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Joint Flow and Density Reconstruction in Large Traffic Networks Using
Partial Turning Ratio Information

Martin Rodriguez-Vega∗, Carlos Canudas-de-Wit∗ and Hassen Fourati∗∗

Abstract— We address the recent problem of state reconstruc-
tion in large scale traffic networks using heterogeneous sensor
data. First, we deal with the conditions imposed on the number
and location of fixed sensors such that all flows in the network
can be uniquely reconstructed. We determine the minimum
number of sensors needed to solve the problem given partial
information of turning ratios, and then we propose a linear
time algorithm for their allocation in a network. Using these
results in addition to floating car data, we propose a method to
reconstruct all traffic density and flow. Finally, the algorithms
are tested in a simulated Manhattan-like network.

I. INTRODUCTION

The estimation of vehicle occupancy and vehicular flow in
traffic networks is crucial for traffic management operators
[1]. It allows to monitor the state of different urban areas and
to detect traffic congestion. This information can be used to
apply control strategies to reduce the impact of high traffic
demands.

Network state information can be recovered from hetero-
geneous data sources. Floating car data (FCD) is available
due to the expanded use of GPS-capable devices [1]. This
provides the traces of some vehicles which can be used
to estimate the mean speed over the entire network. On
the other hand, fixed sensors (e.g. magnetic loops) give a
reliable measure of the occupancy and traffic flow over a
specific location [2]. Furthermore, vehicle re-identification
sensors (e.g. Bluetooth and RFID identifiers) located in
road intersections can give information about the routing
preferences of vehicles [3], which can be used to estimate
the turning ratios in monitored places. These could also be
inferred from traffic cameras or from previous surveys [4].

Budget optimization, which traffic authorities often seek,
is related with the problem of finding minimum number
of sensors and their locations such that the traffic state is
identifiable. This problem has been a recent topic of high
interest [5], [6]. In some works it has been assumed that
turning ratio information is fully available. For instance, in
[7], sensors are associated with influence regions whose links
are calculated by means of the measured data to provide
heuristics on the upper and the lower bounds on the minimum
number of sensors. In [8], the sensor location problem is
solved via an optimization setup by reducing the propagation
of noise when inferring unmonitored links. However, the
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assumption that all turning ratios are known may not be
realistic in real world traffic applications.

This has motivated researchers to look at cases where
no turning ratios are known. In [9], [10] only vehicular
flow conservation equations are used to determine bounds
on the number of sensors and their locations. The results
were improved by [10]. They compute the minimum number
of sensors and their locations by first expressing the flow
relations as under-determined set of linear equations, and
then, by operating via the Gaussian elimination method.
Unfortunately, the required number of sensors range between
50% and 60% of all links for real traffic networks, which is
not possible to achieve under budget constraints.

In parallel, density estimation has also been a field of ac-
tive research [11]. However, most of the research in this topic
has been centered in highways. For urban traffic networks,
[8], [12] and [13] have provided methods to recover both
flow and density by using turning ratio information in all
intersections.

To the best of our knowledge, no results have been
provided for density and flow reconstruction in urban traffic
networks when turning ratios are only partially known. In this
paper, we incorporate partial information of turning ratios
to calculate the minimum number of sensors. Additionally,
we present a modified version of the algorithms developed
in [14] to use this partial information for the location
of sensors. We use the data collected from all different
sources to jointly reconstruct flow and density everywhere.
We evaluate the proposed algorithms in a simulated traffic
network. This work is carried out within the context of the
ERC, Scale-FreeBack (see, [15]), which aims at developing
holistic scale-free modeling, estimation and control methods
for controlling complex network systems with application to
large scale traffic systems.

II. PROBLEM FORMULATION

Traffic networks are modeled as a directed graph G =
{N , E} where nodes N = {1, 2, . . . , nN } represent traffic
intersections, and links E = {1, 2, . . . , nE} correspond to
roads which are partitioned in three sets: incoming boundary
roads E in, internal network roads Enet, and outgoing boundary
roads Eout, with cardinalities nin, nnet, nout, respectively. For
any k ∈ N , the sets I(k) ⊂ E and O(k) ⊂ E are the links
that go in or come out of k, respectively.

