental maintenance of the 2-edge-connected components of a digraph [19].

Before our work, no algorithm for all those problems was faster than re-
computing the solution from scratch after each edge insertion, which yields a
total of O(m2). Our algorithms improve substantially over those bounds. In
addition, we show a conditional lower bound for the total update time of an
incremental data structure that can answer queries of the form “are u and v
strongly connected in G \ e”, where u, v ∈ V , e ∈ E. In particular, we prove
that the existence of a data structure that supports the aforementioned queries
with total update time O((mn)1−ε) (for some constant ε > 0). Therefore, a
polynomial improvement of our bound leads to a breakthrough.

Related Work. Many efficient algorithms for several dynamic graph prob-
lems have been proposed in the literature, including dynamic connectivity [24,
26, 35, 36, 42], minimum spanning trees [12, 14, 25, 26, 35], edge/vertex con-
nectivity [12, 26] on undirected graphs, and transitive closure [10, 23, 31, 39]
and shortest paths [2, 9, 31, 43] on digraphs. Dynamic problems on digraphs
are known to be harder than on undirected graphs and most of the dynamic
algorithms on undirected graphs have polylog update bounds, while dynamic
algorithms on digraphs have higher polynomial update bounds. The hardness of
dynamic algorithms on digraphs has been recently supported also by conditional
lower bounds [1].

In [15], the decremental version of the data structure considered in this paper
is presented. The total time and space required to maintain decrementally the
data structure is O(mn log n) and O(n2 log n), respectively: here m is the num-

3

ber of edges in the initial graph. We remark that our incremental algorithms
are substantially different from decremental algorithms of [15], and indeed the
techniques that we use here are substantially different from [15]. More specifi-
cally, the main approach of [15] is to maintain the SCCs in G\v for each v ∈ V ,
by carefully combining n appropriate instances of the decremental SCCs algo-
rithm from [33]. This allows to maintain decrementally the dominator tree in
O(mn log n) total time and O(n2 log n) space. On the contrary, in the incremen-
tal setting it is already known how to maintain dominator trees, and the main
challenge is to maintain efficiently information about nesting loops throughout
edge insertions. This allows us to achieve better bounds than in the decremental
setting [15]: namely, O(mn) total time and O(m+ n) space.

In [19] we presented an incremental algorithm that maintains the 2-edge-
connected components of a directed graph with n vertices through any sequence
of edge insertions in a total of O(mn) time, where m is the number of edges after
all insertions. After each insertion, we can test in constant time if two query
vertices v and w are 2-edge-connected, and if not we can produce in constant
time a “witness” of this property, by exhibiting an edge that is contained in all
paths from v to w or in all paths from w to v.

Our Technical Contributions. Our fist contribution is to dynamize the re-
cent data structure in [20], which hinges on two main building blocks: dominator
trees and loop nesting trees (which are reviewed in Section 2). While it is known
how to maintain efficiently dominator trees in the incremental setting [18], the
incremental maintenance of loop nesting trees is a challenging task. Indeed, loop
nesting trees are heavily based on depth-first search, and maintaining efficiently
a dfs tree of a digraph under edge insertions has been an elusive goal: no effi-
cient solutions are known up to date, and incremental algorithms are available
only in the restricted case of DAGs [13]. To overcome these inherent difficul-
ties, we manage to define a new notion of strongly connected subgraphs of a
digraph, which is still relevant for our problem and is independent of depth first
search. This new notion is based on some specific nesting loops, which define a
laminar family. One of the technical contributions of this paper is to show how
to maintain efficiently this family of nesting loops during edge insertions. We
believe that this result might be of independent interest, and perhaps it might
shed further light to the incremental dfs problem on general digraphs.

Our second contribution, the incremental maintenance of the 2-vertex-connected
components of a digraph, completes the picture on incremental 2-connectivity
on digraphs by complementing the recent 2-edge connectivity results of [19].
We remark that 2-vertex connectivity in digraphs is much more difficult than
2-edge connectivity, since it is plagued with several degenerate special cases,
which are not only more tedious but also more cumbersome to deal with. For
instance, 2-edge-connected components partition the vertices of a digraph, while
2-vertex-connected components do not. Furthermore, two vertices v and w are
2-edge-connected if and only if the removal of any edge leaves v and w in the
same SCC. Unfortunately, this property no longer holds for 2-vertex connectiv-
ity, as for instance two mutually adjacent vertices are always left in the same
strongly connected component by the removal of any other vertex, but they are
not necessarily 2-vertex-connected.

4

2 Dominator trees, loop nesting trees and aux-
iliary components

In this section we review the two main ingredients used by the recent framework
in [20]: dominator trees and loop nesting trees. As already mentioned in the
introduction, one of the main technical difficulties behind our approach is that
the incremental maintenance of loop nesting trees seems an elusive goal. We
then review the notion of auxiliary components, which is used in Section 3 to
overcome this difficulty. We remark that both dominator trees and auxiliary
components can be maintained efficiently during edge insertions [18, 19].

Throughout, we assume that the reader is familiar with standard graph
terminology, as contained for instance in [8]. Given a rooted tree, we denote by
T (v) the set of descendants of v in T . Given a digraph G = (V,E), and a set
of vertices S ⊆ V , we denote by G[S] the subgraph induced by S. Moreover,
we use V (S) and E(S) to refer to the vertices of S and to the edges adjacent
to S, respectively. The reverse digraph of G, denoted by GR = (V,ER), is
obtained by reversing the direction of all edges. A flow graph F is a directed
graph (digraph) with a distinguished start vertex s ∈ V (F), where all vertices in
V (F) are reachable from s in F . We denote by Gs the subgraphs of G induced
by the vertices that are reachable from s; that is, Gs is a flow graph with start
vertex s. Respectively, we denote by GRs the subgraphs of GR induced by the
vertices that are reachable from s. If G is strongly connected, all vertices are
reachable from s and reach s, so we can view both G and GR as flow graphs
with start vertex s.

Dominator trees. A vertex v is a dominator of a vertex w (v dominates w)
if every path from s to w contains v. The dominator relation in G can be
represented by a tree rooted at s, the dominator tree D, such that v dominates
w if and only if v is an ancestor of w in D. See Figure 2. We denote by dom(w)
the set of vertices that dominate w. Also, we let d(w) denote the parent of a
vertex w in D. Similarly, we can define the dominator relation in the flow graph
GRs , and let DR denote the dominator tree of GRs , and dR(v) the parent of v in
DR. The dominator tree of a flow graph can be computed in linear time, see,
e.g., [3, 6]. An edge (u, v) is a bridge of a flow graph Gs if all paths from s to
v include (u, v).1 Let s be an arbitrary start vertex of G. As shown in [29], an
edge e = (u, v) is strong bridge of G if and only if it is either a bridge of Gs or
a bridge of GRs . As a consequence, all the strong bridges of G can be obtained
from the bridges of the flow graphs Gs and GRs , and thus there can be at most
2(n− 1) strong bridges overall. After deleting from the dominator trees D and
DR respectively the bridges of Gs and GRs , we obtain the bridge decomposition
of D and DR into forests D and DR. Throughout the paper, we denote by Du

(resp., DR
u) the tree in D (resp., DR) containing vertex u, and by ru (resp.,

rRu) the root of Du (resp., DR
u). The following lemma from [17] holds for a flow

graph Gs of a strongly connected digraph G (and hence also for the flow graph
GRs of GR).

Lemma 2.1. ([17]) Let G be a strongly connected digraph and let (u, v) be a
strong bridge of G. Also, let D be the dominator tree of the flow graph Gs, for

1Throughout the paper, to avoid confusion we use consistently the term bridge to refer to
a bridge of a flow graph and the term strong bridge to refer to a strong bridge in the original
graph.

5

𝑠

𝑎 𝑏

𝑐

𝑒 𝑓

𝑖

𝑗 𝑚

𝑑

𝑔 ℎ

𝑘

𝐷

𝑙

𝑠

𝑎 𝑏

𝑐

𝑒 𝑓

𝑖

𝑗 𝑚

𝑑

𝑔 ℎ

𝑘 𝑙

𝒟

Figure 2: The dominator tree D (on the left) of the digraph of Figure 1 with
start vertex s, and its bridge decomposition D (on the right).

an arbitrary start vertex s. Suppose u = d(v). Let w be any vertex that is not a
descendant of v in D. Then there is path from w to v in G that does not contain
any proper descendant of v in D. Moreover, all simple paths in G from w to
any descendant of v in D must contain the edge (d(v), v).

Loop nesting forests. Let G be a digraph, and Gs the flow graph with an
arbitrary start vertex s. A loop nesting forest represents a hierarchy of strongly
connected subgraphs of Gs [41], defined with respect to a dfs tree T of Gs,
rooted at s, as follows. For any vertex u, loop(u) is the set of all descendants x
of u in T such that there is a path from x to u in G containing only descendants
of u in T . Any two vertices in loop(u) reach each other. Therefore, loop(u)
induces a strongly connected subgraph of G; it is the unique maximal set of
descendants of u in T that does so. The loop(u) sets form a laminar family
of subsets of V : for any two vertices u and v, loop(u) and loop(v) are either
disjoint or nested. The loop nesting forest H of Gs, with respect to T , is the
forest in which the parent of any vertex v, denoted by h(v), is the nearest proper
ancestor u of v in T such that v ∈ loop(u) if there is such a vertex u, and null
otherwise. Then loop(u) is the set of all descendants of vertex u in H, which
we also denote as H(u) (the subtree of H rooted at vertex u). A loop nesting
forest can be computed in linear time [6, 41]. When G is strongly connected,
each vertex is contained in a loop, and H is a tree, rooted at s. Therefore, we
refer to H as the loop nesting tree of Gs (see Figure 3).

Auxiliary components. Let Gs be a flow graph and D and D be the domi-
nator tree and the bridge decomposition of Gs, respectively. Let e = (u, v) be a
bridge of the flow graph Gs. We say that an SCC C in G[D(v)] is an e-dominated
component of G. We also say that C ⊆ V is a bridge-dominated component if it
is an e-dominated component for some bridge e: bridge-dominated components
form a laminar family [19]. An auxiliary component of Gs is a maximal subset
of vertices C ∩ Dv such that C is a subset of a (d(rv), rv)-dominated compo-
nent. Each auxiliary component C is represented by an arbitrarily chosen vertex
u ∈ C, which we call the canonical vertex of C. For each vertex v ∈ C, we refer
to the canonical vertex of C by cv. That is, if u is the canonical vertex of an
auxiliary component then cu = u. Following the bridge decomposition D of the
dominator tree D of Gs, the auxiliary components are defined with respect to

6

𝑠

𝑎 𝑏

𝑐

𝑒 𝑓

𝑖

𝑗 𝑚

𝑑

𝑔 ℎ

𝑘 𝑙

𝐺𝑠 𝐿

𝑠

𝑎

𝑐 𝑓

𝑒 𝑖

𝑘

𝑗

𝑚

𝑙

𝑑

ℎ𝑏

𝑔

𝐻

𝑐𝑠

𝑐𝑐 𝑐𝑒

𝑐𝑖𝑐𝑙

𝑐𝑑

Figure 3: The flow graph Gs of the graph of Figure 1 with solid dfs edges (left);
the loop nesting tree H of Gs generated by the dfs traversal on the left (middle);
the hyperloop nesting tree L of Gs (right). The bridges of Gs are shown red.
The grouped vertices in both Gs and L represent the auxiliary components of
Gs.

the start vertex s.

3 Hyperloop nesting forest

In this section, we introduce the new notion of hyperloop nesting forest, which,
differently from loop nesting forest, can be maintained efficiently during edge
insertions, as we show in Section 5. Given a canonical vertex v 6= cs, we define
the hyperloop of v, and denote it by hloop(v), as the set of canonical vertices
that are in the same (d(rv), rv)-dominated component as v. As a special case,
all canonical vertices that are strongly connected to s are in the hyperloop
hloop(cs). It can be shown that hyperloops form a laminar family of subsets of
V , with respect to the start vertex s: for any two canonical vertices u and v,
hloop(u) and hloop(v) are either disjoint or nested (i.e., one contains the other).
This property allows us to define the hyperloop nesting forest L of Gs as follows.
The parent `(v) of a canonical vertex v in L is the (unique) canonical vertex
u, u /∈ D(rv), with the largest depth in D, such that v ∈ hloop(u). If there is
no vertex u /∈ D(rv), such that v ∈ hloop(u), then `(v) = ∅; notice that in this
case v is not strongly connected to s as well. See Figure 3. Then, hloop(u) is
the set of all descendants of a canonical vertex u in L, which we also denote as
L(u) (the subtree of L rooted at vertex u). Similarly to the loop nesting forest,
the hyperloop nesting forest of a strongly connected digraph is a tree.

We begin the study of the hyperloop nesting forest by showing that it is
unique, and thus, depends solely on the structure of the graph. (We consider a
fixed choice of the canonical vertices of the auxiliary components.)

Lemma 3.1. The hyperloop nesting forest of a flowgraph Gs is unique.

Proof. Let v be a canonical vertex of Gs. By the definition of the hyperloop
nesting forest L, the parent `(v) of v in L is the canonical vertex u 6∈ D(rv) with
maximum depth in D, such that u and v are in the same (d(ru), ru)-dominated
component. Then, the fact that both u and v are descendants of ru implies that
u is unique and so the lemma follows. �

7

𝐷

𝑣

𝑟𝑣

𝑠

𝑞

𝑑 𝑟𝑣

𝑝

ℓ(𝑣)

𝑟ℓ(𝑣)

Figure 4: A representation of the relation between a canonical vertex v and its
parent in L with respect to the bridge decomposition of D.

Given a vertex u in a flow graph Gs, we define its level, denoted by level(u),
to be the number of bridges (v, w) of Gs such that w is an ancestor of u in D.
In other words, the level of u equals the number of strong bridges that appear
in all paths from s to u in Gs. As a result, all vertices in the same tree of the
bridge decomposition have the same level. In the next lemma we show that each
canonical vertex has at most one ancestor in L at each level.

Lemma 3.2. Let Gs a flow graph and let u be a canonical vertex of Gs. All
ancestors of u in the hyperloop nesting forest have unique level.

Proof. Let w and v be two distinct ancestors of u in L such that level(w) =
level(v). By the definition of the hyperloop nesting forest both rw and rv are
ancestors of u in D. Then, rw = rv. Assume by contradiction that u is strongly
connected with both w and v in G[D(rw)]. Then w and v are strongly connected
in G[D(rw)]. By the definition of the auxiliary components, w and v are in the
same auxiliary component, and thus cw = cv. A contradiction to the fact that
both w and v are canonical vertices. The lemma follows. �

The following lemma characterizes the relationship between the loop nesting
forestH and the hyperloop nesting forest L of a flow graphGs. More specifically,
it shows that L can be obtained from H by contracting all the vertices of each
auxiliary component into their canonical vertex. This yields immediately a
linear-time algorithm to compute the hyperloop nesting forest of a flow graph
Gs: we first compute a loop nesting forest H of Gs [6, 41] and then contract
each vertex v to cv in H. In the following we denote by hv the unique ancestor
of v in H, such that hv ∈ Dv and h(hv) /∈ Dv. If v ∈ Ds, it follows that hv = s.
We can compute hv, for all v ∈ V in O(n) time [20].

Lemma 3.3. For every vertex v, the following hold:

• The canonical vertices of v and hv are the same.

8

• The canonical vertex of the parent of cv in L is the canonical vertex of the
parent of hv in H, including the case where h(hv) = ∅.

Proof. Let T be the dfs traversal that generated H. In the case where v ∈ Ds,
it trivially follows that chv = cv = cs. Now assume that v /∈ Ds. Note that rv is
an ancestor of hv in T since all paths from s to hv go through rv by Lemma 2.1.
Therefore, also all the descendants of hv in H are descendant of rv in T . The
fact that hv is an ancestor of v in H it means that v is a descendant of hv in
T and v has a path P to hv using only descendants of hv in T . The path P
cannot contain vertices that are not in D(rv) since otherwise by Lemma 2.1 they
contain rv, which contradicts the fact that all vertices on P contain descendants
of hv in T (recall that rv is an ancestor of hv in T). It follows that hv has a
path to v in G[D(rv)] and v has a path to hv in G[D(rv)]. Thus, cv = chv

by
the definition of the auxiliary components. Exactly the same argument can be
applied on the reverse graph to show that cRhR

v
= cRv .

Consider now h(hv). In the case where v ∈ Ds, it trivially follows that
h(chv

) = h(cv) = ∅. Therefore in the following we assume that v /∈ Ds. First,
we deal with the case where ch(hv) = ∅. Since v /∈ Ds, the only case that this can
happen is when h(hv) = ∅. That means, there is no ancestor w of hv in T , such
that hv has a path to w using only vertices in T (w). We show that this means,
there is also no vertex z /∈ D(rv), such that v and z are strongly connected in G.
Assume, for the sake of contradiction that there is such vertex z, and let C be
the SCC containing both hv, and therefore also v, and z. Moreover, let vertex
z′ ∈ C, z′ 6= hv be the vertex that is visited first by the dfs that generated T .
Then all vertices in C are descendants of z′ in T since they are all reachable
from z′ and they were not visited by the dfs before z′. Hence, hv is a descendant
of z′ in T . A contradiction to the fact that h(hv) = ∅. Therefore, there is no
vertex z /∈ D(rv), such that v and z are strongly connected in G ⊃ G[D(rz)].
Thus, `(cv) = ∅. Now we consider the case where chv = cv 6= ∅. The fact
that rh(hv) is an ancestor of h(hv) in D implies that rh(hv) is an ancestor of
h(hv) also in T . By the definition of H it follows that hv is a descendant of
h(hv) in T , and hv has a path P to h(hv) using only descendants of h(hv) in T .
The path P cannot contain vertices that are not in D(rh(hv)) since otherwise,
by Lemma 2.1, they contain rh(hv), which contradicts the fact that all vertices
on P contain descendants of h(hv) in T (recall that rh(hv) is an ancestor of
h(hv) in T). Therefore h(hv) and hv are strongly connected in G[rh(hv)], and
by definition so do ch(hv) and chv

. Hence, ch(hv) is an ancestor of chv
in L.

