
HAL Id: hal-01931199
https://hal.inria.fr/hal-01931199

Submitted on 22 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unique solutions of contractions, CCS, and their HOL
formalisation

Chun Tian, Davide Sangiorgi

To cite this version:
Chun Tian, Davide Sangiorgi. Unique solutions of contractions, CCS, and their HOL formalisation.
Combined 25th International Workshop on Expressiveness in Concurrency and 15th Workshop on
Structural Operational Semantics, Sep 2018, Beijing, China. pp.122 - 139, �10.4204/EPTCS.276.10�.
�hal-01931199�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/162967193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01931199
https://hal.archives-ouvertes.fr

Submitted to:
EXPRESS/SOS 2018

Unique solutions of contractions, CCS, and
their HOL formalisation

Chun Tian
Fondazione Bruno Kessler∗

Trento, Italy
ctian@fbk.eu

Davide Sangiorgi
Università di Bologna and INRIA

Bologna, Italy
davide.sangiorgi@unibo.it

The unique solution of contractions is a proof technique for bisimilarity that overcomes cer-
tain syntactic constraints of Milner’s “unique solution of equations” technique. The paper
presents an overview of a rather comprehensive formalisation of the core of the theory of CCS
in the HOL theorem prover (HOL4), with a focus towards the theory of unique solutions
of contractions. (The formalisation consists of about 20,000 lines of proof scripts in Stan-
dard ML.) Some refinements of the theory itself are obtained. In particular we remove the
constraints on summation, which must be weakly-guarded, by moving to rooted contraction,
that is, the coarsest precongruence contained in the contraction preorder.

1 Introduction

A prominent proof method for bisimulation, put forward by Robin Milner and widely used in
his landmark CCS book [22] is the unique solution of equations, whereby two tuples of processes
are componentwise bisimilar if they are solutions of the same system of equations. This method
is important in verification techniques and tools based on algebraic reasoning [4, 29, 30].

In the versions of Milner’s unique solution theorems for proving that all solutions are weakly
(or rooted) bisimilar (in practice these are the most relevant cases), however, Milner’s proof
method has severe syntactical limitations, such that the equations must be “guarded and se-
quential,” that is, the variables of the equations may only be used underneath a visible prefix
and proceed, in the syntax tree, only by the sum and prefix operators. One way of overcoming
such limitations is to replace equations with special inequations called contractions [32, 33].
Contraction is a preorder that, roughly, places some efficiency constraints on processes. The
uniqueness of solutions of a system of contractions is defined as with systems of equations: any
two solutions must be bisimilar. The difference with equations is in the meaning of a solution:
in the case of contractions the solution is evaluated with respect to the contraction preorder,
rather than bisimilarity. With contractions, most syntactic limitations of the unique-solution
theorem can be removed. One constraint that still remains in [33] (in which the issue is bypassed
using a more restrictive CCS syntax) is the occurrences of direct sums, due to the failure of the
substitutivity of contraction under direct sums.

The main goal of the work described in this paper is a rather comprehensive formalisation of
the core of the theory of CCS in the HOL theorem prover (HOL4), with a focus on the theory
of unique solutions of contractions. The formalisation, however, is not confined to the theory of
unique solutions of equations, but embraces a significant portion the theory of CCS [22] (mostly
because the theory of unique solutions relies on a large number of more fundamental results).
∗Part of this work was carried out when the first author was studying at Università di Bologna.

2

Indeed the formalisation encompasses the basic properties of strong and weak bisimilarity (e.g.
the fixed-point and substitutivity properties), the basic properties of rooted bisimilarity (the
congruence induced by weak bisimilarity, also called observation congruence), and their alge-
braic laws. Further extensions (beyond Nesi [24]) include four versions of “bisimulation up to”
techniques (e.g., bisimulation up-to bisimilarity) [22, 34], and the expansion and contraction
preorder (two efficiency-like refinements of weak bisimilarity). Concerning rooted bisimilarity,
the formalisation includes Hennessy Lemma and Deng Lemma (Lemma 4.1 and 4.2 of [15]),
and two long proofs saying the rooted bisimilarity is the coarsest (largest) congruence contained
in (weak) bisimilarity: one following Milner’s book [22], with the hypothesis that no processes
can use up all labels; the other without such hypothesis, essentially formalising van Glabbeek’s
paper [12]. Similar theorems are proved for the rooted contraction preorder. In this respect, the
work is an extensive experiment with the use of the HOL theorem prover and its most recent
developments, including a package for expressing coinductive definitions.

From the view of CCS theory, this formalisation has offered us the possibility of further
refining the theory of unique solutions of equations, as formally proving a previously known
result gives us a chance to see what’s really needed for establishing that result. In particular,
the existing theory [33] has placed limitations on the body of the contractions due to the sub-
stitutivity problems of weak bisimilarity and other behavioural relations with respect to the
sum operator. We have thus refined the contraction-based proof technique, by moving to rooted
contraction, that is, the coarsest precongruence contained in the contraction preorder. The re-
sulting unique-solution theorem is now valid for rooted bisimilarity (hence also for bisimilarity
itself), and places no constraints on the occurrences of sums.

Another advantage of the formalisation is that we can take advantage of results about differ-
ent equivalences or preorders that share a similar proof structure. Examples are: the results that
rooted bisimilarity and rooted contraction are, respectively, the coarsest congruence contained
in weak bisimilarity and the coarsest precongruence contained in the contraction preorder; the
result about unique solution of equations for weak bisimilarity that uses the contraction pre-
order as an auxiliary relation, and other unique solution results (e.g., the one for rooted in which
the auxiliary relation is rooted contraction); various forms of enhancements of the bisimulation
proof method (the ‘up-to’ techniques). In these cases, moving between proofs there are only a
few places in which the HOL proof scripts have to be modified. Then the successful termination
of the proof gives us a guarantee that the proof is complete and trustworthy, removing the risk
of overlooking or missing details as in hand-written proofs.

Structure of the paper Section 2 presents basic background materials on CCS, including its
syntax, operational semantics, bisimilarity and rooted bisimilarity. Section 3 discussed equations
and contractions. Section 4 presents rooted contraction and the related unique-solution result
for rooted bisimilarity. Section 5 highlights our formalisation in HOL4. Finally, Section 6 and
7 discuss related work, conclusions, and a few directions for future work.

2 CCS

We assume a possibly infinite set of names L = {a,b, . . .} forming input and output actions, plus
a special invisible action τ /∈L , and a set of variables A,B, . . . for defining recursive behaviours.
Given a deadlock 0, the class of CCS processes is then inductively defined from 0 by the op-

C. Tian & D. Sangiorgi 3

µ.P µ−→ P

P
µ−→ P ′

P +Q
µ−→ P ′

P
µ−→ P ′

P |Q µ−→ P ′ |Q
P

a−→ P ′ Q
a−→Q′

P |Q τ−→ P ′ |Q′

P
µ−→ P ′

(νa)P µ−→ (νa)P ′
µ 6= a,a

P{recA.P/A} µ−→ P ′

recA.P µ−→ P ′

P
µ−→ P ′

P [rf] rf(µ)−−−→ P ′ [rf]
∀a. rf(a) = rf(a)

Figure 1: Structural Operational Semantics of CCS

erators of prefixing, parallel composition, summation (binary choice), restriction, recursion and
relabeling:

µ := τ | a | a
P := 0 | µ.P | P1 | P2 | P1 +P2 | (νa)P | A | recA.P | P [rf]

The operational semantics of CCS is given by means of a Labeled Transition System (LTS),
shown in Fig. 1 as SOS rules (the symmetric version of the two rules for parallel composition
and the rule for sum are omitted). A CCS expression uses only weakly-guarded sums if all
occurrences of the sum operator are of the form µ1.P1 +µ2.P2 + . . .+µn.Pn, for some n ≥ 2.
The immediate derivatives of a process P are the elements of the set {P ′ | P µ−→ P ′ for some µ}.
Some standard notations for transitions: ε=⇒ is the reflexive and transitive closure of τ−→, and µ=⇒
is ε=⇒ µ−→ ε=⇒ (the composition of the three relations). Moreover, P µ̂−→ P ′ holds if P µ−→ P ′ or (µ= τ

and P = P ′); similarly P µ̂=⇒ P ′ holds if P µ=⇒ P ′ or (µ= τ and P = P ′). We write P (µ−→)nP ′ if P
can become P ′ after performing n µ-transitions. Finally, P µ−→ holds if there is P ′ with P µ−→ P ′,
and similarly for other forms of transitions.

