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Abstract. Learning to survive in a complex environment is a more rel-
evant task for the design of intelligent autonomous machines than com-
plex problem solving. To establish this statement, we emphasize that
autonomy requires emotional- and motivational-like characteristics that
are much more straightforward to define in the context of survival tasks
than in problem solving which is classically considered with intelligent
agents. We also propose that using a simulation platform is a good pre-
liminary step before the design of real machines because it allows to con-
sider another fundamental challenge, related to the association of these
emotional and motivational characteristics to higher cognitive functions.
These considerations are illustrated by current simulations that we are
carrying out with a bio-inspired neuronal model of the cerebral architec-
ture of primates.
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1 Introduction

This paper presents a neuromimetic approach to emulate intelligent behavior in
autonomous machines. Lately, striking progresses have been reported in the field
of Artificial Intelligence, on hierarchical neuronal models such as Deep Networks
applied to specific tasks like playing Go or answering general knowledge ques-
tions, setting the focus on dedicated complex problem solving tasks. However,
in reference to some characteristics of intelligence in animals, autonomy raises
other challenges at least as important as abstract intelligence does. Firstly, in
reference to the emotional domain, an autonomous agent should be able to set
its own goals by anticipating outcomes and to acquire its preferences by learn-
ing. Similarly, motivation should also be considered, to energize potential be-
haviors according to a level of need felt or to the anticipated cost of an action
[Dickinson and Balleine, 2002]. As these characteristics have been often associ-
ated to bodily aspects [Cardinal et al., 2002], these challenges will require further
studies about the body and its physiology. Secondly, it has been shown that these
embodied aspects play an important role in the most complex aspects of cogni-
tion, including decision-making, planning or social skills [Damasio et al., 1996],
but the underlying neuronal mechanisms are to be understood in more details.
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The above mentioned challenges correspond to two very ambitious research
programs of different nature, that are difficult to carry out in tandem, although
based on common ground. One issue is to modify the material characteristics
of machines to allow them to reflect certain sensory and motor characteristics
associated to emotions and motivations, as we observe in the case of animals.
The other issue is to understand how these characteristics influence the most
elaborate forms of reasoning, particularly allowing to associate subjective and
incomparable quantities such as the level of need for a resource and its cost or
its social impact.

We present here some elements of a modeling work that bridges the challenges
between the above mentioned directions. This work considers the possibility
to define an autonomous agent by adapting a well established neuronal model
proposed in [Hazy et al., 2006], mimicking the function of major loops in the
brain of primates and primarily involving two cerebral structures, the cortex
and the basal ganglia. The so-called cortico-basal loops have been associated
to the generic function of decision making and action selection and several such
loops have been experimentally observed [Alexander et al., 1986]. Based on these
observations, we have implemented four loops. Two loops are called sensorimotor
and are fed with external spatial and visual information and select actions of
orientation and object reaching. The other two loops are called limbic and are
fed with internal information carrying emotional and motivational characteristics
and make decisions about the need to satisfy and the object to select.

In addition to implementing each of the four loops and their interactions,
a major question in our work was to assess the ability of the whole model to
emulate an autonomous behavior, by defining what could stand for body and
an environment to interact with this model of cerebral architecture and what
could be the task to address, to quantify the behavior of the brain+body system,
possibly under different dimensions.

In the next section, we propose that learning to survive in a complex environ-
ment is a more relevant task than complex problem solving. We define a survival
task where the autonomous agent must monitor basic needs such as hunger or
thirst to select the resource to be reached in its environment. In the subsequent
section, we introduce a simulation platform that simulates the agent, the body
as well as its environment, and allows us to control the complexity level of the
environment and modify its properties. This also leads to the definition of the
emotional and motivational characteristics of the agent and their encoding in
the model. We propose that, even if this software platform brings a radical sim-
plification compared to a hardware machine, it is an excellent first step towards
building autonomous machines and addresses fundamental questions about em-
bodiment. We then report for illustration the results of the first experiments that
we have carried out and finally mention further work that could be considered.
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2 A survival task