Now we show that there is no other canonical vertex w 6= h(hv) such that
level(cw) > level(h(hv)) and cw is an ancestor of chv

in L. This implies that
`(cv) = ch(hv). Assume, for the sake of contradiction, that there is such a vertex
w. Then hv and cw are in the same SCC C in G[D(rcw)]. Let z ∈ C be the first
among the vertices in C visited by the dfs that generated T . Then all vertices
in C are descendants of z in T since they are all reachable from z and they
were not visited by the dfs before z. Thus, hv is a descendant of z in H. Now
we show that this implies that z is also a descendant of h(hv) in H. By the
definition of the hyperloop nesting forest rz and rh(hv) are ancestors of hv in D.
Furthermore, since level(z) > level(h(hv)) it holds that rh(hv) is an ancestor of
rz in D. By the fact that h(hv) and z are ancestors of hv in T it holds that h(hv)
and z have ancestor-descendant relation, and hence, z is a descendant of h(hv)
in T (as rz and rh(hv) are ancestors of hv in D and level(z) > level(h(hv))).

9

Since hv has a path to h(hv) using only descendants of h(hv) in T , it follows
that z also has a path to h(hv) using only descendants of h(hv) in T . Thus,
z is a descendant of h(hv) in H. In summary, z if an ancestor of hv and a
descendant of h(hv) in H; a contradiction to the definition of h(hv) 6= z. This
concludes the lemma. �

4 Updating the dominator tree after an edge in-
sertion

In this section, we briefly review the algorithm from [18] that updates the dom-
inator tree of a flow graph Gs after an edge insertion. Let Gs be a flow graph
with start vertex s. Let (x, y) be the edge to be inserted. Let D be the dom-
inator tree of Gs before the insertion; we let D′ be the the dominator tree of
G′s. In general, for any function f on V , we let f ′ be the function after the
update. We say that vertex v is D-affected by the update if d(v) (its parent in
D) changes, i.e., d′(v) 6= d(v). We let ncaD(x, y) denote the nearest common
ancestor of x and y in the dominator tree D.

Lemma 4.1. ([38]) If v is D-affected, then it becomes a child of ncaD(x, y) in
D′, i.e., d′(v) = ncaD(x, y).

We say that a vertex is D-scanned if it is a descendant of a D-affected vertex
after an edge insertion. Note that every D-affected vertex is also D-scanned
since each vertex is a descendant of itself in D. There are two key ideas behind
the incremental dominators algorithm. First, the algorithm updates D′ in time
proportional to number of the edges incident to D-scanned vertices. Second,
after an edge insertion, all D-scanned vertices decrease their depth in D′ by at
least one. Since throughout a sequence of edge insertions the depth of a vertex
can only decrease, each vertex can be D-scanned at most n− 1 times, and thus
the algorithm examines at most (n− 1) times the adjacency list of each vertex.
This implies that the algorithm has O(mn) total update time, where m is the
number of edges in the graph after all insertions.

We now prove the following lemma, which shows that after the insertion of
an edge (x, y), the ancestors and descendants of the vertices v /∈ D′(ncaD(x, y))
do not change. We use this later later on in our incremental algorithm for
maintaining the hyperloop nesting forest of a flow graph.

Lemma 4.2. Let u be a vertex that is not a descendant of ncaD(x, y) in D′.
Then dom(u) = dom′(u) and D′(u) = D(u). Moreover, if (d(u), u) was a bridge
in Gs, then it remains a bridge in G′s.

Proof. The claim that D′(u) = D(u) follows immediately from the fact that all
D-scanned vertices (which were the only vertices v for which dom(v) 6= dom′(v))
were in D(ncaD(x, y)) and therefore remain in D′(ncaD(x, y)) = D(ncaD(x, y)).
This also implies that dom(u) = dom′(u), as for each w ∈ dom(u) it holds
that w /∈ D(ncaD(x, y)). Now let (d(u), u) be a bridge in Gs, and assume by
contradiction that (d(u), u) is no longer a bridge in G′s. This implies there is a
path from s to u avoiding (d(u), u) in G′s. Since (d(u), u) was the only incoming
edge to D(u) = D′(u), the path in G′ must contain and edge (w, z) such that

10

Algorithm 1: Initialize(G, s)

1 Set s to be the designated start vertex of G.
2 Compute the dominator tree D and the set of bridges Br of the

corresponding flow graph Gs.
3 Compute the bridge decomposition D of D, and the auxiliary

components of Gs.
4 Compute the loop nesting forest H of the Gs.
5 Construct the hyperloop nesting forest L from H by contacting each

vertex w into cw.

w /∈ D(u), z ∈ D(u). This contradicts the fact that the only new edge is (x, y)
and that either x, y ∈ D(u) or x, y /∈ D(u), as otherwise D(ncaD(x, y)) is an
ancestor of u in D (which we assume is not). �

5 Updating the hyperloop nesting forest after
an edge insertion

Let G be a directed graph and let Gs be the flow graph of G with an arbitrary
start vertex s. In this section we show how to maintain the hyperloop nesting
forest L of Gs under a sequence of edge insertions. We assume that D and L are
rooted at s and cs, respectively. For simplicity, we also assume that all vertices
of G are reachable from s, so m ≥ n− 1. If this is not true, then we can simply
recompute D and L from scratch, in linear time, every time a vertex becomes
reachable from s after an edge insertion. Since there can be at most n− 1 such
events, the total running time for these recomputations is O(mn).

Throughout the sequence of edge insertions, we maintain as additional data
structures only the dominator tree D (with the incremental dominators algo-
rithm in [18]), the bridge decomposition and the auxiliary components of Gs
(with the algorithm in [19]).

Initialization and restarts. To initialize the algorithm, we compute the
dominator tree D, bridge decomposition and auxiliary components, which can
be done in linear time [3, 19]. We also compute the hyperloop nesting forest
L of Gs in linear time, as suggested by Lemma 3.3. The pseudocode for the
initialization is given in Algorithm 1.

After the first initialization, in some special cases we initialize our algorithm
again, in order to simplify the analysis. We call this a restart. We restart our
algorithm whenever a bridge e = (u, v) of Gs is canceled after the insertion of
a new edge (x, y) but we still have d′(v) = u, i.e., (u, v) is no longer a strong
bridge in G but the parent of u in the dominator tree D does not change. In
this case, we say that the bridge e = (u, v) is locally canceled. This is a difficult
case to analyze: the incremental dominators algorithm does not spend any time,
since there are no D-affected vertices, while the bridge decomposition and the
auxiliary components of Gs might change. Fortunately, there are at most O(n)
locally canceled bridges throughout a sequence of edge insertions [19]. Hence,
we restart our algorithm at most O(n) times. Consequently, the total time spent

11

4

5

9

12

19

10

17

8 15

18

21 22

𝑠

1 2

3

𝐺

4

5

6

7

8

9 10

11 12

13

14

15

16 17 18

19
20

21

22

23 24

𝒔

1 2

𝟑

𝐷

𝟒

𝟓

6
7

𝟖

𝟗 𝟏𝟎

𝟏𝟏 𝟏𝟐

13 14 𝟏𝟓

𝟏𝟔 𝟏𝟕 𝟏𝟖

𝟏𝟗
20

𝟐𝟏

𝟐𝟐 23 𝟐𝟒

s

3

𝐿

11 16 24

(i) (ii) (iii)

4

5

9 10 17

15

18

21 22

𝑠

1 2

3

𝐺′

4

5

6

7

8

9 10

11 12

13

14

15

16 17 18

19
20

21

22

23 24

𝒔

1 2

𝟑

𝐷’

𝟒

𝟓

67 8

𝟗

𝟏𝟎

11 12

13 14 𝟏𝟓

𝟏𝟔 𝟏𝟕

𝟏𝟖

19 20

𝟐𝟏

𝟐𝟐 23 𝟐𝟒

s

3

𝐿′

11 16 24

(iv) (v) (vi)

Figure 5: A detailed example demonstrating the different types of vertices that
we consider after an edge insertion. In (i), a digraph G before the insertion of
(22, 19) (dashed edge). In (ii), the dominator tree of G where vertices in the
same auxiliary components are grouped together. In (iii), the hyperloop nesting
tree of G. In (i)-(iii) we color the D-affected with red the D-scanned but not
D-affected vertices with blue, and the L-affected but not D-scanned vertices
with green. Finally, in (iv), (v), and (vi) we represent G′, D′ where vertices in
the same auxiliary components are grouped together, and L′.

in restarts is O(mn).

High-level overview of the update. Let (x, y) be the new edge to be in-
serted. Similarly to Section 4, for any function f , we use the notation f ′ to
denote the same function after the insertion of (x, y), e.g., we denote by `′(v),
the parent of a canonical vertex v in the hyperloop nesting forest, after the

12

Algorithm 2: SCInsertEdge(G, e)

1 Let s be the designated start vertex of G, and let e = (x, y).
2 Update the dominator trees D. Let S be the set of D-scanned vertices.
3 Update the bridge decomposition D, and the auxiliary components of Gs
4 if a bridge is locally canceled in Gs then
5 Execute Initialize(G, s).
6 else
7 Execute Update-D-scanned(D, L, x, y, S) and

Update-L-affected(D, L, x, y, S).

8 end

insertion of (x, y), and by L′ the resulting hyperloop nesting forest. Once again,
we denote by D-scanned the vertices that decrease their depth in the dominator
tree D after an edge insertion. Moreover, we denote by D-affected the vertices
that change their parent in D and by L-affected the vertices for which it holds
`′(v′) 6= c′`(v), i.e., when the parent of v′ in L′ is not in the same auxiliary com-

ponent as `(v) (the parent of v in L). After the insertion of a new edge (x, y),
if not involved in a restart, our algorithm performs the following updates, as
shown in the pseudocode of Algorithm 2:

1) Compute the new dominator tree D′, the corresponding bridge decompo-
sition D′, and the new auxiliary components.

2) Compute `′(v) for the D-scanned canonical vertices v ∈ D′y.

3) Compute `′(v) for the D-scanned canonical vertices v /∈ D′y.

4) Compute `′(v) for the L-affected canonical vertices v that are not D-
scanned.

As already mentioned, the dominator tree D, the bridge decomposition and
the auxiliary components of Gs can be maintained during edge insertions within
our claimed bounds [18, 19]. To complete the algorithm, it remains to show how
to update efficiently the parent in the hyperloop nesting forest of the D-scanned
and the L-affected vertices. This is non-trivial, and the low-level technical
details of the method are spelled out in Sections 5.1 and 5.2, respectively. Before
giving the details of our algorithm, we show that we only need to consider the
vertices D′(r′y).

Lemma 5.1. No canonical vertex v /∈ D′(r′y) is L-affected.

Proof. We have that ncaD(x, y) ∈ D′(r′y). Assume `′(v′) = w. The fact that v /∈
D′(r′y) implies that r′w /∈ D′(r′y). By Lemma 4.2, r′w = rw and D′(r′w) = D(rw).
Therefore, G[D(rw)] = G′[D′(r′w)]\(x, y). As w and v are not strongly connected
in G[D(rw)] = G[D′(r′w)] but they are strongly connected in G′[D′(r′w)] =
G[D(rw)] \ (x, y), if follows that either all paths from w to v or from v to w in
G′[D′(r′w)] contain (x, y). Thus, all paths from w or from v to y in G′[D′(r′w)]
contain (x, y). As w, v /∈ D′(ncaD(x, y)), by Lemma 2.1, all paths from w or v to
y in G′[D′(r′w)] contain ncaD(x, y). Note that there is path from ncaD(x, y) to
y in G′[D′(ncaD(x, y))] avoiding (x, y) (as y ∈ D(ncaD(x, y)) = D′(ncaD(x, y)),

13

and G[D(ncaD(x, y))] = G′[D′(ncaD(x, y))]\(x, y)). A contradiction to the fact
that all paths from w or from v to y in G′[D′(r′w)] contain (x, y). �

5.1 Updating the D-scanned vertices

Let S be the set of D-scanned vertices containing also the D-affected vertices.
After the insertion of the edge (x, y), all the D-affected vertices become children
of ncaD(x, y) in D′, by Lemma 4.1. In this section we deal with the update of
the parent in the hyperloop nesting forest `′(v′), for all canonical vertices v ∈ S.
From now on, in order to simplify the notation, we assume without loss of
generality that v = cv for any vertex of interest v; we also denote c′v by v′.

After the insertion of the edge (x, y) only a subset of the ancestors in L′ of
an L-affected canonical vertex v changes. In particular, Lemma 5.2 shows that
the ancestors w of v in L such that w /∈ D′(r′y) remain ancestors of v′ in L′.
However, the insertion of (x, y) might create a new path from v to a canonical
vertex z such that v ∈ D′(r′z), containing only vertices in D′(r′z). In such a
case, z′ becomes an ancestor of v′ in L′.

Lemma 5.2. Let v ∈ D(r′y) be a canonical vertex in G. For each ancestor z of
v in L, such that z /∈ D′(r′y), the canonical vertex z′ remains ancestor of v′ in
L′. Moreover, D′(r′z′) = D(rz).

Proof. By Lemma 4.2 and the fact that r′z′ is an ancestor of D′(r′y), it follows
that D′(r′z′) = D(rz) and (d(r′z′), r

′
z′) remains a bridge in G′s. Then, the fact

that z′ is an ancestor of v′ in L′ follows from the fact that v and z are strongly
connected in G′[D′(r′z′)] and D′(r′z′) = D(rz). �

The following lemma identifies the new parent in L′ of y′.

Lemma 5.3. It holds that `′(y′) = w′, where w is the nearest ancestor of y in
L such that w /∈ D′(r′y).

Proof. By Lemma 5.2, for all ancestors z of y in L, such that z /∈ D′(r′y), vertex
z′ remains ancestor of y′ in L′. We show that all ancestors of y′ in L′ were
ancestors of y in L before the edge insertion. Assume by contradiction that
there exists a canonical vertex z′ that is an ancestor of y′ in L′, but z is not
an ancestor of y in L. By the definition of hyperloop nesting forest, r′z must
be a proper ancestor of r′y. Lemma 4.2 and the fact that (x, y) is not locally
canceled imply that dom′(r′y) = dom(ry), r′z is an ancestor of ry in D, and
D′(r′z) = D(rz). Following our assumption we have that z and y are strongly
connected in G′[D′(r′z)] but not in G[D(rz)] = G′[D(rz)] \ (x, y). Therefore,
there is no path from x to y in G[D(rz)]. By the fact that y ∈ D(ncaD(x, y)),
there exists a path from ncaD(x, y) to y in G[D(ncaD(x, y))] avoiding x. As
ncaD(x, y) ∈ D(rz), there is a path from z to y through ncaD(x, y) in G[D(rz)]
avoiding x; a contradiction. The lemma follows. �

We now compute `′(v′) for each canonical vertex v′ ∈ S ∩ D′y, that is, the
D-affected vertices that are in the same tree of the canonical decomposition of
D′ with y. Note that all the new paths that are introduced by the insertion of

14

the edge (x, y) must contain y. We use this observation to compute `′(v′), for
v′ ∈ S ∩D′y, based on `′(y′) as shown in the following lemma.

Lemma 5.4. Let v ∈ D′y be D-scanned. If v′ and y′ are in different auxiliary
components then `′(v′) = w′, where w is the nearest ancestor of v in L such
that w /∈ D′(r′y).

Proof. By Lemma 5.2 for each ancestor z of v in L, such that z /∈ D′(r′y),
vertex z′ remains ancestor of v′ in L′. Assume by contradiction that `′(v′) = z′

with level′(z′) > level′(w′), that is, r′w is a proper ancestor of r′z in D′. Since
v ∈ D′y, it follows that r′z /∈ D′(r′y), and therefore D′(r′z) = D(rz) by Lemma
4.2. By our assumption, v and z are strongly connected in G′[D(rz)]. Lemma
2.1 implies that all paths from z to v in G′[D(rz)] contain d′(r′v) = d′(r′y). Let
Pzv = Pzd′(r′y) · Pd′(r′y)v be such a path, where Pzd′(r′y) is the subpath from z

to d′(r′y) and Pd′(r′y)v the subpath from d′(r′y) to v. Since, Pzd′(r′y) does not

contain (x, y) and we also have that v ∈ D(r′y) it follows that z has a path to
v in G[D(rz)]. As v and z are not strongly connected in G[D(rz)], all path
from v to z in G′[D(rz)] contain (x, y). Moreover, due to the facts that v′ 6= y′,
any path from v to z contains a vertex out of D′(r′y), and therefore, also r′y by
Lemma 2.1. By the last two arguments, all paths from v to z contain both first
r′y and then (x, y). That implies that all paths from r′y to y in G′s contain the
edge (x, y), and as all paths from s to y in G′s contain r′y (by Lemma 2.1) it
follows that all paths from s to y contain (x, y). This is sufficient for (x, y) to
be a bridge in G′s, which is a contradiction as y is reachable from s in Gs. Thus,
our assumption about z led us to a contradiction. The lemma follows. �

With the help of Lemma 5.4, we can iterate over the vertices v ∈ S ∩ D′y
setting `′(v′) appropriately. Recall that S (the set of D-scanned vertices) is
provided to us by the incremental dominators algorithm. Next, we deal with
the canonical vertices v ∈ S \D′y. We begin with the computation of `′(v′), for
the canonical vertices v′ in S for which level′(`′(v′)) > level′(r′y), that is, their
new parent in L is in D′(r′y) \ D′y. Let Gscanned be the graph induced by the
D-scanned vertices, and let Hscanned be the loop nesting forest rooted at y of
Gscanned. (Note that y reaches all vertices in Gscanned.) By contracting every
vertex v into c′v in Hscanned, we obtain a forest H̃. Let h̃(v) be the parent in H̃
of a canonical vertex v ∈ S \D′y. As stated in Lemma 5.5, the parent in H̃ of

each canonical vertex v′ such that h̃(v) ∈ S \D′y is the parent of v′ in L′.