Further notations Letters R, S range over relations. We use infix notation for relations, e.g.,
P RQ means that (P,Q) ∈R. We use a tilde to denote a tuple, with countably many elements;
thus the tuple may also be infinite. All notations are extended to tuples componentwise; e.g.,
P̃ R Q̃ means that PiRQi, for each component i of the tuples P̃ and Q̃. And C[P̃] is the process
obtained by replacing each hole [·]i of the context C with Pi. We write Rc for the closure of
a relation under contexts. Thus P RcQ means that there are context C and tuples P̃ , Q̃ with
P =C[P̃],Q=C[Q̃] and P̃ R Q̃. We use the symbol def= for abbreviations. For instance, P def= G,
where G is some expression, means that P stands for the expression G. If ≤ is a preorder, then
≥ is its inverse (and conversely).

2.1 Bisimilarity and rooted bisimilarity

The equivalences we consider here are mainly weak ones, in that they abstract from the number
of internal steps being performed:
Definition 2.1. A process relation R is a bisimulation if, whenever P RQ, we have:

1. P µ−→ P ′ implies that there is Q′ such that Q µ̂=⇒Q′ and P ′ RQ′;
2. Q µ−→Q′,implies that there is P ′ such that P µ̂=⇒ P ′ and P ′ RQ′.

P and Q are bisimilar, written as P ≈Q, if P RQ for some bisimulation R.

4

We sometimes call bisimilarity the weak one, to distinguish it from strong bisimilarity (∼),
obtained by replacing in the above definition the weak answer Q µ̂=⇒Q′ with the strong Q µ−→Q′.
Weak bisimilarity is not preserved by the sum operator (except for guarded sums). For this,
Milner introduced observational congruence, also called rooted bisimilarity [15, 31]:
Definition 2.2. Two processes P and Q are rooted bisimilar, written as P ≈c Q, if we have:

1. P µ−→ P ′ implies that there is Q′ such that Q µ=⇒Q′ and P ′ ≈Q′;
2. Q µ−→Q′ implies that there is P ′ such that P µ=⇒ P ′ and P ′ ≈Q′.

Theorem 2.3. ≈c is a congruence in CCS, and it is the coarsest (i.e. largest) congruence
contained in ≈.

3 Equations and contractions

3.1 Systems of equations

Uniqueness of solutions of equations [22] intuitively says that if a context C obeys certain
conditions, then all processes P that satisfy the equation P ≈ C[P] are bisimilar with each
other. We need variables to write equations. We use capital lettersX,Y,Z for these variables and
call them equation variables. The body of an equation is a CCS expression possibly containing
equation variables. Thus such expressions, ranged over by E, live in the CCS grammar extended
with equation variables.
Definition 3.1. Assume that, for each i of a countable indexing set I, we have variables Xi, and
expressions Ei possibly containing such variables. Then {Xi = Ei}i∈I is a system of equations.
(There is one equation for each variable Xi.)

We write E[P̃] for the expression resulting from E by replacing each variable Xi with the
process Pi, assuming P̃ and X̃ have the same length. (This is syntactic replacement.)
Definition 3.2. Suppose {Xi = Ei}i∈I is a system of equations:
• P̃ is a solution of the system of equations for ≈ if for each i it holds that Pi ≈ Ei[P̃];
• it has a unique solution for ≈ if whenever P̃ and Q̃ are both solutions for ≈, then P̃ ≈ Q̃.
For instance, the solution of the equation X = a.X is the process R def= recA. (a.A), and for

any other solution P we have P ≈ R. In contrast, the equation X = a | X has solutions that
may be quite different, for instance, K and K | b, for K def= recK. (a.K). (Actually any process
capable of continuously performing a actions (while behaves arbitrarily on other actions) is a
solution for X = a |X.)
Definition 3.3 (guardedness of equations). A system of equations {Xi = Ei}i∈I is
• weakly guarded if, in each Ei, each occurrence of an equation variable is underneath a
prefix;
• (strongly) guarded if, in each Ei, each occurrence of an equation variable is underneath a

visible prefix;
• sequential if, in each Ei, each of its subexpressions with occurrence of an equation variable,
apart from the variable itself, is in forms of prefixes or sums.

Theorem 3.4 (unique solution of equations, [22]). A system of guarded and sequential equations
(without direct sums) {Xi = Ei}i∈I has a unique solution for ≈.

To see the need of the sequentiality condition, consider the equation (from [22])X = νa(a.X |
a) where X is guarded but not sequential. Any process that does not use a is a solution.

C. Tian & D. Sangiorgi 5

3.2 Contractions

The constraints on the unique-solution Theorem 3.4 can be weakened if we move from equations
to a special kind of inequations called contractions.

Intuitively, the bisimilarity contraction �bis is a preorder in which P �bis Q holds if P ≈Q
and, in addition, Q has the possibility of being at least as efficient as P (as far as τ -actions
performed). Process Q, however, may be nondeterministic and may have other ways of doing
the same work, and these could be slow (i.e., involving more τ -steps than those performed by
P).

Definition 3.5. A process relation R is a (bisimulation) contraction if, whenever P RQ,

1. P µ−→ P ′ implies there is Q′ such that Q µ̂−→Q′ and P ′ RQ′;

2. Q µ−→Q′ implies there is P ′ such that P µ̂=⇒ P ′ and P ′ ≈Q′.

Bisimilarity contraction, written as P �bis Q (P contracts to Q), if P R Q for some
contraction R.

In the first clause Q is required to match P ’s challenge transition with at most one transition.
This makes sure that Q is capable of mimicking P ’s work at least as efficiently as P . In contrast,
the second clause of Definition 3.5, on the challenges from Q, entirely ignores efficiency: it is
the same clause of weak bisimulation — the final derivatives are even required to be related by
≈, rather than by R.

Bisimilarity contraction is coarser than the expansion relation �e [3, 32]. This is a preorder
widely used in proof techniques for bisimilarity and that intuitively refines bisimilarity by for-
malising the idea of ‘efficiency’ between processes. Clause (1) is the same in the two preorders.
But in clause (2) expansion uses P µ=⇒ P ′, rather than P µ̂=⇒ P ′; moreover with contraction the
final derivatives are simply required to be bisimilar. An expansion P �e Q tells us that Q is
always at least as efficient as P , whereas the contraction P �bis Q just says that Q has the
possibility of being at least as efficient as P .

Example 3.6. We have a 6�bis τ .a. However, a+ τ .a �bis a, as well as its converse, a �bis
a+ τ .a. Indeed, if P ≈Q then P �bis P +Q. The last two relations do not hold with �e, which
explains the strictness of the inclusion �e ⊂�bis.

Like (weak) bisimilarity and expansion, contraction is preserved by all operators but (direct)
sum.

3.3 Systems of contractions

A system of contractions is defined as a system of equations, except that the contraction symbol
� is used in the place of the equality symbol =. Thus a system of contractions is a set {Xi �
Ei}i∈I where I is an indexing set and expressions Ei may contain the contraction variables
{Xi}i∈I .

Definition 3.7. Given a system of contractions {Xi � Ei}i∈I , we say that:

• P̃ is a solution (for �bis) of the system of contractions if P̃ �bis Ẽ[P̃];

• the system has a unique solution (for ≈) if P̃ ≈ Q̃ whenever P̃ and Q̃ are both solutions.

6

The guardedness of contractions follows Def. 3.3 (for equations).

Lemma 3.8. Suppose P̃ and Q̃ are solutions for �bis of a system of weakly-guarded contractions
that uses weakly-guarded sums. For any context C that uses weakly-guarded sums, if C[P̃] µ=⇒R,
then there is a context C ′ that uses weakly-guarded sums such that R �bis C

′[P̃] and C[Q̃] µ̂=⇒≈
C ′[Q̃].1

Proof. (sketch from [33]) Let n be the length of the transition C[P̃] µ=⇒R (the number of ‘strong
steps’ of which it is composed), and let C ′′[P̃] and C ′′[Q̃] be the processes obtained from C[P̃]
and C[Q̃] by unfolding the definitions of the contractions n times. Thus in C ′′ each hole is
underneath at least n prefixes, and cannot contribute to an action in the first n transitions;
moreover all the contexts have only weakly-guarded sums.