In this paper, we consider stationary traffic networks so
that flow dynamics are in steady-state. This is formally true
only when external boundary flows are constant and the
network dynamics reach equilibrium, or it is approximately



true when the external boundary flows slowly evolve in time.
The reason of this assumption is based on the idea that
our density/flow reconstruction can be performed in a fast
enough time-scale when compared with the evolution of the
natural network dynamics, and therefore the analysis can be
carried out using only flow/density equilibrium equations.
This assumption substantially simplifies the reconstruction
algorithm design, and is typically considered in the literature
[5]. Nevertheless, our proposed solution will be tested in a
dynamic network simulation.

For every road e ∈ E , we assign scalar variables ρe, ϕe, ve
representing the equilibrium density, flow, and speed, re-
spectively. We define the turning ratio re,f ∈ (0, 1] as the
proportion of flow from e that is transfered to f if they are
connected to the same intersection for which e is incoming
and f is outgoing. Otherwise, re,f = 0.

We assume that traffic flow is a conserved quantity, where
the sources are only the elements of E in, and sinks are only
the elements of Eout. In equilibrium, flow is constant along
each road, and there is no accumulation of vehicles. Thus,
each intersection k must obey an equation of the form:∑

e∈O(k)

ϕe −
∑
e∈I(k)

ϕe = 0. (1)

The collection of equations for all k ∈ N can be rewritten
in matrix notation as L0ϕ = 0, where, ∀k ∈ N and ∀e ∈ E ,
we have

L0
k,e =

 1 if e ∈ O(k)
−1 if e ∈ I(k)

0 else
.

This matrix has dimensions nN × nE .
If knowledge of turning ratios is available, the conser-

vation equations can be rewritten to include this additional
information: the outflows of every intersection can be ex-
pressed by the sum of inflow contributions weighted by its
turning ratios,

ϕf −
∑
e∈I(k)

re,fϕe = 0 : ∀f ∈ O(k) (2)

where the turning ratios satisfy the condition
∑
f re,f = 1.

Expression (2) is only valid for the links that go out from a
node in N , so the flow of links belonging to E in cannot be
written in this way. Similarly, the flow of links belonging to
Eout does not contribute to the sum in the second term of the
equation.

The ensemble of all equations following (2) is expressed

in matrix form as
[
ϕnet
ϕout

]
− RT

[
ϕin
ϕnet

]
= 0 , where R

is the matrix of turning ratios from the roads in E in ∪Enet to
road in Enet ∪Eout, and ϕin, ϕnet, ϕout are the flows of roads
E in, Enet, Eout, respectively.

To simplify, let F− and F+ be selection matrices such

that F−ϕ =

[
ϕin
ϕnet

]
and F+ϕ =

[
ϕnet
ϕout

]
. With this

notation, the system of equations is LRϕ = 0, where LR =
F+ −RTF−.

It is clear that matrices L0 and LR represent the flow
conservation equations, and that LR contains also contain

information about the turning ratios. Note that both matrices
have nE columns, but L0 has only nN rows, while LR has
nE − nin rows. Thus a unique solution does not exist. To
uniquely reconstruct network flows it is thus required to
include additional sensor data such that these systems can
be solved.

Let S ⊆ E be the set of roads where flow sensors are
located. To represent flow measurements, the sensing matrix
C(S) is defined such that the entry (i, e) is 1 if the i-th sensor
is present at road e , and 0 otherwise. Flow measurements
from sensors are denoted as ϕm. The selection of a suitable
set of measured links S such that a unique reconstruction of
the vehicular flow vector ϕ can be obtained is known as the
Network Sensor Location Problem (NSLP) [9].