Lemma 5.5. Let H̃ be the loop nesting forest rooted at y of Gscanned after
contracting each vertex v into c′v. For every canonical vertex v such that h̃(v) ∈
S \D′y, it holds that `′(v′) = h̃(v).

Proof. Let v ∈ S\D′y. As all paths from y to v contain r′v and v is D-scanned, all
vertices in D′(r′v) are D-scanned. Hence, Gscanned[D

′(r′v)] = G′[D′(r′v)]. There-
fore, if `′(v′) ∈ S\D′y then v and `′(v′) are strongly connected in G′[D′(r′`′(v))] =

Gscanned[D
′(r′`′(v))], which implies that `′(v′) is an ancestor of v′ in H̃. (For a

visualization of the relations of v, y, `′(v), and s see Figure 6 (i).) To complete
the proof we show that if a canonical vertex z is the parent of v′ in H̃, where
v′ ∈ S \ D′y, then z is the parent of v′ in L′. Assume by contradiction that

`′(v′) 6= h̃(v′). Then, there is a vertex w such that level′(`′(v′)) < level′(w) <

15

𝑟′𝑤

𝑤′

𝐷′

𝑣

𝑟′𝑣

𝑠

𝑟𝑦
′

𝑑′ 𝑟𝑣

𝐷′

𝑣

𝑟′𝑣

𝑠

𝑟𝑦
′

𝑟′ℓ(𝑣)

ℓ 𝑣

𝑦

𝑦

𝐷′

𝑣

𝑟′𝑣

𝑠

𝑟𝑦
′

𝑟′𝑧
𝑧

𝑦

(i) (ii) (iii)

Figure 6: Instances of the updated dominator tree D′ after the insertion of
(x, y). In (i) v is a D-scanned vertex where v, `′(v) ∈ S \ D′y. For all such
vertices, we apply Lemma 5.5 to compute `′(v). In (ii), v has a path to y in
G′[D′(r′y)] and is D-affected, which is sufficient for y′ to be ancestor of v′ in L′.
In (iii) vertex w is an ancestor of v in L, as w and v are strongly connected
in G[D(rw)], and therefore w′ remains an ancestor of v′ in L′. The instances
visualize the relations of the vertices of interest in the proofs of Lemmas 5.5 and
5.6.

level′(v), and w and v are strongly connected in G′[D′(r′w)] = Gscanned[D
′(r′w)].

Note that w contradicts the definition of `′(v′), and thus the lemma follows. �

Finally, for the vertices v ∈ S \ D′y for which `′(v′) /∈ S \ D′y, we compute
`′(v′) according to the following lemma.

Lemma 5.6. Let v /∈ D′y be a D-scanned vertex such that level′(`′(v′)) ≤
level′(r′y). If v has a path to y in G′[D′(r′y)], then `′(v′) = y′ in L′. Otherwise,
`′(v′) = w′, where w is the nearest ancestor of v in L such that level′(w) ≤
level′(r′y). If there is no such vertex `′(v′) = ∅

Proof. First, we assume v has a path to y in G′[D′(r′y)]. Since v is D-scanned, it
means that y has a path to v in G′[D′(ncaD′(x, y))], and therefore, in G′[D′(r′y)].
Hence, y and v are strongly connected in G′[D′(r′y)]. By the definition of the
hyperloop nesting forest, y′ is an ancestor of v′ in L′, and since level′(`′(v′)) ≤
level′(r′y) it follows that `′(v′) = y′. (For a visualization of the relations of
v, y, s in D see Figure 6 (ii).) Now we assume v does not contain a path to y
in G′[D′(r′y)]. First assume that w ∈ D′y. In this case v and w were strongly
connected in G[D(rw)] before the insertion of (x, y). Since D(rw) ⊆ D′(r′y), if
follows that v and w are strongly connected in G′[D′(r′y)]. By the definition
of L′, w′ is an ancestor of v′ in L′, and by the assumption of the lemma that
level′(`′(v′)) ≤ level′(r′y), and Lemma 3.2, it follows that `′(v′) = w′.

16

Algorithm 3: Update-D-scanned(D, L, x, y, S)

1 Set `′(c′y) = c′w, where w is the nearest ancestor of cy in L such that
w /∈ D′(r′y).

2 Let S be the set of D-scanned vertices, and Gscanned = G′[V (S)].
Compute the loop nesting forest Hscanned of Gscanned with start vertex
y. Contract every vertex v ∈ V (Gscanned) into c′v in Hscanned, forming
H̃.

3 foreach canonical vertex v ∈ V (Gscanned) do
4 Let v′ = c′v and y′ = c′y.

5 if v ∈ D′y then
6 if v′ 6= y′ then `′(v′) = c′w, where w is the nearest ancestor of v in

L such that w /∈ D′(r′y).

7 else

8 if h̃(v′) ∈ S \D′y then `′(v′) = h̃(v′)

9 else if v has a path to y in G′[D′(r′y)] then `′(v′) = `′(y′).

10 else `′(v′) = c′w, where w is the nearest ancestor of v in L such
that level′(w) ≤ level′(r′y).

11 end

12 end

Finally, for the rest of the proof we assume w /∈ D′(r′y). By Lemma 5.2,
w′ remains an ancestor of v′ in L′. (For a visualization of the relations of
v, y, w′, z, s in D see Figure 6 (iii).) Assume, by contradiction, that `′(v′) = z′

and level′(w′) < level′(z′) < level′(r′y) and cz is not an ancestor of v in L.
By Lemma 2.1 all paths from z to v contain r′y. As v ∈ D(r′y) there is a
path from r′y to v in G[D(r′y)]. Since D(r′y) ⊂ D′(r′z), there is a path from z
to v in G′[D′(r′z)] \ (x, y) (= G[D(rz)] by Lemma 5.2). This fact, combined
with our assumption that cz is not an ancestor of v in L, implies that there
is no path from v to z in G[D(rz)]. Since v and z are strongly connected
in G′[D′(r′z)] but not in G[D(rz)] = G′[D′(r′z)] \ (x, y) all paths from v to z
contain (x, y); let Pvz be such a path from v to z and let Pvx and Pyz be its
subpaths from v to x and from y to z, respectively. Note that Pvx and Pyz
exist also in G[D(rz)] = G′[D′(r′z)] \ (x, y). Since we deal with the case where
v does not have a path to y in G′[D′(r′y)], the path Pvx should contain a vertex
u ∈ D′(r′z)\D′(r′y) (as otherwise all vertices are inD′(r′y) and the path Pvx·(x, y)
is a path from v to y in G′[D′(r′y)]). By Lemma 2.1, Pvx contains r′y; let Pvr′y be
the subpath of Pvx from v to r′y. Since y ∈ D(r′y) there is a path Pr′yy from r′y
to y in G[D(r′y)] ⊂ G[D(r′z)] avoiding (x, y). Observe that the paths Pvr′y ,Pr′yy,
and Pyz all exist in G[D(r′z)]. Collectively, we have that Pvr′y · Pr′yy · Pyz is a
path from v to z in G[D(r′z)] = G[D(rz)]. As we argued z also has a path to
v in G[D(rz)], and therefore z and v are strongly connected in G[D(rz)]. Since
rz is an ancestor of rv in D, by the definition of L, cz is an ancestor of v′ in
L. This is a contradiction to our assumption that w is the nearest ancestor of
v in L such that w /∈ D′(r′y) and level′(w) < level′(z) < level′(r′y). The lemma
follows. �

17

Lemmas 5.3, 5.4, 5.5, and 5.6 provide the tools to update the parent in
L′ of the D-scanned vertices S. The pseudocode of this update is detailed in
Algorithm 3. The challenging part is to determine whether v has a path to y
in G′[D′(r′y)] (Line 9 of Algorithm 3). We show how we can answer the queries
of Line 9 of Algorithm 3, and thus how to update the parents in L′ of all the
canonical D-scanned vertices in time linear in the number of D-scanned vertices
and their adjacent edges.

Lemma 5.7. For all D-scanned vertices v, we can compute `′(v′) in time
O(|V (S)|+ |E(S)|).

Proof. The loop nesting forest of the graph induced by the D-scanned ver-
tices can be computed in linear time to the size of S, i.e., O(|V (S)| + |E(S)|).
The nearest ancestor w of each D-scanned canonical vertex v in L, such that
level′(w′) ≤ level′(r′y), can be computed in total O(|V (S)|) as follows. We find
all canonical vertices v ∈ S such that level′(`(v)) ≤ level′(r′y) and we assign to
each descendant of v in L the vertex `(v). All the necessary tests of Lemmas
5.4, 5.5, and 5.6 can be performed in constant time per vertex.

Now we show that we can determine in time O(|V (S)|+ |E(S)|) all vertices
v ∈ S \ D′y that have a path to y in G′[D′(r′y)], as required by Lemma 5.6.
We mark all vertices in S that have outgoing edges to vertices v such that
c′v = c′y. Then, the vertices in S that reach y in G′[D′(r′y)] are the vertices that
can reach a marked vertex in G′[S]. These vertices can be determined in time
O(|E(S)|), by executing backward traversals from the marked vertices without
visiting the same vertices twice. Now we show that the above procedure is
correct by showing that a vertex v ∈ S \D′y has a path to y in G′[D′(r′y)] if and
only if it has a path to a marked vertex in G′[S]. We start with the forward
direction. If a vertex v ∈ S \D′y has a path to y in G′[D′(r′y)] using only vertices
in S, then clearly v reaches y in G′[S]. If on the other hand, there is a path
from v that uses vertices outside S, then let w be the first vertex on that path
such that w /∈ S, and let z be its predecessor on the path. Then c′w = c′y since:
(i) by the fact that w /∈ S, it holds that either r′w /∈ D′(r′y) or r′w = r′y, where
only the second case is interesting since in the first it holds that w /∈ G′[D′(r′y)],
(ii) w reaches y in G′[D′(r′y)] (by our assumption that a path from v to y exists
in G′[D′(r′y)] using w) and (iii) y reaches v since v is D-scanned (which means
y has a path to v in G′[D′(r′y)]). Therefore, v has a path to the marked vertex
z ∈ S. We continue with the reverse direction of the claim, that is, if v does
not have a path to y in G′[D′(r′y)] then there is not path to a marked vertex
in G′[S]. This is true for the paths containing only vertices in S. Also there is
no path from v to a marked vertex z in G′[S], since otherwise, there is a path
from v to a vertex w such that c′w = c′y and therefore to y in G′[D′(r′y)] using
the edge (z, w), while we assumed that no such path exists. Thus, we showed
how to compute all the vertices that have a path to y in G′[D′(r′y)] in time
O(|E(S)|), which concludes the lemma. �

5.2 Updating the L-affected vertices that are not D-scanned

Now we consider updating the parent in the hyperloop nesting forest of the
vertices that are L-affected but not D-affected. We start with the following
lemma that is used throughout the section. The lemma suggests that we can

18

find all the L-affected vertices via a backward traversal from y vising all vertices
in G′[D′(r′y)] that have a path to y. In the worst case we spend O(m) time to
execute the traversal, which our algorithm cannot afford. Later, we show how
to speed up this process by exploiting some key properties of the L-affected
vertices.

Lemma 5.8. For every L-affected vertex v that is not D-scanned, every path
from v to `′(v′) in G′[D′(r′`′(v′))] contains (x, y). Moreover, v has a path to x

in G[D′(r′y)] = G′[D′(r′y)] \ (x, y).

Proof. Assume by contradiction that there exists a L-affected vertex v /∈ S such
that v has a path P to `′(v′) in G′[D′(r′`′(v′))] \ (x, y). Since v is not D-scanned

the ancestors of v in D and D′ are the same and the edge (d(r′`(v)), r
′
`(v)) is a

strong bridge in G′s such that v ∈ D′(r′`(v)). Therefore, c′`(v) is an ancestor of v′

in L′. Notice that level′(`′(v′)) > level′(`(v)) as v is L-affected and c′`(v) remains

an ancestor of v′ in L′ by Lemma 5.2. If `′(v′) /∈ D′(r′y), by Lemma 5.2, `′(v′)
is an ancestor of v in L, contradicting the fact that level′(`′(v′)) > level′(`(v)).
Now we assume `′(v′) ∈ D′(r′y). All D-scanned vertices become children of
ncaD(x, y), and by Lemma 4.2 no vertex outside of ncaD′(x, y) is D-scanned.
Therefore, vertices can only move out of D′(r′`′(v′)) and hence D′(r′`′(v′)) ⊂
D(r′`′(v′)). Collectively we have that `′(v′) and v are strongly connected in

G′[D′(r′`′(v′))] \ (x, y) = G[D(r′`′(v′))], and moreover r′`′(v′) is a proper ancestor

of v in D′ (as it is in D). As r′`′(v′) ∈ D
′(r′`(v)), we have r′`′(v′) ∈ D(r`(v)) as non

of the ancestor of v in D are D-scanned. That means r′`(v
′) is a ancestor of v

in L and a descendant of r`(v), which contradicts the fact that level′(`′(v′)) >
level′(`(v)). Thus, all paths from a L-affected vertex v /∈ S to `′(v′) contain
(x, y).

Now we prove the second part of the lemma. Assume by contradiction that
v does not have a path to x in G[D′(r′y)]. Then, all paths contain a vertex
w /∈ D′(r′y), and by Lemma 2.1 also vertices (d′(r′y), r′y). Therefore, all paths
in G′[D′(r′`′(v′))] from v to x contain r′y (clearly avoiding (x, y)); let Pvr′y be

the subpath from v to r′y of any such path. By the fact that y ∈ D′y it follows
that there is a path from r′y to y avoiding (x, y); let Pr′yy be such a path.
Then, Pvr′y · Pr′yy is a path in G′[D′(r′`′(v′))] from v to y avoiding (x, y), which

contradicts the fact that all paths from v to `′(v′) contain (x, y). �

Notice that we only need to consider the vertices that are in D′(r′y) and are
not D-scanned, by Lemma 5.1.

Lemma 5.9. Let (x, y) be the newly inserted edge. The canonical vertex v′ of
a vertex v ∈ D′(r′y) that is not D-scanned and has a path to x in G′[D′(r′y)],
changes its parent `′(v′) as follows:
(1) Case v ∈ D′y: if level′(`(v)) < level′(`′(y′)) or `(v) = ∅ then `′(v′) =

`′(y′). Otherwise, `′(v′) = c`(v).

(2) Case v /∈ D′y: let (p, q) the strong bridge such that p ∈ D′y and q is an
ancestor of v in D′.

(2.1) Case c′p = y′: if level′(`(v)) < level′(c′p) or `(v) = ∅, then
`′(v′) = c′p. Otherwise, `′(v′) = c′`(v).

19

(i) (ii) (iii)

𝑟′ℓ(𝑣)

ℓ(𝑣)

𝑣

𝑟′𝑣

𝑟𝑦
′

𝑦

𝑟′ℓ(𝑦)

ℓ(𝑦)

𝑣

𝑟′𝑣

𝑟𝑦
′

𝑦

𝑟′ℓ(𝑦)

ℓ(𝑦)

𝐷′

𝑣

𝑠

𝑟𝑦
′

𝑦

𝐷′

𝑠

𝐷′

𝑠

ℓ(𝑣)

𝑝

𝑞

𝑝

𝑞

ℓ(𝑣)

Figure 7: A demonstration of the different case in Lemma 5.9. (i) Case (1) of
Lemma 5.9 where v ∈ D′y and level′(`(v)) < level′(`′(y′)). Here we have `′(v′) =
`′(y′). (ii) Case (2.1) of Lemma 5.9 where v /∈ D′y, c′p = y′ and level′(`(v)) <
level′(c′p). Now we have `′(v′) = c′p. (iii) Case (2.2) of Lemma 5.9 where
v /∈ D′y, c′p 6= y′ and level′(`(v)) < level′(`′(y′)). In this case `′(v′) = `′(y′).

(2.2) Case c′p 6= y′: if level′(`(v)) < level′(`′(y′)) or `(v) = ∅, then
`′(v′) = `′(y′). Otherwise, `′(v′) = c′`(v).

Proof. First, consider the case where v = D′y. Recall that we consider the
update of `′(v′) for all vertices v that are L-affected but not D-scanned when
our algorithm is not involved in a restart. Since no bridge is locally canceled,
and no ancestor of v is D-affected, then for every bridge (d(q), q) of Gs for
which v ∈ D(q) we have that v ∈ D′(q) and (d(q), q) = (d′(q), q) is still a
bridge in G′s. Moreover, no new bridge can appear on the paths from s to v.
Hence (d(rv), rv) = (d(r′v), r

′
v) = (d(r′y), r′y) is a bridge also in G′s and r′y = rv.

Since `(v) /∈ D(rv), it follows that `(v) /∈ D′(r′y). Therefore, z = `(v) is the
canonical vertex with the largest level for which v and z are strongly connected
in G[D(rz)] = G[D′(r′z)] (the equality holds by Lemma 4.2); that is, without
using the edge (x, y). In the case where `(v) = ∅ there is no such vertex. If
v has a path to x in G′[D′(r′y)], then `′(y′) and v are strongly connected in
G′[D′(r′`′(y′))], as (i) v has a path to `′(y′) in G′[D′(r′`′(y′))] through y, and (ii)

`′(y′) has a path to v in G′[D′(r′`′(y′))] through r′y (i.e., the very same subpath

P1 from `′(y′) to r′y as in the path from `′(y′) to y, followed by any path from
r′y to v). Therefore, if v has a path to x in G′[D′(r′y)] then `′(y′) is an ancestor
of v′ in L′. That includes the case where `(v) = ∅. Now we show that if v is
L-affected then `′(v′) is an ancestor of y′ in L′. By Lemma 5.8, it follows that
all paths in G′[D′(r′`′(v′))] from v′ to `′(y′) contain (x, y), and therefore y has

a path to `′(y′) in G′[D′(r′`′(v′))] as well. Moreover, `′(v′) has a path to y in

G′[D′(r′`′(v′))] through r′y (i.e., the very same subpath from `′(v′) to r′v as in

the path from `′(v′) to v, followed by any path from r′y to y). Collectively, we
showed that if v has a path to x in G′[D′(r′`′(y′))], then `′(y′) is an ancestor of

v′ in L′, and moreover if v is L-affected then `′(v′) is an ancestor of y′ in L′.