We have C[P̃]�bis C
′′[P̃], and C[Q̃]�bis C

′′[Q̃], by the substitutivity properties of �bis (we
exploit here the syntactic constraints on sums). Moreover, since each hole of the context C ′′
is underneath at least n prefixes, applying the definition of �bis on the transition C[P̃] µ=⇒ R,
we infer the existence of C ′ such that C ′′[P̃] µ̂=⇒ C ′[P̃]�bis R and C ′′[Q̃] µ̂=⇒ C ′[Q̃]. Finally, again
applying the definition of �bis on C[Q̃]�bis C

′′[Q̃], we derive C[Q̃] µ̂=⇒≈ C ′[Q̃].

Theorem 3.9 (unique solution of contractions for ≈). A system of weakly-guarded contractions
having only weakly-guarded sums, has a unique solution for ≈.

Proof. (sketch from [33]) Suppose P̃ and Q̃ are two such solutions (for ≈) and consider the
relation

R def= {(R,S) | R≈ C[P̃],S ≈ C[Q̃] for some context C (weakly-guarded sum only)} . (1)

We show that R is a bisimulation. Suppose R R S vis the context C, and R µ−→R′. We have to
find S′ with S µ̂=⇒ S′ and R′ R S′. From R≈ C[P̃], we derive C[P̃] µ̂=⇒R′′ ≈R′ for some R′′. By
Lemma 3.8, there is C ′ with R′′ �bis C

′[P̃] and C[Q̃] µ̂=⇒≈C ′[Q̃]. Hence, by definition of ≈, there
is also S′ with S µ̂=⇒ S′ ≈C ′[Q̃]. This closes the proof, as we have R′ ≈C ′[P̃] and S′ ≈C ′[Q̃].

4 Rooted contraction

The unique solution theorem of Section 3.3 requires a constrained syntax for sums, due to the
congruence and precongruence problems of bisimilarity and contraction with such operator.
We show here that the constraints can be removed by moving to the induced congruence and
precongruence, the latter called rooted contraction:

Definition 4.1. Two processes P and Q are in rooted contraction, written as P �c
bis Q, if

1. P µ−→ P ′ implies that there is Q′ with Q µ−→Q′ and P ′ �bis Q
′;

2. Q µ−→Q′ implies that there is P ′ with P µ=⇒ P ′ and P ′ ≈Q′.

1There’s no typo here: C[Q̃] µ̂=⇒≈ C′[Q̃] means ∃R̃. C[Q̃] µ̂=⇒ R̃≈ C′[Q̃]. Same as in Lemma 4.3.

C. Tian & D. Sangiorgi 7

The precise formulation of this definition was guided by the HOL theorem prover and the
following two principles: (1) the definition should not be recursive, along the lines of rooted
bisimilarity ≈c in Def. 2.2; (2) the definition should be built on top of existing contraction
relation �bis (because of its completeness). A few other candidates were quickly tested and
rejected, e.g., because of precongruence issue. The proof of the precongruence result below is
along the lines of the analogous result for rooted bisimilarity with respect to bisimilarity.

Theorem 4.2. �c
bis is a precongruence in CCS, and it is the coarsest precongruence contained

in �bis.

For a system of rooted contractions, the meaning of “solution for �c
bis” and of a unique

solution for ≈c is the expected one — just replace in Def. 3.7 the preorder �bis with �c
bis,

and the equivalence ≈ with ≈c. For this new relation, the analogous of Lemma 3.8 and of
Theorem 3.9 can now be stated without constraints on the sum operator. The schema of the
proofs is almost identical, because all properties of �c

bis needed in this proof is its precongruence,
which is indeed true on unrestricted contexts including direct sums:

Lemma 4.3. Suppose P̃ and Q̃ are solutions for �c
bis of a system of weakly-guarded contractions.

For any context C, if C[P̃] µ=⇒R, then there is a context C ′ such that R�bis C
′[P̃] and C[Q̃] µ=⇒≈

C ′[Q̃].

Theorem 4.4 (unique solution of contractions for ≈c). A system of weakly-guarded contractions
has a unique solution for ≈c. (thus also for ≈)

Proof. We first follow the same steps as in the proof of Theorem 3.9 to show the relation R
(now with �c

bis and unrestricted context C) in (1) is bisimulation, exploting Lemma 4.3. Then
it remains to show that, for any two process P and Q with action µ, if P µ−→ P ′ then there is Q′

such that Q µ=⇒ Q′ (not Q µ̂=⇒ Q′!) and P ′ R Q′, and also for the converse direction, exploting
Lemma 4.13 of [22] (surprisingly). By definition of bisimulation (not ≈!) and ≈c, we actually
proved P ≈c Q instead of P ≈Q.

5 Formalisation

We highlight here a formalisation of CCS in the HOL theorem prover (HOL4) [36], including
the new concepts and theorems proposed in the first half of this paper. The whole formalisation
(apart from minor fixes and extensions in this paper) is described in [37], and the proof scripts
are in HOL4 official examples2. The current work consists of about 20,000 lines of proof scripts
in Standard ML.

Higher Order Logic (or HOL Logic) [2], which traces its roots back to LCF [13, 21] by Robin
Milner and others since 1972, is a variant of Church’s simple theory of types (STT) [8], plus
a higher order version of Hilbert’s choice operator ε, Axiom of Infinity, and Rank-1 (prenex)
polymorphism. HOL4 has implemented the original HOL Logic, while some other theorem
provers in HOL family (e.g. Isabelle/HOL) have certain extensions. Indeed the HOL Logic has
considerable simpler logical foundations than most other theorem provers. As a consequence,
formal theories built in HOL is easily convincible and can also be easily ported to other proof
systems, sometimes automatically [17].

2https://github.com/HOL-Theorem-Prover/HOL/tree/master/examples/CCS

https://github.com/HOL-Theorem-Prover/HOL/tree/master/examples/CCS

8

HOL4 is written in Standard ML, a single programming language which plays three different
roles:

1. It serves as the underlying implementation language for the core HOL engine;
2. it is used to implement tactics (and tacticals) for writing proofs;
3. it is used as the command language of the HOL interactive shell.

Moreover, using the same language HOL4 users can write complex automatic verification tools
by calling HOL’s theorem proving facilities. (The formal proofs of theorems in CCS theory
are mostly done by an interactive process closely following their informal proofs, with minimal
automatic proof searching.)

In this formalisation we consider only single-variable equations/contractions. This consider-
ably simplifies the required proofs in HOL, also enhances the readability of proof scripts without
loss of generality. (For paper proofs, the multi-variable case is just a routine adaptation.)

5.1 CCS and its transitions by SOS rules

In our CCS formalisation, the type “β Label” ('b or β is the type variable for actions) accounts
for visible actions, divided into input and output actions, defined by HOL’s Datatype package:
val _ = Datatype `Label = name 'b | coname 'b`;

The type “β Action” is the union of all visible actions, plus invisible action τ (now based on
HOL’s option theory). The cardinality of “β Action” (and therefore of all CCS types built on
top of it) depends on the choice (or type-instantiation) of β.

The type “(α, β) CCS”, accounting for the CCS syntax3, is then defined inductively: ('a
or α is the type variable for recursion variables, “β Relabeling” is the type of all relabeling
functions, ` is for backquotes of HOL terms):
val _ = Datatype `CCS = nil

| var 'a

| prefix ('b Action) CCS

| sum CCS CCS

| par CCS CCS

| restr (('b Label) set) CCS

| relab CCS ('b Relabeling)

| rec 'a CCS `;

We have added some grammar support, using HOL’s powerful pretty printer, to represent
CCS processes in more readable forms (c.f. the column HOL (abbrev.) in Table 1, which
summarizes the main syntactic notations of CCS). For the restriction operator, we have chosen
to allow a set of names as a parameter, rather than a single name as in the ordinary CCS syntax;
this simplifies the manipulation of processes with different orders of nested restrictions.