The fundamental diagram is a well-known empirical re-
lation between traffic variables that allows to express flow
solely as a function of density: ϕ = Φ(ρ). One of the most
popular choices is the triangular fundamental diagram [2]:

Φ(ρ) =

{
v0ρ if 0 ≤ ρ ≤ ρc

w(ρmax − ρ) if ρc ≤ ρ ≤ ρmax
, (3)

where v0 is the free-flow speed, w is the congested wave
propagation speed, ρmax is the jam density, and the maximal
flow ϕmax occurs at the critical density ρc. Vehicle speed is
calculated as the slope of the line that connects the origin
to any point in the diagram [2]. The first linear portion of
the function (density below the critical value) receives the
name of free-flow regime and is characterized by all vehicles
having speed v0. The region ρ > ρc is called the congested
regime as vehicles start to interact with each other reducing
the average speed of the road.

It is not possible to uniquely reconstruct density from
either flow or speed alone due to the non-unicity of the
inverse of the map Φ−1(·). For instance, for a measured
flow, two values of densities can be found. Likewise, if we
only measure speeds, we cannot reconstruct density below
its critical value. Thus, to recover the full information it is
required to use both speed and flow data. Due to widespread
mobile devices, we assume that the mean speed data is
available over all links of the network.

Problem statement. Given any traffic network G =
{N , E} where turning ratio information is available only for
the set R ⊂ N : 1. determine the minimum number of sensors
and their locations to solve the NSLP, and 2. use speed data
and sensor measurements to estimate flow and density for
all roads in the network.

The first part of the problem will be treated in Section III,
and the second in Section IV.

III. NETWORK SENSOR LOCATION PROBLEM (NSLP)

The flow conservation equations were expressed for two
specific cases: either turning ratios were unknown resulting
in matrix L0, or the turning ratios were assumed to be known
everywhere (matrix LR). However, in some cases it may be
possible that turning ratios are only available at a reduced set
of intersections. Denote R ⊆ N as the set of intersections
where turning ratio information is known. We define L(R)



as the matrix that expresses the conservation equations by
using the most information, and such that L(R)ϕ = 0.

To find the structure of this matrix we proceed as follows.
Note that L0 can obtained by making linear combinations
of the rows of LR: for each intersection k, there are |O(k)|
rows in LR but only one row in L0. In an analogue manner,

we write L(R) = J(R)LR, where J(R) =

[
X
Y

]
, such

that X is a diagonal matrix defined as

Xe,e =

{
1 if e ∈

⋃
k∈R O(k)

0 else , (4)

and Y is such that ∀k ∈ (N \ R) and ∀e ∈ (Enet ∪ Eout),

Yk,e =

{
1 if e ∈ O(k)
0 else . (5)

Matrix J(R) has the effect of combining the rows of LR

for which turning ratios are unknown, thus generating an
equation following (1). Rows of LR related to outflows of
nodes in R are unmodified.

The NSLP for partially known turning ratios can be split
into two steps. First, we determine the minimum number of
sensors needed to solve the problem. Then, we propose an
algorithm that finds the sensor locations.

A. Minimum number of sensors

To uniquely reconstruct flows, we require the system of
equations [

L(R)
C(S)

]
ϕ =

[
0
ϕm

]
(6)

to admit only one solution. Our problem is to find the set
S of minimal cardinality nS such that the matrix in the left
hand side of (6) is full rank.

Lemma 1. Given any traffic network G = {N , E} such that
every link e ∈ E is part of a directed path that ends in a link
belonging to Eout, the minimum number of sensors needed
to solve the NSLP is given by

nS = nE − |N \ R| −
∑
k∈R

|O(k)|. (7)

Proof. Note that from (6), nS = nE− rank{L(R)}. We shall
prove that
i) rank[J(R)] = |N − R|+

∑
k∈R

|O(k)|

ii) LR is full rank.
To prove i) we will first show that rank{J(R)} =

rank{X} + rank{Y }. Then, we show that rank{X} =∑
k∈R |O(k)| and that rank{Y } = |N \ R|.
By inspection of (4) and (5), a column e of X can only

have a nonzero element if there exists an intersection k ∈ R

such that e ∈ O(k). On the other hand, a column e of Y
can only have a nonzero element if e ∈ O(m) for some
intersection m ∈ (N \R). Due to the fact that (N \R)∩R =
∅, column e cannot be simultaneously nonzero for both X
and Y . Thus, any nonzero row of Y cannot be written as a
linear combination of the rows of X , and vice versa.