Let us first state that, if there is a precise task that characterizes an autonomous
agent, it is a task of survival. An autonomous agent has to be able to survive
in an unknown environment, being aware of its vital variables and being able
to keep those variables in acceptable bounds at any given moment and for the
forthcoming moments. Consequently, it has to minimize uncertainty and avoid
surprise to ensure that it accomplishes the goal of keeping variables in bound.
This has been formalized in, e.g., [Friston et al., 2016] and is revisited differently
here. A step further, biological systems often fail, e.g. have limited generaliza-
tion capability or learning performances, and the utopian vision that they are
“very general autonomous systems” is questionable: They may more ”adapt”
than ”learn”, i.e. change some parameters of some versatile behaviors, instead
of “inventing” new behaviors.

To demonstrate this principle, we consider an agent in an environment that
has ’objects’ that are primarily given an incentive value - their relevance to the
amount of hunger they satisfy or the amount of thirst they quench if these needs
are considered. The objects also carry a preference value with respect to the
agent, which could be retrieved from the agent’s pre-existing knowledge (or be-
ing learned, this very important aspect will not be considered in the present study
but see [Carrere and Alexandre, 2015] for previous work we made on pavlovian
learning, known to contribute to preference learning). The two limbic loops men-
tioned above that we have implemented are respectively in charge of selecting
the need to be considered and the preferred object. We will mention below how
they are associated, through the simulation platform, to the internal perception
of needs (for motivational aspects) and to the representation of preference as an
anticipation of a certain level of pleasure (for emotional aspects).

At any given instant, it is possible that there are no objects perceived by the
agent in the vicinity. In this case, the other two loops, the sensorimotor loops, are
responsible for the orientation of the agent in space until objects are perceived.
If any reveal pertinent to the task, the loops are also responsible for navigation,
reaching and consumption of this object. We mention below how the spatial and
visual aspects to be processed in the sensorimotor loops are extracted from the
simulation platform.

For the moment in our description, the loops are presented independent to
each other and each of them respectively carries out a specific function. It is of
course necessary to consider some coordination between the loops to emulate
a really intelligent and autonomous behavior and we will evoke below several
strategies of coordination and how they can be implemented, particularly to give
rise to a possibility of different starting points of the survival task. Before all
these developments, we describe, in the following section, the generic algorithm
implemented for each loop in the model and the Malmo platform we used to
create an environment for the task.
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3 A model of cerebral loops

In the brief description above, each loop has been assigned a very different func-
tion, but it is also noticeable to mention that each loop is dynamically computed
with the same algorithm, since they are all part of the same circuitry linking the
basal ganglia and the sensory and frontal cortical areas.

Firstly, sensory cues, corresponding to actual or desired sensations activate
candidate actions in the frontal area. A primitive strategy is to trigger the action
most often associated to these sensations. This corresponds to habits. Else, a
selection process takes place to make a decision based on a deeper contextual
analysis. This is attributed as one of the major roles of the basal ganglia.

The basal ganglia is often presented as a competitive system (Go-No Go in
[Hazy et al., 2006]), based on several excitatory and inhibitory pathways respec-
tively adding more weight to the selection and the inhibition of each candidate
action until one reaches a threshold and is triggered. This dual evaluation is
based on the estimated values of the expected sensory consequences of the ac-
tion and other modulatory contextual information.

There have been computational accounts of such action selection in
the basal ganglia using a two-arm bandit task [Pasquereau et al., 2007],
that go on to demonstrate how the outcomes of such actions are
learned, thereby being able to choose the best rewarding one later
[Redgrave et al., 1999,Topalidou and Rougier, 2015]. The conflict between two
almost equivalent options is resolved by an external noise driving one of them
towards selection. Even without a complicated task in context, the same selection
between two equivalent stimuli can be demonstrated in a single channel of neural
populations. This kind of selection is achieved by implementing the above men-
tioned complementary pathways in the basal ganglia as neural ensembles with
excitatory and inhibitory connections [Leblois et al., 2006].