The transition semantics of CCS processes follows Structural Operational Semantics (SOS)
in Fig. 1:

3The order of type variables α and β is irrelevant. Our choice is aligned with other CCS literals. CCS(h,k)
is the CCS subcalculus which can use at most h constants and k actions. [14] Thus, to formalize theorems on
such a CCS subcalculus, the needed CCS type can be retrieved by instantiating the type variables α and β in
“(α, β) CCS” with types having the corresponding cardinalities h and k. Monica Nesi goes too far by adding
another type variable γ for value-passing CCS [25].

C. Tian & D. Sangiorgi 9

Operator CCS Notation HOL term HOL (abbrev.)
nil 0 nil nil

prefix u.P prefix u P u..P
sum P +Q sum P Q P + Q

parallel P | Q par P Q P ‖ Q
restriction (ν L) P restr L P ν L P
recursion recA.P rec A P rec A P
relabeling P [rf] relab P rf relab P rf
constant A var A var A

invisible action τ tau τ
input action a label (name a) In a
output action a label (coname a) Out a

Table 1: Syntax of CCS operators, constant and actions

` u..P −u→ P [PREFIX]

` P −u→ P ′ ⇒ P + Q −u→ P ′ [SUM1]

` P −u→ P ′ ⇒ Q + P −u→ P ′ [SUM2]

` P −u→ P ′ ⇒ P ‖ Q −u→ P ′ ‖ Q [PAR1]

` P −u→ P ′ ⇒ Q ‖ P −u→ Q ‖ P ′ [PAR2]

` P −label l→ P ′ ∧ Q −label (COMPL l)→ Q′ ⇒ P ‖ Q −τ→ P ′ ‖ Q′ [PAR3]

` P −u→ Q ∧ ((u = τ) ∨ (u = label l) ∧ l /∈ L ∧ COMPL l /∈ L) ⇒
ν L P −u→ ν L Q [RESTR]

` P −u→ Q ⇒ relab P rf −relabel rf u→ relab Q rf [RELABELING]

` CCS_Subst P (rec A P) A −u→ P ′ ⇒ rec A P −u→ P ′ [REC]

The rule REC (Recursion) says that if we substitute all appearances of variable A in P to
(recAP) and the resulting process has a transition to P ′ with action u, then (recAP) has the
same transition. From HOL’s viewpoint, these SOS rules are inductive definitions on the tenary
relation TRANS of type “(α, β) CCS →β Action →(α, β) CCS →bool”, generated by HOL’s
Hol_reln function.

A useful function that we have defined, exploiting the interplay between HOL4 and Standard
ML (and following an idea by Nesi [24]) is a complex Standard ML function taking a CCS process
and returning a theorem indicating all its direct transitions.4 For instance, we know that the
process (a.0 | ā.0) has three possible transitions: (a.0 | ā.0) a−→ (0 | ā.0), (a.0 | ā.0) ā−→ (a.0 | 0)
and (a.0 | ā.0) τ−→ (0 | 0). To completely describe all possible transitions of a process, if done
manually, the following facts should be proved: (1) there exists transitions from (a.0 | ā.0)
(optional); (2) the correctness for each of the transitions; and (3) the non-existence of other
transitions.

For large processes it may be surprisingly hard to manually prove the non-existence of tran-
sitions. Hence the usefulness of appealing to the new function CCS_TRANS_CONV. For instance
this function is called on the process (a.0 | ā.0) thus: (� is for double-backquotes of HOL terms,
> is HOL’s prompt)
> CCS_TRANS_CONV ``par (prefix (label (name "a")) nil)

4If the input process could yield something infinite branching, due to the use of recursion or relabeling operators,
the program will loop forever without outputting a theorem.

10

(prefix (label (coname "a")) nil)``

This returns the following theorem, indeed describing all immediate transitions of the process:

` In “a”..nil ‖ Out “a”..nil −u→ E ⇐⇒
((u = In “a”) ∧ (E = nil ‖ Out “a”..nil) ∨
(u = Out “a”) ∧ (E = In “a”..nil ‖ nil)) ∨
(u = τ) ∧ (E = nil ‖ nil) [Example.ex_A]

5.2 Bisimulation and Bisimilarity

To define (weak) bisimilarity, we first need to define weak transitions of CCS processes. Following
the name adopted by Nesi [24], we define a (possibly empty) sequence of τ -transitions between
two processes as a new relation called EPS (ε⇒), which is the RTC (reflexive transitive closure,
denoted by ∗ in HOL4) of ordinary τ -transitions of CCS processes:

EPS = (λE E ′. E −τ→ E ′)∗ [EPS_def]

Then we can define a weak transition as an ordinary transition wrapped by two ε-transitions:

E =u⇒ E ′ ⇐⇒ ∃E1 E2. E ε⇒ E1 ∧ E1 −u→ E2 ∧ E2
ε⇒ E ′ [WEAK_TRANS]

For the definition of bisimilarity and the associated coinduction principle [35], we have
taken advantage of HOL’s coinductive relation package (Hol_coreln [1]), a new tool since its
Kananaskis-11 release (March 3, 2017).5 This essentially amounts to defining bisimilarity as the
greatest fixed-point of the appropriate functional on relations. Precisely we call the Hol_coreln
command as follows: (here WB is meant to be WEAK_EQUIV (≈) in the rest of this paper; ! and ?

stand for universal and existential quantifiers.)
val (WB_rules , WB_coind , WB_cases) = Hol_coreln `

(!(P :('a, 'b) CCS) (Q :('a, 'b) CCS).

(!l.

(!P'. TRANS P (label l) P' ==>

(?Q'. WEAK_TRANS Q (label l) Q' /\ WB P' Q')) /\

(!Q'. TRANS Q (label l) Q' ==>

(?P'. WEAK_TRANS P (label l) P' /\ WB P' Q'))) /\

(!P'. TRANS P tau P' ==> (?Q'. EPS Q Q' /\ WB P' Q')) /\

(!Q'. TRANS Q tau Q' ==> (?P'. EPS P P' /\ WB P' Q'))

==> WB P Q)`;

Hol_coreln returns 3 theorems, of the first being always the same as input term6 (now proved
automatically as a theorem). The second and third theorems, namely WB_coind and WB_cases,
express the coinduction proof method for bisimilarity (i.e. any bisimulation is contained in
bisimilarity) and the fixed-point property of bisimilarity (bisimilarity itself is a bisimulation,
thus the largest bisimulation):

5https://hol-theorem-prover.org/kananaskis-11.release.html#new-tools
6Our mixing of HOL notation and mathematical notation in this paper is not arbitrary. We have to paste here

the original proof scripts, which is written in HOL’s ASCII term notation (c.f. [1] for more details). HOL4 also
supports writing Unicode symbols directly in proof scripts but we did not make use of them. However, all formal
definitions and theorems in the paper are automatically generated from HOL4 in which we have made an effort
for generating Unicode and TeX outputs as natural as possible. What is really arbitrary is the presense/absense
of outermost universal quantifiers in all generated theorems.

https://hol-theorem-prover.org/kananaskis-11.release.html#new-tools

C. Tian & D. Sangiorgi 11

1. ` ∀WB′.
(∀a0 a1.

WB′ a0 a1 ⇒
(∀ l.

(∀P ′.
a0 −label l→ P ′ ⇒
∃Q′. a1 =label l⇒ Q′ ∧ WB′ P ′ Q′) ∧

∀Q′.
a1 −label l→ Q′ ⇒
∃P ′. a0 =label l⇒ P ′ ∧ WB′ P ′ Q′) ∧

(∀P ′. a0 −τ→ P ′ ⇒ ∃Q′. a1
ε⇒ Q′ ∧ WB′ P ′ Q′) ∧

∀Q′. a1 −τ→ Q′ ⇒ ∃P ′. a0
ε⇒ P ′ ∧ WB′ P ′ Q′) ⇒

∀a0 a1. WB′ a0 a1 ⇒ WB a0 a1 [WB_coind, WEAK_EQUIV_coind]

2. ` ∀a0 a1.
WB a0 a1 ⇐⇒
(∀ l.