20

Thus, `′(v′) = `′(y′) if level′(`(v)) < level′(r′`′(y′)) or `(v) = ∅ and v reaches x

in G′[D′(r′y)], and `′(v′) = c′`(v) otherwise.

Now we prove the case where v /∈ D′y. First, we show that if level′(`(v)) ≥
level′(y′), then `′(v′) = `(v). There is no D-scanned vertex t ∈ D′(r′`(v)) since

otherwise it is an descendant of a D-affected vertex in D′y and thus, v is also a
D-scanned descendant of the same D-affected vertex. As all D-affected vertices
become children of ncaD(x, y) in D, for every vertex z ∈ D′(r′y) it holds that
D′(r′z) ⊆ D(rz). As we assume level′(`(v)) ≥ level′(y′), all new ancestors of v′ in
L′ have level greater than level′(y). Moreover, in the case where level′(`(v)) =
level′(y′) it holds that v and `(v) are strongly connected in G′[D′(r′y)] since
D′(r′y) ⊇ D(r′`(v)). Hence, c′`(v) is an ancestor of v′ in L′. As mentioned before,

D′(r′z) ⊆ D(rz) for all ancestors r′z of v in D′ such that level′(rz) > level′(y)
(including q from the statement of the lemma). Therefore, if `′(v′) 6= c′`(v)
then `′(v′) and v are strongly connected in G[D(r`′(v′))], and hence, `′(v′) is
an ancestor of v in L with level′(`′(v′)) > level′(`(v)). This contradicts the
definition of `(v). Thus, also in this case it follows `′(v) = `(v).

Finally, we consider the case where v ∈ D′(r′v) \ D′y and level′(`(v)) <
level′(y′) or `(v) = ∅. Let (p, q) be the strong bridge such that p ∈ D′y and
q is an ancestor of v in D′. As mentioned before, D′(r′z) ⊆ D(rz) for all
ancestors r′z of v in D′ (including q) such that level′(r′z) > level′(y). Therefore,
if `′(v′) 6= c`(v) then `′(v′) cannot be a descendant of q in D′ since `′(v′) and
v is strongly connected in G[D(r′`′(v′))], and therefore, `′(v′) is an ancestor

of v in L (which contradicts the definition of `(v)). Notice that if v did not
have a path to x before the insertion in G[D′(r′y)], by Lemma 5.8 v is not
L-affected. Next we assume that v has a path to x and y in G′[D′(r′y)]. If
y and p are strongly connected in G′[D′(r′y)] (i.e., y′ = c′p), then also v and
c′p are strongly connected in G′[D′(r′y)], since v has a path to y and p has a
path to v in G′[D′(r′y)]. If additionally r′`′(v′) is an ancestor of r′p in D′ (that

is, level′(`(v)) < level′(`′(v′)) ≤ level′(p)), by the definition of the hyperloop
nesting forest `′(v′) = c′p, including the case where `(v) = ∅. To prove the case
where y′ 6= c′p we can use the same argument as in the case where v ∈ D′y. �

Lemma 5.9 shows how to determine the new parent in L′ of each canonical
vertex v ∈ D′(r′y) that is L-affected but not D-scanned. The pseudocode for this
update is given in Algorithm 4. In the following we show how we can efficiently
answer all the tests of Algorithm 4. The most challenging computation is to
determine which vertices have a path to x in G′[D′(r′y)] as required in Line 1.
We show how to compute efficiently those vertices by executing a backward
traversal: this runs in time proportional to the sum of the degrees of the L-
affected vertices. We start with the following definition of loop cover of a vertex,
which we use to speed up our backward search.

Definition 5.10. Let w ∈ D′(r′y) \ S be a canonical vertex, and let `min be the
ancestor of w in L with the lowest level such that `min ∈ D′(r′y). Moreover, let
(p, q) be the bridge such that p ∈ D′`min

and q is an ancestor of w. We call q
the loop cover lcover(w) = q of w in D. If `(w) 6∈ D′(r′y), then lcover(w) = ∅.

We use the loop cover of vertices that are neither D-scanned nor L-affected
in order to avoid unnecessary visits to vertices during the search for L-affected

21

Algorithm 4: Update-L-affected(D, L, x, y, S)

1 foreach canonical vertex v ∈ D′(r′y), v /∈ S, that has a path to x in

G′[D′(r′y)] do
2 if v ∈ D′y then
3 if level′(`(v)) < level′(`′(c′y)) or `(v) = ∅ then `′(c′v) = `′(c′y)

4 else
5 Let (p, q) be the bridge such that p ∈ D′y and q is an ancestor of v

in D′.
6 if c′p = c′y and level′(`(v)) < level′(c′p) or `(v) = ∅ then

`′(c′v) = c′p
7 else if c′p 6= c′y and level′(`(v)) < level′(`′(c′y)) or `(v) = ∅ then

`′(c′v) = `′(c′y)

8 end

9 end

vertices. Whenever we visit a vertex w ∈ D′(r′y) \ D′y that is not L-affected,
then we do not need to visit any of the vertices in D′(lcover(w)). Formally, we
have the following lemma.

Lemma 5.11. Let w ∈ D′(r′y) \D′y be a canonical vertex that is not D-scanned
and has a path to x in G′[D′(r′y)] and `′(w′) = c′`(w). If lcover(w) 6= ∅,
for every canonical vertex v ∈ D′(lcover(w)) such that v has a path to w in
G′[D′(lcover(w))], we have that `′(v′) = c′`(v). If lcover(w) = ∅, for all vertices

v ∈ D′(r′y) that have a path to w in G′[D′(r′y)], it holds that `′(v′) = c′`(v).

Proof. First, assume lcover(w) 6= ∅. As (i) v has a path to w inG′[D′(lcover(w))],
(ii) all paths from `(lcover(w)) to w in G′[D′(lcover(w))] contain lcover(w),
and (iii) v ∈ D(lcover(w)), it follows that lcover(w) and v are strongly con-
nected in G′[D′(lcover(w))]. Hence, by definition of hyperloop nesting forest,
c′`(lcover(w)) is an ancestor of v′ in L′ and level′(`(lcover(w))) ≥ level′(y). Note

that Lemma 5.9 implies that the insertion of (x, y) might only introduce an
ancestor t of v′ in L′ such that level′(t) ≤ level′(y). Therefore, by the fact that
c′`(lcover(w)) is an ancestor of v′ in L′ and level′(`(lcover(w))) ≥ level′(y), it

follows that `′(v′) = c′`(v).

No assume lcover(w) = ∅ and by contradiction that v is L-affected. We
have that `′(w′) = c′`(w) /∈ D

′(r′y). Since D′(r′y) ⊂ D′(r′`′(w′)), v has a path to w

in G′[D′(r′`′(w′))]. Moreover, there is a path from `′(w′) to v in G′[D′(`′(w′))]

as all paths from `′(w′) to w contain r′y and v ∈ D′(r′y). Hence, `′(w′) is an
ancestor of v′ in L′. Therefore, level′(w′) < level′(`′(v′)) ≤ level′(r′y) as v is
L-affected. By Lemma 4.2 we have that r′`′(v′) is an ancestor of v in D, and by

Lemma 2.1 all paths from `′(v′) to v contain r′y and can also avoid (x, y) (as
it is not a bridge in G′s). By Lemma 4.2 we have that D′(r′`′(v′)) = D(r`(v)),

and therefore, `′(v′) has a path to v in G[D(r`(v))] (which avoids (x, y)). As
`′(v′) is not an ancestor of v before the insertion, by Lemma 5.8, all paths from
v′ to `′(v′) in G′[D′(r′`′(v′))] contain the edge (x, y). Hence, x, y, `′(v′), and v′

are strongly connected in G′[D′(r′`′(v′))]. As w has a path to x in G′[D′(r′`′(v′))]

and `′(v′) has a path to v′ in G′[D′(r′`′(v′))], it follows that `′(v′) and w are

22

strongly connected in G′[D′(r′`′(v′))]. This implies that `′(v′) is an ancestor of

w in L′ with level′(`′(v′)) > level′(`′(w′)) which contradicts the definition of
`′(w′). The lemma follows. �

Lemma 5.12. If a bridge is not locally canceled by the edge insertion, the set
S′ of L-affected vertices can be identified and L′ can be correctly updated in time
O(V (S′) + E(S′) + V (S) + E(S) + n).

Proof. By Lemma 5.7, we can compute `′(v′) for each v ∈ S in time O(V (S) +
E(S)). For every vertex v ∈ S′ \ S, we set its value `′(v′), according to
Lemma 5.9. Notice that in all cases of Lemma 5.9, a vertex v ∈ S′ \ S, should
reach x in G′[D′(r′y)]. Therefore, a straightforward way to test whether a ver-
tex in D(r′y) changes its parent in L′, and compute the new parent, is to start
a backward traversal in G′[D′(r′y)] from x, and for each vertex v /∈ S that is
visited by the traversal apply Lemma 5.9. This, takes O(m + n) in the worst
case. We next present a charging scheme to achieve the claimed bound.

First, we can identify lcover(v) for all canonical vertices v, after every edge
insertion, in time O(n) by traversing the forest L from each canonical vertex
z ∈ D′(r′y), `(z) /∈ D′(r′y), and setting for each descendant v of z in L the
lcover(v) = q such that (p, q) is the strong bridge for which p ∈ D′z and v ∈
D′(q). Notice that (p, q) is the level′(q)-th bridge in the path from s to v in D′.
In order to identify for each descendant v of z in L the vertex q, we proceed
as follows. Initially, we set to each child of z in L the level of q (which is
level′(z)+1), that is, each z knows level′(lcover(v)). Next, we begin a traversal
from s on the tree D′ keeping track of the bridges that exist on the path from
s to the current vertex v, and once we visit a vertex v that is assigned a value
level′(lcover(v)), we set lcover(v) to be q where (p, q) is the level′(lcover(v))-th
bridge on the path from s to v (we keep track of this information during the
traversal). Therefore, the total time spent in this computation after all edge
insertions is O(mn), where m is the number of edges after all insertions.

Next we start a backward traversal from x in G′[D′(r′y)]; that is, we visit all
vertices v ∈ D′(r′y) that have an edge to x, and consecutively to each visited
vertex. During the traversal we act as follow. Whenever the traversal reaches
an unvisited vertex v, we test whether `′(v′) 6= c′`(v): if this is the case, we

set `′(v′) according to Lemma 5.9, we iterate over the incoming edges of v
and recursively traverse each vertex w that has an incoming edge to v. If
`′(v′) = c′`(v) and v /∈ D′y we do not traverse any incoming edge to v, and instead,

we continue the traversal from lcover(v) (= lcover′(v′) since `′(v′) = c′`(v)) if

lcover(v) 6= ∅, or otherwise we do not visit any vertices from v. It is correct
to continue the traversal from lcover(v) in the case where `′(v′) = c′`(v) and

v /∈ D′y since by Lemma 5.11 for every vertex w ∈ D′(lcover(v)), such that w
reaches v in G′[D′(lcover(v))] we have that `′(c′w) = c′`(cw). If, on the other

hand, `′(v′) = c′`(v) and v ∈ D′y, then we backtrack the traversal from v. This is

correct as level′(`(v)) ≥ level′(`′(y′)) follows from Lemma 5.9, and therefore for
all the vertices z ∈ D′(r′y) that have a path to v in G′[D′(r′y)], c′`(v) is an ancestor

of c′z in L′ (since z and `(v) are strongly connected in G′[D′(r′`(v))]). Moreover,
whenever the traversal reaches a vertex in S, we have time to traverse all the
vertices in S and their incoming edges; we continue the traversal without testing

23

or updating its value `′(v′). By the above description it is clear that our traversal
does not traverse the edges of a vertex that is neither L-affected nor D-scanned
(that is, the vertices in V \ S′ ∪ S). Collectively, we traverse only D-scanned
vertices, L-affected vertices, and vertices for which we test in constant time
whether `′(v′) = c′`(v). Thus, we spend time O(V (S′)+E(S′)+V (S)+E(S)+n).

Next we show that we correctly update the forest L′ after an edge insertion.
Clearly, the vertices whose edges are traversed by the traversal contain the
correct value in L′. Now we argue that all vertices v such that `′(v′) 6= c′`(v)
correctly change their parent in L′. Since for all visited vertices we update
correctly the value `′(v′), we need to show that the backwards traversal that
we execute visits all vertices that change their value `′(v′). We already showed
in Lemma 5.6 that we do this correctly for the vertices in S. Assume, by
contradiction, that this is not true for some vertex v /∈ S, and therefore, the
algorithm fails to set `′(v′) according to Lemma 5.9. Let z be the correct value
`′(v′) that the algorithm fails to assign. Since v has a path P to z in G′[D′(r′z)]
only after the insertion of (x, y), P goes through (x, y). Let Pvx be the subpath
of P from v to x. Moreover, let w be the first vertex on Pvx that is visited by
the traversal, i.e., the traversal did not visited any vertices that appear before
w on Pvx (recall that we assume the traversal did not visited v). We know
that `′(c′w) = c′`(cw) since otherwise the traversal visits the predecessor of w on

Pvx. Assume first that w ∈ D′(r′y) \ D′y. Let (p, q) be the first strong bridge
on D′[r′`′(c′w), w]. Vertex v is not a descendant of q in D′, since otherwise by

Lemma 5.11 it holds `′(v′) = c′`(v), which contradicts our assumption. Thus, v is

not a descendant of q inD′, and therefore, all paths from v to w go through (p, q),
by the properties of the dominator tree. That means p ∈ Pvx and p appears
earlier than w on Pvx. According to the rules of the traversal, if w is visited
and `′(c′w) = c′`(cw), then the traversal continues from p, so p must have visited
during the traversal. This contradicts the choice of w as the earliest vertex on
Pvx that is visited. If w ∈ D′y, then by the assumption that `′(c′w) = c′`(cw)

and by Lemma 5.9, we have that level′(y) > level′(`′(c′w)) ≥ level′(`′(y′)).
Since v has a path to w in G′[D′(r′y′)] ⊂ G′[D′(r′`′(c′w))] and `′(c′w) has path

to v in G′[D′(r′`′(c′w))] (through r′y; such a path exists since `′(c′w) has a path

to w in G′[D′(r′`′(c′w))]), it follows that v and `′(c′w) are strongly connected in

G′[D′(r′`′(c′w))]. Therefore, level′(`′(v′)) > level′(`′(y′)), which contradicts the

assumption that `′(v′) 6= c′`(v) according to Lemma 5.9. Thus, all vertices v for

which `′(v′) 6= c′`(v) are visited by the traversal, and the lemma follows. �

Finally, we bound the total time spend over any sequence of m insertions.

Lemma 5.13. After any sequence of edge insertions in a flow graph Gs, any
canonical vertex v changes its parent `′(c′v) in L′ at most t times, where t < n
is the number of bridges dominating v in D before any insertion. Moreover, L-
affected vertices can be identified and correctly updated in a total of O(mn) time
for all edge insertions, where m is the number of edges after all edge insertions.

Proof. We first bound the number of times that a vertex v can be L-affected
but not D-scanned, that is v ∈ S′ \ S. Note that the number of bridges in
a flow graph Gs is at most n − 1. Therefore, the number of distinct bridges

24

that appear on the path D[s, v] for each vertex v throughout the course of the
algorithms is at most n− 1. Our strategy is to show that for each strong bridge
on D[s, v] for any vertex v a vertex is L-affected and not D-scanned at most
once. We first claim that once a vertex w becomes an ancestor of v in L, such
that v ∈ D(rw) \ Dw, w′ remains an ancestor of c′v, after any edges insertion,
as long as v′ ∈ D(r′w) \ D′w. For every vertex z on the path from w to v in
G[D(rw)] we have that z ∈ D′(r′w) as otherwise there is a path from a vertex z
to v avoiding r′w, which means a path from s to v avoiding r′w, a contradiction to
the fact that v ∈ D′(r′w). Hence, there is a path from w to v in G′[D′(r′w)]. We
use the same argument to show that there is a path from v to w in G′[D′(r′w)].
For every vertex z on the path from v to w in G[D(rw)] remains in D′(r′w) as
otherwise there is a path from a vertex z to w avoiding r′w, which means a path
from s to w avoiding r′w, a contradiction to the fact that w ∈ D′(r′w). Therefore,
there is a path from v to w in G′[D′(r′w)]. Thus, w and v are strongly connected
in G′[D′(r′w)], which means w′ is an ancestor of v′ in L′.

Every time v is L-affected but not D-scanned we have that level′(`′(v′)) >
level′(`(v)), as implied by Lemma 5.9. Therefore, v is assigned an ancestor
`′(v′) such that there is no ancestor w of v where c′w = `′(v′) (as otherwise v is
be L-affected). Moreover, as we shown above, as long as (d′(r′`′(v′)), r

′
`′(v′)) is a

bridge such that v ∈ D′(r′`′(v′)) \D`′(v′), vertex `′(v′) remains ancestor of v in

L′. Hence, since at most n−1 bridges can appear on the path D[s, v], it follows
that v can be at most O(n) times L-affected but not D-scanned.