Each loop described in our model has a respective substrate of the basal
ganglia involved for the local selection. Given the space constraints in the pa-
per and the main emphasis being on the high level behaviour, we restrict the
description of the dynamics within the basal ganglia in the equation 1 as in
[Leblois et al., 2006]. Assuming each unit represents an ensemble tuned towards
a particular stimulus : Iext is the external input representing the salience of the
stimulus, Is is the input to the unit from its connections (synaptic input) and τ
is the decay time constant of the synaptic input and m is the output of the unit.

τ
dm

dt
= -m + Is + Iext (1)

The synaptic input to a unit j, Ijs , which is the input as a result of the connec-
tions from units of other structures (say i), depends on the connections weights
(wij) between units i and j , as shown in the equation 2. We would like to em-
phasize that the dynamics given by the equations 1 and 2 are phenomenological
and are not constrained to a specific neuronal architecture.

Ijs = Σiwij ∗mi (2)
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When an action is triggered, its expected sensory consequences are also acti-
vated to a specific desired level, representing the goal of the action. The action
will be maintained until the expected sensory consequences (or other conditions
for interruption, not developed here) are met.

In some cases, triggering the action is not sufficient to reach the goal (e.g.
deciding to eat is not sufficient to get some food) and the desired activity can
itself trigger new actions in other loops (e.g. finding some food). This process
can recursively trigger other secondary goals, until some goal is immediately
achieved, stopping the corresponding action.

This generic algorithm is applied in parallel in the four loops. Among the
limbic loops, one is responsible for selecting the need, based on the interocep-
tion of internal levels. We refer to this loop as Why loop as it corresponds to
the motivation behind selecting the need. The other is responsible for selecting
perceived items known to satisfy some needs, based on their levels of preference.
This loop is referred to as What loop as it signifies the qualitative nature of
each stimulus owing to its preference level. Among the sensorimotor loops, one
is responsible for orienting the agent towards the selected target, which we call
Where loop. The other, referred to as How loop, is responsible for moving to
reach the target. The Why loop also receives an input from the sensori-motor
loops, representing the cost of action involved in reaching a certain stimulus, to
be able to compare with the appetitive gain the stimulus might offer. This can
be simply implemented using negative connection weights wij in equation 2.

In addition, this selection made locally in a specific loop is also modulated
by the selection made in a different loop. For example, the activity strength
of selection in What loop modulates the activities competing for selection in
the Why loop. Similarly, the Why loop modulates the Where loop which in
turn modulates the How loop. To keep the modulation simple and tractable, we
implement a simple biasing factor bij from unit i to j, as a function of the source
activity ai as shown in equation 3.

bij = a
tanσIJ

π
4

i (3)

In equation 3, σIJ is a bias strength parameter that is specific between two
populations I and J . For instance, the bias that the preference-based choice
might have on the need-based choice could be less than the bias that the over-
all limbic choice has on that of any of the sensorimotor loops. This kind of
interactions between different cortico-basal ganglial loops in animals (including
primates) is a question of wide interest in the field of neuroscience. Here in this
work, we stick to a rather simple implementation for the ease of the demonstra-
tion of the principle. Therefore, it has to be noted that all the equations given
above represent a generalized principle (lateral interactions, modulation etc.)
between the neuronal structures and their intra-loop and inter loop dynamics.
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4 The Malmo platform

Minecraft is a sandbox video game with a virtual 3D world that can be generated
procedurally. With single or multiple agents in it, activities like exploration and
resource gathering can be simulated. Malmo is an Artificial Intelligence experi-
mentation platform on the top of Minecraft [Johnson et al., 2016]. Malmo allows
to incorporate various models of reinforcement learning, planning and collabora-
tive and competitive strategies into the Minecraft game environment among the
agents. Malmo has been used for various kinds of specific experimentations like
learning to navigate in the Minecraft world [Matiisen et al., 2017] and compu-
tational models of animals living in block world [Stranneg̊ard et al., 2017a]. In
most of such cases, very specific feature of Malmo is used (either the 3D space
in the environment or the block nature of the world or the agent to perform
a task. We exploit, simultaneously, various features of Malmo like the agent’s
internal body attributes, external constraints like vision, and uncertainty that
can be induced into the scenario owing to the vast environment and its contents.
Furthermore, Malmo provides great convenience to connect our model of generic
loops to the Minecraft world, since the model inevitably requires an elaborative
environment to study and visualize the behavior in a survival task.