(∀P ′.
a0 −label l→ P ′ ⇒
∃Q′. a1 =label l⇒ Q′ ∧ WB P ′ Q′) ∧

∀Q′.
a1 −label l→ Q′ ⇒
∃P ′. a0 =label l⇒ P ′ ∧ WB P ′ Q′) ∧

(∀P ′. a0 −τ→ P ′ ⇒ ∃Q′. a1
ε⇒ Q′ ∧ WB P ′ Q′) ∧

∀Q′. a1 −τ→ Q′ ⇒ ∃P ′. a0
ε⇒ P ′ ∧ WB P ′ Q′ [WB_cases, WEAK_EQUIV_cases]

The coinduction principle WB_coind says that any bisimulation is contained in the resulting
relation (i.e. it is largest), but it didn’t constrain the resulting relation in the set of fixed points
(e.g. even the universal relation — the set of all pairs — would fit with this theorem); the
purpose of WB_cases is to further assert that the resulting relation is indeed a fixed point. Thus
WB_coind and WB_cases together make sure that bisimilarity is the greatest fixed point, as the
former contributes to “greatest” while the latter contributes to “fixed point”. Without HOL’s
coinductive relation package, bisimilarity would have to be defined by following literally Def. 2.1;
then other properties of bisimilarity, such as the fixed-point property in WB_cases, would have
to be derived manually (which is quite hard; indeed it was one of the main results in Nesi’s
formalisation work in HOL88 [24]).

5.3 Context, guardedness and (pre)congruence

We have chosen to use λ-expressions (with the type “(α, β) CCS →(α, β) CCS”) to represent
multi-hole contexts. This choice has a significant advantage over one-hole contexts, as each hole
corresponds to one appearance of the same variable in single-variable expressions (or equations).
Thus contexts can be directly used in formulating the unique solution of equations theorems in
single-variable cases. The precise definition is given inductively:
CONTEXT (λ t. t)
CONTEXT (λ t. p)
CONTEXT e ⇒ CONTEXT (λ t. a..e t)
CONTEXT e1 ∧ CONTEXT e2 ⇒ CONTEXT (λ t. e1 t + e2 t)
CONTEXT e1 ∧ CONTEXT e2 ⇒ CONTEXT (λ t. e1 t ‖ e2 t)
CONTEXT e ⇒ CONTEXT (λ t. ν L (e t))

12

CONTEXT e ⇒ CONTEXT (λ t. relab (e t) rf) [CONTEXT_rules]

A context is weakly guarded (WG) if each hole is underneath a prefix:
WG (λ t. p)
CONTEXT e ⇒ WG (λ t. a..e t)
WG e1 ∧ WG e2 ⇒ WG (λ t. e1 t + e2 t)
WG e1 ∧ WG e2 ⇒ WG (λ t. e1 t ‖ e2 t)
WG e ⇒ WG (λ t. ν L (e t))
WG e ⇒ WG (λ t. relab (e t) rf) [WG_rules]

A context is (strongly) guarded (SG) if each hole is underneath a visible prefix:
SG (λ t. p)
CONTEXT e ⇒ SG (λ t. label l..e t)
SG e ⇒ SG (λ t. a..e t)
SG e1 ∧ SG e2 ⇒ SG (λ t. e1 t + e2 t)
SG e1 ∧ SG e2 ⇒ SG (λ t. e1 t ‖ e2 t)
SG e ⇒ SG (λ t. ν L (e t))
SG e ⇒ SG (λ t. relab (e t) rf) [SG_rules]

A context is sequential (SEQ) if each of its subcontexts with a hole, apart from the hole itself,
is in forms of prefixes or sums: (c.f. Def. 3.3 and p.101,157 of [22] for the informal definitions.)
SEQ (λ t. t)
SEQ (λ t. p)
SEQ e ⇒ SEQ (λ t. a..e t)
SEQ e1 ∧ SEQ e2 ⇒ SEQ (λ t. e1 t + e2 t) [SEQ_rules]

In the same manner, we can also define variants of contexts (GCONTEXT) and weakly guarded
contexts (WGS) in which only guarded sums are allowed (i.e. arbitrary sums are forbidden):
GCONTEXT (λ t. t)
GCONTEXT (λ t. p)
GCONTEXT e ⇒ GCONTEXT (λ t. a..e t)
GCONTEXT e1 ∧ GCONTEXT e2 ⇒ GCONTEXT (λ t. a1..e1 t + a2..e2 t)
GCONTEXT e1 ∧ GCONTEXT e2 ⇒ GCONTEXT (λ t. e1 t ‖ e2 t)
GCONTEXT e ⇒ GCONTEXT (λ t. ν L (e t))
GCONTEXT e ⇒ GCONTEXT (λ t. relab (e t) rf) [GCONTEXT_rules]

WGS (λ t. p)
GCONTEXT e ⇒ WGS (λ t. a..e t)
GCONTEXT e1 ∧ GCONTEXT e2 ⇒ WGS (λ t. a1..e1 t + a2..e2 t)
WGS e1 ∧ WGS e2 ⇒ WGS (λ t. e1 t ‖ e2 t)
WGS e ⇒ WGS (λ t. ν L (e t))
WGS e ⇒ WGS (λ t. relab (e t) rf) [WGS_rules]

A (pre)congruence is a relation on CCS processes defined on top of CONTEXT. The only
difference between congruence and precongruence is that the former must be an equivalence
(reflexive, symmetric, transitive), while the latter can be just a preorder (reflexive, transitive):
congruence R ⇐⇒
equivalence R ∧
∀x y ctx. CONTEXT ctx ⇒ R x y ⇒ R (ctx x) (ctx y) [congruence_def]

[precongruence_def]

C. Tian & D. Sangiorgi 13

precongruence R ⇐⇒
PreOrder R ∧ ∀x y ctx. CONTEXT ctx ⇒ R x y ⇒ R (ctx x) (ctx y)

For example, we can prove that, strong bisimilarity (∼) and rooted bisimilarity (≈c) are
both congruence by above definition: (the transitivity proof of rooted bisimilarity is actually
not easy.)
` congruence STRONG_EQUIV [STRONG_EQUIV_congruence]

` congruence OBS_CONGR [OBS_CONGR_congruence]

Although weak bisimilarity (≈) is not congruence with respect to CONTEXT, it is indeed
“congruence” with respect to GCONTEXT (or if the CCS syntax were defined with only guarded
sum operator [32]) as weak bisimilarity (≈) is indeed preserved by weakly-guarded sums.

5.4 Coarsest (pre)congruence contained in ≈ (�bis)

As bisimilarity (≈) is not congruence, for this reason rooted bisimilarity has been introduced
(Def. 2.2). In this subsection we discuss two proofs of an important result stating that rooted
bisimilarity is the coarsest congruence contained in bisimilarity [12, 15, 22] (thus it is the best
one):

∀p q. p ≈c q ⇐⇒ (∀r. p + r ≈ q + r) . (2)

Actually the coarsest congruence contained in (weak) bisimilarity, namely the bisimilarity
congruence [12], can be constructed as the composition closure (CC) of (weak) bisimilarity:
WEAK_CONGR = CC WEAK_EQUIV [WEAK_CONGR]

CC R = (λg h. ∀c. CONTEXT c ⇒ R (c g) (c h)) [CC_def]

Indeed, for any relation R on CCS processes, the composition closure of R is always finer
(i.e. smaller) than R, no matter if R is (pre)congruence or not7: (here ⊆r stands for relational
subset)
` ∀R. CC R ⊆r R [CC_is_finer]

Furthermore, we prove that any (pre)congruence contained in R (which itself may not be) is
contained in the composition closure of R (hence the closure is the coarsest one):
` ∀R R′. congruence R′ ∧ R′ ⊆r R ⇒ R′ ⊆r CC R [CC_is_coarsest]

` ∀R R′. precongruence R′ ∧ R′ ⊆r R ⇒ R′ ⊆r CC R [CC_is_coarsest']

Given the central role of the sum operator, we also consider the closure of bisimilarity under
such operator, called equivalence compatible with sums (SUM_EQUIV):
SUM_EQUIV = (λp q. ∀r. p + r ≈ q + r) [SUM_EQUIV]

Rooted bisimilarity ≈c (a congruence contained in ≈), is now contained in WEAK_CONGR,
which in turn is trivially contained in SUM_EQUIV, as shown in Fig. 2. Thus, to prove (2), the
crux is to prove that SUM_EQUIV implies rooted bisimilarity (≈c), making all three relations (≈c,
WEAK_CONGR and SUM_EQUIV) equivalent:

∀p q. (∀r. p + r ≈ q + r) ⇒ p ≈c q . (3)

7But if R is equivalence (or preorder), the composition closure of R must be congruence (or precongruence).
Also there is no need to put R g h in the antecedent of CC_def, as this is anyhow obtained from the trivial context
(λx. x).

