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Mesh adaptation for k-exact CFD
approximations

Alain Dervieux, Eléonore Gauci, Loic Frazza, Anca Belme, Alexandre Carabias,
Adrien Loseille, Frédéric Alauzet

Abstract:

This paper illustrates the application of error estimates based on k-exactness of ap-
proximation schemes for building mesh adaptive approaches able to produce bet-
ter numerical convergence to continuous solution. The cases of k = 1 and k = 2,
i.e. second-order and third-order accurate approximations with steady and unsteady
flows are considered.
Keywords: computational fluid dynamics, mesh adaptation, adjoint state

1 Introduction

The purpose of mesh adaptation research is, thanks to an improved accuracy, to
be able to compute new phenomena and also to master the numerical uncertain-
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ties which have been up to now unsufficiently controlled. An important strategy is
to minimize the approximation error with respect to the mesh. A central question
is then to find a good representation of the approximation error. A family of ap-
proximations plays a particular role in Computational Fluid Dynamics. The k-exact
approximations provide a zero error when the exact solution is a polynomial of
degree k. They involve finite elements like continuous and discontinuous Galerkin
and ENO finite-volume approximations. Typically, k-exact approximations have a
truncation error of order k+1.

The purpose of this paper is to adapt mesh using error estimates for a few k-exact
approximations in CFD.

We focus on methods which prescribe an anisotropic mesh under the form of a
parametrization of it by a Riemannian metric. A Riemannian metric is a continuous
symmetric matrix field defined on the computational domain Ω , for example in two
dimensions:

M : Ω ⊂ R2→ R22
x 7→M (x) = R(x)t

(
1

∆ξ (x)2 0
0 1

∆η(x)2

)
R(x).

Notation R holds for a rotation for prescribing mesh stretching directions and
∆ξ ,∆η for prescribing mesh size in these directions. A mesh obeying these pre-
scriptions is called a unit mesh for M . We observe that the very complex and dis-
crete thing which is a mesh is replaced by a continuous function to be found as the
minimum of a numerical error. Then we have to organise a process

Metric→Mesh and discrete solution→ Error→ New metric

which can be thought of as either a pure discrete process, or the discretization of
a continuous process. Let us recall why metrics are particularly adapted to 1-exact
approximations. These approximations involve most second-order methods based
on continuous P1 finite-element approximation, namely Galerkin, SUPG, Residual
distribution and vertex-centered MUSCL approximations. First, the P1-interpolation
error plays a central role in error estimates. Second, this interpolation error can be
converted in terms of the mesh metric. We recall, following [9, 10], the main features
of the continuous metric-based analysis initiated in several papers like [5, 4, 1]. For a
function u defined on the computational domain, we use the continuous interpolation
error u−πM u instead of the discrete interpolation error u−ΠM u :

u−πM u = |tr(M− 1
2 |Hu|M− 1

2 )| ; |u−πM u| ≈ const.|u−ΠM u|, (1)

where Hu is the Hessian of u and M also denotes a unit mesh for metric M . We
consider minimizing:

j(M ) = ‖u−πM u‖L1(Ωh)
, (2)

and we define as optimal metric the one which minimizes the right-hand side under
the constraint of a total number of vertices equal to a parameter N. After solving
analytically this optimization problem, we get -solely using the fact that H is a
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positive symmetric matrix- the unique optimal (ML1(x))x∈Ω as:

ML1 = N
(∫

Ω

(det(Hu))
1
4

)−1

(det(Hu))
−1
4 Hu. (3)

Knowing the continuous function u, we can derive the continuous optimal metric.
In practice, u is solution of a PDE and the whole process of computing u and then
deriving the optimal metric is operated by a fixed point iteration involving the gen-
eration of a mesh according to the metric, the solution of the PDE on the mesh and
the building of a discrete metric.

In this paper, we discuss three types of functional j and the extension to higher-
order approximations. For most cases, we propose to evaluate the method by mea-
suring the mesh-adaptive convergence order α , defined by:

error = O(N−
α

dim ), (4)

where N is the total number of nodes and dim the dimension of computational do-
main, and α = k+1 for a k-exact approximation.