Now we bound the overall running time spent on identifying and updating
the L-affected vertices. First note that if an L-affected vertex is also D-scanned,
then by Lemma 5.7 we can update their parent in L′ in time O(V (S) + E(S))
where S is the set of D-scanned vertices. We charge this time to the algorithm
for updating the dominator tree, which spends O(V (S) +E(S)) time after each
edge insertion. Thus, the overall time spent on updating the parent of a vertices
that are D-scanned is O(mn). Now, let S′ be the set of vertices that are L-
affected. By Lemma 5.12, S′ can be identified in time O(V (S′) + E(S′) +
V (S) +E(S) +n). We again charge the time O(V (S) +E(S)) to the algorithm
for updating the dominator tree, which sums to O(mn) after all insertions. As
we showed above, a vertex u can be in S′ \ S at most n − 1 times. Hence, the
time O(V (S′) +E(S′)) per insertion considers each vertex at most n− 1 times,
and therefore, it takes time O(mn) time. Finally, the time O(n) spent after
every edge insertion sums to O(mn) overall, since we have at most m insertions.
The bound follows. �

Theorem 5.14. Let Gs be a flow graph with n vertices. We can maintain the
hyperloop nesting forest L of Gs through a sequence of edge insertions in O(mn)
total time, where m is the number of edges after all insertions.

6 Answering queries in optimal time

The data structure from [20] computes the strong bridges of G plus four trees:
the dominator tree D and the loop nesting tree H of the flow graph Gs, and the
dominator tree DR and the loop nesting tree HR of the reverse flow graph GRs .

25

This information is sufficient to answer in optimal time all the following types
of queries:

(i) Report in O(1) time the total number of SCCs in G \ e, for a query edge
e in G.

(ii) Report in O(1) time the size of the largest and of the smallest SCCs in
G \ e, for a query edge e in G.

(iii) Report in O(n) worst-case time all the SCCs of G\ e, for a query edge e.

(iv) Test in O(1) time if two query vertices u and v are strongly connected
in G \ e, for a query edge e.

(v) For query vertices u and v that are strongly connected in G, report all
edges e such that u and v are not strongly connected in G\ e, in optimal
worst-case time, i.e., in time O(k+1), where k is the number of separating
edges.

We note that queries of type (i) and (ii) require additional O(n) preprocess-
ing time, based solely on the same four trees. In particular, the crux of the
method is the following theorem, which shows that the information relevant for
our queries can indeed be extracted from the strong bridge of G and the four
trees D, DR, H and HR:

Theorem 6.1 ([20]). Let G = (V,E) be a strongly connected digraph, s be an
arbitrary start vertex in G, and let e = (u, v) be a strong bridge of G. Let C be
a SCC of G \ e. Then one of the following cases holds:

(a) If e is a bridge in Gs but not in GRs then either C ⊆ D(v) or C = V \D(v).

(b) If e is a bridge in GRs but not in Gs then either C ⊆ DR(u) or C =
V \DR(u).

(c) If e is a common bridge of Gs and GRs then either C ⊆ D(v) \DR(u), or
C ⊆ DR(u) \D(v), or C ⊆ D(v) ∩DR(u), or C = V \

(
D(v) ∪DR(u)

)
.

Moreover, if C ⊆ D(v) (resp., C ⊆ DR(u)) then C = H(w) (resp., C = HR(w))
where w is a vertex in D(v) (resp., DR(u)) such that h(w) 6∈ D(v) (resp.,
hR(w) 6∈ DR(u)).

Now we show that exactly the same information can be extracted if we
replace the loop nesting trees H and HR with two new trees Ĥ and ĤR, which
(differently from loop nesting trees) can be maintained efficiently throughout
any sequence of edge insertions. As a result, the strong bridges of G plus D,
DR, Ĥ and ĤR allow us to answer all our queries in optimal time throughout
any sequence of edge insertions.

We next define the new trees Ĥ and ĤR. Without loss of generality, we
restrict our attention to Ĥ, as ĤR is defined in the reverse graph GR in a
completely analogous fashion. We construct Ĥ starting from the hyperloop
nesting tree L, as follows. For every vertex u such that cu 6= u we set ĥ(u) = cu,

and for every vertex u where cu = u, u 6= s we set ĥ(u) = `(u). Note that, once
L is available, the tree Ĥ can be computed in O(n) time.

As suggested by Theorem 6.1, every SCC C in G\(u, v) is either a subtree of
H rooted at a vertex w ∈ D(v) such that h(w) /∈ D(v), or a subtree of HR rooted
at a vertex z ∈ DR(u) such that hR(z) /∈ DR(u), or C = V \ D(v) ∪ DR(u).

26

As a consequence, in order to show that we can safely replace H by Ĥ and HR

by ĤR, we only need to prove the following lemma, which holds symmetrically
also for GRs , DR, HR and ĤR. First, we start with an intermediate technical
lemma that is used in the proof or Lemma 6.3.

Lemma 6.2. Let w be the nearest common ancestor of two vertices u and v in
H, and let z be the nearest common ancestor of cu and cv in L. Then, cw = z.

Proof. It suffices to show that, for every ancestor u of a vertex v in H, cu is an
ancestor of cv in L. First, note that if cu = cv then they are in the same auxiliary
component and thus the above statement trivially holds. Now let cu 6= cv. By
Lemma 3.3, v and hv map to the same vertex in L. Moreover, ch(hv) is the
parent of c` in L. By repeatedly applying the same argument, it follows that
for every ancestor u of v in H, cu is an ancestor of v in L. �

Lemma 6.3. Let (u, v) be a strong bridge in Gs. For every set H(w) where

w ∈ D(v) and h(w) /∈ D(v) there is a vertex z ∈ D(v) and ĥ(z) /∈ D(v) such that

Ĥ(z) = H(w). Additionally, for every set Ĥ(z) where z ∈ D(v) and ĥ(z) /∈ D(v)
there is a vertex w ∈ D(v) and h(w) /∈ D(v) such that H(w) = Ĥ(z).

Proof. We prove the lemma by proving the following two statements:

(i) Let vertex w ∈ D(v) such that h(w) /∈ D(v). Then, for every vertex
p ∈ H(w) there is a vertex z ∈ D(v) such that p ∈ Ĥ(z).

(ii) Let vertex z ∈ D(v) such that ĥ(z) /∈ D(v). Then, for every vertex
t ∈ Ĥ(z) there is a vertex w ∈ D(v) such that t ∈ H(w).

We start with statement (i) for z = cw. By Lemma 3.3, for each vertex p ∈
H(w) ∩ Dv we have that cp = cw. By definition of Ĥ, it follows that p is a

child of cw in Ĥ (thus, p ∈ Ĥ(cw)). For any other vertex p ∈ H(w), the nearest
common ancestor of p and w in H is w. By Lemma 6.2, the nearest common
ancestor of cw and cp is cw. Therefore, cp is a descendant of cw in Ĥ and p is

a child of cp in Ĥ (or p = cp). Thus, p ∈ Ĥ(cw). This proves that for every

vertex p ∈ H(w), p ∈ Ĥ(cw).

We not turn to statement (ii). Since ĥ(z) /∈ D(v) it holds that z and ĥ(z)
are not in the same auxiliary component. Therefore, by definition of Ĥ, cz = z.
We prove statement (ii) for w = hz. Since z ∈ H(w), so do vertices t such that
ct = z (including w), since they are children of z in Ĥ. Now let t be a vertex
in Ĥ(z). By definition of Ĥ, t is a child of ct in Ĥ (or ct). Hence, the nearest
common ancestor of ct and cz in Ĥ, and therefore in L, is z. Thus, by Lemma
6.2, for the nearest common ancestor q of p and z in H, we have that cq = z.
This implies that q is a child of z in H and thus p ∈ H(w). �

In summary, our algorithm works as follows. Given a strongly connected
digraph G subject to edge insertions, we maintain in a total of O(mn) time
the strong bridges of G [19], the dominator trees D and DR [18], and the
hyperloop nesting trees L and LR, by Theorem 5.14. After each edge insertion,
we construct in O(n) time the trees Ĥ and ĤR from L and LR, respectively.
Since there can be at most m edge insertions, where m is the final number of
edges after all edge insertions, the total time spent on all those computations

27

is O(mn). By Lemma 6.3, after each update we can answer all our queries in
optimal time.

Corollary 6.4. We can maintain a strongly connected digraph G through any
sequence of edge insertions in a total of O(mn) time, where m is the number of
edges after all insertion, so as to answer the following queries in optimal time
after each insertion:

(i) Report in O(1) time the total number of SCCs in G \ e, for a query edge
e in G.

(ii) Report in O(1) time the size of the largest and of the smallest SCCs in
G \ e, for a query edge e in G.

(iii) Report in O(n) worst-case time all the SCCs of G \ e, for a query edge
e.

(iv) Test in O(1) time if two query vertices u and v are strongly connected
in G \ e, for a query edge e.

(v) For query vertices u and v that are strongly connected in G, report all
edges e such that u and v are not strongly connected in G \ e, in opti-
mal worst-case time, i.e., in time O(k + 1), where k is the number of
separating edges.

6.1 Extension to general graphs

In this subsection we extend Corollary 6.4 to general (not necessarily strongly
connected) graphs within the same time bounds. The main idea is to maintain
the necessary structures for each SCC of the input graph G, rooted at suitable
vertices. As edges are inserted into G, several SCCs may merge, so we need
to update our structures accordingly. In [19] it is shown how to maintain the
dominator tree, the bridge decomposition, and the auxiliary components, all
rooted at the same start vertex s, of each SCC of a general graph under any
sequence of edge insertions in total time O(mn). Since we always maintain the
hyperloop nesting tree rooted at the same start vertex as the dominator tree,
we will be using the same start vertices as the algorithm in [19]. Next we briefly
review these choices of start vertices.

The algorithm in [19] maintains incrementally the SCCs of the graph using
the algorithm from [5]. In each SCC the algorithm maintains an instance of the
data structure that we developed for strongly connected graphs. Whenever an
edge insertion causes two or more SCCs to merge, a new data structure instance
is created for the newly merged SCC as follows. Let C1, C2, . . . , Cj be the SCCs
that are merged into C after the insertion of an edge. We choose the start vertex
of C to be the start vertex of the largest SCC Ci and we restart the algorithm
in C. We refer to the component Ci as the principal component of C.

We now show that the choices of start vertices allow our algorithm from
Section 5 to run in a total of O(mn) time, when executed in each SCC inde-
pendently. The total time required to maintain instances of the algorithm in
the SCCs of the input graph G is O(mn). The total number of new SCCs that
can be created is at most n− 1. In the insertion of an edge results into a merge
between two SCCs, the algorithm restarts in the newly merged component: each

28

time we restart the algorithm, it takes O(m) time to initialize the data struc-
tures. We remark that these restarts are different from the restarts described in
Section 5, that are executed whenever a strong bridge is locally canceled. We
refer to this new type of restarts as top-level restarts. In summary, the total
time required to maintain the SCCs and the time spent for the top-level restarts
of the algorithm is O(mn).

By Lemma 5.12, after each edge insertion, that does not result to a restart of
the algorithm, the hyperloop nesting tree is updated in time O(V (S′)+E(S′)+
V (S) + E(S) + n′) where S′ and S are the set of L-affected and D-scanned
vertices after the edge insertion, and n′ is the number of vertices inside the
SCCs of both x and y. To bound the running time, we show that each vertex
v can be L-affected at most O(n) times and D-scanned at most O(n) times,
through the whole execution of the algorithm. This holds despite the fact that
a vertex can be part of many SCCs, as they merge while the graph undergoes
edge insertions. Let C be the current SCC containing v, and let C ′ be the
new SCC that contains C after a merge caused by an edge insertion. If C is
the principal subcomponent of C ′, then the depth of v may only decrease as
we keep the same start vertex in C ′ as in C. Otherwise, the depth of v may
increase. The effective depth of v after merging C into C ′ is defined as follows:
it is zero, if C is the principal subcomponent of C ′, and is equal to the depth
of v in the dominator tree of Gs[C

′] otherwise. To bound the total amount of
work needed to maintain the hyperloop nesting tree of all SCCs, we compute
the sum of the effective depths of v in all the SCCs that v is contained through
the execution of algorithm. We refer to this sum as the total effective depth of
v.

Lemma 6.5 ([19]). The total effective depth of any vertex v is O(n).

Therefore, each vertex can be D-scanned at most O(n) times. Moreover, by
Lemma 5.13, a vertex v can be L-affected at most t times, where t is the number
of strong bridges that dominate over v before any edge insertion takes place.
Clearly, t ≤ n′, where n′ is the number of vertices inside the SCC containing
v. Note that, whenever some SCCs merge into one SCC C ′, if v belongs to
the principal component of C ′, then the number of bridges dominating v in D
may only decrease. Otherwise, the number of strong bridges dominating v may
increase up to |V (C ′)|, and therefore v may be L-affected |V (C ′)| times again
in the future. By summing these numbers each time some SCCs merge, the
number of times that a vertex can be L-affected equals the effective depth of
the vertex. Thus, by Lemma 6.5, each vertex can become L-affected at most
O(n) times.

In summary, we have shown that each vertex can be D-scanned and L-
affected at most O(n) times. By Lemma 5.12, it immediately follows that our
algorithm runs in total time O(mn) under any sequence of edge insertions,
except for the edge insertions that result to restarts of the algorithm. Each of
the restarts takes O(m) time, as we shown previously. The following lemma
from [19] shows that, throughout any sequence of edge insertions, at most O(n)
strong bridges can appear in the graph, which results to at most O(n) restarts
of the algorithm.

Lemma 6.6 ([19]). During any sequence of edge insertions on a general graph,
at most 2(n− 1) strong bridges can appear.

29

Thus, we have the following theorem.

Theorem 6.7. Let G be a general graph with n vertices. Both the dominator
trees D and DR, the hyperloop nesting trees L and LR of each SCC C of G,
all rooted at the same arbitrary start vertex s, can be maintained in a total of
O(mn) time under any sequence of edge insertions, where m is the number of
edges after all insertions.

7 Answering queries under vertex failures

In this section we extend the queries from Section 6, with respect to vertex
failures instead of edge failures. More specifically, given a digraph G, we show
how we can answer in asymptotically optimal (worst-case) time the following
type of queries under vertex failures:

(i) Report in O(1) time the total number of SCCs in G\v, for a query vertex
v ∈ V .

(ii) Report in O(1) time the size of the largest and of the smallest SCCs in
G \ v, for a query vertex v ∈ V .

(iii) Report in O(n) time all the SCCs of G \ v, for a query vertex v ∈ V .

(iv) Test in O(1) time if two query vertices u and w are strongly connected
in G \ v, for a query vertex v.

(v) For query vertices u and w that are strongly connected in G, report all
vertices v such that u and w are not strongly connected in G \ v, in time
O(k + 1), where k is the number of separating vertices.

Let G = (V,E) be a strongly connected digraph and s ∈ V be an arbitrary

start vertex. For any vertex u in G, we let D̃(u) (resp., D̃R(u)) denote the

set of proper descendants of u in D (resp., DR), i.e., D̃(u) = D(u) \ u (resp.,

D̃R(u) = DR(u) \ u). Clearly, D̃(u) 6= ∅ (resp., D̃R(u) 6= ∅) if and only if either
u is a nontrivial dominator of Gs (resp., GRs) or u = s. Analogously, let DR

and HR be the dominator tree and the loop nesting tree of GR, respectively.
In order to answer the above queries we use the framework developed in [20],

that characterizes the SCCs of G \ v, for any v 6= s that is a strong articulation
point, according to the following lemma.

Theorem 7.1 ([20]). Let u be a strong articulation point of G, and let s be an
arbitrary vertex in G. Let C be a SCC of G\u. Then one of the following cases
holds:

(a) If u is a nontrivial dominator in Gs but not in GRs then either C ⊆ D̃(u)
or C = V \D(u).

(b) If u is a nontrivial dominator in GRs but not in Gs then either C ⊆ D̃R(u)
or C = V \DR(u).

(c) If u is a common nontrivial dominator of Gs and GRs then either C ⊆
D̃(u) \ D̃R(u), or C ⊆ D̃R(u) \ D̃(u), or C ⊆ D̃(u) ∩ D̃R(u), or C =
V \

(
D(u) ∪DR(u)

)
.

30

𝑠

𝑎 𝑏

𝑐

𝑑 𝑓
𝑒

𝑔

𝐺𝑠

𝑠

𝑎 𝑏

𝑐

𝑑 𝑓𝑒

𝐷

𝑔

𝑠

𝑎
𝑏

𝑐

𝑑
𝑓

𝑒

𝑔

𝐷

𝑠

𝑎
𝑏

𝑐

𝑑
𝑓

𝑒

𝑔

𝑠

𝑎 𝑏

𝑐

𝑑 𝑓𝑒 𝑔

𝑎 𝑏

𝑐

𝑑 𝑓𝑒 𝑔

𝑠

𝐺𝑠

Figure 8: A strongly connected directed flow graph Gs, the dominator tree D
of Gs, the graph Gs, and the dominator tree D of Gs. The bridges of Gs and
Gs are shown in red.

(d) If u = s then C ⊆ D̃(u).

Moreover, if C ⊆ D̃(u) (resp., C ⊆ D̃R(u)) then C = H(w) (resp., C = HR(w))

where w is a vertex in D̃(u) (resp., D̃R(u)) such that h(w) 6∈ D̃(u) (resp.,

hR(w) 6∈ D̃R(u)).

Next we show a reduction from answering queries under vertex failures to
answering queries under edges failures, which allows us to exploit the incremen-
tal algorithm from Section 6. For the reduction we built on Lemma 7.1 and on
other properties that were shown in [20]. We construct a new graph G = (V ,E)
that results from G by applying the following transformation. For each strong
articulation point x of G (i.e., nontrivial dominator in Gs or GRs), we add an
auxiliary vertex x ∈ V and add the auxiliary edges (x, x) and (x, x). Moreover,
we replace each edge (u, x) entering x in G with an edge (u, x) entering x in
G. Note that this transformation maintains the strong connectivity of G. Call
the vertices of V ⊂ V ordinary. The resulting graph G has n auxiliary vertices
and 2n auxiliary edges. Hence, |V | = 2n and |E| = m+ 2n. Finally, we choose
vertex s as the start vertex of G. See Figure 8.