14

Weak bisimilarity (≈) Equiv. compatible with sums (SUM_EQUIV)

⊆rr

Bisimilarity congruence (WEAK_CONGR)
⊆
OO ⊆ 11

Rooted bisimilarity (≈c)
⊆
OO

Figure 2: Relationship between the equivalences mentioned

The standard argument [22] requires that p and q do not use up all available labels (i.e. visible
actions). Formalising such an argument requires however a detailed treatment on free and bound
names of CCS processes (with the restriction operator being a binder), not done yet. However,
the proof of (3) can be carried out just assuming that all immediate weak derivatives of p and q
do not use up all available labels. We have formalised this property and called it the free action
property:

free_action p ⇐⇒ ∃a. ∀p′. ¬(p =label a⇒ p′) [free_action_def]

With this property, the actual formalisation of (3) says:
[COARSEST_CONGR_RL]

` free_action p ∧ free_action q ⇒ (∀r. p + r ≈ q + r) ⇒ p ≈c q

With an almost identical proof, rooted contraction (�c
bis) is also the coarsest precongruence

contained in bisimilarity contraction (�bis) (the other direction of (2) is trivial):
[COARSEST_PRECONGR_RL]

` free_action p ∧ free_action q ⇒ (∀r. p + r �bis q + r) ⇒ p �cbis q

The formal proofs of above two results precisely follow Milner [22]. If only p (or q) has free
actions while the other uses up all available labels, the classic assumption fn(p)∪ fn(q) 6= L (here
fn stands for free names) does not hold, and the proof cannot be completed. Our assumption is
a bit weaker in the sense that, p and q do not really need to have the same free action (also, a
and a are different actions).

There exists a different, more complex proof of (2), given by van Glabbeek [12], which does
not require any additional assumption. The core lemma says, for any two processes p and q, if
there exists a stable (i.e. τ -free) process k which is not bisimilar with any derivative of p and q,
then SUM_EQUIV indeed implies rooted bisimilarity (≈c):

` (∃k.
STABLE k ∧ (∀p′ u. p =u⇒ p′ ⇒ ¬(p′ ≈ k)) ∧
∀q ′ u. q =u⇒ q ′ ⇒ ¬(q ′ ≈ k)) ⇒

(∀r. p + r ≈ q + r) ⇒
p ≈c q [PROP3_COMMON]

STABLE p ⇐⇒ ∀u p′. p −u→ p′ ⇒ u 6= τ [STABLE]

To actually get this process k, the proof relies on arbitrary infinite sum of processes and uses
transfinite induction to obtain an arbitrary large sequence of processes (firstly introduced by Jan
Willem Klop [12]) that are all pairwise non-bisimilar. We have partially formalised this proof,
because the typed logic implemented in various HOL systems (including Isabelle/HOL) is not

C. Tian & D. Sangiorgi 15

strong enough to define a type for all possible ordinal values [26], thus we have replaced transfinite
induction with plain induction. As a consequence, the final result is about a restricted class of
processes (which we have taken to be the finite-state processes). This proof uses extensively
HOL’s pred_set theory [19] and has an interesting mix of CCS and pure mathematics in it.
(c.f. [37] for more details.)

5.5 Unique solution of contractions

A delicate point in the formalisation of the results about unique solution of contractions are the
proof of Lemma 4.3 and lemmas alike; in particular, there is an induction on the length of weak
transitions. For this, rather than introducing a refined form of weak transition relation enriched
with its length, we found it more elegant to work with traces (a motivation for this is to set the
ground for extensions of this formalisation work to trace equivalence in place of bisimilarity).

A trace is represented by the initial and final processes, plus a list of actions so performed. For
this, we first define the concept of label-accumulated reflexive transitive closure (LRTC). Given
a labeled transition relation R on CCS, LRTC R is a label-accumulated relation representing the
trace of transitions:
LRTC R a l b ⇐⇒
∀P.

(∀x. P x [] x) ∧
(∀x h y t z. R x h y ∧ P y t z ⇒ P x (h::t) z) ⇒
P a l b [LRTC_DEF]

The trace relation for CCS can be then obtained by calling LRTC on the (strong, or single-step)
labeled transition relation TRANS (µ→) defined by SOS rules:
TRACE = LRTC TRANS [TRACE_def]

If the list of actions is empty, that means that there is no transition and hence, if there
is at most one visible action (i.e., a label) in the list of actions, then the trace is also a weak
transition. Here we have to distinguish between two cases: no label and unique label (in the
list of actions). The definition of “no label” in an action list is easy (here MEM tests if a given
element is a member of a list):
NO_LABEL L ⇐⇒ ¬∃ l. MEM (label l) L [NO_LABEL_def]

The definition of “unique label” can be done in many ways, the following definition (a
suggestion from Robert Beers) avoids any counting or filtering in the list. It says that a label is
unique in a list of actions if and only if there is no label in the rest of list:
UNIQUE_LABEL u L ⇐⇒
∃L1 L2. (L1 ++ [u] ++ L2 = L) ∧ NO_LABEL L1 ∧ NO_LABEL L2 [UNIQUE_LABEL_def]

The final relationship between traces and weak transitions is stated and proved in the fol-
lowing theorem (where the variable acts stands for a list of actions); it says, a weak transition
P

u⇒ P ′ is also a trace P acts−→ P ′ with a non-empty action list acts, in which either there is no
label (for u= τ), or u is the unique label (for u 6= τ):
` P =u⇒ P ′ ⇐⇒
∃acts.

TRACE P acts P ′ ∧ ¬NULL acts ∧
if u = τ then NO_LABEL acts else UNIQUE_LABEL u acts [WEAK_TRANS_AND_TRACE]

16

Now the formalised version of Lemma 3.8: [UNIQUE_SOLUTION_OF_CONTRACTIONS_LEMMA]

` (∃E. WGS E ∧ P �bis E P ∧ Q �bis E Q) ⇒
∀C.

GCONTEXT C ⇒
(∀ l R.

C P =label l⇒ R ⇒
∃C ′.

GCONTEXT C ′ ∧ R �bis C ′ P ∧
(WEAK_EQUIV ◦r (λx y. x =label l⇒ y)) (C Q)

(C ′ Q)) ∧
∀R.

C P =τ⇒ R ⇒
∃C ′.

GCONTEXT C ′ ∧ R �bis C ′ P ∧
(WEAK_EQUIV ◦r EPS) (C Q) (C ′ Q)

Traces are actually used in the proof of above lemma via the following “unfolding lemma”:
` GCONTEXT C ∧ WGS E ∧ TRACE ((C ◦ FUNPOW E n) P) xs P ′ ∧

LENGTH xs ≤ n ⇒
∃C ′.

GCONTEXT C ′ ∧ (P ′ = C ′ P) ∧
∀Q. TRACE ((C ◦ FUNPOW E n) Q) xs (C ′ Q) [unfolding_lemma4]

It roughly says, for any context C and weakly-guarded context E, if C[En[P]] xs=⇒ P ′ and the
length of actions xs6 n, then P has the form of C ′[P] (meaning that P is not touched during
the transitions). Traces are used for reasoning about the number of intermediate actions in weak
transitions. For instance, from Def. 3.5, it is easy to see that, a weak transition either becomes
shorter or remains the same when moving between �bis-related processes. This property is
essential in the proof of Lemma 3.8. We show only one such lemma, for the case of non-τ weak
transitions passing into �bis (from left to right):

` P �bis Q ⇒
∀xs l P ′.

TRACE P xs P ′ ∧ UNIQUE_LABEL (label l) xs ⇒
∃xs′ Q′.