Now we proceed to show that rank{X} =
∑
k∈R |O(k)|.

From (4), X is a diagonal matrix and hence, its rank is equal

to its number of nonzero elements, which is |
⋃
k∈R O(k)| =∑

k∈R |O(k)|, because the sets O(k) are mutually disjoint.
To show that rank{Y } = |N \ R| we follow a similar

analysis. Elements Yk,e and Ym,e cannot be simultaneously
nonzero if k 6= m. Thus, all rows of Y are linearly
independent, as they cannot be written as linear combinations
of the others. As there are |N \R| rows, rank{Y } = |N \R|.

To prove ii) we will show that LR can be written as LR =
[A B] where B is an invertible matrix. Recall that LR =
F+ − RTF−. Without loss of generality, assume that the
ordering of E is such that the smaller indexes correspond to
E in, followed by Enet and ending with Eout. Thus, F− =
[Inin+nnet 0(nin+nnet)×nout ] and F+ = [0(nnet+nout)×nin Innet+nout ].

Let B a square matrix by selecting the las nnet + nout
columns of LR. Thus, B = I− R̃T , such that

R̃ =

[
0nnet×nin Innet

0nout×nin 0nout×nnet

]
R.

Note that all diagonal entries of R̃ are 0, and that for each of
the first nnet rows, the sum of all elements is 1. Thus, ∀e, f ,

|BTe,e| ≥
∑
f 6=e

|BTe,f |, (8)

which means that BT is a weakly diagonally dominant
matrix. The rows corresponding to the links Eout are only
nonzero in the diagonal, and meet (8) with the strict in-
equality. As every link is part of a path that ends in an
element of Eout, for every row e there is a chain of non-
zero coefficients BTe,a1 , B

T
a1,a2 , B

T
a2,a3 , . . . , B

T
am,f

such that
f ∈ Eout. In [16], it was proved that matrices meeting this
properties are nonsingular. Thus, B is an invertible matrix
and therefore, LR is full-row rank.

As special cases, when R = ∅, the required number of
sensors is nS = nE − nN , and when R = N the required
number of sensors if nS = nin. This agrees with the results
presented in [8], [10].

B. Sensor location

Graph-based approaches, such as the one in [14], have
been shown to be useful to solve the sensor location problem.
Because of this, we devised the following algorithm that
includes the partial information about turning ratios.

Algorithm 1. Sensor location
Inputs: Traffic network graph G = {N , E}; set of R

intersections with turning ratio information.
Output: Subset of measured links S.

1) Generate a virtual node k0 and connect entering and
exiting external flows to it.

2) For each k ∈ R: arbitrarily select all but one of the
outgoing links of k and remove them from the graph,
such that the resulting graph is connected. Denote the
removed links as ER.

3) Construct a spanning tree from the remaining graph,
and denote Eu as the set of links contained in the tree.

4) Locate sensors as S = E − (ER ∪ Eu): links that were
not removed in Step 2 and that are not part of the tree.



This algorithm presents an heuristic modification to the
work of [14] such that turning ratios are included. In the
case R = ∅ the two algorithms are equal.

It is important to remark that this algorithm locates exactly
the same number of sensors as indicated by the lemma in
Section III-A. By adding node k0 in Step 1, a strongly
connected graph with nN +1 nodes and nE links is obtained
[17]. Then, Step 2 removes a total of

∑
k∈R |O(k)| − |R|

links. The input to Step 3 is a connected graph with nN + 1
nodes. From graph theory, any spanning tree made from this
graph will have nN links. Therefore, the number of links that
do not make part of the tree is nE−