Let D and D
R

be the dominator trees of Gs and G
R

s , respectively. The fol-
lowing lemma states the correspondence between the strong articulation points
in G (except for s) and the strong bridges in G. See Figure 8.

Lemma 7.2. Let x 6= s be a strong articulation point of digraph G. Then the
following properties hold:
(i) Let x be a nontrivial dominator of Gs (resp., GRs). Then the auxiliary

edge (x, x) is a strong bridge of G and a bridge of Gs (resp., G
R

s).

(ii) For any ordinary vertex u ∈ V \ x, we have that u ∈ D(x) (resp.,

u ∈ DR(x)) if and only if u ∈ D(x) (resp., u ∈ DR
(x)).

(iii) All vertices in a SCC of G \ x are the ordinary vertices in a SCC of
G \ (x, x).

Proof. We prove (i) and (ii) only for the case where x is a nontrivial dominator
in Gs since the case where x is a nontrivial dominator in GRs is completely

31

analogous. Note that x has indegree one in G, and hence (x, x) is a strong
bridge of G. By the fact that G is strongly connected, there is at least one path
from s to x. All such paths must contain (x, x), so (x, x) is a bridge in Gs. This
implies (i).

In order to prove (ii), we show that s has a path to an ordinary vertex v
avoiding (x, x) in G if and only if s has a path to v avoiding x in G. We start
with one direction. Let W be the set of vertices such that all paths from s to
vertices in W contain (x, x). Clearly there is no edge (w, z) 6= (x, x) such that
w /∈W , z ∈W , as that means there is a path from s to z ∈W avoiding (x, x),
which contradicts the fact that z ∈ W . Therefore, by the construction of G it
follows that there is no edge (w, z) in G, such that w /∈ W,w 6= x and z ∈ W .
Thus all paths from s /∈W to ordinary vertices in W contain x. We now prove
the opposite direction of our claim: namely, if x appears in all paths from s to a
vertex v in G then (x, x) appears in all paths from s to v in G. Let W be the set
of vertices such that all paths from s to vertices in W contain x. Clearly there
is no edge (w, z) such that w /∈ W,w 6= x, z ∈ W , as that implies that there
is a path from s to z ∈ W avoiding x, which contradicts the fact that z ∈ W .
Therefore, by the construction of G it follows that there is no edge (w, z), such
that w /∈ W,w 6= x and z ∈ W . Thus all paths from s to vertices in W contain
(x, x). Thus, (i) and (ii) follow.

We finally prove (iii). Assume that two vertices u and v, u 6= v 6= x, are in
the same SCC in G \ x but not in the same SCC in G \ (x, x). The fact that
u and v are not strongly connected in G \ (x, x) implies that either all paths
from u to v contain (x, x) or all paths from v to u contain (x, x). Without loss
of generality, assume that all paths from u to v in G contain the strong bridge
(x, x). Since u and v are in the same SCC in G \ x, there is a path π from u
to v in G that avoids all edges incoming to x and all edges outgoing to x. That
means in G \ (x, x) the corresponding path π of π avoids all incoming edges to
x and all outgoing edges from x. This contradicts the fact that all paths from
u to v in G contain (x, x). Now suppose that in a SCC in G \ (x, x), there
are two ordinary vertices u and v, u 6= v 6= x, that are in different SCC in
G \ x. Therefore, there is a path π in G that avoids (x, x), and thus vertices x
and x by construction. Then the corresponding path π of π in G avoids x, a
contradiction. �

Now we combine Lemmas 7.1 and 7.2 to prove the following lemma.

Lemma 7.3. Let G be a strongly connected graph with start vertex s. For each
strong articulation point v it holds that:

(i) The total number of SCCs in G\v, is equal to the total number of SCCs
in G \ (v, v) minus 1.

(ii) The size of the largest SCC in G \ v, is equal to half of the size of the
largest SCC in G\ (v, v). The size of the smallest SCC in G\v, equal to
half of the size of the smallest SCC in G \ (v, v), excluding the singleton
SCCs v and v.

(iii) The SCCs of G \ v, are the sets of ordinary vertices of each SCC of
G \ (v, v) except of the singleton SCCs v and v.

32

(iv) Two query vertices u and w are strongly connected in G \ v, if and only
if u and w are strongly connected in G \ (v, v).

(v) All vertices v such that u and w are not strongly connected in G \ v, are
the ordinary endpoints of strong bridges e (excluding u and w) such that
u and w are not strongly connected in G \ e.

Proof. We start with (i). Notice that in G \ (x, x), the vertices x and x are
singleton SCCs since (x, x) is the only outgoing and the only incoming edge of
x and x, respectively. First, notice that each ordinary vertex v 6= x is in the
same SCC together with v in G since G contains (v, v) and (v, v). By Lemma
7.2(iii), all the vertices in a SCC in G \ x are the ordinary vertices of a SCC in
G \ (x, x). Therefore, (i) follows.

The cases (ii), (iii), and (iv) follows immediately from Lemma 7.2(iii) and
the fact that all ordinary vertices are in the same SCC with their auxiliary
vertex.

Finally, we consider case (v). By Lemma 7.2(i) and Lemma 7.2(ii) it follows
for each vertex x such that u and w are not strongly connected in G \ x, there
exists the strong bridge (x, x) such that u and w are not strongly connected in
G \ (x, x). Let now e = (p, q) be a strong bridge in G separating w and u, such
that p 6= w 6= u. We show that (p, p) is also a strong bridge in G separating w
and u. That implies, by Lemma 7.2(iii), p separates w and u in G. Without
loss of generality, assume all paths from w to u contain (p, q). By the fact that
the only incoming edge to p is (p, p) it follows that all paths from w to u in G
contain (p, p). Thus, (p, p) is a strong bridge in G separating w and u, and as
we mentioned above that implies p is a separating vertex for w and u. Case (v)
follows. �

Lemma 7.3 allows us to answer strong connectivity queries under vertex
failures using the strong connectivity queries under edge failures from Section 6.
Similarly to Section 6, we only need to maintain incrementally the dominator

trees D and D
R

, and the hyperloop nesting trees L and L
R

of G and G
R

,
respectively. The most challenging query is to report the size of the smallest
SCC in G \ v, for a query vertex v. This happens due to the fact that the size
of the smallest SCCs in G \ (v, v) is always one, namely, the singleton SCCs v
and v. To resolve this problem we apply a minor modification of the algorithm
in [20], in order to ignore the singleton SCC v when computing the minimum
SCC in G[D(v)], and the singleton SCC v when computing the minimum SCC
in GR[DR(v)]. In summary, we have the following theorem.

Theorem 7.4. We can maintain a digraph G throughout any sequence of edge
insertions in a total of O(mn) time, where m is the number of edges after all
insertions, and after each edge insertion the following queries can be answered
in asymptotically optimal (worst-case) time:
(i) Report in O(1) time the total number of SCCs in G\v, for a query vertex

v in G.

(ii) Report in O(1) time the size of the largest and of the smallest SCCs in
G \ v, for a query vertex v in G.

(iii) Report in O(n) time all the SCCs of G \ v, for a query vertex v.

33

(iv) Test in O(1) time if two query vertices u and w are strongly connected
in G \ v, for a query vertex v.

(v) For query vertices u and w that are strongly connected in G, report all
vertices v such that u and w are not strongly connected in G \ v, in
O(k + 1) time, where k is the number of separating vertices.

8 Maintaining the 2-vertex-connected components
of a digraph

In this section we present an algorithm for maintaining incrementally the 2-
vertex-connected components of a digraph G in a total O(mn) of time. In our
algorithm we will use some properties from [20]. However, we need to extend
those properties, by substituting them with strong connectivity queries under
edge failures, in order to provide necessary and sufficient conditions for two
vertices being 2-vertex-connected.

We compute the 2-vertex-connected components of a digraph by computing
as an intermediary the following relation. Two vertices x and y are said to be
vertex-resilient if the removal of any vertex different from x and y leaves x and
y in the same strongly connected component. A vertex-resilient component of
a digraph G = (V,E) is defined as a maximal subset B ⊆ V such that x and
y are vertex-resilient for all x, y ∈ B. As a (degenerate) special case, a vertex-
resilient component might consist of a singleton vertex only, in which case we
have a trivial vertex-resilient component. We are interested in computing only
the nontrivial vertex-resilient components, and since there is no danger of am-
biguity, we will call them simply vertex-resilient components. The following
lemma states that we can compute the 2-vertex-connected components start-
ing from the 2-edge-connected components and the vertex-resilient components.
Moreover, this computation can be done in O(n) time [16].

Lemma 8.1. ([16]) For any two distinct vertices x and y, x and y are 2-vertex-
connected if and only if x and y are both vertex-resilient and 2-edge-connected.

Because, of Lemma 8.1, an incremental algorithm for maintaining the 2-
vertex-connected components of a digraph can be immediately obtained from in-
cremental algorithms for maintaining the vertex-resilient and 2-edge-connected
components. Since we know how to maintain incrementally the 2-edge-connected
components of a digraph in a total of O(mn) time [19], in the remainder of this
section we will focus on the incremental maintenance of the vertex-resilient
components.

Once again, let s be an arbitrary start vertex in G, and let D (resp., DR)
be the dominator tree of the flow graph Gs (resp., GRs). For any vertex u, we
denote by C(u) (resp. CR(u)) the set of children of u in D (resp. DR). For any
pair of vertices u and v we identify a set of vertices C(u, v) defined as follows.
Set C(u, v) contains all vertices in C(u) ∩ CR(v). Also, if u = v or u ∈ CR(v)
then we include u in C(u, v), and if v ∈ C(u) then we include v in C(u, v).
These sets can be computed in O(n) time [11].

Corollary 8.2 ([20]). Let G = (V,E) be a strongly connected digraph, and let
s ∈ V be an arbitrary start vertex. Any two vertices x and y are vertex-resilient
only if they are located in a common set C(u, v).

34

Let x and y be two distinct vertices in G. We say that a strong articulation
point u separates x and y (or equivalently that u is a separating vertex for x
and y) if all paths from x to y or all paths from y to x contain vertex u (i.e.,
x and y belong to different strongly connected components of G \ u). Clearly,
x and y are vertex-resilient if and only if there exists no separating vertex for
them. The next two lemmas from [20] imply that only O(1) vertices need to be
tested in order to determine whether there exists a separating vertex for x and
y.

Lemma 8.3 ([20]). Let u be nontrivial dominator in either D or DR that is a
separating vertex for vertices x and y. Then u must appear in at least one of
the paths D[s, x], D[s, y], DR[s, x], and DR[s, y]. Let u be a strong articulation
point that is a separating vertex for vertices x and y. Then u must appear in at
least one of the paths D[s, x], D[s, y], DR[s, x], and DR[s, y].

Lemma 8.4 ([20]). Let x and y be vertices that are either siblings or x is the
parent of y in D, and let w = d(x). A strong articulation point u that is not a
descendant of w in D is a separating vertex for x and y only if w is a separating
vertex for x and y.

The following corollary summarizes Lemmas 8.3 and 8.4.

Corollary 8.5. Two vertices x and y are vertex-resilient if and only if there are
some vertices u, v such that x, y ∈ C(u, v), and x and y are strongly connected
in:

(a) G \ u

(b) (if u 6= s) in G \ d(u)

(c) G \ v

(d) (if v 6= s) in G \ dR(v)

Note that, by Corollary 8.5, each vertex-resilient component is contained
in a C(u, v) set. Thus, the set C(u, v) defines an initial set of “coarse” blocks
that are supersets of the vertex-resilient components. To find the real vertex-
resilient components, our algorithm will refine those coarse blocks with the help
of the auxiliary components. The sets C(u, v) can be represented by a block
forest F of size O(n) as shown in [20]. The block forest is a bipartite undirected
acyclic graph that contains a node for each vertex v ∈ V and a node for each
vertex-resilient component of the graph; it contains an edge α, β if α is in the
vertex-resilient component β. In order to refine the initial block forest, we will
use the following operation from [16]. Let B be a set of blocks, let S be a
partition of a set U ⊆ V , and let x be a vertex not in U .

refine(B,S, x): For each block B ∈ B, substitute B by the sets B ∩ (S ∪ {x})
of size at least two, for all S ∈ S.

As shown in [16], this operation can be executed in time that is linear in the
total number of elements in all sets of B and S. The algorithm needs to locate
the blocks that contain a specific vertex, and, conversely, the vertices that are
contained in a specific block. Note that F is bipartite, so the adjacency list of
a vertex v stores the blocks that contain v, and the adjacency list of a block

35

node B stores the vertices in B. Initially F contains one block for each C(u, v)
set. Those blocks are refined by means of refine operations. The executions
of refine operations update the block forest F , while maintaining the linear
execution time.

Our algorithm, called Inc2VCC, computes after every edge insertion the
vertex-resilient components of the digraph in O(n) time, using Corollary 8.5.
The pseudocode is shown in Algorithm 5. We first prove the correctness of our
algorithm. Next, we show that it runs in O(n) time.

Lemma 8.6. Algorithm Inc2VCC is correct.

Proof. We will prove that two vertices x and y are in the same block of the
maintained block forest F after the end of the algorithm if and only if they
satisfy Corollary 8.5. Since two vertices are vertex-resilient if and only if they
satisfy Corollary 8.5, it follows that the blocks in F are exactly the vertex-
resilient components of the graph.

We first prove one direction of the claim: assume that x and y satisfy Corol-
lary 8.5. The vertices x and y will not be separated in Line 4 since there exists
a pair of vertices u, v such that x, y ∈ C(u, v) ∪ u by Corollary 8.5. Now we
first assume that x and y are siblings in D. The vertices x, y will not be sepa-
rated in Line 9 since they are strongly connected in G \ u by Corollary 8.5 and
x, y ∈ C(u) ∪ u. Moreover, the removal carried out in Line 14 cannot remove
any of x or y from their block. Now assume, without loss of generality, that
x = d(y) = u. The vertices x, y will not be separated in Line 9 since u, y ∈ C(u)
and u will be included in the same block C as x by the definition of the refine
operation. Notice that all vertices in C remain strongly connected in G\d(u) by
Lemma 8.4. Therefore, u is strongly connected in G\d(u) with all vertices in C,
since u and x are strongly connected by Corollary 8.5 (recall that we assumed
x and y satisfy Corollary 8.5). The same arguments can be used to show that
x and y are not separated in Lines 24 and 29. Hence, if two vertices satisfy
Corollary 8.5, they are contained in the same block of the block forest after the
end of the algorithm.

Now we prove the opposite direction of the claim. Namely, we assume that
at the end of the algorithm x and y are in the same block of the block forest
and we wish to prove that x and y satisfy Corollary 8.5. Since x and y are not
separated in Line 4 there exists a pair of vertices u, v such that x, y ∈ C(u, v).
Now assume, without loss of generality, that x and y are siblings in D (both
children of some vertex u). Then they are strongly connected in G \ d(x) since
they are not separated in Line 9. Now assume, without loss of generality, that
x = d(y) = u. Recall that all vertices in the same block C as y in the block
forest, right after the execution of Line 9, are strongly connected in G \ x. By
Lemma 8.4, they are also strongly connected in G\d(x). Since x remains in the
same block as y in Line 14, then x is strongly connected with all vertices in the
component of y in G \ d(x). Therefore, x and y satisfy conditions (a) and (b)
in Corollary 8.5. The same arguments can be use to show that x and y satisfy
(c) and (d) from Corollary 8.5, and the lemma follows. �

In order to collect efficiently the sets of vertices in C(u) (resp., CR(u)),
for some vertex u, that are strongly connected in G \ u, as required in Line
8 (resp., Line 23) of Algorithm Inc2VCC, we use an additional data structure.

36

Algorithm 5: Inc2VCC

Input: Strongly connected digraph G = (V,E)
Output: The vertex-resilient components of G

1 Dominator trees and initialize block forest:

2 Let D and DR be the dominator tree of Gs and GRs , respectively.
3 Compute the sets C(u, v).
4 Initialize the block forest F to contain one block for each set C(u, v) with

at least two vertices.
5 Forward direction:
6 foreach u ∈ V in a bottom-up order of D do
7 Find the set of blocks B that contain at least two vertices in C(u).
8 Compute the collection of vertex subsets

S = {S ∩ C(u) : S is an SCC in G \ u}.
9 Execute refine(B,S, u).

10 if u 6= s then
11 foreach B ∈ B such that u ∈ B do
12 Choose an arbitrary vertex v 6= u in B.
13 if u and v are strongly connected in G \ d(u) then
14 set B = B \ u
15 if |B| = 1 then delete B from F

16 end

17 end

18 end

19 end
20 Reverse direction:

21 foreach u ∈ V in a bottom-up order of DR do
22 Find the set of blocks B that contain at least two vertices in CR(u).
23 Compute the collection of vertex subsets

S = {S ∩ CR(u) : S is an SCC in G \ u}.
24 Execute refine(B,S, u).
25 if u 6= s then
26 foreach B ∈ B such that u ∈ B do
27 Choose an arbitrary vertex v 6= u in B.

28 if u and v are strongly connected in GR \ dR(u) then
29 set B = B \ u
30 if |B| = 1 then delete B from F

31 end

32 end

33 end

34 end

Recall the construction of the graph G = (V ,E) from Section 7. For each
strong articulation point x of G, we add an auxiliary vertex x ∈ V and add the
auxiliary edges (x, x) and (x, x). Moreover, we replace each edge (u, x) entering
x in G with an edge (u, x) entering x in G. We maintain incrementally the flow
graph Gs, with start vertex s, its dominator tree D, its bridge decomposition
D, and the auxiliary components of Gs. This will allow us to execute efficiently

37

Lines 8 and 23 of Algorithm Inc2VCC, as suggested by the following lemma.

Lemma 8.7. Let x and y be two vertices that are siblings in D, and let w =
d(x) = d(y). Then, x and y are strongly connected in G \ d(x) if and only if
rx = ry and cx = cy, where rx and ry are the roots of the bridge decomposition of
Gs containing x and y, respectively, and cx and cy are the auxiliary components
of G containing x and y, respectively.