TRACE Q xs′ Q′ ∧ P �bis Q ∧ LENGTH xs′ ≤ LENGTH xs ∧
UNIQUE_LABEL (label l) xs′ [contracts_AND_TRACE_label]

With all above lemmas, we can thus finally prove Theorem 3.9:

` WGS E ⇒ ∀P Q. P �bis E P ∧ Q �bis E Q ⇒ P ≈ Q
[UNIQUE_SOLUTION_OF_CONTRACTIONS]

5.6 Unique solution of rooted contractions

The formal proof of “unique solution of rooted contractions theorem” (Theorem 4.4) has the
same initial proof steps as Theorem 3.9; it then requires a few more steps to handle rooted
bisimilarity in the conclusion. Overall the two proofs are very similar, mostly because the only
property we need from (rooted) contraction is its precongruence. Below is the formally verified
version of Theorem 4.4 (having proved the precongruence of rooted contraction, we can use
weakly-guarded expressions, without constraints on sums; that is, WG in place of WGS):

C. Tian & D. Sangiorgi 17

[UNIQUE_SOLUTION_OF_ROOTED_CONTRACTIONS]

` WG E ⇒ ∀P Q. P �cbis E P ∧ Q �cbis E Q ⇒ P ≈c Q

Having removed the constraints on sums, the result is similar to Milner’s original ‘unique
solution of equations’ theorem for strong bisimilarity (∼) — the same weakly guarded context
(WG) is required:

` WG E ⇒ ∀P Q. P ∼ E P ∧ Q ∼ E Q ⇒ P ∼ Q [STRONG_UNIQUE_SOLUTION]

In contrast, Milner’s “unique solution of equations” theorem for rooted bisimilarity (≈c) has
more severe constraints (must be both strongly guarded and sequential):

[OBS_UNIQUE_SOLUTION]

` SG E ∧ SEQ E ⇒ ∀P Q. P ≈c E P ∧ Q ≈c E Q ⇒ P ≈c Q

6 Related formalisation work

Monica Nesi did the first CCS formalisations for both pure and value-passing CCS [24, 25]
using early versions of the HOL theorem prover.8 Her main focus was on implementing decision
procedures (as a ML program, e.g. [9]) for automatically proving bisimilarities of CCS processes.
Her work is the working basis of ours. However, the differences are substantial, especially in
the way of defining bisimilarities. We greatly benefited from features and standard libraries in
recent versions of HOL4, and our formalisation has covered a much larger spectrum of the (pure)
CCS theory.

Bengtson, Parrow and Weber did a substantial formalisation work on CCS, π-calculi and
ψ-calculi using Isabelle/HOL and its nominal logic, with main focus on the handling of name
binders [5, 6, 27]. Other formalisations in this area include the early work of T. F. Melham
[20] and O.A. Mohamed [23] in HOL, Compton [10] in Isabelle/HOL, Solange9 in Coq and
Chaudhuri et al. [7] in Abella, the latter focuses on ‘bisimulation up-to’ techniques for CCS
and π-calculus. Damien Pous [28] also formalised up-to techniques and some CCS examples in
Coq. Formalisations less related to ours include Kahsai and Miculan [18] for the spi calculus in
Isabelle/HOL, and Hirschkoff [16] for the π-calculus in Coq.

7 Conclusions and future work

In this paper, we have highlighted a formalisation of the theory of CCS in the HOL4 theorem
prover (for lack of space we have not discussed the formalisation of some basic algebraic theory,
of the basic properties of the expansion preorder, and of a few versions of ‘bisimulation up to’
techniques). The formalisation has focused on the theory of unique solution of equations and
contractions. It has also allowed us to further develop the theory, notably the basic properties
of rooted contraction, and the unique solution theorem for it with respect to rooted bisimilarity.
The formalisation brings up and exploits similarities between results and proofs for different
equivalences and preorders. We think that the statements in the formalisation are easy to
read and understand, as they are very close to the original statements found in standard CCS
textbooks [15, 22].

8Part of this work can now be found at https://github.com/binghe/HOL-CCS/tree/master/CCS-Nesi.
9https://github.com/coq-contribs/ccs

https://github.com/binghe/HOL-CCS/tree/master/CCS-Nesi
https://github.com/coq-contribs/ccs

18

For the future work, it would be worth extending to multi-variable equations/contractions.
A key aspect could be using unguarded constants as free variables (FV) and defining guardedness
directly on expressions of type CCS (instead of CCS → CCS), then linking to contexts. For
instance, an expression is weakly-guarded when each of its free variables, replaced by a hole,
results in a weakly-guarded context:
` weakly_guarded1 E ⇐⇒
∀X. X ∈ FV E ⇒ ∀e. CONTEXT e ∧ (e (var X) = E) ⇒ WG e
Formalising other equivalences and preorders could also be considered, notably the trace

equivalences, as well as more refined process calculi such as value-passing CCS (e.g. exploiting
the type variable of actions). On another research line, one could examine the formalisation
of a different approach [11] to unique solutions, in which the use of contraction is replaced by
semantic conditions on process transitions such as divergence. We hope this work also inspires
new formalisations on other process calculi.

Acknowledgements We have benefitted from suggestions and comments from several people
from the HOL community, including (in alphabet order) Robert Beers, Jeremy Dawson, Ramana
Kumar, Michael Norrish, Konrad Slind, and Thomas Türk. The second half of this paper was
written in memory of Mike J. Gordon, the creator of HOL theorem prover.

C. Tian & D. Sangiorgi 19

References
[1] (2018): The HOL System DESCRIPTION. Available at http://sourceforge.net/projects/hol/

files/hol/kananaskis-12/kananaskis-12-description.pdf.

[2] (2018): The HOL System LOGIC. Available at http://sourceforge.net/projects/hol/files/
hol/kananaskis-12/kananaskis-12-logic.pdf.

[3] S. Arun-Kumar & Matthew Hennessy (1992): An efficiency preorder for processes. Acta Informatica
29(8), pp. 737–760, doi:10.1007/BF01191894.

[4] J. C. M. Baeten, T. Basten & M. A. Reniers (2010): Process Algebra: Equational Theories of
Communicating Processes. Cambridge University Press.

[5] Jesper Bengtson (2010): Formalising process calculi. Ph.D. thesis, Acta Universitatis Upsaliensis.

[6] Jesper Bengtson & Joachim Parrow (2007): A completeness proof for bisimulation in the pi-
calculus using isabelle. Electronic Notes in Theoretical Computer Science 192(1), pp. 61–75,
doi:10.1016/j.entcs.2007.08.017.

[7] Kaustuv Chaudhuri, Matteo Cimini & Dale Miller (2015): A lightweight formalization of the metathe-
ory of bisimulation-up-to. In: Proceedings of the 2015 Conference on Certified Programs and Proofs,
ACM, pp. 157–166, doi:10.1145/2676724.2693170.

[8] Alonzo Church (1940): A formulation of the simple theory of types. The journal of symbolic logic
5(2), pp. 56–68, doi:10.2307/2266170.

[9] Rance Cleaveland, Joachim Parrow & Bernhard Steffen (1993): The Concurrency Workbench: A
semantics-based tool for the verification of concurrent systems. ACM Transactions on Programming
Languages and Systems (TOPLAS) 15(1), pp. 36–72, doi:10.1145/151646.151648.

[10] Michael Compton (2005): Embedding a fair CCS in Isabelle/HOL. In: Theorem Proving in Higher
Order Logics: Emerging Trends Proceedings, p. 30, doi:10.1.1.105.834. Available at https://web.
comlab.ox.ac.uk/techreports/oucl/RR-05-02.pdf#page=36.

[11] Adrien Durier, Daniel Hirschkoff & Davide Sangiorgi (2017): Divergence and Unique Solu-
tion of Equations. In Roland Meyer & Uwe Nestmann, editors: 28th International Confer-
ence on Concurrency Theory (CONCUR 2017), Leibniz International Proceedings in Informatics
(LIPIcs) 85, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 11:1–11:16,
doi:10.4230/LIPIcs.CONCUR.2017.11. Available at http://drops.dagstuhl.de/opus/volltexte/
2017/7784.

[12] Rob J. van Glabbeek (2005): A characterisation of weak bisimulation congruence. In: Processes,
Terms and Cycles: Steps on the Road to Infinity, Springer, pp. 26–39, doi:10.1007/11601548_4.