2 Features-, goal-, norm-oriented formulations

These formulations are presented for the continuous case and applied to the second-
order accurate particular case of P1 approximations on triangles and tetrahedra.

2.1 Feature-based (FB) adaptation

The continuous feature-based anisotropic method (2)-(3) is generally defined by
replacing the local interpolation error by the application of the recovered Hessian of
the solution times a local mesh size defined by the continuous metric, see [2, 3, 4,
5, 6, 7, 8].

A typical example is the prediction of the sonic boom signature of a super-
sonic aircraft (see [3] for specific features). Let us consider the C25D geome-
try of the workshop [24]. We use the Mach number M as sensor, i.e. j(M ) =
‖M− πM M‖L1(Ωh)

. Cuts of mesh and solution are depicted in Figure 1. The FB
approach is particularly attractive due to its simplicity and its ability in taking into
account physical aspects through the choice of the sensors. However, for systems,
the choice of sensors is extremely sensitive.
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Fig. 1 Lowboom C25 computation with a feature-based mesh adaptation: Cut plane x = 30 (left)
and on symmetry plane (right).

Fig. 2 A typical comparison of feature-based (left) and goal-oriented (right) mesh adaptation for
the computation of sonic boom. On left the whole flow is captured, on right, focus is put on the
shock structures influencing the boom path at bottom.

2.2 The goal-oriented (GO) formulation

The GO mesh adaptation focuses on deriving the optimal mesh for computing a
prescribed scalar quantity of interest (QoI). Many papers deals with a posteriori
goal-based error formulation to drive adaptivity, using adjoint formulations or gra-
dients, e.g. [14, 13]. We investigate a priori based GO formulations for steady and
unsteady problems. Loseille et al. [11] derived the goal-based error estimate in a
steady context for Euler flows, showing that the QoI error estimate is expressed as a
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weighted interpolation error on solution flow fields. This leads to an optimal metric
computed as a sum of Hessians of Euler fluxes weighted by gradient components
of the adjoint state and permits to focus on the capture of important features with
respect to the chosen functional, such as sonic boom print at ground, see Figure 2.

2.3 Numerical corrector and norm-oriented (NO) formulation

Given a discrete problem, a mesh (of metric) Mh and the discrete solution Wh com-
puted with the mesh, we call “numerical corrector” a discrete field W ′h such that the
sum Wh +W ′h is a significantly more accurate approximation of the exact solution
than Wh. In other words, W ′h is a good approximation of the error. Clearly, W ′h is use-
ful for estimating the error, for correcting it, and for building a norm-oriented mesh
adaptation algorithm.

A trivial way to compute W ′h could be to first compute an extremely accurate and
extremely costly Wh/2k (k large) solution computed on a mesh Mh/2k obtained by
dividing k times the elements of Mh , and finally to put W ′h =Wh/2k−Wh. But the in-
teresting feature of a numerical corrector should be that its computational cost is not
much higher than the computational cost of Wh. We describe now a corrector eval-
uation of low computational cost relying on the application of a Defect Correction
principle and working on the initial mesh Mh:

Ψh(Wh +W ′h,DC)≈−Rh/2→hΨh/2(Rh→h/2Wh) ; W ′h,DC =W ′h,DC− (πhWh−Wh),

where πhWh−Wh is a recovery-based evaluation of the interpolation error (see [11]
for details). The notation Rh/2→h holds for the transfer (extension by linear inter-
polation) operator from the twice finer mesh Mh/2 to the initial mesh Mh, while
Rh→h/2 holds for the transfer operator from the initial mesh Mh to the twice finer
mesh Mh/2. The finer-mesh residual Ψh/2(Wh) can be assembled by defining the
sub-elements of Mh/2 only locally around any vertex of Mh. Applications of this
method to the Navier-Stokes model can be found in [22]. We present an application
with the Euler model used for sonic boom prediction. We consider again the C25
geometry. The important input is the pressure signature at one-body length below
the aircraft. Figure 3 depicts the pressure signal and the local error bar, from the
non-linear corrector, for a tailored mesh (mesh aligned with the Mach cone) and for
adapted meshes. The taylored mesh calculation may seem converged but the correc-
tor remains large. The right-hand side shows a more coherent convergence, with a
much smaller corrector.