Malmo provides an agent, on which we have a full control on its actions, either
through the tool or through our model. The agent by default has an attribute
life that is affected by the external world (e.g, when in contact with fire or
attacked by other agents). Malmo allows to construct a 3D world of the size of
choice, in which the agent is present. We can procedurally place certain items
in the world, in the vicinity of the agent or elsewhere. Items can be attributed
respective reward values that the agent is able to gain when it collects them.
The agent is allowed to execute finely controlled actions like turn, move, jump,
etc. At any given time step, the framework provides the state of both the agent
and the environment with respect to the agent. The state includes attributes
like agent’s life, its position and orientation in absolute coordinates with respect
to the world, the items that are present in the chosen accessibility range around
the agent and their positions and attributes.

For the survival task we have chosen, attributing bodily and other emotional
and motivational characteristics to the agent forms a key aspect of our model.
Besides the relevant features of Malmo we use, we augment these characteristics
to the agent as well as to the items in the task. Agent has two vital variables -
hunger and thirst - which increase with time as well as with the level of efforts
(meaning an action move or turn). Instead of a one dimensional reward, each
item carries a motivational index that is relevant to the hunger or the thirst level
it would satisfy, and a level of preference with respect to the agent, expressing its
emotional value. Also, from a functional point of view, we adapted few aspects
like visibility of the agent and the information about the positions (of items as
well as the agent itself). For instance, as the model is desired to be bio-inspired,
we consider few bodily, biological constraints to the agent and restrict the agent’s
field of vision to a plausible value (in our case, 120◦). The information about
the objects in the environment is also restricted depending on the distance from
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the agent within the field of vision. These adaptations were important to add
certain biologically plausible restrictions to the task given that we would not
model them in detail as they don’t fall in the scope of our goals.

5 Illustrations

Figure 1 shows several moments from an episode in the task implemented in
Malmo, primarily concerned with different questions each loop in the model ad-
dresses. In a basic scenario, the agent starts exploring the environment (figure
1.a) with a desired activation for a particular item that (known from previous
experience) would satisfy the current major need (figure 1.a, inset). This is a
result of the internal state processing in the Why loop. When the agent per-
ceives multiple stimuli (figure 1.b), along with the appetitive relevance of each
of the stimuli, the action costs, depending on their positions, are also provided
(implemented as a negative signal from the sensory-motor loops). Furthermore,
the choice on the pre-existing preferences towards the stimuli corresponding to
the selected need is made in the What loop and it modulates the selection in the
Why loop.

Once the decision has been made in the Why loop and the goal has been set,
the execution of goal involves two steps in the two sensorimotor loops. Once a
stimulus is chosen, the goal is to orient towards it. The Where loop is responsible
for the agent to start turning towards it (see apple in figure ??.c) until the
selected stimulus is in the sight of the agent. And finally, owing to the processing
in the How loop, the agent moves to reach the stimulus that it has oriented
towards and consumes it (an imaginary action which we equate to the agent
reaching the item and updates the corresponding hunger and thirst values).

Sustaining the selection of goal until it is achieved is at the core of the
processing in each loop. The Where loop, after choosing the orientation to turn,
sustains the activity until the object is in sight. And the How loop sustains its
activity from the point of orienting to the point where it has reached closer to
the stimulus, to be able to consume it. This would now cascade back to the
limbic loops which have been sustaining their selected responses. The Why loop,
which has been active since selecting the current need, is sustained until the need
levels are modified by the consumption of the stimulus. Similarly, the What loop,
which has been sustaining activity since selecting a preferred stimulus, continues
until verifying the consumed stimulus has the expected value.