Proof. We begin with the forward direction of the claim: namely, we show
that if x and y are strongly connected in G \ d(x) then rx = ry and cx = cy.
Notice, that since x and y are auxiliary vertices, d(x) (resp., d(y)) is an ordinary
vertex and therefore e′ = (d(d(x)), d(x)) (resp., e′ = (d(d(y)), d(y))) is the
only edge entering d(x) (resp., d(y)) and moreover it is a bridge in G. Now
assume that rx 6= ry. Then either (d(x), x) or (d(y), y) is a strong bridge (or
both). Without loss of generality, assume that (d(x), x) is a strong bridge and
y is not a descendant of x in D. By definition of strong bridges, all paths
from a vertex v /∈ D(x) (which includes y) to x contain the strong bridge
(d(x), x) and therefore the vertex d(x). By Lemma 7.2(ii), d(x) = d(x). The
fact that all paths from y to x in G contain the vertex d(x) contradicts our
initial assumption that x and y are strongly connected in G \ d(x), as indicated
by Lemma 7.2(ii). Hence, if x and y are strongly connected in G \ d(x) then
rx = ry. To complete the proof of this case, assume by contradiction that x
and y are strongly connected in G \ d(x) but cx 6= cy. Since neither (d(x), x)
nor (d(y), y) are strong bridges and e′ = (d(d(x)), d(x)) is a strong bridge in
G, it follows that rx = rx = d(x). The fact that cx 6= cy implies that x and y
are not strongly connected in G[D(d(x))], and therefore, they are not strongly
connected in G \ e′. By Lemma 7.2(iii), all vertices of a strongly connected
component in G \ d(x) are ordinary vertices of a strongly connected component
in G \ e′. This contradicts our assumption that x and y are strongly connected
in G \ d(x). Thus, if x and y are strongly connected in G \ d(x) then it must be
rx = ry and cx 6= cy.

Now we prove the other direction of the claim: namely, if rx = ry and
cx 6= cy then x and y are strongly connected in G \ d(x). Since rx = ry, it
follows that neither (d(x), x) nor (d(y), y) is a strong bridges Moreover, by the
fact that cx 6= cy if follows that x and y are strongly connected in G \ e′. By
Lemma 7.2, x and y must be strongly connected. �

We are now ready to analyze the total running time of Algorithm Inc2VCC.

Lemma 8.8. Algorithm Inc2VCC runs in O(n) time.

Proof. The computation of all non-empty sets C(u, v) in Line 4 takes O(n) time
as it is shown in [11]. Each vertex v is contained in at most 4 different initial
blocks, i.e., the blocks C(u, v), C(d(u), v), C(u, d(v)), C(d(u), d(v)). This implies
that the initial block forest contains O(n) edges, and therefore its initialization
in Line 3 takes O(n) time. To find all subsets of vertices of C(u) that are
strongly connected in G \ u in Line 8, we use Lemma 8.7, which implies that
these blocks are the auxiliary components of Gs containing vertices cx, where
x ∈ C(u). Those auxiliary components are maintained by running an instance
of the incremental algorithm in [19] on G in a total of time O(mn), and they can
be easily collected in time O(|C(u)|). As a result, we spend a total of O(mn)

38

time to maintain the auxiliary components of G, and O(n) time for all queries
throughout one execution of Algorithm Inc2VCC.

The initial block forest in Line 4 is a forest since it is defined with respect
to the sets C(u, v) = {C(u) ∪ u} ∩ {CR(v) ∪ v}, where both sets C(u) ∪ u and
CR(v) ∪ v form trees. We now show that this is preserved by a refine(B,S, u)
operation. Consider what happens to a block B ∈ B. This block is represented
by a node b in F . B is either partitioned into several disjoint blocks, in which
case the tree containing b becomes a forest. Otherwise, B is replaced by sets
B1, . . . , Bl where all sets share u. In this case, the new adjacency lists of the
nodes b1, . . . , bl representing the sets B1, . . . , Bl share only the node correspond-
ing to u. Therefore, the tree containing b remains a tree. Since F is a forest,
the sum of the cardinalities of the blocks B from Line 9 (resp., Line 24) is at
most 2|C(u)| (resp., 2|CR(u)|). To see this, just root each subtree of F that
contains some of the blocks in B and their vertices: each node has one parent
and |B| ≤ |C(u)|. Hence, the refine operations in Lines 9 and 24 are executed
in time O(|C(u)|) and O(|CR(u)|), respectively. Thus, all refine operations take
overall O(n) time. Finally, notice that we can answer each query in Lines 11
and 26 in constant time by a type (iii) query from Section 7. This gives the
lemma. �

Lemma 8.9. We can maintain the vertex-resilient components of a directed
graph G through any sequence of edge insertions in a total of O(mn) time,
where m is the number of edges after all edge insertions, and linear space.

Theorem 8.10. We can maintain the 2-vertex-connected components of a di-
rected graph G through any sequence of edge insertions in a total of O(mn) time,
where m is the number of edges after all edge insertions, and linear space.

Proof. The theorem follows from Lemmas 8.1 and 8.9 and from the fact that
we can maintain incrementally the 2-edge-connected components of a directed
graph in a total of O(mn) time [19]. �

9 Conditional lower bounds

In this section we present conditional lower bounds for both the partially dy-
namic and the fully dynamic setting. In particular, one of our lower bounds
implies that a polynomial improvement over our bounds would have interesting
consequences, as such an improvement would disprove widely believed conjec-
tures. More specifically, we show that there is no algorithm that can maintain
either incrementally of decrementally a data structure allowing queries of the
form “are u and v strongly connected in G \ e?”, where u, v ∈ V, e ∈ E, and has
total update time O((mn)1−ε) (for some constant ε > 0) and sub-polynomial
query time unless the online matrix-vector multiplication (OMv) conjecture [22]
is false. Hence, under the OMv conjecture the total running time of our algo-
rithm, for this particular query, is asymptotically optimal.

In the fully dynamic version we show that, unless the strong exponential time
hypothesis (SETH) is false, there is no algorithm maintaining a graph and being
able to answer any of the queries that we consider, within the same asymptotic

39

query time, with amortized update time O(m1−ε). Finally, we show that in the
incremental/decremental model, there is no algorithm that can maintain a data
structure answering any of the queries we consider in this paper, in the same
asymptotic query time, with worst-case update time O(m1−ε), for any ε > 0,
unless the SETH is false. Therefore, in these two cases, recomputing the data
structure from [20] from scratch after every update achieves the best possible
asymptotic update time.

9.1 Ω(mn) conditional lower bound for the total update
time in the partially dynamic model

In this section show a conditional lower bound for the total update time of a par-
tially dynamic algorithm that either incrementally or decrementally maintains
a data structure that can answer the queries “are u and v strongly connected in
G \ e?”, where u, v ∈ V , e ∈ E. Here, we show that there is neither incremen-
tal nor decremental algorithm for maintaining a data structure for answering
the aforementioned that has total update time O((mn)1−ε) (for some constant
ε > 0) and sub-polynomial query time unless the OMv Conjecture [22] fails.
This bound matches the total update time of our algorithms. For our reduction
we use a modification of the construction that was used in [15] to prove condi-
tional lower bounds for partially dynamic algorithm for updating the dominator
tree. In what follows, we prove the following statement.

Theorem 9.1. For any constant δ ∈ (0, 1/2] and any n and m = Θ(n1/(1−δ)),
there is no algorithm for maintaining a data structure under edge deletions/insertions
allowing queries of the form “are u and v strongly connected in G \ e”, where
u, v ∈ V , e ∈ E, that uses polynomial preprocessing time, total update time
u(m,n) = (mn)1−ε and query time q(m) = mδ−ε for some constant ε > 0,
unless the OMv conjecture fails.

Under this conditional lower bound, the running time of our algorithm is
optimal up to sub-polynomial factors. We give the reduction for the incremental
version of the problem. The hardness of the decremental problem follows via
an analogous reduction.

Hardness assumption. As in [15], we consider the following γ-OuMv prob-
lem (for a fixed γ > 0) and parameters n1, n2, and n3 such that n1 = bnγ2c:
We are first given a Boolean n1 × n2 matrix M to preprocess. After the pre-
processing, we are given a sequence of pairs of n1-dimensional Boolean vectors
(u(1), v(1)), . . . , (u(n3), v(n3)) one by one. For each 1 ≤ t ≤ n3, we have to return
the result of the Boolean vector-matrix-vector multiplication (u(t))ᵀMv(t) be-
fore we are allowed to see the next pair of vectors (u(t+1), v(t+1)). It has been
shown [22] that under the OMv Conjecture as stated above, there is no algorithm
for this problem that has polynomial preprocessing time and for processing all
vectors spends total time n1−ε11 n1−ε22 n1−ε33 such that all εi are ≥ 0 and at least
one εi is a constant > 0.

Reduction. We now give the reduction from the γ-OuMv problem with γ =
δ/(1− δ) to the incremental maintainance of a data structure that supports the
queries “are u and v strongly connected in G \ e?”, where u, v ∈ V , e ∈ E. In
the following we denote by vi the i-th entry of a vector v and by Mi,j the entry
at row i and column j of a matrix M .

40

Consider an instance of the γ-OuMv problem with parameters n1 = m1−δ,
n2 = mδ, and n3 = m1−δ. We preprocess the matrix M by constructing a graph
G(0) with the set of vertices

V = {s, x0, x1, . . . , xn3
, y1, . . . , yn1

, z1, . . . , zn2
}

and the following edges:

• an edge (s, xn3), and, for every 1 ≤ t ≤ n3, an edge (xt, xt−1) (i.e., a path
from s to x0).

• for every 1 ≤ j ≤ n2, an edge (x0, zj).

• for every 1 ≤ i ≤ n1 and every 1 ≤ j ≤ n2, an edge (yi, zj) if and only
if Mi,j = 1 (i.e. a bipartite graph between {y1, . . . , yn1

} and {z1, . . . , zn2
}

encoding the entries of matrix M).

• an edge (zj , s), for every 1 ≤ j ≤ n2 (this makes the graph strongly
connected).

Whenever the algorithm is given the next pair of vectors (u(t), v(t)), we first
create a graph G(t) by performing the following edge insertions in G(t−1): If
t > 1, we first insert from xt−1 an edge (xt−1, yi), for all 1 ≤ i ≤ n1. Then, for

every i such that u
(t)
i = 1 we add the edge from xt to yi. Having created G(t),

we now, for every j such that v
(t)
j = 1, check whether s and zj are strongly

connected in G(t) \ (xt, xt−1). If this is the case for at least one j we return that
(u(t))ᵀMv(t) is 1, otherwise we return 0.

Correctness. The correctness of our reduction follows from the following
lemma.

Lemma 9.2. For every 1 ≤ t ≤ n, the j-th entry of (u(t))ᵀM is 1 if and only
if s and zj are strongly connected in G(t) \ (xt, xt−1).

Proof. First, notice that there is always a path from zj to s since there is the edge

(zj , s). If the j-th entry of (u(t))ᵀM is 1, then there is an i such that u
(t)
i = 1 and

Mi,j = 1. Thus, G(t) contains the edges (xt, yi) and (yi, zj) and consequently a
cycle containing s and zj , namely 〈s, xn3

, . . . , xt, yi, zj〉. Therefore, s and zj are
strongly connected in G(t) \ (xt, xt−1).

If the j-th entry of (u(t))ᵀM is 0, then there is no i such that u
(t)
i = 1 and

Mi,j = 1. This implies that there is no path (of length 2) from xt to zj avoiding
(xt, xt−1) (via some vertex yi). Moreover, notice that there is not edge (xl, yi)
for t ≤ l ≤ n3 and 1 ≤ i ≤ n1. Thus, every path from s to zj contains (xt, xt−1).
Thus, s cannot be the strongly connected with zj in G(t) \ (xt, xt−1). �

Note that (u(t))ᵀMv(t) is 1 if and only if there is a j such that both the j-th
entry of u(t)M as well as the j-th entry of v(t) are 1. Furthermore, s and zj
are strongly connected in G(t) \ (xt, xt−1) if and only if s and zj are strongly
connected in the maintained graph minus the edge (xt, xt−1). Therefore the
lemma establishes the correctness of the reduction.

Complexity. The final graph G(t) has n := Θ(n1+n2+n3) = Θ(mδ+m1−δ) =
Θ(m1−δ) vertices and Θ(n1n2 + n2n3) = Θ(m) edges. The total number of

41

queries is O(n1n3) = m2(1−δ). Suppose the total update time of the incremental
algorithms that supports the required queries is O(u(m,n)) = (mn)1−ε and its
query time is O(q(m)) = mδ−ε. Using the reduction above, we can thus solve the
γ-OuMv problem for the parameters n1, n2, n3 with polynomial preprocessing
time and total update time

O(u(m,n) +m2(1−δ)q(m)) = O(u(m,m1−δ) +m2(1−δ)q(m)) = O(m2−δ−ε) .

Since n1n2n3 = m2−δ, this means we would get an algorithm for the γ-OuMv
problem with polynomial preprocessing time and total update time n1−ε11 n1−ε22 n1−ε33

where at least one εi is a constant > 0. This contradicts the OMv Conjecture.

9.2 Ω(m) conditional lower bound for the amortized up-
date time in the fully dynamic setting

Now we prove a conditional lower bounds for the fully dynamic setting and for
the partially dynamic setting with worst-case update time guarantees. More
specifically, we show that for those two models, under the assumption of the
strong exponential time hypothesis, the trivial algorithm that recomputes from
scratch the solution using the static algorithm is asymptotically optimal up to
sub-polynomial factors. We base our bounds on the following conjecture that
was first stated in [27, 28].

Conjecture 9.3 (Strong Exponential Time Hypothesis (SETH)). For every
ε > 0, there exists a k, such that SAT on k-CNF formulas on n variables cannot
be solved in O(2(1−ε)npoly(n)) time.

As an intermediate step in our reductions, we use the following result from [1].

Theorem 9.4 ([1]). Let G be a digraph with n vertices that undergoes m edge
updates from an initially empty graph (until the graph is empty, in the case of
a decremental algorithm). If for some ε > 0 and t ∈ N , there exists either

• a fully dynamic algorithm with preprocessing time O(nt), amortized update
time O(m1−ε), and amortized query time O(m1−ε), or

• an incremental or decremental algorithm with preprocessing time O(nt),
worst-case update time O(m1−ε), and worst-case query time O(m1−ε)

that can answer either the query “are there more that two or more SCCs in G?”
or the query “what is the size of the largest SCC in G?”, then Conjecture 9.3 is
false.

Now we show the reduction from the problems of Lemma 9.4 to the problem
of maintaining a data structure answering any of the queries that we consider in
Theorem 7.4. We break our result into two parts. In the first part, we prove that
the result for three of the totally five types of queries without any assumptions.
In the second part, where we assume that the number of edges is in the graph
is superlinear to the number of vertices. This assumption about the density of
the graph is necessary as our reduction in this spends O(n) additional time per
query. We start with the first case where we make no assumptions about the
density of the graph.

42

Lemma 9.5. Let G = (V,E) be a digraph with n vertices that undergoes m
edge updates from an initially empty graph (until the graph is empty, in the
case of a decremental algorithm), ε > 0. Assume that there exists a dynamic
algorithm that can answer any of the following queries, either incrementally,
decrementally, or fully dynamically:

(i) Report in O(m1−ε) time the total number of SCCs in G \ e (resp., G \ v),
for any query edge e (resp., vertex v) in G.

(ii) Report in O(m1−ε) time the size of the largest SCC in G\ e (resp., G\ v),
for any query edge e (resp., vertex v) in G.

(iii) Report in O(m1−ε) time all the SCCs of G\e (resp., G\v), for any query
edge e (resp., vertex v).

Then, there exists a dynamic algorithm, in the same model (incremental, decre-
mental, or fully dynamic), that can answer either the query “are there more that
two SCCs in the graph?” or “what is the size of the largest SCC in the graph?”
with the same preprocessing time, the same update time, and can answer queries
in O(m1−ε) time.

Proof. It is safe to assume that O(n) ∈ O(m) as if m ≤ n − 3 we can answer
immediately that G has more than two SCCs, as each SCC C has at least |C|−1
edges. We construct the following graph G′ = (V ′, E′) from G = (V,E). G′

consists of the edges and vertices of G and additionally two vertices s1, s2, the
edge (s1, s2), for each v ∈ V an edge (v, s1) and an edge (s2, v). Notice that
|V ′| = |V |+ 2 ∈ O(|V |) and |E′| = |E|+ 2 ·n+ 1 ∈ O(|E|). Our overall strategy
for proving the lemma is to argue that at any time during the course of the
dynamic algorithm we can answer the queries “are there more that two SCCs
in G?” or “what is the size of the largest SCC in G?” by answering any one
of the queries in the statement of the lemma. That is, we answer those queries
independently of the type of updates (i.e., incremental, decremental, or fully
dynamic algorithm), and of the type of query bound (i.e., either worst-case per
update, or amortized over all updates). Specifically, we show that by answering
the queries of the lemma withing the stated bounds, then we can answer the
queries “are there more that two SCCs in G?” or “what is the size of the largest
SCC in G?” in time O(m1−ε).

First, observe that two vertices u and v are strongly connected in G′\(s1, s2)
or in G′ \ s1 if and only if they are strongly connected in G. This is true as any
new path from u to v or from v to u, that uses any of the new edges that we
inserted, contains vertex s1 and edge (s1, s2). Therefore, by deleting either the
vertex s1 or the edge (s1, s2) we destroy all new paths from u to v and from v
to u.