We can now introduce the NO formulation. We base it on the L2-norm of ap-
proximation error. It consists in the minimization of the following expression with
respect to the mesh M :

j(M ) = ||W −WM ||2L2(Ω) with ΨM (WM ) = 0. (5)
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Fig. 3 Flow around a lowboom C25 geometry: Pressure levels (red) and non-linear corrector
(black) error intervals for the pressure (z = 0,y = −C). Top: on an adhoc tailored mesh. Bottom:
on a self-adaptive mesh (right). On right figure, the good convergence is indicated by much smaller
intervals.
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Introducing g = W −WM , we get a formulation similar to a GO formulation
j(M ) = (g,W −WM ). The central idea of NO is to replace g by the numerical
corrector W ′h as defined in this section. The rest of the NO process follows the GO
algorithm with g =W ′h. The whole NO adaptation algorithm finally writes:

Step 1: solve state equation for W
Step 2: solve corrector equation for W ′h
Step 3: solve adjoint equation for W ∗

Step 4: evaluate optimal metric as a function of W and W ∗

Step 5: generate unit mesh for Mopt,norm and go to Step 1.

Fig. 4 Elliptic test case of a 2D boundary layer. A comparison between uniform refinement
(“FMG”), feature/Hessian-based, and norm-oriented mesh adaptation methods: error |u− uh|L2

in terms of number of vertices.

In order to give an idea of how this NO works, we consider as benchmark a test
case from [15] featuring a 2D boundary layer (Figure 4). The Laplace equation is
solved with a RHS inducing the boundary layer depicted in the figure. FB and NO
mesh-adaptive methods are compared by displaying the convergence curve related
to Criterion (4). In abscissae the number of nodes used for computing the discrete
solution uh is shown, and in ordinates the L2-norm of the aproximation error u−
uh which is measured from the known analytic solution. When the FB method is
applied, a tremendous improvement of the error is obtained with 128 vertices, then a
uniform element division and further FB adaptation are applied in alternance. While
the element division is applied, the error is as expected divided by 4. In contrast, for
512, 1024, 2048,... vertices (abscissae in the figure), the effect of FB adaptation is to
increase the error, and the second-order convergence is lost. On the contrary, with
this test case, each NO mesh-adaptation phase improves (even slightly) the error
norm, producing an asymptotic numerical convergence of order two.
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3 Estimates for k-exact approximations

Due to their error size and characteristics (dispersion, dissipation), second-order
accurate approximations are unable to compute many phenomena. For smooth con-
texts, high-order methods bring crucial improvements.

3.1 Higher-order (HO) estimates

Main existing HO schemes satisfy the so-called k−exactness property expressing
the fact that if the exact solution is a polynomial of order k then the approximation
scheme will give the exact solution as answer. The assembly of these schemes in-
volves a step of polynomial reconstruction (e.g., ENO schemes), or of polynomial
interpolation (e.g., Continuous/discontinuous Galerkin). The main part of the error
can then be expressed in terms of a (k+1)-th term of a Taylor series where the spa-
tial increment is related with local mesh size. We want to stress that this is the key
of an easy extension of metric-based adaptation to HO schemes. We illustrate this
with the computation of 2D Euler flows. Considering a triangulation of the compu-
tational domain and its dual cells Ci built with triangle medians, the exact solution
W of Euler equations verifies (omitting initial conditions):

B(W,V0) = 0, ∀ V0 ∈ V0 = {V0 constant by cell}, with

B(W,V0) =
∫ T

0
∑

i
Ei(W,V0)dt +

∫ T

0

∫
∂Γ

FΓ (W ) ·nV0dΓ dt

Ei(W,V0) =
∫

Ci

V0
∂π0W

∂ t
dΩ +

1
2 ∑

j

∫
∂Ci∩∂C j

V0(F (W )|∂Ci +F (W )|∂C j) ·ndσ .