∑
k∈R |O(k)|+|R|−nN ,

which is equivalent to the expression in (7).
The rationale of the algorithm is to locate sensors such

that they generate linearly independent rows in (6). It has
been shown in [14], [17], [18] that a basis for the null space
of L0 can be obtained from the cycle space of the graph. If
sensors are located in links such that their removal causes
the graph to be cycle-free, then the dimension of the null
space is reduced to 0 and flow can be reconstructed. Our
contribution is focused on Step 2, which is an heuristic that
allows to eliminate the selection of rows that are linearly
dependent due to the knowledge of the turning ratios. Putting
sensors in several outgoing links of an intersection may
give redundant information, as their flows can be calculated
by the knowledge of incoming links. In Step 3, all the
remaining cycles of the graph are removed by constructing a
spanning tree, which is an optimal cycle-free structure. Note
that spanning trees are not unique, but because the graph is
unweighted, all of them are equally possible for the problem
at hand.
Example: Consider the traffic network shown in Fig. 1a.
This graph has nN = 6 intersections and nE = 17
roads. Additionally, E in = {1, 2, 3}, Enet = {4, 5, . . . , 13},
and Eout = {14, 15, 16, 17}. Turning ratios are known at
intersections R = {1, 3}. From Lemma 1, the minimum
number of required sensors is nS = 17−(6−2)−(3+3) = 7.
To locate the sensors, we use Algorithm 1:
• Step 1: add the virtual node which makes the graph

strongly connected (Fig. 1b).
• Step 2: select links 5 and 6 from node 1, and links 10

and 11 from node 3 and remove them from the graph,
as shown with dotted gray lines in Fig. 1c. Define ER =
{5, 6, 10, 11}.

• Step 3: construct a spanning tree from the links (E\ER).
The tree links are Eu = {1, 4, 8, 9, 14, 17} shown with
the black solid lines in Fig. 1d.

• Step 4: locate sensors in links S = E \ (ER ∪ Eu) =
{2, 3, 7, 12, 13, 15, 16}. This links are shown with blue
dashed lines in Fig. 1d.

Finally, note that the number of sensors is |S| = 7, which
is in agreement with the previous results.

IV. JOINT DENSITY AND FLOW RECONSTRUCTION

To be able to calculate density from flow, we transform
the nonlinear relation (3) into a set of linear equations using
speed information. We define a selection function S(v), such
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Fig. 1: Example of Algorithm 1

that it identifies the current linear zone of the fundamental
diagram:

S(ve) =

{
1 if v0 − ve < ε
0 else , (9)

where ε is a tunable parameter. Then, an expression for the
density at each link is

ρe = S(ve)
ϕe
v0

+ [1− S(ve)]
(
ρmax −

ϕe
w

)
,

which can be written in matrix form as ρ = W (v)ϕ+d(v)



Fig. 2: Manhattan grid with 100 intersections. Square red
nodes represent intersections where turning ratios are known
and blue points correspond to unmeasured intersections.
Circled green links represent the location of sensors.

where ∀e ∈ E ,

We,e(v) =

{
1/v0 if v0 − ve < ε
−1/w if v0 − ve ≥ ε

is a diagonal matrix, and

de(v) =

{
0 if v0 − ve < ε

ρmax if v0 − ve ≥ ε
is a vector.

The joint density-flow reconstruction can thus be formu-
lated as a quadratic optimization problem subject to linear
constraints:

min
ϕ̂,ρ̂

∣∣∣∣∣∣∣∣[ W (v) −I
C(S) 0

] [
ϕ̂
ρ̂

]
−
[
d(v)
ϕm

]∣∣∣∣∣∣∣∣2
s.t. L(NR)ϕ̂ = 0, 0 ≤ ϕ̂ ≤ ϕmax, 0 ≤ ρ̂ ≤ ρmax

,

(10)
where ρ̂ and ϕ̂ are the estimated quantities.

V. NUMERICAL EXAMPLE

To evaluate the proposed method, we considered the simu-
lated traffic network shown in Fig. 2, which is a Manhattan-
grid with 100 intersections and 220 roads. Turning ratios
are selected to be known at 40% of the intersections chosen
randomly.