We begin with type (i) queries. Assume that we can report the number of
SCCs in G′ \ (s1, s2) (resp., in G′ \ s1) in time O(m1−ε). Let this number be
c. Note that the SCCs among vertices in V remain unchanged, and s1 and s2
form singleton SCCs in G′ \ (s1, s2) (resp., s2 forms a singleton SCC in G′ \ s1).
It follows that the number of SCCs in G is c − 2 (resp., c − 1). Hence we
can answer whether G has more that two SCCs in time O(m1−ε). The same
argument applies for type (ii) queries that report all SCCs in G′ \ (s1, s2) (resp.,
in G′ \ s1) in time O(m1−ε). The number of SCCs in G can be extracted in
additional O(n) ∈ O(m1−ε) time (recall that we assume O(n) ∈ O(m)).

43

Now we consider type (iii) queries. Since the SCCs in G′ \ (s1, s2) (resp., in
G′ \ s1) correspond to the SCCs of G plus the singleton SCCs s1 and s2 (resp.,
the singleton SCC s2), the largest SCC in G′ \ (s1, s2) (resp., in G′ \ s1) has
the same size with the largest SCC in G. Thus, if we can answer the size of
the largest SCC in G′ \ (s1, s2) (resp., in G′ \ s1) in time O(m1−ε), then we can
answer the size of the largest SCC in G in O(m1−ε). �

Theorem 9.6. Let G be a digraph with n vertices that undergoes m edge up-
dates from an initially empty graph (until the graph is empty, in the case of a
decremental algorithm). If for some ε > 0, there exists an algorithm that can
answer the following queries:

(i) Report in O(m1−ε) time the total number of SCCs in G \ e (resp., G \ v),
for any query edge e (resp., vertex v) in G.

(ii) Report in O(m1−ε) time the size of the largest SCC in G\ e (resp., G\ v),
for any query edge e (resp., vertex v) in G.

(iii) Report in O(m1−ε) time all the SCCs of G\e (resp., G\v), for any query
edge e (resp., vertex v).

while maintaining G fully dynamically with amortized update time O(m1−ε) and
amortized query time after polynomial time preprocessing, or partially dynam-
ically with worst-case update time O(m1−ε) and worst-case query time after
polynomial time preprocessing, then Conjecture 9.3 is false.

We now proceed to prove similar results of the last two query types, in graphs
where the number of edges is superlinear to the number of vertices.

Lemma 9.7. Let G = (V,E) be a digraph with n vertices that undergoes m >
n1+δ edge updates from an initially empty graph (until the graph is empty, in
the case of a decremental algorithm), δ > ε/(1 − ε), 1/2 > ε > 0. Assume that
there exists a dynamic algorithm that can answer any of the following queries,
either incrementally, decrementally, or fully dynamically:

(iv) Test in O(m1−ε/n) time whether two query vertices u and v are strongly
connected in G \ e (resp., G \ v), for any query edge e (resp., vertex v).

(v) For any two query vertices u and v that are strongly connected in G, test
whether there exists an edge e (resp., vertex v) such that u and v are not
strongly connected in G \ e (resp., G \ v) in time O(m1−ε/n).

Then, there exists a dynamic algorithm, in the same model (incremental, decre-
mental, or fully dynamic), that can answer either the query “are there more
that two SCCs in the graph?” with the same preprocessing time, the same up-
date time, and can answer queries in O(m1−ε) time.

Proof. We use the same construction as in the proof of Lemma 9.5, That is,
we construct the following graph G′ = (V ′, E′) from G = (V,E). G′ consists
of the edges and vertices of G and additionally two vertices s1, s2, the edge
(s1, s2), for each v ∈ V an edge (v, s1) and an edge (s2, v). Notice that |V ′| =
|V | + 2 ∈ O(|V |) and |E′| = |E| + 2 · n + 1 ∈ O(|E|). Our overall strategy for
proving the lemma is to argue that at any time during the course of the dynamic

44

algorithm we can answer the queries “are there more that two SCCs in G?” by
answering any one of the queries in the statement of the lemma. That is, we
answer those queries independently of the type of updates (i.e., incremental,
decremental, or fully dynamic algorithm), and of the type of query bound (i.e.,
either worst-case per update, or amortized over all updates). Specifically, we
show that by answering the queries of the lemma withing the stated bounds,
then we can answer the queries “are there more that two SCCs in G?” in time
O(m1−ε) ∈ ω(n1+O(1)).

For type (v) queries we claim that for any two u, v ∈ V there exists a
separating edge (resp., vertex) in G′ if and only in u and v are not strongly
connected in G. We now prove this claim. First, assume that u and v are
strongly connected in G. G′ contain the paths 〈u, s1, s2, v〉 and 〈v, s1, s2, u〉,
and those paths exists if we delete any edge from E. Similarly, if we delete any
edge from E′ \ E, the vertices u and v will remain strongly connected as they
are strongly connected in (V ′, E). Second, assume that u and v are not strongly
connected in G. Then, either there is no path from u to v or there is no path
from v to u in G. Assume, w.l.o.g., that there is no path from u to v in G.
Since all new path from u to v contain the edge (s1, s2), then (s1, s2) (resp.,
the vertex s1 and the vertex s2) is a separating edge (resp., vertex) for u and v.
Our claim follows.

We follow a similar approach with type (iv) queries. Assume that we can test
for any two query vertices u and v that are strongly connected in G, whether
there exists an edge e (resp., vertex v) such that u and v are not strongly
connected in G \ e (resp., G \ v) in time O(max{m1−ε/n, 1}). We pick an
arbitrary vertex x of G and we test whether there exists a separating edge
(resp., a separating vertex) for x and v, for every v ∈ V \ x. This requires
O(m1−ε) time in total. Let X be the set of vertices for which there exists no
separating edge (resp., vertex) with x. Then we pick an arbitrary vertex y from
V \X and we test whether there exists a separating edge (resp., vertex) for y
and v, for every v ∈ V \ {X ∪ y}. This requires additional O(m1−ε) time. Let
Y be the set of vertices for which there exists no separating edge (resp., vertex)
with y. If |X| + |Y | = |V |, then G has two SCCs, namely the SCC formed by
the vertices in X and the SCC formed by the vertices in Y . If, on the other
hand |X|+ |Y | < |V |, then there exists at least one vertex in V that is neither
strongly connected to x nor strongly connected to y in G, and hence, G contains
at least three SCCs. �

Theorem 9.8. Let G be a digraph with n vertices that undergoes m > n1+δ

edge updates from an initially empty graph (until the graph is empty, in the case
of a decremental algorithm), δ > ε/(1 − ε). If for some ε > 0 there exists an
algorithm that can answer the following queries:

(iv) Test in O(max{m1−ε/n, 1}) time whether two query vertices u and v are
strongly connected in G \ e (resp., G \ v), for any query edge e (resp.,
vertex v).

(v) For any two query vertices u and v that are strongly connected in G, test
whether there exists an edge e (resp., vertex v) such that u and v are not
strongly connected in G \ e (resp., G \ v) in time O(max{m1−ε/n, 1}).

45

while maintaining G fully dynamically with amortized update time O(m1−ε)
and amortized query time, or partially dynamically with worst-case update time
O(m1−ε) and worst-case query time, after arbitrary polynomial time preprocess-
ing, then Conjecture 9.3 is false.

References

[1] A. Abboud and V. Vassilevska Williams. Popular conjectures imply strong
lower bounds for dynamic problems. In FOCS, pages 434–443, 2014.

[2] Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. Fully dynamic
all-pairs shortest paths with worst-case update-time revisited. In SODA,
pages 440–452.

[3] S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup. Dominators in
linear time. SIAM Journal on Computing, 28(6):2117–32, 1999.

[4] J. Aspnes, K. Chang, and A. Yampolskiy. Inoculation strategies for victims
of viruses and the sum-of-squares partition problem. Journal of Computer
and System Sciences, 72(6):1077–1093, 2006.

[5] M. A. Bender, J. T. Fineman, S. Gilbert, and R. E. Tarjan. A new approach
to incremental cycle detection and related problems. ACM Transactions
on Algorithms, 12(2):14:1–14:22, 2015.

[6] A. L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R. E. Tarjan, and
J. R. Westbrook. Linear-time algorithms for dominators and other path-
evaluation problems. SIAM Journal on Computing, 38(4):1533–1573, 2008.

[7] R. Cohen, S. Havlin, and D. ben-Avraham. Efficient immunization strate-
gies for computer networks and populations. Physical Review Letters,
91:247901, 2003.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, 3rd edition, 2009.

[9] C. Demetrescu and G. F. Italiano. A new approach to dynamic all pairs
shortest paths. J. ACM, 51(6):968–992, 2004.

[10] C. Demetrescu and G. F. Italiano. Mantaining dynamic matrices for fully
dynamic transitive closure. Algorithmica, 51(4):387–427, 2008.

[11] W. Di Luigi, L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis.
2-connectivity in directed graphs: An experimental study. In ALENEX,
pages 173–187, 2015.

[12] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification – A
technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–
696, September 1997.

[13] P. G. Franciosa, G. Gambosi, and U. Nanni. The incremental maintenance
of a depth-first-search tree in directed acyclic graphs. Information Process-
ing Letters, 61(2):113–120, 1997.

46

[14] G. N. Frederickson. Data structures for on-line updating of minimum span-
ning trees. SIAM J. Comput., 14:781–798, 1985.

[15] L. Georgiadis, T. D. Hansen, G. F. Italiano, S. Krinninger, and N. Parot-
sidis. Decremental data structures for connectivity and dominators in di-
rected graphs. In ICALP, pages 42:1–42:15, 2017.

[16] L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-vertex con-
nectivity in directed graphs. In ICALP, pages 605–616, 2015.

[17] L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-edge connec-
tivity in directed graphs. ACM Transactions on Algorithms, 13(1):9:1–9:24,
2016.

[18] L. Georgiadis, G. F. Italiano, L. Laura, and F. Santaroni. An experimental
study of dynamic dominators. In ESA, pages 491–502, 2012.

[19] L. Georgiadis, G. F. Italiano, and N. Parotsidis. Incremental 2-edge-
connectivity in directed graphs. In ICALP, pages 49:1–49:15, 2016.

[20] L. Georgiadis, G. F. Italiano, and N. Parotsidis. Strong connectivity in
directed graphs under failures, with applications. In SODA, pages 1880–
1899, 2017.

[21] J. Gunawardena. A linear framework for time-scale separation in nonlinear
biochemical systems. PLoS ONE, 7(5):e36321, 2012.

[22] M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak. Unifying
and strengthening hardness for dynamic problems via the online matrix-
vector multiplication conjecture. In STOC, pages 21–30, 2015.

[23] M. R. Henzinger and V. King. Fully dynamic biconnectivity and transitive
closure. In FOCS, pages 664–672, 1995.

[24] M. R. Henzinger and V. King. Randomized fully dynamic graph algorithms
with polylogarithmic time per operation. J. ACM, 46(4):502–536, 1999.

[25] M. R. Henzinger and V. King. Maintaining minimum spanning forests in
dynamic graphs. SIAM J. Comput., 31(2):364–374, February 2002.

[26] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge,
and biconnectivity. J. ACM, 48(4):723–760, July 2001.

[27] R. Impagliazzo and R. Paturi. On the complexity of k-sat. Journal of
Computer and System Sciences, 62(2):367 – 375, 2001.

[28] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences,
63(4):512 – 530, 2001.

[29] G. F. Italiano, L. Laura, and F. Santaroni. Finding strong bridges and
strong articulation points in linear time. Theoretical Computer Science,
447:74–84, 2012.

47

[30] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence
through a social network. In KDD, pages 137–146, 2003.

[31] V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths
and transitive closure in digraphs. In FOCS, pages 81–91, 1999.

[32] C. J. Kuhlman, V. S. Anil Kumar, M. V. Marathe, S. S. Ravi, and D. J.
Rosenkrantz. Finding critical nodes for inhibiting diffusion of complex
contagions in social networks. In ECML PKDD, pages 111–127, 2010.

[33] Jakub Lacki. Improved deterministic algorithms for decremental reachabil-
ity and strongly connected components. ACM Transactions on Algorithms,
9(3):27, 2013.

[34] M. Mihalák, P. Uznański, and P. Yordanov. Prime factorization of
the Kirchhoff polynomial: Compact enumeration of arborescences. In
ANALCO, pages 93–105, 2016.

[35] Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen.
Dynamic minimum spanning forest with subpolynomial worst-case update
time. In FOCS, pages 950–961, 2017.

[36] M. Patrascu and M. Thorup. Planning for fast connectivity updates. In
FOCS, pages 263–271, 2007.

[37] N. Paudel, L. Georgiadis, and G. F. Italiano. Computing critical nodes in
directed graphs. In ALENEX, pages 43–57, 2017.

[38] G. Ramalingam and T. Reps. An incremental algorithm for maintaining
the dominator tree of a reducible flowgraph. In POPL, pages 287–296,
1994.

[39] P. Sankowski. Dynamic transitive closure via dynamic matrix inverse: ex-
tended abstract. In FOCS, pages 509–517, 2004.

[40] Y. Shen, N. P. Nguyen, Y. Xuan, and M. T. Thai. On the discovery of
critical links and nodes for assessing network vulnerability. IEEE/ACM
Transactions on Networking, 21(3):963–973, June 2013.

[41] R. E. Tarjan. Edge-disjoint spanning trees and depth-first search. Acta
Informatica, 6(2):171–85, 1976.

[42] M. Thorup. Near-optimal fully-dynamic graph connectivity. In STOC,
pages 343–350, 2000.

[43] M. Thorup. Fully-dynamic all-pairs shortest paths: Faster and allowing
negative cycles. In SWAT, pages 384–396, 2004.

[44] M. Ventresca and D. Aleman. Efficiently identifying critical nodes in large
complex networks. Computational Social Networks, 2(1):1–16, 2015.

48

Symbol Description

GR The graph resulting from G after reversing the direction of all edges.

Gs (resp., GR
s) A flow graph G (resp., GR), with start vertex s, where all vertices are reachable

from s (resp., reach s).

V (G) (resp., E(G)) The set of vertices (resp., edges) of G.

G \ v, v ∈ V G after deleting v together with and all its incident edges.

G \ e, e ∈ E The graph resulting from G after deleting edge e.

G[S], S ⊆ V The subgraph of G induced by the vertices in S.

T (u), where T a tree
and u ∈ V (T)

The set of vertices in the subtree rooted of T at u.

T [u, v], where T a
tree and u, v ∈ V (T)

The path between u and v in T (including u and v).

ncaT (u, v), where T
a tree and u, v ∈
V (T)

The nearest common ancestor of u and v in T .

D (resp., DR) of Gs

(resp., of GR
s)

The dominator tree D (resp., DR) of Gs (resp., GR
s).

d(u) (resp., dR(u)) The parent of u in D (resp., DR).

dom(u) (resp.,
domR(u))

The set of ancestors of u in D (resp., DR).

H (resp., HR) of Gs

(resp., of GR
s)

The loop nesting tree H (resp., HR) of Gs (resp., GR
s)

h(u) (resp., hR(u)) The parent of u in H (resp., HR).

hu (resp., hR
u) The nearest ancestor of u in the loop nesting tree H (resp., HR) such that

hu ∈ D(ru) and h(hu) /∈ D(ru) (resp., hR
u ∈ DR(rRu) and hR(hr

u) /∈ DR(rRu)).

Bridge decompo-
sition D (resp.,
DR)

The resulting forest after deleting from D (resp., DR) all bridges of Gs (resp.,
GR

s).

ru (resp., rRu) The root of the tree in D (resp., DR) containing u.

cu (resp., cRu) The canonical vertex of the auxiliary component of u in Gs (resp., GR
s).

L (resp., LR) of Gs

(resp., of GR
s)

The hyperloop nesting tree L (resp., LR) of Gs (resp., GR
s).

`(u) (resp., `R(u)) The parent of u in the hyperloop nesting tree L (resp., LR).

Ĥ (resp., ĤR) of Gs

(resp., of GR
s)

The tree resulting from L (resp., L̂R) of Gs (resp., GR
s) after making each

vertex u 6= cu (resp., u 6= cRu) child of cu (resp., cRu).

ĥ(u) (resp., ĥR(u)) The parent of u in Ĥ (resp., ĤR).

level(u) (resp.,
levelR(u))

The number of strong bridges on D[s, u] (resp., DR[s, u]) where s is the start
vertex of the flow graph on which D (resp., DR) is defined.

f ′, where f any rela-
tion

The relation f after the insertion of an edge (the inserted edge is usually
specified, or we refer to any edge insertion).

D-scanned vertices S The vertices that increase their depth in D after an edge insertion.

Gscanned The graph induced by the vertices in S (the set of D-scanned vertices).

H̃ The loop nesting tree of Gscanned rooted at y after the deletion of (x, y)

h̃(u) the parent of u in H̃.

D-affected The vertices that change parent in D after an edge insertion.

L-affected S′ The set of vertices S that change parent in L after an edge insertion.

D̃(u) (resp., D̃R(u)) D(u) \ u (resp., DR(u) \ u).

G = (V ,E) For each strong articulation point x of G, we add an auxiliary vertex x ∈ V
and add the auxiliary edges (x, x) and (x, x). Moreover, we replace each edge
(u, x) entering x in G with an edge (u, x) entering x in G.

F The block forest, as defined in [16]. A data structure for representing overlap-
ping sets of vertices.

Table 1: The notation that we use throughout the paper. We exclude notation
that is used briefly for further definitions (e.g., loop(u) for a vertex u, which is
used to define the loop nesting tree of the graph).

	1 Introduction
	2 Dominator trees, loop nesting trees and auxiliary components
	3 Hyperloop nesting forest
	4 Updating the dominator tree after an edge insertion
	5 Updating the hyperloop nesting forest after an edge insertion
	5.1 Updating the D-scanned vertices
	5.2 Updating the L-affected vertices that are not D-scanned

	6 Answering queries in optimal time
	6.1 Extension to general graphs

	7 Answering queries under vertex failures
	8 Maintaining the 2-vertex-connected components of a digraph
	9 Conditional lower bounds
	9.1 (mn) conditional lower bound for the total update time in the partially dynamic model
	9.2 (m) conditional lower bound for the amortized update time in the fully dynamic setting