[13] Michael J.C. Gordon, Arthur J. Milner & Christopher P. Wadsworth (1979): Edinburgh LCF: A
Mechanised Logic of Computation. In: Lecture Notes in Computer Science, 78, Springer, Berlin
Heidelberg, doi:10.1007/3-540-09724-4.

[14] Roberto Gorrieri (2017): CCS (25, 12) is Turing-complete. Fundamenta Informaticae 154(1-4), pp.
145–166, doi:10.3233/FI-2017-1557.

[15] Roberto Gorrieri & Cristian Versari (2015): Introduction to Concurrency Theory. Transition Systems
and CCS, Springer, Cham, doi:10.1007/978-3-319-21491-7.

[16] Daniel Hirschkoff (1997): A full formalisation of π-calculus theory in the calculus of constructions.
In: International Conference on Theorem Proving in Higher Order Logics, Springer, pp. 153–169,
doi:10.1007/BFb0028392.

[17] Joe Hurd (2011): The OpenTheory standard theory library. In: NASA Formal Methods Symposium,
Springer, pp. 177–191, doi:10.1007/978-3-642-20398-5_14.

http://sourceforge.net/projects/hol/files/hol/kananaskis-12/kananaskis-12-description.pdf
http://sourceforge.net/projects/hol/files/hol/kananaskis-12/kananaskis-12-description.pdf
http://sourceforge.net/projects/hol/files/hol/kananaskis-12/kananaskis-12-logic.pdf
http://sourceforge.net/projects/hol/files/hol/kananaskis-12/kananaskis-12-logic.pdf
http://dx.doi.org/10.1007/BF01191894
http://dx.doi.org/10.1016/j.entcs.2007.08.017
http://dx.doi.org/10.1145/2676724.2693170
http://dx.doi.org/10.2307/2266170
http://dx.doi.org/10.1145/151646.151648
http://dx.doi.org/10.1.1.105.834
https://web.comlab.ox.ac.uk/techreports/oucl/RR-05-02.pdf#page=36
https://web.comlab.ox.ac.uk/techreports/oucl/RR-05-02.pdf#page=36
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.11
http://drops.dagstuhl.de/opus/volltexte/2017/7784
http://drops.dagstuhl.de/opus/volltexte/2017/7784
http://dx.doi.org/10.1007/11601548_4
http://dx.doi.org/10.1007/3-540-09724-4
http://dx.doi.org/10.3233/FI-2017-1557
http://dx.doi.org/10.1007/978-3-319-21491-7
http://dx.doi.org/10.1007/BFb0028392
http://dx.doi.org/10.1007/978-3-642-20398-5_14

20

[18] Temesghen Kahsai & Marino Miculan (2008): Implementing spi calculus using nominal techniques.
In: Conference on Computability in Europe, Springer, pp. 294–305, doi:10.1007/978-3-540-69407-
6_33.

[19] Thomas F. Melham (1992): The HOL pred_sets Library. Universiy of Cambridge Computer Lab,
doi:10.1.1.219.5390.

[20] Thomas F. Melham (1994): A Mechanized Theory of the Pi-Calculus in HOL. Nord. J. Comput. 1(1),
pp. 50–76, doi:10.1.1.56.4370. Available at http://core.ac.uk/download/pdf/22878407.pdf.

[21] Robin Milner (1972): Logic for Computable Functions: description of a machine implementation.
Technical Report, STANFORD UNIV CA DEPT OF COMPUTER SCIENCE. Available at http:
//www.dtic.mil/dtic/tr/fulltext/u2/785072.pdf.

[22] Robin Milner (1989): Communication and concurrency. PHI Series in computer science, Prentice-
Hall.

[23] Otmane Aït Mohamed (1995): Mechanizing a π-calculus equivalence in HOL. In: International
Conference on Theorem Proving in Higher Order Logics, Springer, pp. 1–16, doi:10.1007/3-540-
60275-5_53.

[24] Monica Nesi (1992): A formalization of the process algebra CCS in high order logic. Technical
Report UCAM-CL-TR-278, University of Cambridge, Computer Laboratory. Available at http:

//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-278.pdf.
[25] Monica Nesi (1999): Formalising a Value-Passing Calculus in HOL. Formal Aspects of Computing

11(2), pp. 160–199, doi:10.1007/s001650050046.
[26] Michael Norrish & Brian Huffman (2013): Ordinals in HOL: Transfinite arithmetic up to (and

beyond) ω1. In: International Conference on Interactive Theorem Proving, Springer, pp. 133–146,
doi:10.1007/978-3-642-39634-2_12.

[27] Joachim Parrow & Jesper Bengtson (2009): Formalising the pi-calculus using nominal logic. Logical
Methods in Computer Science 5, doi:10.2168/LMCS-5(2:16)2009.

[28] Damien Pous (2007): New up-to techniques for weak bisimulation. Theoretical Computer Science
380, pp. 164–180, doi:10.1016/j.tcs.2007.02.060.

[29] A. W. Roscoe (1998): The theory and practice of concurrency. Prentice Hall. Available at http:
//www.cs.ox.ac.uk/people/bill.roscoe/publications/68b.pdf.

[30] A. W. Roscoe (2010): Understanding Concurrent Systems. Springer.
[31] Davide Sangiorgi (2011): Introduction to Bisimulation and Coinduction. Cambridge University

Press.
[32] Davide Sangiorgi (2015): Equations, contractions, and unique solutions. In: ACM SIGPLAN No-

tices, 50, ACM, pp. 421–432, doi:10.1145/2676726.2676965. Available at https://hal.inria.fr/
hal-01089205.

[33] Davide Sangiorgi (2017): Equations, contractions, and unique solutions. ACM Transactions on
Computational Logic (TOCL) 18, p. 4, doi:10.1145/2971339. Available at https://hal.inria.fr/
hal-01647063.

[34] Davide Sangiorgi & Robin Milner (1992): The problem of “Weak Bisimulation up to”. In: Interna-
tional Conference on Concurrency Theory, Springer, pp. 32–46, doi:10.1007/BFb0084781.

[35] Davide Sangiorgi & Jan Rutten (2011): Advanced Topics in Bisimulation and Coinduction. Cam-
bridge University Press.

[36] Konrad Slind & Michael Norrish (2008): A brief overview of HOL4. In: International Conference on
Theorem Proving in Higher Order Logics, Springer, pp. 28–32, doi:10.1007/978-3-540-71067-7_6.

[37] Chun Tian (2017): A Formalization of Unique Solutions of Equations in Process Algebra. Master’s
thesis, AlmaDigital, Bologna. Available at http://amslaurea.unibo.it/14798/.

http://dx.doi.org/10.1007/978-3-540-69407-6_33
http://dx.doi.org/10.1007/978-3-540-69407-6_33
http://dx.doi.org/10.1.1.219.5390
http://dx.doi.org/10.1.1.56.4370
http://core.ac.uk/download/pdf/22878407.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/785072.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/785072.pdf
http://dx.doi.org/10.1007/3-540-60275-5_53
http://dx.doi.org/10.1007/3-540-60275-5_53
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-278.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-278.pdf
http://dx.doi.org/10.1007/s001650050046
http://dx.doi.org/10.1007/978-3-642-39634-2_12
http://dx.doi.org/10.2168/LMCS-5(2:16)2009
http://dx.doi.org/10.1016/j.tcs.2007.02.060
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/68b.pdf
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/68b.pdf
http://dx.doi.org/10.1145/2676726.2676965
https://hal.inria.fr/hal-01089205
https://hal.inria.fr/hal-01089205
http://dx.doi.org/10.1145/2971339
https://hal.inria.fr/hal-01647063
https://hal.inria.fr/hal-01647063
http://dx.doi.org/10.1007/BFb0084781
http://dx.doi.org/10.1007/978-3-540-71067-7_6
http://amslaurea.unibo.it/14798/

	Introduction
	CCS
	Bisimilarity and rooted bisimilarity

	Equations and contractions
	Systems of equations
	Contractions
	Systems of contractions

	Rooted contraction
	Formalisation
	CCS and its transitions by SOS rules
	Bisimulation and Bisimilarity
	Context, guardedness and (pre)congruence
	Coarsest (pre)congruence contained in (_bis)
	Unique solution of contractions
	Unique solution of rooted contractions

	Related formalisation work
	Conclusions and future work