As discussed in Section II, the proposed method considers
steady-state networks. However, in real traffic applications
this is generally very hard to achieve. For this purpose, we
tested the performance of the algorithms under time-varying
conditions. To generate synthetic dynamic traffic data we use
the well-known Cell Transmission Model (CTM) [19], which
is a discretization of the Lighthill-Williams-Richards (LWR)
first order traffic model:

ρe(t+ 1) = ρe(t) +
∆t

L

[
ϕupe (t)− ϕdowne (t)

]
, (11)

where t is the discrete time index, ∆t is the simulation step
time, L is the road length, and ϕupe , ϕ

down
e are the upstream

and downstream flows in link e ∈ E , respectively. At

TABLE I: Parameters used for the simulations

Variable Symbol Value Units
Road length L 500 m
Time step ∆t 15 s
Free-flow speed v0 50 km/h
Max density ρmax 125 veh/km
Max flow ϕmax 1980 veh/h
Critical density ρc 39.6 veh/km
Congested wave speed w 23.18 km/h

intersections, flows are determined using the junction model
presented in [20], [21] such that the intersection’s throughput
(sum of all flows) is maximized while also respecting the
turning ratios. The traffic network parameters are shown in
Table I. The time step was chosen such that L/∆t > v0 to
satisfy the CFL condition [20].

To initialize the traffic network, a first simulation with
constant input flows was run until equilibrium was obtained.
Afterwards, each of the boundary input flows was subject to
sinusoidal variations:

ϕexte = ϕss +A sin(ωt) , ∀e ∈ E in,
where ϕss was the flow value obtained for the steady-state
initial simulation, the amplitude A = 0.25ϕmax was chosen
such that the input flows would reach ϕmax, and ω is an
arbitrary frequency. Several runs of the algorithm were made
by modifying the value of ω, such that it followed different
scenarios of real world traffic patterns, where the associated
periods vary between 5 minutes and 6 hours.

To evaluate the algorithm’s performance over time, we
calculate the normalized root mean square error (NRMSE)
of the density along all links in the network relative to the
maximum values:

NRMSEρ(t) =
1

ρmax

√√√√ 1

nE

nE∑
e=1

(ρe(t)− ρ̂e(t))2.

An analogous expression is used to calculate NRMSEϕ(t)
relative to flow.

A. Results and discussion

With the partial knowledge of turning ratios in the con-
sidered scenarios, 80 fixed flow sensors are needed, which
represents 36% of all the links. This is an improvement in
comparison with the case when turning ratios are unknown,
which requires 120 sensors (55% of the links). Furthermore,
the case when turning ratios are fully known locates only 20
sensors (9%), albeit with the requirement of knowing turning
ratios in 60 additional intersections.

Figure 3 shows the obtained RMSE for both density and
flow for three different scenarios of varying input frequency,
with corresponding periods of 10 minutes, 1 hour and 6
hours. Through all cases, spikes of high and low errors can
be associated with the regions of maximum and minimum
derivative of the input. As the traffic propagates in the net-
work, roads will follow the input but with phase differences.
The blue dashed line shows the case with period of 10
minutes, whose rate of change is faster than traffic propaga-
tion in the network. Steady-state conditions are almost never
achieved and the total error ranges from 5% to 30%. By



Fig. 3: NRMSE for flow and density reconstruction for
different input flow variation frequencies.

increasing the period to 1 hour (red dotted line), the overall
error is reduced, and the network can reach equilibrium-like
state when the input’s time-variation is small. Nevertheless,
when the time derivative of the input is steep, error peaks
of 20% are obtained. For the case with period of 6 hours
shown with a continuous yellow line, errors are below 15%
for flow and below 5% for density. Error minima of 0% show
that input variations can be sufficiently constant to provide
network equilibrium.

VI. CONCLUDING REMARKS

In this paper, we study and solve the network sensor
location problem and joint flow and density reconstruction
for large scale traffic networks by considering partial infor-
mation of turning ratios. It is shown that this information
can be used to effectively reduce the minimum number of
required sensors, and a heuristic algorithm for their locations
is proposed. In addition, flow sensor measurements and
floating car data (speed measurements) are incorporated in
an optimization problem that allows to reconstruct flows and
densities for all roads in a traffic network. The proposed
methods were evaluated in a simulated Manhattan grid.
The results show that, even when the assumption that the
network is in equilibrium state is not met, the algorithms
find reasonable close results compared to the real values.

Future research on this aspect involves the reconstruction
of the traffic state while taking into account network dynam-
ics. Other future works include the development of methods
to place sensors in optimal locations when budget constraints
forces the use of less sensors than the minimum number
determined in this paper.
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