6 Discussion

In the wake of the field of Artificial General Intelligence that advocates intelli-
gent agents should be able to solve general problems, it is rather easy to classify
survival of an autonomous agent as a general problem. We argue that survival
of an autonomous agent, in fact, addresses a very specific question, that requires
the agent to keep its vital variables within acceptable bounds in the current
as well as a future, anticipated state. We emphasize the body, which completes



VIII

Fig. 1. Snapshots at different stages in the task. (a) Internal needs monitored in the
Why loop (inset). (b) Processing information about the stimuli in the What loop.
(c) Orienting towards the selected stimulus using the Where loop. (d) Reaching the
selected stimulus using the How loop, once oriented. Note: The different third person
and first person views in (a) and (b) are only chosen to show the change in proximity of
stimuli to the agent, but these views have no effect on the task. They can be switched
while watching the task. Similarly, for (c) and (d)

a closed-loop of interaction for the agent with the environment, as the key to
the process of survival. Consequently, we derive our basis from neuroscience of
animal cognition and behavior to build a bio-inspired model that helps an arti-
ficial agent survive. The components of our model, representing the cortical and
basal ganglia structures in the brain, are inspired to be close to the biological
plausibility in their working dynamics. As mentioned earlier, understanding the
interactions between these cortico basal-ganglial loops is an active ongoing work
in the field of neuroscience and we, through the description and further develop-
ment of our model, would like to be in a position of useful contribution to that
work.

In the field of robotics, there have been accounts of mo-
tivation driven robotic systems and a few design frameworks
[Stranneg̊ard et al., 2017b,Konidaris and Barto, 2006]. Most of them ad-
dress the task of making a choice based on motivation. We derive inspiration
from such formalisms and begin to build much more comprehensive sce-
narios involving the behaviour of agent, in a bio-inspired manner, in which
action selection forms a key component. We remain aware that building
such scenarios in a bio-inspired manner requires further more understand-
ing of higher level neural mechanisms involved in animal foraging behavior
[Kolling et al., 2012,Constantino and Daw, 2015]. However, we would like to
emphasize that the fundamental basis of demonstrating comprehensive animal
behaviours in artifical agent lies in the description of the underlying generic
characteristics of the survival task. Therefore, in this work, we contain ourselves
to the description of the basic task and required attributes, keeping the
developments and performance studies to a much finer study elsewhere. In fact,
using the neural structures already involved in certain loops, we account for
context-specific preferences of the agent (in the What loop) and the action costs
involved in choosing a stimulus (in the Why loop). In the context of the task
that we target to demonstrate, given its complexity, it is considerably difficult
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to choose the right kind and number of attributes to be encoded in the model.
Rightly so, we chose an experimentation platform that inspires our concrete
choice of emotional and motivational characteristics of the model.

Different starting points characterize certain scenarios in which agent exhibits
a distinct behavior, quite often, that belongs to a set of behaviors extensively
studied in neuroscience related to primate cognition. The example scenario il-
lustrated in the section Illustrations describes a very prominent animal behavior
in neuroscience, called goal-directed behavior [Balleine et al., 2009]. As a part
of our ongoing work, we plan to study other key animal behaviors like stimulus-
driven behavior where, even in the absence of internal need, the external stimuli
in the environment drive the motivation of the animal. We also are interested in
extending the model to explain much more interesting, opportunistic behaviors
where the agent’s chosen current behavior can be interrupted to switch to an-
other, anticipating a higher satisfaction for a future need as opposed to a lower
satisfaction of a current need. It is the emergence of such versatile behaviors
that helps the animal survive in a dynamic external world. The platform we
chose, Malmo, invariantly supports demonstrating various behaviors with no or
minimal changes to itself but only from the changes in the state of the agent or
the objects in the environment. Unlike other works that used Malmo to interface
with Minecraft gaming environment, we utilize its features to have a finer control
on the environment and to demonstrate the modulation between the cognitive
behaviour and action execution in the environment.

Interestingly enough, understanding the dynamics between such different be-
haviors is still an open problem in computational neuroscience. That encourages
us to strengthen the basis of our model more from biology, exploit the convenient
visualization platform like Malmo to demonstrate the model to neuroscientists
and gain their insights. After all, we, the intelligent primates, are a perfect ex-
ample of an autonomous agent trying to survive, only in a real world.
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