Here we denote by π0 the operator replacing a function by its mean on each cell, F
the Euler fluxes, and the second sum is taken over the cells j neighboring cell i. Let
us define a quadratic Central-ENO scheme [16, 18]. The computational cost of this
scheme is rather large but acceptable for 2D calculations (its extension to 3D is even
more computationally expensive). This scheme is based on a quadratic reconstruc-
tion on any integration cell Ci using the means of the variable on cells around Ci.
Let us denote by R0

2 the global reconstruction operator mapping the constant-by-cell
discrete field into its quadratic-by-cell reconstruction. The CENO scheme writes in
short:

Find W0 constant by cell s.t. B(R0
2W0,V0) = 0, ∀ V0 constant by cell.

A representative functional of goal-oriented error is:

δ j = (g,R0
2π0W −R0

2W0).

Lemma 1[19]: Introducing the adjoint state W ∗0 ∈ V0, solution of:
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∂B
∂W

(R0
2W0)(R0

2V0,W ∗0 ) = (g,R0
2V0), ∀ V0 ∈ V0. (6)

we have the following equivalence:

(g,R0
2π0W −R0

2W0)≈
∂B
∂W

(W )(R0
2π0W −W,W ∗0 ).� (7)

This estimate is typical of a k-exact variational scheme and permits to express the
error as a Taylor term of rank k+ 1, rank 3 in our case, with respect to directional
mesh size δx, which we replace by the power 3/2 of a quadratic term:

δ j � sup
δx

T(δx)3 ≈
(

sup
δx
|H̃|(δx)2

) 3
2
∀δx ∈ R2. (8)

In [19] we fit the second-order tensor H̃ to the third-order tensor T by least-squares,
and the optimal metric is computed in a similar way to the second-order accurate
case. An a priori better option for accounting higher-order interpolation error, not
tested here, is to apply the strategy of [21].

Remark: The a priori estimate of Lemma 1 is inspired by the a posteriori estimates
of Barth and Larson [17] in which the authors explain that the analysis extends
to many k-exact approximations of high-order. This is also true for the present a
priori analysis. In particular, the analogous estimate for a k-exact discontinuous Pk-
Galerkin approximation writes:

(g,ΠkW −Wk)≈
∂B
∂W

(W )(ΠkW −Wk,W ∗k ), (9)

where Wk and W ∗k are the DGk discrete state and adjoint and Πk the elementwise
interpolation of degree k.�

3.2 High-order accurate unsteady mesh adaptation

We illustrate the use of the above estimate (6)-(8) with an application to an unsteady
flow. For many propagation phenomena, the discretisation grid (space and time)
necessary for a complete representation is very heavy. We consider here an acoustic
wave propagation based on the Euler equations.

In order to apply an unsteady mesh adaptation, we adopt the so-called Global-
Fixed-Point algorithm [12]. In short, the time interval is divided in nadap sub-
intervals. After a computation of state and adjoint on the whole time interval, an
optimal space-time metric is evaluated as a set of spatial metrics for each of the
time sub-intervals.

In Figure 5, the propagation of a noise from a road (bottom left) to a balcony (near
top, right) around an anti-noise wall (middle of bottom) is computed. The functional
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Fig. 5 Goal Oriented unsteady calculation of nonlinear acoustics propagation with third-order
goal-oriented adaptation. Pressure at three different time levels and the corresponding meshes.

is the pressure integral on an interval of the balcony. Since a few wavelengths are
emitted at the noise source, the mesh adaptation process will concentrate on the part
of the wave train which will hit the balcony. This dramatically reduces the region
of the computational domain which needs to be refined. With 30980 vertices (mean
of the 20 meshes used over the time interval) the resolution is about 10 points per
half wave and would require 5 millions vertices if the mesh were a uniform mesh of
same maximal fineness. As for Criterion (4), we have measured for this case α =
2.45, which is not satisfactory with respect to the theoretical order of approximation,
which is 3, but already carries an important improvement with respect to analogous
adaptation based on a second-order finite-volume approximation, see [20].

4 Conclusions

The k-exact analysis described in this note allows us to express errors in terms
of interpolation errors. This holds for various k-exact approximations like FVM,
FEM, DG, ENO. This also holds for three types of adaptation strategies, namely
the feature-based, the goal-oriented, and the norm-oriented. Applications with P1-
Galerkin and P2-CENO approximations are demonstrated. This method can be com-
plemented with a special treatment of singularities, [25], and combined with a FMG
process, [23].
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